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Introduction

Galois theory is an elegant interaction between field theory and group theory. It
gives a bijective correspondence between intermediate fields of a Galois extension
and subgroups of the Galois group of this extension. For the case of finite Galois
extensions, the fundamental theorem of Galois theory establishes the bijective cor-
respondence between intermediate fields and subgroups. The fundamental theorem
is useful in many situations because it allows us to find out informations about the
intermediate fields of a Galois extension from the subgroups of the Galois group of
the extension, and vice versa. For this reason we would like to extend this theorem
to the case of infinite Galois extensions. In the first chapter we study the Galois
theory for infinite extensions. Luckily, the definition of the Galois extension carries
over without change from the finite case to the case of infinite algebraic extensions.
Unfortunately, the main theorem doesn’t hold for infinite Galois extensions. This
was ascertained by R. Dedekind in 1897. But we can find out that there exists a
fundamental theorem for infinite Galois extensions which is a generalization of the
main theorem of the finite Galois theory. For its proof we are going to put a topol-
ogy on the infinite Galois groups, the so called Krull topology, which we define. So
the concept of “topological groups”will naturally arise and for this reason we study
them.

The groups which occur as Galois groups of field extensions belong to a class of
topological groups, the so-called profinite groups. This category of groups we inves-
tigate in the second chapter. These groups are fairly close relatives of finite groups.
A profinite group is a topological group that can be realized as a projective limit of
finite topological groups. For this reason we introduce the notion of projective limit.
Also, we provide some useful characterizations of profinite groups. One of them as-
serts that a profinite group is a topological group which is Hausdorff, compact and
totally disconnected. But these are actually very familiar properties. We have proved
that a Galois group equipped with Krull topology has these properties too. So we
have that Galois groups are profinite groups. In addition, we give some examples
of profinite groups. Moreover, we define the dual construction of projective limit,
which is the direct limit, and we prove some properties of projective and direct lim-
its. For their proof we need some notions of category theory, which we define.

In the last decades cohomology of groups has played a central role in various
branches of mathematics. Cohomology has a lot of applications in class field theory

vii



viii Introduction

and it has played an important role for its development. In the third chapter we in-
vestigate the cohomology of finite groups. Firstly, we define the differential groups
because they serve as an introduction to some of the basic techniques for study-
ing the cohomology groups. Also, we present some general considerations about
𝐺-modules. In order to give the definition of cohomology group we introduce an
extensive formalism of homomorphisms, modules and sequence, the so-called stan-
dard complex. Then we analyze the concrete meaning of the cohomology group.
As seen in the definition of group cohomology, it is in general painful to find the
𝑛𝑡ℎ cohomology group for an arbitrary finite group 𝐺. We remark that in algebraic
applications only the cohomology groups of low dimension appear, since for these
groups we have a concrete algebraic interpretation. For this reason we study them
completely. Moreover, we study the cohomology of cyclic groups in which we prove
some essential statements of cohomology theory and we introduce the Herbrand
Quotient. We present also a lot of important theorems of cohomology without their
proof, such as Nakayama-Tate’s theorem which is about the cohomological trivi-
ality. Another theorem is about the exactness of the cohomology sequence. For its
proof we need some special mappings which we define.

In fourth chapter we study the cohomology of profinite groups. Their cohomol-
ogy groups often contain important arithmetic information. We construct the coho-
mology group and for doing this we use the notion of discrete modules. So firstly
we define discrete 𝐺-modules and we provide a characterization of them. Also, we
calculate the cohomology groups in low dimension. Moreover, we investigate what
happens to the cohomology groupsℋ𝑞(𝐺, 𝐴) if we change the group𝐺, where𝐴 is
a discrete module. For doing this we need the notion of compatible pairs and some
properties of them. Finally, we study some special homomorphisms of cohomol-
ogy groups, such as the restiction and inflation, which they connect the cohomology
group of a group 𝐺 with the cohomology group of a subgroup of 𝐺.

All this theory played an essential role in number theory. So in the last chapter
we present the use of cohomology theory to solve problems in number theory. The
cohomology theory help us to think about the extension problem of a group, since for
an abelian group 𝐴 which is a 𝐺-module there is a natural bijective correspondence
between the equivalence classes of extensions of A by𝐺 and the elements of second
cohomology group ℋ2. This is the reason why we define the extension problem
and we prove this correspondence. Moreover by the use of the second cohomology
group ℋ2 we can define the Brauer group. We have proved that Galois groups are
profinite groups. A reasonable question is if the converse is true. It is an important
result that any finite group is the Galois group of some field extension. This fact
we can generalize to profinite groups. More precisely we prove that every profinite
group is the Galois group of some field extension.

Heraklion, 16/5/2017



Chapter 1

Galois Theory for Infinite Extensions

Galois theory is an elegant interaction between field theory and group theory. It
gives a bijective correspondence between intermediate fields of a Galois extension
and subgroups of the Galois group of this extension. For the case of finite Galois
extensions, the fundamental theorem of Galois theory establishes the bijective cor-
respondence between intermediate fields and subgroups. Naturally, we wonder if
this correspondence still holds in the case of infinite Galois extension. It is tempting
to assume that this correspondence is true. Unfortunately, when the Galois extension
is infinite then it isn’t necessary a correspondence between the intermediate fields
and subgroups of its Galois group.

1.1 Topological Prerequisites
Definition 1.1.1. A topological space (𝑋, 𝜏) is called 𝑇1 space if for every 𝑥 ∈ 𝑋
the singleton set {𝑥} is a closed set in (𝑋, 𝜏).
Definition 1.1.2. A topological space (𝑋, 𝜏) is called regular space if for each
𝑥 ∈ 𝑋 and each closed subset 𝐾 of 𝑋 with 𝑥 ∉ 𝐾 there exist open sets 𝐴1, 𝐴2 of
𝑋 satisfying the following

𝐾 ⊆ 𝐴1, 𝑥 ∈ 𝐴2 𝑎𝑛𝑑 𝐴1 ∩ 𝐴2 = ∅
Definition 1.1.3. A topological space (𝑋, 𝜏) is called normal space if for every
closed subsets 𝐾1, 𝐾2 of 𝑋 with 𝐾1 ∩ 𝐾2 = ∅, there exist open sets 𝐴1, 𝐴2 of 𝑋
satisfying the following

𝐾1 ⊆ 𝐴1, 𝐾2 ⊆ 𝐴2 𝑎𝑛𝑑 𝐴1 ∩ 𝐴2 = ∅
Theorem 1.1.4. Every compact Hausdorff topological space (𝑋, 𝜏) is a regular
space.

Proof. Let 𝐴 be a closed subset of 𝑋 and 𝑥 ∈ 𝑋 ∖ 𝐴, then for each 𝑦 ∈ 𝐴, 𝑥 ≠ 𝑦.
Since 𝑋 is Hausdorff space, implies that there exist open sets 𝑈𝑦, 𝑉𝑦 satisfying

𝑥 ∈ 𝑈𝑦, 𝑦 ∈ 𝑉𝑦 𝑎𝑛𝑑 𝑈𝑦 ∩ 𝑉𝑦 = ∅

1



2 Galois Theory for Infinite Extensions

We know that every closed subset of a compact space is compact, so 𝐴 is a compact
set. Here 𝐴 ⊆ ⋃

𝑦∈𝐴
𝑉𝑦. That is {𝑉𝑦 ∶ 𝑦 ∈ 𝐴} is an open cover for the compact set

𝐴. Therefore there exist 𝑛 ∈ ℕ and 𝑦1, … 𝑦𝑛 ∈ 𝐴 such that 𝐴 ⊆
𝑛

⋃
𝑖=1

𝑉𝑦𝑖
. Let

𝑈 ∶=
𝑛

⋂
𝑖=1

𝑈𝑦𝑖
and 𝑉 ∶=

𝑛
⋃
𝑖=1

𝑉𝑦𝑖
. Then 𝑈, 𝑉 are open sets in 𝑋 satisfying 𝑥 ∈

𝑈, 𝐴 ⊆ 𝑉 and

𝑈 ∩ 𝑉 = 𝑈 ∩ (𝑉𝑦1
∪ 𝑉𝑦2

∪ ⋯ ∪ 𝑉𝑦𝑛
)

= (𝑈 ∩ 𝑉𝑦1
) ∪ (𝑈 ∩ 𝑉𝑦2

) ∪ ⋯ ∪ (𝑈 ∩ 𝑉𝑦𝑛
)

⊆ (𝑈𝑦1
∩ 𝑉𝑦1

) ∪ (𝑈𝑦2
∩ 𝑉𝑦2

) ∪ ⋯ ∪ (𝑈𝑦𝑛
∩ 𝑉𝑦𝑛

) = ∅

Thus, by definition, (𝑋, 𝜏) is a regular space.
Theorem 1.1.5. Every compact Hausdorff topological space (𝑋, 𝜏) is a normal
space.

Proof. Let 𝐴, 𝐵 be closed subsets of 𝑋 such that 𝐴 ∩ 𝐵 = ∅. Then for each 𝑥 ∈
𝐴, 𝑥 ∉ 𝐵. According to theorem 1.1.4 we have that the (𝑋, 𝜏) is a regular space.
This implies that there exist open sets 𝑈𝑥, 𝑉𝑥 satisfying that 𝑥 ∈ 𝑈𝑥, 𝐵 ⊆ 𝑉𝑥
and 𝑈𝑥 ∩ 𝑉𝑥 = ∅. Here 𝐴 ⊆ ⋃

𝑥∈𝐴
𝑈𝑥. That is {𝑈𝑥 ∶ 𝑥 ∈ 𝐴} is an open cover

for the compact set 𝐴. Therefore there exist 𝑛 ∈ ℕ and 𝑥1, … 𝑥𝑛 ∈ 𝐴 such that

𝐴 ⊆
𝑛

⋃
𝑖=1

𝑈𝑥𝑖
. Let 𝑈 ∶=

𝑛
⋂
𝑖=1

𝑈𝑥𝑖
and 𝑉 ∶=

𝑛
⋃
𝑖=1

𝑉𝑥𝑖
. Then 𝑈, 𝑉 are open sets in 𝑋

satisfying 𝐴 ⊆ 𝑈, 𝐵 ⊆ 𝑉 and 𝑈 ∩ 𝑉 = ∅. Indeed

𝑈 ∩ 𝑉 = (𝑈𝑥1
∪ ⋯ ∪ 𝑈𝑥𝑛

) ∩ 𝑉
= (𝑈𝑥1

∩ 𝑉 ) ∪ ⋯ ∪ (𝑈𝑥𝑛
∩ 𝑉 )

⊆ (𝑈𝑥1
∩ 𝑉𝑥1

) ∪ ⋯ ∪ (𝑈𝑥1
∩ 𝑉𝑥𝑛

) = ∅

Proposition 1.1.6. Let 𝑋 a topological space, 𝑌 a Hausdorff topological space and
𝑓, 𝑔 are continuous maps from 𝑋 to 𝑌 , then the set

𝐸 = {𝑥 ∈ 𝑋 | 𝑓(𝑥) = 𝑔(𝑥)}

is a closed subset of 𝑋.

Proof. Let 𝑥 ∈ 𝑋 such that 𝑓(𝑥) ≠ 𝑔(𝑥). Since the 𝑌 is Hausdorff, then we have
that there are two open neighborhoods𝑈1, 𝑈2 of 𝑌 , such that 𝑓(𝑥) ∈ 𝑈1, 𝑔(𝑥) ∈ 𝑈2
and 𝑈1 ∩ 𝑈2 = ∅. The map 𝑓 is continuous at the point 𝑥 ∈ 𝑋 and 𝑈1 is an open
neighborhood of 𝑓(𝑥), there is an open neighborhood of𝑥,𝑉1, such that 𝑓(𝑉1) ⊂ 𝑈1.
Similarly, since the map 𝑔 is continuous at the point 𝑥 ∈ 𝑋 and since 𝑈2 is an
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open neighborhood of 𝑔(𝑥), then there is an open neighborhood of 𝑥, 𝑉2, such that
𝑓(𝑉2) ⊂ 𝑈2. We define 𝑉 ∶= 𝑉1 ∩ 𝑉2. The set 𝑉 is open as the intersection of open
sets, and 𝑥 ∈ 𝑉 , because 𝑥 ∈ 𝑉1 and 𝑥 ∈ 𝑉2. Moreover, 𝑉 ∩ 𝐸 = ∅, whereas
𝑓(𝑉1) ⊂ 𝑈1, 𝑔(𝑉2) ⊂ 𝑈2 and 𝑈1 ∩ 𝑈2 = ∅. But the complement of E, 𝑋 ∖ 𝐸, in
X will be the union of these sets 𝑉 . So the 𝑋 ∖ 𝐸 is an open set. Hence, the 𝐸 is a
closed subset of 𝑋.

Proposition 1.1.7. If 𝑓 ∶ 𝑋 → 𝑌 is a continuous and bijective map where 𝑋 is
compact topological space and 𝑌 is Hausdorff topological space, then 𝑓 is homeo-
morphism.

Proof. It suffices to show that 𝑓 is a closedmap, since 𝑓 is a continuous and bijective
map. Let 𝐴 be a closed subset of the topological space 𝑋. Then it is known that 𝐴
is compact, since 𝑋 is compact space. Thus the image 𝑓(𝐴) is compact subset of
𝑌 , since 𝑓 is continuous. But 𝑌 is Hausdorff topological space, so 𝑓(𝐴) is a closed
subset of 𝑌 . Therefore 𝑓 is a closed map, and then 𝑓 is homeomorphism.

Remark 1.1.8. If the set 𝑋 ≠ ∅ is finite and 𝑋 is a topological space equipped with
any topology 𝜏 , then the topological space (𝑋, 𝜏) is compact.

Proof. Let 𝒰 = {𝐴} be an open cover of 𝑋, that is 𝑋 = ∪𝐴. Then for every
𝑥 ∈ 𝑋, there exists 𝐴𝑥 ∈ 𝒰, with 𝑥 ∈ 𝐴𝑥. If for every 𝑥 ∈ 𝑋 we take only one
𝐴𝑥 ∈ 𝒰 such that 𝑥 ∈ 𝐴𝑥, then we construct a finite subfamily, (𝐴𝑥)𝑥∈𝐴, of 𝒰 that
covers 𝑋. This means that every open cover of 𝑋 has a finite subcover. Therefore
(𝑋, 𝜏) is compact.

Definition 1.1.9. A map 𝑓 ∶ 𝐴 → 𝐵, where 𝐴 is a topological space and 𝐵 is a set,
is called locally constant if for every 𝑎 ∈ 𝐴 there exists an open neighborhood 𝑈 of
𝑎 such that 𝑓 is constant on 𝑈 .

Every constant function is locally constant. Also, if 𝑓 ∶ 𝐴 → 𝐵 is locally con-
stant, then 𝑓 is constant on any connected component of 𝐴. The converse is true for
locally connected spaces.

Proposition 1.1.10. Let 𝑓 ∶ 𝐴 → 𝐵, where 𝐴 is a topological space and 𝐵 is a
discrete space. Then 𝑓 is continuous if and only if 𝑓 is locally constant.

Proof. Since 𝐵 is a discrete space, then ℬ = {{𝑏}, 𝑏 ∈ 𝐵} is a basis of 𝐵.
" ⇒ "We assume that 𝑓 is continuous. Thus, 𝑓−1({𝑏}) is open on𝐴 for every 𝑏 ∈ 𝐵.
In particular, if 𝑓(𝑎) = 𝑏, then 𝑎 ∈ 𝑓−1({𝑏}) and 𝑓−1({𝑏}) is open. That is there
exists an open neighborhood 𝑓−1({𝑏}) of 𝑎 such that 𝑓 constant on 𝑓−1({𝑏}). This
is true for every 𝑎 ∈ 𝐴. Thus, 𝑓 is locally constant.
" ⇐ " Let 𝑓 is locally constant. This means that for every 𝑎 ∈ 𝐴 there exists an
open neighborhood 𝑈 of 𝑎 such that 𝑓 is constant on 𝑈 , that is 𝑓(𝑥) = 𝑦 ∈ 𝐵
for every 𝑥 ∈ 𝑈 . Thus, 𝑓(𝑈) = {𝑦}. Therefore, for every open neighborhood 𝑊
of 𝑓(𝑎) there exists an open neighborhood of 𝑎 such that 𝑓(𝑈) ⊆ 𝑊 , so then 𝑓 is
continuous in 𝑎. This is true for every 𝑎 ∈ 𝐴. Consequently, 𝑓 is continuous.



4 Galois Theory for Infinite Extensions

1.2 Topological Groups
In order to put a topology to infinite Galois groups we will need to define the

topological groups and look into some properties of them as well.

Definition 1.2.1. A group (𝐺, ⋅) is called topological group if it is a topological
space equipped with topology 𝜏 , the multiplication map

𝛿1 ∶ 𝐺 × 𝐺 → 𝐺, (𝑥, 𝑦) ↦ 𝑥𝑦

is continuous, where 𝐺 × 𝐺 is equipped with product topology, and the inverse map

𝛿2 ∶ 𝐺 → 𝐺, 𝑥 ↦ 𝑥−1

is also continuous.

Comment 1.2.2. 1) If the group operation is addition instead of multiplication, then
𝑥𝑦 and 𝑥−1 should be regarded as 𝑥 + 𝑦 and −𝑥, respectively. The identity of a
multiplicative group will be denoted by 𝑒 ∶= 1 and that for an additive group by 0.
2) A homomorphism between two topological groups is a continuous group homo-
morphism and an isomorphism between two topological groups is a homeomorphic
group isomorphism.

We will mention some examples of topological groups.

Example 1.2.3. 1) 𝐺 = {𝑒}
2) 𝐺 = ℝ equipped with Euclidean topology. Similarly, if 𝐺 = ℝ𝑛.
3) 𝐺 = ℂ equipped with Euclidean topology. Similarly, if 𝐺 = ℂ𝑛.
4) Let 𝐾 = ℝ 𝑜𝑟 ℂ and we consider 𝐺 = 𝐺𝐿𝑛(𝐾) = {𝐴 ∈ 𝑀𝑛(𝐾)|𝑑𝑒𝑡𝐴 ≠ 0}.
Since 𝑀𝑛(𝐾) ⊆ ℝ𝑛×𝑛, the topology on 𝐺𝐿𝑛(𝐾) is the subspace topology.
5) 𝐺 = 𝑆𝐿𝑛(𝐾) = {𝐴 ∈ 𝑀𝑛(𝐾)|𝑑𝑒𝑡𝐴 = 1}
6) 𝐺 = 𝑆𝑂𝑛(ℝ) = {𝐴 ∈ 𝑆𝐿𝑛(ℝ) |𝐴𝑇 𝐴 = 𝐴𝐴𝑇 𝐼𝑛}
7) If 𝐺 is any group equipped it with the discrete topology, then it is a topological
group. We call this kind of topological groups discrete groups. For example 𝐺 = ℤ.

Let 𝐺 a topological group and 𝑈, 𝑉 are subsets of 𝐺, then we denote by 𝑈𝑉 ∶=
{𝑥𝑦 ∶ 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 } and 𝑈−1 ∶= {𝑥−1 ∶ 𝑥 ∈ 𝑈}. Similarly, in the additive case
we can define𝑈 +𝑉 and−𝑈 . The continuity of the maps 𝛿1 and 𝛿2 can be expressed
as follows: 𝛿1 is continuous in 𝑥 if and only if for each neighborhood 𝑊 of 𝑥𝑦 there
exists a neighborhood 𝑈 of 𝑥 such that 𝑈𝑦 ⊆ 𝑊 . Similarly, 𝛿1 is continuous in 𝑦
if and only if for each neighborhood 𝑊 of 𝑥𝑦 there exists a neighborhood 𝑉 of 𝑦
such that 𝑥𝑉 ⊆ 𝑊 . Additionally, 𝛿1 is continuous in both 𝑥 and 𝑦 if and only if for
each neighborhood 𝑊 of 𝑥𝑦 there exist a neighborhood 𝑈 of 𝑥 and a neighborhood
𝑉 of 𝑦 such that 𝑈𝑉 ⊆ 𝑊 . Similarly, 𝛿2 is continuous in 𝑥 if and only if for each
neighborhood 𝑊 of 𝑥−1 there exists a neighborhood 𝑈 of 𝑥 such that 𝑈−1 ⊆ 𝑊 .
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Theorem 1.2.4. Let 𝐺 be a topological group and 𝑎 ∈ 𝐺 be a fixed element of 𝐺.
Then the mappings

𝑟𝑎 ∶ 𝐺 → 𝐺, 𝑥 ↦ 𝑥𝑎
and

𝑙𝑎 ∶ 𝐺 → 𝐺, 𝑥 ↦ 𝑎𝑥
are homeomorphisms of G. Also, the inverse map 𝛿2 and the inner automorphisms

𝐺 → 𝐺, 𝑥 ↦ 𝑎𝑥𝑎−1

are homeomorphisms of 𝐺.

Proof. It is clear that 𝑟𝑎, 𝑙𝑎 are bijective maps. Also, we will show that 𝑟𝑎 is a con-
tinuous map. Let𝑊 be an open neighborhood of 𝑥𝑎. Since𝐺 is a topological group,
there exists a neighborhood 𝑈 of 𝑥 such that 𝑈𝑎 ⊆ 𝑊 . Thus, 𝑟𝑎 is continuous in 𝑥,
where 𝑥 is an arbitrary element of 𝐺 and so 𝑟𝑎 is continuous. Moreover, it is easy
to see that the inverse of 𝑟𝑎 which is the 𝑟−1

𝑎 ∶ 𝐺 → 𝐺, 𝑥 ↦ 𝑥𝑎−1, is also continu-
ous by the same argument as above. Thus, 𝑟𝑎 is homeomorphism. Similarly, we can
prove that 𝑙𝑎 is homeomorphism. For the inverse map 𝛿2 it is clear that 𝛿2 is an injec-
tive, surjective and continuous map. Since 𝛿−1

2 (𝑥) = 𝑥−1 is also continuous, then we
have that 𝛿2 is a homeomorphism. Every inner automorphism is a homeomorphism
as it is the composition of two homeomorphisms 𝑥 ↦ 𝑎𝑥 and 𝑎 ↦ 𝑥𝑎−1.

Corollary 1.2.5. Let 𝐹 be a closed, 𝑃 an open, 𝐴 any subset of a topological group
𝐺 and 𝑎 ∈ 𝐺. Then 𝑎𝐹 , 𝐹𝑎, 𝐹 −1 are closed and 𝑎𝑃 , 𝑃𝑎, 𝑃 −1, 𝐴𝑃 , 𝑃𝐴 are all
open.

Proof. Since 𝐹 is closed and 𝑙𝑎, 𝑟𝑎 and the inverse map are homeomorphisms, then
𝑎𝐹 , 𝐹𝑎, 𝐹 −1 are closed. Also, 𝑎𝑃 , 𝑃𝑎, 𝑃 −1 are open, because 𝑃 is open and the
inverse map is homeomorphism. It is clear that 𝐴𝑃 = ⋃

𝑎∈𝐴
𝑎𝑃 and 𝑃𝐴 = ⋃

𝑎∈𝐴
𝑃𝑎

and the union of open sets is open.

Definition 1.2.6. A subset 𝑈 of a group 𝐺 is said to be symmetric if 𝑈 = 𝑈−1. In
case 𝐺 is an additive group, 𝑈 is symmetric if 𝑈 = −𝑈 .

Proposition 1.2.7. In a topological group there exists a base {𝑈} of symmetric
neighborhoods of 𝑒.

Proof. Let {𝑉 } be a base of open neighborhoods of 𝑒. Since 𝑒 = 𝑒−1 and we
can prove that the map 𝑓 ∶ 𝐺 → 𝐺, 𝑥 ↦ 𝑥−1 is an homeomorphism because
𝐺 is a topological group. So for every 𝑉 ∈ {𝑉 }, we have that 𝑉 −1 is an open
neighborhood of 𝑒. But 𝑈 = 𝑉 ∩ 𝑉 −1 is a symmetric neighborhood of 𝑒 because
𝑈−1 = 𝑉 ∩ 𝑉 −1 = 𝑈 . Therefore, each 𝑉 contains a 𝑈 . On the other hand, {𝑉 } is a
base of open neighborhoods of 𝑒, so then each open neighborhood 𝐴 of 𝑒 contains a
𝑉 , that is 𝑈 ⊆ 𝑉 ⊆ 𝐴. Hence {𝑈} is a base of symmetric neighborhoods of 𝑒.
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Proposition 1.2.8. Let 𝐺 a topological group and let 𝑎 ∈ 𝐺, then for each neigh-
borhood 𝑉 of 𝑎 there is a neighborhood, 𝑈 , of 𝑒 such that

𝑉 = 𝑎𝑈

Proof. Let𝑈 ∶= 𝑎−1𝑉 . Since 𝑎 ∈ 𝑉 then 𝑒 ∈ 𝑈 . Since𝐺 is a topological group and
𝑎 ∈ 𝐺, then 𝑙𝑎 ∶ 𝐺 → 𝐺, where 𝑥 ↦ 𝑎𝑥 is a homeomorphism. Also 𝑎−1 ∈ 𝐺, so
then 𝑙𝑎−1 is a homeomorphism. Since 𝑉 is an open set, then 𝑙𝑎−1(𝑉 ) is open, because
the map 𝑙𝑎−1 is continuous. Moreover 𝑙𝑎−1(𝑉 ) = 𝑎−1𝑉 = 𝑈 . Thus we have 𝑒 ∈ 𝑈
and 𝑈 is open, that is 𝑈 is a neighborhood of 𝑒. Hence 𝑈 = 𝑎−1𝑉 ⇒ 𝑉 = 𝑎𝑈 .

Lemma 1.2.9. Let 𝐺 a topological group, let 𝐹 be a closed subset and 𝐶 a compact
subset such that𝐹∩𝐶 = ∅. Then there is a neighborhood𝑉 of 𝑒 such that𝐹∩𝐶𝑉 =
∅.
Proof. Let 𝑥 ∈ 𝐶 such that 𝑥 ∈ 𝐺 ∖ 𝐹 , where 𝐺 ∖ 𝐹 is open. So 𝐺 ∖ 𝐹 is an open
neighborhood of 𝑥. There is a neighborhood 𝑊𝑥 of 𝑒 such that 𝑊 2

𝑥 ⊆ 𝑥−1(𝐺 ∖ 𝐹),
that is 𝑥𝑊 2

𝑥 ⊆ 𝐺 ∖ 𝐹 . According to proposition 1.2.8 we have that there exist
a neighborhood 𝑊𝑥 of 𝑒 such that 𝐺 ∖ 𝐹 = 𝑥𝑊𝑥 ⇒ 𝑊𝑥 = 𝑥−1(𝐺 ∖ 𝐹), but
𝑊 2

𝑥 ⊆ 𝑊𝑥. Hence 𝑊 2
𝑥 ⊆ 𝑥−1(𝐺 ∖ 𝐹). Then there is a set of points 𝑥𝑖, and a set

of associated neighborhoods of 𝑒, 𝑊𝑖, such that 𝑥𝑖𝑊 2
𝑖 ⊆ 𝐺 ∖ 𝐹 and 𝐶 ⊆ ∪𝑖𝑥𝑖𝑊𝑖.

Since 𝐶 compact we have there is finitely many of points 𝑥𝑖, 𝑖 = 1, … , 𝑛 and a set

of associated neighborhoods of 𝑒, 𝑊𝑖, such that 𝑥𝑖𝑊 2
𝑖 ⊆ 𝐺 ∖ 𝐹 and 𝐶 ⊆

𝑛
⋃
𝑖=1

𝑥𝑖𝑊𝑖.

Set 𝑉 =
𝑛

⋂
𝑖=1

𝑊𝑖. Now for any 𝑥 ∈ 𝐶 then 𝑥 ∈ 𝑥𝑖𝑊𝑖 for some 𝑖, and 𝑥𝑉 ⊆ 𝑥𝑖𝑊 2
𝑖 ⊆

𝐺 ∖ 𝐹 . Then 𝑥𝑉 ∩ 𝐹 = ∅. Thus, 𝐶𝑉 ∩ 𝐹 = ∅, and this complete the proof.
Definition 1.2.10. Let 𝐺 a topological space. 𝐺 is homogeneous if for every pair of
points 𝑥, 𝑦 ∈ 𝐺, there exists a homeomorphism 𝑓 such that 𝑓(𝑥) = 𝑦.
Proposition 1.2.11. Every topological group is homogeneous.

