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Introduction

By the time public key cryptography was introduced many cryptosystems of this
kind have been developed. For the most of these cryptosystems their security is based
on the difficulty of either of the following two problems, integer factorization and the
discrete logarithm problem. One of the first public key cryptosystems developed was
RSA which was introduced in 1977 by Ron Rivest , Adi Shamir and Leonard Adleman
and then widely used. This cryptosystem bases its security on the difficulty of integer
factorization. Therefore in order to test the security of ciphers like that the problems of
integer factorization and the discrete logarithm problem have been extensively studied
by researchers the last 40 years. One algorithm that was developed through those studies
was the Number Field Sieve. As the NFS is the algorithm that holds the current world
records for integer factorization we choose to study this algorithm.

The goal of this master thesis is to present the Number Field Sieve algorithm and the
mathematical background which was used for its development. The algorithm was first
introduced as a factoring algorithm. More particularly, the first version of the algorithm
could factor only integers 𝑛 of the form 𝑛 = 𝑟𝑒 − 𝑠 with 𝑟, |𝑠| small positive integers.
This algorithm presented in [16, pp. 11-42] will be studied in the first chapter of this
master thesis. To indicate the strength of the algorithm we mention two factorizations
that were done using it. Its first success was the complete factorization of the ninth
Fermat number in 1993 [15]. Apart from that, it also holds a record for factoring the
320-digit number 𝑛 = 21061 − 1 in 2012 [7]. As later versions of the NFS were based
on this one we try to explain each step in as much detail as possible. The main goal of
the algorithm is to construct a congruence of squares such that 𝑥2 ≡ 𝑦2 (mod 𝑛) and
𝑥 ≢ ±𝑦 (mod 𝑛). In order to achieve that the NFS attempts to find a sufficient num-
ber of smooth elements over some factor base and then tries to find a combination of
them which will lead to a congruence of squares. For the development of the algorithm
we need many results from algebraic number theory, linear algebra and even graph the-
ory. In the first chapter we mention all the theory that we need and prove many results.
Finally we give a small example of a factorization so that the ideas described in the pre-
vious sections to be illustrated.

The second chapter is devoted to the General Number Field Sieve [16, pp. 50-92].
This is a version of the algorithm described in chapter 1 which can factor arbitrary inte-
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vi Introduction

gers. Although slower than the one described in chapter 1 it is still faster than any other
factoring algorithm for integers with more than about 110 decimal digits. It actually
holds a record for factoring the 232−digit number RSA-768.

𝑅𝑆𝐴 − 768 =1230186684530117755130494958384962720772853569595334792197
3224521517264005072636575187452021997864693899564749427740
6384592519255732630345373154826850791702612214291346167042
9214311602221240479274737794080665351419597459856902143413

The factorization of RSA-768 reported in [13] finished in the end of 2009 and took about
three years.

𝑅𝑆𝐴 − 768 =3347807169895689878604416984821269081770479498371376856891
2431388982883793878002287614711652531743087737814467999489

×3674604366679959042824463379962795263227915816434308764267
6032283815739666511279233373417143396810270092798736308917

In this chapter we explain all the modifications included in this version and prove the
mathematical background needed. Finally we give again a small example of a factoriza-
tion.

Heraklion 2/5/2017



Chapter 1

The Special Number Field Sieve

Building upon modern ideas about factoring integers in 1990 A.K. Lenstra, H.W.
Lenstra Jr., M.S.Manasse and J.M. Pollard published the paper ”The number field sieve”
[16, pp. 11-42]. This paper describes the algorithm which we are going to study in
this chapter (we will call it special number field sieve). The SNFS is one of the most
powerful algorithms available at the moment for factoring integers. Its first success was
the complete factorization of the ninth Fermat number in 1993 [15]. Apart from that,
it also holds a record for factoring the 320-digit number 𝑛 = 21061 − 1 in 2012 [7].
However, it is not a general purpose factoring algorithm as it factors only integers of
the form 𝑛 = 𝑟𝑒 − 𝑠 for small positive 𝑟 and |𝑠|. Additionally, it gets faster than other
methods if the number we are trying to factor has more than about 100 decimal digits.
In case we are trying to factor a number with less than 100 decimal digits, the quadratic
sieve or the elliptic curve method will probably be faster.
The basic idea originating back to Fermat is that of constructing congruences of squares
modulo the number we want to factor. Let 𝑛 be an integer that we want to factor and
assume that we have found 𝑥, 𝑦 ∈ ℤ such that 𝑥2 ≡ 𝑦2 (mod 𝑛) and 𝑥 ≢ ±𝑦 (mod 𝑛).
It then follows that 𝑔𝑐𝑑(𝑥 − 𝑦, 𝑛) is a non-trivial factor of n. So our goal is to construct
congruences like the above. In order to achieve that the SNFS associates a number field
to n and then using sieving techniques it attempts to find a sufficient number of smooth
elements. Finally using linear algebra it combines these smooth elements in order to
construct congruences of squares.

1.1 Preliminaries on algebraic number theory
In this section we are going to take some results of algebraic number theory for

granted without proving them. These results are included in almost any book concerning
algebraic number theory as [19], we used [2].
A key concept for the number field sieve is the concept of a smooth number.
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2 The Special Number Field Sieve

Definition 1.1.1. Let 𝑛 ∈ ℤ and 𝐵 ∈ ℕ. The number 𝑛 is called 𝐵 − 𝑠𝑚𝑜𝑜𝑡ℎ if all its
prime factors are less than 𝐵.

Definition 1.1.2. A field 𝐾 will be called a number field if it is a subfield of ℂ and it is
a finite extension of ℚ.

For every number field 𝐾 we define the ring of algebraic integers 𝑅𝐾 to be as fol-
lows.

Definition 1.1.3. Let 𝑎 ∈ 𝐾, then 𝑎 ∈ 𝑅𝐾 if and only if 𝐼𝑟𝑟(𝑎, ℚ) ∈ ℤ[𝑋]

For the needs of our algorithm we wish to extend the concept of a smooth number
to the ring 𝑅𝐾 so we are going to study some of its properties.
First of all, it is an easy result of algebraic number theory that there is a 𝜃 ∈ 𝑅𝐾 such
that 𝐾 = ℚ(𝜃). Let [𝐾 ∶ ℚ] = 𝑛 and

𝑓(𝑋) = 𝐼𝑟𝑟(𝜃, ℚ) = (𝑋 − 𝜃(1)) ⋅ (𝑋 − 𝜃(2)) ⋅ … ⋅ (𝑋 − 𝜃(𝑛)) where 𝜃 ∶= 𝜃(1)

.
Having this in mind it is easy to show that there are exactly 𝑛 embeddings of 𝐾 in

ℂ, defined as

𝜎𝑗 ∶ 𝐾 → ℂ
𝑛−1
∑
𝑖=0

𝑎𝑖𝜃𝑖 ↦
𝑛−1
∑
𝑖=0

𝑎𝑖𝜃(𝑗)𝑖

We now use this embeddings in order to define the norm map of the field 𝐾.

Definition 1.1.4. Let 𝐾 = ℚ(𝜃) be a number field ,𝑎 ∈ 𝐾 and 𝜎1 , 𝜎2, … , 𝜎𝑛 be the
embeddings of 𝐾 in ℂ. We define the norm of the element 𝑎 to be

𝑁(𝑎) =
𝑛

∏
𝑖=1

𝜎𝑖(𝑎)

The following result about the norm map will allow us to extend the concept of a
smooth element to the ring 𝑅𝐾.

Proposition 1.1.5. Let 𝐾 be a number field, then the norm map defined above is a
multiplicative function that maps the elements of 𝐾 to ℚ and the elements of 𝑅𝐾 to ℤ.

Definition 1.1.6. Let 𝑎 ∈ 𝑅𝐾 and 𝐵 ∈ ℕ then the element 𝑎 is called B-smooth if its
norm is B-smooth.
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In the case of the ring ℤ the definition of a smooth element is depended on its prime
factorization. As we will see next for the needs of SNFS we need to have something
similar for the ring 𝑅𝐾. So at this point we need to make some comments about the
property of factorization in the ring 𝑅𝐾. Initially we define what is a unit of the ring
𝑅𝐾.

Definition 1.1.7. Let 𝑎 ∈ 𝑅𝐾, then 𝑎 is called a unit of 𝑅𝐾 if 𝑁(𝑎) = ±1.

The units of the ring 𝑅𝐾 form a group which we denote by 𝐸(𝑅𝐾).

Definition 1.1.8. Let 𝑅 be an integral domain, then 𝑅 is called a unique factorization
domain (UFD) if every non-zero and non-unit element can be written as a product of
prime elements, uniquely up to order and units.

Definition 1.1.9. Let 𝑅 be an integral domain, then 𝑅 is called a principal ideal domain
(PID) if every ideal of 𝑅 is principal.

In general every principal ideal domain is a unique factorization domain but the
opposite does not hold. However for the ring of algebraic integers 𝑅𝐾 of a number field
𝐾 the two properties are equivalent. That means that 𝑅𝐾 either has both of the above
properties or none of them. In the next paragraphs we are going to study the SNFS
making the simplifying assumption that 𝑅𝐾 possesses both of the properties (i.e. the
class number of 𝐾 , ℎ𝐾 = 1). In the end of the chapter we are going to mention how it
can be adjusted in order to apply in the case that 𝑅𝐾 does not possess none of them (i.e.
ℎ𝐾 > 1). Even though in both cases the algorithm works fine there is one property of
𝑅𝐾 that we need in both cases. That is the property of a Dedekind domain.

Definition 1.1.10. Let 𝑅 be an integral domain, then 𝑅 is called a Dedekind domain if
and only if the following three properties hold:
i) The ring 𝑅 is noetherian.
ii) Every prime ideal of 𝑅 is maximal.
iii) 𝑅 is integrally closed.

The following theorem holds for every Dedekind domain.

Theorem 1.1.11. Let 𝑅 be a Dedekind domain, then every non-zero ideal of 𝑅 has a
unique factorization in prime ideals of 𝑅.

The above theorem makes clear why we want 𝑅𝐾 to be a Dedekind domain. The
reason is that in both cases we need unique factorization of ideals.

Theorem 1.1.12. Let 𝐾 be a number field and 𝑅𝐾 be its ring of algebraic integers.
Then 𝑅𝐾 is a Dedekind domain.



4 The Special Number Field Sieve

We will also need to define the norm of an ideal.

Definition 1.1.13. Let 𝐼 be an ideal of 𝑅𝐾, then we define the norm of 𝐼 to be 𝑁(𝐼) =
#(𝑅𝐾/𝐼).

Remark 1.1.14. It is well known that this number is finite.

Definition 1.1.15. Let 𝔭 be a prime ideal of 𝑅𝐾, we define the inertia degree 𝑓(𝔭/𝑝ℤ)
to be the degree [𝑅𝐾/𝔭 ∶ ℤ/𝑝ℤ] of the field extension.

The ring ℤ[𝜃] is a subring of 𝑅𝐾. In the case that 𝑅𝐾 = ℤ[𝜃] that simplifies a little
bit the algorithm as we will see later. However, there are cases in which that does not
hold so, ℤ[𝜃] & 𝑅𝐾. In these cases we cannot substitute the ring 𝑅𝐾 with ℤ[𝜃] and
work with it. The reason is that ℤ[𝜃] is not integrally closed and so not a Dedekind do-
main, which follows that we do not have unique factorization of ideals. That justifies
our choice to work with the ring 𝑅𝐾 instead of ℤ[𝜃]. As we will see in the next chapter
this is a difference between the special and the general number field sieve, as in the later
we will work in the ring ℤ[𝜃].

Comment 1.1.16. For the rest of the chapter we are going to take the ring 𝑅𝐾 for
granted without mentioning how it was found. For more information on how to compute
the ring of algebraic integers of a number field we refer to [8].

1.2 Description of the algorithm
In the following description we consider the large prime variation of SNFS as in

practice it is proved to be more efficient. That means that in the sieving step, where we
are looking for smooth elements we allow one prime factor to exceed the smoothness
bound. For the rest of this chapter n will denote the number that we are trying to fac-
tor. Our goal is to construct a congruence of squares 𝑥2 ≡ 𝑦2 (mod 𝑛) and 𝑥 ≢ ±𝑦
(mod 𝑛). The SNFS tries to achieve that through the following four main steps.

Step 1)We first choose the degree 𝑑 of the extension in which we are going to work
and then associate a number field 𝐾 = ℚ(𝜃) to the number 𝑛. This is done through the
irreducible polynomial 𝑓(𝑥) of 𝜃. We choose 𝑓(𝑥) in a specific way as we wish it to
have the following property.

There is an integer m (of size 𝑛1/𝑑 ) such that 𝑓(𝑚) ≡ 0 (mod 𝑛)

Step 2) As we have chosen the number field 𝐾 in which we are going to work, the
next step is to choose our smoothness bounds 𝐵1, 𝐵2, 𝐵3, 𝐵4 such that 𝐵1 ≤ 𝐵3 and
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𝐵2 ≤ 𝐵4. Then we construct the factor base. Our factor base consists of three sets P, U
and G.

P = {𝑝 ∈ ℙ, 𝑝 ≤ 𝐵1}
U = {a generating set of the group of units of 𝑅𝐾}
G = {𝜋 ∈ 𝑅𝐾 ∶ < 𝜋 >= 𝔭 ∀ 𝔭 ∈ ℙ(𝐾) such that 𝑓(𝔭/𝑝ℤ) = 1 and 𝑁(𝔭) ≤ 𝐵2}

∪ {𝜋 ∈ 𝑅𝐾 ∶ < 𝜋 >= 𝔭 ∀ 𝔭 ∣ 𝑓𝑅𝐾}

where 𝑓 = [𝑅𝐾 ∶ ℤ[𝜃]] and 𝑓(𝔭/𝑝ℤ) is the inertia degree.

Step 3)We choose two sieving bounds 𝑈1, 𝑈2 and we try to find a sufficient number
of relations. More specifically we are looking for pairs (𝑎, 𝑏) where 𝑎, 𝑏 are integers
with |𝑎| ≤ 𝑈1 and 0 < 𝑏 ≤ 𝑈2 such that :
i) gcd(𝑎, 𝑏) = 1
ii) |𝑎+𝑏𝑚| is𝐵1-smooth except for at most one prime factor 𝑝1 such that𝐵1 < 𝑝1 < 𝐵3
iii) 𝑎 + 𝑏𝜃 is 𝐵2-smooth except for at most one prime ideal 𝔭2 in the factorization of
< 𝑎 + 𝑏𝜃 > with 𝑁(𝔭2) = 𝑝2 and 𝐵2 < 𝑝2 < 𝐵4
When we find a pair (𝑎, 𝑏) that satisfies the above three conditions we say that we have
found a relation.

Step 4) Once we have enough relations we form a matrix depending on the factor-
ization of the elements 𝑎 + 𝑏𝑚 and 𝑎 + 𝑏𝜃 that each relation corresponds to. Let 𝑆 be
the set of all relations that we found in step 3. Then using linear algebra techniques we
attempt to find a subset 𝑇 of 𝑆 such that :

∏
(𝑎, 𝑏)∈𝑇

(𝑎 + 𝑏𝑚) = square in ℤ (1.1)

∏
(𝑎, 𝑏)∈𝑇

(𝑎 + 𝑏𝜃) = square in 𝑅𝐾 (1.2)

We are now going to make some comments on some points of the above steps that
may not have been clear.
In step 2 the choice of the smoothness bounds is done better empirically, however later
in this chapter we will mention some suggested choices depending on the running time
analysis of this algorithm. Also, in step 2 when we construct the set G we take the ele-
ments 𝜋 to be pairwise not associates so, for each prime ideal we take only one generator.
At this point our assumption that the ring 𝑅𝐾 is a PID is necessary. If 𝑅𝐾 was not a
PID then we could not construct the set G. The reason for this is that some ideals may
not be principal so we cannot find a generator 𝜋. Finally as we will see later the set U is
finite so we just have to determine it.
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Step 3 is the sieving step. The prime 𝑝1 if it exists is called the large prime and the
prime ideal 𝔭2 the large prime ideal. We distinguish between the following cases.
In a relation if there is not a large prime or a large prime ideal then we set 𝑝1 = 1,
𝔭2 = ⟨1⟩ = 𝑅𝐾 and we call the relation a full relation. Otherwise we call it a partial
relation. So in a full relation we have

𝑎 + 𝑏𝑚 = ∏
𝑝∈P

𝑝𝑒(𝑝) and 𝑎 + 𝑏𝜃 = ∏
𝑢∈U

𝑢𝑒(𝑢) ∏
𝑔∈G

𝑔𝑒(𝑔)

where 𝑒(𝑝), 𝑒(𝑔) ∈ ℕ and 𝑒(𝑢) ∈ ℤ.

Definition 1.2.1. Let 𝐶 be a set of partial relations, then 𝐶 will be called a cycle if for
each (𝑎, 𝑏) ∈ 𝐶 there is a sign 𝑠(𝑎, 𝑏) ∈ {±1} such that

∏
(𝑎, 𝑏)∈𝐶

(𝑎 + 𝑏𝑚)𝑠(𝑎,𝑏) = ∏
𝑝∈P

𝑝𝑒(𝑝) and ∏
(𝑎, 𝑏)∈𝐶

(𝑎 + 𝑏𝜃)𝑠(𝑎,𝑏) = ∏
𝑢∈U

𝑢𝑒(𝑢) ∏
𝑔∈G

𝑔𝑒(𝑔)

So in order to take advantage of partial relations our target will be to construct a
maximal set of independent cycles.

There is also a kind of relations called free relations. This kind actually corre-
sponds to the case where 𝑏 = 0 and 𝑎 ∈ ℙ. As we will see later for each prime
𝑝 ≤ min{𝐵1, 𝐵2} for which 𝑓(𝑥) factors completely in linear factors in 𝔽𝑝[𝑋] there is
such a relation. When the number of full relations plus the number of free relations plus
the number of independent cycles exceeds |P| + |U| + |G| we stop sieving.

Each full relation, each free relation and each cycle that we have from step 3 gives
rise to two elements, one in ℤ and one in 𝑅𝐾. If we consider a relation (𝑎, 𝑏) these two
corresponding elements are 𝑎 + 𝑏𝑚 and 𝑎 + 𝑏𝜃 respectively. If we consider a cycle 𝐶
then these two elements are

∏
(𝑎, 𝑏)∈𝐶

(𝑎 + 𝑏𝑚)𝑠(𝑎,𝑏) and ∏
(𝑎, 𝑏)∈𝐶

(𝑎 + 𝑏𝜃)𝑠(𝑎,𝑏).

In both cases these elements factor completely over our factor base. So, for every such
element we compute its factorization. For example, let (𝑎, 𝑏) be a full relation and

𝑎 + 𝑏𝑚 = ∏
𝑝∈P

𝑝𝑒(𝑝) and 𝑎 + 𝑏𝜃 = ∏
𝑢∈U

𝑢𝑒(𝑢) ∏
𝑔∈G

𝑔𝑒(𝑔)

then we form a vector 𝑣(𝑎, 𝑏) over 𝔽2 like this

𝑣(𝑎, 𝑏) = ((𝑒(𝑝) mod 2)𝑝∈P, (𝑒(𝑔) mod 2)𝑔∈G, (𝑒(𝑢) mod 2)𝑢∈U)
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In step 4 we form a matrix 𝐴 using all these vectors as columns of 𝐴. Then using linear
algebra we attempt to find vectors of the nullspace of 𝐴. Each such vector gives rise to
a subset 𝑇 of 𝑆 (where 𝑆 is the set of all full relations, free relations and cycles) such
that :

∏
(𝑎, 𝑏)∈𝑇

(𝑎 + 𝑏𝑚) = square in ℤ

∏
(𝑎, 𝑏)∈𝑇

(𝑎 + 𝑏𝜃) = square in 𝑅𝐾

Remark 1.2.2. The nullspace of 𝐴 contains non-zero vectors as we have #𝑆 > |P| +
|U| + |G|

Finally, once step 4 is completed we have constructed two squares, one in ℤ and one
in 𝑅𝐾 respectively. Then we will use a ring homomorphism
𝜑 ∶ 𝑅𝐾 → ℤ/𝑛ℤ for which the images of the two squares are equal in order to con-
struct a congruence of squares (mod 𝑛).

The next sections of this chapter are devoted to the study of the above four steps.

1.3 Polynomial selection and definition of 𝜑
In this section we will see how we construct the number field in which we are going

to work and how we define the ring homomorphism 𝜑 mentioned above. The number
field is constructed with the help of an irreducible polynomial which depends on the
special form of 𝑛 as we will see. We have already mentioned on the previous section
that the first parameter which we choose is the degree of the extension in which we are
going to work. Let 𝑑 be the degree of the extension and 𝑘 the least positive integer such
that 𝑘𝑑 ≥ 𝑒 where 𝑛 = 𝑟𝑒 − 𝑠. We set

𝑡 = 𝑠𝑟𝑘𝑑−𝑒 , 𝑓(𝑥) = 𝑥𝑑 − 𝑡 and 𝑚 = 𝑟𝑘

We have that

𝑓(𝑚) = 𝑟𝑘𝑑 − 𝑠𝑟𝑘𝑑−𝑒 = 𝑟𝑘𝑑−𝑒(𝑟𝑒 − 𝑠) ≡ 0 (mod 𝑛)

so the polynomial 𝑓(𝑥) has the property that step 1 of the algorithm requires. At this
point we make the assumption that 𝑓(𝑥) is irreducible. This condition is likely to be
satisfied since in realistic cases a non-trivial factor of 𝑓(𝑥) gives rise to a non-trivial
factor of 𝑛. As we have an irreducible polynomial, let 𝜃 be one of its roots. We set
𝐾 = ℚ(𝜃) to be the number field in which we are going to work. Moreover as 𝑓(𝑥) is
irreducible it follows that [𝐾 ∶ ℚ] = 𝑑.
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Comment 1.3.1. In practice the degree of the extension used for the SNFS is less than
7.

Remark 1.3.2. At this point before proceeding to the next steps there are two things
that have to be done. The first one is to find the ring 𝑅𝐾 and the second is to compute
the class number ℎ𝐾 of the field in which we are working. However the study of these
computational problems is beyond the scope of this master thesis.

The next step is to define the ring homomorphism 𝜑. We are going to define 𝜑
initially in ℤ[𝜃] and then extend it to 𝑅𝐾 in case ℤ[𝜃] & 𝑅𝐾. We define

𝜑 ∶ ℤ[𝜃] → ℤ/𝑛ℤ
𝑑−1
∑
𝑖=0

𝑎𝑖𝜃𝑖 ↦
𝑑−1
∑
𝑖=0

𝑎𝑖𝑚𝑖 (mod 𝑛)

where 𝑓(𝑚) ≡ 0 (mod 𝑛). We are going to keep this notation for 𝜑 for the rest of this
chapter. In order to extend 𝜑 to 𝑅𝐾 we must first define the discriminant of an element.

Definition 1.3.3. Let 𝐾 be a number field with [𝐾 ∶ ℚ] = 𝑑, we define the discriminant
of 𝑑 elements of 𝐾, {𝑎1, 𝑎2, … , 𝑎𝑑} to be 𝐷𝐾({𝑎1, 𝑎2, … , 𝑎𝑑}) = (𝑑𝑒𝑡[𝜎𝑖(𝑎𝑗)])2. We
define the discriminant of an element 𝑎 ∈ 𝐾 to be 𝐷𝐾(𝑎) = (𝑑𝑒𝑡[𝜎𝑖(𝑎𝑗)])2

It can be proved that 𝐷𝐾(𝜃) = ∏
1≤𝑖<𝑗≤𝑑

(𝜎𝑖(𝜃) − 𝜎𝑗(𝜃))2 = (−1)𝑑(𝑑−1)
2 𝑁(𝑓 ′(𝜃)).

Proposition 1.3.4. Let 𝐾 = ℚ(𝜃) with [𝐾 ∶ ℚ] = 𝑑 then 𝑅𝐾 ⊆ 1
𝐷𝐾(𝜃)ℤ[𝜃]

Proof. Let 𝑎 ∈ 𝑅𝐾 hence 𝑎 can be written as 𝑎 =
𝑑−1
∑
𝑘=0

𝑎𝑘𝜃𝑘 , 𝑎𝑘 ∈ ℚ. Let 𝑎(𝑖) = 𝜎𝑖(𝑎)

for 𝑖 = 1, … , 𝑑. Then 𝑎(𝑖) =
𝑑−1
∑
𝑘=0

𝑎𝑘𝜃(𝑖)𝑘 for 𝑖 = 1, … , 𝑑 so we have,

⎛⎜⎜
⎝

1 𝜃 … 𝜃𝑑−1

⋮ ⋮ ⋮
1 𝜃(𝑑) … 𝜃(𝑑)𝑑−1

⎞⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑎0
𝑎1
⋮

𝑎𝑑−1

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑎
𝑎(2)

⋮
𝑎(𝑑)

⎞⎟⎟⎟⎟
⎠

Therefore that 𝑎𝑘 = 𝐴𝑘
𝐷 for 𝑘 = 1, … , 𝑑 − 1 where 𝐷 = ∏

1≤𝑖<𝑗≤𝑑
(𝜎𝑖(𝜃) − 𝜎𝑗(𝜃)) 𝐷 ≠ 0

and

𝐴𝑘 = 𝑑𝑒𝑡
⎡
⎢⎢⎢
⎣

1 𝜃 … 𝑎 … 𝜃𝑑−1

1 𝜃(2) … 𝑎(2) … 𝜃(2)𝑑−1

⋮ ⋮ ⋮ ⋮
1 𝜃(𝑑) … 𝑎(𝑑) … 𝜃(𝑑)𝑑−1

⎤
⎥⎥⎥
⎦
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Also, 𝐴𝑘 ∈ ℤ̃, 𝐷 ∈ ℤ̃. But now we have that 𝑎𝑘 = 𝐴𝑘𝐷
𝐷2 ⇒ 𝐴𝑘𝐷 = 𝑎𝑘𝐷2 which

follows that 𝐴𝑘𝐷 ∈ ℚ as 𝐷2 = 𝐷𝐾(𝜃) ∈ ℚ and 𝑎𝑘 ∈ ℚ. So, finally we get that

𝐴𝑘𝐷 ∈ ℚ∩ℤ̃ = ℤ. Now𝐷2𝑎 =
𝑑−1
∑
𝑘=0

𝐷2𝑎𝑘𝜃𝑘 =
𝑑−1
∑
𝑘=0

𝐴𝑘𝐷𝜃𝑘 ∈ ℤ[𝜃] ⇒ 𝑎 ∈ 1
𝐷𝐾(𝜃)ℤ[𝜃]

so 𝑅𝐾 ⊆ 1
𝐷𝐾(𝜃)ℤ[𝜃].

We are now going to compute the discriminant of 𝜃.
𝐷𝐾(𝜃) = (−1)𝑑(𝑑−1)

2 𝑁(𝑓 ′(𝜃))
= (−1)𝑑(𝑑−1)

2 𝑁(𝑑𝜃𝑑−1)
= (−1)𝑑(𝑑−1)

2 𝑑𝑑𝑁(𝜃)𝑑−1

= (−1)𝑑(𝑑−1)
2 𝑑𝑑((−1)𝑑+1𝑡)𝑑−1

= (−1) (𝑑−1)(3𝑑+2)
2 𝑑𝑑𝑡𝑑−1 where 𝑡 = 𝑠𝑟𝑘𝑑−𝑒

Consequently as we showed that 𝑅𝐾 ⊆ 1
𝐷𝐾(𝜃)ℤ[𝜃] then for all 𝛾 ∈ 𝑅𝐾 there exists

a 𝛽 ∈ ℤ[𝜃] and an 𝑙 ∣ 𝐷𝐾(𝜃) such that 𝛾 = 𝛽
𝑙 . As we have made the assumption that

𝑠, 𝑟, 𝑑 are small we can also assume that gcd(𝑑𝑟𝑠, 𝑛) = 1 and so we can extend 𝜑 in
𝑅𝐾 as follows,

𝜑(𝛾) = 𝜑(𝛽)(𝜑(𝑙))−1

Next we define the discriminant of a number field.
Theorem 1.3.5. The ring 𝑅𝐾 is a finitely generated free abelian group with 𝑟𝑎𝑛𝑘 = 𝑑
and hence 𝑅𝐾 = ℤ𝜔1 ⊕ ℤ𝜔2 ⊕ … ⊕ ℤ𝜔𝑑 where 𝜔𝑖 ∈ 𝑅𝐾.
Definition 1.3.6. Every such ℤ-basis of 𝑅𝐾 is called an integral basis of 𝐾/ℚ.

The discriminant of two different integral bases are equal, so we give the following
definition.
Definition 1.3.7. We define the discriminant of a number field 𝐾 to be the discriminant
of any integral basis. We use the notation 𝐷𝐾/ℚ

The following theorem about the discriminant of a number field gives us an interest-
ing connection.
Theorem 1.3.8. Let 𝐾 = ℚ(𝜃) be a number field. Then 𝐷𝐾(𝜃) = [𝑅𝐾 ∶ ℤ[𝜃]]2𝐷𝐾/ℚ.
Comment 1.3.9. In this step we used essentially the special form of 𝑛 in order to con-
struct 𝐾 and 𝜑. This special form of 𝑛 enabled us to associate to it a number field of
special form with ”small” discriminant. These special properties enable us to solve in
a reasonable amount of time computational problems like the construction of the factor
base. As we will see in the next chapter in the case where 𝑛 is not of this special form
then constructing the factor base is out of the question.
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1.4 Factor base construction
In this section we are going to study how we construct some necessary sets for the

sieving step. This implies that we have to compute the sets P , U , G and something
extra as we will see.

The easiest set is P = {𝑝 ∈ ℙ, 𝑝 ≤ 𝐵1} as we can just get it from a database of
prime numbers.

The next set we are going to examine is

G = {𝜋 ∈ 𝑅𝐾 ∶ < 𝜋 >= 𝔭 ∀ 𝔭 ∈ ℙ(𝐾) such that 𝑓(𝔭/𝑝ℤ) = 1 and 𝑁(𝔭) ≤ 𝐵2}
∪ {𝜋 ∈ 𝑅𝐾 ∶ < 𝜋 >= 𝔭 ∀ 𝔭 ∣ 𝑓𝑅𝐾}

Initially we consider the construction of the subset

G1 = {𝜋 ∈ 𝑅𝐾 ∶ < 𝜋 >= 𝔭 ∀ 𝔭 ∈ ℙ(𝐾) such that 𝑓(𝔭/𝑝ℤ) = 1 and 𝑁(𝔭) ≤ 𝐵2}

of G. In order to do that we first need to have a convenient representation of the
prime ideals 𝔭 ∈ ℙ(𝐾) such that 𝑓(𝔭/𝑝ℤ) = 1. The following theorem will give us
exactly what we need.

Theorem 1.4.1. Let𝐾 = ℚ(𝜃) be a number field, where 𝜃 is an algebraic integer, whose
(monic) minimal polynomial is denoted 𝑇 (𝑋). Let 𝑓 = [𝑅𝐾 ∶ ℤ[𝜃]]. Then for any prime
number 𝑝 not dividing 𝑓 one can obtain the prime decomposition of 𝑝𝑅𝐾 as follows. Let,

𝑇 (𝑋) ≡
𝑔

∏
𝑖=1

𝑇𝑖(𝑋)𝑒𝑖 (mod 𝑝)

be the decomposition of 𝑇 into irreducible factors in 𝔽𝑝[𝑋], where the 𝑇𝑖 are taken to
be monic. then,

𝑝𝑅𝐾 =
𝑔

∏
𝑖=1

𝔭𝑖
𝑒𝑖

where 𝔭𝑖 = < 𝑝, 𝑇𝑖(𝜃) >. Furthermore, the inertia degree 𝑓𝑖 is equal to the degree of
𝑇𝑖.

For a proof of the above theorem we refer to [8].

Corollary 1.4.2. Let 𝐾 = ℚ(𝜃) be a number field and 𝑓(𝑥) = 𝐼𝑟𝑟(𝜃, ℚ). Then, prime
ideals 𝔭 of degree 𝑓(𝔭/𝑝ℤ) = 1 not dividing the index [𝑅𝐾 ∶ ℤ[𝜃]] are in bijective
correspondence with the pairs (𝑝, 𝑐 mod 𝑝) where 𝑓(𝑐) ≡ 0 (mod 𝑝).
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Proof. Let 𝔭 be a prime ideal of degree 𝑓(𝔭/𝑝ℤ) = 1. Then Theorem 1.4.1 implies that
𝔭 = < 𝑝, 𝑓𝑖(𝜃) > where deg 𝑓𝑖 = 𝑓(𝔭/𝑝ℤ) = 1 and 𝑓𝑖 is monic. That follows
𝔭 = < 𝑝, 𝜃 − 𝑐 > where 𝑓(𝑐) ≡ 0 (mod 𝑝). So, we map 𝔭 to the pair (𝑝, 𝑐 mod 𝑝)
where 𝑓(𝑐) ≡ 0 (mod 𝑝).
Conversely, let (𝑝, 𝑐 mod 𝑝) be a pair with 𝑓(𝑐) ≡ 0 (mod 𝑝). As 𝑓(𝑐) ≡ 0 (mod 𝑝)
we get that 𝑓(𝑥) ≡ (𝑥−𝑐)𝑔(𝑥) (mod 𝑝) for somemonic 𝑔(𝑥). Then Theorem 1.4.1 im-
plies that the factor 𝑥−𝑐 corresponds to the prime ideal< 𝑝, 𝜃−𝑐 > in the factorization
of 𝑝𝑅𝐾. That finishes the proof.

The next step is to compute all these pairs (𝑝, 𝑐 mod 𝑝) for 𝑝 < 𝐵2 as 𝑓(𝔭/𝑝ℤ) = 1
i.e. 𝑁(𝔭) = 𝑝. We have already mentioned that we can assume we know all primes less
than 𝐵2 so we just have to find the roots of 𝑓(𝑥) mod 𝑝 for all primes less than 𝐵2. In
order to do that we use the following algorithm.

Step 1)We set 𝑔(𝑥) = gcd(𝑓(𝑥), 𝑥𝑝 − 𝑥). If 𝑔(0) ≡ 0 (mod 𝑝) we conclude that
0 is a root and we set 𝑔(𝑥) ← 𝑔(𝑥)

𝑥 .
If deg 𝑔 = 0 we terminate the algorithm.

Step 2) If deg 𝑔 = 1 and 𝑔(𝑥) = 𝑎1𝑥 + 𝑎0 then −𝑎0𝑎1
−1 (mod 𝑝) is a root ,termi-

nate.
If deg 𝑔 = 2 and 𝑔(𝑥) = 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 we set 𝑑 = 𝑎1

2 − 4𝑎0𝑎2 and we find an 𝑒
such that 𝑒2 ≡ 𝑑 (mod 𝑝). Then (−𝑎1 ± 𝑒)(2𝑎2)−1 (mod 𝑝) are roots, terminate.

Step 3) If deg 𝑔 > 2 we choose a random 𝑎 ∈ 𝔽𝑝 and if 𝑔(𝑎) ≢ 0 (mod 𝑝), we set
ℎ1(𝑥) = gcd(𝑥𝑝−1

2 − 1, 𝑔(𝑥 − 𝑎)) and ℎ2(𝑥) = 𝑔(𝑥 − 𝑎)
ℎ1(𝑥) .

If deg ℎ1 = 0 or deg ℎ1 = deg 𝑔 we choose another value for 𝑎 and repeat step 3.

Step 4)We use recursively the above algorithm in order to factor ℎ1(𝑥), ℎ2(𝑥). If 𝑟
is a root of ℎ1(𝑥) then 𝑟 − 𝑎 is a root of 𝑔(𝑥).

As 𝑥𝑝 −𝑥 =
𝑝−1
∏
𝑖=0

(𝑥−𝑖) in step 1 we actually isolate in 𝑔(𝑥) all linear factors of 𝑓(𝑥).
Step 2 considers two special cases in which we have a formula for the roots and so we
deal with them faster. In step 2 in the case where deg 𝑔 = 2we took for granted that there
will exist an 𝑒 such that 𝑒2 ≡ 𝑑 (mod 𝑝). That will actually be true, as 𝑔(𝑥) ∣ 𝑥𝑝 − 𝑥
so it factors in linear factors. In step 3 we split the factors of 𝑔(𝑥) (in the first iteration)
between ℎ1 and ℎ2 as,

𝑔(𝑥 − 𝑎) ∣ 𝑥𝑝 − 𝑥 = 𝑥(𝑥𝑝−1 − 1) = 𝑥(𝑥𝑝−1
2 − 1)(𝑥𝑝−1

2 + 1).
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Also in order step 3 to fail, so deg ℎ1 = 0 or deg ℎ1 = deg 𝑔 all factors of 𝑔(𝑥 − 𝑎)
must divide (𝑥𝑝−1

2 − 1) or (𝑥𝑝−1
2 + 1) respectively. That means that there is only a

chance of
1

2deg 𝑔−1 to fail. Furthermore as in each iteration step 3 will produce polyno-
mials ℎ1(𝑥) and ℎ2(𝑥) with degree strictly less than the previous step the algorithm will
terminate after a finite number of steps.

Now we are ready to compute,

G1 = {𝜋 ∈ 𝑅𝐾 ∶ < 𝜋 >= 𝔭 ∀ 𝔭 ∈ ℙ(𝐾) such that 𝑓(𝔭/𝑝ℤ) = 1 and 𝑁(𝔭) ≤ 𝐵2}

Let 𝜔𝑑 be the volume of the unit ball in ℝ𝑑. We set,

𝜐𝑑 = (4
𝑑)

𝑑/2 1
𝜔𝑑

, 𝐶 = (𝜐𝑑√|𝐷𝐾|𝐵2)2/𝑑
and 𝑀 = [𝜐𝑑√|𝐷𝐾|]

The following algorithm attempts to find a generator for all prime ideals 𝔭 for which
𝑓(𝔭/𝑝ℤ) = 1 and 𝑀 < 𝑁(𝔭) ≤ 𝐵2.

Step 1) Set 𝑚(𝔭) = 𝑀 + 1 for all 𝔭 we are interested in.
Step 2) For all 𝛾 ∈ 𝑅𝐾, 𝛾 =

𝑑−1
∑
𝑖=0

𝑠𝑖𝜃𝑖 for which
𝑑−1
∑
𝑖=0

𝑠𝑖
2|𝜃|2𝑖 ≤ 𝐶 we do the following :

Step 3) Compute the norm 𝑁(𝛾).
Step 4) If 𝑁(𝛾) = 𝑘𝑝 for some 𝑝 in the list of pairs (𝑝, 𝑐) and |𝑘| ≤ 𝑀 then :
1) Identify the prime ideal 𝔭 that corresponds to this 𝑝 and 𝔭 ∣< 𝛾 >. Equivalently we

find the pair (𝑝, 𝑐) for which
𝑑−1
∑
𝑖=0

𝑠𝑖𝑐𝑖 ≡ 0 (mod 𝑝) (see Lemma 1.5.3).
2) If 𝑘 < 𝑚(𝔭) then we set 𝑚(𝔭) ← |𝑘| and 𝜋𝔭 ← 𝛾.

Remark 1.4.3. At the end of the algorithm 𝑚(𝔭) < 𝑀 ∀𝔭 for which 𝑓(𝔭/𝑝ℤ) = 1 and
𝑀 < 𝑁(𝔭) ≤ 𝐵2.

Remark 1.4.4. If 𝑚(𝔭) = 1 then the above algorithm guarantees that 𝔭 ∣< 𝜋𝔭 > and
< 𝜋𝔭 > is a prime ideal so, 𝔭 = < 𝜋𝔭 >. Otherwise if 𝑚(𝔭) > 1 then as 𝑀 < 𝑁(𝔭) it
follows that 𝔭 appears only once in the factorization of < 𝜋𝔭 >. So, we can deduce that
< 𝜋𝔭 > = 𝐼𝔭 for some ideal 𝐼 with 𝑁(𝐼) = 𝑚(𝔭) ≤ 𝑀 .

Hence, the only thing left in order to finish the construction of G1 is computing
generators for ideals 𝐼 with norm 𝑁(𝐼) ≤ 𝑀 . In practice these generators is very likely
to be encountered during the above search, so when we find them we store them. Then
for the ideals 𝔭 for which𝑚(𝔭) > 1 if for example we have< 𝜋𝔭 > = 𝐼𝔭 and 𝐼 =< 𝛽 >
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we can deduce that 𝔭 =< 𝜋𝔭𝛽−1 >.
The next thing we have to compute is the set

G2 = {𝜋 ∈ 𝑅𝐾 ∶ < 𝜋 >= 𝔭 ∀ 𝔭 ∣ 𝑓𝑅𝐾}

As we will see in the next section the primes dividing the index 𝑓 = [𝑅𝐾 ∶ ℤ[𝜃]] and
essentially causing some problems are smaller than the degree of the extension𝐾/ℚ and
so smaller than 𝑀 . Consequently, we expect the above argument to apply in this case
as well, which means that we expect to find the generators while the above algorithm is
searching for the 𝜋𝔭.

Remark 1.4.5. In case [𝑅𝐾 ∶ ℤ[𝜃]] = 1 the set G2 is empty.

The last set left to compute is

U = {a generating set of the group of units of 𝑅𝐾}

The following theorem guarantees that the above set is finite.

Theorem 1.4.6 (Dirichlet Unit Theorem). The group 𝐸(𝑅𝐾) is the product of a finite
cyclic group of roots of unity with a free abelian group of rank 𝑟 + 𝑠 − 1, where r is
the number of real embeddings of K and s is the number of complex conjugate pairs of
embeddings.

Definition 1.4.7. The units that generate the 𝑟 + 𝑠 − 1 copies of ℤ in 𝐸(𝑅𝐾) are called
fundamental units.

In general the task of finding a system of generators for 𝐸(𝑅𝐾) is considered to be
very hard. For the needs of our algorithm we are going to make again the assumption
that we will encounter these generators during the search of the prime elements 𝜋𝔭 as
described above. However, we must be careful, by making this assumption we do not
claim that in general the fundamental units will have ”small” coefficients. In many
cases advanced algorithms for computing such a system may exist in number theory
applications like SAGE or PARI and can be used but their study is beyond the scope of
this master thesis.

1.5 Sieving
In this section we are going to examine how the SNFS attempts to find pairs (𝑎, 𝑏)

such that :
i) gcd(𝑎, 𝑏) = 1
ii) |𝑎+𝑏𝑚| is𝐵1-smooth except for at most one prime factor 𝑝1 such that𝐵1 < 𝑝1 < 𝐵3
iii) 𝑎 + 𝑏𝜃 is 𝐵2-smooth except for at most one prime 𝑝2 such that 𝐵2 < 𝑝2 < 𝐵4.
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This prime will correspond to a prime ideal 𝔭2 in the factorization of < 𝑎 + 𝑏𝜃 > with
𝑁(𝔭2) = 𝑝2.

In order to do that, we first find pairs (𝑎, 𝑏) such that (ii) and (iii) hold. Finally from
the remaining pairs we will choose those that satisfy (i) as well.

In both cases (ii) and (iii) we have two free variables 𝑎, 𝑏 so we will use two nested
loops in order to check all combinations. That leads us to the following algorithm :

For each 𝑏 with 1 ≤ 𝑏 < 𝑈2 we initialize two ”sieve arrays” 𝐴1 and 𝐴2 as follows.
For each 𝑎 with −𝑈1 ≤ 𝑎 ≤ 𝑈1 we set the 𝑎𝑡ℎ position of 𝐴1 to contain the number
𝑎 + 𝑏𝑚 and the 𝑎𝑡ℎ position of 𝐴2 to contain the number 𝑁(𝑎 + 𝑏𝜃). Then we examine
the smoothness of the elements of the two arrays separately. For the array 𝐴1 we have
to check if each of the 𝑎 + 𝑏𝑚 is 𝐵1−smooth. In order to do that, for each prime 𝑝 ∈ P
we do the following. For each position 𝑎 that satisfies 𝑎 ≡ −𝑏𝑚 (mod 𝑝)we divide the
prime 𝑝 out of the element stored in that position as many times as possible. After this is
done for all primes 𝑝 ∈ P the elements of the array that are equal to ±1 represent values
of 𝑎 such that 𝑎 + 𝑏𝑚 is 𝐵1−smooth so, they could lead to full relations (if additionally
𝑁(𝑎 + 𝑏𝜃) is 𝐵2−smooth). The elements of the array that are less than 𝐵3 represent
potential partial relations. So in order to decide which are the pairs we are going to keep
we have to check the smoothness of the elements of 𝐴2. For this we are going to use a
technique similar to the one used for 𝐴1.

Remark 1.5.1. Let 𝑝 ∈ P, then while we are sieving we divide elements of the array 𝐴1
by 𝑝 only when it is guaranteed that the corresponding element is divisible by 𝑝. This
greatly improves the algorithm as no unnecessary divisions are performed.

Proposition 1.5.2. If 𝑎, 𝑏 ∈ ℤ with gcd(𝑎, 𝑏) = 1 then every prime ideal 𝔭 that divides
< 𝑎 + 𝑏𝜃 > either divides the index 𝑓 = [𝑅𝐾 ∶ ℤ[𝜃]], or 𝑓(𝔭/𝑝ℤ) = 1.
Proof. With 𝑝 we denote the prime number below 𝔭. Then 𝑝 ∤ 𝑏 as if 𝑝 ∣ 𝑏 then 𝑏𝜃 ∈ 𝔭.
But we also have that 𝑎 + 𝑏𝜃 ∈ 𝔭 so 𝑎 ∈ 𝔭 which then follows that 𝑎 ∈ 𝔭 ∩ ℤ = 𝑝ℤ ⇒
𝑝 ∣ 𝑎 ⇒ 𝑝 ∣ gcd(𝑎, 𝑏) = 1, contradiction. Let, 𝑝 ∤ 𝑓 so 𝔭 ∤< 𝑓 >. Hence, at this point
we have that

gcd(𝑝, 𝑏) = 1 ⇒ ∃𝑐 ∈ ℤ such that 𝑏𝑐 ≡ 1 (mod 𝑝)
gcd(𝑝, 𝑓) = 1 ⇒ ∃𝑢 ∈ ℤ such that 𝑓𝑢 ≡ 1 (mod 𝑝)

As 𝔭 ∣< 𝑎 + 𝑏𝜃 > ⇒ 𝑎 + 𝑏𝜃 ≡ 0 (mod 𝔭) ⇒ 𝜃 ≡ −𝑎𝑐 (mod 𝔭)
because 𝑏𝑐 = 1 + 𝑘𝑝 ⇒ 𝑏𝑐 ∈ 1 + 𝔭 ⇒ 𝑏𝑐 ≡ 1 (mod 𝔭)
Let 𝑥 ∈ 𝑅𝐾 then 𝑓𝑥 ∈ ℤ[𝜃] as |𝑅𝐾/ℤ[𝜃]| = 𝑓 which gives us that 𝑓(𝑥 + ℤ[𝜃]) =
ℤ[𝜃] ⇒ 𝑓𝑥 + ℤ[𝜃] = ℤ[𝜃] ⇒ 𝑓𝑥 ∈ ℤ[𝜃]. Hence there exists a polynomial
𝑔(𝑋) ∈ ℤ[𝑋] such that 𝑓𝑥 = 𝑔(𝜃). This leads to the following,

𝑓𝑥 ≡ 𝑔(−𝑎𝑐) (mod 𝔭) ⇒ 𝑥 ≡ 𝑢𝑔(−𝑎𝑐) (mod 𝔭).
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So, we can conclude that every 𝑥 ∈ 𝑅𝐾 is equivalent to an integer (mod 𝔭). This
follows that the ring homomorphism

𝜓 ∶ ℤ → 𝑅𝐾/𝔭
𝑎 ↦ 𝑎 (mod 𝔭)

is surjective. Moreover ker(𝜓) = {𝑎 ∈ ℤ ∶ 𝑎 ∈ 𝔭} = 𝔭 ∩ ℤ = 𝑝ℤ. Hence by the first
isomorphism theorem we get that ℤ/𝑝ℤ ≅ 𝑅𝐾/𝔭 ⇒ 𝑓(𝔭/𝑝ℤ) = 1.

The above proposition justifies our choice for the setG in the factor base. The reason
is the following, as we work in a Dedekind domain by Theorem 1.1.11 we get unique
factorization of ideals so, for every pair (𝑎, 𝑏) we will have that

< 𝑎 + 𝑏𝜃 > = 𝔭1
𝑒1𝔭2

𝑒2 ⋯ 𝔭𝑘
𝑒𝑘

and for each 𝔭𝑖 it will hold that either 𝔭𝑖 ∣< 𝑓 >, or 𝑓(𝔭𝑖/𝑝ℤ) = 1 as we just saw. But
whenwe sieve wewant𝑁(𝑎+𝑏𝜃) to be𝐵2−smooth (except to at most one prime factor).
We are now going to make the connection between the factorization of 𝑁(𝑎 + 𝑏𝜃),
< 𝑎 + 𝑏𝜃 > and 𝑎 + 𝑏𝜃. Let 𝛾, 𝛿 ∈ 𝑅𝐾 the connection follows by,

|𝑁(𝛾)| = 𝑁(< 𝛾 >) and
< 𝛾 > = < 𝛿 > ⇒ 𝛾 = 𝜀𝛿 where 𝜀 is a unit.

By the first relation we get that,

|𝑁(𝑎 + 𝑏𝜃)| = 𝑁(< 𝑎 + 𝑏𝜃 >)
= 𝑁(𝔭1

𝑒1𝔭2
𝑒2 … 𝔭𝑘

𝑒𝑘)
= 𝑁(𝔭1)𝑒1𝑁(𝔭2)𝑒2 … 𝑁(𝔭𝑘

𝑒𝑘)
= (𝑝1

𝑓1)𝑒1(𝑝2
𝑓2)𝑒2 … (𝑝𝑘

𝑓𝑘)𝑒𝑘

(1.3)

where 𝑓𝑖 = 1 if 𝔭𝑖 ∤< 𝑓 >.
This leads us to the following conclusion. The prime factors of 𝑁(𝑎 + 𝑏𝜃) correspond
to prime ideals in the factorization of < 𝑎 + 𝑏𝜃 >. Hence if the norm 𝑁(𝑎 + 𝑏𝜃)
is 𝐵2−smooth it then follows that < 𝑎 + 𝑏𝜃 > is a product of prime principal ideals
generated by elements of G.
Finally, if we have computed the factorization of < 𝑎 + 𝑏𝜃 > as

< 𝑎 + 𝑏𝜃 > = ∏
𝜋∈G

< 𝜋 >𝑒(𝜋)

we then get that

𝑎 + 𝑏𝜃 = 𝜀 ∏
𝜋∈G

𝜋𝑒(𝜋)

= ∏
𝑢∈U

𝑢𝑒(𝑢) ∏
𝜋∈G

𝜋𝑒(𝜋)
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In the case of 𝑎 + 𝑏𝑚 we saw how we could accomplish the sieving in the array 𝐴1
and by the same way find the factorization of these elements. In the rest of this section
we study how we do the sieving in the array 𝐴1 and how we get the factorization of the
elements 𝑎 + 𝑏𝜃.

Lemma 1.5.3. Let 𝔭 be a prime ideal with degree 𝑓(𝔭/𝑝ℤ) = 1 not dividing the index
[𝑅𝐾 ∶ ℤ[𝜃]] that corresponds to the pair (𝑝, 𝑐) and 𝑎, 𝑏 ∈ ℤ with gcd(𝑎, 𝑏) = 1. Then
𝔭 ∣< 𝑎 + 𝑏𝜃 > if and only if 𝑎 + 𝑏𝑐 ≡ 0 (mod 𝑝).

Proof. By the proof of Proposition 1.5.2 we get that if 𝑦 ∈ 𝑅𝐾 and 𝑓 = [𝑅𝐾 ∶ ℤ[𝜃]] then
there is a polynomial 𝑔(𝑥) such that 𝑦 = 1

𝑓 𝑔(𝜃). As 𝑓(𝔭/𝑝ℤ) = 1 and gcd(𝑝, 𝑓) = 1
we can see that

𝜙 ∶ 𝑅𝐾/𝔭 → ℤ/𝑝ℤ
1
𝑓

𝑑−1
∑
𝑖=0

𝑎𝑖𝜃𝑖 + 𝔭 ↦ 𝑓−1
𝑑−1
∑
𝑖=0

𝑎𝑖𝑐𝑖 + 𝑝ℤ

is a ring isomorphism. Therefore 𝑎 + 𝑏𝜃 ∈ 𝔭 if and only if 𝑎 + 𝑏𝑐 ≡ 0 (mod 𝑝) which
implies that 𝔭 ∣< 𝑎 + 𝑏𝜃 > if and only if 𝑎 + 𝑏𝑐 ≡ 0 (mod 𝑝).

Remark 1.5.4. If we forget the contribution of the ideals that divide the index we can
see why we chose to work with elements of the form 𝑎 + 𝑏𝜃. The first reason is that in
the factorization of < 𝑎 + 𝑏𝜃 > appear prime ideals of special form which are easily
stored in the computer by their representation as pairs (𝑝, 𝑐). The second reason is that
by the above lemma we get a very easy condition of when such a prime ideal divides
< 𝑎 + 𝑏𝜃 >.

Remark 1.5.5. Each prime p dividing the 𝑁(𝑎 + 𝑏𝜃) and not dividing the index
[𝑅𝐾 ∶ ℤ[𝜃]] corresponds to exactly one prime ideal 𝔭 that divides < 𝑎 + 𝑏𝜃 >. Assume
that there were two prime ideals 𝔭1 and 𝔭2 dividing < 𝑎 + 𝑏𝜃 > that corresponded to
the pairs (𝑝, 𝑐1) and (𝑝, 𝑐2) respectively. Then we would have,

𝑎 + 𝑏𝑐1 ≡ 0 (mod 𝑝) and
𝑎 + 𝑏𝑐2 ≡ 0 (mod 𝑝)

Additionally 𝑝 ∤ 𝑏 as if 𝑝 ∣ 𝑏 then 𝑎 ≡ 0 (mod 𝑝) and therefore 𝑝 ∣ gcd(𝑎, 𝑏) = 1,
contradiction. Hence from the above two congruences follows then 𝑐1 ≡ 𝑐2 (mod 𝑝).
But the prime ideals of degree 1 are in bijective correspondence with the pairs (𝑝, 𝑐)
and so 𝔭1 = 𝔭2.
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We now return to the array 𝐴2. Initially in each position of 𝐴2 we store 𝑁(𝑎 + 𝑏𝜃)

𝑁(𝑎 + 𝑏𝜃) = 𝜎1(𝑎 + 𝑏𝜃)𝜎2(𝑎 + 𝑏𝜃) … 𝜎𝑑(𝑎 + 𝑏𝜃)
= (𝑎 + 𝑏𝜃(1))(𝑎 + 𝑏𝜃(2)) … (𝑎 + 𝑏𝜃(𝑑))
= 𝑏𝑑(𝑎

𝑏 + 𝜃(1))(𝑎
𝑏 + 𝜃(2)) … (𝑎

𝑏 + 𝜃(𝑑))

= (−𝑏)𝑑(−𝑎
𝑏 − 𝜃(1))(−𝑎

𝑏 − 𝜃(2)) … (−𝑎
𝑏 − 𝜃(𝑑))

= (−𝑏)𝑑𝑓(−𝑎
𝑏 )

= (−𝑏)𝑑[(−𝑎
𝑏 )

𝑑
− 𝑡] = 𝑎𝑑 − 𝑡(−𝑏)𝑑

so given 𝑎, 𝑏we can easily compute the𝑁(𝑎+𝑏𝜃). Aswe saw prime factors of𝑁(𝑎+𝑏𝜃)
correspond to prime ideals that divide < 𝑎 + 𝑏𝜃 >. We will separate the sieving in two
steps. The first step concerns the prime ideals that do not divide the index. For those
ideals we proceed as follows. For each pair (𝑝, 𝑐)we retrieve the elements of𝐴2 that are
in positions 𝑎 such that 𝑎 ≡ −𝑏𝑐 (mod 𝑝). We then divide them by the highest power
of 𝑝 that they are divisible and store in the array the quotient.
In case the index [𝑅𝐾 ∶ ℤ[𝜃]] = 1 then we are done. Otherwise we have one more step.
In this case as we have assumed that we found 𝑅𝐾, an integral basis is known. Then
using the relation 𝐷𝐾(𝜃) = [𝑅𝐾 ∶ ℤ[𝜃]]2𝐷𝐾/ℚ we can find [𝑅𝐾 ∶ ℤ[𝜃]]. As we will see
later we do not expect its prime divisors to be very large so we can factor it. Then for all
the elements of 𝐴2 we check whether they are divisible by any of these primes. If any
element is divisible by any such prime we divide it out and keep the quotient.

Even though at this point we are done with the sieving, we also wish to know the
factorization of the smooth elements 𝑎 + 𝑏𝑚 and 𝑎 + 𝑏𝜃 that we found. For the 𝑎 + 𝑏𝑚
the sieving technique used previously can give us the factorization as well. However
for the 𝑎 + 𝑏𝜃 the situation is different. Initially we will try to find the factorization of
< 𝑎 + 𝑏𝜃 >. Let

< 𝑎 + 𝑏𝜃 > = 𝔭1
𝑒1𝔭2

𝑒2 … 𝔭𝑘
𝑒𝑘

so we wish to find the ramification index 𝑒𝑖. Let 𝔭 be a prime ideal with 𝑓(𝔭/𝑝ℤ) = 1
that corresponds to the pair (𝑝, 𝑐) and 𝑝 ∣ 𝑁(𝑎 + 𝑏𝜃). Then the exponent of 𝔭 in the
factorization of < 𝑎 + 𝑏𝜃 > will be equal to the exponent of 𝑝 in the factorization of
𝑁(𝑎 + 𝑏𝜃) by equation 1.3 and remark 1.5.5. Therefore, if we exclude the one ideal (if
it exists) that exceeds our smoothness bound, it is only the exponents of the prime ideals
that divide the index left to be computed.

First of all, for these primes we would like to have a theorem like 1.4.1. Let 𝐾 =
ℚ(𝜃). One idea would be to try to find another 𝜃′ ∈ 𝑅𝐾 such that 𝐾 = ℚ(𝜃′) and hope



18 The Special Number Field Sieve

that 𝑝 ∤ [𝑅𝐾 ∶ ℤ[𝜃′]]. If that is the case, then we can apply Theorem 1.4.1. However
there are cases of primes 𝑝 where for every 𝜃 ∈ 𝑅𝐾 it holds that 𝑝 ∣ [𝑅𝐾 ∶ ℤ[𝜃]]. Let
𝐷(𝜃) = 𝑚(𝜃)2𝐷𝐾/ℚ , where 𝑚(𝜃) = [𝑅𝐾 ∶ ℤ[𝜃]]. We set 𝑚𝐾 = gcd{𝑚(𝜃) | 𝜃 ∈
𝑅𝐾 , 𝐾 = ℚ(𝜃)}.

Definition 1.5.6. If𝑚𝐾 > 1 then every prime 𝑝 ∣ 𝑚𝐾 is called an essential discriminant
divisor.

Hensel’s criterion.
i) If 𝑝 ∣ 𝑚𝐾 , then 𝑝 < 𝑑 where 𝑑 = [𝐾 ∶ ℚ]
ii) If 𝑝𝑅𝐾 factors completely in 𝐾 , then 𝑝 ∣ 𝑚𝐾 ⇔ 𝑝 < 𝑑

The decomposition law of these primes is very hard and we are not going to study
it here. In order to find the exponent of these ideals in the factorization of an ideal
𝐼 =< 𝑎 + 𝑏𝜃 > we will compute the 𝔭−adic valuation of 𝐼 .

By [8, p. 188] for a 𝔭 ∣< 𝑓 > we can get a basis of the form

𝔭 = < 𝑝, −𝑐 + 𝑦𝜃, 𝛾2, … , 𝛾𝑑−1 >

where 𝑐, 𝑦 ∈ ℤ, 𝑦 ∣ 𝑝 and 𝑦 ∣ 𝑐 and 𝛾𝑖 polynomials of degree 𝑖 in 𝜃 (not necessarily with
integer coefficients).
Having this in mind

𝑎 + 𝑏𝜃 ∈ 𝔭 ⇔ 𝑎 + 𝑏𝜃 = 𝑘𝑝 + 𝑙(−𝑐 + 𝑦𝜃)
⇔ 𝑎 = 𝑘𝑝 − 𝑙𝑐 and 𝑏 = 𝑦𝑙

⇔ 𝑦 ∣ 𝑏 and 𝑎 ≡ −𝑏
𝑦𝑐 (mod 𝑝)

We have that 𝑦 ∣ 𝑝 but, if 𝑦 = 𝑝 then 𝑝 ∣ 𝑏 and 𝑝 ∣ 𝑐 so 𝑝 ∣ 𝑎, contradiction. Hence,
y=1 so finally 𝑎 + 𝑏𝜃 ∈ 𝔭 ⇔ 𝑎 + 𝑏𝑐 ≡ 0 (mod 𝑝). Also, 𝜃 − 𝑐 ∈ 𝔭 ⇒ 𝑐 ≡ 𝜃
(mod 𝔭) ⇒ 𝑓(𝑐) ≡ 𝑓(𝜃) (mod 𝔭) ⇒ 𝑓(𝑐) ≡ 0 (mod 𝔭). Therefore the condition is
the same as in the case where 𝔭 ∤< 𝑓 >. However in this case the pairs (𝑝, 𝑐) are not
in bijective correspondence with the ideals 𝔭 ∣< 𝑓 >. In order to deal with these ideals
we will use a different approach.

Definition 1.5.7. Let 𝐾 be a number field and 𝑅 ⊆ 𝐾. The set 𝑅 is called an order of
𝐾 when the following two conditions hold :
i) 𝑅 = 𝜔1ℤ ⊕ 𝜔2ℤ ⊕ … ⊕ 𝜔𝑑ℤ where 𝑑 = [𝐾 ∶ ℚ] and 𝜔𝑖 ∈ 𝑅𝐾.
ii) 𝑅 is a subring of 𝐾 with 1 ∈ 𝐾.

An order 𝑅 ⊂ 𝑅𝐾 fails to be a Dedekind domain only because it is not integrally
closed. So it is noetherian and every prime ideal of 𝑅 is maximal.
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Proposition 1.5.8. Let 𝑅 be an order of 𝐾. Then every non-zero integral ideal 𝐼 of 𝑅
contains a finite product of prime ideals.

Proof. Let 𝒜 = {𝐼 ideal of 𝑅, 𝐼 ≠< 0 > , 𝑅 for which the proposition does not hold}
and assume that 𝒜 ≠ ∅. As 𝑅 is noetherian, 𝒜 has a maximal elements. Let, 𝑀0 be a
maximal element of 𝒜. Then 𝑀0 is not a prime ideal of 𝑅, because if it was then we
would have 𝑃 = 𝑀0 and therefore 𝑃 ⊆ 𝑀0. Hence, there are 𝑎, 𝑏 ∉ 𝑀0 such that
𝑎𝑏 ∈ 𝑀0 and we set 𝐴 = 𝑀0 + 𝑎𝑅 and 𝐵 = 𝑀0 + 𝑏𝑅. As 𝑎𝑏 ∈ 𝑀0 it then follows
that 𝐴𝐵 ⊂ 𝑀0 and 𝐴 ≠ 𝑅 , 𝐵 ≠ 𝑅. This is true as if 𝐴 = 𝑅 for example, then by
𝐴𝐵 ⊂ 𝑀0 we would get that 𝐵 ⊂ 𝑀0. The last relation would then imply that 𝑏 ∈ 𝑀0,
contradiction. Additionally, we have that𝑀0 & 𝐴 and𝑀0 & 𝐵 as 𝑎 ∉ 𝑀0 and 𝑏 ∉ 𝑀0.
But, 𝑀0 is a maximal element of 𝒜 which then implies that for 𝐴 and 𝐵 the proposition
holds. If we combine this with 𝐴𝐵 ⊂ 𝑀0 it then follows that the proposition holds for
𝑀0 as well, contradiction. So 𝒜 = ∅.

Proposition 1.5.9. Let 𝑅 be an order of 𝐾 and 𝔭 a prime ideal of 𝑅. Then there exists
an 𝑎 ∈ 𝐾\𝑅 such that 𝑎𝔭 ⊂ 𝑅. Furthermore 𝔭 is invertible in 𝑅 if and only if 𝑎𝔭 ⊄ 𝔭
and 𝔭−1 = 𝑅 + 𝑎𝑅.

Proof. Let 𝑥 ∈ 𝔭, 𝑥 ≠ 0 so 𝑥𝑅 ≠< 0 > so by the previous proposition there are prime
ideals 𝔮𝑖 such that ∏

𝑖∈𝐸
𝔮𝑖 ⊂ 𝑥𝑅 for some finite set 𝐸. We choose 𝐸 to be minimal in

the sense that there is not a proper subset 𝐸′ of 𝐸 such that ∏
𝑖∈𝐸′

𝔮𝑖 ⊂ 𝑥𝑅. Furthermore,

we have that ∏
𝑖∈𝐸

𝔮𝑖 ⊂ 𝑥𝑅 ⊂ 𝔭 so ∃𝑗 ∈ 𝐸 such that 𝔮𝑗 ⊂ 𝔭. Let 𝔮 = ∏
𝑖∈𝐸𝑖≠𝑗

𝔮𝑖 and so

𝔭𝔮 ⊂ 𝑥𝑅 and 𝔮 ⊈ 𝑥𝑅 as we have chosen 𝐸 to be minimal. We choose a 𝑦 ∈ 𝔮 such that
𝑦 ∉ 𝑥𝑅. Hence, 𝑦 ∉ 𝑥𝑅 and 𝑦𝔭 ⊂ ∏

𝑖∈𝐸
𝔮𝑖 ⊂ 𝑥𝑅, so we set 𝑎 = 𝑦

𝑥 .