Proof. Let 𝐺 be a topological group and 𝑥, 𝑦 be a pair of points in the topological
group 𝐺. We define 𝑓 ∶ 𝐺 → 𝐺, where 𝑔 ↦ 𝑦𝑥−1𝑔. Then 𝑓(𝑥) = 𝑦. Also, 𝑓 is a
left multiplication by the element 𝑦𝑥−1, so then 𝑓 is a homeomorphism, according
to theorem 1.2.4. Therefore, 𝑓 is a homomorphism satisfying that 𝑓(𝑥) = 𝑦. This is
true for every pair of points in 𝐺. Hence, 𝐺 is homogeneous.

Homogeneity is one interesting property of topological groups, because it makes
us able to examine every open neighborhood in the topological groups just by look-
ing at the open neighborhood of the identity element 𝑒 ∶= 1.

With the use of the theorem 1.2.4 we can prove that if we know a base of neigh-
borhoods of the identity in a topological group, then we can find a base of neighbor-
hoods of any other point.
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Theorem 1.2.12. If {𝑈} is a base of open neighborhoods of 1 ∶= 𝑒 in a topological
group 𝐺, then {𝑥𝑈} and {𝑈𝑥}, where 𝑥 runs over 𝐺 and 𝑈 over {𝑈} form a basis
of the topology of 𝐺.

Proof. Let 𝑎 ∈ 𝐺 and let 𝑊 be an open neighborhood of 𝑎. We know that 𝑙−1
𝑎 ∶

𝐺 → 𝐺, where 𝑥 ↦ 𝑎−1𝑥 is a homeomorphism in 𝑥, according to theorem 1.2.4 and
𝑙−1
𝑎 (𝑊) = 𝑎−1𝑊 is an open set which contains 𝑒. So then there exists a 𝑈 ∈ {𝑈}
such that 𝑈 ⊆ 𝑎−1𝑊 . This implies that 𝑎𝑈 ⊆ 𝑊 , which proves that {𝑥𝑈} is a base
of the topology on 𝐺. With the use of similar arguments we can prove that 𝑈𝑥 is
also base of the topology on 𝐺.

Since a topological group is not only a topological space but also a group, we
wonder if a subgroup of a topological group is a topological group as well.

Proposition 1.2.13. Let 𝐺 a topological group. Then every subgroup 𝐻 of 𝐺 is also
a topological group.

Proof. Since 𝐻 ≤ 𝐺 then the multiplication map and the inverse map on 𝐻 are the
multiplication map and inverse map on𝐺 restricted to the subgroup𝐻 . So then both
the multiplication map and the inverse map on 𝐻 are continuous. Consequently, 𝐻
is a topological group.

Proposition 1.2.14. Let 𝐺 be a topological group.

(i) Every open subgroup of 𝐺 is closed in 𝐺.

(ii) Every closed subgroup of 𝐺 of finite index is open.

(iii) If 𝐺 is compact, then a subgroup of 𝐺 is open if and only if it is closed and of
finite index.

Proof. (i) Let 𝐻 be an open subgroup of 𝐺. Let also 𝑎 ∈ 𝑐𝑙(𝐻) = �̄� . We have that
𝑎𝐻 is open, since 𝐻 is. So then 𝑎𝐻 is a neighborhood of 𝑎, since it is an open set
containing 𝑎. Also, 𝑎𝐻 ∩𝐻 ≠ ∅, since 𝑎 ∈ 𝑐𝑙(𝐻) = �̄� . So there exists ℎ1, ℎ2 ∈ 𝐻 ,
such that ℎ2 = 𝑎ℎ1 ∈ 𝑎𝐻 ∩ 𝐻 , and then 𝑎 = ℎ2ℎ−1

1 ∈ 𝐻 , since 𝐻 is a subgroup.
Hence, �̄� ⊆ 𝐻 , but𝐻 ⊆ �̄� , so𝐻 = �̄� . Consequently,𝐻 is closed. (ii) We assume
that 𝐻 is a closed subgroup of 𝐺 of finite index, then

𝐺 = 𝑔1𝐻 ∪ 𝑔2𝐻 ∪ ⋯ ∪ 𝑔𝑛𝐻 (𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑢𝑛𝑖𝑜𝑛)

where 𝑔1 = 1. We have that 𝑔𝑖𝐻 , for every 𝑖 = 1, ⋯ , 𝑛, is closed, since𝐻 is closed.

So then 𝐺 is closed. Thus, 𝐻 being the complement of
𝑛

⋃
𝑖=2

𝑔𝑖𝐻 in 𝐺, is open.

(iii) Let 𝐻 be an open subgroup of 𝐺. Then from (i) 𝐻 is closed. In addition, we
have that the cosets of 𝐻 provide an open covering of 𝐺 and since 𝐺 is compact,
then 𝐻 can have only finitely many cosets in 𝐺. Therefore, 𝐻 is closed and of finite
index. The converse is true by (𝑖𝑖).
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1.3 Finite Galois Theory and Krull Topology
In this section we will remind some basics of the finite Galois theory and we will

define the Krull topology.

Definition 1.3.1. The algebraic field extension 𝐿/𝐾 is called Galois if it is normal
and separable

Definition 1.3.2. Let𝐿/𝐾 be a Galois field extension. The Galois group𝐺𝑎𝑙(𝐿/𝐾)
is the set of all automorphisms on the field 𝐿 that fixes every element of the field 𝐾,
that is 𝜎(𝑥) = 𝑥 for every 𝑥 ∈ 𝐾 and 𝜎 ∈ 𝐺𝑎𝑙(𝐿/𝐾).

Definition 1.3.3. Let 𝐻 be a subset of 𝐴𝑢𝑡(𝐿/𝐾), then we define the fixed field of
𝐻 which is denoted by

ℱ(𝐻) = {𝑎 ∈ 𝐿 ∶ 𝜏(𝑎) = 𝑎, ∀ 𝜏 ∈ 𝐻}

Then ℱ(𝐻) is a subfield of 𝐿.
Let 𝐹 be an intermediate field of 𝐿/𝐾, that is 𝐾 ⩽ 𝐹 ⩽ 𝐿, then we define the fixed
group of 𝐹 which is denoted by 𝒢(𝐹) and is defined as

𝒢(𝐹) = {𝜎 ∈ 𝐴𝑢𝑡(𝐿) | 𝜎(𝑎) = 𝑎, ∀𝑎 ∈ 𝐹}

and 𝒢(𝐹) ⩽ 𝐴𝑢𝑡(𝐿/𝐾).

Let 𝐾 be a field and 𝑁/𝐾 be a Galois extension. Let also

𝐺 = 𝐺𝑁/𝐾 = {𝜎 ∈ 𝐴𝑢𝑡(𝑁) ∶ 𝜎|𝐾 = 𝑖𝑑𝐾}

the Galois group of the extension 𝑁/𝐾. We denote by {𝑁 ∶ 𝐾} the lattice of
intermediate fields 𝐿, such that 𝐾 ⩽ 𝐿 ⩽ 𝑁 , and {𝐺 ∶ 1} the lattice of subgroups
𝐻 of 𝐺.

Theorem 1.3.4 (Fundamental Theorem of Galois Theory). Let 𝑁/𝐾 be a finite,
normal and separable field extension and 𝐺 = 𝐺𝑎𝑙(𝑁/𝐾). Then [𝑁 ∶ 𝐾] =
|𝐺𝑎𝑙(𝑁/𝐾)| and there is a 1 − 1 inclusion reversing correspondence between in-
termediate fields of 𝑁/𝐾 and subgroups of 𝐺, given by

{𝑁 ∶ 𝐾}
𝜙
⇄
𝜓

{𝐺 ∶ 1}

𝜙(𝐿) = 𝐺𝑎𝑙(𝑁/𝐿) = 𝒢(𝐿) and 𝜓(𝐻) = ℱ(𝐻), where 𝐾 ⩽ 𝐿 ⩽ 𝑁 and 𝐻
subgroup of 𝐺. That is the maps are inverse lattice anti-isomorphism. This means
that 𝜓 ∘ 𝜙 = 𝑖𝑑{𝑁∶𝐾} and 𝜙 ∘ 𝜓 = 𝑖𝑑{𝐺∶1}.
Moreover, if 𝐿 ↔ 𝐻 , then |𝒢(𝐿)| = [𝑁 ∶ 𝐿] and [𝐿 ∶ 𝐾] = [𝐺 ∶ 𝐻].
Furthermore, 𝐻 is normal in 𝐺 if and only if 𝐿/𝐾 is Galois. When this occurs, then
𝐺𝑎𝑙(𝐿/𝐾) ≅ 𝐺/𝐺𝑁/𝐿.
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𝑁 < 𝑖𝑑𝑁 >

𝐿 𝐺𝑎𝑙(𝑁/𝐿) = 𝒢(𝐿)

𝐾 𝐺𝑁/𝐾 = 𝐺𝑎𝑙(𝑁/𝐾)

Let us assume now that the extension 𝑁/𝐾 is not necessary finite. The maps
𝜓, 𝜙 are defined as above and it is clear that they are lattice anti-homomorphisms.
In particular we have the following

Proposition 1.3.5. We assume that 𝑁/𝐾 is not necessary finite and the maps 𝜓, 𝜙
are defined as above. Then

𝜓 ∘ 𝜙 = 𝑖𝑑{𝑁∶𝐾}

Proof. Let 𝐾 ⩽ 𝐿 ⩽ 𝑁 . Then 𝜓(𝜙(𝐿)) = 𝜓(𝐺𝑁/𝐿) = {𝑥 ∈ 𝑁 | 𝐺𝑁/𝐿𝑥 = 𝑥}. It
is clear that 𝐿 ⊆ 𝜓(𝜙(𝐿)), since 𝐺𝑁/𝐿𝑥 = 𝑥, for 𝑥 ∈ 𝐿. Let now 𝑥 ∈ 𝑁 such that
𝐺𝑁/𝐿𝑥 = 𝑥 then 𝑥 is the only conjugate of 𝑥. Thus 𝑥 ∈ 𝐿 and then 𝜓(𝜙(𝐿)) ⊆ 𝐿 .
Therefore, 𝐿 = 𝜓(𝜙(𝐿)).
Corollary 1.3.6. The map 𝜙 is injective and 𝜓 is surjective.

Proof. It is clear from proposition 1.3.5.
However in the general case if we have infinite extension, then the maps are not

anti-isomorphism. It is possible to happen that different subgroups of 𝐺𝑁/𝐾 have
the same fixed field, which means that 𝜓 isn’t injective. This will be illustrated in
the following example.

Example 1.3.7. Let 𝐾 = 𝔽𝑝 be the finite field with 𝑝 ∈ ℙ elements. Let 𝑙 ≠ 2 be a
prime number and we consider the sequence

𝐾 = 𝐾0 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯

where 𝐾𝑖 is the unique extension field of 𝐾 of order [𝐾𝑖 ∶ 𝐾] = 𝑙𝑖. Let

𝑁 =
∞
⋃
𝑖=1

𝐾𝑖 = �̄�𝑝

It is clear that 𝐾𝑖 = {𝑥 ∈ 𝑁 | 𝑥𝑝𝑙𝑖 − 𝑥 = 0}. The extension 𝑁/𝐾 is Galois and let
𝐺 ∶= 𝐺𝑎𝑙(𝑁/𝐾). We consider the Frobenius 𝐾-automorphism 𝜙 ∶ 𝑁 → 𝑁 , with
𝜙(𝑥) = 𝑥𝑝, for every 𝑥 ∈ 𝑁 . We set 𝐻 ∶= {𝜙𝑛 | 𝑛 ∈ ℤ} ⩽ 𝐺.
We shall prove that:
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i) The groups 𝐻 and 𝐺 have the same fixed field, that is 𝜓(𝐺) = 𝜓(𝐻),
ii) 𝐻 ≠ 𝐺.
So then 𝜓 isn’t injective. Firstly, we will prove (i): It is obvious that𝜓(𝐺) = 𝐾. It
suffices to show that 𝜓(𝐻) = 𝐾. Let 𝑥 ∈ 𝜓(𝐻), that is 𝑥 ∈ 𝑁 and 𝐻𝑥 = 𝑥.
But 𝜙 ∈ 𝐻 , so then 𝜙(𝑥) = 𝑥. Also, 𝜙(𝑥) = 𝑥𝑝. So 𝑥𝑝 = 𝑥, which implies that
𝑥 ∈ 𝐾. Thus, 𝜓(𝐻) ⊆ 𝐾. Clearly 𝐾 ⊆ 𝜓(𝐻). Therefore, 𝜓(𝐻) = 𝐾. For (𝑖𝑖)
we will prove that 𝐻 ≠ 𝐺. We will construct a 𝐾-automorphism 𝜎 of 𝑁 , which is
not contained in 𝐻 . We define 𝑘𝑖 ∶= 1 + 𝑙 + ⋯ + 𝑙𝑖−1, for each 𝑖 = 1, 2, … and we
consider the 𝐾-automorphisms 𝜙𝑘𝑖 of 𝑁 . If 𝑥 ∈ 𝐾𝑖, then

𝜙𝑘𝑖+1(𝑥) = 𝜙1+𝑙+⋯+𝑙𝑖−1+𝑙𝑖(𝑥) = 𝜙1+𝑙+⋯+𝑙𝑖−1(𝜙𝑙𝑖(𝑥))
= 𝜙1+𝑙+⋯+𝑙𝑖−1(𝑥𝑝𝑙𝑖 ) = 𝜙1+𝑙+⋯+𝑙𝑖−1(𝑥) = 𝜙𝑘𝑖(𝑥)

Thus,
𝜙𝑘𝑖+1|𝐾𝑖

= 𝜙𝑘𝑖|𝐾𝑖
(1.1)

Now we define 𝜎 ∶ 𝑁 → 𝑁 , with 𝜎(𝑥) = 𝜙𝑘𝑖(𝑥), for every 𝑥 ∈ 𝐾𝑖. We have
that 𝜎 is well-defined, since 𝑙𝑖 ∣ 𝑙𝑖+1, then 𝐾𝑖 ⊆ 𝐾𝑖+1. If 𝑥 ∈ 𝐾𝑖, then 𝑥 ∈ 𝐾𝑖+1
etc, and so 𝜎(𝑥) = 𝜙𝑘𝑖(𝑥), 𝜎(𝑥) = 𝜙𝑘𝑖+1(𝑥). But from equation (1.1) we have
that 𝜙𝑘𝑖+1(𝑥) = 𝜙𝑘𝑖(𝑥). In addition, it is clear that 𝜎 is an automorphism. Now, if
𝜎 ∈ 𝐻 , then there is 𝑛 ∈ ℤ such that 𝜎 = 𝜙𝑛. Hence, for every 𝑖 = 1, 2, … we have
𝜎|𝐾𝑖

= 𝜙𝑛|𝐾𝑖
= 𝜙𝑘𝑖|𝐾𝑖

and then

𝜙𝑛|𝐾𝑖
= 𝜙𝑘𝑖|𝐾𝑖

⇔ 𝜙𝑛−𝑘𝑖|𝐾𝑖
= 𝑖𝑑𝐾𝑖

𝑜𝑟𝑑(𝜙|𝐾𝑖
) ∣ 𝑛 − 𝑘𝑖 ⇔ 𝑙𝑖 ∣ 𝑛 − 𝑘𝑖

𝑛 ≡ 𝑘𝑖 mod 𝑙𝑖 (1.2)

since [𝐾𝑖 ∶ 𝐾] = 𝑙𝑖 and 𝐺𝐾𝑖/𝐾 =< 𝜙|𝐾𝑖
> Then we multiply the equation (1.2)

by (𝑙 − 1) and we obtain that

(𝑙 − 1)𝑛 ≡ (𝑙 − 1)𝑘𝑖 mod 𝑙𝑖

But (𝑙 − 1)𝑘𝑖 = (𝑙 − 1)(1 + 𝑙 + ⋯ + 𝑙𝑖−1) = 𝑙𝑖 − 1. Therefore,

(𝑙 − 1)𝑛 ≡ −1 mod 𝑙𝑖 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 = 1, 2, …

which is impossible if 𝑙 ≠ 2.
The idea in this example is the following: we will see later that the Galois group

𝐺 = 𝐺𝑎𝑙(𝑁/𝔽𝑝) is isomorphic with the additive group ℤ𝑙 of 𝑙-adic integers. The
Frobenius automorphism 𝜙 corresponds to 1 ∈ ℤ𝑙. So 𝐻 ≅ ℤ ⊊ ℤ𝑙. The elements
of 𝐺 which aren’t in 𝐻 correspond to the 𝑙-adic integers which are not in ℤ, (in our
case 𝜎 = 1 + 𝑙 + 𝑙2 + ⋯).

Although the above example shows that the Fundamental theorem of Galois the-
ory (Theorem 1.3.4) does not hold for infinite Galois extensions, it suggest us a way
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of modifying the theorem so that it will be valid even in those cases. The map 𝜎
of the above example is approximated by the maps 𝜙𝑘𝑖 , since it coincides with 𝜙𝑘𝑖

on 𝐾𝑖 which becomes larger with increasing 𝑖 and 𝑁 =
∞
⋃
𝑖=1

𝐾𝑖. This leads to the

idea of defining a topology in 𝐺 such that 𝜎 = lim
𝑖

𝜙𝑘𝑖 . Then 𝜎 would belong to the
closure of 𝐻 . Now one could hope that there is a bijective correspondence between
the intermediate fields of 𝑁/𝐾 and the closed subgroups of Galois group 𝐺.

Now we will define a topology in Galois group. We remind that 𝐿 ∈ {𝑁 ∶ 𝐾}
means that 𝐾 ⩽ 𝐿 ⩽ 𝑁 and we set

ℱ = {𝐿/𝐾 ∶ 𝐾 ⩽ 𝐿 ⩽ 𝑁, 𝐿/𝐾 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒 𝐺𝑎𝑙𝑜𝑖𝑠}
Also, we set

ℬ1 = {𝐺𝑁/𝐿 |𝐿/𝐾 𝑓𝑖𝑛𝑖𝑡𝑒 𝐺𝑎𝑙𝑜𝑖𝑠 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝐿 ∈ {𝑁 ∶ 𝐾}}
Lemma 1.3.8. Let 𝐺𝑁/𝐾 for some Galois extension 𝑁/𝐾 and let

ℱ = {𝐿/𝐾 ∶ 𝐾 ⩽ 𝐿 ⩽ 𝑁, 𝐿/𝐾 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒 𝐺𝑎𝑙𝑜𝑖𝑠}
Then ⋂

𝐿/𝐾∈ℱ
𝐺𝑁/𝐿 = {1} and for all 𝜎 ∈ 𝐺 we have that ⋂

𝐿/𝐾∈ℱ
𝜎𝐺𝑁/𝐿 = {𝜎}

Proof. Let 𝜎 ∈ ⋂
𝐿/𝐾∈ℱ

𝐺𝑁/𝐿, then 𝜎 is an 𝐿-automorphism of 𝑁 for every 𝐿 such

that 𝐾 ⩽ 𝐿 ⩽ 𝑁, 𝐿/𝐾 is a finite Galois extension. Let also 𝑎 ∈ 𝑁 then there
exists an 𝐸 ∈ ℱ such that 𝑎 ∈ 𝐸. Thus 𝜎 ∈ 𝐺𝑁/𝐸 because 𝜎 ∈ ⋂

𝐿/𝐾∈ℱ
𝐺𝑁/𝐿

and then 𝜎 fixes 𝐸, so 𝜎(𝑎) = 𝑎. Hence, for every 𝑎 ∈ 𝑁 we have 𝜎(𝑎) = 𝑎, and
therefore 𝜎 = 1. So ⋂

𝐿/𝐾∈ℱ
𝐺𝑁/𝐿 = {1}.

If 𝜏 ∈ ⋂
𝐿/𝐾∈ℱ

𝜎𝐺𝑁/𝐿, then 𝜏𝜎−1 ∈ ⋂
𝐿/𝐾∈ℱ

𝐺𝑁/𝐿, so 𝜏𝜎−1 = 1 ⇒ 𝜎 = 𝜏 . Thus,

⋂
𝐿/𝐾∈ℱ

𝜎𝐺𝑁/𝐿 = {𝜎}.

Lemma 1.3.9. If 𝐺𝑁/𝐿1
, 𝐺𝑁/𝐿2

∈ ℬ1, then 𝐺𝑁/𝐿1
∩ 𝐺𝑁/𝐿2

∈ ℬ1.

Proof. Since 𝐿1/𝐾, 𝐿2/𝐾 are finite Galois, so is 𝐿1𝐿2/𝐾 and then 𝐿1𝐿2 ∈ {𝑁 ∶
𝐾}. However 𝐺𝑁/𝐿1𝐿2

= 𝐺𝑎𝑙(𝑁/𝐿1𝐿2) = 𝐺𝑁/𝐿1
∩ 𝐺𝑁/𝐿2

, since 𝜎 ∈ 𝐺𝑁/𝐿1
∩

𝐺𝑁/𝐿2
⇔ 𝜎𝐿1

= 1𝐿1
and 𝜎|𝐿2

= 1|𝐿2
⇔ 𝐿1, 𝐿2 ⊆ ℱ(𝜎) ⇔ 𝐿1𝐿2 ⊆ ℱ(𝜎) ⇔

𝜎 ∈ 𝐺𝑁/𝐿1𝐿2
. Therefore 𝐺𝑁/𝐿1

∩ 𝐺𝑁/𝐿2
= 𝐺𝑁/𝐿1𝐿2

∈ ℬ1.

Lemma 1.3.10. Let𝑁/𝐾 be an infinite Galois extensionwithGalois group𝐺𝑁/𝐾 =
𝐺𝑎𝑙(𝑁/𝐾). Then

ℬ𝜎 = {𝜎𝐺𝑁/𝐿 |𝐿/𝐾 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝐿 ∈ {𝑁 ∶ 𝐾}}
forms a basis for a topology on 𝐺.
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Proof. Each open set is a union of cosets 𝜎𝐺𝑁/𝐿 hence an arbitrary union of open
sets is also a union of such cosets, so in this topology an arbitrary union of open
sets is open. Also, 𝐺𝑁/𝐾 is open, since 𝐾/𝐾 is a finite Galois extension of degree
1. In addition we will check that open sets are closed under finite intersections. It
suffices to check that for two elements of the basis. If 𝜏1𝐺𝑁/𝐿1

and 𝜏2𝐺𝑁/𝐿2
are

two basis elements and let 𝜏 ∈ 𝜏1𝐺𝑁/𝐿1
∩ 𝜏2𝐺𝑁/𝐿2

, then from lemma 1.3.9 we
have that 𝐺𝑁/𝐿1

∩ 𝐺𝑁/𝐿2
∈ ℬ1, thus 𝜏(𝐺𝑁/𝐿1

∩ 𝐺𝑁/𝐿2
) is open. Finally we

will show that ∅ is open. Indeed, for some 𝐺𝑁/𝐿 ∈ ℬ1 with 𝐺𝑁/𝐿 ≠ 𝐺𝑁/𝐾 we
choose 𝜏1, 𝜏2 ∈ 𝐺𝑁/𝐾 such that 𝜏1𝐺𝑁/𝐿 ≠ 𝜏2𝐺𝑁/𝐿 (which we can do, otherwise
𝐺𝑁/𝐿 = 𝐺𝑁/𝐾). Then 𝜏1𝐺𝑁/𝐿 ∩ 𝜏2𝐺𝑁/𝐿 = ∅ and so ∅ is open. Therefore ℬ𝜎 is
indeed the basis for a topology on 𝐺𝑁/𝐾.

Now we can define the following.

Definition 1.3.11. Let 𝑁/𝐾 be an infinite Galois extension and 𝐺 = 𝐺𝑁/𝐾 . The
set

ℬ𝜎 = {𝜎𝐺𝑁/𝐿 |𝐿/𝐾 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝐿 ∈ {𝑁 ∶ 𝐾}}
forms a basis of open neighborhoods of 𝜎 ∈ 𝐺. The topology which is defined by
ℬ𝜎, that is has basis ℬ𝜎, is called the Krull topology on 𝐺.

We can show that

ℬ1 = {𝐺𝑁/𝐿 |𝐿/𝐾 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝐿 ∈ {𝑁 ∶ 𝐾}}

forms a basis of open neighborhoods of 1 ∈ 𝐺.

We have that 𝐺𝑁/𝐿 ⊴ 𝐺𝑁/𝐾 = 𝐺, since 𝐿/𝐾 is a finite Galois extension. More-
over, if 𝐺𝑁/𝐿 is such that 𝐿/𝐾 is a finite Galois extension with 𝐾 ⩽ 𝐿 ⩽ 𝑁 , then
[𝐺𝑁/𝐾 ∶ 𝐺𝑁/𝐿] < ∞. Thus, there are 𝜎1, … , 𝜎𝑛−1 such that 𝐺 = 𝐻 ∪ 𝜎1𝐻 ∪
⋯ ∪ 𝜎𝑛−1𝐻 . This means that 𝐺 ∖ 𝜎𝐺𝑁/𝐿 is a union of finite number of cosets of
𝐺𝑁/𝐿, which are open sets. So, 𝜎𝐺𝑁/𝐿 is both open and closed set. Thus the Krull
topology has a basis of sets which are both closed and open.

Proposition 1.3.12. Let 𝑁/𝐾 be an infinite Galois extension and 𝐺 = 𝐺𝑁/𝐾. The
Galois group 𝐺 equipped with Krull topology is a topological group.

Proof. Let 𝛿1 ∶ 𝐺 × 𝐺 → 𝐺, with (𝜎, 𝜏) ↦ 𝜎𝜏 . It suffices to show that 𝛿−1
1 (𝐴)

is open neighborhood of 𝐺 × 𝐺 for every open neighborhood 𝐴 of 𝐺. Let 𝐴 be an
open neighborhood of𝐺, then𝐴 = ∪𝜎𝐺𝑁/𝐿 and 𝛿−1

1 (∪𝜎𝐺𝑁/𝐿) = ∪𝛿−1
1 (𝜎𝐺𝑁/𝐿).

We have that

𝛿−1
1 (𝜎𝜏𝐺𝑁/𝐿) = {(𝑔1, 𝑔2) ∈ 𝐺 × 𝐺 ∶ 𝑔1𝑔2 ∈ 𝜎𝜏𝐺𝑁/𝐿}

= {(𝑔1, 𝑔2) ∈ 𝐺 × 𝐺 ∶ 𝜏−1𝜎−1𝑔1𝑔2 ∈ 𝐺𝑁/𝐿}
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and

𝜎𝐺𝑁/𝐿 × 𝜏𝐺𝑁/𝐿 = {(𝑔1, 𝑔2) ∈ 𝐺 × 𝐺 ∶ 𝑔1 ∈ 𝜎𝐺𝑁/𝐿, 𝑔2 ∈ 𝜏𝐺𝑁/𝐿}
= {(𝑔1, 𝑔2) ∈ 𝐺 × 𝐺 ∶ 𝜎−1𝑔1 ∈ 𝐺𝑁/𝐿, 𝜏−1𝑔2 ∈ 𝐺𝑁/𝐿}

Let (𝑔1, 𝑔2) ∈ 𝜎𝐺𝑁/𝐿×𝜏𝐺𝑁/𝐿. Since 𝜎−1𝑔1 ∈ 𝐺𝑁/𝐿, then there is 𝑔 ∈ 𝐺𝑁/𝐿 such
that 𝜎−1𝑔1 = 𝑔. So 𝜏−1𝜎−1𝑔1𝑔2 = 𝜏−1𝑔𝑔2 and we have that 𝑔2 ∈ 𝜏𝐺𝑁/𝐿, which
implies that there exists 𝑔′ such that 𝑔2 = 𝜏𝑔′, and then 𝜏−1𝜎−1𝑔1𝑔2 = 𝜏−1𝑔𝜏𝑔′.
But 𝜏−1𝑔𝜏𝑔′ = 𝑔″, since 𝐺𝑁/𝐿 ⊴ 𝐺 and 𝑔″ ∈ 𝐺𝑁/𝐿.Thus, 𝜏−1𝜎−1𝑔1𝑔2 = 𝑔″𝑔′ ∈
𝐺𝑁/𝐿, that is (𝑔1, 𝑔2) ∈ 𝛿−1

1 (𝜎𝜏𝐺𝑁/𝐿). Hence, 𝜎𝐺𝑁/𝐿×𝜏𝐺𝑁/𝐿 ⊆ 𝛿−1
1 (𝜎𝜏𝐺𝑁/𝐿).