𝑦 ∉ 𝑥𝑅 ⇒ 𝑦
𝑥 ∉ 𝑅 ⇒ 𝑎 ∉ 𝑅 and

𝑎𝔭 = 𝑥−1𝑦𝔭 ⊂ 𝑥−1𝑥𝑅 = 𝑅
Let 𝑃 = 𝔭 + 𝑎𝔭, then 𝔭 ⊆ 𝑃 ⊆ 𝑅 but 𝔭 is prime so it is also maximal, which leaves two
options.
i) If 𝑃 = 𝑅 then 𝑎𝔭 ⊄ 𝔭 and (𝑅 + 𝑎𝑅)𝔭 = 𝔭 + 𝑎𝔭 = 𝑅 ⇒ 𝔭−1 = 𝑅 + 𝑎𝑅.
ii) If 𝑃 = 𝔭 then 𝑎𝔭 ⊂ 𝔭 and (𝑅 + 𝑎𝑅)𝔭 = 𝔭𝑅. If 𝔭 was invertible then 𝑅 + 𝑎𝑅 =
𝑅 ⇒ 𝑎 ∈ 𝑅, contradiction.

Lemma 1.5.10. Let 𝐼 be an integral ideal of𝑅𝐾 and 𝔭 be a prime ideal. Then 𝔭 ∣ 𝐼 if and
only if 𝑎𝐼 ⊂ 𝑅𝐾 where 𝑎 is the one given by the previous proposition for 𝔭. Moreover,
the 𝔭−adic valuation of 𝐼 𝜐𝔭(𝐼), is equal to greatest integer 𝜐 such that 𝑎𝜐𝐼 ⊂ 𝑅𝐾

Proof. Let 𝔭 ∣ 𝐼 ⇒ 𝐼 ⊂ 𝔭 ⇒ 𝑎𝐼 ⊂ 𝑎𝔭 ⊂ 𝑅𝐾.
Conversely, let 𝑎𝐼 ⊂ 𝑅𝐾, this implies that 𝑎𝔭𝐼 ⊂ 𝔭 ⇒ 𝔭 ∣ 𝑎𝔭𝐼 ⇒ 𝔭 ∣ 𝑎𝔭 or
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𝔭 ∣ 𝐼 . But in 𝑅𝐾 all ideals are invertible, hence by the previous proposition we get that
𝑎𝔭 ⊄ 𝔭 ⇒ 𝔭 ∤ 𝑎𝔭 and so 𝔭 ∣ 𝐼 . Let 𝐼 = 𝔭𝑘𝐽 where 𝔭 ∤ 𝐽 .
If 𝜐 ≤ 𝑘 : 𝑎𝜐𝐼 = 𝑎𝜐𝔭𝑘𝐽 = (𝑎𝔭)𝜐𝔭𝑘−𝜐𝐽 ⊂ 𝑅𝐾
If 𝜐 = 𝑘 + 1 : Let 𝑎𝑘+1𝐼 ⊂ 𝑅𝐾 ⇒ 𝑎𝑘+1𝔭𝑘+1𝐼 ⊂ 𝔭𝑘+1. This implies that either
𝔭 ∣ (𝑎𝔭)𝑘+1 or 𝔭 ∣ 𝐼 . If 𝔭 ∣ (𝑎𝔭)𝑘+1 then 𝔭 ∣ 𝑎𝔭, contradiction so 𝔭 ∤ (𝑎𝔭)𝑘+1. Therefore
𝔭 must divide 𝐼 . So, at this point we have that 𝔭 ∣ 𝐼 and 𝔭 ∤ (𝑎𝔭)𝑘+1. If we combine
these with the fact that 𝔭𝑘+1 ∣ (𝑎𝔭)𝑘+1𝐼 we get that 𝔭𝑘+1 ∣ 𝐼 , contradiction. Therefore
𝑎𝑘+1𝐼 ⊄ 𝑅𝐾. That finishes the proof

As the previous lemma suggests, our next goal is to compute the 𝑎 ∈ 𝐾\𝑅𝐾 of
Proposition 1.5.9 for every prime ideal 𝔭 we are interested in computing 𝜐𝔭(𝐼). For 𝑎
we have that 𝑎𝔭 ⊂ 𝑅𝐾 so 𝑎𝑝 ∈ 𝑅𝐾 which follows that there exists a 𝛽 ∈ 𝑅𝐾 such that

𝑎 = 𝛽
𝑝 where 𝑝 is the prime below 𝔭. For 𝑎 it holds that 𝑎 ∈ 𝐾\𝑅𝐾 and 𝑎𝔭 ⊂ 𝑅𝐾 so

for 𝛽 the following should hold :

𝛽 ∈ 𝑅𝐾\𝑝𝑅𝐾 and 𝛽𝔭 ⊂ 𝑝𝑅𝐾

Let 𝜔1, 𝜔2, … , 𝜔𝑑 be an integral basis of𝑅𝐾 and 𝔭 =< 𝛾 >. Let 𝛽 =
𝑑

∑
𝑖=1

𝑥𝑖𝜔𝑖 , 𝑥𝑖 ∈ ℤ.
So it is sufficient to find 𝑥𝑖 ∈ ℤ such that they are not all divisible by 𝑝 and 𝛽𝛾 ∈ 𝑝𝑅𝐾.

𝛽𝛾 ∈ 𝑝𝑅𝐾 ⇒
𝑑

∑
𝑖=1

𝑥𝑖𝜔𝑖𝛾 ∈ 𝑝𝑅𝐾. Let 𝜔𝑖𝛾 =
𝑑

∑
𝑘=1

𝑎𝑖𝑘𝜔𝑘, then we will have

𝑑
∑
𝑖=1

𝑥𝑖
𝑑

∑
𝑘=1

𝑎𝑖𝑘𝜔𝑘 ∈ 𝑝𝑅𝐾 ⇒
𝑑

∑
𝑖=1

𝑑
∑
𝑘=1

𝑥𝑖𝑎𝑖𝑘𝜔𝑘 ∈ 𝑝𝑅𝐾 ⇒
𝑑

∑
𝑘=1

(
𝑑

∑
𝑖=1

𝑥𝑖𝑎𝑖𝑘)𝜔𝑘 ∈ 𝑝𝑅𝐾 ⇒

𝑑
∑
𝑖=1

𝑥𝑖𝑎𝑖𝑘 ≡ 0 (mod 𝑝) for 𝑘 = 1, … , 𝑑

We solve the 𝑑 × 𝑑 linear system and we find the 𝑥𝑖 and therefore 𝛽 and finally 𝑎. Let’s
assume that we have 𝐼 = < 𝛾1 > , 𝔭 = < 𝛾2 > with 𝔭 ∣< 𝑓 > and 𝐼 = 𝔭𝑘𝐽 and 𝔭 ∤ 𝐽 .
Then 𝑘 will be the greatest integer such that such that 𝑎𝑘𝐼 ⊂ 𝑅𝐾 ⇔ 𝑎𝑘 < 𝛾1 >⊂
𝑅𝐾 ⇔ < 𝑎𝑘𝛾1 >⊂ 𝑅𝐾 ⇔ 𝑎𝑘𝛾1 ∈ 𝑅𝐾.

Even though the irreducible polynomial of the following example is not of the form
we examine in this chapter it will illustrate how we are going to use in practise the above
method.

Example 1.5.11. Let 𝑓(𝑥) = 𝑥3 − 𝑥2 − 2𝑥 − 8 and 𝜃 be a root of 𝑓(𝑥). We set
𝐾 = ℚ(𝜃) for which it holds that ℎ𝐾 = 1 , [𝑅𝐾 ∶ ℤ[𝜃]] = 2 and in particular 𝑅𝐾 =
ℤ ⊕ 𝜃ℤ ⊕ 𝜃+𝜃2

2 ℤ. Find the decomposition in prime ideals of the ideal 𝐼 = < 2 + 𝜃 >.
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The first step is to compute the norm of 𝐼 . 𝑁(𝐼) = |𝑁(2 + 𝜃)| = 16 = 24 so in the
decomposition of 𝐼 we will have only prime ideals 𝔭 such that 𝔭 ∣< 2 > and as 𝑓 = 2
we have that 𝔭 ∣< 𝑓 >. At this point we need the decomposition in prime ideals of 2𝑅𝐾.
In this case 2 is an essential discriminant divisor. As we have already mentioned the
decomposition of primes dividing the index is very hard and we are not going to study it
in this master thesis. However, in [8, p. 351] we can find some results that will lead us
to the the following conclusion,

2𝑅𝐾 = 𝔭1𝔭2𝔭3

and 𝔭1 = < 𝛾1 > , 𝔭2 = < 𝛾2 > , 𝔭3 = < 𝛾3 > where 𝛾1 = 1
2𝜃2 + 1

2𝜃 + 1 , 𝛾2 =
𝜃2 + 2𝜃 + 3 , 𝛾3 = 3

2𝜃2 + 5
2𝜃 + 4. The next step is to compute the values 𝑎𝑖 that corre-

sponds to each 𝔭𝑖.
For 𝔭1 we have :
1 ⋅ 𝛾1 = 1 + 1 ⋅ 𝜃+𝜃2

2 , 𝜃 ⋅ 𝛾1 = 4 + 1 ⋅ 𝜃 + 2 ⋅ 𝜃+𝜃2
2 , 𝜃+𝜃2

2 ⋅ 𝛾1 = 6 + 2𝜃 + 4 ⋅ 𝜃+𝜃2
2

So, we have to solve the following system in 𝔽2 :

⎛⎜
⎝

1 4 6
0 1 2
1 2 4

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= ⎛⎜
⎝

0
0
0

⎞⎟
⎠

a solution is 𝑥1 = 𝑥2 = 0 and 𝑥3 = 1 hence 𝑎1 = 1
2

𝜃+𝜃2
2 = 𝜃+𝜃2

4 .
For 𝔭2 we have :
1 ⋅ 𝛾2 = 3 + 1 ⋅ 𝜃 + 2 ⋅ 𝜃+𝜃2

2 , 𝜃 ⋅ 𝛾2 = 8 + 2 ⋅ 𝜃 + 6 ⋅ 𝜃+𝜃2
2 , 𝜃+𝜃2

2 ⋅ 𝛾2 = 16 + 4𝜃 + 11 ⋅ 𝜃+𝜃2
2

So, we have to solve the following system in 𝔽2 :

⎛⎜
⎝

3 8 16
1 2 4
2 6 11

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= ⎛⎜
⎝

0
0
0

⎞⎟
⎠

a solution is 𝑥1 = 𝑥3 = 0 and 𝑥2 = 1 hence 𝑎2 = 1
2𝜃.

For 𝔭3 we have :
1 ⋅ 𝛾3 = 4 + 1 ⋅ 𝜃 + 3 ⋅ 𝜃+𝜃2

2 , 𝜃 ⋅ 𝛾3 = 12 + 3 ⋅ 𝜃 + 8 ⋅ 𝜃+𝜃2
2 , 𝜃+𝜃2

2 ⋅ 𝛾3 = 22 + 6𝜃 + 15 ⋅ 𝜃+𝜃2
2

So, we have to solve the following system in 𝔽2 :

⎛⎜
⎝

4 12 22
1 3 6
3 8 15

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= ⎛⎜
⎝

0
0
0

⎞⎟
⎠

a solution is 𝑥1 = 𝑥2 = 𝑥3 = 1 hence 𝑎3 = 1
2(1 + 𝜃 + 𝜃+𝜃2

2 ) = 2+3𝜃+𝜃2
4 .

So in order to compute the factorization of 𝐼 we need to compute 𝜐𝔭𝑖
(𝐼). But as we saw
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this is equivalent to computing the greatest integer 𝑘𝑖 such that 𝑎𝑖
𝑘𝑖(2 + 𝜃) ∈ 𝑅𝐾.

For 𝔭1 :
𝑎1(2 + 𝜃) = 2 + 2𝜃+𝜃2

2 ∈ 𝑅𝐾
𝑎2

1(2 + 𝜃) = 6 + 2𝜃 + 4𝜃+𝜃2
2 ∈ 𝑅𝐾

𝑎3
1(2 + 𝜃) = 16 + 4𝜃 + 11𝜃+𝜃2

2 ∈ 𝑅𝐾
𝑎4

1(2 + 𝜃) = 41 + 101
4 𝜃 + 57

4 𝜃2 ∉ 𝑅𝐾 ⇒ 𝔭3
1‖𝐼

For 𝔭2 :
𝑎2(2 + 𝜃) = 𝜃 + 𝜃2

2 ∉ 𝑅𝐾 ⇒ 𝔭2 ∤ 𝐼
For 𝔭3 :
𝑎3(2 + 𝜃) = 3 + 𝜃 + 3𝜃+𝜃2

2 ∈ 𝑅𝐾
𝑎2

3(2 + 𝜃) = 37
2 + 43

4 𝜃 + 25
4

𝜃+𝜃2
2 ∉ 𝑅𝐾 ⇒ 𝔭3‖𝐼

Therefore, 𝐼 = 𝔭3
1𝔭3

Remark 1.5.12. Even though 𝐼 = 𝔭3
1𝔭3 we have that 2 + 𝜃 ≠ (1

2𝜃2 + 1
2𝜃 + 1)3(3

2𝜃2 +
5
2𝜃 + 4). The reason is that we have not taken into account the contribution of units in
the factorization of 2 + 𝜃.

Finding the unit contribution will be our next step. At this point, we need to make
clear for which elements we are going to find the unit contribution. We are going to
do this for full relations (i.e. 𝑎 + 𝑏𝜃 is 𝐵2−smooth), free relations and cycles but not
for partial relations. In the cycles construction step, where we try to construct cycles by
combining partial relations only the factorization of the corresponding ideals is neces-
sary, not the factorization of the elements.
We are going to study the problem for the case of a full relation, the other two cases are
treated in the same way.

Let 𝐼 = < 𝑎 + 𝑏𝜃 > be an ideal with gcd(𝑎, 𝑏) = 1 and 𝑎 + 𝑏𝜃 to be 𝐵2−smooth.
Then we know that 𝐼 = ∏ 𝔭𝑒(𝔭) with 𝑁(𝔭) < 𝐵2 and 𝑓(𝔭/𝑝ℤ) = 1 or 𝔭 ∣< 𝑓 > and we
have seen how to compute such a decomposition. Additionally for every such 𝔭we have
found an element 𝜋 ∈ 𝑅𝐾 such that 𝔭 = < 𝜋 >. Hence, we can obtain a factorization
like the following :

𝑎 + 𝑏𝜃 = ∏
𝑢∈U

𝑢𝑒(𝑢) ∏
𝜋∈G

𝜋𝑒(𝜋)

where we already know the 𝑒(𝜋) and we are left to find the 𝑒(𝑢). We have that 𝑈 is a
generating set of 𝐸(𝑅𝐾). By Theorem 1.4.6 we have that 𝑈 = {𝑢0, 𝑢1, … , 𝑢𝑟} where
𝑟 = 𝑠 + 𝑡 − 1 and 𝑢0 is a root of unity and 𝑢1, … , 𝑢𝑟 are fundamental units. We
choose 𝑟 embeddings 𝜎1, … , 𝜎𝑟 of 𝐾 in ℂ such that there are no two conjugate complex
embeddings. We then define the map :

𝑙 ∶ 𝐾∗ → ℝ𝑟

𝑥 ↦ (𝑙𝑜𝑔|𝜎1(𝑥)|, … , 𝑙𝑜𝑔|𝜎𝑠(𝑥)|, 𝑙𝑜𝑔|𝜎𝑠+1(𝑥)|2, … , 𝑙𝑜𝑔|𝜎𝑟(𝑥)|2)
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where 𝜎1, … , 𝜎𝑠 are real embeddings and 𝜎𝑠+1, … , 𝜎𝑟 are complex embeddings. By
the Dirichlet unit theorem we know that the image of 𝐸(𝑅𝐾) under 𝑙 is a lattice of
dimension 𝑟 in ℝ𝑟. We define 𝑊 to be the 𝑟 × 𝑟 matrix whose columns are the 𝑙(𝑢𝑖)
for 𝑖 = 1, … , 𝑟. The columns of 𝑊 form a base of the previous lattice. Indeed, let
𝜀 ∈ 𝐸(𝑅𝐾) then 𝜀 = 𝑢0

𝑒0𝑢1
𝑒1 … 𝑢𝑟

𝑒𝑟 ⇒

𝑙(𝜀) = 𝑙(𝑢0
𝑒0𝑢1

𝑒1 … 𝑢𝑟
𝑒𝑟)

= (𝑙𝑜𝑔|𝜎1(𝑢0
𝑒0𝑢1

𝑒1 … 𝑢𝑟
𝑒𝑟)|, … , 𝑙𝑜𝑔|𝜎𝑟(𝑢0

𝑒0𝑢1
𝑒1 … 𝑢𝑟

𝑒𝑟)|2)

= (𝑙𝑜𝑔|
𝑟

∏
𝑗=0

𝜎1(𝑢𝑗
𝑒𝑗)|, … , 𝑙𝑜𝑔|

𝑟
∏
𝑗=0

𝜎𝑟(𝑢𝑗
𝑒𝑗)|

2
)

= (
𝑟

∑
𝑗=0

𝑙𝑜𝑔|𝜎1(𝑢𝑗
𝑒𝑗)|, … ,

𝑟
∑
𝑗=0

𝑙𝑜𝑔|𝜎𝑟(𝑢𝑗
𝑒𝑗)|2)

= (
𝑟

∑
𝑗=0

𝑒𝑗𝑙𝑜𝑔|𝜎1(𝑢𝑗)|, … ,
𝑟

∑
𝑗=0

𝑒𝑗𝑙𝑜𝑔|𝜎𝑟(𝑢𝑗)|2)

= (
𝑟

∑
𝑗=1

𝑒𝑗𝑙𝑜𝑔|𝜎1(𝑢𝑗)|, … ,
𝑟

∑
𝑗=1

𝑒𝑗𝑙𝑜𝑔|𝜎𝑟(𝑢𝑗)|2)

= 𝑊 ⎛⎜
⎝

𝑒1
⋮

𝑒𝑟

⎞⎟
⎠

as 𝑙𝑜𝑔|𝜎𝑖(𝑢0)| = 0 for 𝑖 = 1, … , 𝑟 (𝑢0 ∈ ker 𝑙). So the 𝑙(𝑢𝑖) span the lattice and
they actually form a basis as they are as many as the dimension of the lattice. There-

fore, let 𝑎 + 𝑏𝜃 =
𝑟

∏
𝑖=0

𝑢𝑖
𝑒(𝑢𝑖) ∏

𝜋∈G
𝜋𝑒(𝜋) and we want to find the 𝑒(𝑢𝑖). We set 𝜐 =

(𝑎 + 𝑏𝜃) ∏𝜋∈G 𝜋−𝑒(𝜋) which is a unit so 𝑙(𝜐) is in the lattice spanned by the 𝑙(𝑢𝑖) and
particularly

𝑙(𝜐) = 𝑊 ⎛⎜
⎝

𝑒(𝑢1)
⋮

𝑒(𝑢𝑟)
⎞⎟
⎠

so

⎛⎜
⎝

𝑒(𝑢1)
⋮

𝑒(𝑢𝑟)
⎞⎟
⎠

= 𝑊 −1𝑙(𝜐)
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We know 𝑊 so we have to find 𝑙(𝜐) in order to be able to compute the 𝑒(𝑢𝑖). But
𝑙(𝜐) = 𝑙((𝑎 + 𝑏𝜃) ∏

𝜋∈G
𝜋−𝑒(𝜋))

= 𝑙(𝑎 + 𝑏𝜃) + 𝑙(∏
𝜋∈G

𝜋−𝑒(𝜋))

= 𝑙(𝑎 + 𝑏𝜃) − ∑
𝜋∈G

𝑒(𝜋)𝑙(𝜋)

Therefore we have found the 𝑒(𝑢𝑖) for 𝑖 = 1, … , 𝑟 and 𝑒(𝑢0) is left. But 𝑢0 is a root of
unity and in practice we use extensions𝐾/ℚwith [𝐾 ∶ ℚ] ≤ 6. This implies that if 𝑢0 is
an 𝑛−root of unity then 𝜙(𝑛) ≤ 6 where 𝜙 is the Euler function. But 𝜙(𝑛) ≤ 6 implies
that 𝑛 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18} so after at most 18 attempts we will find
𝑒(𝑢0).

We are finally going to make two remarks.

Remark 1.5.13. In the sieving step we used two arrays 𝐴1 and 𝐴2 in which we stored
𝑎 + 𝑏𝑚 and 𝑁(𝑎 + 𝑏𝜃) respectively. In practice, when we implement the sieving step
we can make some improvements. In the description of the sieving step in [16] it is
mentioned an implementation in which we store 𝑙𝑛(|𝑎+𝑏𝑚|) and 𝑙𝑛(|𝑁(𝑎+𝑏𝜃)|) instead
of 𝑎+𝑏𝑚 and𝑁(𝑎+𝑏𝜃) respectively. This can improve the performance of the algorithm
at some minor cost.

Remark 1.5.14. We have mentioned that for each prime 𝑝 ≤ min{𝐵1, 𝐵2} for which
𝑓(𝑥) factors completely in linear factors in 𝔽𝑝[𝑋] there is a free relation. Obviously
for these 𝑝, 𝑝 factors over the set P and by Theorem 1.4.1 we get that 𝑝𝑅𝐾 will factor
completely in first degree prime ideals. As we have that 𝑝 ≤ 𝐵2 it then follows that
𝑝𝑅𝐾 = ∏

𝜋∈G
< 𝜋 >. These relations are considered as free, as we do not have to use

the sieving step in order to conclude the smoothness of the corresponding elements.

1.6 Cycles construction
As we have already mentioned in section 1.2 in order to take advantage of partial

relations we try to combine them in cycles. In this section we present a solution of this
problem as described in [17]. But first we remind the definition of a cycle.

Definition 1.6.1. Let 𝐶 be a set of partial relations, then 𝐶 will be called a cycle if for
each (𝑎, 𝑏) ∈ 𝐶 there is a sign 𝑠(𝑎, 𝑏) ∈ {±1} such that

∏
(𝑎, 𝑏)∈𝐶

(𝑎 + 𝑏𝑚)𝑠(𝑎,𝑏) = ∏
𝑝∈P

𝑝𝑒(𝑝) and ∏
(𝑎, 𝑏)∈𝐶

(𝑎 + 𝑏𝜃)𝑠(𝑎,𝑏) = ∏
𝑢∈U

𝑢𝑒(𝑢) ∏
𝑔∈G

𝑔𝑒(𝑔)
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Let 𝑅 be the set of all the partial relations we found while sieving. Our goal is to
find subsets 𝐶 ⊂ 𝑅 such that they satisfy the above definition. In order to do that we
are going to use graphs. In the rest of this section we are going to take for granted some
results of graph theory without proving them. For more details and proofs we refer to
[4], we used [14].

Definition 1.6.2. A simple graph 𝐺 = (𝑉 , 𝐸) consists of a set vertices 𝑉 and a set of
edges 𝐸 which is a set of pairs of elements of 𝑉 .

We are going to create a graph that will represent the connections among big primes
and big prime ideals. In our case the set of vertices 𝑉 will be such that 𝑉 ⊆ {1}∪𝑃1∪𝑃2
where 𝑃1 = {all the big primes} and 𝑃2 = {all the big prime ideals}. We have that
𝑉 ⊆ {1} ∪ 𝑃1 ∪ 𝑃2 and not 𝑉 = {1} ∪ 𝑃1 ∪ 𝑃2 as some big primes or big prime ideals
may not appear in any partial relation.
An edge will connect two vertices in the graph if there is a partial relation in which the
corresponding elements of the two vertices appear as ”big”.

Definition 1.6.3. A path in the graph 𝐺 will be called a sequence of vertices

𝑢1
𝑒1−→ 𝑢2

𝑒2−→ …
𝑒𝑛−1−−→ 𝑢𝑛

where the edge 𝑒𝑗 connects the vertices 𝑢𝑗 and 𝑢𝑗+1 for 𝑗 = 1, 2, … , 𝑛 − 1. The number
of edges that appear in a path is defined to be the length of a path. A path in which the
last and the first vertex is the same is called a cycle.

As we can easily imagine, a cycle in the graph implies a cycle of partial relations.

Definition 1.6.4. A graph 𝐺 = (𝑉 , 𝐸) will be called bipartite if there is a partition of
the set 𝑉 such that 𝑉 = 𝐴∪𝐵 , 𝐴∩𝐵 = ∅ and there is no edge connecting two elements
of 𝐴 or two elements of 𝐵 respectively.

The graph which we are going to construct will be the union of a bipartite graph with
the vertex {1} and all edges connected to it. Hence, a cycle of odd length will include
the vertex {1} as if it did not, that would imply the existence of an edge connecting two
elements of 𝑃1 or 𝑃2, contradiction. So, for the cycles of the graph with even length
we can assign the signs ±1 to the edges alternately without bothering for where to start.
As edges correspond to partial relations this will give us a cycle among partial relations.
For cycles of odd length we must be more careful as they include the vertex {1}. For
these cycles we have to start with an edge connected to {1}.

Our goal is to find the cycles of the graph which we constructed. However we do
not have to find all cycles of the graph. If the symmetric difference of two cycles 𝐶1
and 𝐶2 is the cycle 𝐶3 then 𝐶3 will not give us any new information as we can get it by
𝐶1 and 𝐶2. Therefore, we want to find a maximal set of independent cycles of 𝐺. The
first step will be to calculate how many independent cycles exist in the graph.
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Definition 1.6.5. A connected graph 𝐺 which does not include any cycles is called a
tree. A graph (connected or not) which does not include any cycles is called a forest.

Definition 1.6.6. A tree 𝑇 , subgraph of 𝐺 which contains all the vertices of 𝐺 is called
a spanning tree of 𝐺.

Theorem 1.6.7. Every connected graph 𝐺 includes a spanning tree.

Theorem 1.6.8. Every tree with 𝑣 vertices has 𝑣 − 1 edges.

Theorem 1.6.9. Let 𝐺 = (𝑉 , 𝐸) be a connected graph with |𝑉 | = 𝑣 and |𝐸| = 𝑒.
Then, 𝐺 has 𝑒 − 𝑣 + 1 independent cycles.

Corollary 1.6.10. Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑐 connected components, |𝑉 | = 𝑣
and |𝐸| = 𝑒. Then, 𝐺 has 𝑒 − 𝑣 + 𝑐 independent cycles.

Therefore, in order to be able to calculate how many cycles exist in the graph we
have to determine 𝑒 , 𝑣 and 𝑐. The easiest of all is 𝑒 as it is equal to the number of partial
relations we have found. We are going to compute 𝑣 and 𝑐 using the following algorithm.

We construct an array 𝑇 of two elements per row 𝑇 (𝑑𝑖, 𝑎𝑖) where 𝑑𝑖 will store ver-
tices and 𝑎𝑖 the position in 𝑇 where is the root of the connected component of 𝐺 that
contains 𝑎𝑖.
Initially we set 𝑣 = 0 , 𝑐 = 0 and 𝑑𝑖 = −1. For each partial relation which we will
consider, let 𝑝1 be the big prime and 𝔭2 be the big prime ideal (maybe 𝑝1 = 1 or 𝔭2 = 1).
The first step is to insert 𝑝1 and 𝔭2 in the graph. For example in order to insert 𝑝1 we are
searching for the smallest 𝑗 such that 𝑑𝑗 = 𝑝1 or 𝑑𝑗 = −1. If 𝑑𝑗 = 𝑝1 then we do not
add anything. If 𝑑𝑗 = −1 then,

𝑑𝑗 ← 𝑝1 , 𝑎𝑗 ← 𝑗 , 𝑣 ← 𝑣 + 1 , 𝑐 ← 𝑐 + 1

We deal with 𝔭2 in the same way. The next step is to find the roots of the connected
components of 𝐺 in which 𝑝1 and 𝔭2 belong. We illustrate how this can be done for 𝑝1
and we use the same method for 𝔭2. Let 𝑑𝑗 = 𝑝1, we set 𝑟 ← 𝑗 and then 𝑟 ← 𝑎𝑟 as
long as 𝑎𝑟 ≠ 𝑟. In this way when we are done 𝑟 will be the position in 𝑇 of the root of
the connected component of 𝐺 in which 𝑝1 belongs. In this way we get an 𝑟1 and an 𝑟2
corresponding to 𝑝1 and 𝔭2 respectively.
If 𝑟1 ≠ 𝑟2 then 𝑐 ← 𝑐 − 1
If 𝑑𝑟1

< 𝑑𝑟2
then 𝑎𝑟2

← 𝑟1
If 𝑑𝑟2

< 𝑑𝑟1
then 𝑎𝑟1

← 𝑟2
If 𝑟1 = 𝑟2 then 𝑝1 and 𝔭2 belong to same connected component of 𝐺.
After all partial relations in 𝑅 have been processed, 𝑣 will be the number of vertices in
𝐺 and 𝑐 the number of connected components.
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The next step is to construct a set of independent cycles. The above algorithm has
already found the connected components of 𝐺. The roots of these components will be
our starting point. Our goal is to construct a spanning forest for𝐺 so then any edge not in
the forest will imply a cycle. We are going again to construct an array that will store this
forest and all the necessary information in order to build it and then conclude a cycle of
partial relations. We built an array𝑇 with four elements per row, i.e. 𝑇 (𝑑𝑖, 𝑎𝑖, 𝑎, 𝑏, 𝑑𝑒𝑝𝑡ℎ
(mod 2)). As before 𝑑𝑖 stores vertices, 𝑎𝑖 stores the immediate preceding vertex, (𝑎, 𝑏)
is the pair that gave us the partial relation and finally in the last field we store the depth
(mod 2) in the graph of the corresponding vertex. In depth 0 we place the roots found
by the previous algorithm. Then we repeatedly scan the partial relations, considering
only those that are not already used. For each partial relation that correspond to an edge
we check if any of the two vertices is already included at the previous depth in the graph.
If both vertices are not in the graph then we leave this relation for later use. If one vertex
is in the graph at the previous depth, but the other vertex is neither present at the current
nor the previous depth, we add that edge in the graph by updating the array 𝑇 . Finally
if one vertex is in the graph at the previous depth and the other in the current or the
previous depth we have found a cycle. In order to actually get the cycle we follow the
path from the one vertex corresponding to the new edge until the root and then back to
the other.

Remark 1.6.11. The above cycles will be independent as in each one of them we used
one ”new” edge to construct them and we used each such edge only once.

1.7 Linear algebra
The last step of the SNFS is the linear algebra step. In this step we attempt to solve

a large sparse system of linear equations over 𝔽2. In order to solve such a problem one
choice would be Gaussian elimination. However the matrices encountered for record-
breaking factorizations are really large and therefore we would like to have a more ef-
ficient method. Indeed, for this step there are two alternatives. These are the Block
Lanczos algorithm [18] and the Block Wiedemann algorithm [9]. In this section we are
going to describe how the Block Lanczos algorithm works according to [18]. Initially
we are going to describe the Lanczos algorithm over the field ℝ in order to understand
the basic ideas behind the algorithm. Afterwards we will see how it can be adjusted in
order to apply over the field 𝔽2.

Let 𝐴 be a matrix such that 𝐴 ∈ 𝑀𝑛(ℝ) and 𝑦 ∈ ℝ𝑛. Our goal is to find a 𝑥 ∈ ℝ𝑛

such that 𝐴𝑥 = 𝑦. In case 𝐴 is symmetric, positive-definite and sparse then we can
apply the Lanczos algorithm in order to find a solution.
Let 𝑇 ∶ ℝ𝑛 ⟶ ℝ𝑛 be the linear operator induced by the matrix 𝐴.
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Definition 1.7.1. Let 𝑇 ∶ 𝑉 ⟶ 𝑉 be a linear operator. Then 𝑆 ∶ 𝑉 ⟶ 𝑉 will be
called the adjoint linear operator of 𝑇 iff < 𝑇 (𝑢), 𝑣 > = < 𝑢, 𝑆(𝑣) > ∀ 𝑢, 𝑣 ∈ 𝑉 .
Remark 1.7.2. If 𝑇 is induced by 𝐴 for which we have that 𝐴𝑇 = 𝐴 then 𝑆 = 𝑇 .
Indeed

< 𝑇 (𝑢), 𝑣 >= (𝐴𝑢)𝑇 𝑣 = 𝑢𝑇 𝐴𝑇 𝑣 = 𝑢𝑇 𝐴𝑣 =< 𝑢, 𝑇 (𝑣) >
In this case 𝑇 is called self-adjoint.

The following subspace is of great importance for the Lanczos algorithm.
Definition 1.7.3. Let 𝑇 be a linear operator as above and 𝑦 ∈ ℝ𝑛. The subspace
𝑊 = 𝑠𝑝𝑎𝑛({𝑦, 𝑇 (𝑦), 𝑇 2(𝑦), …}) is called the 𝑇 −cyclic subspace generated by 𝑦 (or
Krylov subspace generated by 𝑦).
Proposition 1.7.4. Let 𝐵 = {𝑤0, 𝑤1, … , 𝑤𝑚−1} be a basis of the 𝑇 −cyclic subspace
generated by 𝑦 such that < 𝑤𝑖, 𝑇 (𝑤𝑗) >= 0 for 𝑖 ≠ 𝑗 and < 𝑤𝑖, 𝑇 (𝑤𝑖) >≠ 0 for
𝑖 = 0, 1, … , 𝑚 − 1. Then,

𝑥 =
𝑚−1
∑
𝑖=0

< 𝑤𝑖, 𝑦 >
< 𝑤𝑖, 𝑇 (𝑤𝑖) >𝑤𝑖

satisfies 𝑇 (𝑥) = 𝑦.
Proof. Let 𝑤𝑗 ∈ 𝐵 then

< 𝑤𝑗, 𝑇 (𝑥) > =< 𝑤𝑗, 𝑇 (
𝑚−1
∑
𝑖=0

< 𝑤𝑖, 𝑦 >
< 𝑤𝑖, 𝑇 (𝑤𝑖) >𝑤𝑖) >

=
𝑚−1
∑
𝑖=0

< 𝑤𝑖, 𝑦 >
< 𝑤𝑖, 𝑇 (𝑤𝑖) > < 𝑤𝑗, 𝑇 (𝑤𝑖) >

=< 𝑤𝑖, 𝑦 >
and therefore we can conclude that < 𝑤𝑗, 𝑇 (𝑥) − 𝑦 >= 0 ∀𝑤𝑗 ∈ 𝐵. But, 𝐵 is a basis
for 𝑊 which implies that < 𝑤, 𝑇 (𝑥)−𝑦 >= 0 ∀𝑤 ∈ 𝑊 . Additionally 𝑇 is self-adjoint
and hence if 𝑤𝑖 ∈ 𝐵 then < 𝑤𝑖, 𝑇 (𝑇 (𝑥) − 𝑦) > = < 𝑇 (𝑤𝑖), 𝑇 (𝑥) − 𝑦 >. Moreover
as 𝑤𝑖 ∈ 𝐵 ⇒ 𝑤𝑖 ∈ 𝑊 ⇒ 𝑇 (𝑤𝑖) ∈ 𝑊 and therefore < 𝑇 (𝑤𝑖), 𝑇 (𝑥) − 𝑦 > = 0 as
we have already shown. That follows < 𝑤𝑖, 𝑇 (𝑇 (𝑥) − 𝑦) > = 0. By the definition of
𝑊 we have that 𝑦 ∈ 𝑊 and by definition of 𝑥 we get that 𝑥 ∈ 𝑊 which imply that

𝑇 (𝑥) − 𝑦 ∈ 𝑊 so, 𝑇 (𝑥) − 𝑦 =
𝑚−1
∑
𝑖=0

𝑐𝑖𝑤𝑖. Let 𝑤𝑗 ∈ 𝐵 then,

0 = < 𝑤𝑗, 𝑇 (𝑇 (𝑥) − 𝑦) > = < 𝑤𝑗, 𝑇 (
𝑚−1
∑
𝑖=0

𝑐𝑖𝑤𝑖) >

=
𝑚−1
∑
𝑖=0

𝑐𝑖 < 𝑤𝑗, 𝑇 (𝑤𝑖) > = 𝑐𝑗 < 𝑤𝑗, 𝑇 (𝑤𝑗) >
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and as < 𝑤𝑗, 𝑇 (𝑤𝑗) >≠ 0 we get that 𝑐𝑗 = 0. But 𝑗 was chosen randomly and
hence 𝑇 (𝑥) − 𝑦 = 0 ⇒ 𝑇 (𝑥) = 𝑦.

Our next step will be to find a way to compute a basis for 𝑊 as in the previous
proposition.

Proposition 1.7.5. Let 𝑊 = 𝑠𝑝𝑎𝑛({𝑦, 𝑇 (𝑦), 𝑇 2(𝑦), … , 𝑇 𝑚−1(𝑦)}). We set
𝐵 = {𝑤0, 𝑤1, … , 𝑤𝑚−1}with𝑤0 = 𝑦 and𝑤𝑖 = 𝑇 (𝑤𝑖−1)−

𝑖−1
∑
𝑗=0

< 𝑇 (𝑤𝑗), 𝑇 (𝑤𝑖−1) >
< 𝑇 (𝑤𝑗), 𝑤𝑗 > 𝑤𝑗.

Then 𝐵 is a basis for 𝑊 such that < 𝑤𝑖, 𝑇 (𝑤𝑗) >= 0 for 𝑖 ≠ 𝑗 and < 𝑤𝑖, 𝑇 (𝑤𝑖) >≠ 0.

Proof. Let 𝐵𝑙 = {𝑤0, 𝑤1, … , 𝑤𝑙−1} and assume that < 𝑤𝑖, 𝑇 (𝑤𝑗) >= 0 for 𝑖 ≠ 𝑗. Let
𝑎0𝑤0 + … + 𝑎𝑙−1𝑤𝑙−1 = 0 with 𝑎𝑖 ∈ ℝ. Therefore 𝑇 (𝑎0𝑤0 + … + 𝑎𝑙−1𝑤𝑙−1) = 0 and
hence for 0 ≤ 𝑗 ≤ 𝑙 − 1 we have

0 = < 𝑤𝑗, 0 > = < 𝑤𝑗, 𝑇 (𝑎0𝑤0 + … + 𝑎𝑙−1𝑤𝑙−1) >
=< 𝑤𝑗, 𝑎0𝑇 (𝑤0) + … + 𝑎𝑙−1𝑇 (𝑤𝑙−1) >
= 𝑎0 < 𝑤𝑗, 𝑇 (𝑤0) > + … + 𝑎𝑗 < 𝑤𝑗, 𝑇 (𝑤𝑗) > + … + 𝑎𝑙−1 < 𝑤𝑗, 𝑇 (𝑤𝑙−1) >
= 𝑎𝑗 < 𝑤𝑗, 𝑇 (𝑤𝑗) >

and hence 𝑎𝑗 = 0 as < 𝑤𝑗, 𝑇 (𝑤𝑗) >≠ 0. We chose 𝑗 randomly so 𝑎𝑗 = 0 for 𝑗 =
0, … , 𝑙−1 ⇒ the elements of𝐵𝑙 are linearly independent. Let𝑊𝑙 = {𝑦, 𝑇 (𝑦), … , 𝑇 𝑙−1(𝑦)}.
We are going to to prove the proposition inductively. For 𝑙 = 0 the proposition is triv-
ially true. We assume it is true for some 𝑙 with 𝑙 < 𝑚 and we will show it for 𝑙 + 1. Let
𝑤𝑗 ∈ 𝐵𝑙, then

< 𝑤𝑙, 𝑇 (𝑤𝑗) > = < 𝑇 (𝑤𝑙−1) −
𝑙−1
∑
𝑖=0

< 𝑇 (𝑤𝑖), 𝑇 (𝑤𝑙−1) >
< 𝑇 (𝑤𝑖), 𝑤𝑖 > 𝑤𝑖, 𝑇 (𝑤𝑗) >

= < 𝑇 (𝑤𝑙−1, 𝑇 (𝑤𝑗) > −
𝑖−1
∑
𝑖=0

< 𝑇 (𝑤𝑖), 𝑇 (𝑤𝑙−1) >
< 𝑇 (𝑤𝑖), 𝑤𝑖 > < 𝑤𝑖, 𝑇 (𝑤𝑗) >

= < 𝑇 (𝑤𝑙−1), 𝑇 (𝑤𝑗) > − < 𝑇 (𝑤𝑗), 𝑇 (𝑤𝑙−1) >
= 0

So, < 𝑤𝑖, 𝑇 (𝑤𝑗) > = 0 if 𝑖 ≠ 𝑗 in 𝐵𝑙+1. The next step is to show that 𝐵𝑙+1 and 𝑊𝑙+1

span the same space. Let 𝑤𝑖 ∈ 𝐵 then 𝑤𝑖+1 = 𝑇 (𝑤𝑖) −
𝑖

∑
𝑗=0

< 𝑇 (𝑤𝑗), 𝑇 (𝑤𝑖) >
< 𝑇 (𝑤𝑗), 𝑤𝑗 > 𝑤𝑗

which follows that 𝑇 (𝑤𝑖) ∈ 𝑠𝑝𝑎𝑛(𝐵𝑖+2). We will show that 𝑤𝑘 = 𝑇 𝑘(𝑦) +
𝑘−1
∑
𝑖=0

𝑎𝑖𝑤𝑖.
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For 𝑘 = 1 : 𝑤1 = 𝑇 (𝑦) − < 𝑇 (𝑤0), 𝑇 (𝑤0) >
< 𝑇 (𝑤0), 𝑤0 > 𝑤0

We assume that it holds for 𝑘 then,

𝑤𝑘+1 = 𝑇 (𝑤𝑘) −
𝑘

∑
𝑗=0

𝑏𝑗𝑤𝑗 = 𝑇 (𝑇 𝑘(𝑦) +
𝑘−1
∑
𝑗=0

𝑎𝑗𝑤𝑗) −
𝑘

∑
𝑗=0

𝑏𝑗𝑤𝑗

= 𝑇 𝑘+1(𝑦) +
𝑘−1
∑
𝑗=0

𝑎𝑗𝑤𝑗 −
𝑘

∑
𝑗=0

𝑏𝑗𝑤𝑗

But we have that 𝑇 (𝑤𝑖) ∈ 𝑠𝑝𝑎𝑛(𝐵𝑖+2) ⇒ 𝑇 (𝑤𝑗) ∈ 𝑠𝑝𝑎𝑛(𝐵𝑘+1) for 𝑗 = 0, … , 𝑘 − 1

and hence 𝑤𝑘+1 = 𝑇 𝑘+1(𝑦) +
𝑘

∑
𝑗=0

𝑐𝑗𝑤𝑗. So, 𝑤𝑙 = 𝑇 𝑙(𝑦) +
𝑙−1
∑
𝑗=0

𝑎𝑗𝑤𝑗 but 𝑇 𝑙(𝑦) ∈ 𝑊𝑙+1

and 𝑤𝑖 ∈ 𝑠𝑝𝑎𝑛(𝑊𝑙+1) for 𝑖 = 0, … , 𝑙 − 1 as 𝑤𝑖 ∈ 𝑠𝑝𝑎𝑛(𝐵𝑙) = 𝑠𝑝𝑎𝑛(𝑊𝑙) ⊆
𝑠𝑝𝑎𝑛(𝑊𝑙+1) by inductive hypothesis. Therefore𝑤𝑙 ∈ 𝑠𝑝𝑎𝑛(𝑊𝑙+1) and so 𝑠𝑝𝑎𝑛(𝐵𝑙+1) ⊆
𝑠𝑝𝑎𝑛(𝑊𝑙+1). The elements of𝐵𝑙+1 are linearly independent hence 𝑑𝑖𝑚(𝑠𝑝𝑎𝑛(𝐵𝑙+1)) =
𝑙 + 1 and 𝑑𝑖𝑚(𝑠𝑝𝑎𝑛(𝑊𝑙+1)) = 𝑙 + 1 so we get that 𝑠𝑝𝑎𝑛(𝐵𝑙+1) = 𝑠𝑝𝑎𝑛(𝑊𝑙+1)
Proposition 1.7.6. The basis 𝐵 or the previous proposition can be computed recursively
by the following formula

𝑤𝑖 = 𝑇 (𝑤𝑖−1) − < 𝑇 (𝑤𝑖−1), 𝑇 (𝑤𝑖−1) >
< 𝑇 (𝑤𝑖−1), 𝑤𝑖−1 > 𝑤𝑖−1 − < 𝑇 (𝑤𝑖−2), 𝑇 (𝑤𝑖−1) >

< 𝑇 (𝑤𝑖−2), 𝑤𝑖−2 > 𝑤𝑖−2

for 𝑖 ≥ 2.
Proof. Let 𝑗 < 𝑖 − 2 it is sufficient to show that < 𝑇 (𝑤𝑗), 𝑇 (𝑤𝑖−1) > = 0. By the

definition of 𝑤𝑗+1 we have that 𝑇 (𝑤𝑗) = 𝑤𝑗+1 +
𝑗

∑
𝑘=0

< 𝑇 (𝑤𝑘), 𝑇 (𝑤𝑗) >
< 𝑇 (𝑤𝑘), 𝑤𝑘 > 𝑤𝑘.

< 𝑇 (𝑤𝑗), 𝑇 (𝑤𝑖−1) > = <
𝑗

∑
𝑘=0

< 𝑇 (𝑤𝑘), 𝑇 (𝑤𝑗) >
< 𝑇 (𝑤𝑘), 𝑤𝑘 > 𝑤𝑘, 𝑇 (𝑤𝑖−1) >

= < 𝑤𝑗+1, 𝑇 (𝑤𝑖−1) > +
𝑗

∑
𝑘=0

< 𝑇 (𝑤𝑘), 𝑇 (𝑤𝑗) >
< 𝑇 (𝑤𝑘), 𝑤𝑘 > < 𝑤𝑘, 𝑇 (𝑤𝑖−1) >

= 0

as 𝑗 + 1 < 𝑖 − 1 ⇒ 𝑗 + 1 ≠ 𝑖 − 1 and 𝑘 ≤ 𝑗 < 𝑖 − 2 < 𝑖 − 1 ⇒ 𝑘 ≠ 𝑖 − 1
The above method will fail to find a vector 𝑥 such that 𝐴𝑥 = 𝑦 in our case mainly

because of the following three reasons.
1) 𝐴 is not symmetric.
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2) 𝑦 = 0 and therefore 𝑊 = {0}.
3) As we work in the field 𝔽2 then < 𝑤𝑖, 𝑇 (𝑤𝑖) > ≠ 0 may fail.

For these reasons the method will be adapted in a block version in order to meet the
needs of the NFS. In this version the vectors 𝑤𝑖 which we used above as a basis for the
vector space 𝑊 will be replaced by matrices𝑊𝑖 whose columns will span the subspaces
𝒲𝑖. We are going to briefly describe how the method works, for more details and proofs
we refer to [18].

Let 𝐴 be a symmetric 𝑛 × 𝑛 matrix over a field 𝐾.

Definition 1.7.7. Let 𝒲 be a subspace of 𝐾𝑛, then 𝒲 is called 𝐴−invertible if it has a
basis 𝑊 of column vectors such that 𝑊 𝑇 𝐴𝑊 is invertible.

Assume we have found subspaces 𝒲𝑖 such that:
1) 𝒲𝑖 is 𝐴−invertible.
2) 𝒲𝑇

𝑗 𝐴𝒲𝑖 = {0} for 𝑖 ≠ 𝑗.
3) 𝐴𝒲 ⊆ 𝒲 where 𝒲 = 𝒲0 + 𝒲1 + … + 𝒲𝑚−1.

Proposition 1.7.8. Let 𝑏 ∈ 𝒲 and 𝑊𝑖 basis of 𝒲𝑖 which satisfy the above three condi-
tions. Then the

𝑥 =
𝑚−1
∑
𝑗=0

𝑊𝑗(𝒲𝑇
𝑗 𝐴𝒲𝑗)

−1𝒲𝑇
𝑗 𝑏

satisfies 𝐴𝑥 = 𝑏.
Like the previous case the next step is to construct such a set of subspaces 𝒲𝑖. This

will be done by choosing the bases𝑊𝑖 of each𝒲𝑖. Let𝑁 > 0 (𝑁 = 32 or 64) according
to [18] we construct matrices 𝑉𝑖 ∶ 𝑛 × 𝑁 , 𝑆𝑖 ∶ 𝑁 × 𝑁𝑖 where 𝑁𝑖 < 𝑁 such that
𝒲𝑇

𝑗 𝐴𝒱𝑖 = 0 for 𝑗 < 𝑖 and 𝒲𝑇
𝑖 𝐴𝒲𝑖 to be invertible.

Proposition 1.7.9. Let 𝑊𝑖 = 𝑉𝑖𝑆𝑖 , 𝑉𝑖+1 = 𝐴𝑊𝑖𝑆𝑇
𝑖 + 𝑉𝑖 −

𝑖
∑
𝑗=0

𝑊𝑗𝐶𝑖+1,𝑗 for 𝑖 ≥ 0

, 𝒲𝑖 = < 𝑊𝑖 > , 𝐶𝑖+1,𝑗 = (𝑊 𝑇
𝑗 𝐴𝑊𝑗)

−1𝑊 𝑇
𝑗 𝐴(𝐴𝑊𝑖𝑆𝑇

𝑖 + 𝑉𝑖) and 𝑉𝑚 = 0. Then
𝒲𝑖 is 𝐴−invertible , 𝒲𝑇

𝑗 𝐴𝒲𝑖 = {0} for 𝑖 ≠ 𝑗 , 𝐴𝒲 ⊆ 𝒲 and 𝑊 𝑇
𝑗 𝐴𝑉𝑖 = 0 for

0 ≤ 𝑗 < 𝑖 ≤ 𝑚.

Remark 1.7.10. The recurrence formula used to find the 𝑉𝑖+1 can be simplified as in
the case of vectors.

We are now going to use the above results in order to find vectors in the null space
of the matrix 𝐵 deduced by the sieving step. Let 𝐵 be 𝑛1 × 𝑛2, we set 𝐴 = 𝐵𝑇 𝐵 and
𝑛2 = 𝑛 then 𝐴 is an 𝑛 × 𝑛 symmetric matrix over 𝔽2. We will attempt to solve 𝐴𝑥 = 0
and then conclude solutions for 𝐵𝑥 = 0. Initially we choose a random 𝑛 × 𝑁 matrix



32 The Special Number Field Sieve

𝑌 and compute 𝐴𝑌 . Our goal is to find a matrix 𝑋 such that 𝐴𝑋 = 𝐴𝑌 . Then the
columns of 𝑋 − 𝑌 will be vectors in the null space of 𝐴. In order to find 𝑋 we use
the Lanczos algorithm. We initialize 𝑉0 = 𝐴𝑌 and construct matrices 𝑊𝑖 as described
previously. Then

𝑋 =
𝑚−1
∑
𝑖=0

𝑊𝑖(𝑊 𝑇
𝑖 𝐴𝑊𝑖)

−1𝑊 𝑇
𝑖 𝑉0

will satisfy 𝐴𝑋 = 𝐴𝑌 under some assumptions made in [18]. If not, then the method
can be modified in order to work in that case as well. We set 𝑍 = 𝑋 − 𝑌 , if 𝐵𝑍 = 0
then the columns of 𝑍 are vectors in the null space of 𝐵. If 𝐵𝑍 ≠ 0 then we compute
𝐵𝑍 and find a matrix 𝑈 (at most 𝑁 × 𝑁 ) whose columns span the null space of 𝐵𝑍.
Then a basis of subspace spanned by the columns of 𝑍𝑈 will give us the desired vectors
in the null space of 𝐵.

Comment 1.7.11. According to [18, p.114] the algorithm described in this section is
estimated to take about 𝑂(𝑛2) time in contrast to the Gaussian elimination which takes
𝑂(𝑛3).

1.8 Runtime analysis
In this section we are going to present some heuristic runtime analysis for the SNFS

as given in [16]. The running time of the SNFS can be given by the function 𝐿𝑛[𝜈, 𝜆]
where,

𝐿𝑛[𝜈, 𝜆] = 𝑒𝜆(log 𝑛)𝜈(log log 𝑛)1−𝜈

Using this notation and the assumption that 𝑟 and |𝑠| are below a fixed upper bound, the
estimated running time of the SNFS is 𝐿𝑛[1

3 , 𝑐]where 𝑐 = 3√32
9 ≈ 1.5263. At this point

we have to mention that the SNFS and GNFS (with 𝐿𝑛[1
3 , 𝑐] , 𝑐 = 3√64

9 ≈ 1.9229) are
the only known factoring algorithms which are conjectured to have a value 𝜈 < 1

2 .
According to the analysis given in [16] we are now going to give the suggested choices
for the smoothness bounds and sieving bounds as well as for the degree of the extension
𝐾/ℚ which we are going to use. The optimal choice for the sieving bounds 𝑈1, 𝑈2 and
the smoothness bounds 𝐵1, 𝐵2 is

𝑒( 1
2 +𝑜(1))𝑑 log 𝑑+√(𝑑 log 𝑑)2+2 log(𝑛1/𝑑) log log(𝑛1/𝑑)

For the large prime and large prime ideal bounds𝐵3 and𝐵4 respectively we have to take
𝐵3 < 𝐵2

1 and 𝐵4 < 𝐵2
2. In this way it is guaranteed that the remaining factor of 𝑎 + 𝑏𝑚

and 𝑁(𝑎 + 𝑏𝜃) after sieving will be prime so we do not have to factor it. At this point
a choice close to 𝐵2

1 and 𝐵2
2 respectively may seem appealing but as primes get larger

they appear less often in partial relations. Therefore it is more difficult to be matched



1.9 The SNFS in the case ℎ𝐾 > 1 33

in a cycle. A good choice for 𝐵3 would be between 𝐵1.2
1 and 𝐵1.4

1 and similarly for
𝐵4. Finally the optimal degree 𝑑 of the extension is 𝑑 = ( (3+𝑜(1)) log 𝑛

2 log log 𝑛 )1/3 for 𝑒 ⟶ ∞
where 𝑒 is the one in 𝑛 = 𝑟𝑒 − 𝑠.

1.9 The SNFS in the case ℎ𝐾 > 1

In this section we are going to briefly describe how the SNFS is adjusted in order
to work in the case ℎ𝐾 > 1. In this case 𝑅𝐾 is neither a PID nor a UFD. Therefore
in this case we cannot search for generators for the prime ideals 𝔭 which implies that
we cannot construct the set G like the case ℎ𝐾 = 1. Also the elements of 𝑅𝐾 do not
have a unique factorization. However, our goal will be again to find some algebraic
integers for which both them and their images under 𝜑 will be smooth. Like the case
ℎ𝐾 = 1 we will be searching for algebraic integers with small coefficients with respect
to an integral basis. In this case we do not necessarily search for elements of the form
𝑎 + 𝑏𝜃. Let 𝔭1, 𝔭2, … , 𝔭𝑠 be the prime ideals with 𝑁(𝔭𝑖) ≤ 𝐵 and 𝑁(𝔭𝑖) ≤ 𝑁(𝔭𝑖+1).
Our goal is to generalize the set G for the case ℎ𝐾 > 1. In this case we construct the
set G as follows. Initially we search for a 𝑎1 ∈ 𝑅𝐾 such that 𝑎1𝑅𝐾 = 𝔭𝑘1,1

1 and 𝑘1,1
is the minimal power of 𝔭1 such that 𝔭𝑘1,1

1 is principal. Therefore 𝑘1,1 is equal to the
order of [𝔭1] in the class group 𝐶𝑙(𝐾). Afterwards, we search for a 𝑎2 ∈ 𝑅𝐾 such that
𝑎2𝑅𝐾 = 𝔭𝑘1,2

1 𝔭𝑘2,2
2 where 𝑘1,2 < 𝑘1,1 and 𝑘2,2 minimal, hence equal to the order of the

coset [𝔭2] < [𝔭1] > in 𝐶𝑙(𝐾)/ < [𝔭1] >. We proceed in the same way for the rest of the
𝔭𝑖. In this way we construct an upper triangular matrix 𝑀 with elements the 𝑘𝑖,𝑗. Now
we set G to be the set of all these 𝑎𝑖.

Remark 1.9.1. The new setG is actually a generalization of the one in the case ℎ𝐾 = 1.
Indeed, if ℎ𝐾 = 1 then we would have 𝑘𝑖,𝑖 = 1 and 𝑘𝑖,𝑗 = 0 for 𝑖 < 𝑗 and hence the 𝑎𝑖
would be generators of the respective 𝔭𝑖.

Let 𝑥 ∈ 𝑅𝐾 that is 𝐵−smooth then 𝑥𝑅𝐾 =
𝑠

∏
𝑖=1

𝔭𝜐𝑖
𝑖 as 𝑅𝐾 is a Dedekind domain.

We will show that 𝑥 has a unique factorization as a product of elements 𝑎𝑖 ∈ G and a
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unit. We search for 𝜇𝑖 for 𝑖 = 1, … , 𝑠 such that
𝑠

∏
𝑗=1

𝑎𝑗
𝜇𝑗𝑅𝐾 = 𝑥𝑅𝐾. But,

𝑠
∏
𝑗=1

𝑎𝑗
𝜇𝑗𝑅𝐾 =

𝑠
∏
𝑗=1

(
𝑗

∏
𝜈=1

𝔭𝑘𝜈,𝑗
𝜈 )

𝜇𝑗

=
𝑠

∏
𝑗=1

𝑗
∏
𝜈=1

𝔭𝑘𝜈,𝑗𝜇𝑗
𝜈

=
𝑠

∏
𝑗=1

𝔭𝑗

𝑠
∑

𝜈=𝑗
𝑘𝑗,𝜈𝜇𝜈

Hence, 𝑥𝑅𝐾 =
𝑠

∏
𝑗=1

𝔭𝑗

𝑠
∑

𝜈=𝑗
𝑘𝑗,𝜈𝜇𝜈

and 𝑥𝑅𝐾 =
𝑠

∏
𝑗=1

𝔭𝜐𝑗
𝑗 and we have unique factorization

of ideals so, 𝜐𝑗 =
𝑠

∑
𝜈=𝑗

𝑘𝑗,𝜈𝜇𝜈. This implies that

𝑀
⎛⎜⎜⎜⎜
⎝

𝜇1
𝜇2
⋮

𝜇𝑠

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝜐1
𝜐2
⋮

𝜐𝑠

⎞⎟⎟⎟⎟
⎠

So in order to find the 𝜇𝑖 we need to solve the above system, where

𝑀 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑘1,1 𝑘1,2 𝑘1,3 ⋯ 𝑘1,𝑠
𝑘2,2 𝑘2,3 ⋯ 𝑘2,𝑠

𝑘3,3 𝑘3,𝑠

0 ⋱ ⋮
𝑘𝑠,𝑠

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

Finally we get that 𝑥 = 𝑢
𝑠

∏
𝑗=1

𝑎𝑗
𝜇𝑗 where 𝑢 ∈ 𝐸(𝑅𝐾). Then, we can proceed as in

the case ℎ𝐾 = 1.
Remark 1.9.2. The 𝜇𝑖 which we will get by solving the above system will be integers.
Indeed, if we take 𝜇𝑠 for example, we want 𝑘𝑠,𝑠𝜇𝑠 = 𝜐𝑠 so 𝑘𝑠,𝑠 must divide 𝜐𝑠. But

𝑥𝑅𝐾 =
𝑠

∏
𝑗=1

𝔭𝜐𝑗
𝑗 and 𝑘𝑠,𝑠 is the order of [𝔭𝑠] in 𝐶𝑙(𝐾)/ <

𝑠−1
∏
𝑗=1

𝔭𝑗 > which implies that

𝑘𝑠,𝑠 ∣ 𝜐𝑠. If we want to check that 𝜇𝑠−1 will be an integer we apply the above argument
but this time for the ideal 𝑥𝑎−𝜇𝑠𝑠 𝑅𝐾 and we continue in the same way.



1.10 A working example 35

Comment 1.9.3. The above remark justifies why we chose the 𝑎𝑖 to satisfy 𝑎𝑖𝑅𝐾 =
𝑖

∏
𝑗=1

𝔭𝑘𝑗,𝑖
𝑗 and not just 𝑎𝑖𝑅𝐾 = 𝔭𝑘𝑖

𝑖 .

Given these modifications new computational demands arise. The first is computing
the structure of𝐶𝑙(𝐾). Then, we have to find all ideals 𝔭𝑖 with𝑁(𝔭𝑖) ≤ 𝐵. Afterwards,
given the 𝐶𝑙(𝐾) and this set of prime ideals we have to compute the 𝑘𝑖,𝑗 and 𝑎𝑖 for each
𝔭𝑖 as described above. Moreover, in order to be able to compute the 𝜇𝑖 we must be able
to compute the 𝜐𝑖 in the factorization of 𝑥𝑅𝐾. In this case we do not necessarily have
𝑓(𝔭𝑖/𝑝ℤ) = 1. Hence, we will have to use the method used for the case ℎ𝐾 = 1 and
𝔭 ∣ ⟨𝑓⟩ in order to compute the 𝜐𝑖 (actually with a small modification as the 𝔭𝑖 are not
principal in general).

1.10 A working example

In order to get a better understanding of what we have done so far we are going to
give an example of a factorization using the SNFS. The number which we are going to
factor is 𝑛 = 60698453. Obviously, for factoring a number of this magnitude nowadays
we do not have to use such a powerful algorithm as the SNFS, but here it will help us
illustrate the procedure.

First of all in order to use the SNFS we need to write 𝑛 in the form 𝑟𝑒 − 𝑠. By try-
ing some values for 𝑠 we observe that 𝑛 + 4 = 3933 and so we have that 𝑛 = 3933 − 4.
Hence in our example we have 𝑟 = 393 , 𝑠 = 4 and 𝑒 = 3. The next step is to choose
the degree 𝑑 of the extension 𝐾/ℚ in which we are going to work. We choose 𝑑 = 3 so
the least integer 𝑘 such that 𝑘𝑑 ≥ 𝑒 is 𝑘 = 1. Therefore, as described in the first step of
the algorithm we get

𝑓(𝑥) = 𝑥𝑑 − 𝑠𝑟𝑘𝑑−𝑒 = 𝑥3 − 4 and 𝑚 = 𝑟𝑘 = 393

and 𝑓(𝑥) is irreducible so the number field in which we are going to work is 𝐾 = ℚ(𝜃)
where, 𝜃 = 3√4 Then using SAGE we find ℎ𝐾 and an integral basis for 𝑅𝐾. This can
be done by giving the following commands :
R.<x> = QQ []
K.<a> = NumberField (x̂3 -4)
h=K.class_number() ; h
RK = K.maximal_order()
RK.basis()
and we get that ℎ𝐾 = 1 and 𝑅𝐾 = ℤ ⊕ 3√4ℤ ⊕ 1

2
3√42ℤ. As we can see in this case
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ℤ[ 3√4] & 𝑅𝐾 so we define 𝜑 as follows :

𝜑 ∶ 𝑅𝐾 → ℤ/60698453ℤ
1
2(2𝑥 + 2𝑦 3√4 + 𝑧( 3√4)2) ↦ ((2𝑥 + 2𝑦393 + 𝑧3932)2−1 mod 60698453)

Our next step is to choose the smoothness bounds 𝐵1, 𝐵2, 𝐵3, 𝐵4. We make the
choices 𝐵1 = 43, 𝐵2 = 43 and 𝐵3 = 50, 𝐵4 = 50. This will give us that
P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43}
Afterwardswe compute the pairs (𝑝, 𝑐) that correspond to the prime ideals 𝔭with 𝑓(𝔭/𝑝ℤ) =
1 and 𝑁(𝔭) ≤ 𝐵2. Using the algorithm described in section 4 we conclude that these
pairs are :

(3, 1), (5, −1), (11, 5), (17, −4), (23, 3), (29, 9)
(31, −3), (31, −13), (31, −15), (41, −16), (43, −5), (43, −8), (43, 13)

Comment 1.10.1. We did not take into account the prime 2 because it divides the index
as we can see below.

We can compute the discriminant of the number field by computing the discriminant
of the integral base. In SAGE this can be done by the following command :
d=K.absolute_discriminant() ;d

and we get that 𝐷𝐾/ℚ = −108 = −2233. Also, 𝐷𝐾( 3√4) = −3324 and as
𝐷𝐾( 3√4) = [𝑅𝐾 ∶ ℤ[ 3√4]]2𝐷𝐾/ℚ we get that [𝑅𝐾 ∶ ℤ[ 3√4]] = 2.

So now we can determine,

G1 = {𝜋 ∈ 𝑅𝐾 ∶ < 𝜋 >= 𝔭 ∀ 𝔭 ∈ ℙ(𝐾) such that 𝑓(𝔭/𝑝ℤ) = 1 and 𝑁(𝔭) ≤ 𝐵2}

In order to do that we must first compute the parameters of our search,

𝜐𝑑 = (4
𝑑)

𝑑/2 1
𝜔𝑑

≃ 0.367

𝐶 = (𝜐𝑑√|𝐷𝐾|𝐵2)2/𝑑 ≃ 30
𝑀 = [𝜐𝑑√|𝐷𝐾|] = 3

These parameters imply a search for the generators among 344 elements of 𝑅𝐾.
After this search is done we get a result as shown in table 1.1.