Also it is clear that 𝜎𝐺𝑁/𝐿 × 𝜏𝐺𝑁/𝐿 is an open neighborhood as for product topol-
ogy of 𝐺 × 𝐺 and (𝜎, 𝜏) ∈ 𝜎𝐺𝑁/𝐿 × 𝜏𝐺𝑁/𝐿. Therefore, for every (𝜎, 𝜏) ∈
𝛿−1

1 (𝜎𝜏𝐺𝑁/𝐿) there exists an open neighborhood 𝜎𝐺𝑁/𝐿 × 𝜏𝐺𝑁/𝐿 of (𝜎, 𝜏) such
that 𝜎𝐺𝑁/𝐿 ×𝜏𝐺𝑁/𝐿 ⊆ 𝛿−1

1 (𝜎𝜏𝐺𝑁/𝐿). This implies that 𝛿−1
1 (𝜎𝜏𝐺𝑁/𝐿) is an open

neighborhood of 𝐺 × 𝐺 and so 𝛿−1
1 (𝜎𝐺𝑁/𝐿) is open for every 𝐺𝑁/𝐿 ∈ ℬ𝜎. More-

over, we have that 𝐴 = ∪𝜎𝐺𝑁/𝐿 is an open as a union of open sets. Thus, 𝛿1 is
a continuous map. Furthermore, we will show that 𝛿2 ∶ 𝐺 → 𝐺, with 𝜎 ↦ 𝜎−1

is a continuous map. It suffices to show that 𝛿−1
2 (𝐴) is open neighborhood of 𝐺

for every open neighborhood 𝐴 of 𝐺. Let 𝐴 be an open neighborhood of 𝐺, then
𝐴 = ∪𝜎𝐺𝑁/𝐿 and 𝛿−1

2 (∪𝜎𝐺𝑁/𝐿) = ∪𝛿−1
2 (𝜎𝐺𝑁/𝐿). We have that

𝛿−1
2 (𝜎−1𝐺𝑁/𝐿) = {𝑔 ∈∶ 𝑔−1 ∈ 𝜎−1𝐺𝑁/𝐿}

= {𝑔 ∈ 𝐺 ∶ 𝜎𝑔−1 ∈ 𝐺𝑁/𝐿}

𝜎𝐺𝑁/𝐿 = {𝑔 ∈ 𝐺 ∶ 𝑔 = 𝜎𝑔′, 𝑔′ ∈ 𝐺𝑁/𝐿}

Let 𝑔 ∈ 𝜎𝐺𝑁/𝐿, then 𝑔 = 𝜎𝑔′, 𝑔′ ∈ 𝐺𝑁/𝐿. So 𝜎𝑔−1 = 𝜎𝑔′−1𝜎−1 = 𝑔″ ∈ 𝐺𝑁/𝐿,
since 𝐺𝑁/𝐿 ⊴ 𝐺. This means that 𝜎𝐺𝑁/𝐿 ⊆ 𝛿−1

2 (𝜎−1𝐺𝑁/𝐿). Thus, 𝜎𝐺𝑁/𝐿 is an
open neighborhood of 𝜎. This implies that for every 𝜎 ∈ 𝛿−1

2 (𝜎−1𝐺𝑁/𝐿) there is
an open neighborhood 𝜎𝐺𝑁/𝐿 of 𝜎 satisfying that 𝜎𝐺𝑁/𝐿 ⊆ 𝛿−1

2 (𝜎−1𝐺𝑁/𝐿). So
𝛿−1

2 (𝜎−1𝐺𝑁/𝐿) is an open neighborhood of 𝐺 and then 𝛿−1
2 (𝜎𝐺𝑁/𝐿) is open for

every 𝐺𝑁/𝐿 ∈ ℬ𝜎. Hence, we have that 𝐴 = ∪𝜎𝐺𝑁/𝐿 is an open as a union of
open sets. Thus, 𝛿2 is a continuous map. Therefore the Galois group 𝐺 equipped
with Krull topology is a topological group.

Remark 1.3.13. 1) If 𝑁/𝐾 is finite Galois extension , then the Krull topology of
𝐺𝑁/𝐾 is discrete, since every subgroup of 𝐺𝑁/𝐾 is open but this is the definition of
discrete topology.
2) Let 𝜎, 𝜏 ∈ 𝐺𝐿/𝐾. Then 𝜏 ∈ 𝜎𝐺𝑁/𝐿 ⇔ 𝜎−1𝜏 ∈ 𝐺𝑁/𝐿 ⇔ (𝜎−1 ∘ 𝜏)(𝑥) = 𝑥, for
every 𝑥 ∈ 𝐿, that is 𝜎(𝑥) = 𝜏(𝑥), for every 𝑥 ∈ 𝐿, this means that two elements of
𝐺𝑁/𝐿 “are near” if they coincide on a large field 𝐿.
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Theorem 1.3.14. Let 𝑁/𝐾 be an infinite Galois extension and 𝐺 = 𝐺𝑁/𝐾. Then
the topological group 𝐺 equipped with Krull topology is

i) Hausdorff

ii) compact

iii) totally disconnected

Proof. i) To show that 𝐺 is Hausdorff, it suffices to show that for any two distinct
elements 𝜎, 𝜏 ∈ 𝐺, there is a neighborhood 𝑈 of 𝜎 and neighborhood 𝑉 of 𝜏 such
that 𝑈 ∩ 𝑉 = ∅. Let

ℱ = {𝐿/𝐾 ∶ 𝐾 ⩽ 𝐿 ⩽ 𝑁, 𝐿/𝐾 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒 𝐺𝑎𝑙𝑜𝑖𝑠}

and we have that the set

ℬ1 = {𝐺𝑁/𝐿 |𝐿/𝐾 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝐿 ∈ {𝑁 ∶ 𝐾}}

forms a basis of open neighborhoods of 1 ∈ 𝐺. So according to lemma 1.3.8
we have that ⋂

𝐿/𝐾∈ℱ
𝐺𝑁/𝐿 = {1}. Since 𝜎, 𝜏 are distinct elements in 𝐺, then

𝜎 ≠ 𝜏 ⇒ 𝜎−1𝜏 ≠ 1. Thus, there is 𝑈0 ∈ ℬ1 such that 𝜎−1𝜏 ∉ 𝑈0 ⇒ 𝜏 ∉ 𝜎𝑈0, and
then 𝜎𝑈0 ∩ 𝜏𝑈0 = ∅ because 𝑈0 ⊴ 𝐺. We know that 𝑈0 is an open neighborhood
of 1, then according to proposition 1.2.8 we have that 𝜎𝑈0 is an open neighborhood
of 𝜎 and 𝜏𝑈0 is open neighborhood of 𝜏 . Thus, 𝐺 is Hausdorff.

It suffices to notice that

⋂
𝐿/𝐾∈ℱ

𝐺𝑁/𝐿 = {1} ⇒ 𝑁 = ⋃
𝐿/𝐾∈ℱ

𝐿

Indeed,

𝑁 < 𝑖𝑑𝑁 >

𝐿 𝐺𝑎𝑙𝑁/𝐿

𝐾 𝐺𝑁/𝐾

We set 𝐺𝑖 = 𝐺𝑁/𝐿𝑖
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𝑁 < 𝑖𝑑 >

𝐿1𝐿2 𝐺1 ∩ 𝐺2

𝐿1 𝐿2 𝐺1 𝐺2

𝐾 𝐺

But 𝐺1 ∩ 𝐺2 = {1} and 𝐿1𝐿2 ⟷ 𝐺1 ∩ 𝐺2, so 𝑁 = 𝐿1𝐿2. In general
case ⋂

𝐿/𝐾∈ℱ
𝐺𝑁/𝐿 =< 𝑖𝑑 >, so then 𝑁 = ∏

𝐿/𝐾∈ℱ
𝐿. Clearly, ⋃

𝐿/𝐾∈ℱ
𝐿 ⊆ 𝑁 =

∏
𝐿/𝐾∈ℱ

𝐿. Let 𝑥 ∈ 𝑁 = ∏
𝐿/𝐾∈ℱ

𝐿. Then 𝑥 = 𝑙1𝑙2 ⋯ ∈ 𝐿1 ⊆ ⋃
𝐿/𝐾∈ℱ

𝐿. Therefore,

𝑁 = ⋃
𝐿/𝐾∈ℱ

𝐿.

ii) We define the map

ℎ ∶ 𝐺 → ∏
𝐿/𝐾∈ℱ

𝐺𝐿/𝐾 = 𝑃

𝜎 ↦ ∏
𝐿/𝐾∈ℱ

𝜎|𝐿

We notice that 𝑃 is compact according to Tychonoff’s theorem since every 𝐺𝐿/𝐾 is
compact as it is a discrete finite topological group. We will show that ℎ is a homeo-
morphism from𝐺 to ℎ(𝐺) and ℎ(𝐺) is a closed in the product space ∏

𝐿/𝐾∈ℱ
𝐺𝐿/𝐾 =

𝑃 . Then we will have that 𝐺 is compact.
Firstly, we will show that ℎ ∶ 𝐺 → ℎ(𝐺) is a homeomorphism. We will prove that
ℎ is injective. Let 𝜎 ∈ 𝐺 such that ℎ(𝜎) = 1. This means that 𝜎|𝐿 = 1, for every 𝐿
with 𝐿/𝐾 ∈ ℱ. We have that 𝜎(𝑥) = 𝑥, for every 𝑥 ∈ 𝑁 , since 𝑁 = ⋃

𝐿/𝐾∈ℱ
𝐿. So

𝜎 = 1 and then ℎ is injective. Also, we will show that ℎ is continuous. It suffices to
show that 𝑔𝐿/𝐾 ∘ ℎ is continuous, for every 𝑔𝐿/𝐾, where 𝑔𝐿/𝐾 is the projection of
𝑃 at 𝐺𝐿/𝐾.

𝐺 𝑃 𝐺𝐿/𝐾

𝜎 ℎ(𝜎) 𝜎|𝐿

ℎ 𝑔𝐿/𝐾

Indeed, if 𝑔𝐿/𝐾 ∘ℎ is continuous for every 𝑔𝐿/𝐾, then for every open set 𝐴 of 𝐺𝐿/𝐾
we have that (ℎ−1∘(𝑔𝐿/𝐾))−1(𝐴) is an open set of𝐺. From the definition of product
topology we have that

𝒴 = {𝑔−1
𝐿/𝐾(𝐴𝐿)|𝐿/𝐾 ∈ ℱ𝑎𝑛𝑑 𝐴𝐿 𝑖𝑠𝑜𝑝𝑒𝑛𝑖𝑛𝐺𝐿/𝐾}
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is a subbase of product topology. This means that ℎ−1(𝑉 ) is open set in 𝐺, for every
𝑉 ∈ 𝒴. Thus, ℎ is continuous. It remains to show that 𝑔𝐿/𝐾 ∘ ℎ is continuous. It
suffices to show that for every open set in 𝐺𝐿/𝐾 we have that (𝑔𝐿/𝐾 ∘ ℎ)−1(𝐴) is
an open set in 𝐺. It is clear that all singletons {𝜎} with 𝜎 ∈ 𝐺𝐿/𝐾 are open, since
𝐺𝐿/𝐾 is a topological group equipped with discrete topology, and we know that
ℬ = {{𝜎}, 𝜎 ∈ 𝐺𝐿/𝐾} forms a basis of discrete topological space 𝐺𝐿/𝐾. Let 𝐴
be an open set in 𝐺𝑁/𝐿, then 𝐴 = ⋃

𝑖
𝐵𝑖, with 𝐵𝑖 ∈ ℬ. So, (𝑔𝐿/𝐾 ∘ ℎ)−1(𝐴) =

(𝑔𝐿/𝐾 ∘ ℎ)−1(⋃
𝑖

𝐵𝑖) = ∪(𝑔𝐿/𝐾 ∘ ℎ)−1(𝐵𝑖). Clearly,

(𝑔𝐿/𝐾 ∘ ℎ)−1({1}) = {𝑥 ∈ 𝐺 ∶ (𝑔𝐿/𝐾 ∘ ℎ)(𝑥) = 1}
= {𝑥 ∈ 𝐺 ∶ 𝑥|𝐿 = 1}
= {𝑥 ∈ 𝐺 ∶ 𝑥 ∈ 𝐺𝑁/𝐿} = 𝐺𝑁/𝐿 ∈ ℬ1

Similarly, (𝑔𝐿/𝐾 ∘ℎ)−1({𝜎}) = 𝜎𝐺𝑁/𝐿 ∈ ℬ𝜎, so then (𝑔𝐿/𝐾 ∘ℎ)−1(𝐵𝑖) is open for
every 𝐵𝑖 ∈ ℬ. Thus 𝐴 = ∪𝑖𝐵𝑖 is open as union of open sets in 𝐺, so then 𝑔𝐿/𝐾 ∘ ℎ
is continuous.

Now we will prove that ℎ(𝐺) is closed in the 𝑃 and the map ℎ ∶ 𝐺 → ℎ(𝐺) is
an open map. We consider the set

𝑀𝐿1/𝐿2
= { ∏

𝐿/𝐾∈ℱ
𝜎|𝐿 ∶ 𝜎𝐿1

|𝐿2
= 𝜎𝐿2

}

where 𝐾 ⩽ 𝐿2 ⩽ 𝐿1 ⩽ 𝑁 , 𝐿𝑖/𝐾 ∈ ℱ and 𝜎𝐿𝑖
= 𝜎|𝐿𝑖

, for 𝑖 = 1, 2. The set
𝑀𝐿1/𝐿2

is closed in 𝑃 , because it is a union of finite number of closed sets. Indeed,
if 𝐺𝐿2/𝐾 = {𝜎1, 𝜎2, … , 𝜎𝑟} and 𝑆𝑖 is the set of all extensions of 𝜎𝑖 at 𝐿1, that is
𝑆𝑖 = {𝜏 ∈ 𝐺𝐿1/𝐾 | 𝜏𝐿2

= 𝜎𝑖} Then

𝑀𝐿1/𝐿2
=

𝑟
⋃
𝑖=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∏
𝐿≠𝐿1,𝐿2

𝐿/𝐾∈ℱ

𝐺𝐿/𝐾 × 𝑆𝑖 × {𝜎𝑖}
⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where ∏
𝐿≠𝐿1,𝐿2

𝐿/𝐾∈ℱ

𝐺𝐿/𝐾 × 𝑆𝑖 × {𝜎𝑖} is closed on 𝑃 .

Now we will prove that

ℎ(𝐺) = ⋂
𝐿2⊆𝐿1

𝑀𝐿1/𝐿2
, 𝑤ℎ𝑒𝑟𝑒 𝐿𝑖/𝐾 ∈ ℱ

It is clear that ℎ(𝐺) ⊆ ⋂
𝐿2⊆𝐿1

𝑀𝐿1/𝐿2
, since if 𝑥 = ∏

𝐿/𝐾∈ℱ
𝜎|𝐿 ∈ ℎ(𝐺) and let

𝐾 ⊆ 𝐿2 ⊆ 𝐿1 ⊆ 𝑁, 𝐿𝑖/𝐾 ∈ ℱ, 𝜎𝐿𝑖
= 𝜎|𝐿𝑖

, then 𝜎𝐿1
|𝐿2

= 𝜎𝐿2
. So 𝑥 ∈
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𝑀𝐿1/𝐿2
and 𝐿1, 𝐿2 are arbitrary and then 𝑥 ∈ ⋂

𝐿2⊆𝐿1

𝑀𝐿1/𝐿2
. Let now ∏

𝐿/𝐾∈ℱ
𝜎|𝐿 ∈

⋂
𝐿2⊆𝐿1

𝑀𝐿1/𝐿2
. We can consider a 𝐾-automorphism 𝜎 ∶ 𝑁 ↦ 𝑁 defined by 𝜎(𝑥) =

𝜎𝐿(𝑥), if 𝑥 ∈ 𝐿, so that ℎ(𝜎) = ∏
𝐿/𝐾∈ℱ

𝜎|𝐿 is well-defined since ∏
𝐿/𝐾∈ℱ

𝜎|𝐿 ∈

⋂
𝐿2⊆𝐿1

𝑀𝐿1/𝐿2
. Therefore ℎ(𝐺) = ⋂

𝐿2⊆𝐿1

𝑀𝐿1/𝐿2
. Hence, ℎ(𝐺) is closed in 𝑃 as an

intersection of closed sets.
Finally ℎ is open into ℎ(𝐺), since if 𝐿/𝐾 ∈ ℱ then

ℎ(𝐺𝑁/𝐿) = ℎ(𝐺) ⋂ ( ∏
𝐿′≠𝐾

𝐿/𝐾∈ℱ

𝐺𝐿′/𝐾 × {1})

Thus, ℎ(𝐺𝑁/𝐿) is open in ℎ(𝐺) and since 𝐺𝑁/𝐿 is an open neighborhood of 1 then
ℎ is open in ℎ(𝐺).
Hence, ℎ is a homeomorphism from 𝐺 to closed subset ℎ(𝐺) of compact space 𝑃 .
Therefore, ℎ(𝐺) is compact and then 𝐺 is compact.

iii) We only need to show that the connected component 𝐻 of 1 is the one-point
set 𝐻 = {1}, since 𝐺 is a topological group and so 𝐺 is homogeneous. For every
𝑈 ∈ ℬ1 let 𝑈𝐻 = 𝑈 ∩ 𝐻 , then 𝑈𝐻 ≠ ∅, since 1 ∈ 𝑈𝐻 , for every 𝑈 ∈ ℬ1, and 𝑈𝐻
is open in 𝐻 . Let

𝑉𝐻 ∶= ⋃
𝑥∈𝐻∖𝑈𝐻

𝑥𝑈𝐻

We have that 𝑥𝑈𝐻 is open, so then 𝑉𝐻 is open in 𝐻 . Clearly, 𝑉𝐻 ∩ 𝑈𝐻 = ∅ (by
definition of𝑉𝐻) and𝐻 = 𝑈𝐻∪𝑉𝐻 . But𝑈𝐻 ≠ ∅ and𝐻 is the connected component
of 1, so then 𝑉𝐻 = ∅. That is 𝑈𝐻 = 𝐻 , which means that 𝑈 ∩ 𝐻 = 𝐻 for every
𝑈 ∈ ℬ1, Then 𝐻 ⊆ ⋂𝑈∈ℬ1

𝑈 = {1}. Therefore, 𝐺 is totally disconnected.

It worths to note that it is true the following: A compact topological group is
totally disconnected if and only if the intersection of all compact neighborhoods of
1 is equal to {1}. A proof of this can be found in [9].

1.4 The Fundamental Theoremof InfiniteGalois The-
ory

In this sectionwewill state and prove the fundamental theorem for infinite Galois
theory. In fact, the main theorem of the infinite Galois theory is a generalization of
the fundamental theorem of the finite Galois theory.
For its proof we will require just one more proposition, which we state and prove
now.
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Proposition 1.4.1. Let 𝑁/𝐾 be a Galois extension. The open subgroups of 𝐺 =
𝐺𝑁/𝐾 are just the groups 𝐺𝑁/𝐿 where 𝐿/𝐾 is a finite subextension of 𝑁/𝐾. The
closed subgroups are precisely the intersections of open subgroups.

Proof. Let 𝐿 with 𝐾 ⊆ 𝐿 ⊆ 𝑁 such that 𝐿/𝐾 is a finite extension. So then 𝐿/𝐾 is

finitely generated extension, that is𝐿 = 𝐾(𝛼1, … , 𝛼𝑛). Let 𝑓(𝑥) =
𝑛

∏
𝑖=1

𝐼𝑟𝑟(𝛼𝑖, 𝐾).

�̄�

𝐿 = 𝐾(𝛼1, … , 𝛼𝑛)

𝐾

where �̄� is the separable closure of 𝐾, so �̄�/𝐾 is separable and then 𝐿/𝐾 is also
separable. Let �̃� be the splitting field of 𝑓 , which is separable. Thus �̃�/𝐾 is Galois.
Also �̃�/𝐾 is finite, since 𝐿/𝐾 is. So 𝐾 ≤ 𝐿 ≤ �̃� ≤ 𝑁 . We choose a finite normal
extension �̃�/𝐾 such that 𝐾 ≤ 𝐿 ≤ �̃� ≤ 𝑁 . Then 𝐺𝑁/�̃� ≤ 𝐺𝑁/𝐿 ≤ 𝐺𝑁/𝐾 = 𝐺

𝑁 < 𝑖𝑑𝑁 >

�̃� 𝐺𝑎𝑙𝑁/�̃�

𝐿 𝐺𝑎𝑙𝑁/𝐿

𝐾 𝐺𝑁/𝐾

So, 𝐺𝑁/𝐿 = ⋃
𝜎∈𝐺𝑁/𝐿

𝜎𝐺𝑁/�̃�, and then 𝐺𝑁/𝐿 is open as a union of open sets. Con-

versely, let now 𝐻 be open subgroup of 𝐺. Then there is a finite Galois extension
�̄�/𝐾 such that 𝐺𝑁/�̃� ≤ 𝐻 ≤ 𝐺. We consider the epimorphism

𝐺 → 𝐺/ ̃𝑁
𝜎 ↦ 𝜎|�̃�

which is the restriction of 𝐺 in 𝐺�̃�/𝐾 and 𝐺/𝐺𝑁/�̃� ≅ 𝐺�̃�/𝐾, so its kernel is 𝐺𝑁/�̃�.
The image of𝐻 under this restriction is a subgroup of𝐺�̃�/𝐾 and since �̃�/𝐾 is finite,
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then the image of𝐻 under this restriction is of the form𝐺�̃�/𝐿, for some field𝐿 such
that 𝐾 ≤ 𝐿 ≤ �̃�. Thus,

𝐻 = {𝜎 ∈ 𝐺 ∶ 𝜎|𝐿 = 𝑖𝑑𝐿} = 𝐺𝑁/𝐿

Therefore we proved that the open subgroups of 𝐺 = 𝐺𝑁/𝐾 are just the groups
𝐺𝑁/𝐿 where 𝐿/𝐾 is a finite subextension of 𝑁/𝐾.

Every open subgroup of 𝐺 is also closed, since it is the complement of a union
of cosets of 𝐺 which are open, that is

𝐺 = 𝐺𝑁/𝐿 ∪ ( ⋃
𝜎∈𝐺∖𝐺𝑁/𝐿

)

So the intersections of open groups 𝐺𝑁/𝐿 are also closed subgroups. Conversely,
we assume that 𝐻 is closed subgroup of 𝐺. Clearly, 𝐻 ⊆ 𝐻𝑈 , for every 𝑈 ∈ ℬ1,
and then

𝐻 ⊆ ⋂
𝑈∈ℬ1

𝐻𝑈

On the other hand, let 𝜎 ∈ ⋂𝑈∈ℬ1
𝐻𝑈 . We have that 𝜎𝑈 ∈ ℬ𝜎, since 𝑈 ∈ ℬ1.

So there is a 𝑈0 ∈ ℬ1 such that 𝜎 ∈ 𝐻𝑈0, that is 𝜎 = 𝜎1𝜎2, with 𝜎1 ∈ 𝐻 and
𝜎2 ∈ 𝑈0, then 𝜎𝑈 = 𝜎1𝜎2𝑈 = 𝜎1𝑈 and 𝜎1 = 𝜎1 ⋅ 1 ∈ 𝜎𝑈 . Thus, 𝜎𝑈 ∩ 𝐻 ≠ ∅, for
every 𝑈 ∈ ℬ1. This means that for every open neighborhood 𝑉 of 𝜎 we have that
𝑉 ∩ 𝐻 ≠ ∅, that is 𝜎 ∈ 𝑐𝑙(𝐻) = �̄� . But 𝐻 is closed, so then 𝜎 ∈ �̄� = 𝐻 . Hence,
𝐻 = ⋂

𝑈∈ℬ1

𝐻𝑈 and then 𝐻 is the intersection of the open subgroups 𝐻𝑈 .

Comment 1.4.2. In proposition 1.4.1 we assume that 𝐿/𝐾 is finite but it isn’t nec-
essary 𝐿/𝐾 are Galois like in proposition 1.3.5.

Nowwe are ready to state and prove the fundamental theorem for infinite Galois
extensions.

Theorem 1.4.3 (Krull’s Theorem). Let𝑁/𝐾 be a (finite or infinite) Galois extension
and let 𝐺 = 𝐺𝑁/𝐾. Let {𝑁 ∶ 𝐾} be the lattice of intermediate fields 𝐾 ⊆ 𝐿 ⊆ 𝑁
and let {𝐺 ∶ 1} be the lattice of closed subgroups of 𝐺. If 𝐿 ∈ {𝑁 ∶ 𝐾} we define

𝜙(𝐿) = {𝜎 ∈ 𝐺 | 𝜎|𝐿 = 𝑖𝑑𝐿} = 𝐺𝑁/𝐿

Then 𝜙 is a lattice anti-isomorphism of {𝑁 ∶ 𝐾} and {𝐺 ∶ 1}. Moreover, 𝐿 ∈ {𝑁 ∶
𝐾} is a Galois extension of 𝐾 if and only if 𝜙(𝐿) is a normal subgroup of 𝐺. If this
is the case then

𝐺𝐿/𝐾 ≅ 𝐺/𝜙(𝐿)
Proof. By assumption we have that 𝑁/𝐾 is Galois, so is the 𝑁/𝐿. Then according
to theorem 1.3.14 we have that 𝜙(𝐿) = 𝐺𝑁/𝐿 is compact. So 𝐺𝑁/𝐿 is closed in 𝐺.
This implies that 𝜙 is in fact a map into {𝐺 ∶ 1}. We define
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𝜓 ∶ {𝐺 ∶ 1} → {𝑁 ∶ 𝐾}
which defined by

𝜓(𝐻) = {𝑥 ∈ 𝑁 ∶ 𝐻𝑥 = 𝑥}
Wehave already proved that𝜓∘𝜙 = 𝑖𝑑{𝑁∶𝐾}. It remains to show that𝜙∘𝜓 = 𝑖𝑑{𝐺∶1}.
If 𝐿/𝐾 is finite, then

𝜙(𝜓(𝐺𝑁/𝐿)) = 𝜙(𝜓(𝜙(𝐿))) = 𝜙(𝜓 ∘ 𝜙(𝐿))
= 𝜙(𝑖𝑑(𝐿)) = 𝜙(𝐿) = 𝐺𝑁/𝐿

If 𝐻 ∈ {𝐺 ∶ 1}, then according to proposition 1.4.1 we have that
𝐻 = ⋂ 𝐺𝑁/𝐿

where 𝐿 is running through a collection of 𝐿 such that 𝐾 ⊆ 𝐿 ⊆ 𝑁 with 𝐿/𝐾 is
finite. Then

𝜙(𝜓(𝐻)) = 𝜙(𝜓(∩𝐺𝑁/𝐿)) = 𝜙(∪𝜓(𝐺𝑁/𝐿))
= ∩(𝜙 ∘ 𝜓)(𝐺𝑁/𝐿) = ∩𝐺𝑁/𝐿 = 𝐻

That is 𝜙 ∘ 𝜓 = 𝑖𝑑{𝐺∶1}.

Let now 𝐿/𝐾 be Galois extension and 𝐻 = 𝜙(𝐿) = 𝐺𝑁/𝐿. We will show that
𝐻 ⊴ 𝐺, that is 𝜎𝐻𝜎−1 = 𝐻 , for every 𝜎 ∈ 𝐺. Since𝐿/𝐾 is Galois then 𝜎(𝐿) = 𝐿,
for every 𝜎 ∈ 𝐺 and we know that if 𝜎 ∈ 𝐺 then 𝜙(𝜎(𝐿)) = 𝜎𝜙(𝐿)𝜎−1. Then:

𝜓(𝜙(𝜎(𝐿))) = 𝜓(𝜎𝜙(𝐿)𝜎−1) ⇒
𝜎(𝐿) = 𝜓(𝜎𝐻𝜎−1)

In addition, 𝐿 = 𝜓(𝐻). But
𝐿 = 𝜎(𝐿) ⇒ 𝜓(𝜎𝐻𝜎−1) = 𝜓(𝐻)

⇒ 𝜎𝐻𝜎−1 = 𝐻, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜎
⇒ 𝐻 ⊴ 𝐺

Conversely, suppose 𝐻 ⊴ 𝐺 and 𝜓(𝐻) = 𝐿. Then 𝜎𝐻𝜎−1 = 𝐻 , for every 𝜎 ∈ 𝐺,
that is 𝜓(𝜎𝐻𝜎−1) = 𝜓(𝐻), for every 𝜎 ∈ 𝐺, So 𝜎(𝐿) = 𝐿, for every 𝜎 ∈ 𝐺, and
then𝐿/𝐾 is normal extension and also𝐿/𝐾 is separable since𝑁/𝐾 is. Thus,𝐿/𝐾
is Galois.
Finally, since every 𝐾-automorphism of 𝑁 at 𝐿 is a 𝐾-automorphism of 𝐿, since
𝐿/𝐾 is Galois.

𝑁 𝑁

𝐿 𝐿

𝐾 𝐾

𝜏

𝑖𝑑
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Let 𝜏 ∈ 𝐺𝑁/𝐾. Then 𝜏|𝐿 ∶ 𝐿 → �̄� such that 𝜏𝐾 = 𝑖𝑑 and 𝜏𝐿 is a homomorphism.
But 𝜏(𝐿) = 𝐿, so then 𝜏|𝐿 ∶ 𝐿 → 𝐿 with 𝜏|𝐾 = 𝑖𝑑, which means that 𝜏𝐿 is a
𝐾-automorphism. Thus, the restriction of every 𝐾-automorphism of 𝑁 in 𝐿 is a
𝐾-automorphism of 𝐿. We consider the map

𝑟𝑒𝑠𝑡 ∶ 𝐺 → 𝐺𝐿/𝐾
𝜎 ↦ 𝜎|𝐿

According to the above we have that the map 𝑟𝑒𝑠𝑡 is well-defined. Moreover, the
𝑟𝑒𝑠𝑡 is a surjection map. If 𝜏 ∈ 𝐺𝐿/𝐾 then 𝜏 ∶ 𝐿 → 𝐿 is a 𝐾-automorphism.
Since 𝑁/𝐾 is Galois then 𝑁 is the splitting field of 𝑓(𝑋) ∈ 𝐾[𝑋] and 𝐾 ⊆ 𝐿 ⊆
𝑁 . So 𝜏(𝑓) = 𝑓 , since 𝜏 ∈ 𝐺𝐿/𝐾. Thus, according to isomorphism extension
theorem there exists an isomorphism 𝜎 ∶ 𝑁 → 𝑁 such that 𝜎|𝐿 = 𝜏 . The 𝜎 is an
automorphism of 𝑁 and 𝜎|𝐾𝜏|𝐾 = 𝑖𝑑. This means that for every 𝜏 ∈ 𝐺𝐿/𝐾 there
is 𝜎 ∈ 𝐺𝑁/𝐾 such that 𝜎|𝐿 = 𝜏 . Consequently, the 𝑟𝑒𝑠𝑡 is a surjection map and the
kernel of this restriction is

𝐾𝑒𝑟(𝑟𝑒𝑠𝑡) = {𝜎 ∈ 𝐺 ∶ 𝜎|𝐿 = 𝑖𝑑} = 𝐺𝑁/𝐿 = 𝜙(𝐿)

Therefore, according to first isomorphism theorem of groups we have that

𝐺/𝜙(𝐿) ≅ 𝐺𝐿/𝐾

So we ascertain that it is indeed possible to extend the fundamental theorem of
finite Galois extensions to infinite algebraic extensions. This new theorem does in-
deed extend the old one. If 𝐿/𝐾 is a finite Galois extension, then the Krull topology
on𝐺𝑎𝑙(𝐿/𝐾) is discrete. This occurs because𝐿/𝐾 is a finite Galois extension, thus
𝐺𝑎𝑙(𝐿/𝐿) = {1} is open. Hence every subgroup of 𝐺𝑎𝑙(𝐿/𝐾) is closed, so then
we obtain our original correspondence between intermediate fields and subgroups.

1.5 The use of Infinite Galois Theory
We have defined a fundamental theorem for infinite Galois extensions. An ap-

propriate question to pose is whether this new theorem is at all useful. It would be
the case that infinite Galois extensions are rarely encountered, so the study of their
Galois groups would be in many ways fruitless. But there are occasions in which we
would like to study infinite extensions. We know from elementary field theory that
every algebraic extension of either field of characteristic 0 or a finite field is separa-
ble. Thus, when our field 𝐹 is in one of these categories, the field extension �̄�/𝐾 is
separable. Clearly, �̄�/𝐾 is normal since �̄� contains all roots of every polynomial
𝑓(𝑋) ∈ 𝐹[𝑋], and hence is Galois. However, there are cases when �̄�/𝐾 is not a
separable extension as we shall see in the following example, so �̄�/𝐾 cannot be
Galois.
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Example 1.5.1. Let 𝐾 = 𝔽2(𝑡), where 𝑡 is transcendental. Then
√

𝑡 ∈ �̄� because√
𝑡 is a root of the polynomial 𝑋2 − 𝑡 over 𝐾. But 𝑋2 − 𝑡 = (𝑋 −

√
𝑡)2 is not

separable. Therefore, �̄�/𝐾 is not a separable extension, so it cannot be Galois.

Definition 1.5.2. Let 𝐿/𝐾 be a field extension. The separable closure of 𝐾 in 𝐿
denoted by 𝐾𝑠𝑒𝑝, is

𝐾𝑠𝑒𝑝 = {𝑥 ∈ 𝐿 | 𝑥 𝑖𝑠 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑜𝑣𝑒𝑟 𝐾}

When 𝐾𝑠𝑒𝑝 is written without reference to a particular extension field 𝐿 of 𝐾, we
will mean the separable closure of 𝐾 in �̄�.

We can show the following proposition

Proposition 1.5.3. Let 𝐾 be a field, �̄� its algebraic closure, and 𝐾𝑠𝑒𝑝 its separable
closure in �̄�. Then𝐾𝑠𝑒𝑝/𝐾 is aGalois extension, and𝐺𝑎𝑙(�̄�/𝐾) ≅ 𝐺𝑎𝑙(𝐾𝑠𝑒𝑝/𝐾).

The proof of this extension can be found in [10].

Definition 1.5.4. The group 𝐺 = 𝐺𝑎𝑙(𝐾𝑠𝑒𝑝/𝐾) is the absolute Galois group of the
field 𝐾.

Example 1.5.5. If 𝐾 = ℚ, then ℚ𝑠𝑒𝑝 = ℚ̄, then the absolute Galois group of ℚ is
𝐺𝑎𝑙(ℚ̄/ℚ).

As a rule the extension 𝐾𝑠𝑒𝑝/𝐾 is an infinite extension. However, it does have
the advantage of collecting all finite Galois extensions of 𝐾. So it is reasonable
to develop the Galois theory for infinite extensions. This theory would help us to
understand the Galois extension ℚ̄/ℚ and in turn, any understanding of the Galois
group 𝐺𝑎𝑙(ℚ̄/ℚ) would be indispensable in number theory.



Chapter 2

Profinite groups

The groups which occur as Galois groups of field extensions belong to a class of
topological groups, the so-called profinite groups. In this chapter we are going to in-
vestigate the profinite groups. These groups are fairly close relatives of finite groups.
For the precise description of profinite groups we need the notion of projective limit
which we will introduce as well.

2.1 Category Theory
Eilenberg and Mac Lane invented categories and functors in the 1940s by dis-

tilling ideas that had arisen in Algebraic Topology. Categorical notions have proven
to be important in purely algebraic contexts. Category theory will force us to think
in general case and categories are the context for discussing general properties of
systems, such as groups, rings, vector spaces, modules, sets and topological spaces.
Imagine a Set Theory whose primitive terms, instead of set and elements, are set and
function. Then with the help of category theory we can define bijection, cartesian
product, union and intersection. In this section we will study categories because they
are an essential ingredient in the definition of functor, which will be useful in next
sections.

In Set Theory there are well-known set-theoretic “paradoxes” showing that con-
tradictions arise if we are not careful about how the undefined terms set and element
are used. For example, Russell’s Paradox give a contradiction arising from regard-
ing every collection as a set. From this we conclude that some conditions are needed
to determine which collections are allowed to be sets. Such conditions are given in
Zermelo-Fraenkel axioms for Set Theory.

Definition 2.1.1. • A class is a collection whose elements are also classes.

• Every class (except from zero class) has elements but a class isn’t required to
be an element of another class.

• If a class 𝒜 is an element of some class ℬ then the class 𝒜 is called set.
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For example,

	 The class of all groups.

	 The class of all group homomorphisms.

	 The class of all sets.

	 The class of all rings.

Now we will define the categories.

Definition 2.1.2. Let𝒳 be a class and 𝑜𝑏𝑗(𝒳) is the class of objects of𝒳. We assume
that 𝒳 is equipped with two maps, as follows

i) The first map assigns for every ordered pair of objects (𝑋, 𝑌 ) a set of mor-
phisms 𝐻𝑜𝑚𝒳(𝑋, 𝑌 ) = 𝐻𝑜𝑚(𝑋, 𝑌 ).

ii) The second one assigns for every ordered triple of objects (𝑋, 𝑌 , 𝑍) a map

𝐻𝑜𝑚(𝑌 , 𝑍) × 𝐻𝑜𝑚(𝑋, 𝑌 ) → 𝐻𝑜𝑚(𝑋, 𝑍)

denoted by (𝑔, 𝑓) ↦ 𝑔 ∘ 𝑓 for every morphisms 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍.
The morphism 𝑔 ∘ 𝑓 is called composition of 𝑔, 𝑓 .

The class 𝒳 equipped with the above two maps will be called category if it also
verifies the following axioms

1) Composition is associative. If ℎ ∶ 𝑍 → 𝑊, 𝑔 ∶ 𝑌 → 𝑍, and 𝑓 ∶ 𝑋 → 𝑌 are
morphisms of 𝒳, then ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓 .

2) For each object 𝑌 in 𝒳 there exists an identity morphism 1𝑌 ∶ 𝑌 → 𝑌 such
that

𝑖𝑓 𝑓 ∶ 𝑋 → 𝑌 𝑡ℎ𝑒𝑛 1𝑌 ∘ 𝑓 = 𝑓
𝑖𝑓 𝑔 ∶ 𝑌 → 𝑍 𝑡ℎ𝑒𝑛 𝑔 ∘ 1𝑌 = 𝑔

Example 2.1.3. i) 𝒳 = 𝕊𝕖𝕥𝕤 the category of all sets. The objects in this category
are sets, 𝐻𝑜𝑚(𝑋, 𝑌 ) = {𝑓 ∶ 𝑋 → 𝑌 | 𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛} and composition 𝑔 ∘ 𝑓 is the
usual composition of functions.
ii) 𝒳 = 𝔾𝕣𝕠𝕦𝕡𝕤 the category of all groups. The objects in this category are groups,
morphisms are homomorphisms, that is 𝐻𝑜𝑚(𝑋, 𝑌 ) = {𝑓 ∶ 𝑋 → 𝑌 | 𝑓 ℎ𝑜𝑚𝑜-
𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚} and composition 𝑔 ∘ 𝑓 is te usual composition of homomorphisms.
iii) 𝒳 = ℝ𝕚𝕟𝕘𝕤 the category of all rings. The objects in this category are rings, mor-
phisms are homomorphisms of rings, that is 𝐻𝑜𝑚(𝑋, 𝑌 ) = {𝑓 ∶ 𝑋 → 𝑌 | 𝑓 ℎ𝑜𝑚𝑜-
𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑜𝑓 𝑟𝑖𝑛𝑔𝑠} and composition 𝑔 ∘ 𝑓 is the usual composition of homomor-
phisms.
iv) 𝒳 = 𝑅𝕄𝕠𝕕 the category of all left 𝑅-modules over a ring 𝑅. The objects in
this category are left 𝑅-modules, morphisms are 𝑅 − ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠, that is
𝐻𝑜𝑚(𝑋, 𝑌 ) = {𝑓 ∶ 𝑋 → 𝑌 | 𝑓 𝑅 − ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚} and composition 𝑔 ∘ 𝑓 is
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the usual composition.
If 𝑅 = ℤ, then we write 𝑅𝕄𝕠𝕕 = 𝔸𝕓 to remind ourselves that ℤ-modules are just
abelian groups.
v) 𝒳 = 𝕄𝕠𝕕ℝ the category of all right 𝑅-modules over a ring 𝑅. The objects in
this category are right 𝑅-modules, morphisms are 𝑅 − ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠, that is
𝐻𝑜𝑚(𝑋, 𝑌 ) = {𝑓 ∶ 𝑋 → 𝑌 | 𝑓 𝑅 − ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚} and composition 𝑔 ∘ 𝑓 is
the usual composition.
The Hom sets in 𝕄𝕠𝕕𝑅 are also denoted by 𝐻𝑜𝑚𝑅(𝑎, 𝑏).
vi) 𝒳 = 𝕋𝕠𝕡 the category of all topological spaces. The objects in this category are
topological spaces, morphisms are all continuous functions, that is 𝐻𝑜𝑚(𝑋, 𝑌 ) =
{𝑓 ∶ 𝑋 → 𝑌 | 𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠} and composition 𝑔 ∘ 𝑓 is the usual composition.

Now we can define functors.

Definition 2.1.4. If 𝒳 and 𝒳′ are categories, then a functor ℱ ∶ 𝒳 → 𝒳′ is a
function such that
i) if 𝑋 ∈ 𝑜𝑏𝑗(𝒳), then ℱ(𝑋) = 𝑋′ ∈ 𝑜𝑏𝑗(𝒳′)
ii) if 𝑓 ∶ 𝑋 → 𝑌 is a morphism in 𝒳, then ℱ(𝑓) ∶ ℱ(𝑋) → ℱ(𝑌 ) is a morphism
in 𝒳′.
iii) for every 𝑋 ∈ 𝑜𝑏𝑗(𝒳), then ℱ(1𝑋) = 1ℱ(𝑋)
iv) if 𝑓 ∶ 𝑋 → 𝑋′ and 𝑔 ∶ 𝑋′ → 𝑋″ are morphisms in 𝒳, then

ℱ(𝑋)
ℱ(𝑓)
→ ℱ(𝑋′)

ℱ(𝑔)
→ ℱ(𝑋″)

in 𝒳′ and
ℱ(𝑔 ∘ 𝑓) = ℱ(𝑔) ∘ ℱ(𝑓)

Definition 2.1.5. Let ℱ and 𝒢 be functors from any category 𝒳 to the category of
sets, 𝕊𝕖𝕥𝕤. The functor 𝒢 will be called subfunctor of ℱ, when
i) For every 𝑋 ∈ 𝒳 the 𝒢(𝑋) is a subset of ℱ(𝑋).
and
ii) For every morphism 𝑓 of 𝒳 the 𝒢(𝑓) is the restriction of ℱ(𝑓) to 𝕊𝕖𝕥𝕤.
Example 2.1.6. 1) If 𝒳 is a category, then the identity functor 1𝒳 ∶ 𝒳 → 𝒳 is
defined by 1𝒳(𝑋) = 𝑋 for every 𝑋 ∈ 𝑜𝑏𝑗(𝒳) and 1𝒳(𝑓) = 𝑓 for every morphism
𝑓

2) Let 𝒳 be a category and 𝐴 ∈ 𝑜𝑏𝑗(𝒳), then the Hom functor 𝑇𝐴 ∶ 𝒳 → 𝕊𝕖𝕥𝕤 is
defined by 𝑇𝐴(𝐵) = 𝐻𝑜𝑚(𝐴, 𝐵) for every 𝐵 ∈ 𝑜𝑏𝑗(𝒳)
and if 𝑓 ∶ 𝐵 → 𝐵′ in 𝒳, then

𝑇𝐴(𝑓) ∶ 𝐻𝑜𝑚(𝐴, 𝐵) → 𝐻𝑜𝑚(𝐴, 𝐵′)
ℎ ↦ 𝑓 ∘ ℎ

Then the 𝑇𝐴(𝑓) is called induced map and is denoted by
𝑓∗ = 𝑇𝐴(𝑓)
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We will show that 𝑓∗ = 𝑇𝐴(𝐹) is a functor. By definition of 𝑇𝐴(𝑓) = 𝐻𝑜𝑚(𝐴, 𝐵)
we have that 𝐻𝑜𝑚(𝐴, 𝐵) is a set and so 𝑇𝐴(𝑓) ∈ 𝑜𝑏𝑗(𝕊𝕖𝕥𝕤). We notice that the
composition 𝑓 ∘ ℎ makes sense.

𝐴 𝐵 𝐵′
𝑓∘ℎ

ℎ 𝑓

Let now that 𝑔 ∶ 𝐵′ → 𝐵″. Then,

𝐵 𝐵′ 𝐵″𝑓 𝑔

𝐻𝑜𝑚(𝐴, 𝐵) 𝐻𝑜𝑚(𝐴, 𝐵′) 𝐻𝑜𝑚(𝐴, 𝐵″)𝑓∗ 𝑔∗

and (𝑔 ∘ 𝑓)∗ ∶ 𝐻𝑜𝑚(𝐴, 𝐵) → 𝐻𝑜𝑚(𝐴, 𝐵″).

Let ℎ ∈ 𝐻𝑜𝑚(𝐴, 𝐵), then

(𝑔 ∘ 𝑓)∗(ℎ) = (𝑔 ∘ 𝑓) ∘ ℎ

On the other hand,

𝐻𝑜𝑚(𝐴, 𝐵) 𝐻𝑜𝑚(𝐴, 𝐵′) 𝐻𝑜𝑚(𝐴, 𝐵″)

ℎ 𝑓 ∘ ℎ 𝑔 ∘ (𝑓 ∘ ℎ)

𝑓∗ 𝑔∗

Clearly, 𝑔∘(𝑓∘ℎ) = (𝑔∘𝑓)∘ℎ, because𝕊𝕖𝕥𝕤 is a category. Thus, (𝑔∘𝑓)∗ = 𝑔∗∘𝑓∗. Fi-
nally, 1𝐵 ∶ 𝐵 → 𝐵, then (1𝐵)∗ ∶ 𝐻𝑜𝑚(𝐴, 𝐵) → 𝐻𝑜𝑚(𝐴, 𝐵), where ℎ ↦ 1𝐵∘ℎ =
ℎ. That is (1𝐵)∗(ℎ) = ℎ, for every ℎ ∈ 𝐻𝑜𝑚(𝐴, 𝐵). So, (1𝐵)∗ = 1𝐻𝑜𝑚(𝐴,𝐵).
Therefore, the 𝑇𝐴(𝑓) = 𝑓∗ is a functor.

We can easily prove that 𝑇𝐴 preserves products, that is

𝑇𝐴(∏
𝑖

𝐵𝑖) ≅ ∏
𝑖

𝑇𝐴(𝐵𝑖)

We usually denote 𝑇𝐴 by 𝐻𝑜𝑚(𝐴,□).

3) Let𝑅 be a commutative ring and𝐴 is a𝑅-module. Then it is clear that𝐻𝑜𝑚𝑅(𝐴, 𝐵)
is a 𝑅-module as well. We will show that if 𝑓 ∶, 𝐵 → 𝐵′, then

𝑓∗ ∶ 𝐻𝑜𝑚𝑅(𝐴, 𝐵) → 𝐻𝑜𝑚𝑅(𝐴, 𝐵′)
ℎ ↦ 𝑓 ∘ ℎ

is a 𝑅-homomorphism. Indeed, 𝑓∗ is additive map. If ℎ, ℎ′ ∈ 𝐻𝑜𝑚𝑅(𝐴, 𝐵), then
for each 𝑎 ∈ 𝐴,

𝑓∗(ℎ + ℎ′)(𝑎) = (𝑓 ∘ (ℎ + ℎ′))(𝑎) = 𝑓(ℎ(𝑎) + ℎ′(𝑎)
= 𝑓(ℎ(𝑎)) + 𝑓(ℎ′(𝑎)) = (𝑓∗(ℎ) + 𝑓∗(ℎ′))(𝑎)
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Also, 𝑓∗ preserves scalars. We remind that if 𝑟 ∈ 𝑅 and ℎ ∈ 𝐻𝑜𝑚𝑅(𝐴, 𝐵), then
𝑟ℎ(𝑎) = ℎ𝑟(𝑎). Then, 𝑓∗(𝑟ℎ)(𝑎) = (𝑓 ∘ 𝑟ℎ)(𝑎) = 𝑓(𝑟ℎ(𝑎)) = 𝑓(ℎ(𝑟𝑎)) and
𝑟𝑓∗(ℎ)(𝑎) = 𝑟(𝑓 ∘ ℎ(𝑎)) = 𝑓(𝑟(ℎ(𝑎))) = 𝑓(ℎ(𝑟𝑎)). Thus 𝑓∗(𝑟ℎ) = 𝑟𝑓∗(ℎ).
Hence, 𝑓∗ is a 𝑅-homomorphism. Similarly with (2) of the example, we can prove
that 𝐻𝑜𝑚𝑅(𝐴,□) is a functor.

4) Let 𝒳 be a category and 𝐴 ∈ 𝑜𝑏𝑗(𝒳). We define 𝑇 ∶ 𝒳 → 𝒳, with 𝑇 (𝐶) = 𝐴,
for each 𝐶 ∈ 𝑜𝑏𝑗(𝒳) and 𝑇 (𝑓) = 1𝐴 for every morphism 𝑓 in 𝒳. Then 𝑇 is
a functor. Indeed, we have that 𝑇 (𝐶) ∈ 𝑜𝑏𝑗(𝒳), for every 𝐶 ∈ 𝑜𝑏𝑗(𝒳). Also,
let 1𝐶 ∶ 𝐶 → 𝐶, with 𝐶 ∈ 𝑜𝑏𝑗(𝒳), then 𝑇 (1𝐶) = 1𝐴 = 1𝑇 (𝐶). Finally, let
𝑓 ∶ 𝐶 → 𝐶′ and 𝑔 ∶ 𝐶′ → 𝐶″, then 𝑇 (𝑔 ∘ 𝑓) = 1𝐴 = 1𝐴 ∘ 1𝐴 = 𝑇 (𝑔) ∘ 𝑇 (𝑓).
Therefore, 𝑇 is a functor, which is called constant functor at 𝐴.

The second type of functor reverses the direction of arrows.

Definition 2.1.7. If 𝒳 and 𝒳′ are categories, then a contravariant functor 𝑒 ∶ 𝒳 →
𝒳′ is a function such that
i) if 𝑋 ∈ 𝑜𝑏𝑗(𝒳), then 𝑒(𝑋) = 𝑋′ ∈ 𝑜𝑏𝑗(𝒳′)
ii) if 𝑓 ∶ 𝑋 → 𝑌 is a morphism in 𝒳, then 𝑒(𝑓) ∶ 𝑒(𝑌 ) → 𝑒(𝑋) is a morphism in
𝒳′.
iii) for every 𝑋 ∈ 𝑜𝑏𝑗(𝒳), then 𝑒(1𝑋) = 1𝑒(𝑋)
iv) if 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are morphisms in 𝒳, then

𝑒(𝑋)
𝑒(𝑓)
← 𝑒(𝑌 )

𝑒(𝑔)
← 𝑒(𝑍)

in 𝒳′ and
𝑒(𝑔 ∘ 𝑓) = 𝑒(𝑓) ∘ 𝑒(𝑔)

The functors defined earlier are often called covariant functors.

Definition 2.1.8. If ℱ and 𝒢 are functors from any category 𝒳 to the category 𝒳′,
then natural transformation 𝜏 ∶ ℱ → 𝒢 is a function which for every 𝑋 ∈ 𝑜𝑏𝑗(𝒳)
there is morphism 𝜏𝑋 ∶ ℱ(𝑋) → 𝒢(𝑋) of 𝒳′ such that for every morphism 𝑓 ∶
𝑋 → 𝑌 the following diagram commutes

ℱ(𝑋) 𝒢(𝑋)

ℱ(𝑌 ) 𝒢(𝑌 )

𝜏𝑋

ℱ(𝑓) 𝒢(𝑓)

𝜏𝑌

Example 2.1.9. 1) Let 𝒳 be a category and 𝐵 ∈ 𝑜𝑏𝑗(𝒳), then the contravariant
functor𝑇 𝐵 ∶ 𝒳 → 𝕊𝕖𝕥𝕤 is defined by𝑇 𝐵(𝐶) = 𝐻𝑜𝑚(𝐶, 𝐵) for every𝐶 ∈ 𝑜𝑏𝑗(𝒳)
and if 𝑓 ∶ 𝐶 → 𝐶′ in 𝒳, then

𝑇 𝐵(𝑓) ∶ 𝐻𝑜𝑚(𝐶′, 𝐵) → 𝐻𝑜𝑚(𝐶, 𝐵)
ℎ ↦ ℎ ∘ 𝑓
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Then the 𝑇 𝐵(𝑓) is called induced map and is denoted by

𝑓∗ = 𝑇 𝐵(𝑓)

We will show that 𝑓∗ = 𝑇 𝐵(𝐹) is a contravariant functor. By definition of 𝑇 𝐵(𝑓) =
𝐻𝑜𝑚(𝐶, 𝐵) we have that 𝐻𝑜𝑚(𝐶, 𝐵) is a set and so 𝑇 𝐵(𝑓) ∈ 𝑜𝑏𝑗(𝕊𝕖𝕥𝕤). We
notice that the composition ℎ ∘ 𝑓 makes sense.

𝐶 𝐶′ 𝐵
ℎ∘𝑓

𝑓 ℎ

Let now that 𝑓 ∶ 𝐶 → 𝐶′ and 𝑔 ∶ 𝐶′ → 𝐶″ and (𝑔 ∘ 𝑓)∗ ∶ 𝐻𝑜𝑚(𝐶″, 𝐵) →
𝐻𝑜𝑚(𝐶′, 𝐵), where (𝑔 ∘ 𝑓)∗(ℎ) = ℎ ∘ (𝑔 ∘ 𝑓), for ℎ ∈ 𝐻𝑜𝑚(𝐶″, 𝐵) On the other
hand,

𝐻𝑜𝑚(𝐶″, 𝐵) 𝐻𝑜𝑚(𝐶′, 𝐵) 𝐻𝑜𝑚(𝐶, 𝐵)

ℎ ℎ ∘ 𝑔 (ℎ ∘ 𝑔) ∘ 𝑓

𝑔∗ 𝑓∗

Clearly, ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓 , because 𝕊𝕖𝕥𝕤 is a category. Thus, (𝑔 ∘ 𝑓)∗ =
𝑔∗ ∘ 𝑓∗. Finally, 1𝐶 ∶ 𝐶 → 𝐶, then (1𝐶)∗ ∶ 𝐻𝑜𝑚(𝐶, 𝐵) → 𝐻𝑜𝑚(𝐶, 𝐵),
where ℎ ↦ ℎ ∘ 1𝐶 = ℎ. That is (1𝐶)∗(ℎ) = ℎ, for every ℎ ∈ 𝐻𝑜𝑚(𝐶, 𝐵). So,
(1𝐵)∗ = 1𝐻𝑜𝑚(𝐴,𝐵). Therefore, the 𝑇 𝐵(𝑓) = 𝑓∗ is a contravariant functor.

We can easily prove that 𝑇 𝐵 converts sums to products, that is

𝑇 𝐵(⨁
𝑖

𝐴𝑖) ≅ ∏
𝑖

𝑇 𝐵(𝐴𝑖)

We usually denote 𝑇 𝐵 by 𝐻𝑜𝑚(□, 𝐵).