Also, while searching for the above elements we encounter the elements 1+ 1
2

3√42
,

1
2

3√42
and−1+ 1

2
3√42

of norm 3 , 2 and 1 respectively. The only ideal 𝔭 not dividing the
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(𝑝, 𝑐) 𝑚(𝔭) 𝜋𝔭
(5, -1) 1 1 + 3√4
(11, 5) 1 −1 + 3√4 + 1

2
3√42

(17, -4) 1 1 + 3√42

(23, 3) 1 −1 − 2 3√4 − 1
2

3√42

(29, 9) 1 3 + 1
2

3√42

(31, -3) 1 3 + 3√4
(31, -13) 1 −1 + 3√4 + 3√42

(31, -15) 1 1 − 2 3√4
(41, -16) 1 1 + 3√4 + 3

2
3√42

(43, -5) 1 −1 − 2 3√4 + 1
2

3√42

(43, -8) 1 −3 + 3√4 − 1
2

3√42

(43, 13) 1 3 + 3√42

Table 1.1: Ideal generators

index with 𝑁(𝔭) ≤ 3 is the one corresponding to the pair (3, 1) so if we add 1 + 1
2

3√42

in the above list we get,

G1 ={1 + 1
2

3√42, 1 + 3√4, −1 + 3√4 + 1
2

3√42, 1 + 3√42, −1 − 2 3√4 − 1
2

3√42,

3 + 1
2

3√42, 3 + 3√4, −1 + 3√4 + 3√42, 1 − 2 3√4, 1 + 3√4 + 3
2

3√42,

− 1 − 2 3√4 + 1
2

3√42, −3 + 3√4 − 1
2

3√42, 3 + 3√42}

Now it is the turn of G2 = {𝜋 ∈ 𝑅𝐾 ∶ < 𝜋 >= 𝔭 ∀ 𝔭 ∣ 2𝑅𝐾}. In our case, 2 is
not an essential discriminant divisor so we can apply the following trick. We have that
𝐾 = ℚ( 3√4) but it is also true that 𝐾 = ℚ( 3√2). Changing the generating element of
𝐾 gives us the following advantage, 𝑅𝐾 = ℤ[ 3√2] so now we can use Theorem 1.4.1.
Using this theorem we conclude that there is only one prime ideal above 2 and it is of
degree 1. Therefore this ideal will correspond to the pair (2, 0) and will be generated
by 1

2
3√42

. Hence, we can deal with this ideal like the rest ideals of degree 1.
G2 = {1

2
3√42}

The only thing left for finishing the construction of the factor base is to find a gener-
ating system for 𝐸(𝑅𝐾). Our number field 𝐾 has one real embedding and two complex
embeddings. Therefore using Theorem 1.4.6 we conclude that we are looking for a root
of unity and for one fundamental unit. Our number field contains only real numbers so
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the only roots of unity in it are ±1. By the algorithm that searches for generators of
ideals we have already found an element of norm 1, but is it a fundamental unit? The
following proposition mentioned in [10] will give us the answer.

Proposition 1.10.2. Let 𝐾 be a pure cubic number field and 𝑅𝐾 its ring of algebraic
integers. If 𝜀 ∈ 𝑅𝐾 such that 𝜀 > 1 and 4𝜀3/2 + 24 < |𝐷𝐾| then 𝜀 is a fundamental
unit.

We try to apply the above proposition for −1 + 1
2

3√42
. But −1 + 1

2
3√42 ≃ 0.259

so −1 + 1
2

3√42 < 1. Let 𝜀 to be the inverse of −1 + 1
2

3√42
, then 𝜀 = 1 + 3√4 + 1

2
3√42

.
But now 𝜀 ≃ 3.846 > 1 and 4𝜀3/2 + 24 ≃ 54.185 < |𝐷𝐾| = 108 so by the previous
proposition we get that 𝜀 is a fundamental unit. Therefore −1+ 1

2
3√42

has infinite order
as well and hence we can take,

U = {−1, −1 + 1
2

3√42}

As we have constructed the factor base, the next step is sieving. We choose the
sieving bounds to be 𝑈1 = 250 and 𝑈2 = 100 for example and we start sieving. As a
result we get

Full relations
b a 𝐴1(𝑎) 𝐴2(𝑎)
1 -49 1 -1
1 -16 1 -1
1 -13 1 -1
1 -9 1 -1
1 -3 1 -1
1 -2 1 -1
1 -1 1 1
1 3 1 1
1 6 1 1
1 66 1 1
2 -9 1 -1
2 -3 1 1
3 4 1 1
5 3 1 1
5 13 1 1
7 -13 1 -1
7 207 1 1
8 15 1 1
11 12 1 1
13 8 1 1
17 7 1 1
17 179 1 1
31 -47 1 1
39 -32 1 1
41 37 1 1
53 -42 1 1
56 3 1 1
61 176 1 1

Partial relations
b a 𝐴1(𝑎) 𝐴2(𝑎)
3 -4 47 1
64 -101 47 1
5 - 43 1 -47
63 41 1 47
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Free relations
b a
0 2
0 3
0 31
0 43

For the relations we have foundwe compute the factorization of 𝑎+𝑏393 and 𝑎+𝑏 3√4
respectively and form the following vectors.

b a exponents vector 𝜐(𝑎,𝑏)
1 -49 (3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1)
1 -16 (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
1 -13 (2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)
1 -9 (7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1)
1 -3 (1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
1 -2 (0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)
1 -1 (3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
1 3 (2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
1 6 (0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
1 66 (0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 5, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2)
2 -9 (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1)
2 -3 (0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2)
3 4 (0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)
5 3 (4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
5 13 (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0)
7 -13 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2)
7 207 (1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0)
8 15 (0, 5, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
11 12 (0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0)
13 8 (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1)
17 7 (5, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)
17 179 (2, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)
31 -47 (3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3)
39 -32 (0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1)
41 37 (1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0)
53 -42 (0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1)
56 3 (0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0)
61 176 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 1, 2, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1)
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b a exponents vector 𝜐(𝑎,𝑏)
3 -4 (0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1)
64 -101 (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4)
5 -43 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1)
63 41 (5, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)

b a exponents vector 𝜐(𝑎,𝑏)
0 2 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
0 3 (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
0 31 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0)
0 43 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0)

In the partial relations’ vectors we do not mention the large prime or the large prime
ideal. We illustrate how we found the above vectors. For example, if we take (𝑎, 𝑏) =
(−13, 1) then,
𝑎 + 𝑏393 = −13 + 1 ⋅ 393 = 380 = 22 ⋅ 5 ⋅ 19 and
⟨−13 + 3√4⟩ = ⟨1 + 1

2
3√42⟩⟨1 + 3√42⟩⟨3 + 3√42⟩ as

−13 + 1 ⋅ 1 ≡ 0 (mod 3) ,
−13 + 1 ⋅ (−4) ≡ 0 (mod 17) and
−13 + 1 ⋅ 13 ≡ 0 (mod 43). Therefore we get that

−13 + 3√4 = (−1)𝑒0(−1 + 1
2

3√42)
𝑒1

(1 + 1
2

3√42)(1 + 3√42)(3 + 3√42)

Let 𝜐 = (−1)𝑒0(−1 + 1
2

3√42)
𝑒1
then

𝜐 = (−13 + 3√4)(1 + 1
2

3√42)
−1

(1 + 3√42)
−1

(3 + 3√42)
−1
. As the rank of 𝐸(𝑅𝐾) is 1

we choose the embedding 𝜎 = 𝑖𝑑 and we define,

𝑙 ∶ 𝐾∗ → ℝ
𝑥 ↦ log |𝑥|

Therefore,

𝑒1𝑙(−1 + 1
2

3√42) = 𝑙(𝜐) ⇒

𝑒1 log | − 1 + 1
2

3√42| = log |(−13 + 3√4)(1 + 1
2

3√42)
−1

(1 + 3√42)
−1

(3 + 3√42)
−1

| ⇒

𝑒1 log | − 1 + 1
2

3√42| = log | − 13 + 3√4| − log |1 + 1
2

3√42| − log |1 + 3√42| − log |3 + 3√42| ⇒
(−1.347)𝑒1 ≃ 2.68 − 0.815 − 1.258 − 1.708 ⇒

𝑒1 ≃ 0.817
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so 𝑒1 = 1 if we round it to the closest integer. Then it is easy to see that 𝑒0 = 1.
Hence, we can now construct the vector 𝜐(−13,1) as described in section 1.2.

Finally, as we have only 4 partial relations we can observe that they are combined in
two cycles 𝐶1 and 𝐶2 which gives us the following vectors.
(0, 0, -2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, -2, 0, 2, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3)
(4, 0, 2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 1, 1, 0)

Then we reduce all these vectors (mod 2) and using them as columns we form a
matrix. The nullspace of this matrix is spanned by
𝑉1 = (1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0)
𝑉2 = (0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0)
𝑉3 = (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0)
𝑉4 = (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1)
𝑉5 = (0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0)
𝑉6 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1)

We examine
𝑉4+𝑉5 = (0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1)
which implies that

𝑇 = {(−9, 1), (−2, 1), (3, 1), (4, 3), (13, 5), (−13, 7), (207, 7), (12, 11),
(−32, 39), (−42, 53), (3, 56), (176, 61), (3, 0), (43, 0), 𝐶2}

Which gives us,

∏
(𝑎, 𝑏)∈𝑇

(𝑎 + 𝑏393) = (37068206408665323091200)2

∏
(𝑎, 𝑏)∈𝑇

(𝑎 + 𝑏 3√4) = (1545140844 − 961510272 3√4 − 291398616 3√42)
2

and hence,

𝜑(37068206408665323091200) ≡ 31167286 (mod 60982453)

𝜑(1545140844 − 961510272 3√4 − 291398616 3√42) ≡ 41211233 (mod 60982453)
which means that we have found a non-trivial congruence of squares and therefore,

gcd(31167286 − 41211233, 60982453) = 7369
gcd(31167286 + 41211233, 60982453) = 8237





Chapter 2

The General Number Field Sieve

A natural question which arose as soon as the SNFS appeared and began to push the
boundaries of factorization (in the spacial form of integers in which it applied) was if
it could be generalised for arbitrary integers. The answer proved to yes. The algorithm
which we described in the previous chapter can be adjusted in order to factor arbitrary
integers. The main idea remains the same, we try to find a non-trivial congruence of
squares modulo the number we want to factor. In order to do that we are going to use
again a factor base, then find a sufficient number of smooth elements and finally use
linear algebra in order to construct two squares. However there are some differences as
we will see later. These differences make the GNFS to be a bit slower than the SNFS.
The records of each method indicate exactly that. As we mentioned in the beginning of
the previous chapter the record of SNFS at the moment is the 320-digit number 21061 −1
[7] whereas for the GNFS is the 232−digit number RSA-768. The factorization of RSA-
768 reported in [13] finished in the end of 2009 and took about three years.

2.1 Description of the algorithm
The main ideas used in the SNFS remain the same for the GNFS as well. However

there are some differences. In the SNFS the number 𝑛 which we attempt to factor is
assumed to be of the special form 𝑟𝑒 −𝑠 for some ”small” 𝑟, |𝑠|. As we saw this enabled
us to associate to 𝑛 a number field 𝐾 of special form. That is no longer true, in our case
the number 𝑛 is random and we do not assume that it possesses such a property. This
has the following effect. The number field in which we are going to work will have a
large discriminant and will be computationally infeasible to handle it like in the case of
SNFS. In this case we are not able to compute efficiently the class number of the number
field, a set of fundamental units and generators of the prime ideals with small norm. In
order to tackle this problem we are going to modify the SNFS in a way that it will use
ideals instead of algebraic integers. That will be the GNFS. This modification will have

43



44 The General Number Field Sieve

some advantages and disadvantages. Apart from not having to compute generators for
the prime ideals and a system of a fundamental units in this case we have the advantage
that we can work with ℤ[𝜃] instead of 𝑅𝐾 in case ℤ[𝜃] & 𝑅𝐾. But there will be also
disadvantages, the construction of a square in ℤ[𝜃] will be probabilistic at some point
and the computation of a square root will be demanded. Another difference is the poly-
nomial selection step. In the case of the SNFS the polynomial selection step is almost
immediate whereas in the GNFS is not. In the next section we are going to describe the
most simple technique by which somebody could choose a polynomial. However there
are more advanced techniques used nowadays, like in [3]. In the following description
of the GNFS we do not consider the large prime variation as this was illustrated in the
previous chapter.

Step 1)We first choose the degree 𝑑 of the extension in which we are going to work
and then associate a number field 𝐾 = ℚ(𝜃) to the number 𝑛. This is done through the
irreducible polynomial 𝑓(𝑥) of 𝜃. We choose an 𝑓(𝑥) ∈ ℤ[𝑥] in a specific way as we
wish it to have the following property.

There is an integer m (of size 𝑛1/𝑑 ) such that 𝑓(𝑚) ≡ 0 (mod 𝑛)

Then we define,

𝜑 ∶ ℤ[𝜃] → ℤ/𝑛ℤ
𝑑−1
∑
𝑖=0

𝑎𝑖𝜃𝑖 ↦
𝑑−1
∑
𝑖=0

𝑎𝑖𝑚𝑖 (mod 𝑛)

Step 2) As we have chosen the number field 𝐾 in which we are going to work, the
next step is to choose our smoothness bounds 𝐵1, 𝐵2. Then we construct the factor
base. Our factor base consists of three sets P, G and Q.

P = {𝑝 ∈ ℙ, 𝑝 ≤ 𝐵1}
G = {𝔭 ⊴ ℤ[𝜃] ∶ 𝔭 is a prime ideal and such that 𝑓(𝔭/𝑝ℤ) = 1 and 𝑁(𝔭) ≤ 𝐵2}
Q = {𝔮 ⊴ ℤ[𝜃] ∶ 𝔮 is a prime ideal and such that 𝑓(𝔮/𝑞ℤ) = 1 , 𝑓 ′(𝜃) ∉ 𝔮 and 𝑁(𝔮) > 𝐵2}

where 𝑓(𝔭/𝑝ℤ) is the residual degree. We take Q to have about [3 log 𝑛
log 2 ] elements.

Step 3)We choose two sieving bounds 𝑈1, 𝑈2 and like in the case of SNFS we try
to find a sufficient number of relations. We are looking for pairs (𝑎, 𝑏) where 𝑎, 𝑏 are
integers with |𝑎| ≤ 𝑈1 and 0 < 𝑏 ≤ 𝑈2 such that :
i) gcd(𝑎, 𝑏) = 1
ii) |𝑎 + 𝑏𝑚| is 𝐵1-smooth
iii) 𝑎 + 𝑏𝜃 is 𝐵2-smooth
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When we find a pair (𝑎, 𝑏) that satisfies the above three conditions we say that we have
found a relation.

Step 4) Once we have enough relations we form a matrix depending on the factor-
ization of the elements 𝑎 + 𝑏𝑚 and < 𝑎 + 𝑏𝜃 > that each relation corresponds to. Let 𝑆
be the set of all relations that we found in step 3. Then using linear algebra techniques
we attempt to find a subset 𝑇 of 𝑆 such that :

∏
(𝑎, 𝑏)∈𝑇

(𝑎 + 𝑏𝑚) = square in ℤ

∏
(𝑎, 𝑏)∈𝑇

(𝑎 + 𝑏𝜃) such that 𝑙𝔭( ∏
(𝑎,𝑏)∈𝑇

(𝑎 + 𝑏𝜃)) ≡ 0 (mod 2)

and ∏
(𝑎, 𝑏)∈𝑇

𝜒𝔮(𝑎 + 𝑏𝜃) = 1 ∀ 𝔮 ∈ Q

Step 5) Finally, when step 4 will finish it will give us two elements 𝑥, 𝛿 where 𝑥 ∈ ℤ
and 𝛿 ∈ ℤ[𝜃], 𝛿 = 𝛽2 for some 𝛽 ∈ ℤ[𝜃] such that 𝑥2 ≡ 𝜑(𝛿) (mod 𝑛). In this step we
will try to find 𝜑(𝛽) (mod 𝑛).

As we can see there are some differences between the algorithm given for the SNFS
and the GNFS. The first is the way we find the polynomial 𝑓(𝑥). Another difference
occurs in step 2. The algebraic factor base consists of prime ideals instead of prime
elements and there is an extra set Q. That set will be called the quadratic character
base. Also as it may happen that ℤ[𝜃] & 𝑅𝐾 we do not have unique factorization of
ideals in ℤ[𝜃]. We are going to deal with this problem by introducing the functions 𝑙𝔭
(see Proposition 2.3.2). Finally the 𝜒𝔮 are characters corresponding to the elements of
Q as we will see in Proposition 2.3.11. In the next sections we are going to study these
differences.

2.2 Polynomial selection
In the case we examine in this chapter the number 𝑛 which we attempt to factor is

not of a special form. Therefore we cannot construct a polynomial of the form 𝑥𝑑 − 𝑡
like in the case of SNFS. In this case we need a different approach. In this section we
are going to to describe the most simple technique that can be used in order to obtain
a polynomial 𝑓(𝑥) as demanded by step 1 of the algorithm. However, there are more
advanced techniques, not described in this master thesis for doing so. To indicate that
we mention that the factorization of RSA-768 mentioned in [13] included a three month
step for the polynomial selection.



46 The General Number Field Sieve

The method is the following. We first choose the number 𝑚. As we want 𝑚 to be
close to 𝑛1/𝑑 and set 𝑚 = [𝑛1/𝑑]. Then we write 𝑛 in base 𝑚 and hence we get,

𝑛 = 𝑚𝑑 + 𝑎𝑑−1𝑚𝑑−1 + … + 𝑎1𝑚 + 𝑎0 where 0 ≤ 𝑎𝑖 < 𝑚

We set 𝑓(𝑥) = 𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + … + 𝑎1𝑥 + 𝑎0. Obviously 𝑓(𝑥) satisfies 𝑓(𝑚) ≡
0 (mod 𝑛). In order to be able to define 𝐾 = ℚ(𝜃) we wish this polynomial to be
irreducible as well. However the polynomial may be reducible. As we will see this
would be a very good case as a non-trivial factorization of 𝑓(𝑥) in ℤ[𝑥] implies a non-
trivial factorization of 𝑛. In order to prove that we are going to use the following results
mentioned in [6] (slightly modified).

Proposition 2.2.1. Let 𝑓(𝑥) ∈ ℤ[𝑥] be a polynomial with roots 𝑎1, 𝑎2, … , 𝑎𝑠 ∈ ℂ
and 𝑓(𝑏) = 𝑛 for some 𝑏 ∈ ℤ. We assume that 𝑓(𝑏 − 1) ≠ 0 , 𝑅𝑒(𝑎𝑖) < 𝑏 − 1

2
for 𝑖 = 1, 2, … , 𝑠 and 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) is a non-trivial factorization of 𝑓(𝑥). Then
|𝑔(𝑏)|, |ℎ(𝑏)| are non-trivial factors of 𝑛.

Proof. In order to prove the proposition it suffices to prove that |𝑔(𝑏)| ≥ 2 and |ℎ(𝑏)| ≥
2. Let 𝑎1, 𝑎2, … , 𝑎𝑟 , 𝑟 < 𝑠 be the roots of 𝑔(𝑥) and so 𝑔(𝑥) = 𝛼𝑟

𝑟
∏
𝑖=1

(𝑥 − 𝑎𝑖). We set

𝑔1(𝑥) = 𝑔(𝑥+𝑏− 1
2) = 𝛼𝑟

𝑟
∏
𝑖=1

(𝑥+𝑏− 1
2 −𝑎𝑖) = 𝛼𝑟

𝑟
∏
𝑖=1

(𝑥−𝛽𝑖)where 𝛽𝑖 = −𝑏+ 1
2 +𝑎𝑖.

If 𝑎𝑖 ∈ ℝ ∶ 𝛽𝑖 = −𝑏 + 1
2 + 𝑎𝑖 < 0

If 𝑎𝑖 ∈ ℂ ∶ 𝑅𝑒(𝛽𝑖) = −𝑏 + 1
2 + 𝑅𝑒(𝑎𝑖) < 0

But if 𝑔1(𝛽𝑖) = 0 ⇒ 𝑔1(𝛽𝑖) = 0 and hence 𝛽𝑖 is also a root of 𝑔1(𝑥). We have that
(𝑥 − 𝛽𝑖)(𝑥 − 𝛽𝑖) = 𝑥2 − (𝛽𝑖 + 𝛽𝑖)𝑥 + |𝛽𝑖|2 = 𝑥2 − 2𝑅𝑒(𝛽𝑖)𝑥 + |𝛽𝑖|2 and therefore,

𝑔1(𝑥) = 𝛼𝑟 ∏
𝛽𝑖∈ℝ

(𝑥 − 𝛽𝑖) ∏
𝛽𝑖∈ℂ⧹ℝ
𝛽𝑖≠𝛽𝑗

(𝑥2 − 2𝑅𝑒(𝛽𝑖)𝑥 + |𝛽𝑖|2)𝜆𝑖

is a factorization of 𝑔1(𝑥) in ℝ. Let 𝑔1(𝑥) =
𝑟

∑
𝑖=0

𝛼𝑖𝑥𝑖, the previous factorization of

𝑔1(𝑥) enables us to conclude that all the 𝛼𝑖 have the same sign and 𝛼𝑖 ≠ 0. Furthermore
𝑔1(−𝑥) =

𝑟
∑
𝑖=0

𝛼𝑖(−1)𝑖𝑥𝑖 and hence the coefficients of 𝑔(−𝑥 + 𝑏 − 1
2) have strictly

alternating signs.

Let 𝑡 > 0 ∶ |𝑔1(𝑡)| = |
𝑟

∑
𝑖=0

𝛼𝑖(−1)𝑖𝑡𝑖| < |
𝑟

∑
𝑖=0

𝛼𝑖𝑡𝑖| = |𝑔1(𝑡)|. For 𝑡 = 1
2 we get

that |𝑔1(−1
2)| < |𝑔1(1

2)| ⇒ |𝑔(𝑏 − 1)| < |𝑔(𝑏)|. But 𝑔(𝑏 − 1) ≠ 0 ⇒ |𝑔(𝑏 − 1)| ≥
1 ⇒ |𝑔(𝑏)| ≥ 2. In the same way we can show that |ℎ(𝑏)| ≥ 2 which then implies the
result.
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Therefore our next goal is to show that the polynomials which we use satisfy the
conditions of the above proposition.

Proposition 2.2.2. Let 𝑓(𝑥) =
𝑛

∑
𝑘=0

𝛼𝑘𝑥𝑘 ∈ ℤ[𝑥] be a polynomial with 𝛼𝑛 > 0, 𝛼𝑛−1 ≥

0, 𝛼𝑛−2 ≥ 0. Let 𝑚 = max{ |𝛼𝑘|
𝛼𝑛

} for 𝑘 = 0, 1, … 𝑛 − 2 , 𝑟1 the real positive root of
𝑥2 − 𝑥 − 𝑚 and 𝑟2 the real positive root of 𝑥3 − 𝑥2 − 𝑚 respectively.

(𝑟1 = 1 + √4𝑚 + 1
2 , 𝑟2 = 1

3 + 3√𝑠 +
√

𝑠2 − 4
54 + 3√𝑠 −

√
𝑠2 − 4

54 where 𝑠 = 27𝑚+
2). If there is a 𝑏 ∈ ℤ such that 𝑏 > max{ 𝑟1√

2 , 𝑟2} + 1
2 then 𝑅𝑒(𝑎𝑖) < 𝑏 − 1

2 for every 𝑎𝑖
root of 𝑓(𝑥).
Proof. As 𝑚 ≥ 0 it follows that 𝑟1 ≥ 1 and 𝑟2 ≥ 1. Let 𝐴 = {𝑧 ∈ ℂ ∶ 𝑅𝑒(𝑧) ≤
max{ 𝑟1√

2 , 𝑟2}}. We will show that if 𝑧 ∈ 𝐴𝑐 then |𝑓(𝑧)| > 0 and therefore the roots of
𝑓(𝑥) belong to 𝐴 which implies the result. Let 𝐵 = {𝑧 ∈ ℂ ∶ 𝑅𝑒(𝑧) ≤ 0 or |𝑧| ≤ 𝑟1}
and we set 𝐴1 = 𝐴𝑐 ∩ 𝐵 and 𝐴2 = 𝐴𝑐 ∩ 𝐵𝑐.
If 𝑧 ∈ 𝐴2 ∶ As 𝑧 ∈ 𝐴2 we get that 𝑧 ∈ 𝐴𝑐 and hence 𝑅𝑒(𝑧) > 0 implying that
𝑅𝑒(1𝑧) > 0 as well.

∣𝑓(𝑧)
𝑧𝑛 ∣ ≥ ∣𝛼𝑛 + 𝛼𝑛−1

𝑧 ∣ − ∣
𝑛−2
∑
𝑘=0

𝛼𝑘𝑧𝑘−𝑛∣ = ∣𝛼𝑛 + 𝛼𝑛−1
𝑧 ∣ − ∣

𝑛
∑
𝑘=2

𝛼𝑛−𝑘
𝑧𝑘 ∣ ⇒

∣𝑓(𝑧)
𝑧𝑛 ∣ ≥ ∣𝛼𝑛 + 𝛼𝑛−1

𝑧 ∣−
𝑛

∑
𝑘=2

|𝛼𝑛−𝑘|
|𝑧|𝑘

> 𝑅𝑒(𝛼𝑛 + 𝛼𝑛−1
𝑧 ) −

∞
∑
𝑘=2

𝑚𝛼𝑛
|𝑧|𝑘

⇒

∣𝑓(𝑧)
𝑧𝑛 ∣ ≥ 𝛼𝑛 − 𝑚𝛼𝑛( 1

1 − 1
|𝑧|

− 1 − 1
|𝑧|) = 𝛼𝑛(|𝑧|2 − |𝑧| − 𝑚)

|𝑧|2 − |𝑧|
> 0 ⇒

|𝑓(𝑧)| > 0 as |𝑧| > 𝑟1

If 𝑧 ∈ 𝐴1 ∶ then 𝑅𝑒(𝑧) > 𝑟1√
2 and |𝑧| ≤ 𝑟1 which implies that |arg(𝑧)| < 𝜋

4 and hence
|arg(1𝑧)| < 𝜋

4 and |arg( 1
𝑧2 )| < 𝜋

2 . Therefore we have that 𝑅𝑒(1𝑧) ≥ 0 and 𝑅𝑒( 1
𝑧2 ) ≥ 0.

As in the above case we get that :

∣𝑓(𝑧)
𝑧𝑛 ∣ ≥ ∣𝛼𝑛 + 𝛼𝑛−1

𝑧 + 𝛼𝑛−2
𝑧2 ∣ −

𝑛
∑
𝑘=3

𝑚𝛼𝑛
|𝑧|𝑘

> 𝑅𝑒(𝛼𝑛 + 𝛼𝑛−1
𝑧 + 𝛼𝑛−2

𝑧2 ) −
∞

∑
𝑘=3

𝑚𝛼𝑛
|𝑧|𝑘

⇒

∣𝑓(𝑧)
𝑧𝑛 ∣ ≥ 𝛼𝑛 − 𝑚𝛼𝑛( 1

1 − 1
|𝑧|

− 1 − 1
|𝑧| − 1

|𝑧|2
) = 𝛼𝑛(|𝑧|3 − |𝑧|2 − 𝑚)

|𝑧|3 − |𝑧|2
> 0 ⇒

|𝑓(𝑧)| > 0 as |𝑧| > 𝑟2

Therefore we can conclude that if 𝑧 ∈ 𝐴𝑐 then |𝑓(𝑧)| > 0.
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Proposition 2.2.3. Let 𝑓(𝑥) =
𝑛

∑
𝑘=0

𝛼𝑘𝑥𝑘 ∈ ℤ[𝑥] be a polynomial with 𝛼𝑛 > 0, 𝛼𝑛−1 ≥
0, 𝛼𝑛−2 ≥ 0. Let 𝑏 ∈ ℕ , we set

𝐵 =
⎧{
⎨{⎩

1 if 𝑏 = 2
(2𝑏 − 1)(2𝑏 − 1 −

√
2)

2 if 𝑏 ≥ 3

If |𝑎𝑘|
𝑎𝑛

≤ 𝐵 for 𝑘 = 0, 1, … , 𝑛 − 2 then 𝑏 > max{ 𝑟1√
2 , 𝑟2}+ 1

2 where 𝑟1, 𝑟2 are like in the
previous proposition.

Proof. Let 𝑟∗
1 and 𝑟∗

2 be the positive roots of 𝑥2 − 𝑥 − 𝐵 and 𝑥3 − 𝑥2 − 𝐵 respectively.
Our hypothesis implies that 𝑚 = max{ |𝑎𝑘|

𝑎𝑛
} ≤ 𝐵 and therefore 𝑟1 ≤ 𝑟∗

1 and 𝑟2 ≤ 𝑟∗
2

respectively. So it is sufficient to show that 𝑏 > max{ 𝑟∗
1√
2 , 𝑟∗

2} + 1
2 . We have that 𝑟∗

1√
2 is

root of ℎ(𝑥) = 2𝑥2 −
√

2𝑥 − 𝐵, but ℎ(𝑏 − 1
2) = 1

2(2𝑏 − 1)(2𝑏 − 1 −
√

2) − 𝐵 > 0
by the definition of 𝐵. Hence we get 𝑏 − 1

2 > 𝑟∗
1√
2 . Also if we set 𝑔(𝑥) = 𝑥3 − 𝑥2 − 𝐵

then 𝑔(𝑏 − 1
2) = (𝑏 − 1

2)2(𝑏 − 3
2) − 𝐵 > 0 and therefore 𝑏 − 1

2 > 𝑟∗
2. So finally we get

𝑏 − 1
2 > max{ 𝑟1√

2 , 𝑟2}.

In our case we have that 𝑓(𝑥) =
𝑑

∑
𝑘=0

𝛼𝑘𝑥𝑘 where 𝛼𝑑 = 1 , 0 ≤ 𝛼𝑘 < 𝑏 for

𝑘 = 0, … , 𝑑 − 1 and 𝑓(𝑚) = 𝑛 , 𝑚 ≥ 3. As 𝑚 ≥ 3 and 0 ≤ 𝛼𝑘 not all equal to zero,

we get that 𝑓(𝑚 − 1) =
𝑑

∑
𝑘=0

𝛼𝑘(𝑚 − 1)𝑘 > 0. Additionally |𝛼𝑘|
𝛼𝑛

< 𝑚
1 = 𝑚. Hence if

we show that 𝑚 ≤ (2𝑚−1)(2𝑚−1−
√

2)
2 − 1 the conditions of the above proposition will be

satisfied. Indeed, the desired inequality is equivalent to 4𝑚2−(6+2
√

2)𝑚+
√

2−1 ≥ 0
and the solutions of the quadratic equation 4𝑥2 − (6 + 2

√
2)𝑥 +

√
2 − 1 = 0 are

𝑥1 = 3 +
√

2 − √15 + 2
√

2
4 ≈ 0.004 and

𝑥2 = 3 +
√

2 + √15 + 2
√

2
4 ≈ 2.15. Hence as 𝑚 ≥ 3 the desired inequality holds and

therefore Proposition 2.2.3 as well. Then Proposition 2.2.3 implies Proposition 2.2.2 and
Proposition 2.2.2 combined with the fact 𝑓(𝑚 − 1) ≠ 0 implies Proposition 2.2.1. So,
finally we get that a non-trivial factorization of the polynomial induced by the base-𝑚
algorithm implies a non-trivial factorization of 𝑛.

We are now going to prove two lemmas concerning the polynomial 𝑓(𝑥) which we
are going to use later. At this point we are going to make the assumption that 𝑛 > 2𝑑2

which is realistic as in practice when we use the GNFS in order to factor a number 𝑛 it
will be greater than 10100 whereas 𝑑 will be about 5.
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Lemma 2.2.4. Let 𝑓(𝑥) = 𝑐𝑑𝑥𝑑 + 𝑐𝑑−1𝑥𝑑−1 + … + 𝑐1𝑥 + 𝑐0 be the polynomial induced
by the base−𝑚 algorithm. Then 𝑐𝑑 = 1 and 𝑐𝑑−1 ≤ 𝑑.

Proof.
If 𝑖 = 0 then (𝑑𝑖 ) = 1 ≤ 2𝑑 − 2
If 𝑖 = 𝑑 then (𝑑𝑖 ) = 1 ≤ 2𝑑 − 2
If 0 < 𝑖 < 𝑑 then (𝑑𝑖 ) ≤

𝑑−1
∑
𝑗=1

(𝑑𝑗 ) = 2𝑑 − 2 ≤ 𝑛1/𝑑 − 2 ≤ [𝑛1/𝑑] + 1 − 2 = 𝑚 − 1

We have that 𝑚𝑑 ≤ 𝑛 ≤ (𝑚 + 1)𝑑 so 𝑚𝑑 ≤ 𝑐𝑑𝑚𝑑 +
𝑑−1
∑
𝑖=0

𝑐𝑖𝑚𝑖 < 𝑚𝑑 +
𝑑−1
∑
𝑖=0

(𝑑𝑖 )𝑚𝑖 ⇒

0 ≤ (𝑐𝑑 − 1)𝑚𝑑 +
𝑑−1
∑
𝑖=0

𝑐𝑖𝑚𝑖 <
𝑑−1
∑
𝑖=0

(𝑑𝑖 )𝑚𝑖 Hence,

(𝑐𝑑 − 1)𝑚𝑑 <
𝑑−1
∑
𝑖=0

(𝑑𝑖 )𝑚𝑖 ≤ (𝑚 − 1)
𝑑−1
∑
𝑖=0

𝑚𝑖 = (𝑚 − 1)𝑚𝑑 − 1
𝑚 − 1 = 𝑚𝑑 − 1 < 𝑚𝑑

so (𝑐𝑑 − 1)𝑚𝑑 < 𝑚𝑑 ⇒ 𝑐𝑑 < 2 which implies that 𝑐𝑑 = 0 or 𝑐𝑑 = 1. If 𝑐𝑑 = 0
then 𝑚𝑑 ≤

𝑑−1
∑
𝑖=0

𝑐𝑖𝑚𝑖 ≤ (𝑚 − 1)
𝑑−1
∑
𝑖=0

𝑚𝑖 = (𝑚 − 1)𝑚𝑑 − 1
𝑚 − 1 = 𝑚𝑑 − 1 contradiction.