2) Let𝑅 be a commutative ring and𝐵 is a𝑅-module. Then it is clear that𝐻𝑜𝑚𝑅(𝐴, 𝐵)
is a 𝑅-module as well. We will show that if 𝑓 ∶, 𝐶 → 𝐶′ is 𝑅 − ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚,
then

𝑓∗ ∶ 𝐻𝑜𝑚𝑅(𝐶′, 𝐵) → 𝐻𝑜𝑚𝑅(𝐶, 𝐵′)
ℎ ↦ ℎ ∘ 𝑓

is a 𝑅 − ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 of 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒𝑠. Indeed, 𝑓∗ is an additive map. If 𝑔, ℎ ∈
𝐻𝑜𝑚𝑅(𝐶′, 𝐵), then for each 𝑐′ ∈ 𝐶′,

𝑓∗(𝑔 + ℎ)(𝑎) = ((𝑔 + ℎ) ∘ 𝑓)(𝑐′) = (𝑔 + ℎ) ∘ 𝑓(𝑐′)
= 𝑔(𝑓(𝑐′)) + ℎ(𝑓(𝑐′)) = (𝑓∗(𝑔) + 𝑓∗(ℎ))(𝑐′)

Also, 𝑓∗ preserves scalars. We remind that if 𝑟 ∈ 𝑅 and ℎ ∈ 𝐻𝑜𝑚𝑅(𝐴, 𝐵), then
𝑟ℎ(𝑎) = ℎ𝑟(𝑎). Then, 𝑓∗(𝑟ℎ)(𝑐) = (𝑟ℎ ∘ 𝑓)(𝑐) = 𝑟ℎ(𝑓(𝑐)) = ℎ(𝑟(𝑓(𝑐))) =
ℎ(𝑓(𝑟𝑐)) = 𝑟𝑓∗(ℎ)(𝑐) Thus 𝑓∗(𝑟ℎ) = 𝑟𝑓∗(ℎ). Hence, 𝑓∗ is a 𝑅-homomorphism.
Similarly with (2) of this example, we can prove that 𝐻𝑜𝑚𝑅(□, 𝐵) is a contravari-
ant functor.
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2.2 Projective and Direct Limit
The notions of projective, respective direct limit, generalize the operations of

intersection, respective union, of a family of sets. If (𝑋𝑖)𝑖∈𝐼 is a family of subsets of
a topological space 𝑋 which for any two sets 𝑋𝑖, 𝑋𝑗 also contains the set 𝑋𝑖 ∩ 𝑋𝑗,
(resp. 𝑋𝑖 ∪ 𝑋𝑗), then the projective (resp. direct) limit of this family simply defined
by

lim←−𝑖∈𝐼
𝑋𝑖 = ⋂

𝑖∈𝐼
𝑋𝑖 (rexp. lim−→𝑖∈𝐼

𝑋𝑖 = ⋃
𝑖∈𝐼

𝑋𝑖)

Writing 𝑖 ≤ 𝑗 ⇔ 𝑋𝑗 ⊆ 𝑋𝑖 (resp. 𝑋𝑖 ⊆ 𝑋𝑗) makes the indexing set 𝐼 into
a directed set, this means that 𝐼 has a partial order ≤ such that for any 𝑖, 𝑗 ∈ 𝐼 ,
there is a 𝑘 ∈ 𝐼 with 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘. In the case at hand, such a 𝑘 is given by
𝑋𝑘 = 𝑋𝑖 ∩ 𝑋𝑗 (resp. 𝑋𝑘 = 𝑋𝑖 ∪ 𝑋𝑗). For 𝑖 ≤ 𝑗 we denote the inclusion 𝑋𝑗 ↪ 𝑋𝑖
(resp.𝑋𝑖 ↪ 𝑋𝑗) by𝜑𝑖𝑗 and then we obtain a system {𝑋𝑖, 𝜑𝑖𝑗} of sets andmaps. The
operations of intersection and union are now generalized by replacing the inclusions
𝜑𝑖𝑗 with arbitrary maps.

Definition 2.2.1. Let 𝐼 be a partial ordered set which is a directed set, too. A pro-
jective system over 𝐼 is a family

{(𝑋𝑖, 𝜑𝑖𝑗) |𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗}

of topological spaces 𝑋𝑖 and continuous maps 𝜑𝑖𝑗 ∶ 𝑋𝑗 → 𝑋𝑖 such that
i) If 𝑖 = 𝑗, then 𝜑𝑖𝑖 = 𝐼𝑑𝑋𝑖
ii) If 𝑖 ≤ 𝑗 ≤ 𝑘, then 𝜑𝑖𝑘 = 𝜑𝑖𝑗 ∘ 𝜑𝑗𝑘, that is the following diagram commutes:

𝑋𝑘

𝑋𝑗 𝑋𝑖

𝜑𝑗𝑘 𝜑𝑖𝑘

𝜑𝑖𝑗

Definition 2.2.2. The projective limit of the projective system {(𝑋𝑖, 𝜑𝑖𝑗) |𝑖, 𝑗 ∈
𝐼, 𝑖 ≤ 𝑗} is defined to be the following subset of the direct product ∏

𝑖∈𝐼
𝑋𝑖

lim←−𝑖∈𝐼
𝑋𝑖 = {(𝑥𝑖)𝑖∈𝐼 ∈ ∏

𝑖∈𝐼
𝑋𝑖 |𝜑𝑖𝑗(𝑥𝑗) = 𝑥𝑖, for 𝑖 ≤ 𝑗}

Comment 2.2.3. If we consider the 𝑋𝑖 as subsets of a topological space, then the
subsets 𝑋𝑖 are topological spaces equipped with the subspace topology. Also, the
product ∏

𝑖∈𝐼
𝑋𝑖 is a topological space equipped with the product topology.

Remark 2.2.4. If the topological spaces 𝑋𝑖 are Hausdorff, then so is the product.
In this case the projective limit lim←−𝑖∈𝐼

𝑋𝑖 is a closed subspace of ∏
𝑖∈𝐼

𝑋𝑖.
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Proof. Indeed, the lim←−𝑖∈𝐼
𝑋𝑖 can be written as

lim←−𝑖∈𝐼
𝑋𝑖 = ⋂

𝑖 ≤ 𝑗
𝑖, 𝑗 ∈ 𝐼

𝑋𝑖𝑗 ,

where 𝑋𝑖𝑗 = {(𝑥𝑘)𝑘∈𝐼 ∈ ∏
𝑘∈𝐼

𝑋𝑘 | 𝜑𝑖𝑗(𝑥𝑗) = 𝑥𝑖}. It suffices to show that the sets

𝑋𝑖𝑗 with 𝑖 ≤ 𝑗, 𝑖, 𝑗 ∈ 𝐼 are close.Writing 𝑝𝑖 ∶ ∏
𝑖∈𝐼

𝑋𝑖 → 𝑋𝑖 for the 𝑖−th projection,

the map 𝑔 = 𝑝𝑖 is continuous. Also, the map 𝜑 ∶= 𝜑𝑖𝑗 ∘ 𝑝𝑗, with 𝑖 ≤ 𝑗 is continuous
as it is a composition of continuous maps.

∏
𝑘∈𝐼

𝑋𝑘 𝑋𝑗 𝑋𝑖

(𝑥𝑘)𝑘∈𝐼 𝑥𝑗 𝑥𝑖

𝑝𝑗 𝜑𝑖𝑗

𝑝𝑗 𝜑𝑖𝑗

Then, we can write 𝑋𝑖𝑗 = {𝑥 ∈ ∏
𝑘∈𝐼

𝑋𝑘 | 𝑔(𝑥) = 𝜑(𝑥)}. Since we have that 𝑋𝑖 is

Hausdorff and themaps𝜑, 𝑔 are continuous, then𝑋𝑖𝑗 is a closed subset, according to
Proposition 1.1.6. Thus, the lim←−𝑖∈𝐼

𝑋𝑖 = ⋂
𝑖 ≤ 𝑗

𝑖, 𝑗 ∈ 𝐼

𝑋𝑖𝑗 is also closed as an intersection

of closed sets.

Theorem 2.2.5. The projective limit lim←−𝑖∈𝐼
𝑋𝑖 of nonempty compact topological spaces

𝑋𝑖 is nonempty and compact.

Proof. Since for every 𝑖 ∈ 𝐼 we have that the spaces 𝑋𝑖 are compact, then the prod-
uct ∏

𝑖∈𝐼
𝑋𝑖 is also compact, by Tychonoff’s theorem. Thus, the lim←−𝑖∈𝐼

𝑋𝑖 is compact

set, since it is a closed subset of the compact space ∏
𝑖∈𝐼

𝑋𝑖. Furthermore, lim←−𝑖∈𝐼
𝑋𝑖 =

⋂
𝑖 ≤ 𝑗

𝑖, 𝑗 ∈ 𝐼

𝑋𝑖𝑗 cannot be the empty set if all the 𝑋𝑖 are nonempty. In fact, as the

product ∏
𝑖∈𝐼

𝑋𝑖 is compact, if lim←−𝑖∈𝐼
𝑋𝑖 = ∅, that is ⋂

𝑖 ≤ 𝑗
𝑖, 𝑗 ∈ 𝐼

𝑋𝑖𝑗 = ∅, then there is

an intersection of finitely many 𝑋𝑖𝑗 which is empty. But this is impossible, since
all indices entering into this finite intersection satisfy that are less than or equal to a
natural number n, as the indexing set 𝐼 is directed, and then 𝑥𝑛 ∈ 𝑋𝑛. If we choose
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𝑥𝑖 = 𝜑𝑖𝑛(𝑥𝑛) for 𝑖 ≤ 𝑛, and arbitrarily for all other 𝑖, then the element (𝑥𝑖)𝑖∈𝐼
belongs to this intersection. �
Hence, lim←−𝑖∈𝐼

𝑋𝑖 = ⋂
𝑖≤𝑗

𝑋𝑖𝑗 ≠ ∅

Let (𝐺𝑖, 𝜑𝑖𝑗) be a projective system of topological groups. Then the projective
limit

𝐺 = lim←−𝑖∈𝐼
𝐺𝑖

is a topological group as well. The multiplication in the projective limit is induced
by the componentwise multiplication in the product ∏

𝑖∈𝐼
𝐺𝑖. The projections

𝑝𝑖 ∶ ∏
𝑖∈𝐼

𝐺𝑖 → 𝐺𝑖

induce a family of continuous homomorphisms

𝜑𝑖 ∶ 𝐺 = lim←−𝑖∈𝐼
𝐺𝑖 → 𝐺𝑖

such that 𝜑𝑖 = 𝜑𝑖𝑗 ∘ 𝜑𝑗, for every 𝑖 ≤ 𝑗. This family has the following universal
property.

Theorem 2.2.6. (Universal Property) If 𝐻 is a topological group and (𝐺𝑖, 𝜑𝑖𝑗) be
a projective system of topological groups. Let also

ℎ𝑖 ∶ 𝐻 → 𝐺𝑖 ∀𝑖 ∈ 𝐼
a family of continuous homomorphisms such that

ℎ𝑖 = 𝜑𝑖𝑗 ∘ ℎ𝑗 𝑓𝑜𝑟 𝑖 ≤ 𝑗,
then there exists a unique continuous homomorphism

ℎ ∶ 𝐻 → 𝐺 = lim←−𝑖∈𝐼
𝐺𝑖

satisfying ℎ𝑖 = 𝜑𝑖 ∘ ℎ for all 𝑖 ∈ 𝐼 .
Proof. For 𝑖 ≤ 𝑗

𝐺 = lim←−𝑖∈𝐼
𝐺𝑖 𝐻

𝐺𝑗

𝐺𝑖

ℎ

𝜑𝑗

𝜑𝑖

ℎ𝑗

ℎ𝑖

𝜑𝑖𝑗
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Let 𝛼 ∈ 𝐻 and ℎ𝑖(𝛼) = 𝑔𝑖, for every 𝑖 ∈ 𝐼 . We define ℎ(𝛼) = (𝑔𝑖)𝑖∈𝐼 . We have
that ℎ𝑖(𝛼) = (𝜑𝑖𝑗 ∘ 𝜑𝑗 ∘ ℎ)(𝛼). Indeed, (𝜑𝑖𝑗 ∘ 𝜑𝑗 ∘ ℎ)(𝛼) = (𝜑𝑖𝑗 ∘ 𝜑𝑗)(ℎ(𝛼)) =
(𝜑𝑖𝑗 ∘ 𝜑𝑗)(𝑔𝑖) = 𝜑𝑖𝑗(𝜑𝑗(𝑔𝑖)) = 𝜑𝑖𝑗(𝑔𝑗) = 𝑔𝑖 = ℎ𝑖(𝛼), which is the desired. Also,
this map ℎ is unique. Indeed, if there exist a map ℎ′ such that ℎ𝑖 = 𝜑𝑖 ∘ ℎ′, then
𝜑𝑖 ∘ ℎ′ = ℎ𝑖 = 𝜑𝑖 ∘ ℎ for every 𝑖 ∈ 𝐼 , and so ℎ = ℎ′.

Definition 2.2.7. Amorphism between two projective systems (𝐺𝑖, 𝜑𝑖𝑗) and (𝐺′
𝑖, 𝜑′

𝑖𝑗)
of topological groups is a family of continuous homomorphisms 𝑓𝑖 ∶ 𝐺𝑖 → 𝐺′

𝑖, 𝑖 ∈
𝐼 , such that the diagram

𝐺𝑗 𝐺′
𝑗

𝐺𝑖 𝐺′
𝑖

𝑓𝑗

𝜑𝑖𝑗 𝜑′
𝑖𝑗

𝑓𝑖

commutes for 𝑖 ≤ 𝑗. Such a family (𝑓𝑖)𝑖∈𝐼 defines a mapping

𝑓 ∶ ∏
𝑖∈𝐼

𝐺𝑖 → ∏
𝑖∈𝐼

𝐺′
𝑖

(𝑔𝑖)𝑖∈𝐼 ↦ (𝑓𝑖(𝑔𝑖))𝑖∈𝐼

which induces a homomorphism between of the projective limits

𝑓 ∶ lim←−𝑖∈𝐼
𝐺𝑖 → lim←−𝑖∈𝐼

𝐺′
𝑖

In this way the projective limit, lim←−, becomes a functor. A particular important
property of this functor is its so-called “exactness”. The projective limit is not exact
in complete generality, but only for compact groups, so we have the next proposition.

Proposition 2.2.8. Let 𝛼 ∶ (𝐺′
𝑖, 𝜑′

𝑖𝑗) → (𝐺𝑖, 𝜑𝑖𝑗) and 𝛽 ∶ (𝐺𝑖, 𝜑𝑖𝑗) → (𝐺″
𝑖 , 𝜑″

𝑖𝑗)
be morphisms between projective systems of compact topological groups such that
the sequence

𝐺′
𝑖 𝐺𝑖 𝐺″

𝑖
𝛼𝑖 𝛽𝑖

is exact for every 𝑖 ∈ 𝐼 . Then the sequence

lim←−𝑖∈𝐼
𝐺′

𝑖 lim←−𝑖∈𝐼
𝐺𝑖 lim←−𝑖∈𝐼

𝐺″
𝑖

𝛼 𝛽

is again an exact sequence of compact topological groups.

Proof. Let 𝑥 = (𝑥𝑖)𝑖∈𝐼 ∈ lim←−𝑖∈𝐼
𝐺𝑖 such that 𝑥 ∈ 𝐾𝑒𝑟𝛽, so that 𝛽(𝑥) = 1 which

means that 𝛽𝑖(𝑥𝑖) = 1, ∀𝑖 ∈ 𝐼 . Thus, 𝑥𝑖 ∈ 𝐾𝑒𝑟𝛽𝑖, ∀𝑖 ∈ 𝐼 . But 𝐼𝑚𝛼𝑖 = 𝐾𝑒𝑟𝛽𝑖 for
every 𝑖 ∈ 𝐼 . So 𝑥𝑖 ∈ 𝐼𝑚𝛼𝑖 for all 𝑖 ∈ 𝐼 . We consider the sets 𝑌 ′

𝑖 ∶= 𝛼−1
𝑖 (𝑥𝑖) ⊂ 𝐺′

𝑖,
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for every 𝑖 ∈ 𝐼 . We have that 𝑥𝑖 ∈ 𝐼𝑚𝛼𝑖 ⇒ 𝑌 ′
𝑖 ≠ ∅, ∀𝑖 ∈ 𝐼 . The set {𝑥𝑖} is closed

in 𝐺𝑖. The maps 𝛼𝑖 are continuous for every 𝑖 ∈ 𝐼 . So we have that 𝑌 ′
𝑖 is closed in

lim←−𝑖∈𝐼
𝐺′

𝑖, and then 𝑌 ′
𝑖 is compact for every 𝑖 ∈ 𝐼 . The (𝑌 ′

𝑖 , 𝜑𝑖𝑗|𝑌𝑖
) form a projective

system of nonempty closed, and hence compact subsets of the 𝐺′
𝑖. According to

theorem 2.2.5, this means that the projective limit lim←−𝑖∈𝐼
𝑌 ′

𝑖 ⊆ lim←−𝑖∈𝐼
𝐺′

𝑖 is nonempty.

For every 𝑦 = (𝑦𝑖)𝑖∈𝐼 ∈ lim←−𝑖∈𝐼
𝑌 ′

𝑖 we have that 𝛼(𝑦) = 𝑥. Since 𝛼𝑖(𝑦𝑖) = 𝑥𝑖 then we

have that 𝐼𝑚𝛼 = 𝐾𝑒𝑟𝛽. Hence the sequence is exact.

2.3 Profinite Groups
Definition 2.3.1. A profinite group is a topological group that can be realized as a
projective limit of finite topological groups.

Example 2.3.2. Let 𝑝 a prime number and for every natural number 𝑛 we define
𝐺𝑛 ∶= ℤ/𝑝𝑛ℤ. If 𝑛 ≥ 𝑚, then 𝑝𝑚|𝑝𝑛 and so we can define the maps:

𝜑𝑚𝑛 ∶ ℤ/𝑝𝑛ℤ → ℤ/𝑝𝑚ℤ
𝑎 mod 𝑝𝑛 ↦ 𝑎 mod 𝑝𝑚

Then the family {(𝐺𝑛, 𝜑𝑚𝑛)|𝑚 ≤ 𝑛} form a projective system and the projective
limit is defined as lim←−𝑛∈ℕ

ℤ/𝑝𝑛ℤ = ℤ𝑝, that is the ring of 𝑝-adic integers.

Example 2.3.3. The rings ℤ/𝑛ℤ, 𝑛 ∈ ℕ, form a projective system with respect to
the projections 𝜑𝑛𝑚 ∶ ℤ/𝑚ℤ → ℤ/𝑛ℤ, with 𝑛|𝑚, where the ordering on ℕ is given
by divisibility, that is 𝑛 ≤ 𝑚 ⇔ 𝑛|𝑚, with 𝑛, 𝑚 ∈ ℕ. Then the projective limit

ℤ̂ = lim←−𝑛∈ℕ
ℤ/𝑛ℤ

was originally called Prüfer ring.

Let 𝐺 ∶= lim←−𝑛∈ℕ
𝐺𝑛, where 𝐺𝑛 are finite groups with discrete topology. Then,

every group 𝐺𝑛 is Hausdorff, so the 𝐺 is Hausdorff, as well. Also, every group 𝐺𝑛
is compact, then so is 𝐺, according to theorem 2.2.5. In addition, every group 𝐺𝑛
is totally disconnected, so the group 𝐺 is totally disconnected, too. Thus, in other
words, we have proved the following theorem:

Theorem 2.3.4. Every profinite group is a Hausdorff, compact and totally discon-
nected topological group.

Thereafter we will see that the vice versa of the above theorem is also true.

The following result gives a criterion for a group to be profinite.
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Theorem. If 𝐺 is a profinite group and if N varies over the open normal subgroups
of 𝐺. Then

𝐺 ≅ lim←−𝑁
𝐺/𝑁

algebraically and topologically.

For the proof of above theorem we will need the following lemmata.

Lemma 2.3.5. Let 𝑋 be a compact and Hausdorff topological space. Let 𝑥 ∈ 𝑋
and {𝑈𝑞| 𝑞 ∈ 𝑄} be the family of all compact open subsets of 𝑋 which contain x.
Then

𝐴 ∶= ⋂
𝑞∈𝑄

𝑈𝑞

is connected.

Proof. We assume that 𝐴 = 𝑈 ∪ 𝑉 , 𝑈 ∩ 𝑉 = ∅, where 𝑈, 𝑉 are non-empty closed
sets. Clearly 𝑈, 𝑉 are also open sets. Since 𝑋 is compact and Hausdorff space, then
from theorem 1.1.5 we have that 𝑋 is a normal space. So, there exist open sets
𝑈 ′, 𝑉 ′ such that 𝑈 ⊆ 𝑈 ′, 𝑉 ⊆ 𝑉 ′ 𝑎𝑛𝑑 𝑈 ′ ∩ 𝑉 ′ = ∅. Thus,

{𝑋 ∖ (𝑈 ′ ∪ 𝑉 ′)} ∩ 𝐴 = ∅ ⇒

{𝑋 ∖ (𝑈 ′ ∪ 𝑉 ′)} ∩ ( ⋂
𝑞∈𝑄

𝑈𝑞) = ∅ ⇒

⋂
𝑞∈𝑄

({𝑋 ∖ (𝑈 ′ ∪ 𝑉 ′)} ∩ 𝑈𝑞) = ∅

The set 𝑋 ∖ (𝑈 ′ ∪ 𝑉 ′) is compact because it is a closed subset of the compact space
𝑋, so then the sets {𝑋 ∖ (𝑈 ′ ∪ 𝑉 ′)} ∩ 𝑈𝑞 are compact and then they are closed
subsets of compact space 𝑋. We know that in a compact space, for every family of
closed sets with empty intersection there exist at least a finite subfamily with empty
intersection. Thus, there exist finite subfamily 𝑄′ ⊆ 𝑄 satisfying

⋂
𝑞∈𝑄′

({𝑋 ∖ (𝑈 ′ ∪ 𝑉 ′)} ∩ 𝑈𝑞) = ∅ ⇒

[𝑋 ∖ (𝑈 ′ ∪ 𝑉 ′)] ∩ ( ⋂
𝑞∈𝑄′

𝑈𝑞) = ∅

Let 𝐵 ∶= ⋂𝑞∈𝑄′ 𝑈𝑞. Then 𝐵 is open, as intersection of finite number of open sets,
and compact because it is closed subset of compact space 𝑋. Let 𝑥 ∈ 𝐵 and 𝐵 =
𝐵 ∩ (𝑈 ′ ∪ 𝑉 ′) = (𝐵 ∩ 𝑈 ′) ∪ (𝐵 ∩ 𝑉 ′). So, either 𝑥 ∈ 𝐵 ∩ 𝑈 ′ or 𝑥 ∈ 𝐵 ∩ 𝑉 ′. Say
𝑥 ∈ 𝐵 ∩ 𝑈 ′. Since 𝐵, 𝑈 ′ are compact and open then 𝐵 ∩ 𝑈 ′ is open and compact
containing 𝑥. So 𝐴 ⊆ 𝐵 ∩ 𝑈 ′ ⊆ 𝑈 ′ and then 𝐴 ∩ 𝑉 ⊆ 𝐴 ∩ 𝑉 ′ = ∅, because
𝐴 ⊆ 𝑈 ′ and 𝑈 ′ ∩ 𝑉 ′ = ∅. But 𝐴 ∩ 𝑉 = (𝑈 ∪ 𝑉 ) ∩ 𝑉 = 𝑉 . Thus, 𝑉 = ∅. But this
is impossible since 𝑉 ≠ ∅. Similarly if 𝑥 ∈ 𝐵 ∩ 𝑉 ′. Hence 𝐴 is connected.
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Lemma 2.3.6. Let 𝐺 be compact, Hausdorff and totally disconnected topological
group. Then every neighborhood of 1 ∶= 𝑒 contains an open normal subgroup.
Moreover this subgroup has finite index in 𝐺.

Proof. Let {𝑈𝑞 | 𝑞 ∈ 𝑄} be the family of all compact open sets containing 1. Then
from lemma 2.3.5 we have that 1 ∈ 𝐴 = ⋂𝑞∈𝑄 𝑈𝑞 is connected. But 𝐺 is totally
disconnected, so then𝐴 = {1}. Let now𝑈 be an open neighborhood of 1. We intend
to show that there exist 𝐻 ⊴ 𝐺 and 𝐻 is open such that 𝐻 ⊆ 𝑈 . As 𝑈 is open then
𝐺 ∖ 𝑈 is closed subset of compact space 𝐺, so then 𝐺 ∖ 𝑈 is compact and

(𝐺 ∖ 𝑈) ∩ ( ⋂
𝑞∈𝑄

𝑈𝑞) = ∅ ⇒ ⋂
𝑞∈𝑄

(𝐺 ∖ 𝑈) ∩ 𝑈𝑞 = ∅

Since 𝐺 is compact and (𝐺 ∖ 𝑈) ∩ 𝑈𝑞 is a family of closed sets with empty intersec-
tion, then there exists a finite subfamily of them with finite intersection. So, there
exists a finite subset 𝑄′ ⊆ 𝑄 such that

⋂
𝑞∈𝑄′

(𝐺 ∖ 𝑈) ∩ 𝑈𝑞 = ∅ ⇒

(𝐺 ∖ 𝑈) ∩ ( ⋂
𝑞∈𝑄′

𝑈𝑞) = ∅ (2.1)

Let𝐴′ ∶= ⋂
𝑞∈𝑄′

𝑈𝑞. Then𝐴′ is open as intersection of finite number of open sets, and

compact because it is closed subset of compact space 𝐺. So then 𝐴′ is a compact
open neighborhood of 1. Also, 𝐴′ ⊆ 𝑈 according to equation (2.1). Let 𝐹 ∶=
(𝐺∖𝐴′)∩𝐴′2. Since𝐴′ is compact, so is𝐴′2, hence 𝐹 is closed. We have 𝐹 closed,
𝐴′ compact and 𝐹 ∩ 𝐴′ = ∅, so then from lemma 1.2.9 we have that there exists a
neighborhood 𝑈 ′ of 1 satisfying 𝐹 ∩ 𝐴′𝑈 ′ = ∅. But according to proposition 1.2.8,
we have that there exists a symmetric neighborhood 𝑉1 of 1 such that 𝑉1 ⊆ 𝑈 ′,
and then 𝐹 ∩ 𝐴′𝑉1 = ∅. In addition 𝐴′ is an open neighborhood of 1, so from
proposition 1.2.8 there exists a symmetric neighborhood 𝑉2 of 1 such that 𝑉2 ⊆ 𝐴′.
Set 𝑉 = 𝑉1 ∩ 𝑉2. Then 𝑉 ⊆ 𝑈 ′, 𝑉 ⊆ 𝐴′ 𝐹 ∩ 𝐴′𝑉 = ∅ and 𝑉 is symmetric
because 𝑉1, 𝑉2 are symmetric. Thus, there exists a symmetric open neighborhood
𝑉 of 1 such that 𝐴′𝑉 ∩ 𝐹 = ∅ and 𝑉 ⊆ 𝐴′. Since 𝐴′𝑉 ⊆ 𝐴′𝐴′ = 𝐴′2, it implies
that

𝐴′𝑉 ∩ 𝐹 = ∅ ⇔ 𝐴′𝑉 ∩ (𝐺 ∖ 𝐴′) ∩ 𝐴′2 = ∅ ⇔
𝐴′𝑉 ∩ (𝐺 ∖ 𝐴′) = ∅

That is
𝐴′𝑉 ⊆ 𝐴′

Inductively we can prove that

𝐴′𝑉 𝑛 ⊆ 𝐴′ ∀𝑛 ∈ ℕ
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Hence, 𝐾 ∶= ⋃
𝑛

𝑉 𝑛 ⊆ 𝐴′ is an open subgroup1 of 𝐺 contained in 𝐴′. Since 𝐺

is compact, then 𝐾 has only finite number of cosets in 𝐺, say 𝐺 =
𝑟

⋃
𝑖=1

𝑥𝑖𝐾. The

subgroup 𝐾 may not be a normal subgroup, for this reason we set

𝐻 = ⋂
𝑥∈𝐺

𝑥𝐾𝑥−1 =
𝑟

⋂
𝑖=1

𝑥𝑖𝐾𝑥−1
𝑖

The subgroup 𝐻 is a normal subgroup of 𝐺, because 𝑔𝐻𝑔−1 = 𝑔(
𝑟

⋂
𝑖=1

𝑥𝑖𝐾𝑥−1
𝑖 )𝑔−1

=
𝑟

⋂
𝑖=1

𝑔𝑥𝑖𝐾𝑥−1
𝑖 𝑔−1 = 𝐻 , as 𝑔𝑥𝑖 ∈ 𝐺. Thus, 𝐻 is an open normal subgroup of 𝐺

with finite index, as 𝐺 is compact, then 𝐻 has only finite number of cosets in 𝐺.
Also, 𝐻 ⊆ 𝐾 ⊆ 𝐴′ ⊆ 𝑈 . It is clear that 𝐻 is the desired open normal subgroup of
finite index.

Proposition 2.3.7. Let 𝐺 compact, Hausdorff and totally disconnected topological
group. Then the family of all open normal subgroups of 𝐺 form a basis of open
neighborhood of 1.
Proof. Let {𝑁𝑖 ⩽ 𝐺 ∶ 𝑁𝑖 ⊴ 𝐺 𝑎𝑛𝑑 𝑁𝑖 𝑖𝑠𝑜𝑝𝑒𝑛}. It suffices to show that (i)𝑁𝑖 is an
open neighborhood of 1, and (ii) For every open neighborhood𝐴 of 1, there exist𝑁𝑖
such that 𝑁𝑖 ⊆ 𝐴. Indeed 𝑁𝑖 is an open neighborhood of 1, because 𝑁𝑖 is open and
1 ∈ 𝑁𝑖. Also, since 𝐺 is compact, Hausdorff and totally disconnected topological
group, then according to lemma 2.3.6 we have that for every open neighborhood 𝐴
of 1, there exist 𝑁𝑖 ≤ 𝐺 where 𝑁𝑖 ⊴ 𝐺 and 𝑁𝑖 is open such that 𝑁𝑖 ⊆ 𝐴. Thus the
family of all open normal subgroups of 𝐺 formed a basis of open neighborhood of
1.
Remark 2.3.8. Let𝐺 compact, Hausdorff and totally disconnected topological group.
Then

⋂
𝑖∈𝐼

𝑁𝑖 = {1}

where {𝑁𝑖} is the family of all open normal subgroups of 𝐺.

Proof. From proposition 2.3.7 we have that {𝑁𝑖 ⩽ 𝐺 ∶ 𝑁𝑖 ⊴ 𝐺 𝑎𝑛𝑑 𝑁𝑖 𝑖𝑠𝑜𝑝𝑒𝑛}
forms a basis of open neighborhood of 1. Let there exist 𝑥 ≠ 1. Since𝐺 is Hausdorff,
then there exist open set 𝐴 ⊆ 𝐺 ∖ {𝑥} where 1 ∈ 𝐴 and 𝑥 ∉ 𝐴. Also, 𝐴 is an
open neighborhood of 1 because 1 ∈ 𝐴 and 𝐴 is open. But {𝑁𝑖 ⩽ 𝐺 ∶ 𝑁𝑖 ⊴
𝐺 𝑎𝑛𝑑 𝑁𝑖 𝑖𝑠𝑜𝑝𝑒𝑛} forms a basis of open neighborhood of 1, so then there exist an
open normal subgroup, 𝑁𝑖0

, of 𝐺 such that 𝑁𝑖0
⊆ 𝐴. Since 𝑥 ∉ 𝐴, then 𝑥 ∉ 𝑁𝑖0

.
Thus, 𝑥 ∉ ⋂

𝑖∈𝐼
𝑁𝑖. Hence ⋂

𝑖∈𝐼
𝑁𝑖 = {1}.

1We need V be symmetric in order to be K a subgroup.
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Now we are able to prove the following theorem.

Theorem 2.3.9. If 𝐺 is a profinite group and if N varies over the open normal sub-
groups of 𝐺. Then

𝐺 ≅ lim←−𝑁
𝐺/𝑁

algebraically and topologically.

Proof. 𝐺 is a profinite group, so then 𝐺 is a Hausdorff, compact and totally discon-
nected topological group. We consider the family

𝒩 ∶= {𝑁𝑖 ≤ 𝐺|𝑁𝑖 ⊴ 𝐺, 𝑁𝑖 𝑖𝑠𝑜𝑝𝑒𝑛}
We define 𝑖 ≤ 𝑗 ⇔ 𝑁𝑗 ⊆ 𝑁𝑖. In this way the set 𝐼 is directed set. Indeed,𝑁𝑖∩𝑁𝑗 ⊆
𝑁𝑖 and 𝑁𝑖 ∩ 𝑁𝑗 ⊆ 𝑁𝑗 for arbitrary 𝑖, 𝑗 ∈ 𝐼 . But 𝑁𝑖 ∩ 𝑁𝑗 ⊴ 𝐺 and 𝑁𝑖 ∩ 𝑁𝑗 is open.
So there exist 𝑘 ∈ 𝐼 such that 𝑁𝑘 = 𝑁𝑖 ∩ 𝑁𝑗. Then 𝑁𝑘 ⊆ 𝑁𝑖 and 𝑁𝑘 ⊆ 𝑁𝑗 which
implies that 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘 for every 𝑖, 𝑗 ∈ 𝐼 .
We will prove that {(𝐺𝑖 = 𝐺/𝑁𝑖, 𝜑𝑖𝑗), 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗}, where 𝜑𝑖𝑗 ∶ 𝐺/𝑁𝑗 →
𝐺/𝑁𝑖 is the natural map, forms a projective system of finite topological groups.
Indeed, if 𝑁𝑖 open normal subgroup of 𝐺, then 𝑔𝑁𝑖 is open, since 𝐺 is topological
group. Also, 𝐺 = ⋃

𝑔∈𝐺
𝑔𝑁𝑖, that is an open cover of 𝐺. But 𝐺 is compact, so then

𝐺 contains a finite open subcover, which means that there exist a finite number of
cosets that cover 𝐺. So, [𝐺 ∶ 𝑁𝑖] = |𝐺/𝑁𝑖| < ∞ and then 𝐺/𝑁𝑖 are topological
spaces equipped them with discrete topology.
Thereafter we will define the maps 𝜑𝑖𝑗 ∶ 𝐺/𝑁𝑗 → 𝐺/𝑁𝑖. Let 𝜋𝑖 ∶ 𝐺 → 𝐺/𝑁𝑖,
where 𝑔 ↦ 𝑔𝑁𝑖 be the natural projection. Clearly, 𝐾𝑒𝑟𝜋𝑖 = 𝑁𝑖, and so 𝑁𝑗 ⊆
𝐾𝑒𝑟𝜋𝑖, because 𝑁𝑗 ⊆ 𝑁𝑖. Thus, 𝜋𝑖 induces a homomorphism

𝜑𝑖𝑗 ∶ 𝐺/𝑁𝑗 → 𝐺/𝑁𝑖

More precisely, 𝜑𝑖𝑗 is surjection as 𝜋𝑖 is surjection. Also 𝜑𝑖𝑗 are continuous from
their construction. In addition, 𝜑𝑖𝑖 ∶ 𝐺/𝑁𝑖 → 𝐺/𝑁𝑖, 𝑔𝑁𝑖 ↦ 𝑔𝑁𝑖, that is 𝜑𝑖𝑖 =
𝐼𝑑𝐺/𝑁𝑖

and if 𝑖 ≤ 𝑗 ≤ 𝑘 then 𝜑𝑖𝑗(𝜑𝑗𝑘(𝑔𝑁𝑘)) = 𝜑𝑖𝑗(𝑔𝑁𝑖) = 𝜑𝑖𝑘(𝑔𝑁𝑘). Hence we
have that {(𝐺𝑖 = 𝐺/𝑁𝑖, 𝜑𝑖𝑗), 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗} is a projective system. Since 𝐺 is
profinite group, which means that𝐺 is Hausdorff, compact and totally disconnected
topological group, then according to proposition 2.3.7 we have that the family

𝒩 ∶= {𝑁𝑖 ≤ 𝐺|𝑁𝑖 ⊴ 𝐺, 𝑁𝑖 𝑖𝑠𝑜𝑝𝑒𝑛}
forms a basis of open neighborhood of 1 ∈ 𝐺. The family of continuous homomor-
phisms

𝜋𝑖 ∶ 𝐺 → 𝐺/𝑁𝑖, 𝑖 ∈ 𝐼
satisfies that 𝜑𝑖𝑗 ∘ 𝜋𝑗 = 𝜋𝑖. Then according to theorem 2.2.6 there exists a unique
continuous homomorphism

𝜑 ∶ 𝐺 → lim←−𝑖∈𝐼
𝐺/𝑁𝑖 ⊆ ∏

𝑖∈𝐼
𝐺/𝑁𝑖
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𝐺 = lim←−𝑖∈𝐼
𝐺/𝑁𝑖 𝐺

𝐺/𝑁𝑗

𝐺/𝑁𝑖

𝜑

𝜑𝑗

𝜑𝑖

𝜋𝑗

𝜋𝑖

𝜑𝑖𝑗

We will show that 𝜑 is isomorphism of groups and homeomorphism of topolog-
ical spaces. Firstly, we will show that 𝜑 is injective. Indeed, 𝐾𝑒𝑟𝜑 = {𝑔 ∈ 𝐺 ∶
𝜑(𝑔) = (1)} = {𝑔 ∈ 𝐺 ∶ 𝑔 ∈ 𝑁𝑖, ∀𝑖 ∈ 𝐼} = ⋂

𝑖∈𝐼
𝑁𝑖 = {1}, the last equality aris-

ing from remark 2.3.8. Thus 𝜑 is injective. Then, we will show that 𝜑 is continuous.
It suffices to show that 𝑃𝑖 ∘ 𝜑 is continuous for every 𝑁𝑖 ⊴ 𝐺, 𝑁𝑖 = 𝑜𝑝𝑒𝑛 where
𝑃𝑖 is the projection.

𝐺
𝜑

⟶ lim←−𝑖∈𝐼
𝐺/𝑁𝑖 ⊆ ∏

𝑖∈𝐼
𝐺/𝑁𝑖

Pi⟶ 𝐺/𝑁𝑖

For the proof of the above statement it suffices to show that for every open set 𝐴 in
𝐺/𝑁𝑖 we have that (𝑃𝑖 ∘𝜑)−1(𝐴) is an open set in𝐺. Since the group𝐺/𝑁𝑖 is finite
topological group with discrete topology then all her subsets are open. In addition
the ℬ = {{𝑔𝑁𝑖}, 𝑔𝑁𝑖 ∈ 𝐺/𝑁𝑖} forms a basis of topological space 𝐺/𝑁𝑖. So then
it suffices to investigate if the inverse image of the elements of ℬ is open set in 𝐺
under 𝑃𝑖 ∘ 𝜑. Indeed,

(𝑃𝑖 ∘ 𝜑)−1({𝑁𝑖}) = {𝑥 ∈ 𝐺 ∶ (𝑃𝑖 ∘ 𝜑)(𝑥) = 𝑁𝑖} = {𝑥 ∈ 𝐺 ∶ 𝑥|𝑁𝑖
= 𝑁𝑖}

= {𝑥 ∈ 𝐺 ∶ 𝑥 ∈ 𝑁𝑖} = 𝑁𝑖 = 𝑜𝑝𝑒𝑛

Similarly,

(𝑃𝑖 ∘ 𝜑)−1({𝑔𝑁𝑖}) = {𝑥 ∈ 𝐺 ∶ (𝑃𝑖 ∘ 𝜑)(𝑥) = 𝑔𝑁𝑖} = {𝑥 ∈ 𝐺 ∶ 𝑥|𝑁𝑖
= 𝑔𝑁𝑖}

= {𝑥 ∈ 𝐺 ∶ 𝑔−1𝑥|𝑁𝑖
= 𝑁𝑖} = {𝑥 ∈ 𝐺 ∶ 𝑥 ∈ 𝑔𝑁𝑖}

= 𝑔𝑁𝑖 = 𝑜𝑝𝑒𝑛

Thus, for every {𝑔𝑁𝑖} ∈ ℬ we have that the (𝑃𝑖 ∘ 𝜑)−1({𝑔𝑁𝑖}) is open in 𝐺.
If 𝐴 is open set in 𝐺/𝑁𝑖, then 𝐴 = ∪{𝑔𝑁𝑖}, so then (𝑃𝑖 ∘ 𝜑)−1(𝐴) = (𝑃𝑖 ∘
𝜑)−1(∪{𝑔𝑁𝑖}) = ∪((𝑃𝑖 ∘ 𝜑)−1({𝑔𝑁𝑖})) which is open set in 𝐺 as it is union of
open sets. Consequently, the map 𝑃𝑖 ∘ 𝜑 is continuous for every 𝑃𝑖, and then 𝜑 is
continuous. Moreover, we will show that 𝜑 is surjective. We have that𝐺 is compact,



2.3 Profinite Groups 39

then 𝐺 is closed since 𝐺 is Hausdorff. Also, the map 𝜑 is continuous, so then 𝜑(𝐺)
is closed, that is 𝜑(𝐺) = 𝜑(𝐺). We will show that 𝜑(𝐺) is dense in lim←−𝑖∈𝐼

𝐺/𝑁𝑖,

because then 𝜑(𝐺) = lim←−𝑖∈𝐼
𝐺/𝑁𝑖. Thus, 𝜑(𝐺) = lim←−𝑖∈𝐼

𝐺/𝑁𝑖 and then 𝜑 is surjective.

Now we have to show that 𝜑(𝐺) is dense in lim←−𝑖∈𝐼
𝐺/𝑁𝑖. It suffices to show that for

every 𝑥 ∈ lim←−𝑖∈𝐼
𝐺/𝑁𝑖 then 𝑥 ∈ 𝜑(𝐺), that is for every open neighborhood of 𝑥 then

𝑉 ∩𝜑(𝐺) ≠ ∅. Let 𝑥 = (𝑥𝑖)𝑖∈𝐼 ∈ lim←−𝑖∈𝐼
𝐺/𝑁𝑖 and let 𝑈𝑆 = ∏

𝑖∉𝑆
𝐺/𝑁𝑖 ×∏

𝑖∈𝑆
{1𝐺/𝑁𝑖

},

where 𝑆 ⊆ 𝐼 and 𝑆 is finite. The 𝑈𝑆 are normal subgroups of ∏
𝑖∈𝐼

𝐺/𝑁𝑖 and then

𝑈𝑆 form a basis of open neighborhood of 1 in ∏
𝑖∈𝐼

𝐺/𝑁𝑖. Also the normal subgroups

𝑈𝑆 ∩ lim←−𝑖∈𝐼
𝐺/𝑁𝑖 form a basis of open neighborhood of 1 in lim←−𝑖∈𝐼

𝐺/𝑁𝑖. We have that

𝑥(𝑈𝑆 ∩ lim←−𝑖∈𝐼
𝐺/𝑁𝑖) is open neighborhood of 𝑥, since 𝑈𝑆 open. In addition, 𝑆 is a

finite directed set. We consider 𝑁𝑘 = ⋂
𝑖∈𝑆

𝑁𝑖, then 𝑁𝑘 ⊆ 𝑁𝑖 ⇔ 𝑖 ≤ ∀𝑖 ∈ 𝑆. Let

𝑦 ∈ 𝐺 such that 𝜋𝑘 ∶ 𝐺 → 𝐺/𝑁𝑘, 𝜋𝑘(𝑦) = 𝑥𝑘. Also we have that 𝜑𝑖𝑘(𝑥𝑘) = 𝑥𝑖
for every 𝑖 ∈ 𝑆 with 𝑖 ≤ 𝑘. For 𝑖 ∈ 𝑆 we have 𝑦 mod 𝑁𝑖 = 𝑥𝑖, because

𝐺
𝜋k⟶ 𝐺/𝑁𝑘

𝜑ik⟶ 𝐺/𝑁𝑖
𝑦 ↦ 𝑥𝑘 ↦ 𝑥𝑖

Thus, 𝜑(𝑦) ∈ 𝑥(𝑈𝑆 ∩ lim←−𝑖∈𝐼
𝐺/𝑁𝑖). We have that the 𝑥(𝑈𝑆 ∩ lim←−𝑖∈𝐼

𝐺/𝑁𝑖) form a basis

of open neighborhood of 𝑥 in∏
𝑖∈𝐼

𝐺/𝑁𝑖, since the normal subgroups𝑈𝑆 ∩lim←−𝑖∈𝐼
𝐺/𝑁𝑖

form a basis of open neighborhood of 1 in lim←−𝑖∈𝐼
𝐺/𝑁𝑖 and lim←−𝑖∈𝐼

𝐺/𝑁𝑖 is a topological

group. Hence, for every open neighborhood 𝑉 of 𝑥 there exist a 𝑦 ∈ 𝐺 such that
𝜑(𝑦) ∈ 𝑉 , which means that for every open neighborhood 𝑉 of 𝑥 we have that
𝑉 ∩ 𝜑(𝐺) ≠ ∅. Consequently, 𝜑(𝐺) is dense in lim←−𝑖∈𝐼

𝐺/𝑁𝑖.

Furthermore, we will show that 𝜑 is closed map. Let 𝐴 a closed set in 𝐺, and then
𝐴 is compact since 𝐺 is compact. But 𝜑 is continuous, so then 𝜑(𝐴) is compact
subset of lim←−𝑖∈𝐼

𝐺/𝑁𝑖. We have that lim←−𝑖∈𝐼
𝐺/𝑁𝑖 is a Hausdorff space. Indeed, firstly,

we have that 𝐺/𝑁𝑖 is Hausdorff, since if 𝑔1𝑁𝑖, 𝑔2𝑁𝑖 ∈ 𝐺/𝑁𝑖 with 𝑔1𝑁𝑖 ≠ 𝑔2𝑁𝑖.
But {𝑔1𝑁𝑖}, {𝑔2𝑁𝑖} are open neighborhoods of 𝐺/𝑁𝑖 with {𝑔1𝑁𝑖} ∩ {𝑔2𝑁𝑖} = ∅.
So then the product ∏

𝑖∈𝐼
𝐺/𝑁𝑖 is Hausdorff, and so is lim←−𝑖∈𝐼

𝐺/𝑁𝑖 ⊆ ∏
𝑖∈𝐼

𝐺/𝑁𝑖. Thus,

from the above we have that 𝜑(𝐴) is closed. Consequently, 𝜑 is closed map. Finally,
𝜑 is homomorphism from her construction. Hence, the map 𝜑 is isomorphism of
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groups and homeomorphism of topological spaces.

Now we will provide some useful characterizations of profinite groups.
Theorem 2.3.10. Let 𝐺 a topological group. Then the following conditions are
equivalent:
i) 𝐺 is a profinite group
ii) 𝐺 is a Hausdorff, compact group which has a basis of open neighborhood of 1
consisting of normal subgroups.
iii) 𝐺 is a Hausdorff, compact and totally disconnected group.

Proof. ( 𝑖) ⇒ 𝑖𝑖𝑖)) Let 𝐺 be a profinite group. Then according to theorem 2.3.4 we
have that 𝐺 is a Hausdorff, compact and totally disconnected group, which is the
desired.
( 𝑖𝑖𝑖) ⇒ 𝑖𝑖)) Let 𝐺 be a Hausdorff, compact and totally disconnected group. Also
from proposition 2.3.7 we have that the family of all open normal subgroups of 𝐺
forms a basis of open neighborhood of 1.
( 𝑖𝑖) ⇒ 𝑖)) Let 𝐺 be a Hausdorff, compact group which has a basis of open neigh-
borhood of 1 consisting of normal subgroups. We will show that 𝐺 is a profinite
group. It suffices to show that 𝐺 is the projective limit of finite topological groups.
Since 𝐺 is a Hausdorff, compact group which has a basis of open neighborhood of
1 consisting of normal subgroups, then according to proof of theorem 2.3.9 we can
prove that

𝐺 ≅ lim←−𝑖∈𝐼
𝐺/𝑁𝑖

algebraically and topologically. Thus 𝐺 is a profinite group.
Consequently, we proved the theorem.

Now we will refer some examples of profinite groups.

Examples of profinite groups

Example 2.3.11. If𝐾 is a field and �̄� is a separable closure of𝐾. Then the absolute
Galois group �̄�/𝐾 is a profinite group.

Let 𝐺𝐾 ∶= 𝐺𝑎𝑙(�̄�/𝐾). When 𝐿/𝐾 run through the finite normal subextensions
of �̄�/𝐾, then 𝐺𝑎𝑙(�̄�/𝐿) run through the open, normal subgroups of 𝐺𝐾, accord-
ing to definition of Krull topology.

�̄� < 𝑖𝑑 >

𝐿 𝐺𝑎𝑙(�̄�/𝐿)

𝐾 𝐺𝐾 = 𝐺𝑎𝑙(�̄�/𝐾)
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Thus, according to theorem 2.3.9 we have that

𝐺𝐾 ≅ lim←−𝐿
𝐺𝐾/𝐺𝑎𝑙(�̄�/𝐿)

where 𝐿 satisfying that 𝐾 ⩽ 𝐿 ⩽ �̄� and 𝐿/𝐾 be a finite Galois extension.
Since 𝐺𝑎𝑙(�̄�/𝐿) ⊴ 𝐺𝐾 then the extension 𝐿/𝐾 is a finite Galois extension and so

𝐺𝑎𝑙(𝐿/𝐾) ≅ 𝐺𝐾/𝐺𝑎𝑙(�̄�/𝐿)

Therefore,
𝐺𝐾 = 𝐺𝑎𝑙(�̄�/𝐾) ≅ lim←−𝐿

𝐺𝑎𝑙(𝐿/𝐾)

where 𝐿 satisfying that 𝐾 ⩽ 𝐿 ⩽ �̄� and 𝐿/𝐾 be a finite Galois extension.

In particular
𝐺𝑎𝑙(ℚ̄/ℚ) ≅ lim←−𝐾

𝐺𝑎𝑙(𝐾/ℚ)

where 𝐾 such that ℚ ⩽ 𝐾 ⩽ ℚ̄ and 𝐾/ℚ be a finite Galois extension.

Example 2.3.12. We have seen in example 2.3.3 that

ℤ̂ = lim←−𝑛∈ℕ
ℤ/𝑛ℤ

The Prüfer ring ℤ̂ is important in number theory. If 𝑛 = ∏
𝑝∈ℙ

𝑝𝑣𝑝 where 𝑣𝑝 ≥ 0

with almost all of them are 0 and ℙ is the set of all prime numbers. Then from
Chinese theorem we have that ℤ/𝑛ℤ ≅ ∏

𝑝∈ℙ
ℤ/𝑝𝑣𝑝ℤ. We know that the projective

limit preserves the direct product. Therefore,

lim←−𝑛∈ℕ
ℤ/𝑛ℤ ≅ lim←−𝑣𝑝

(∏
𝑝∈ℙ

ℤ/𝑝𝑣𝑝ℤ)

≅ ∏
𝑝∈ℙ

(lim←− ℤ/𝑝𝑣𝑝ℤ)

⇒ ℤ̂ ≅ ∏
𝑝∈ℙ

ℤ𝑝

Remark 2.3.13. If the family (𝑅𝑖, 𝜑𝑖𝑗), 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗 is a projective system of rings
𝑅𝑖 with identity elements 1𝑖 and 𝜑𝑖𝑗 are ring homomorphisms

𝜑𝑖𝑗 ∶ 𝑅𝑗 → 𝑅𝑖, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜑𝑖𝑗(1𝑗) = 1𝑖

then the projective limit
𝑅 ∶= lim←−𝑖∈𝐼

𝑅𝑖



42 Profinite groups

is a ring with identity as well.

Moreover,
𝑅∗ = lim←−𝑖∈𝐼

𝑅∗
𝑖

Example 2.3.14. We consider that 𝐺𝑛 ∶= (ℤ/𝑛ℤ)∗, then

ℤ̂∗ = lim←−𝑛∈ℕ
(ℤ/𝑛ℤ)∗

Similarly,
ℤ∗

𝑝 = lim←−𝑛∈ℕ
(ℤ/𝑝𝑛ℤ)∗

We know that (ℤ/𝑝𝑛ℤ)∗ = ℤ/(𝑝 − 1)ℤ × ℤ/𝑝𝑛−1ℤ, since (ℤ/𝑝𝑛ℤ)∗ is abelian
group of order 𝜑(𝑝𝑛) = 𝑝𝑛−1(𝑝 − 1). Therefore,

ℤ∗
𝑝 = lim←−𝑛∈ℕ

(ℤ/(𝑝 − 1)ℤ × ℤ/𝑝𝑛−1ℤ)

≅ lim←−𝑛∈ℕ
ℤ/(𝑝 − 1)ℤ × lim←−𝑛∈ℕ

ℤ/𝑝𝑛−1ℤ ≅ ℤ/(𝑝 − 1)ℤ × ℤ𝑝

Example 2.3.15. Let a finite field 𝔽𝑞 with 𝑞 elements. We know that for every 𝑛 ∈ ℕ
the extension 𝔽𝑞𝑛/𝔽𝑞 is cyclic Galois extension of degree 𝑛 and cyclic Galois group
with generator the Frobenius automorphism

𝜑 ∶ 𝔽𝑞𝑛 → 𝔽𝑞𝑛

𝑥 ↦ 𝑥𝑞

So then we get isomorphisms

𝐺𝑎𝑙(𝔽𝑞𝑛/𝔽𝑞) ≅ ℤ/𝑛ℤ
by mapping the Frobenius automorphism to 1 mod 𝑛ℤ. Therefore,

𝐺𝑎𝑙( ̄𝔽𝑞/𝔽𝑞) ≅ lim←−𝑛∈ℕ
𝐺𝑎𝑙(𝔽𝑞𝑛/𝔽𝑞)

= lim←−𝑛∈ℕ
ℤ/𝑛ℤ = ℤ̂

and this isomorphism 𝐺𝑎𝑙( ̄𝔽𝑞/𝔽𝑞) ≅ ℤ̂ sends the Frobenius automorphism 𝜑 ∈
𝐺𝑎𝑙( ̄𝔽𝑞/𝔽𝑞) to 𝟙 ∈ ℤ̂ and the subgroup < 𝜑 >= {𝜑𝑛|𝑛 ∈ ℤ} ≅ ℤ ⩽ ℤ̂ onto the
dense but not closed subgroup ℤ of ℤ̂. In the beginning of the chapter 1 we were able
to construct an element 𝜓 ∈ 𝐺𝑎𝑙( ̄𝔽𝑞/𝔽𝑞) such that 𝜓 ∉< 𝜑 >. This isomorphism
𝐺𝑎𝑙( ̄𝔽𝑞/𝔽𝑞) ≅ ℤ̂ explain us that

(0, … , 0, 1𝑙, 0, … , 0) ∈ ∏
𝑝∈ℙ

ℤ𝑝 = ℤ̂

which does not belongs to ℤ.
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Example 2.3.16. We consider the extension ℚ𝑎𝑏/ℚ. According to Kronecker-Weber
Theorem, we have that

ℚ𝑎𝑏 = ℚ({𝜁𝑛 | 𝑛 ∈ ℕ})
Clearly ℚ({𝜁𝑛 | 𝑛 ∈ ℕ}) is the splitting field of the collection of separable polyno-
mials {𝑋𝑛 − 1 | 𝑛 ∈ ℕ} over ℚ. Thus, the extension ℚ𝑎𝑏/ℚ is Galois. For every
𝜎 ∈ 𝐺 = 𝐺𝑎𝑙(ℚ𝑎𝑏/ℚ) if the value of 𝜎(𝜁𝑛) is known for every 𝑛 ∈ ℕ, then 𝜎 will
be completely determined on all of ℚ𝑎𝑏. For fixed 𝑛 ∈ ℕ, we know from classical
Galois theory that

𝐺𝑎𝑙(ℚ(𝜁𝑛)/ℚ) ≅ (ℤ/𝑛ℤ)∗

where (ℤ/𝑛ℤ)∗ is the multiplicative group of units of ℤ/𝑛ℤ. So we have that

𝐺 = 𝐺𝑎𝑙(ℚ𝑎𝑏/ℚ) ≅ lim←− 𝐺𝑎𝑙(ℚ(𝜁𝑛)/ℚ)
≅ lim←−(ℤ/𝑛ℤ)∗ = ℤ̂∗

2.4 Limits and Functors
So far we have referred in projective systems of topological spaces.We can speak

of projective systems of groups, modules or commutative rings as well.

The next result says that the functor 𝐻𝑜𝑚𝑅(𝐴, 2) preserves projective limits.

Proposition 2.4.1. Let 𝑀𝑖 be left 𝑅-modules and {(𝑀𝑖, 𝜑𝑖𝑗), 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗} be a
projective system. Then

𝐻𝑜𝑚𝑅(𝐴, lim←−𝑖∈𝐼
𝑀𝑖) ≅ lim←−𝑖∈𝐼

𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖)

for every left 𝑅-module 𝐴.

Proof. Firstly we will show that the {(𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖), (𝜑𝑖𝑗)∗), 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗}
forms a projective system, where (𝜑𝑖𝑗)∗ is the induced map, that is

(𝜑𝑖𝑗)∗ ∶ 𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑗) → 𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖)
ℎ ↦ 𝜑𝑖𝑗 ∘ ℎ

This is valid since the functor𝐻𝑜𝑚𝑅(𝐴, 2) is covariant.We know that𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖)
is a left 𝑅-module, because 𝑀𝑖 are left 𝑅-modules. Also the maps (𝜑𝑖𝑗)∗ are ho-
momorphisms. Moreover, (𝜑𝑖𝑖)∗(ℎ) = 𝜑𝑖𝑖 ∘ ℎ = 𝐼𝑑𝑀𝑖

∘ ℎ = ℎ, that is (𝜑𝑖𝑖)∗ =
𝐼𝑑𝐻𝑜𝑚𝑅(𝐴,𝑀𝑖). For 𝑖 ≤ 𝑗 ≤ 𝑘

𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑗) 𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖)

𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑘)

(𝜑𝑖𝑗)∗

(𝜑𝑗𝑘)∗ (𝜑𝑖𝑘)∗
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Then (𝜑𝑖𝑗)∗ ∘ (𝜑𝑗𝑘)∗(ℎ) = (𝜑𝑖𝑗)∗(𝜑𝑗𝑘 ∘ ℎ) = 𝜑𝑖𝑗 ∘ 𝜑𝑗𝑘 ∘ ℎ = 𝜑𝑖𝑘 ∘ ℎ = (𝜑𝑖𝑘)∗(ℎ),
since (𝑀𝑖, 𝜑𝑖𝑗) is a projective system. Thus the {(𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖), (𝜑𝑖𝑗)∗), 𝑖, 𝑗 ∈
𝐼, 𝑖 ≤ 𝑗} is a projective system, so that lim←−𝑖∈𝐼

𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖) makes sense.