Therefore 𝑐𝑑 = 1.
As 𝑐𝑑 = 1 we have that 0 ≤

𝑑−1
∑
𝑖=0

𝑐𝑖𝑚𝑖 <
𝑑−1
∑
𝑖=0

(𝑑𝑖 )𝑚𝑖 ⇒ 𝑐𝑑−1𝑚𝑑−1 +
𝑑−2
∑
𝑖=0

𝑐𝑖𝑚𝑖 <

𝑑𝑚𝑑−1 +
𝑑−2
∑
𝑖=0

(𝑑𝑖 )𝑚𝑖 ⇒ (𝑐𝑑−1 − 𝑑)𝑚𝑑−1 <
𝑑−2
∑
𝑖=0

(𝑑𝑖 )𝑚𝑖 ≤ (𝑚 − 1)
𝑑−2
∑
𝑖=0

𝑚𝑖 =

(𝑚 − 1)𝑚𝑑−1 − 1
𝑚 − 1 = 𝑚𝑑−1 − 1 < 𝑚𝑑−1 ⇒ 𝑐𝑑−1 − 𝑑 < 1 ⇒ 𝑐𝑑−1 − 𝑑 ≤ 0 ⇒

𝑐𝑑−1 ≤ 𝑑

Lemma 2.2.5. Let Δ(𝑓) be the discriminant of the polynomial 𝑓(𝑥) then Δ(𝑓) <
𝑑2𝑑𝑛2− 3

𝑑 .

Proof. For the discriminant of 𝑓(𝑥)we have thatΔ(𝑓) = (−1)𝑑(𝑑−1)
2 1𝑐𝑑

𝑅𝑒𝑠(𝑓, 𝑓 ′). Also
𝑅𝑒𝑠(𝑓, 𝑓 ′) = 𝑑𝑒𝑡(𝐴),

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑐𝑑 𝑐𝑑−1 … 𝑐0 0 … 0
0 𝑐𝑑 … 𝑐1 𝑐0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 𝑐𝑑 𝑐𝑑−1 … 𝑐0

𝑑𝑐𝑑 (𝑑 − 1)𝑑𝑑−1 … 𝑐1 0 … 0
0 𝑑𝑐𝑑 … 𝑐2 𝑐1 … 𝑐0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 𝑑𝑐𝑑 (𝑑 − 1)𝑐𝑑−1 … 𝑐0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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where 𝐴 is a (2𝑑 − 1) × (2𝑑 − 1) matrix. Next we try to correlate matrix 𝐴 with one
which will have elements of absolute value at most 1. In order to achieve that we do the
following.
1) We divide the last 𝑑 rows by 𝑑.
2) We divide the last 2𝑑 − 3 columns by 𝑚.
3) We subtract 𝑐𝑑−1 times the first column from the second column.
After these three steps the elements of the resulting matrix 𝐴′ will have absolute value
at most 1. Therefore the first 𝑑 − 1 rows vectors will have length at most

√
𝑑 + 1 and

the last 𝑑 row vectors at most
√

𝑑. Let 𝑣𝑖 be the row vectors of the matrix 𝐴′, it holds

that 𝑑𝑒𝑡(𝐴′) ≤
2𝑑−1
∏
𝑖=1

||𝑣𝑖||. Hence we get that 𝑑𝑒𝑡(𝐴′) ≤ (𝑑 + 1)𝑑−1
2 𝑑 𝑑

2 . Combining

that with the fact that 𝑐𝑑 = 1 as we showed in the previous Lemma we conclude that
|Δ(𝑓)| ≤ 𝑑𝑑𝑚2𝑑−3𝑑𝑒𝑡(𝐴′) ≤ 𝑑𝑑𝑛2− 3

𝑑 𝑑𝑒𝑡(𝐴′) ⇒ |Δ(𝑓)| ≤ 𝑑𝑑𝑛2− 3
𝑑 (𝑑 + 1)𝑑−1

2 𝑑 𝑑
2 =

𝑑 3𝑑
2 𝑛2− 3

𝑑 (𝑑 + 1)𝑑−1
2 < 𝑑2𝑑𝑛2− 3

𝑑 . The last inequality follows by the fact that (𝑑 + 1)𝑑−1 ≤
𝑑𝑑. Indeed, in order to prove that it suffices to prove that (𝑑 − 1) log(𝑑 + 1) ≤ 𝑑 log 𝑑.
If we consider 𝑓(𝑥) = (𝑥 − 1) log(𝑥 + 1) − 𝑥 log 𝑥 for 𝑥 ≥ 1 and take its derivative
𝑓 ′(𝑥) = log(𝑥+1𝑥 ) − 2

𝑥+1 we can show that 𝑓 ′(𝑥) ≤ 0 for 𝑥 ≥ 1. The last inequality
follows by the fact that log 𝑥 ≤ 𝑥 − 1 for 𝑥 ≥ 1. Therefore as 𝑓 ′(𝑥) ≤ 0 for 𝑥 ≥ 2 we
have that 𝑓(𝑥) ≤ 𝑓(2) < 𝑓(1) = 0 which implies the desired result.

2.3 Sieving

During the sieving step our goal is like in the case of SNFS to find a sufficient number
of pairs (𝑎, 𝑏) such that 𝑎 + 𝑏𝑚 and 𝑎 + 𝑏𝜃 are smooth. However for the algebraic part
we are going to work with ideals of ℤ[𝜃] instead of algebraic integers. Like in the case
of 𝑅𝐾 we have that,

Proposition 2.3.1. Let 𝑓(𝑥) be a monic, irreducible polynomial with integer coefficients
and 𝜃 ∈ ℂ a root of 𝑓(𝑥). The set of pairs (𝑟, 𝑝) where 𝑝 is a prime integer and 𝑟 is an
integer such that 𝑓(𝑟) ≡ 0 (mod 𝑝) is in bijective correspondence with the set of all
first degree prime ideals of ℤ[𝜃].

Proof. Let 𝔭 be a first degree prime ideal of ℤ[𝜃]. Then [ℤ[𝜃] ∶ 𝔭] = 𝑝 for some prime 𝑝
and hence ℤ[𝜃]/𝔭 ≅ ℤ/𝑝ℤ. There is a canonical ring epimorphism 𝜙 ∶ ℤ[𝜃] → ℤ[𝜃]/𝔭
such that ker 𝜙 = 𝔭. Sinceℤ[𝜃]/𝔭 it follows that𝜙 can also be thought as an epimorphism
of rings 𝜙 ∶ ℤ[𝜃] → ℤ/𝑝ℤ with ker 𝜙 = 𝔭. Hence the elements in 𝔭 map to integers
which are divisible by 𝑝 and any such integer is the image of an element in 𝔭.
Let 𝑟 = 𝜙(𝜃) ∈ ℤ/𝑝ℤ. If 𝑓(𝑥) = 𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + … + 𝑎1𝑥 + 𝑎0 then 𝜙(𝑓(𝜃)) ≡ 0
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(mod 𝑝) as 𝑓(𝜃) = 0 and hence

0 ≡ 𝜙(𝑓(𝜃))
≡ 𝜙(𝜃𝑑 + 𝑎𝑑−1𝜃𝑑−1 + … + 𝑎1𝜃 + 𝑎0)
≡ 𝜙(𝜃)𝑑 + 𝑎𝑑−1𝜙(𝜃)𝑑−1 + … + 𝑎1𝜙(𝜃) + 𝑎0
≡ 𝑟𝑑 + 𝑎𝑑−1𝑟𝑑−1 + … + 𝑎1𝑟 + 𝑎0
≡ 𝑓(𝑟) (mod 𝑝)

Therefore 𝑟 is a root of 𝑓(𝑥) (mod 𝑝) and the ideal 𝔭 determines a unique pair (𝑟, 𝑝).
Conversely, let p be a prime integer and 𝑟 ∈ ℤ/𝑝ℤ with 𝑓(𝑟) ≡ 0 (mod 𝑝). Then there
is a natural ring epimorphism that maps polynomials in 𝜃 to polynomials in 𝑟. In par-
ticular

𝑑−1
∑
𝑖=0

𝑎𝑖𝜃𝑖 ↦
𝑑−1
∑
𝑖=0

𝑎𝑖𝑟𝑖 (mod 𝑝). Let 𝔭 = ker 𝜙 so that 𝔭 is an ideal of ℤ[𝜃]. Since
𝜙 is onto and 𝔭 = ker 𝜙 it follows that ℤ[𝜃]/𝔭 ≅ ℤ/𝑝ℤ and hence [ℤ[𝜃] ∶ 𝔭] = 𝑝 and 𝔭
is therefore a first degree prime ideal of ℤ[𝜃]. Thus the pair (𝑟, 𝑝) determines a unique
first degree prime ideal 𝔭 which in turn determines the unique pair (𝑟, 𝑝) consistent with
the first part of the proof.

The above result actually enables us to find the sets G and Q of the factor base as
we have already seen in the previous chapter how to determine the pairs (𝑟, 𝑝).

In order to examine if 𝑎 + 𝑏𝜃 is smooth we are going to use its norm once again.

𝑁(𝑎 + 𝑏𝜃) = 𝜎1(𝑎 + 𝑏𝜃)𝜎2(𝑎 + 𝑏𝜃) … 𝜎𝑑(𝑎 + 𝑏𝜃)
= (𝑎 + 𝑏𝜃(1))(𝑎 + 𝑏𝜃(2)) … (𝑎 + 𝑏𝜃(𝑑))
= 𝑏𝑑(𝑎

𝑏 + 𝜃(1))(𝑎
𝑏 + 𝜃(2)) … (𝑎

𝑏 + 𝜃(𝑑))

= (−𝑏)𝑑(−𝑎
𝑏 − 𝜃(1))(−𝑎

𝑏 − 𝜃(2)) … (−𝑎
𝑏 − 𝜃(𝑑))

= (−𝑏)𝑑𝑓(−𝑎
𝑏 )

In the case of 𝑅𝐾 we had that if < 𝑎 + 𝑏𝜃 > = 𝔭1
𝑒1𝔭2

𝑒2 … 𝔭𝑘
𝑒𝑘

|𝑁(𝑎 + 𝑏𝜃)| = 𝑁(< 𝑎 + 𝑏𝜃 >)
= 𝑁(𝔭1

𝑒1𝔭2
𝑒2 … 𝔭𝑘

𝑒𝑘)
= 𝑁(𝔭1)𝑒1𝑁(𝔭2)𝑒2 … 𝑁(𝔭𝑘

𝑒𝑘)
= (𝑝1

𝑓1)𝑒1(𝑝2
𝑓2)𝑒2 … (𝑝𝑘

𝑓𝑘)𝑒𝑘

But ℤ[𝜃] may not be a Dedekind domain (𝑅𝐾 ≠ ℤ[𝜃]) so we will have to generalize the
concept of factorization in ideals inℤ[𝜃]. We will show that the concept of the exponents
𝑒𝑖 can be generalized for first degree prime ideals of ℤ[𝜃]. In order to do that we initially
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observe that the exponents 𝑒𝑖 can be seen as group homomorphisms 𝑒𝔭𝑖
∶ ℚ(𝜃)∗ → ℤ.

These homomorphisms possess the following properties.
i) 𝑒𝔭𝑖

(𝛽) ≥ 0 ∀𝛽 ∈ ℤ[𝜃]∗
ii) 𝑒𝔭𝑖

(𝛽) > 0 if and only if 𝔭𝑖 ∣< 𝛽 >.
iii) 𝑒𝔭𝑖

(𝛽) = 0 for all but finitely many 𝔭𝑖 of 𝑅𝐾 and |𝑁(𝛽)| = ∏ 𝑁(𝔭𝑖)𝑒𝔭𝑖

The following result holds.

Proposition 2.3.2. For every prime ideal 𝔭 of ℤ[𝜃] there is a group homomorphism
𝑙𝔭 ∶ 𝐾∗ → ℤ such that:
i) 𝑙𝔭(𝛽) ≥ 0 ∀𝛽 ∈ ℤ[𝜃]∗
ii) If 𝛽 ∈ ℤ[𝜃]∗ then 𝑙𝔭(𝛽) > 0 if and only if 𝛽 ∈ 𝔭.
iii) If 𝛽 ∈ 𝐾∗ then 𝑙𝔭(𝛽) = 0 for all but finitely many 𝔭 and |𝑁(𝛽)| = ∏ 𝑁(𝔭)𝑙𝔭(𝛽)

where 𝔭 ranges over the set of all prime ideals of ℤ[𝜃].
We are going to prove the above proposition more generally for an order 𝐴 of 𝑅𝐾

and then for 𝐴 = ℤ[𝜃] we will get the above result. In order to do that we need some
concepts of modules.

Definition 2.3.3. Let 𝑅 be a commutative ring. An 𝑅−module is an (additive) abelian
group 𝑀 equipped with a scalar multiplication 𝑅 × 𝑀 → 𝑀 denoted by (𝑟, 𝑚) ↦ 𝑟𝑚
such that the following axioms hold for all 𝑚, 𝑚′ ∈ 𝑀 and all 𝑟, 𝑟′ ∈ 𝑅.
i) 𝑟(𝑚 + 𝑚′) = 𝑟𝑚 + 𝑟𝑚′

ii) (𝑟 + 𝑟′)𝑚 = 𝑟𝑚 + 𝑟′𝑚
iii)(𝑟𝑟′)𝑚 = 𝑟(𝑟′𝑚)
iv) 1𝑚 = 𝑚
Definition 2.3.4. If 𝑀 is an 𝑅-module, then a submodule 𝑁 of 𝑀 , denoted by 𝑁 ⊆ 𝑀 ,
is an additive subgroup 𝑁 of 𝑀 closed under scalar multiplication: 𝑟𝑛 ∈ 𝑁 whenever
𝑛 ∈ 𝑁 and 𝑟 ∈ 𝑅.

Definition 2.3.5. An 𝑅−module 𝑀 is called simple if it does not have any proper sub-
modules apart from 0.
Definition 2.3.6. An 𝑅−module 𝑀 is said to have finite length if there is a chain

𝑀 = 𝑀𝑛 ⊃ … ⊃ 𝑀1 ⊃ 𝑀0 = 0
of submodules of 𝑀 such that 𝑀𝑖/𝑀𝑖−1 is a simple 𝑅−module for 𝑖 = 1, … , 𝑛
Theorem 2.3.7 (Jordan-Holder). Let 𝑀 be an 𝑅−module of finite length and let

𝑀 = 𝑀𝑛 ⊃ … ⊃ 𝑀1 ⊃ 𝑀0 = 0 and

𝑀 = 𝑁𝑚 ⊃ … ⊃ 𝑁1 ⊃ 𝑁0 = 0
be like above. Then 𝑛 = 𝑚 and 𝑀𝑖/𝑀𝑖−1 ≅ 𝑁𝑖/𝑁𝑖−1 for 𝑖 = 1, … , 𝑛.
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Proposition 2.3.8. Let 𝐾 be a number field and 𝐴 an order of 𝐾. For every prime ideal
𝔭 of 𝐴 there is a group homomorphism 𝑙𝔭 ∶ 𝐾∗ → ℤ with the following properties. i)
𝑙𝔭(𝑥) ≥ 0 ∀ 𝑥 ∈ 𝐴∗

ii) If 𝑥 ∈ 𝐴∗ then 𝑙𝔭(𝑥) > 0 if and only if 𝑥 ∈ 𝔭.
iii) Let 𝑥 ∈ 𝐾∗ then 𝑙𝔭(𝑥) = 0 for all but finitely many 𝔭 and |𝑁(𝑥)| = ∏ 𝑁(𝔭)𝑙𝔭(𝑥)

where 𝔭 ranges over the set of all prime ideals of 𝐴.

Proof. Initially we construct the functions 𝑙𝔭. Let 𝔭 be a prime ideal of 𝐴 and 𝑥 ∈
𝐴 , 𝑥 ≠ 0. We have that #𝐴/𝑥𝐴 = |𝑁(𝑥)| so there is a finite chain of ideals

𝐴 = 𝑃0 ⊃ 𝑃1 ⊃ … 𝑃𝑡−1 ⊃ 𝑃𝑡 = 𝑥𝐴

with 𝑃𝑖 ≠ 𝑃𝑖+1 for 𝑖 = 0, … , 𝑡 − 1 and there is no 𝑃 ′ such that 𝑃𝑖 ⊃ 𝑃 ′ ⊃ 𝑃𝑖+1.
We define 𝑙𝔭 ∶= #{𝑖 ∈ {1, 2, … , 𝑡}|𝑃𝑖−1/𝑃𝑖 ≅ 𝐴/𝔭} The map 𝑙𝔭 is well defined as it
does not depend on the choice of the above chain. This follows by the Jordan-Holder
theorem mentioned above for 𝐴/𝑥𝐴. In order to apply the theorem it suffices to show
that 𝑃𝑖−1/𝑃𝑖 is a simple module. If it was not a simple module then there would exist
a 𝐵/𝑃𝑖 such that 𝑃𝑖/𝑃𝑖 ⊂ 𝐵/𝑃𝑖 ⊂ 𝑃𝑖−1/𝑃𝑖 which implies that 𝑃𝑖 ⊂ 𝐵 ⊂ 𝑃𝑖−1
contradiction. Hence 𝑃𝑖−1/𝑃𝑖 is a simple module. Let 𝑥, 𝑦 ∈ 𝐴 , 𝑥, 𝑦 ≠ 0 and 𝐴 =
𝑃0 ⊃ 𝑃1 ⊃ … 𝑃𝑡−1 ⊃ 𝑃𝑡 = 𝑥𝐴 and 𝐴 = 𝑄0 ⊃ 𝑄1 ⊃ … 𝑄𝑠−1 ⊃ 𝑄𝑠 = 𝑦𝐴. This two
chains can be combined in the following one,

𝐴 = 𝑃0 ⊃ 𝑃1 ⊃ … 𝑃𝑡−1 ⊃ 𝑃𝑡 = 𝑥𝐴 = 𝑥𝑄0 ⊃ 𝑥𝑄1 ⊃ … 𝑥𝑄𝑠−1 ⊃ 𝑥𝑄𝑠 = 𝑥𝑦𝐴

and therefore for 𝑥𝑦 we have that

𝑙𝔭(𝑥𝑦) = #{𝑖 ∈ {1, 2, … , 𝑡}|𝑃𝑖−1/𝑃𝑖 ≅ 𝐴/𝔭} + #{𝑖 ∈ {1, 2, … , 𝑠}|𝑥𝑄𝑖−1/𝑥𝑄𝑖 ≅ 𝐴/𝔭}
= 𝑙𝔭(𝑥) + 𝑙𝔭(𝑦)

So we have shown that 𝑙𝔭 is a group homomorphism from 𝐴∗ to ℤ. We know that the
fractions field of 𝐴 is 𝐾 therefore we can extend 𝑙𝔭 in 𝐾∗ as follows

𝑙𝔭(𝑥
𝑦 ) = 𝑙𝔭(𝑥) − 𝑙𝔭(𝑦)

Now we are left to prove that for 𝑙𝔭 the properties (i), (ii) and (iii) hold.
By the definition of 𝑙𝔭 we have that 𝑙𝔭(𝑥) ≥ 0 ∀ 𝑥 ∈ 𝐴∗ so (i) holds.
For (ii): Let 𝑥 ∈ 𝔭, we then take 𝑃1 = 𝔭 and hence 𝑙𝔭(𝑥) ≥ 0.
Conversely, let 𝑙𝔭(𝑥) ≥ 0. If 𝑥 ∉ 𝔭 then as 𝔭 is maximal 𝑥𝐴 + 𝔭 = 𝐴 so there are
𝑦 ∈ 𝐴, 𝑧 ∈ 𝔭 such that 𝑥𝑦 + 𝑧 = 1 ⇒ 𝑧 − 1 = 𝑥𝑦 ⇒ 𝑧 ∈ 1 + 𝑥𝐴 ⇒ 𝑧 ≡ 1
(mod 𝑥𝐴). Therefore multiplication by 𝑧 induces the identity map 𝐴/𝑥𝐴 → 𝐴/𝑥𝐴.
But 𝐴/𝑥𝐴 ≅

𝑡
∏
𝑖=1

𝑃𝑖−1/𝑃𝑖 so multiplication by 𝑧 induces the identity map in all of the
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𝑃𝑖−1/𝑃𝑖. As 𝑙𝔭(𝑥) ≥ 0 there is a 𝑗 ∈ {1, … , 𝑡} such that 𝑃𝑗−1/𝑃𝑗 ≅ 𝐴/𝔭. Therefore
multiplication by 𝑧 induces the identity map in 𝐴/𝔭, contradiction. Hence, 𝑥 ∈ 𝔭.
For (iii): Let 𝑥 ∈ 𝐾∗ then 𝑥 = 𝑦

𝑧 with 𝑦, 𝑧 ∈ 𝐴. It suffices to prove (iii) for𝐴∗ as 𝑙𝔭(𝑥) =

𝑙𝔭(𝑦) − 𝑙𝔭(𝑧) and then |𝑁(𝑥)| = ∣𝑁(𝑦)
𝑁(𝑧) ∣ =

∏
𝔭

𝑁(𝔭)𝑙𝔭(𝑦)

∏
𝔭

𝑁(𝔭)𝑙𝔭(𝑧) = ∏ 𝑁(𝔭)𝑙𝔭(𝑦)−𝑙𝔭(𝑧) =

∏ 𝑁(𝔭)𝑙𝔭(𝑥).
Let 𝑥 ∈ 𝐴∗ with 𝐴 = 𝑃0 ⊃ … ⊃ 𝑝𝑡−1 ⊃ 𝑃𝑡 = 𝑥𝐴. But |𝑁(𝑥)| = #𝐴/𝑥𝐴 and

𝐴/𝑥𝐴 ≅
𝑡

∏
𝑖=1

𝑃𝑖−1/𝑃𝑖 ⇒ |𝑁(𝑥)| =
𝑡

∏
𝑖=1

#𝑃𝑖−1/𝑃𝑖. Therefore in order to show (iii) it

suffices to prove that for each 𝑖 = 1, … , 𝑡 there is a unique prime ideal 𝔭 of 𝐴 such that
𝑃𝑖−1/𝑃𝑖 ≅ 𝐴/𝔭. Let 𝑦 ∈ 𝑃𝑖−1 and 𝑦 ∉ 𝑃𝑖. As there is no ideal properly between 𝑃𝑖−1
and 𝑃𝑖 we get that 𝑦𝐴 + 𝑃𝑖 = 𝑃𝑖−1. Hence multiplication by 𝑦 induces an epimorphism
𝜙 ∶ 𝐴 → 𝑃𝑖−1/𝑃𝑖 such that 𝑎 ↦ 𝑦𝑎+𝑃𝑖. Indeed this homomorphism is onto as we want
∀ 𝑏 ∈ 𝑃𝑖−1 to ∃𝑎 ∈ 𝐴 such that 𝑎𝑦 ≡ 𝑏 (mod 𝑃𝑖) which is true as 𝑦𝐴 + 𝑃𝑖 = 𝑃𝑖−1.
Therefore there is an ideal 𝔭(= ker 𝜙) such that 𝐴/𝔭 ≅ 𝑃𝑖−1/𝑃𝑖. But 𝑃𝑖−1/𝑃𝑖 has
no proper submodules and hence 𝔭 is maximal and so prime as well. Finally 𝔭 is the
annihilator of 𝑃𝑖−1/𝑃𝑖 and therefore uniquely determined.

Corollary 2.3.9. Let 𝛽 ∈ ℤ[𝜃] with 𝛽 = 𝑎 + 𝑏𝜃 , gcd(𝑎, 𝑏) = 1 and 𝔭 a prime ideal of
ℤ[𝜃]. Then for the homomorphism 𝑙𝔭 it holds that 𝑙𝔭(𝛽) = 0 if 𝔭 is not of degree 1 and
if 𝔭 is of degree 1 that corresponds to the pair (𝑟, 𝑝) then

𝑙𝔭(𝛽) = {𝑜𝑟𝑑𝑝𝑁(𝛽) if 𝑎 ≡ −𝑏𝑟 (mod 𝑝)
0 otherwise

Proof. Let 𝔭 be a prime ideal of ℤ[𝜃] with 𝑙𝔭(𝑎 + 𝑏𝜃) > 0 then 𝔭 is the kernel of a
canonical epimorphism 𝜙 ∶ ℤ[𝜃] → ℤ[𝜃]/𝔭. But ℤ[𝜃]/𝔭 ≅ 𝔽𝑞 , 𝑞 = 𝑝𝑒. We will show
that 𝐼𝑚𝜙 = 𝔽𝑝 and hence ℤ[𝜃]/ ker 𝜙 ≅ 𝔽𝑝. But ker 𝜙 = 𝔭 and so ℤ[𝜃]/𝔭 ≅ 𝔽𝑝 which
implies that 𝔭 is of degree 1. The fact that 𝑙𝔭(𝑎 + 𝑏𝜃) > 0 implies that 𝑎 + 𝑏𝜃 ∈ 𝔭 by the
previous proposition. Therefore 𝑎 + 𝑏𝜃 ∈ ker 𝜙 ⇒ 𝜙(𝑎 + 𝑏𝜃) ≡ 0 (mod 𝑝)
⇒ 𝑎 + 𝑏𝜙(𝜃) ≡ 0 (mod 𝑝). But 𝑝 ∤ 𝑏 as if 𝑝 ∣ 𝑏 then 𝑝 ∣ 𝑎 ⇒ 𝑝 ∣ gcd(𝑎, 𝑏) = 1
contradiction. So finally, 𝜙(𝜃) ≡ −𝑎𝑏−1 (mod 𝑝) ⇒ 𝜙(ℤ[𝜃]) ⊆ 𝔽𝑝 and we also have
that 𝔽𝑝 ⊆ 𝜙(ℤ[𝜃]) hence 𝜙(ℤ[𝜃]) = 𝔽𝑝.
In order to prove the second part we will use (iii) of the previous proposition, which
states that |𝑁(𝛽)| = ∏

𝔭
𝑁(𝔭)𝑙𝔭(𝛽). However, by the first part of the corollary we have

that |𝑁(𝛽)| = ∏
𝔭,𝑓(𝔭/𝑝ℤ)=1

𝑁(𝔭)𝑙𝔭(𝛽) where the 𝔭 that appear in the product on the right

with 𝑙𝔭(𝛽) > 0 correspond to pairs (𝑟, 𝑝). For these ideals we get that 𝑁(𝔭) ∣ 𝑁(𝛽) ⇒
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𝑝 ∣ (−𝑏)𝑑𝑓(−𝑎
𝑏 ) so as 𝑝 ∤ 𝑏 this implies that 𝑝 ∣ 𝑓(−𝑎

𝑏 ) ⇒
−𝑎𝑏−1 ≡ 𝑟 (mod 𝑝) ⇒ 𝑎 ≡ −𝑏𝑟 (mod 𝑝). Lets assume that there are two ideals
𝔭1, 𝔭2 of degree 1 such that 𝑁(𝔭1) = 𝑁(𝔭2) = 𝑝 corresponding to the pairs (𝑟1, 𝑝) and
(𝑟2, 𝑝) which appear in the product. Then we would have that 𝑎 ≡ −𝑏𝑟1 (mod 𝑝) and
𝑎 ≡ −𝑏𝑟2 (mod 𝑝) which imply that 𝑟1 ≡ 𝑟2 (mod 𝑝) as 𝑝 ∤ 𝑏. The pairs (𝑟, 𝑝) are in
bijective correspondence with the ideals of degree 1 and therefore 𝔭1 = 𝔭2. So finally
for each prime 𝑝 that appear in the factorization of𝑁(𝛽) there is exactly one prime ideal
𝔭 with 𝑁(𝔭) = 𝑝 and hence

𝑙𝔭(𝛽) = {𝑜𝑟𝑑𝑝𝑁(𝛽) if 𝑎 ≡ −𝑏𝑟 (mod 𝑝)
0 otherwise

The above corollary indicates for which ideals we will have 𝑙𝔭(𝑎 + 𝑏𝜃) > 0 and
therefore justifies our choice for the set G. It also gives us a condition (as in the case of
SNFS) of when 𝑙𝔭(𝑎 + 𝑏𝜃) > 0 and actually a way to compute that value.
As in the case of SNFS for each pair (𝑎, 𝑏) which we keep as a relation the exponents of
the primes occurring in the factorization of 𝑎 + 𝑏𝑚 and the values 𝑙𝔭(𝑎 + 𝑏𝜃) are kept
for the linear algebra step. However as we work with ideals of ℤ[𝜃] instead of algebraic
integers these will cause some extra obstructions in our way of constructing a square of
an element in ℤ[𝜃].
Proposition 2.3.10. Let 𝑆 be a finite set of pairs (𝑎, 𝑏) such that gcd(𝑎, 𝑏) = 1 and also

∏
(𝑎,𝑏)∈𝑆

(𝑎+𝑏𝜃) = 𝛾2 with 𝛾 ∈ ℚ(𝜃) then ∑
(𝑎,𝑏)∈𝑆

𝑙𝔭(𝑎+𝑏𝜃) ≡ 0 (mod 2) for every prime

ideal 𝔭 of ℤ[𝜃].
Proof. Let 𝔭 be a prime ideal of ℤ[𝜃]. As 𝑙𝔭 is a group homomorphism then

∑
(𝑎,𝑏)∈𝑆

𝑙𝔭(𝑎 + 𝑏𝜃) = 𝑙𝔭( ∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝜃))

= 𝑙𝔭(𝛾2)
= 2𝑙𝔭(𝛾) ≡ 0 (mod 2)

The above result gives a necessary condition for ∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝜃) to be a square of an

element in𝐾 = ℚ(𝜃). However this condition is not sufficient. In our way to construct a
square in ℤ[𝜃] given only that ∑

(𝑎,𝑏)∈𝑆
𝑙𝔭(𝑎+𝑏𝜃) ≡ 0 (mod 2) we will face the following

obstructions:
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1) The ideal ( ∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝜃))𝑅𝐾 may not be a square of an ideal as we work with

prime ideals of ℤ[𝜃].
2) Even if ( ∏

(𝑎,𝑏)∈𝑆
(𝑎 + 𝑏𝜃))𝑅𝐾 = 𝐼2 for some ideal 𝐼 of 𝑅𝐾 the ideal 𝐼 may not be

principal.

3) Even if ( ∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝜃))𝑅𝐾 = < 𝛾 >2 with 𝛾 ∈ 𝑅𝐾 it may not hold that

∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝜃) = 𝛾2.

4) Even if ∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝜃) = 𝛾2 with 𝛾 ∈ 𝑅𝐾 it may not hold that 𝛾 ∈ ℤ[𝜃].

The easiest of the four obstructions is the last one. Assume that we have found a set𝑆
such that ∏

(𝑎,𝑏)∈𝑆
(𝑎 + 𝑏𝜃) = 𝛾2 with 𝛾 ∈ 𝐾. Then 𝛾 ∈ 𝑅𝐾. Indeed, as ∏

(𝑎,𝑏)∈𝑆
(𝑎 + 𝑏𝜃) =

𝛾2 then 𝛾2 ∈ ℤ[𝜃] ⊆ 𝑅𝐾. This implies that there is a monic 𝑓(𝑥) ∈ ℤ[𝑥] such that
𝑓(𝛾2) = 0. If we set 𝑔(𝑥) = 𝑓(𝑥2) then 𝑔(𝑥) ∈ ℤ[𝑥] and is monic as well and as
𝑔(𝛾) = 𝑓(𝛾2) = 0 we get that 𝛾 ∈ ℤ̃. But we also have that 𝛾 ∈ 𝐾 so 𝛾 ∈ 𝑅𝐾.
Moreover 𝛾𝑓 ′(𝜃) ∈ ℤ[𝜃] by [20, prop. 3-7-14] so 𝑓 ′(𝜃)2 ∏

(𝑎,𝑏)∈𝑆
(𝑎 + 𝑏𝜃) = 𝛿2 with

𝛿 ∈ ℤ[𝜃]. Therefore by doing this modification in the end we showed that it suffices to
find a set 𝑆 of pairs (𝑎, 𝑏) such that ∏

(𝑎,𝑏)∈𝑆
(𝑎 + 𝑏𝜃) = 𝛾2 with 𝛾 ∈ 𝐾.