This statement follows from the fact that the projective limit has the universal map-
ping property. Indeed we consider the diagram,

lim←−𝑖∈𝐼
𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖) 𝐻𝑜𝑚𝑅(𝐴, lim←−𝑖∈𝐼

𝑀𝑖)

𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖)

𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑗)

𝜃

𝛽𝑖

𝛽𝑗

(𝜑𝑖)∗

(𝜑𝑗)∗

(𝜑𝑖𝑗)∗

where 𝛽𝑖 ∶ lim←−𝑖∈𝐼
𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖) → 𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖) such that 𝛽𝑖 = (𝜑𝑖𝑗)∗ ∘ 𝛽𝑗, for

every 𝑖 ≤ 𝑗.
We intend to show that there exist such a map 𝜃 which is an isomorphism. We know
that 𝐻𝑜𝑚𝑅(𝐴, lim←−𝑖∈𝐼

𝑀𝑖) is a module. Also, (𝑀𝑖, 𝜑𝑖𝑗) is a projective system, so then

there exists a family of homomorphisms 𝜑𝑖 ∶ lim←−𝑖∈𝐼
𝑀𝑖 → 𝑀𝑖 such that 𝜑𝑖 = 𝜑𝑖𝑗 ∘𝜑𝑗,

for each 𝑖 ≤ 𝑗. Then the induced homomorphism is the following

(𝜑𝑖)∗ ∶ 𝐻𝑜𝑚𝑅(𝐴, lim←−𝑖∈𝐼
𝑀𝑖) → 𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖)

ℎ ↦ 𝜑𝑖 ∘ ℎ

such that (𝜑𝑖𝑗)∗ ∘ (𝜑𝑗)∗ = (𝜑𝑖)∗. So, according to universal property of projective
limit (Theorem 2.2.6) there exists a unique homomorphism

𝜃 ∶ 𝐻𝑜𝑚𝑅(𝐴, lim←−𝑖∈𝐼
𝑀𝑖) → 𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖)

such that (𝜑𝑖)∗ = 𝛽𝑖 ∘ 𝜃.
Thereafter, we will show that 𝜃 is injective. Suppose that 𝑓 ∶ 𝐴 → lim←−𝑖∈𝐼

𝑀𝑖 and

𝜃(𝑓) = 0. Then 𝛽𝑖 ∘ 𝜃(𝑓) = 0 ⇒ (𝜑𝑖)∗(𝑓) = 0 ⇒ 𝜑𝑖 ∘ 𝑓 = 0, for every 𝑖. So we
have the following diagram
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lim←−𝑖∈𝐼
𝑀𝑖 𝐴

𝑀𝑖

𝑀𝑗

𝑓

𝜑𝑖

𝜑𝑗

ℎ𝑖∶=𝜑𝑖∘𝑓

ℎ𝑗∶=𝜑𝑗∘𝑓

𝜑𝑖𝑗

The above diagram commutes, since 𝜑𝑖 ∘ 𝑓 = 0 for every 𝑖, then 𝜑𝑖𝑗 ∘ ℎ𝑗 = 𝜑𝑖𝑗 ∘
𝜑𝑗 ∘ 𝑓 = 0 = 𝜑𝑖 ∘ 𝑓 = ℎ𝑖. Thus, according to universal property of projective limits
(Theorem 2.2.6) the map 𝑓 is unique. But if we take the zero map in place of 𝑓 , then
the above diagram commutes as well. So the uniqueness of such a map gives that
𝑓 = 0, that is 𝜃 is injective.
It remains to show that 𝜃 is a surjective map. Let 𝑔 ∈ lim←−𝑖∈𝐼

𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖). For every

𝑖 there is a map 𝛽𝑖(𝑔) ∈ 𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖) with 𝜑𝑖𝑗 ∘ 𝛽𝑗(𝑔) = 𝛽𝑖(𝑔) for 𝑖 ≤ 𝑗.
Indeed, we know that 𝛽𝑖 = (𝜑𝑖𝑗)∗ ∘ 𝛽𝑗, ∀𝑖 ≤ 𝑗 and 𝛽𝑖(𝑔) ∈ 𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖), so then
𝜑𝑖𝑗 ∘ 𝛽𝑗(𝑔) = (𝜑𝑖𝑗)∗ ∘ 𝛽𝑗(𝑔) = 𝛽𝑖(𝑔).

lim←−𝑖∈𝐼
𝑀𝑖 𝐴

𝑀𝑖

𝑀𝑗

𝑔′

𝜑𝑖

𝜑𝑗

𝛽𝑖(𝑔)

𝛽𝑗(𝑔)

𝜑𝑖𝑗

Therefore, according to universal mapping property of projective limit there exists
a unique homomorphism

𝑔′ ∶ 𝐴 → lim←−𝑖∈𝐼
𝑀𝑖

satisfying that 𝜑 ∘ 𝑔′ = 𝛽𝑖(𝑔) for every 𝑖. So then (𝜑𝑖)∗(𝑔′) = 𝛽𝑖(𝑔), ∀𝑖 ⇒
𝛽𝑖(𝜃(𝑔′)) = 𝛽𝑖(𝑔), ∀𝑖 ⇒ 𝜃(𝑔′) = 𝑔. Thus, 𝜃 is surjective.
Hence, the map 𝜃 is isomorphism, that is

𝐻𝑜𝑚𝑅(𝐴, lim←−𝑖∈𝐼
𝑀𝑖) ≅ lim←−𝑖∈𝐼

𝐻𝑜𝑚𝑅(𝐴, 𝑀𝑖)
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We now consider the dual construction of projective limit, which is the direct
limit. Firstly, we will define the direct system, then we will define the direct limit
and finally we will investigate the dual of the proposition 2.4.1.
Definition 2.4.2. Let 𝐼 be a partially ordered set which is also directed. A direct
system over 𝐼 is a family

{(𝑀𝑖, 𝜑𝑖𝑗) |𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗}

of left 𝑅-modules 𝑀𝑖 and homomorphisms

𝜑𝑖𝑗 ∶ 𝑀𝑖 → 𝑀𝑗, 𝑖 ≤ 𝑗

satisfying that:
1) If 𝑖 = 𝑗, then 𝜑𝑖𝑖 = 𝐼𝑑𝑀𝑖

, ∀𝑖
2) If 𝑖 ≤ 𝑗 ≤ 𝑘 then 𝜑𝑗𝑘 ∘ 𝜑𝑖𝑗 = 𝜑𝑖𝑘

𝑀𝑖 𝑀𝑘

𝑀𝑗

𝜑𝑖𝑘

𝜑𝑖𝑗 𝜑𝑗𝑘

We can also speak for direct system of groups or topological spaces.

Definition 2.4.3. Let 𝐼 be a partially ordered set which is also directed. Let also
(𝑀𝑖, 𝜑𝑖𝑗) a direct system of left 𝑅-modules over 𝐼 . The direct limit lim−→𝑖∈𝐼

𝑀𝑖 is a left

𝑅-module and a family of 𝑅-homomorphisms 𝜑𝑖 ∶ 𝑀𝑖 → lim−→𝑖∈𝐼
, 𝑖 ∈ 𝐼 , such that:

i) 𝜑𝑖 = 𝜑𝑗 ∘ 𝜑𝑖𝑗, 𝑖 ≤ 𝑗
ii) For every module 𝑋 having maps 𝑓𝑖 ∶ 𝑀𝑖 → 𝑋 such that 𝑓𝑖 = 𝑓𝑗 ∘ 𝜑𝑖𝑗 for every
𝑖 ≤ 𝑗, then there exists a unique homomorphism

𝜃 ∶ lim−→𝑖∈𝐼
𝑀𝑖 → 𝑋

such that the following diagram commutes:

lim−→𝑖∈𝐼
𝑀𝑖 𝑋

𝑀𝑖

𝑀𝑗

𝜃

𝜑𝑖

𝜑𝑗

𝑓𝑖

𝑓𝑗

𝜑𝑖𝑗
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that is 𝑓𝑖 = 𝜃 ∘ 𝜑𝑖.

From the definition of the direct limit we understand that it has the universal
mapping property. So the direct limit of a direct system is unique (up to isomor-
phism) if it exists. We can prove that the direct limit of any direct system (𝑀𝑖, 𝜑𝑖𝑗)
of left 𝑅-modules over a partially ordered index set 𝐼 , which is also directed, exists.

Proposition 2.4.4. Let (𝐴𝑖, 𝜑𝑖𝑗) be a direct system of abelian groups, where 𝐼 is
directed and 𝐴 = lim−→𝑖∈𝐼

𝐴𝑖. Let also the family of ℤ-homomorphisms 𝜑𝑖 ∶ 𝐴𝑖 → 𝐴.

Then
𝐴 = ⋃

𝑖∈𝐼
𝜑𝑖(𝐴𝑖)

Proof. (𝐴𝑖, 𝜑𝑖𝑗) is a direct system, so 𝜑𝑖𝑗 ∶ 𝐴𝑖 → 𝐴𝑗 such that 𝜑𝑖𝑘 = 𝜑𝑗𝑘 ∘ 𝜑𝑖𝑗
and 𝜑𝑖 ∶ 𝐴𝑖 → 𝐴 such that 𝜑𝑗 ∘ 𝜑𝑖𝑗 = 𝜑𝑖. It is clear that ⋃

𝑖∈𝐼
𝜑𝑖(𝐴𝑖) ⊆ 𝐴. Let now

𝑎 ∈ 𝐴. From construction of direct limit there exists a 𝑖 ∈ 𝐼 such that 𝑎 = 𝜑𝑖(𝑥)
with 𝑥 ∈ 𝐴𝑖. This means that 𝑎 ∈ ⋃

𝑖∈𝐼
𝜑𝑖(𝐴𝑖).

Proposition 2.4.5. If (𝑀𝑖, 𝜑𝑖𝑗) be a direct system of left 𝑅-modules, then:

𝐻𝑜𝑚𝑅(lim−→𝑖∈𝐼
𝑀𝑖, 𝐵) ≅ lim←−𝑖∈𝐼

𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵)

for every left 𝑅-module 𝐵.

Proof. Firstly, we will show that {(𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵), (𝜑𝑖𝑗)∗), 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗} form a
projective system.We know that the functor𝐻𝑜𝑚𝑅(2, 𝐵) is a contravariant functor.
So the induced map is

(𝜑𝑖𝑗)∗ ∶ 𝐻𝑜𝑚𝑅(𝑀𝑗, 𝐵) → 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵)
ℎ ↦ ℎ ∘ 𝜑𝑖𝑗

We know that the 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵) are left 𝑅-modules, since 𝑀𝑖 are left 𝑅-modules.
Also, (𝜑𝑖𝑗)∗ are homomorphisms, as𝜑𝑖𝑗, ℎ are homomorphisms. In addition, (𝜑𝑖𝑖)∗(ℎ)
= ℎ ∘ 𝜑𝑖𝑖 = ℎ ∘ 𝐼𝑑𝑀𝑖

= ℎ, that is (𝜑𝑖𝑖)∗ = 𝐼𝑑𝑀𝑖
. For 𝑖 ≤ 𝑗 ≤ 𝑘

𝐻𝑜𝑚𝑅(𝑀𝑗, 𝐵) 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵)

𝐻𝑜𝑚𝑅(𝑀𝑘, 𝐵)

(𝜑𝑖𝑗)∗

(𝜑𝑗𝑘)∗ (𝜑𝑖𝑘)∗

(𝜑𝑖𝑗)∗ ∘ (𝜑𝑗𝑘)∗(ℎ) = (𝜑𝑖𝑗)∗(ℎ ∘ 𝜑𝑗𝑘) = ℎ ∘ 𝜑𝑗𝑘 ∘ 𝜑𝑖𝑗 = ℎ ∘ 𝜑𝑖𝑘 = (𝜑𝑖𝑘)∗(ℎ).
Thus, the {(𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵), (𝜑𝑖𝑗)∗), 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗} is a projective system, so that
lim←−𝑖∈𝐼

𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵) makes sense.
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This statement follows from the fact that the direct limit has the universal mapping
property. Indeed, we consider the diagram,

lim←−𝑖∈𝐼
𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵) 𝐻𝑜𝑚𝑅(lim−→𝑖∈𝐼

𝑀𝑖, 𝐵)

𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵)

𝐻𝑜𝑚𝑅(𝑀𝑗, 𝐵)

𝜃

𝛽𝑖

𝛽𝑗

(𝜑𝑖)∗

(𝜑𝑗)∗

(𝜑𝑖𝑗)∗

where 𝛽𝑖 ∶ lim←−𝑖∈𝐼
𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵) → 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵) such that 𝛽𝑖 = (𝜑𝑖𝑗)∗ ∘ 𝛽𝑗, for

every 𝑖 ≤ 𝑗.
We intend to show that there exists such a map 𝜃 which is an isomorphism. We
know that 𝐻𝑜𝑚𝑅(lim−→𝑖∈𝐼

𝑀𝑖, 𝐵) is an 𝑅-module. We have that (𝑀𝑖, 𝜑𝑖𝑗) is a direct

system, so then there exists a family of homomorphisms 𝜑𝑖 ∶ 𝑀𝑖 → lim−→𝑖∈𝐼
𝑀𝑖 such

that 𝜑𝑖 = 𝜑𝑗 ∘ 𝜑𝑖𝑗 with 𝑖 ≤ 𝑗. Then the induced homomorphism is the following

(𝜑𝑖)∗ ∶ 𝐻𝑜𝑚𝑅(lim−→𝑖∈𝐼
𝑀𝑖, 𝐵) → 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵)

ℎ ↦ ℎ ∘ 𝜑𝑖

such that (𝜑𝑖𝑗)∗ ∘ (𝜑𝑗)∗ = (𝜑𝑖)∗. So, according to universal property of direct limit
there exists a unique homomorphism

𝜃 ∶ 𝐻𝑜𝑚𝑅 (lim−→𝑖∈𝐼
𝑀𝑖, 𝐵) → lim←−𝑖∈𝐼

𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵)

such that (𝜑𝑖)∗ = 𝛽𝑖 ∘ 𝜃.
Thereafter, we will show that the map 𝜃 is injective. Let 𝑓 ∈ 𝐻𝑜𝑚𝑅(lim−→𝑖∈𝐼

𝑀𝑖, 𝐵)

such that 𝜃(𝑓) = 0. Then 𝛽𝑖 ∘ 𝜃(𝑓) = 0 ⇒ (𝜑𝑖)∗(𝑓) = 0 ⇒ 𝑓 ∘ 𝜑𝑖 = 0, ∀𝑖. So we
have the following diagram
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lim−→𝑖∈𝐼
𝑀𝑖 𝐵

𝑀𝑖

𝑀𝑗

𝑓

𝜑𝑖

𝜑𝑗

ℎ𝑖∶=𝑓∘𝜑𝑖

ℎ𝑗∶=𝑓∘𝜑𝑗

𝜑𝑖𝑗

Since 𝑓 ∘ 𝜑𝑖 = 0, ∀𝑖 then ℎ𝑗 ∘ 𝜑𝑖𝑗 = 𝑓 ∘ 𝜑𝑗 ∘ 𝜑𝑖𝑗 = 0 = 𝑓 ∘ 𝜑𝑖 = ℎ𝑖. So then
the diagram commutes and 𝑓 is unique according to universal mapping property
of direct limit. But if we take the zero map in place of 𝑓 , then the above diagram
commutes as well. So the uniqueness of such a map gives that 𝑓 = 0, that is 𝜃 is
injective.
It remains to show that 𝜃 is a surjective map. Let 𝑔 ∈ lim←−𝑖∈𝐼

𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵). For every

𝑖 there exists 𝛽𝑖(𝑔) ∈ 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵) with 𝛽𝑗(𝑔) ∘ 𝜑𝑖𝑗 = 𝛽𝑖(𝑔), for 𝑖 ≤ 𝑗. Indeed,
we know that 𝛽𝑖 = (𝜑𝑖𝑗)∗ ∘𝛽𝑗 for every 𝑖 ≤ 𝑗. We have that 𝛽𝑖(𝑔) ∈ 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵)
and 𝛽𝑗(𝑔)𝜑𝑖𝑗 = (𝜑𝑖𝑗)∗ ∘ 𝛽𝑗(𝑔) = 𝛽𝑖(𝑔)

lim−→𝑖∈𝐼
𝑀𝑖 𝐵

𝑀𝑖

𝑀𝑗

𝑔′

𝜑𝑖

𝜑𝑗

𝛽𝑖(𝑔)

𝛽𝑗(𝑔)

𝜑𝑖𝑗

Thus, according to universal mapping property of lim−→𝑖∈𝐼
𝑀𝑖 there is a unique homo-

morphism 𝑔′ ∶ lim−→𝑖∈𝐼
𝑀𝑖 → 𝐵 such that 𝑔′ ∘ 𝜑𝑖 = 𝛽𝑖(𝑔) for every 𝑖. So then 𝑔′ ∘ 𝜑𝑖 =

𝛽𝑖(𝑔), ∀𝑖 ⇒ (𝜑𝑖)∗(𝑔′) = 𝛽𝑖(𝑔), ∀𝑖 ⇒ 𝛽𝑖(𝜃(𝑔′)) = 𝛽𝑖(𝑔), ∀𝑖 ⇒ 𝜃(𝑔′) = 𝑔.
Hence, 𝜃 is surjective.
Therefore, 𝜃 is isomorphism. That is

𝐻𝑜𝑚𝑅 (lim−→𝑖∈𝐼
𝑀𝑖, 𝐵) ≅ lim←−𝑖∈𝐼

𝐻𝑜𝑚𝑅(𝑀𝑖, 𝐵)
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Now we will prove that the functor 𝐴 ⊗ 2 preserves direct limits. For this proof
we will need another proposition which we will prove first.

Proposition 2.4.6. Let a commutative diagram with exact rows of 𝑅-modules. We
assume also that the map 𝑓 is surjective and the map 𝑔 is isomorphism

𝐴′ 𝐴 𝐴″ 0

𝐵′ 𝐵 𝐵″ 0

𝑖

𝑓 𝑔

𝑝

ℎ
𝑗 𝑞

then there exists a unique isomorphism ℎ ∶ 𝐴″ → 𝐵″ such that 𝑞 ∘ 𝑔 = ℎ ∘ 𝑝.
Proof. If 𝑎″ ∈ 𝐴″, then there is 𝑎 ∈ 𝐴 with 𝑝(𝑎) = 𝑎″, since 𝑝 is surjective. We
define ℎ(𝑎″) = 𝑞 ∘ 𝑔(𝑎). Firstly, we will show that ℎ is well-defined. If 𝑢 ∈ 𝐴 such
that 𝑝(𝑢) = 𝑎″, then ℎ(𝑝(𝑢)) = ℎ(𝑎″) ⇒ 𝑞𝑔(𝑢) = ℎ(𝑎″) ⇒ 𝑞 ∘ ∘𝑔(𝑢) = 𝑞 ∘ 𝑔(𝑎).
Then 𝑝(𝑎) = 𝑝(𝑢)

p is homomorphism
⟹ 𝑝(𝑎−𝑢) = 0 ⇒ 𝑎−𝑢 ∈ 𝐾𝑒𝑟𝑝. But𝐾𝑒𝑟𝑝 = 𝐼𝑚𝑖,

since rows are exact, so then 𝑎−𝑢 ∈ 𝐼𝑚𝑖, that is 𝑎−𝑢 = 𝑖(𝑎′), with 𝑎′ ∈ 𝐴′. Thus,
𝑞 ∘ 𝑔(𝑎 − 𝑢) = 𝑞 ∘ 𝑔 ∘ 𝑖(𝑎′) = 𝑞 ∘ 𝑗 ∘ 𝑓(𝑎′) = 𝑞(𝑗(𝑓(𝑎′))) = 0, because the diagram
commutes then we have that 𝑔 ∘ 𝑖 = 𝑗 ∘ 𝑓 and 𝑗(𝑓(𝑎′)) ∈ 𝐼𝑚𝑗 = 𝐾𝑒𝑟𝑞. Hence,
𝑞∘𝑔(𝑎−𝑢) = 0 ⇒ 𝑞∘𝑔(𝑎)−𝑞∘𝑔(𝑢) = 0 ⇒ ℎ(𝑝(𝑎)) = ℎ(𝑝(𝑢)). So then ℎ is a well-
definedmap. From the definition of ℎwe have that the second square commutes, that
is ℎ∘𝑝 = 𝑞 ∘𝑔. Thereafter, we will show that ℎ is unique. We assume that there exist
ℎ′ ∶ 𝐴″ → 𝐵″ satisfying thatℎ′∘𝑝 = 𝑞∘𝑔. If 𝑎″ ∈ 𝐴″ we choose 𝑎 ∈ 𝐴with 𝑝(𝑎) =
𝑎″. Then ℎ′(𝑎″) = ℎ′(𝑝(𝑎)) = 𝑞(𝑔(𝑎)) = ℎ(𝑎″). Thus, ℎ is unique. In addition,
we will show that ℎ is injective. Let 𝑎″ ∈ 𝐴″ such that ℎ(𝑎″) = 0, with 𝑎″ = 𝑝(𝑎),
since 𝑝 is surjective. Then, ℎ(𝑎″) = 0 ⇒ 𝑞(𝑔(𝑎)) = 0 ⇒ 𝑔(𝑎) ∈ 𝐾𝑒𝑟𝑞 = 𝐼𝑚𝑗.
So there exists 𝑏′ ∈ 𝐵′ such that j(b’)=g(a). Because of 𝑓 is surjective, there is
𝑎′ ∈ 𝐴′ such that 𝑓(𝑎′) = 𝑏′. Thus 𝑗(𝑓(𝑎′)) = 𝑔(𝑎) ⇒ 𝑔(𝑖(𝑎′)) = 𝑔(𝑎), but
𝑔 is injective, so then 𝑖(𝑎′) = 𝑎 ⇒ 𝑝 ∘ 𝑖(𝑎′) = 𝑝(𝑎) ⇒ 𝑝 ∘ 𝑖(𝑎′) = 𝑎″. But
𝑝 ∘ 𝑖(𝑎′) = 0, since 𝑖(𝑎′) ∈ 𝐾𝑒𝑟𝑝 = 𝐼𝑚𝑖, so then 𝑎″ = 0. Hence, ℎ is injective.
Moreover, we will prove that ℎ is surjective. Let 𝑏″ ∈ 𝐵″. There is a 𝑏 ∈ 𝐵 such
that 𝑞(𝑏) = 𝑏″, because 𝑞 is surjective. Also, there exist 𝑎 ∈ 𝐴 such that 𝑔(𝑎) = 𝑏.
So, 𝑞 ∘ 𝑔(𝑎) = 𝑏″ ⇒ ℎ(𝑝(𝑎)) = 𝑏″. Consequently, ℎ is surjective. Hence, ℎ is
isomorphism.

Theorem 2.4.7. If 𝐴 is a right 𝑅-module and {(𝐵𝑖, 𝜑𝑖𝑗), 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗} is a direct
system of left 𝑅-modules, then

𝐴 ⊗𝑅 lim−→𝑖∈𝐼
𝐵𝑖 ≅ lim−→𝑖∈𝐼

(𝐴 ⊗𝑅 𝐵𝑖)

Proof. Firstly we will prove that {(𝐴 ⊗𝑅 𝐵𝑖, 1 ⊗ 𝜑𝑖𝑗), 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗} forms a
direct system. We know that 𝐴 ⊗𝑅 𝐵𝑖 is ℤ-module and 𝜑𝑖𝑗, 1 are homomorphisms.
So then there exists a unique homomorphism of ℤ-modules

1 ⊗ 𝜑𝑖𝑗 ∶ 𝐴 ⊗𝑅 𝐵𝑖 → 𝐴 ⊗𝑅 𝐵𝑗
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such that (1 ⊗ 𝜑𝑖𝑗)(𝛼 ⊗ 𝑏𝑖) = 𝛼 ⊗ 𝑏𝑗 and we extend it linearly. Also if 𝑖 = 𝑗
then (1 ⊗ 𝜑𝑖𝑖)(𝛼, 𝑏𝑖) = 𝛼 ⊗ 𝑏𝑖, that is 1 ⊗ 𝜑𝑖𝑖 = 𝐼𝑑𝐴⊗𝑅𝐵𝑖

. For 𝑖 ≤ 𝑗 ≤ 𝑘 then
(1⊗𝜑𝑗𝑘)∘(1⊗𝜑𝑖𝑗) = 1⊗(𝜑𝑗𝑘∘𝜑𝑖𝑗) = 1⊗𝜑𝑖𝑘. Therefore, {(𝐴⊗𝑅𝐵𝑖, 1⊗𝜑𝑖𝑗), 𝑖, 𝑗 ∈
𝐼, 𝑖 ≤ 𝑗} is a direct system, and then (lim−→𝑖∈𝐼

𝐴 ⊗𝑅 𝐵𝑖) makes sense. For the proof of

this statement we will construct lim−→𝑖∈𝐼
𝐵𝑖 as the cokernel2 of a special map. For every

pair 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗, where 𝐼 is a partially ordered set which is also directed, we
define a module 𝐵𝑖𝑗 satisfying that the following map

𝜆 ∶ 𝐵𝑖 → 𝐵𝑖𝑗
𝑏𝑖 ↦ 𝑏𝑖𝑗

is a module isomorphism. Let 𝜆𝑖 be the injection of 𝐵𝑖 into the sum ⊕𝑖𝐵𝑖 for each
𝑖 ∈ 𝐼 . We define

𝐷 = (⊕𝑖𝐵𝑖)/𝑆
where 𝑆 be the submodule of ⊕𝑖𝐵𝑖 generated by all elements 𝜆𝑗 ∘ 𝜑𝑖𝑗(𝑏𝑖) − 𝜆𝑖(𝑏𝑖)
with 𝑏𝑖 ∈ 𝐵𝑖, 𝑖 ≤ 𝑗. Now we define

𝛼𝑖 ∶ 𝐵𝑖 → 𝐷
𝑏𝑖 ↦ 𝜆𝑖(𝑏𝑖) + 𝑆

Then 𝛼𝑗 ∘𝜑𝑖𝑗(𝑏𝑖) = 𝜆𝑗 ∘𝜑𝑖𝑗(𝑏𝑖)+𝑆 for 𝑖 ≤ 𝑗 and 𝛼𝑖(𝑏𝑖) = 𝜆𝑖(𝑏𝑖)+𝑆. But it is plain
that 𝜆𝑗 ∘ 𝜑𝑖𝑗(𝑏𝑖) − 𝜆𝑖(𝑏𝑖) ∈ 𝑆 ⇔ 𝜆𝑗 ∘ 𝜑𝑖𝑗(𝑏𝑖) + 𝑆 = 𝜆𝑖(𝑏𝑖) + 𝑆 ⇔ 𝛼𝑗 ∘ 𝜑𝑖𝑗(𝑏𝑖) =
𝛼𝑖(𝑏𝑖). That is 𝛼𝑗 ∘ 𝜑𝑖𝑗 = 𝛼𝑖 for every 𝑖 ≤ 𝑗. Let 𝑋 be a module and 𝑓𝑖 ∶ 𝐵𝑖 → 𝑋
such that 𝑓𝑗 ∘ 𝜑𝑖𝑗 = 𝑓𝑖 for every 𝑖 ≤ 𝑗. Then we define

𝜃 ∶ 𝐷 → 𝑋
𝜆𝑖(𝑏𝑖) + 𝑆 ↦ 𝑓𝑖(𝑏𝑖)

and the following diagram commutes.