Proposition 2.3.11. Let 𝑆 be a finite set of pairs (𝑎, 𝑏) such that ∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝜃) = 𝛾2

with 𝛾 ∈ 𝐾. Let also 𝔮 be a first degree prime ideal which corresponds to the pair (𝑠, 𝑞)
and such that 𝑎+𝑏𝑠 ≢ 0 (mod 𝑞) ∀(𝑎, 𝑏) ∈ 𝑆 and 𝑓 ′(𝑠) ≢ 0 (mod 𝑞). It then holds
that ∏

(𝑎,𝑏)∈𝑆
𝜒𝔮(𝑎 + 𝑏𝜃) = 1

Proof. Initially we define the map 𝜒𝔮. Let 𝜙 ∶ ℤ[𝜃] → ℤ/𝑞ℤ such that
𝑑−1
∑
𝑖=0

𝑎𝑖𝜃𝑖 ↦
𝑑−1
∑
𝑖=0

𝑎𝑖𝑠𝑖 (mod 𝑞). Then 𝜙 is a ring homomorphism which is onto and ker 𝜙 = 𝔮. If we
restrict 𝜙 in ℤ[𝜃]⧹𝔮 then the restriction will be onto for (ℤ/𝑞ℤ)∗. We define

𝜒𝔮 ∶ ℤ[𝜃]⧹𝔮 → {±1}

𝛾 ↦ (𝜙(𝛾)
𝑞 )

where (𝜙(𝛾)
𝑞 ) denotes the Legendre symbol. As we have already seen
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𝑓 ′(𝜃)2 ∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝜃) = 𝛽2 with 𝛽 = 𝑓 ′(𝜃)𝛾 ∈ ℤ[𝜃] and 𝜒𝔮(𝑎 + 𝑏𝜃) = (𝑎 + 𝑏𝑠
𝑞 ).

Additionally 𝑎 + 𝑏𝜃 ∉ 𝔮 and 𝑓 ′(𝜃)2 ∉ 𝔮 by the hypotheses of the proposition, hence
𝛽2 ∉ 𝔮 which in turn follows that 𝛽 ∉ 𝔮. Therefore 𝜒𝔮(𝛽) and 𝜒𝔮(𝛽2) are defined. We
have that 𝜒𝔮(𝛽2) = 𝜒𝔮(𝛽)2 = 1 and so

1 = 𝜒𝔮(𝑓 ′(𝜃)2 ∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝜃))

= (
𝜙(𝑓 ′(𝜃))2𝜙(∏(𝑎,𝑏)∈𝑆(𝑎 + 𝑏𝜃))

𝑞 )

= (𝜙(𝑓 ′(𝜃))
𝑞 )

2
(

∏(𝑎,𝑏)∈𝑆 𝜙(𝑎 + 𝑏𝜃)
𝑞 )

= 1 ⋅ ∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝑠
𝑞 )

which gives us the desired result.

The above proposition gives us another necessary condition for ∏
(𝑎,𝑏)∈𝑆

(𝑎+𝑏𝜃) being
a square in 𝐾. The above proposition is the reason we had to add the set Q of quadratic
characters in our factor base. As we will see later if we have that ∑

(𝑎,𝑏)∈𝑆
𝑙𝔭(𝑎 + 𝑏𝜃) ≡ 0

(mod 2) and ∏
(𝑎,𝑏)∈𝑆

𝜒𝔮(𝑎 + 𝑏𝜃) = 1 for ”enough” prime ideals 𝔮 this implies that there

is a very good chance ∏
(𝑎,𝑏)∈𝑆

(𝑎+𝑏𝜃) being a square. So our next goal is to examine how
big the set Q must be.

Let 𝑉 = {𝛽 ∈ 𝐾∗ ∶ 𝑙𝔭(𝛽) ≡ 0 (mod 2) for all prime ideals 𝔭 of ℤ[𝜃]}

As 𝑙𝔭 is a group homomorphism we have that 𝑉 multiplicative subgroup of 𝐾∗. Let
𝛽 ∈ 𝐾∗2 then there is a 𝛾 ∈ 𝐾∗ such that 𝛽 = 𝛾2 and hence ∏

𝔭
𝑁(𝔭)𝑙𝔭(𝛽) = |𝑁(𝛽)| =

|𝑁(𝛾2)| = |𝑁(𝛾)|2. This implies that 𝑙𝔭(𝛽) ≡ 0 (mod 2) ∀ 𝔭 prime ideal of ℤ[𝜃] and
therefore 𝐾∗2 ⊆ 𝑉 . If in our factor base we used only the sets P and G the elements

∏
(𝑎,𝑏)∈𝑆

(𝑎 + 𝑏𝜃) induced by the linear algebra step would belong to 𝑉 . We consider the

quotient 𝑉 /𝐾∗2 as a vector space over 𝔽2. In order to see how much 𝑉 differs from
𝐾∗2 we will try to give a bound for dim𝔽2

𝑉 /𝐾∗2.
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Let 𝐴, 𝐵 be two orders of 𝐾 such that 𝐴 ⊂ 𝐵 , 𝔮 a prime ideal of 𝐵 and 𝔭 = 𝔮 ∩ 𝐴.
By 𝑓(𝔮/𝔭) we denote the degree of the extension 𝐵/𝔮⧸𝐴/𝔭. Depending on in which
order we work we will use the notation 𝑙𝔭,𝐴 or 𝑙𝔮,𝐵 instead of 𝑙𝔭.

Proposition 2.3.12. Let 𝔭 be a prime ideal of 𝐴. Then we have that

𝑙𝔭,𝐴(𝑥) = ∑
𝔮|𝔭

𝑓(𝔮/𝔭)𝑙𝔮,𝐵(𝑥) ∀ 𝑥 ∈ 𝐾∗

. By 𝔮|𝔭 we refer to the prime ideals 𝔮 of 𝐵 lying above 𝔭.

Proof. It suffices to prove the proposition for 𝑥 ∈ 𝐴 as if 𝑥 ∈ 𝐾∗ there will exist
𝑦, 𝑧 ∈ 𝐴 such that 𝑥 = 𝑦

𝑧 and 𝑙𝔭,𝐴(𝑥) = 𝑙𝔭,𝐴(𝑦) − 𝑙𝔭,𝐴(𝑧). we introduce the following
notation. If 𝑀 is an 𝐴−module of finite length then by 𝑙𝔭,𝐴(𝑀) we denote the number
of 𝑀𝑖/𝑀𝑖−1 such that 𝑀𝑖/𝑀𝑖−1 ≅ 𝐴/𝔭 where 𝑀 = 𝑀𝑛 ⊃ 𝑀𝑛−1 ⊃ … ⊃ 𝑀1 ⊃
𝑀0 = 0. Therefore using this notation gives us that 𝑙𝔭,𝐴(𝑥) = 𝑙𝔭,𝐴(𝐴/𝑥𝐴) ∀ 𝑥 ∈ 𝐴∗.
Additionally if 𝐿 ⊆ 𝑀 it holds that 𝑙𝔭,𝐴(𝑀) = 𝑙𝔭,𝐴(𝐿) + 𝑙𝔭,𝐴(𝑀/𝐿). It is true that
𝐵/𝐴 ≅ 𝑥𝐵/𝑥𝐴 so 𝑙𝔭,𝐴(𝐵/𝐴) = 𝑙𝔭,𝐴(𝑥𝐵/𝑥𝐴). Then using the previous relation
and the fact that 𝐵/𝑥𝐴⧸𝐴/𝑥𝐴 ≅ 𝐵/𝐴 we get that 𝑙𝔭,𝐴(𝐵/𝑥𝐴) = 𝑙𝔭,𝐴(𝐴/𝑥𝐴) +
𝑙𝔭,𝐴(𝐵/𝐴). So 𝑙𝔭,𝐴(𝑥) = 𝑙𝔭,𝐴(𝐴/𝑥𝐴) = 𝑙𝔭,𝐴(𝐵/𝑥𝐴) − 𝑙𝔭,𝐴(𝐵/𝐴) = 𝑙𝔭,𝐴(𝐵/𝑥𝐴) −
𝑙𝔭,𝐴(𝑥𝐵/𝑥𝐴) = 𝑙𝔭,𝐴(𝐵/𝑥𝐵). If we set 𝑀 = 𝐵/𝑥𝐵 it then suffices to prove that
𝑙𝔭,𝐴(𝑀) = ∑

𝔮|𝔭
𝑓(𝔮/𝔭)𝑙𝔮,𝐵(𝑀). Let 𝑀 = 𝑀𝑛 ⊃ 𝑀𝑛−1 ⊃ … ⊃ 𝑀1 ⊃ 𝑀0 = 0 then

we have that

𝑙𝔭,𝐴(𝑀) = 𝑙𝔭,𝐴(𝑀𝑛/𝑀𝑛−1) + 𝑙𝔭,𝐴(𝑀𝑛−1)
= 𝑙𝔭,𝐴(𝑀𝑛/𝑀𝑛−1) + 𝑙𝔭,𝐴(𝑀𝑛−1/𝑀𝑛−2) + … + 𝑙𝔭,𝐴(𝑀1/𝑀0)

All of the 𝑀𝑖/𝑀𝑖−1 are simple and therefore it suffices to prove the equality for them.
Let 𝑁 be a simple 𝐵−module then 𝑁 ≅ 𝐵/𝔮′ for some prime ideal 𝔮 of 𝐵 and

𝑙𝔮,𝐵(𝑁) = {1 if 𝔮′ = 𝔮
0 if 𝔮′ ≠ 𝔮

Let 𝔭′ = 𝔮′ ∩ 𝐴, as an 𝐴−module 𝑁 is the direct sum of 𝑓(𝔮′/𝔭′) copies of 𝐴/𝔭′ and
therefore

𝑙𝔭,𝐴(𝑁) = {𝑓(𝔮′/𝔭′) if 𝔭′ = 𝔭
0 if 𝔭′ ≠ 𝔭



2.3 Sieving 59

So finally we have that

𝑙𝔭,𝐴(𝑀) =
𝑛

∑
𝑖=1

∑
𝔮|𝔭

𝑓(𝔮/𝔭)𝑙𝔮,𝐵(𝑀𝑖/𝑀𝑖−1)

= ∑
𝔮|𝔭

𝑓(𝔮/𝔭)
𝑛

∑
𝑖=1

𝑙𝔮,𝐵(𝑀𝑖/𝑀𝑖−1)

= ∑
𝔮|𝔭

𝑓(𝔮/𝔭)𝑙𝔮,𝐵(𝑀)

Proposition 2.3.13. For all but a finitely many prime ideals 𝔭 of 𝐴 it holds that

∑
𝔮|𝔭

𝑓(𝔮/𝔭) = 1. Additionally the number ∏
𝔭

𝑁(𝔭)
−1+∑

𝔮|𝔭
𝑓(𝔮/𝔭)

divides the index [𝐵 ∶ 𝐴],

with 𝔭 ranging over all prime ideals of 𝐴.

Proof. Let 𝑇 be a finite set of prime ideals of 𝐴 and 𝑈 the set of prime ideals of 𝐵 lying
above those of 𝑇 . Let 𝑃 be the intersection of the ideals in 𝑇 and 𝑄 the intersection of
the ideals in 𝑈 . Hence we have that 𝑃 = 𝑄 ∩ 𝐴 and 𝐴/𝑃 is a subring of 𝐵/𝑄. By
the Chinese remainder theorem we have that 𝐴/𝑃 ≅ ∏

𝔭∈𝑇
𝐴/𝔭 ⇒ #𝐴/𝑃 = ∏

𝔭∈𝑇
𝑁(𝔭).

Similarly we have that #𝐵/𝑄 = ∏
𝔮∈𝑈

𝑁(𝔮) = ∏
𝔭∈𝑇

𝑁(𝔭)
∑
𝔮|𝔭

𝑓(𝔮/𝔭)

We have that [𝐵/𝑄 ∶ 𝐴/𝑃 ] = #(𝐵/𝑄)/#(𝐴/𝑃) = ∏
𝔭∈𝑇

𝑁(𝔭)
−1+∑

𝔮|𝔭
𝑓(𝔮/𝔭)

. From the

construction of 𝑄 and 𝑃 it follows that 𝑄 is the only ideal above 𝑃 and so
[𝐵/𝑄 ∶ 𝐴/𝑃 ]|[𝐵 ∶ 𝐴]. This implies that only for finitely many 𝔭 holds that
∑
𝔮|𝔭

𝑓(𝔮/𝔭) ≠ 1 not depending in the choice of 𝑇 . That proves the first part of the

proposition. If we take 𝑇 to be the set of prime ideals 𝔭 such that ∑
𝔮|𝔭

𝑓(𝔮/𝔭) ≠ 1 then

the second part of the proposition follows by the above proof.

Let 𝐴 be an order, we define
𝑉𝐴 ∶= {𝑥 ∈ 𝐾∗ ∶ 𝑙𝔭,𝐴(𝑥) ≡ 0 (mod 2) for all prime ideals 𝔭 of 𝐴}

Proposition 2.3.14. Let 𝐴, 𝐵 be two orders of 𝐾 such that 𝐴 ⊂ 𝐵. Then 𝑉𝐵 ⊂ 𝑉𝐴 and
[𝑉𝐴 ∶ 𝑉𝐵] ≤ [𝐵 ∶ 𝐴].

Proof. By Proposition 2.3.12 we get that if 𝑥 ∈ 𝑉𝐵 then 𝑥 ∈ 𝑉𝐴 as
𝑙𝔭,𝐴(𝑥) = ∑

𝔮|𝔭
𝑓(𝔮/𝔭)𝑙𝔮,𝐵(𝑥). Hence we get the first part of the proposition. For every
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prime ideal 𝔭 of 𝐴 we construct a set 𝑆𝔭 of ideals of 𝐵 as follows:
If 𝑓(𝔮/𝔭) ≡ 0 (mod 2) ∀ 𝔮|𝔭 then we set 𝑆𝔭 to be all the prime ideals 𝔮 of 𝐵 lying
above 𝔭.
If there is at least one 𝔮|𝔭 such that 𝑓(𝔮/𝔭) ≡ 1 (mod 2) then we choose such an ideal,
lets say 𝔮0 and we set 𝑆𝔭 to be all the prime ideals 𝔮 of 𝐵 lying above 𝔭 except 𝔮0.
It holds that #𝑆𝔭 ≤ −1 + ∑

𝔮|𝔭
𝑓(𝔮/𝔭) as 𝑓(𝔮/𝔭) ≥ 2 if we are in the first case and

𝑓(𝔮/𝔭) ≥ 1 if we are in the second case. Therefore by Proposition 2.3.13 the set 𝑆𝔭 will
not be empty only for finitely many 𝔭. Let 𝑆 be the union of all 𝑆𝔭 where 𝔭 ranges over
all prime ideals of 𝐴. Then we have that,

2#𝑆 ≤ ∏
𝔭

2#𝑆𝔭 ≤ ∏
𝔭

𝑁(𝔭)#𝑆𝔭 ≤ ∏
𝔭

𝑁(𝔭)
−1+∑

𝔮|𝔭
𝑓(𝔮/𝔭)

≤ [𝐵 ∶ 𝐴] (2.1)

The last inequality follows by Proposition 2.3.13. We consider the map

𝜗 ∶ 𝑉𝐴 → 𝔽#𝑆
2

𝑥 ↦ (𝑙𝔮,𝐵(𝑥) (mod 2))
𝔮∈𝑆

which is a group homomorphism.
ker 𝜗 = {𝑥 ∈ 𝑉𝐴 ∶ (𝑙𝔮,𝐵(𝑥) ≡ 0 (mod 2) ∀ 𝔮 ∈ 𝑆} We will show that ker 𝜗 = 𝑉𝐵.
Let 𝑥 ∈ ker 𝜗 then 𝑙𝔭,𝐴(𝑥) ≡ 0 (mod 2) for all 𝔭 in 𝐴 as 𝑥 ∈ 𝑉𝐴 and 𝑙𝔮,𝐵(𝑥) ≡ 0
(mod 2) for all 𝔮 in 𝑆. Let 𝔮′ be a prime ideal of 𝐵 and 𝔭′ = 𝔮′ ∩ 𝐴.
If 𝔮′ ∈ 𝑆 then 𝑙𝔮′,𝐵(𝑥) ≡ 0 (mod 2).
If 𝔮′ ∉ 𝑆 then we distinguish between two cases:
1) If ∑

𝔮|𝔭′
𝑓(𝔮/𝔭′) = 1 then there is only one ideal above 𝔭′ namely 𝔮′. So by Proposition

2.3.12 we get 𝑙𝔭′,𝐴(𝑥) = 𝑓(𝔮′/𝔭′)𝑙𝔮′,𝐵(𝑥) which in turn implies that
𝑙𝔮′,𝐵(𝑥) = 𝑙𝔭′,𝐴(𝑥) ≡ 0 (mod 2).
2) If ∑

𝔮|𝔭′
𝑓(𝔮/𝔭′) > 1 then by the fact that 𝔮′ ∉ 𝑆 and 𝑆𝔭 ⊆ 𝑆 we have that

∑
𝔮|𝔭′

𝑓(𝔮/𝔭′)𝑙𝔮′,𝐵(𝑥) = 𝑓(𝔮′/𝔭′)𝑙𝔮′,𝐵(𝑥) + ∑
𝔮∈𝑆𝔭′

𝑓(𝔮/𝔭′)𝑙𝔮,𝐵(𝑥)

So by Proposition 2.3.12 we get that

𝑙𝔭′,𝐴(𝑥) = 𝑓(𝔮′/𝔭′)𝑙𝔮′,𝐵(𝑥) + ∑
𝔮∈𝑆𝔭′

𝑓(𝔮/𝔭′)𝑙𝔮,𝐵(𝑥)

As 𝔮′ ∉ 𝑆 we have that 𝑓(𝔮′/𝔭′) ≡ 1 (mod 2) , as 𝔮 ∈ 𝑆𝔭′ ⊆ 𝑆 we get that 𝑙𝔮,𝐵(𝑥) ≡ 0
(mod 2) and finally as 𝑥 ∈ 𝑉𝐴 it follows that 𝑙𝔭′,𝐴(𝑥) ≡ 0 (mod 2). Combining
all these in the previous relation it follows that 𝑙𝔮′,𝐵(𝑥) ≡ 0 (mod 2). Therefore we
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showed that for any prime ideal 𝔮′ of 𝐵 we have 𝑙𝔮′,𝐵(𝑥) ≡ 0 (mod 2) and hence
ker 𝜗 ⊆ 𝑉𝐵. Additionally, as 𝑉𝐵 ⊂ 𝑉𝐴 it is straightforward that 𝑉𝐵 ⊆ ker 𝜗 so finally
ker 𝜗 = 𝑉𝐵. By the first isomorphism theorem we get that 𝑉𝐴/𝑉𝐵 ≅ 𝐼𝑚𝜗 ≤ 𝔽#𝑆

2 .
This implies that ∣𝑉𝐴/𝑉𝐵∣ ≤ 2#𝑆 and so [𝑉𝐴 ∶ 𝑉𝐵] ≤ 2#𝑆. Combining that with the
inequality in 2.1 we get that [𝑉𝐴 ∶ 𝑉𝐵] ≤ [𝐵 ∶ 𝐴].
Lemma 2.3.15. The following inequalities hold:
i) 𝑑!

𝑑𝑑 ( 4𝜋)𝑑/2 < 1 with 𝑑 ≥ 2
ii) 𝑑 − 1 + 𝑑 log 𝑑 < 3

2𝑑 log 𝑛 with 𝑑 ≥ 2 and 𝑛 > 𝑑2𝑑2

iii)2𝑑(2 log 𝑛)𝑑−1 < 𝑛 3
2𝑑 with 𝑑 ≥ 2 and 𝑛 > 𝑑2𝑑2

For this we refer to [16].

Theorem 2.3.16. Let 𝐾 = ℚ(𝜃) , 𝑑 = [𝐾 ∶ ℚ(𝜃)] and 𝑛 such that 𝑛 > 𝑑2𝑑2 . Let 𝑚 ,
𝑓(𝑥) be as before, i.e. induced by the base−𝑚 algorithm and
𝑉 = {𝛽 ∈ 𝐾∗ ∶ 𝑙𝔭(𝛽) ≡ 0 (mod 2) for all prime ideals 𝔭 of ℤ[𝜃]}. It holds that
dim𝔽2

𝑉 /𝐾∗2 < log 𝑛
𝑙𝑜𝑔2 .

Comment 2.3.17. The condition 𝑛 > 𝑑2𝑑2 is consistent with the condition needed for
Lemma 2.2.4 and in practice will be satisfied as 𝑛 will be very large and therefore we
do not have to bother about it.

Proof. It suffices to prove that |𝑉 /𝐾∗2| = [𝑉 ∶ 𝐾∗2] < 2 log 𝑛
𝑙𝑜𝑔2 = 𝑛. We set,

𝑊 = {𝛾 ∈ 𝐾∗ ∶ 𝛾𝑅𝐾 = 𝐼2 for some ideal 𝐼 of 𝑅𝐾}

Using Proposition 2.3.14 with 𝐴 = ℤ[𝜃] and 𝐵 = 𝑅𝐾 we get that 𝑊 = 𝑉𝐵 ⊂ 𝑉𝐴 = 𝑉
and [𝑉 ∶ 𝑊] ≤ [𝑅𝐾 ∶ ℤ[𝜃]]. Let 𝑌 = 𝐸(𝑅𝐾)𝐾∗2, then we get the chain

𝑉 ⊃ 𝑊 ⊃ 𝑌 ⊃ 𝐾∗2

This chain represents the first three obstructions that we had in our try to construct a
square in 𝐾∗ by an element of 𝑉 .
We consider the map

𝜓 ∶ 𝑊 → 𝐶𝑙(𝐾)
𝛾 ↦ [𝐼] where 𝛾𝑅𝐾 = 𝐼2

which is a group homomorphism. We now examine the kernel of 𝜓.

ker 𝜓 = {𝛾 ∈ 𝑊 ∶ [𝐼] = 1𝐶𝑙(𝐾)} = {𝛾 ∈ 𝑊 ∶ 𝐼 = ⟨𝛿⟩} =
= {𝛾 ∈ 𝐾∗ ∶ 𝛾𝑅𝐾 = ⟨𝛿⟩2} = {𝛾 ∈ 𝐾∗ ∶ 𝛾 = 𝜀𝛿2 , 𝜀 ∈ 𝐸(𝑅𝐾)} = 𝑌
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Therefore we have that 𝑊/𝑌 ≅ 𝐼𝑚𝜓 ≤ 𝐶𝑙(𝐾) ⇒ [𝑊 ∶ 𝑌 ] ≤ ℎ𝐾 where ℎ𝐾 is the
class number of 𝐾. Next we define,

𝜙 ∶ 𝑌 → 𝐸(𝑅𝐾)/𝐸(𝑅𝐾)2

𝜀𝑎2 ↦ 𝜀𝐸(𝑅𝐾)2

Themap𝜙 is onto and ker 𝜙 = 𝐾∗2 and hencewe have that𝑌 /𝐾∗2 ≅ 𝐸(𝑅𝐾)/𝐸(𝑅𝐾)2.
If 𝑑 = 2𝑠 + 𝑡 then by Theorem 1.4.6 the group 𝐸(𝑅𝐾) is spanned by (𝑠 + 𝑡 − 1) + 1 =
𝑠 + 𝑡 = 𝑑 − 𝑠 elements. Therefore we get that dim𝔽2

𝐸(𝑅𝐾)/𝐸(𝑅𝐾)2 = 𝑑 − 𝑠.
We are now going to combine all the above results in order to obtain the bound for
dim𝔽2

𝑉 /𝐾∗2. We have that 𝑉 ⊃ 𝑊 ⊃ 𝑌 ⊃ 𝐾∗2 so,

[𝑉 ∶ 𝐾∗2] = [𝑉 ∶ 𝑊][𝑊 ∶ 𝑌 ][𝑌 ∶ 𝐾∗2]

Using what we have proved so far we get that,

[𝑉 ∶ 𝐾∗2] ≤ [𝑅𝐾 ∶ ℤ[𝜃]]ℎ𝑘2𝑑−𝑠

Let𝐷𝐾 denote the discriminant of𝐾, then by [11]we have thatℎ ≤ 𝑀 (𝑑 − 1 + log 𝑀)𝑑−1

(𝑑 − 1)!
where 𝑀 = 𝑑!

𝑑𝑑 ( 4
𝜋)

𝑠
√|𝐷𝐾| is the Minkowski constant. Let Δ(𝑓) be the discriminant

of 𝑓(𝑥), we have that,

𝑀 ≤ √|𝐷𝐾| ≤ √|𝐷𝐾|[𝑅𝐾 ∶ ℤ[𝜃]] = √|Δ(𝑓)| < 𝑑𝑑𝑛1− 3
2𝑑

by Lemma 2.2.5.

[𝑉 ∶ 𝐾∗2] ≤ [𝑅𝐾 ∶ ℤ[𝜃]]ℎ𝑘2𝑑−𝑠

≤ [𝑅𝐾 ∶ ℤ[𝜃]] 𝑑!
𝑑𝑑 ( 4

𝜋)
𝑠
√|𝐷𝐾|(𝑑 − 1 + log 𝑀)𝑑−1

(𝑑 − 1)! 2𝑑−𝑠

≤ √|Δ(𝑓)| 𝑑!
𝑑𝑑(𝑑 − 1)!(

4
𝜋)

𝑠
2𝑑−𝑠(𝑑 − 1 + log √|Δ(𝑓)|)𝑑−1

≤ √|Δ(𝑓)| 1
𝑑𝑑−1 ( 2

𝜋)
𝑠
2𝑑(𝑑 − 1 + log √|Δ(𝑓)|)𝑑−1

≤ 𝑑𝑑𝑛1− 3
2𝑑

2𝑑

𝑑𝑑−1 ( 2
𝜋)

𝑠
(𝑑 − 1 + 𝑑 log 𝑑 + (1 − 3

2𝑑) log 𝑛)
𝑑−1

≤ 𝑑𝑛1− 3
2𝑑 2𝑑(log 𝑛)𝑑−1 = 𝑛1− 3

2𝑑 2𝑑(2 log 𝑛)𝑑−1

< 𝑛1− 3
2𝑑 𝑛 3

2𝑑 = 𝑛
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Proposition 2.3.18. Let 𝑘, 𝑟 be non-negative integers and 𝐸 a 𝔽2−vector space of di-
mension 𝑘. Then if we choose independently 𝑘 + 𝑟 elements of 𝐸 with the uniform
distribution, the probability that these 𝑘 + 𝑟 elements span 𝐸 is at least 1 − 2−𝑟.

Proof. For each hyperplane𝐻 of𝐸 the probability that all of the 𝑘+𝑟 elements to belong
in 𝐻 is (1

2)𝑘+𝑟. Each such hyperplane is the kernel of a uniquely determined non-zero
linear map 𝑙 ∶ 𝐸 → 𝔽2. The number of these 𝑙 is 2𝑘 − 1 as 𝐸 is a 𝔽2−vector space
of dimension 𝑘. Therefore we will have that many hyperplanes as well. That follows
that the probability of the 𝑘 + 𝑟 vectors which we chose to be in the same hyperplane is
2𝑘−1
2𝑘+𝑟 = 2−𝑟 − 2−(𝑘+𝑟) < 2−𝑟. The 𝑘 + 𝑟 which we chose will span 𝐸 exactly when they
do not all lie in the same hyperplane, thus the probability to span𝐸 is at least 1−2−𝑟.

In the second step of the algorithm, when we defined the set Q we demanded it to
have about [3 log 𝑛

𝑙𝑜𝑔2 ] elements, now we are going to justify this choice. Let 𝑉 be the
multiplicative subgroup of 𝐾∗ as described in Theorem 2.3.16. Let as well 𝔮 be a prime
ideal and 𝜒𝔮 a quadratic character as described in Proposition 2.3.11. Any 𝛽 ∈ 𝑉 can be
written as 𝛽 = 𝛽1𝛽2

2 with 𝛽1 ∈ ℤ[𝜃]⧹𝔮 and 𝛽2 ∈ 𝐾∗. In order to show that, it suffices to
prove that the 𝛽1 ∈ ℤ[𝜃]⧹𝔮 form a full system of representatives for the residual classes
(mod 𝐾∗2). Let 𝛽 ∈ 𝑉 then by definition of 𝑉 we will have that 𝑙𝔮(𝛽) ≡ 0 (mod 2).
We multiply 𝛽 by an even power of an element 𝑥 ∈ 𝑅𝐾 such that 𝔮 does not appear
in the factorization of < 𝑦 > and 𝛽𝑥2 ∈ 𝐾∗⧹𝔮. Afterwards we multiply the previous
product by a square of an element 𝑦 ∈ 𝑅𝐾⧹𝔮 such that 𝛽𝑥2𝑦2 ∈ ℤ[𝜃]⧹𝔮. Hence if
we set 𝛽1 = 𝛽𝑥2𝑦2 and 𝛽2 = (𝑥𝑦)−1 we get that 𝛽 = 𝛽1𝛽2

2 with 𝛽1 ∈ ℤ[𝜃]⧹𝔮 and
𝛽2 ∈ 𝐾∗. We can show that 𝜒𝔮(𝛽1) is independent of this representation and therefore
𝜒𝔮 induces a map,

𝜒′
𝔮 ∶ 𝑉 /𝐾∗2 → {±1}

Our goal is to use Proposition 2.3.18 for the 𝔽2−vector space 𝐻𝑜𝑚(𝑉 /𝐾∗2, {±1})
We know that dim𝔽2

𝐻𝑜𝑚(𝑉 /𝐾∗2, {±1}) = dim𝔽2
𝑉 /𝐾∗2 and therefore by Theorem

2.3.16 we conclude that dim𝔽2
𝐻𝑜𝑚(𝑉 /𝐾∗2,{±1}) < log 𝑛

𝑙𝑜𝑔2 . Then the Cebotarev den-
sity theorem (Appendix A) implies that if 𝔮 ranges over all first degree prime ideals of
ℤ[𝜃] with 𝑓 ′(𝜃) ∉ 𝔮 with increasing norm then the 𝜒′

𝔮 are asymptotically uniformly dis-
tributed over 𝐻𝑜𝑚(𝑉 /𝐾∗2, {±1}). So the 𝜒𝔮 which the algorithm uses can be seen as
random elements of𝐻𝑜𝑚(𝑉 /𝐾∗2, {±1}). Having this in mind, then Proposition 2.3.18
and Theorem 2.3.16 imply that the [3 log 𝑛

𝑙𝑜𝑔2 ] elements of Q have a probability of at least
1 − 2−[2 log 𝑛

log 2 ] to span 𝐻𝑜𝑚(𝑉 /𝐾∗2, {±1}). If that is the case then for a 𝛽 ∈ 𝑉 it would
hold that

𝛽 ∈ 𝐾∗2 ⇔ 𝜒𝔮(𝛽) = 1 ∀ 𝔮 ∈ 𝑄.
Hence we get a necessary and sufficient condition for when an element of 𝑉 belongs to
𝐾∗2.
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So for each pair (𝑎, 𝑏) stored by the sieving step when we will construct the vector 𝜐(𝑎,𝑏)
its coordinates will include the following:
1) The first |P| coordinates of 𝜐(𝑎,𝑏) will be equal to the exponent vector over P of 𝑎+𝑏𝑚
(mod 2).
2) The next |G| coordinates of 𝜐(𝑎,𝑏) will be equal to the value 𝑙𝔭(𝑎 + 𝑏𝜃) (mod 2) for
all 𝔭 ∈ Q.
3) The last [3 log 𝑛

𝑙𝑜𝑔2 ] of 𝜐(𝑎,𝑏) will be equal to 0 or 1 as follows:
For each 𝔮 ∈ 𝑄 we compute 𝜒𝔮(𝑎 + 𝑏𝜃). If 𝜒𝔮(𝑎 + 𝑏𝜃) = 1 we store 0 in the corre-
sponding coordinate of 𝜐(𝑎,𝑏). If 𝜒𝔮(𝑎 + 𝑏𝜃) = −1 we then store 1 in the corresponding
coordinate of 𝜐(𝑎,𝑏). Thus after the linear algebra step we will get a set 𝑇 such that,

𝑙𝔭( ∏
(𝑎,𝑏)∈𝑇

(𝑎 + 𝑏𝜃)) ≡ 0 (mod 2) ∀ 𝔭 ∈ P

𝜒𝔮( ∏
(𝑎, 𝑏)∈𝑇

(𝑎 + 𝑏𝜃)) = 1 ∀ 𝔮 ∈ Q

So we get an element in ℤ[𝜃] which with a very high probability will be a square in 𝐾∗.

2.4 The square root step
The last step of our algorithm is the square root step. In this section we describe an

algorithm that solves this problem according to a paper included in [16]. Let 𝛽2 ∈ ℤ[𝜃]
with 𝛽 ∈ ℤ[𝜃] and 𝜑 as in section 2.1. Let 𝛽 = 𝑎𝑑−1𝜃𝑑−1 + … + 𝑎1𝜃 + 𝑎0 and 𝑥 =
𝑎𝑑−1𝑚𝑑−1 + … + 𝑎1𝑚 + 𝑎0. We wish to compute

𝜑(𝛽) ≡ 𝑥 (mod 𝑛)

by only knowing 𝛿 = 𝛽2. As 𝛿 ∈ ℤ[𝜃] it then can be written as a polynomial of 𝜃
with integer coefficients and degree less than 𝑑. However in practice 𝛿 will be a product
of thousands of elements of the form 𝑎 + 𝑏𝜃 and hence its coefficients will be huge
making it completely impractical to use them. In order to deal with this difficulty we
will compute 𝑥 (mod 𝑝𝑖) for several primes 𝑝𝑖 and using the Chinese remainder theorem
in a clever way we will compute 𝑥 (mod 𝑛). By the Chinese remainder theorem we get

a 𝑧 =
𝑘

∑
𝑖=1

𝑎𝑖𝑥𝑖𝑃𝑖 such that 𝑧 ≡ 𝑥 (mod 𝑃) where
𝑘
∏
𝑖=1

𝑝𝑖 = 𝑃 , 𝑃𝑖 = 𝑃
𝑝𝑖

, 𝑎𝑖 ≡ 𝑃 −1
𝑖

(mod 𝑝𝑖) , 𝑧 ≡ 𝑝𝑚𝑜𝑑𝑝𝑖. The fact than 𝑧 ≡ 𝑥 (mod 𝑃) implies that 𝑥 = 𝑧 − 𝑟𝑃 ⇒
𝑧 − 𝑥 = 𝑟𝑃 ⇒ 𝑟 = 𝑧−𝑥

𝑃 ⇒ 𝑟 = ⌊1
2 + 𝑧

𝑃 ⌋.
Also 𝑥 ≡ 𝑧 − 𝑟𝑃 (mod 𝑛) ⇒ 𝑥 ≡

𝑘
∑
𝑖=1

𝑎𝑖𝑥𝑖𝑃𝑖 − 𝑟𝑃 (mod 𝑛).
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𝑧
𝑃 =

𝑘
∑
𝑖=1

𝑎𝑖𝑥𝑖𝑃𝑖

𝑃 =

𝑘
∑
𝑖=1

𝑎𝑖𝑥𝑖 𝑃
𝑃𝐼

𝑃 =
𝑘

∑
𝑖=1

𝑎𝑖𝑥𝑖
𝑃𝑖

hence we can compute 𝑟 using the previous
equation. It is only left to compute the 𝑥𝑖 in order to able to compute 𝑥 (mod 𝑛).
Let 𝑝 be a prime such that 𝑓(𝑥) is irreducible in 𝔽𝑝[𝑥] and 𝜃𝑝 a root of 𝑓(𝑥) in its splitting
field over 𝔽𝑝. We consider the map

𝜏𝑝 ∶ ℤ[𝜃] → 𝔽𝑝(𝜃𝑝)
𝑑−1
∑
𝑖=0

𝑎𝑖𝜃𝑖 ↦
𝑑−1
∑
𝑖=0

𝑎𝑖𝜃𝑝
𝑖

Let 𝛿 = 𝛽2 we then have that 𝛿𝑝 = 𝜏𝑝(𝛿) = 𝜏𝑝(𝛽2) = 𝜏𝑝(𝛽)2 = 𝛽2
𝑝. So we can think

of 𝛽𝑝 as 𝛽 with its coefficients reduced modulo 𝑝. This still allows us to compute to
compute 𝑥 (mod 𝑝). Hence it is sufficient to find 𝛽𝑝 as a polynomial of 𝜃𝑝 and then
substitute 𝜃𝑝 by 𝑚 and reduce the result modulo 𝑝. That introduces a new problem. For
each prime 𝑝 we have to be able to decide if 𝜏𝑝(𝛽) = 𝛽𝑝 or 𝜏𝑝(𝛽) = −𝛽𝑝 so all of the
congruences which we collect coincide. In order to be able to do that we will assume
that the degree of the extension is odd. If we assume that we have that we can use the
norm in order to be able to distinguish between the two cases.
If the degree of the extension is odd then 𝑁(−𝛽) = −𝑁(𝛽) so either 𝛽 or −𝛽 has
positive norm. We assume that 𝛽 has positive norm. Hence in any case we for the 𝛽𝑝 we
have found it suffices to compute the norm or the element it corresponds to. In order to
do that we will use the norm 𝑁𝑝 of 𝔽𝑝(𝜃𝑝) for which we have that 𝑁(𝑎) ≡ 𝑁𝑝(𝜏𝑝(𝑎))
(mod 𝑝) for 𝑎 ∈ ℤ[𝜃].
The extension 𝔽𝑝(𝜃𝑝)/𝔽𝑝 is a cyclic extension and 𝐺𝑎𝑙(𝔽𝑝(𝜃𝑝)/𝔽𝑝) is generated by the
automorphism of Frobenius,

𝜎𝑝 ∶ 𝔽𝑝(𝜃𝑝) → 𝔽𝑝(𝜃𝑝)
𝑎 ↦ 𝑎𝑝

This implies that

𝑁𝑝(𝑎) = 𝜎1(𝑎)𝜎2(𝑎) … 𝜎𝑑(𝑎)
= 𝜎𝑝(𝑎)𝜎2

𝑝(𝑎) … 𝜎𝑑
𝑝(𝑎)

= 𝑎𝑝𝑎𝑝2 … 𝑎𝑝𝑑

= 𝑎1+𝑝+…+𝑝𝑑−1

= 𝑎𝑝𝑑−1−1
𝑝−1



66 The General Number Field Sieve

Therefore we compute 𝑦1 ≡ 𝑁(𝛽) (mod 𝑝) and 𝑦2 ≡ 𝛽𝑝
𝑝𝑑−1
𝑝−1 (mod 𝑝). Then

𝜏𝑝(𝛽) = {𝛽𝑝 if 𝑦1 ≡ 𝑦2 (mod 𝑝)
−𝛽𝑝 if 𝑦1 ≡ −𝑦2 (mod 𝑝)

Remark 2.4.1. Note that even though we do not know 𝛽 we can compute its norm. This
can be done by using the following formula

𝑁(𝛽) = |𝑁(𝑓 ′(𝜃))|√| ∏
(𝑎,𝑏)∈𝑇

𝑁(𝑎 + 𝑏𝜃)| = |𝑁(𝑓 ′(𝜃))| ∏
𝑝 ∶∃𝔭∈G
𝑝=𝑁(𝔭)

𝑝𝑒𝑝

where 𝑒𝑝 = 1
2 ∑

(𝑎,𝑏)∈𝑇
𝑙𝔭(𝑎 + 𝑏𝜃)

Therefore the only thing left is to compute the 𝑥𝑖 ≡ 𝑥 (mod 𝑝𝑖). For doing that it is
sufficient to compute the 𝛽𝑝𝑖

.

Proposition 2.4.2. Let 𝔽𝑞 be a finite field with 𝑞 = 𝑝𝑑. An element 𝛿 ∈ 𝔽∗
𝑞 is a square

in 𝔽∗
𝑞 if and only if 𝛿 𝑞−1

2 = 1 and respectively 𝛿 is not a square in 𝔽∗
𝑞 if and only if

𝛿 𝑞−1
2 = −1.

Proof. Let 𝛾 ∈ 𝔽∗
𝑞 be a generator of 𝔽∗

𝑞 and 𝛿 a square, hence 𝛿 = (𝛾𝑘)2 = 𝛾2𝑘 for
some 𝑘 ∈ ℤ. Then 𝛿 𝑞−1

2 = 𝛾 2𝑘(𝑞−1)
2 = (𝛾𝑞−1)𝑘 = 1. If 𝛿 is not a square then 𝛿 = 𝛾2𝑘+1

for some 𝑘 ∈ ℤ and 𝛿 𝑞−1
2 = 𝛾2𝑘+1 (𝑞−1)

2 = 𝛾 (2𝑘+1)(𝑞−1)
2 = 𝛾 2𝑘(𝑞−1)

2 𝛾 𝑞−1
2 = (𝛾𝑞−1)𝑘𝛾 𝑞−1

2 =
1(−1) = −1.
But 𝛿𝑞−1 = 1 ⇒ 𝛿 𝑞−1

2 = ±1. If 𝛿 𝑞−1
2 = 1 and assume that 𝛿 = 𝛾2𝑘+1 then 1 = 𝛿 𝑞−1

2 =
𝛾 (2𝑘+1)(𝑞−1)

2 = −1 contradiction, so 𝛿 is a square. If 𝛿 𝑞−1
2 = −1 and we assume that

𝛿 = 𝛾2𝑘 then 𝛾2𝑘 𝑞−1
2 = −1 ⇒ 𝛾(𝑞−1)𝑘 = −1 contradiction, so 𝛿 is not a square.

Proposition 2.4.3. Let 𝔽𝑞 be a finite field with 𝑞 = 𝑝𝑑 and 𝑞 − 1 = 2𝑟𝑠. If 𝜂 ∈ 𝔽∗
𝑞 is not

a square in 𝔽∗
𝑞 then 𝑜𝑟𝑑(𝜂𝑠) = 2𝑟. Additionally the Sylow 2−subgroup of 𝔽∗

𝑞 will be the
𝑆2𝑟 =< 𝜂𝑠 >.

Proof. Let 𝑘 be the order of 𝜂𝑠 and 𝜂 𝑞−1
2 = −1 by the previous proposition as 𝜂 is not a

square. Hence −1 = 𝜂 𝑞−1
2 = 𝜂 2𝑟𝑠

2 = 𝜂2𝑟−1𝑠 = (𝜂𝑠)2𝑟−1
which implies that (𝜂𝑠)2𝑟 = 1.

Therefore 𝑘 ∣ 2𝑟. Also (𝜂𝑠)2𝑚 ≠ 1 for 0 ≤ 𝑚 < 𝑟 − 1 as if that did not occur we would
have that 1 = (𝜂𝑠)2𝑚+1 = … = (𝜂𝑠)2𝑟−1

, contradiction. Thus 𝜂𝑠 generates a subgroup
of order 2𝑟. As 𝔽∗

𝑞 is abelian there is only one Sylow 2− subgroup of 𝔽∗
𝑞 and hence

𝑆2𝑟 =< 𝜂𝑠 >.
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The idea we will use in order to find a square root 𝛿 is the following. We will con-
struct two sequences of elements𝜔𝑖 and𝜆𝑖 respectively such that𝜔2

𝑖 = 𝜆𝑖𝛿 , 𝑜𝑟𝑑(𝜆𝑖+1) <
𝑜𝑟𝑑(𝜆𝑖) and 𝑜𝑟𝑑(𝜆𝑖)|2𝑟−1 for all 𝑖. If we manage to find such two sequences the even-
tually for some 𝑗 we will get 𝜆𝑗 = 1. Therefore we will have 𝜔2

𝑗 = 𝛿 and hence we get
a square root of 𝛿. In the worst case i.e. if 𝑜𝑟𝑑(𝜆0) = 2𝑟−1 it will take us 𝑟 steps until
we get 𝜆𝑗 = 1.
Proposition 2.4.4. Let 𝜁 be a generator of the Sylow 2−subgroup of𝔽∗

𝑞 𝑆2𝑟 . If 𝑜𝑟𝑑(𝜆𝑖) =
2𝑚 and 𝜆𝑖+1 = 𝜆𝑖𝜁2𝑟−𝑚 then 𝑜𝑟𝑑(𝜆𝑖+1)|2𝑚−1. Additionally, if we have 𝜔2

𝑖 = 𝜆𝑖𝛿 and
𝜔𝑖+1 = 𝜔𝑖𝜁2𝑟−𝑚−1 then 𝜔2

𝑖+1 = 𝜆𝑖+1𝛿.

Proof. As 𝑜𝑟𝑑(𝜆𝑖) = 2𝑚 ⇒ 𝜆𝑖
2𝑚 = 1 ⇒ 𝜆𝑖

2𝑚−1 = −1. Also 𝑜𝑟𝑑(𝜁) = 2𝑟 ⇒ 𝜁2𝑟 =
1 ⇒ 𝜁2𝑟−1 = −1. So 𝜆2𝑚−1

𝑖+1 = 𝜆2𝑚−1
𝑖 (𝜁2𝑟−𝑚)2𝑚−1

= (−1)𝜁2𝑟−𝑚+𝑚−1 = −𝜁2𝑟−1 =
(−1)(−1) = 1 ⇒ 𝑜𝑟𝑑(𝜆𝑖+1)|2𝑚−1. Finally, 𝜔2

𝑖+1 = 𝜔2
𝑖 (𝜁2𝑟−𝑚−1)2 = 𝜔2

𝑖 𝜁2𝑟−𝑚 =
𝜆𝑖𝛿𝜁2𝑟−𝑚 = 𝜆𝑖+1𝛿.

Let 𝜆 = 𝛿𝑠 and 𝜔 = 𝛿 𝑠+1
2 then 𝜔2 = 𝜆𝛿 and (𝛿𝑠)2𝑟−1 = 𝛿2𝑟−1𝑠 = 𝛿 𝑞−1

2 = 1 as 𝛿 is a
square. Therefore we have that 𝑜𝑟𝑑(𝛿𝑠)|2𝑟−1. So according to the previous proposition
we will construct 𝜔𝑖 and 𝜆𝑖 as follows:

𝜆0 = 𝛿𝑠 𝜔0 = 𝛿 𝑠+1
2

𝜆𝑖+1 = 𝜆𝑖𝜁2𝑟−𝑚𝑖 𝜔𝑖+1 = 𝜔𝑖𝜁2𝑟−𝑚𝑖−1

where 𝜁 = 𝜂𝑠 for some 𝜂 that is not a square in 𝔽∗
𝑞 and 𝑜𝑟𝑑(𝜆𝑖) = 2𝑚𝑖 .

2.5 A working example
In order to understand and illustrate what we have studied so far in this chapter we

give an example. In this section we are going to try to factor the number
𝑛 = 12353161739. In practice in order to factor a number of this magnitude we do
not need a so powerful algorithm like the GNFS but here it will help us illustrate the
procedure.
The first step is to choose the degree 𝑑 of the extension 𝐾/ℚ in which we are going
to work. We choose 𝑑 = 3. The next step is to find an irreducible polynomial 𝑓(𝑥).
According to section 2.2 we proceed as follows. We compute
𝑚 = [𝑛1/𝑑] = [123531617391/3] = 2311 and then find the base−𝑚 expansion of 𝑛.

12353161739 = 23113 + 2 ⋅ 23112 + 32 ⋅ 2311 + 114

The base−𝑚 expansion of𝑛 suggests that wemust set 𝑓(𝑥) = 𝑥3+2𝑥2+32𝑥+114. This
polynomial is irreducible. Indeed, this can be easily induced by applying the Eisenstein
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criterion for the prime number 𝑝 = 2. Therefore if we denote by 𝜃 a root of 𝑓(𝑥) then
𝐾 = ℚ(𝜃) is a third degree extension of ℚ. We define

𝜑 ∶ ℤ[𝜃] → ℤ/12353161739ℤ
2

∑
𝑖=0

𝑎𝑖𝜃𝑖 ↦
2

∑
𝑖=0

𝑎𝑖2311𝑖 (mod 12353161739)

Afterwards we choose our smoothness bounds 𝐵1 and 𝐵2. We set 𝐵1 = 100 and
𝐵2 = 101. Thus we get
P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

G ={(0, 2), (0, 3), (3, 5), (6, 11), (4, 13), (3, 17), (0, 19), (7, 19), (10, 19), (19, 23), (31, 37),
(7, 41), (10, 43), (14, 43), (17, 43), (64, 71), (27, 73), (34, 79), (57, 79), (65, 79),
(82, 83), (58, 89), (2, 97), (33, 97), (60, 97), (8, 101), (27, 101), (64, 101)}

Q = {(59, 103), (89, 127), (62, 131), (89, 139)}
As it can be seen the quadratic character base is chosen to be much smaller than

suggested in section 2.2. If we used the suggested size forQ which is [3 log 𝑛
log 2 ] we should

takeQ to have 100 elements. This is not so good as it implies that in the sieving step we
have to find ”many” relations. Fortunately in this case we can do something better. The
size [3 log 𝑛

log 2 ] was induced by Theorem 2.3.16. However in the proof of this theorem we
showed that the following inequality holds as well,

[𝑉 ∶ 𝐾∗2] ≤ [𝑅𝐾 ∶ ℤ[𝜃]]ℎ𝐾2𝑑−𝑠

As the number field 𝐾 is not too ”big” we can use SAGE to compute the parameters in
the right hand side of the inequality.
In SAGE we give the orders,
R.<x> = QQ []
K.<a> = NumberField (x̂3 +2*x̂2+32*x+114)
h=K.class_number() ; h
OK = K.maximal_order()
OK.basis()
K.signature()
The output of the above orders gives us that [𝑅𝐾 ∶ ℤ[𝜃]] = 1, ℎ𝐾 = 4 and 𝑠 = 1. Hence
we get that [𝑉 ∶ 𝐾∗2] ≤ 1 ⋅ 4 ⋅ 23−1 = 24 and therefore a set Q of size 12 is sufficient.
However even a choice for Q with 4 elements proved to be sufficient for our example.
So finally we have that |P| + |G| + |Q| = 25 + 28 + 4 = 57 and we can start sieving.
We choose the sieving bounds to be 𝑈1 = 700 and 𝑈2 = 150 and we deduce the above
63 relations mentioned in table 2.1.
The next step is to form the matrix which we are going to use in the linear algebra step.
In order to do that we form the vectors 𝜐(𝑎,𝑏) that correspond to each relation (𝑎, 𝑏). For
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Relations
b a 𝐴1(𝑎) 𝐴2(𝑎) b a 𝐴1(𝑎) 𝐴2(𝑎)
1 -57 1 -1 9 13 1 -1
1 -48 1 -1 11 -278 1 -1
1 -33 1 -1 11 19 1 -1
1 -17 1 -1 11 35 1 -1
1 -10 1 -1 12 -61 1 -1
1 -8 1 -1 13 -608 1 -1
1 -7 1 -1 17 -237 1 -1
1 1 1 -1 17 -157 1 -1
1 3 1 -1 17 52 1 -1
1 7 1 1 17 58 1 1
1 9 1 1 17 114 1 1
1 14 1 1 19 113 1 1
1 119 1 1 20 -587 1 -1
1 677 1 1 21 67 1 1
2 -71 1 -1 24 73 1 -1
2 -57 1 -1 25 76 1 -1
2 -23 1 -1 29 508 1 1
2 19 1 1 31 -46 1 -1
2 31 1 1 31 39 1 -1
2 109 1 1 43 126 1 -1
2 123 1 1 47 319 1 1
3 35 1 1 53 -219 1 -1
5 -107 1 -1 55 -609 1 -1
5 -12 1 -1 56 257 1 1
5 -3 1 -1 59 163 1 -1
5 16 1 1 59 271 1 1
6 -1 1 -1 75 238 1 -1
7 -317 1 -1 83 171 1 -1
7 5 1 -1 103 579 1 1
8 -19 1 -1 104 393 1 1
8 -15 1 -1 121 369 1 -1
8 27 1 1

Table 2.1: Relations

example we take (𝑎, 𝑏) = (−57, 1) and we show how to compute 𝜐(𝑎,𝑏). The first 25
coordinates of 𝜐(𝑎,𝑏) will be the exponents of the factorization of −57+1⋅2311 = 2254
over P reduced modulo 2.
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2254 = 21 ⋅ 30 ⋅ 50 ⋅ 72 ⋅ 110 ⋅ 130 ⋅ 170 ⋅ 190 ⋅ 231 ⋅ 290 ⋅ 310 ⋅ 370 ⋅ 410 ⋅ 430 ⋅ 470 ⋅ 530 ⋅ 590 ⋅ 610 ⋅ 670 ⋅ 710 ⋅ 730 ⋅ 790 ⋅ 830 ⋅ 890 ⋅ 970

so modulo 2 we get the vector
(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

The norm of an element 𝑎 + 𝑏𝜃 is given by the following formula,
𝑁(𝑎 + 𝑏𝜃) = 𝑎3 − 2𝑎2𝑏 + 32𝑎𝑏2 − 114𝑏3

so for (𝑎, 𝑏) = (−57, 1) we get 𝑁(−57 + 𝜃) = −193629.

−193629 = −3 ⋅ 19 ⋅ 43 ⋅ 79
Therefore checking for which pairs (𝑐, 𝑝) inG it holds that−57+1⋅𝑐 ≡ 0 (mod 𝑝)

and reducing modulo 2 the respective 𝑙𝔭(−57 + 𝜃), we get the following vector.
(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Finally we compute (−57 + 𝑠
𝑞 ) for (𝑠, 𝑞) in Q and we get the vector

(0, 0, 0, 1)
By concatenating the above three vectors we form 𝜐(𝑎,𝑏) and hence the first column

of the matrix which we are going to use in the linear algebra step. We do the same for
the rest of the pairs (𝑎, 𝑏) and form a 57 × 63 matrix. Then we try to find vectors in the
nullspace of this matrix. An algorithm like Block Lanczos could be used for this step.
However as the size of the matrix we want to handle is not too large standard Gaussian
elimination can be used. Again we use SAGE for this by giving the following orders.
M = MatrixSpace(GF(2),63,57)
A=M([]).transpose()
A.transpose().kernel()
where in [] we put the matrix. The dimension of the resulting nullspace is 10 and one
vector in the nullspace is the following

(0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1)

This vector implies a set 𝑇 of relations.

𝑇 ={(1, −33), (1, 7), (1, 9), (2, −71), (2, −23), (2, 19), (2, 109), (5, −3), (6, −1),
(8, −19), (8, −15), (8, 27), (11, 19), (11, 35), (12, −61), (13, −608), (17, −157),
(19, 113), (20, −587), (25, 76), (29, 508), (47, 319), (53, −219), (56, 257), (59, 163),
(75, 238), (104, 393), (121, 369)}

Using this set we get



2.5 A working example 71

𝑓 ′(2311)2 ∏
(𝑎,𝑏)∈𝑇

(𝑎 + 𝑏2311) =

8087308854437939950600498285211228651347692108758362363953119232000002 and

𝑓 ′(𝜃)2 ∏
(𝑎,𝑏)∈𝑇

(𝑎 + 𝑏𝜃) =

1654262725086184327764641473463422242155366279394342399344020𝜃2+
11311092912653740121811917126799215644373109174565758343126632𝜃+
19245534885761352441116661477160783725312818316229172601428784

At this point we have to note that in practice when the GNFS is used we do not
compute the above results as we care only about their image under 𝜑. What we would
have computed using repeated multiplications (mod 12353161739) is

𝜑(808730885443793995060049828521122865134769210875836236395311923200000)
≡ 11624226379 (mod 12353161739).

This can be done efficiently as we can use the exponent vectors of 𝑎 + 𝑏2311 for
(𝑎, 𝑏) ∈ 𝑇 which we have already computed. By adding these vectors and then dividing
by 2 each coordinate we take the exponent vector of

808730885443793995060049828521122865134769210875836236395311923200000

Then by modular exponentiation and multiplication (mod 12353161739)we can com-
pute its image under 𝜑 efficiently.
This can not be done for 𝛿 = 𝑓 ′(𝜃)2 ∏

(𝑎,𝑏)∈𝑇
(𝑎 + 𝑏𝜃) as we have already seen that in this

case we can not find the square root of this element efficiently. Therefore we have to
use the techniques of section 2.4. However in this case we can use again SAGE in order
to compute the square root of 𝛿. We give the order:
𝛿.is_square(True)
and we get

(True, 5911893323624826013329750234𝜃2

− 1293869310951621452979819242506𝜃 − 4182528496250969872573845109548)
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If we denote by 𝛽 the above square root of 𝛿 then we have that

𝜑(𝛽) ≡ 1749634778 (mod 12353161739)

Additionally 11624226379 ≢ ±1749634778 (mod 12353161739) so we can conclude
the following prime factors of 𝑛.

gcd(11624226379 − 1749634778, 12353161739) = 97039

gcd(11624226379 + 1749634778, 12353161739) = 127301

We are now going to try to illustrate the procedure that we would have followed if
we had used the method described in section 2.4 for computing 𝜑(𝛽) (mod 𝑛).

Let 𝛽 = 𝑎2𝜃2 + 𝑎1𝜃 + 𝑎0 and 𝑥 = 𝑎2𝑚2 + 𝑎1𝑚 + 𝑎0. Obviously 𝜑(𝛽) ≡ 𝑥
(mod 𝑛). The first step is to find a sufficient number of primes 𝑝 such that 𝑓(𝑥) is
irreducible in 𝔽𝑝[𝑥] and the product of these primes to exceed 𝑥 . In order to do that we
need an estimate for 𝑥 which we can get in general. In this case we know that

𝑥 = 28579458317137456263027540884937800

and therefore we obtain that the following set of primes will work

Α = {227, 251, 293, 307, 347, 359, 397, 421, 433, 443, 461, 467, 479, 509, 569}

The next step is to compute 𝑥 (mod 𝑝) for 𝑝 ∈ 𝐴. We use the method described
in section 2.4. We are going to show how this can be done for one prime in 𝐴. We
will consider the prime 227. Initially we have to find an element that is not a square in
𝔽𝑝(𝜃𝑝). One such element is 𝜂 = 𝜃2

𝑝 + 3𝜃𝑝 + 1. We have that 2273 − 1 = 2 ⋅ 5848541
and hence

𝑆2 = {1, 𝜂5848541} = {1, −1}
Afterwards we compute the reduction modulo 227 of 𝛿 which turns out to be
𝛿𝑝 = 35𝜃2

𝑝 + 9𝜃𝑝 + 163. Now we are ready to construct the two sequences that will give
us the square root of 𝛿𝑝 in 𝔽𝑝(𝜃𝑝).

𝜆0 = 𝛿5848541
𝑝 = 1 𝜔0 = 𝛿 5848541+1

2𝑝 = 214𝜃2
𝑝 + 207𝜃𝑝 + 150

As 𝜆0 = 1 we conclude that 𝜔0 is a square root of 𝛿𝑝 in 𝔽𝑝(𝜃𝑝). Now we have to
apply the norm test in order to determine if it is the one we want.

𝑁(𝛽) ≡ 172 (mod 227) 𝑁𝑝(𝜔0) = 𝜔 2273−1
227−1

0 ≡ 172 (mod 227)
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𝑝 227 251 293 307 347 359 397 421 433 443 461
𝑥 (mod 𝑝) 177 126 235 92 114 304 291 96 161 393 36

𝑝 467 479 509 569
𝑥 (mod 𝑝) 445 251 204 42

Therefore we found the right square root. Now we can compute 𝑥 (mod 227). We have
that 𝑥 ≡ 214 ⋅ 23112 + 207 ⋅ 2311 + 150 ≡ 177 (mod 227). We do the same for the
rest of the primes 𝑝 ∈ 𝐴 and we conclude that

We set 𝑃 = ∏
𝑝𝑖∈𝐴

𝑝𝑖 and 𝑃𝑖 = 𝑃
𝑝𝑖
. The next step is to compute the

𝑎𝑖 ≡ 𝑃 −1
𝑖 (mod 𝑝𝑖).

𝑝𝑖 227 251 293 307 347 359 397 421 433 443 461
𝑎𝑖 29 220 17 252 46 107 105 352 54 133 300
𝑝𝑖 467 479 509 569
𝑎𝑖 428 310 182 335

15
∑
𝑖=1

𝑎𝑖𝑥𝑖
𝑝𝑖

= 1530.00

Thus we get that 𝑟 = 1530 and we can now compute 𝑥 (mod 𝑛) as follows.

𝑥 ≡
15

∑
𝑖=1

𝑎𝑖𝑥𝑖𝑃𝑖 − 𝑟𝑃 (mod 𝑛) ⇒ 𝑥 ≡ 1749634778 (mod 12353161739)





Appendix A

The Cebotarev density theorem

Let𝐿/𝐾 be a Galois extension of number fields, 𝑆, 𝑅 the respective rings of integers
of 𝐿, 𝐾. Let 𝑃 ∈ ℙ(𝐾) and 𝑄 ∈ ℙ(𝐿) such that 𝑄|𝑃 .

𝐺𝑍 = 𝐺𝑍(𝑄/𝑃) = {𝜎 ∈ 𝐺𝑎𝑙(𝐿/𝐾) | 𝜎(𝑄) = 𝑄}

is the decomposition group of 𝑄/𝑃 ,

𝐺𝑇 = 𝐺𝑇 (𝑄/𝑃) = {𝜎 ∈ 𝐺𝑎𝑙(𝐿/𝐾) | 𝜎(𝑎) ≡ 𝑎 (mod 𝑄) ∀ 𝑎 ∈ 𝑆}

is the inertia group and 𝐺 = 𝐺𝑎𝑙(𝑆/𝑄⧸𝑅/𝑃). It is well known that the following
short sequence is exact.

1 ⟶ 𝐺𝑇 ⟶ 𝐺𝑍 ⟶ 𝐺 ⟶ 1

If 𝑄 is not ramified in 𝐿/𝐾 then 𝐺𝑇 = {1} and so 𝐺𝑍 ≅ 𝐺. The Galois group 𝐺 is
cyclic and is generated by the automorphism of Frobenius,

𝜎 ∶ 𝑆/𝑄 → 𝑆/𝑄
𝑠 + 𝑄 ↦ 𝑠𝑁𝐾(𝑃) + 𝑄

It follows that there is exactly one 𝐾−automorphism of 𝐿 , 𝜎 ∈ 𝐺𝑍 such that
𝜎(𝑠) ≡ 𝑠𝑁𝐾(𝑃) (mod 𝑄) ∀𝑠 ∈ 𝑆. This automorphism will be called symbol of the
Frobenius and will be denoted by [𝐿/𝐾

𝑄 ]. If we take 𝜎 ∈ 𝐺𝑎𝑙(𝐿/𝐾) then
[𝐿/𝐾

𝜎(𝑄)] = 𝜎[𝐿/𝐾
𝑄 ]𝜎−1. So if 𝑄 ranges over all the prime ideals of 𝐿 lying over the not

ramified prime ideal𝑃 of𝐾 then the [𝐿/𝐾
𝑄 ] ranges over a conjugate class of𝐺𝑎𝑙(𝐿/𝐾).

We denote this class by [𝐿/𝐾
𝑃 ].
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Definition A.0.1. Let 𝐴 ⊆ ℙ(𝐾) be a subset of the prime ideals of 𝐾 such that there
exists a positive real number 𝛿 = 𝛿(𝐴) > 0 for which

∑
𝑃∈𝐴

1
𝑁(𝑃)𝑆 = −𝛿 log(𝑠 − 1) + 𝑂(1) as 𝑠 → 1+

Then the number 𝛿 will be called Dirichlet density of 𝐴.

Theorem A.0.2 (Cebotarev Density Theorem). Let 𝐶 be a conjugate class of the group
𝐺𝑎𝑙(𝐿/𝐾) , 𝑐 = #𝐶 and 𝒜𝐿/𝐾,𝐶 ∶= {𝑃 ∈ ℙ(𝐾) | 𝑃 not ramified in𝐿/𝐾, [𝐿/𝐾

𝑃 ] =
𝐶}. Then 𝒜𝐿/𝐾,𝐶 has Dirichlet density 𝛿(𝒜𝐿/𝐾,𝐶) = 𝑐

𝑛 where 𝑛 = [𝐿 ∶ 𝐾].

The above theorem has also the following form.

TheoremA.0.3. If 𝑥 ∈ ℝ and𝑁𝒜𝐿/𝐾,𝐶
= #{𝑃 ∈ ℙ(𝐾)|𝑃 ∈ 𝒜𝐿/𝐾,𝐶 and 𝑁𝐾/ℚ(𝑃) ≤

𝑥} then 𝑁𝒜𝐿/𝐾,𝐶
= ( 𝑐

𝑛 + 𝑜(1)) 𝑥
log 𝑥 .

For more details about the above theorems we refer to [1] or [19].

The subgroup 𝑉 of 𝐾∗ has the property that 𝑉 /𝐾∗2 is of finite dimension over the
field of two elements. We set 𝐿 = 𝐾(√𝑣|𝑣 ∈ 𝑉 ). Let 𝐵 = {𝑣𝐾∗2} be a base of
𝑉 /𝐾∗2 over 𝔽2 for some 𝑣 ∈ 𝑉 . Then we have that 𝐿 = 𝐾(√𝑣|𝑣𝐾∗2 ∈ 𝐵). The 𝐿/𝐾
is a finite abelian Galois extension of exponent 2. According to the Kummer theory the
map

𝑉 /𝐾∗2 → 𝐻𝑜𝑚(𝐺𝑎𝑙(𝐿/𝐾), {±1})
𝑣𝐾∗2 ↦ 𝜒𝑣

where 𝜒𝑣(𝜎) = 𝜎(√𝑣)√𝑣 for each 𝑣 ∈ 𝑉 is an isomorphism [12, Theorem 4.4 p.412].

This can be written also as a pairing

𝐺𝑎𝑙(𝐿/𝐾) × 𝑉 /𝐾∗2 → {±1}

(𝜎, 𝑣𝐾∗2) ↦ 𝜎(√𝑣)√𝑣

and by duality, since 𝐿/𝐾 is finite 𝐺𝑎𝑙(𝐿/𝐾) ≅ 𝑉 /𝐾∗2. This means that the char-
acters 𝜒𝔮 of 𝑉 /𝐾∗2 coming from a prime ideals of degree 1, 𝔮 ∤ ⟨𝑓 ′(𝜃)⟩ from which
it follows that 𝔮 is unramified in 𝐿/𝐾 is nothing but the Artin-symbol [𝐿/𝐾

𝔮 ]. Ac-
cording to the Cebotarev’s density theorem they are equidistributed over 𝐺𝑎𝑙(𝐿/𝐾) =
𝐻𝑜𝑚(𝑉 /𝐾∗2, {±1}).
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