𝐷 𝑋

𝐵𝑖

𝐵𝑗

𝜃

𝛼𝑖

𝛼𝑗

𝑓𝑖

𝑓𝑗

𝜑𝑖𝑗

Indeed, 𝜃(𝛼𝑖(𝑏𝑖)) = 𝜃(𝜆𝑖()𝑏𝑖) + 𝑆) = 𝑓𝑖(𝑏𝑖). Moreover, the map 𝜃 is the unique
map 𝐷 → 𝑋 such that the above diagram is commutative for every 𝑖 ≤ 𝑗. If there
is another one map 𝜑 ∶ 𝐷 → 𝑋 satisfying that the above diagram is commutative,

2Let 𝑀, 𝑁 modules and let a map 𝑓 ∶ 𝑀 → 𝑁 , then cokernel of 𝑓 is 𝑐𝑜𝑘𝑒𝑟(𝑓) = 𝑁
𝐼𝑚𝑓
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that is 𝜑 ∘ 𝛼𝑖 = 𝑓𝑖. But we have that 𝑓𝑖 = 𝜃 ∘ 𝛼𝑖. Therefore, 𝜑 ∘ 𝛼𝑖 = 𝜃 ∘ 𝛼𝑖, ∀𝑖 and
then 𝜑 = 𝜃. Thus, the properties of direct limit are satisfied, and so

𝐷 ≅ lim−→𝑖∈𝐼
𝐵𝑖

Furthermore, we define
𝜎 ∶ ⊕𝑖𝑗𝐵𝑖𝑗 → ⊕𝑖𝐵𝑖

𝑏𝑖 ↦ 𝜆𝑗𝜑𝑖𝑗(𝑏𝑖) − 𝜆𝑖(𝑏𝑖)
We notice that 𝐼𝑚𝜎 = 𝑆. Hence, 𝑐𝑜𝑘𝑒𝑟𝜎 = ⊕𝑖𝐵𝑖/𝐼𝑚𝜎 = (⊕𝑖𝐵𝑖)/𝑆 ≅ lim−→𝑖∈𝐼

𝐵𝑖

and then there exists the below exact sequence

⊕𝑖𝑗𝐵𝑖𝑗
𝜎→ ⊕𝑖𝐵𝑖

𝜏→ lim−→𝑖∈𝐼
𝐵𝑖 → 0 (2.2)

Indeed, we have that 𝐾𝑒𝑟𝜏 = 𝐼𝑚𝜎 = 𝑆 as lim−→𝑖∈𝐼
𝐵𝑖 ≅ (⊕𝑖𝐵𝑖)/𝑆 and it is plain that

𝜏 is a surjection map. Now we act in the sequence 2.3 with the functor 𝐴 ⊗𝑅 □ and
then the sequence

𝐴 ⊗𝑅 (⊕𝑖𝑗𝐵𝑖𝑗)
1⊗𝜎→ 𝐴 ⊗𝑅 (⊕𝑖𝐵𝑖)

1⊗𝜏→ 𝐴 ⊗𝑅 (lim−→𝑖∈𝐼
𝐵𝑖) → 0 (2.3)

is also exact, since 𝐴 ⊗𝑅 □ is a right exact functor. Moreover, we have that the map

𝜏 ∶ 𝐴 ⊗𝑅 (⊕𝑖𝐵𝑖) → ⊕𝑖(𝐴 ⊗𝑅 𝐵𝑖)
𝑎 ⊗ (𝑏𝑖) ↦ (𝑎 ⊗ 𝑏𝑖)

is an isomorphism ofℤ−modules. Indeed, 𝜏(𝑎⊗(𝑏𝑖)+𝑎⊗(𝑏′
𝑖)) = 𝜏(𝑎⊗(𝑏𝑖+𝑏′

𝑖)) =
(𝑎⊗(𝑏𝑖 +𝑏′

𝑖)) = (𝑎⊗𝑏𝑖 +𝑎⊗𝑏′
𝑖) = (𝑎⊗𝑏𝑖)+(𝑎⊗𝑏′

𝑖) = 𝜏(𝑎⊗(𝑏𝑖))+𝜏(𝑎⊗(𝑏′
𝑖))

and 𝜏(𝜆𝑎 ⊗ (𝑏𝑖)) = 𝜏(𝑎 ⊗ (𝜆𝑏𝑖)) = (𝑎 ⊗ (𝜆𝑏𝑖)) = 𝜆(𝑎 ⊗ 𝑏𝑖) = 𝜆𝜏(𝑎 ⊗ (𝑏𝑖)) with
𝜆 ∈ ℤ. So 𝜏 is a homomorphism. Also, 𝜏 is an injective, since 𝜏(𝑎 ⊗ (𝑏𝑖)) = (0) ⇔
(𝑎 ⊗ 𝑏𝑖) = (0) ⇔ 𝑎 ⊗ 𝑏𝑖 = 0, ∀𝑖, and then 𝑎 ⊗ (𝑏𝑖) = 0. In addition, we will show
that 𝜏 is a surjective map. Let (𝑎⊗𝑏𝑖) ∈ ⊕𝑖(𝐴⊗𝑅 𝐵𝑖). Then 𝜏(𝑎⊗(𝑏𝑖)) = (𝑎⊗𝑏𝑖),
and so 𝜏 is surjective. Thus, 𝜏 is an isomorphism of ℤ−modules. Then,

𝐴 ⊗𝑅 (⊕𝑖𝑗𝐵𝑖𝑗) 𝐴 ⊗𝑅 (⊕𝑖𝐵𝑖) 𝐴 ⊗𝑅 (lim−→𝑖∈𝐼
𝐵𝑖) 0

⊕(𝐴 ⊗𝑅 𝐵𝑖𝑗) ⊕(𝐴 ⊗𝑅 𝐵𝑖) lim−→𝑖∈𝐼
(𝐴 ⊗𝑅 𝐵𝑖) 0

1⊗𝜎

𝜏′ 𝜏

�̃�

where



2.4 Limits and Functors 53

�̃� ∶ ⊕(𝐴 ⊗𝑅 𝐵𝑖𝑗) → ⊕(𝐴 ⊗ 𝐵𝑖)
(𝑎 ⊗ 𝑏𝑖𝑗) ↦ (1 ⊗ 𝜆𝑗)(𝑎 ⊗ 𝜑𝑖𝑗(𝑏𝑖)) − (1 ⊗ 𝜆𝑖)(𝑎 ⊗ 𝑏𝑖)

and 𝜏 ′ is an isomorphism (which can be proved like 𝜏 ). We will prove that �̃� ∘ 𝜏 ′ =
𝜏∘(1⊗𝜎). Indeed, 𝜏((1⊗𝜎)(𝑎⊗𝑏𝑖)) = 𝜏(𝑎⊗𝜎(𝑏𝑖)) = 𝜏(𝑎⊗(𝜆𝑗∘𝜑𝑖𝑗(𝑏𝑖)−𝜆(𝑏𝑖))) =
(𝑎⊗(𝜆𝑗∘𝜑𝑖𝑗(𝑏𝑖)−𝜆𝑖(𝑏𝑖))) and �̃�∘𝜏 ′(𝑎⊗(𝑏𝑖𝑗)) = �̃�(𝑠⊗𝑏𝑖𝑗) = (1⊗𝜆𝑗)(𝑎⊗𝜑𝑖𝑗(𝑏𝑖))−
(1 ⊗ 𝜆𝑖)(𝑎 ⊗ 𝑏𝑖) = (𝑎 ⊗ 𝜆𝑗 ∘ 𝜑𝑖𝑗(𝑏𝑖)) − (𝑎 ⊗ 𝜆𝑖(𝑏𝑖)) = (𝑎 ⊗ (𝜆𝑗 ∘ 𝜑𝑖𝑗(𝑏𝑖) − 𝜆𝑖(𝑏𝑖)).
So we have the desired. In addition, it is plain that the sequence

⊕(𝐴 ⊗𝑅 𝐵𝑖𝑗)
�̃�→ ⊕(𝐴 ⊗𝑅 𝐵𝑖) → lim−→𝑖∈𝐼

(𝐴 ⊗ 𝐵𝑖) → 0 (2.4)

is an exact sequence. Similarly we can prove that

(⊕(𝐴 ⊗ 𝐵𝑖))/𝐼𝑚�̃� ≅ lim−→𝑖∈𝐼
(𝐴 ⊗ 𝐵𝑖)

Thus, the rows are exact sequences and the diagram commutes. Therefore, there
exists a unique isomorphism

ℎ ∶ 𝐴 ⊗ lim−→𝑖∈𝐼
𝐵𝑖 → lim−→𝑖∈𝐼

(𝐴 ⊗ 𝐵𝑖)

making the augmented diagram commute, according to proposition 2.4.6. Hence,
𝐴 ⊗𝑅 lim−→𝑖∈𝐼

𝐵𝑖 ≅ lim−→𝑖∈𝐼
(𝐴 ⊗𝑅 𝐵𝑖)

In general it is not true that the tensor product □ ⊗ℤ 𝐵 commutes with the pro-
jective limit. This will be illustrated in the following example. We know that

ℤ𝑝 = lim←−𝑛∈ℕ
ℤ/𝑝𝑛ℤ

Also we have that
ℤ𝑝 ⊗ℤ ℚ = ℚ𝑝

Then
(lim←−𝑛∈ℕ

ℤ/𝑝𝑛ℤ) ⊗ℤ ℚ = ℤ𝑝 ⊗ℤ ℚ = ℚ𝑝

On the other hand, we have that

ℤ/𝑝𝑛ℤ ⊗ℤ ℚ = 0, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛
and so

lim←−𝑛∈ℕ
ℤ/𝑝𝑛ℤ ⊗ℤ ℚ = 0

Therefore,
(lim←−𝑛∈ℕ

ℤ/𝑝𝑛ℤ) ⊗ℤ ℚ ≠ lim←−𝑛∈ℕ
ℤ/𝑝𝑛ℤ ⊗ℤ ℚ

Hence, the tensor product doesn’t commute with the projective limit.
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Chapter 3

Cohomology of Finite Groups

3.1 Differential Groups
Differential groups serve as a convenient starting point for studying the coho-

mology of groups, since they serve as an introduction to some of the basic techniques
and as a tool for arriving at the infinite cohomology sequence.

Definition 3.1.1. A differential group is a pair (𝐴, 𝑑) where 𝐴 is an abelian group
(which we shall usually write additively) and 𝑑 ∶ 𝐴 → 𝐴 is an endomorphism of 𝐴
such that 𝑑2 = 𝑑 ∘ 𝑑 = 0 (The 𝑑 is called differential operator).
This means that 𝐼𝑚𝑑 ⊆ 𝐾𝑒𝑟𝑑. Then we may form the group

𝐻(𝐴) = 𝐾𝑒𝑟𝑑
𝐼𝑚𝑑

which called derived group of (𝐴, 𝑑).
Let (𝐴1, 𝑑1) and (𝐴2, 𝑑2) are differential groups and 𝑓 ∶ 𝐴1 → 𝐴2 is a homomor-
phism of groups. Then 𝑓 is said to be admissible when the following diagram

𝐴1 𝐴2

𝐴1 𝐴2

𝑓

𝑑1 𝑑2

𝑓

is commutative, i.e 𝑓 ∘ 𝑑1 = 𝑑2 ∘ 𝑓
In this section all differential operators will be denoted by 𝑑.

Proposition 3.1.2. Every admissible homomorphism 𝑓 ∶ (𝐴, 𝑑) → (𝐵, 𝑑) of differ-
ential groups induces a homomorphism of groups

𝑓∗ ∶ 𝐻(𝐴) → 𝐻(𝐵)

given by
𝑓∗(𝑎 + 𝑑𝐴) = 𝑓(𝑎) + 𝑑𝐵, 𝑤ℎ𝑒𝑟𝑒 𝑑𝑎 = 0

55
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If 𝑓, 𝑔 ∶ (𝐴, 𝑑) → (𝐵, 𝑑) are admissible homomorphisms, then 𝑓 ± 𝑔 is also admis-
sible and

(𝑓 ± 𝑔)∗ = 𝑓∗ ± 𝑔∗

If 𝑓 ∶ (𝐴, 𝑑) → (𝐵, 𝑑) and 𝑔 ∶ (𝐵, 𝑑) → (𝐶, 𝑑) are admissible homomorphisms,
then 𝑔 ∘ 𝑓 is also admissible homomorphism and

(𝑔 ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗

Proof. Firstly we will show that 𝑓∗ is well defined. Let 𝑎 + 𝑑𝑎1 another representa-
tive of the class 𝑎 + 𝑑𝐴, with 𝑎1 ∈ 𝐴, then

𝑓(𝑎 + 𝑑𝑎1) = 𝑓(𝑎) + 𝑓(𝑑𝑎1) = 𝑓(𝑎) + (𝑓 ∘ 𝑑)(𝑎1)
= 𝑓(𝑎) + (𝑑 ∘ 𝑓)(𝑎1), 𝑠𝑖𝑛𝑐𝑒 𝑓 𝑖𝑠 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒
= 𝑓(𝑎) + 𝑑(𝑓(𝑎1)) ∈ 𝑓(𝑎) + 𝑑𝐵

Then 𝑓∗(𝑎 + 𝑑𝑎1 + 𝑑𝐴) = 𝑓(𝑎) + 𝑑(𝑓(𝑎1)) + 𝑑𝐵 = 𝑓(𝑎) + 𝑑𝐵. Thus 𝑓∗ is
well-defined. Also, 𝑓∗ is a homomorphism, since

𝑓∗(𝑎 + 𝑏 + 𝑑𝐴) = 𝑓(𝑎 + 𝑏) + 𝑑𝐵 = 𝑓(𝑎) + 𝑓(𝑏) + 𝑑𝐵
= 𝑓(𝑎) + 𝑑𝐵 + 𝑓(𝑏) + 𝑑𝐵 = 𝑓∗(𝑎 + 𝑑𝐴) + 𝑓∗(𝑏 + 𝑑𝐵)

Similarly we can prove the remaining assertions.

Corollary 3.1.3. We have that

0∗ = 0 𝑎𝑛𝑑 1∗ = 1

In more details if 0 is the trivial map (𝐴, 𝑑) → (𝐵, 𝑑) then 0∗ is the trivial map
𝐻(𝐴) → 𝐻(𝐵), and if 1 ∶ 𝐴 → 𝐴 is the identity map, then 1∗ ∶ 𝐻(𝐴) → 𝐻(𝐴) is
the identity.

Theorem 3.1.4. Suppose that

0 → 𝐴 𝑖→ 𝐵
𝑗

→ 𝐶 → 0

is a short exact sequence of differential groups and 𝑖, 𝑗 are admissible homomor-
phisms.
I) Then there exists a homomorphism 𝑑∗ ∶ 𝐻(𝐶) → 𝐻(𝐴) such that the following
triangle is exact

𝐻(𝐶) 𝐻(𝐴)

𝐻(𝐵)

𝑑∗

𝑗∗ 𝑖∗
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II) Moreover, if

0 𝐴 𝐵 𝐶 0

0 𝐴′ 𝐵′ 𝐶′ 0

𝑖 𝑗

𝑖′ 𝑗′

is a commutative diagram of differential groups with exact rows and all maps are
admissible homomorphisms, then the following prism has exact triangles and com-
mutative faces

𝐻(𝐶) 𝐻(𝐴)

𝐻(𝐵)

𝐻(𝐶′) 𝐻(𝐴′)

𝐻(𝐵′)

𝑑∗

𝑗∗

ℎ∗

𝑖∗

𝑓∗

𝑔∗

𝑑′
∗

𝑗′
∗ 𝑖∗

Proof. I) ; Definition of 𝑑∗:
Let 𝛾 ∈ 𝐻(𝐶) that is 𝛾 = 𝑐 + 𝑑𝐶, with 𝑑(𝑐) = 0. Then there exists 𝑏 ∈ 𝐵 such
that 𝑗(𝑏) = 𝑐, since 𝑗 is surjective. We have that

𝑗(𝑑𝑏) = 𝑑(𝑗(𝑏)) = 𝑑(𝑐) = 0 ⇒ 𝑑(𝑏) ∈ 𝐾𝑒𝑟𝑗 ⇒ 𝑑(𝑏) ∈ 𝐼𝑚𝑖

which means that there exists 𝑎 ∈ 𝐴 such that 𝑖(𝑎) = 𝑑(𝑏). So then

𝑑(𝑖(𝑎)) = 𝑑2(𝑏) = 0 ⇒ 𝑑(𝑖(𝑎)) = 0 ⇒ 𝑖(𝑑(𝑎)) = 0

since 𝑖 is admissible, and this implies that 𝑑(𝑎) = 0, because 𝑖 is injective, which
means that 𝑎 ∈ 𝐾𝑒𝑟𝑑. Thus 𝑎 determines an element 𝛼 = 𝑎 + 𝑑(𝐴) ∈ 𝐻(𝐴). We
define 𝑑∗(𝛾) = 𝛼. In other words

𝑑∗(𝛾) = 𝑎 + 𝑑𝐴, 𝑤ℎ𝑒𝑟𝑒 𝑗(𝑏) = 𝑐 𝑎𝑛𝑑 𝑖(𝑎) = 𝑑(𝑏)

; 𝑑∗ is well-defined:
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Firstly, we will show that if 𝛾 = 0 ∈ 𝐻(𝐶), then 𝛼 = 0. That is if 𝑐 = 𝑑(𝑐1), with
𝑐1 ∈ 𝐶, thenwewill show that 𝑎 = 𝑑(𝑎1). Now if 𝑐 = 𝑑(𝑐1) then there exists 𝑏1 ∈ 𝐵
such that 𝑗(𝑏1) = 𝑐1, since 𝑗 is surjective. So 𝑗(𝑏 − 𝑑(𝑏1)) = 𝑗(𝑏) − 𝑗(𝑑(𝑏1)) =
𝑗(𝑏) − 𝑑(𝑗(𝑏1)) = 𝑗(𝑏) − 𝑑(𝑐1) = 0 which means that 𝑏 − 𝑑(𝑏1) ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖.
Hence there exists 𝑎1 ∈ 𝐴 such that 𝑖(𝑎1) = 𝑏 − 𝑑(𝑏1) and so 𝑏 = 𝑖(𝑎1) + 𝑑(𝑏1).
Then 𝑖(𝑎) = 𝑑(𝑏) = 𝑑(𝑖(𝑎1)+𝑑(𝑏1)) = 𝑑(𝑖(𝑎1))+𝑑2(𝑏1) = 𝑑(𝑖(𝑎1)) = 𝑖(𝑑(𝑎1)).
Therefore 𝑖(𝑎) = 𝑖(𝑑(𝑎1)) and since 𝑖 is injective then 𝑎 = 𝑑(𝑎1). In addition it is
clear from its definition that 𝑑∗ is additive. So then it follows that 𝑑∗ is a well-defined
homomorphism 𝐻(𝐶) → 𝐻(𝐴).

In order to show that the exactness of the triangle it remains to prove the six kernel-
image relations.; 𝐼𝑚𝑖∗ ⊆ 𝐾𝑒𝑟𝑗∗:
We have that 𝑗∗ ∘ 𝑖∗ = (𝑗 ∘ 𝑖)∗ = 0∗ = 0.

; 𝐼𝑚𝑗∗ ⊆ 𝐾𝑒𝑟𝑑∗:
If 𝑏 + 𝑑𝐵 ∈ 𝐻(𝐵), with 𝑑𝑏 = 0. Then

𝑑∗(𝑗∗(𝑏 + 𝑑𝐵)) = 𝑑∗(𝑗𝑏 + 𝑑𝐶) = 𝑑∗(𝑐 + 𝑑𝐶)
= 𝑑∗(𝛾) = 𝛼 = 𝑎 + 𝑑𝐴

where 𝑖𝑎 = 𝑑𝑏 = 0, which implies that 𝑎 = 0, since 𝑖 is an injective map. Thus,
𝑎 + 𝑑𝐴 = 0 ∈ 𝐻(𝐴) and therefore 𝑑∗ ∘ 𝑗∗ = 0.

; 𝐼𝑚𝑑∗ ⊆ 𝐾𝑒𝑟𝑖∗:

𝑖∗(𝑑∗(𝑐 + 𝑑𝐶)) = 𝑖∗(𝑎 + 𝑑𝐴) = 𝑖(𝑎) + 𝑑𝐵
= 𝑑(𝑏) + 𝑑𝐵 = 0 + 𝑑𝐵 = 0 ∈ 𝐻(𝐵)

Thus, 𝑖∗ ∘ 𝑑∗ = 0 which means that 𝐼𝑚𝑑∗ ⊆ 𝐾𝑒𝑟𝑖∗.

; 𝐾𝑒𝑟𝑗∗ ⊆ 𝐼𝑚𝑖∗:
Let 𝑏 + 𝑑𝐵 ∈ 𝐾𝑒𝑟𝑗∗, that is 𝑑(𝑏) = 0 and 𝑗∗(𝑏 + 𝑑𝐵) = 𝑗(𝑏) + 𝑑𝐶 = 0 ∈ 𝐻(𝐶).
Then there exists 𝑐 ∈ 𝐶 such that 𝑗(𝑏) = 𝑑(𝑐). We choose 𝑏1 ∈ 𝐵 such that
𝑗(𝑏1) = 𝑐, since 𝑗 is surjective, and

𝑗(𝑏 − 𝑑(𝑏1)) = 𝑗(𝑏) − 𝑗(𝑑(𝑏1)) = 𝑗(𝑏) − 𝑑(𝑗(𝑏1)) = 𝑑(𝑐) = 𝑑(𝑐) = 0
⇒ 𝑏 − 𝑑(𝑏1) ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖
⇒ ∃𝑎 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑖(𝑎) = 𝑏 − 𝑑(𝑏1)
⇒ 𝑑(𝑖(𝑎)) = 𝑑(𝑏) − 𝑑2(𝑏1) ⇒ 𝑖(𝑑(𝑎)) = 0
⇒ 𝑑(𝑎) = 0, 𝑠𝑖𝑛𝑐𝑒 𝑖 𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒

and
𝑖∗(𝑎 + 𝑑𝐴) = 𝑖(𝑎) + 𝑑𝐵 = 𝑏 − 𝑑(𝑏1) + 𝑑𝐵 = 𝑏 + 𝑑𝐵
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Thus, 𝑏 + 𝑑𝐵 ∈ 𝐼𝑚𝑖∗

; 𝐾𝑒𝑟𝑑∗ ⊆ 𝐼𝑚𝑗∗:
Suppose that 𝑐 + 𝑑𝐶 ∈ 𝐾𝑒𝑟𝑑∗, that is 𝑑(𝑐) = 0 and 𝑑∗(𝑐 + 𝑑𝐶) = 𝑎 + 𝑑𝐴 = 0 ∈
𝐻(𝐴). So that 𝑎 ∈ 𝑑𝐴, that is 𝑎 = 𝑑(𝑎1), with 𝑎1 ∈ 𝐴. We put 𝑏1 = 𝑏−𝑖(𝑎1), where
𝑐 = 𝑗(𝑏) and 𝑖(𝑎) = 𝑑(𝑏). Then 𝑗(𝑏1) = 𝑗(𝑏 − 𝑖(𝑎1)) = 𝑗(𝑏) − 𝑗(𝑖(𝑎1)) = 𝑗(𝑏) = 𝑐
and 𝑑(𝑏1) = 𝑑(𝑏)−𝑑(𝑖(𝑎1)) = 𝑖(𝑎)−𝑖(𝑎) = 0. Thus, 𝑗∗(𝑏1 +𝑑𝐵) = 𝑗(𝑏1)+𝑑𝐶 =
𝑐 + 𝑑𝐶, that is 𝑐 + 𝑑) ∈ 𝐼𝑚𝑗∗. Therefore, 𝐾𝑒𝑟𝑑∗ ⊆ 𝐼𝑚𝑗∗.

; 𝐾𝑒𝑟𝑖∗ ⊆ 𝐼𝑚𝑑∗:
Let 𝑎 + 𝑑𝐴 ∈ 𝐾𝑒𝑟𝑖∗, that is 𝑑(𝑎) = 0 and 𝑖∗(𝑎 + 𝑑𝐴) = 𝑖(𝑎) + 𝑑𝐵 = 0 ∈ 𝐻(𝐵).
So 𝑖(𝑎) = 𝑑(𝑏), with 𝑏 ∈ 𝐵. We set 𝑐 = 𝑗(𝑏). Thus, we have that 𝑑(𝑐) = 𝑑(𝑗(𝑏)) =
𝑗(𝑑(𝑏)) = 𝑗(𝑖(𝑎)) = 0. Therefore, 𝑑∗(𝑐 + 𝑑𝐶) = 𝑎 + 𝑑𝐴 which means that
𝑎 + 𝑑𝐴 ∈ 𝐼𝑚𝑑∗

Therefore we proved that 𝐾𝑒𝑟𝑗∗ = 𝐼𝑚𝑖∗, 𝐾𝑒𝑟𝑑∗ = 𝐼𝑚𝑗∗, 𝐾𝑒𝑟𝑖∗ = 𝐼𝑚𝑑∗ and
then the triangle is exact.

II) From the above we have that

𝑔∗ ∘ 𝑖∗ = 𝑖′
∗ ∘ 𝑓∗ 𝑎𝑛𝑑 ℎ∗ ∘ 𝑗∗ = 𝑗′

∗ ∘ 𝑔∗

Since 𝑔 ∘ 𝑖 = 𝑖′ ∘ 𝑓 then

(𝑔 ∘ 𝑖)∗ = (𝑖′ ∘ 𝑓)∗ ⇒ 𝑔∗ ∘ 𝑖∗ = 𝑖′
∗ ∘ 𝑓∗

Similarly, ℎ∘𝑗 = 𝑗′ ∘𝑔 ⇒ (ℎ∘𝑗)∗ = (𝑗′ ∘𝑔)∗ ⇒ ℎ∗ ∘𝑗∗ = 𝑗′
∗ ∘𝑔∗. It remains to show

that 𝑑′
∗ ∘ℎ∗ = 𝑓∗ ∘𝑑∗. Indeed, (𝑓∗ ∘𝑑∗)(𝑐 +𝑑𝐶) = 𝑓∗(𝑎+𝑑𝐴) = 𝑓(𝑎)+𝑑𝐴′, where

𝑑(𝑐) = 0, 𝑗(𝑏) = 𝑐 and i(a)=d(b). On the other hand (𝑑′
∗ ∘ ℎ∗)(𝑐 + 𝑑𝐶) = 𝑑′

∗(ℎ∗(𝑐 +
𝑑𝐶)) = 𝑑′

∗(ℎ(𝑐) + 𝑑𝐶′. We have that ℎ(𝑐) = ℎ(𝑗(𝑏)) = (𝑗′ ∘ 𝑔)(𝑏) = 𝑗′(𝑔(𝑏))
and 𝑑′(𝑔(𝑏)) = 𝑔(𝑑′(𝑏)) = 𝑔(𝑖(𝑎)) = 𝑖′(𝑓(𝑎)). So then (𝑑′

∗ ∘ ℎ∗)(𝑐 + 𝑑𝐶) =
𝑑′

∗(ℎ(𝑐)+𝑑𝐶′) = 𝑓(𝑎)+𝑑𝐴′. Therefore the faces are commutative. This complete
the proof.

We assume that (𝐴, 𝑑) is a differential group. Let also {𝐴𝑛} be an infinite se-
quence of abelian groups and homomorphisms 𝑑𝑛 = 𝑑|𝐴𝑛

∶ 𝐴𝑛 → 𝐴𝑛+𝑟 such that
𝑑𝑛+𝑟 ∘ 𝑑𝑛 = 0, where 𝑟 = ±1, for every 𝑛 ∈ ℤ. So we get an infinite sequence

⋯ → 𝐴𝑛−𝑟
𝑑𝑛−𝑟→ 𝐴𝑛

𝑑𝑛→ 𝐴𝑛+𝑟
𝑑𝑛+𝑟→ 𝐴𝑛+2𝑟 → ⋯ (∗)

In this case we will denote by (𝐴, 𝑑, 𝑟), where 𝐴 =
+∞
∑
−∞

⊕𝐴𝑛 and it will be called

differential graded group. The case 𝑟 = 1, that is (𝐴, 𝑑, 1), is called cohomology,
while the case 𝑟 = −1, that is (𝐴, 𝑑, −1), is called homology. This distinction is
highly artificial in that if (𝐴, 𝑑, 1) is a differential graded group of cohomology type,
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then we may put 𝐴′
𝑛 = 𝐴−𝑛 and 𝑑′

𝑛 = 𝑑−𝑛 and then (𝐴′, 𝑑′, −1) is a differential
graded group of homological type. That is

⋯ → 𝐴−2
𝑑−2→ 𝐴−1

𝑑−1→ 𝐴0
𝑑0→ 𝐴1

𝑑1→ 𝐴2 → ⋯

⋯ → 𝐴′
2

𝑑′
2→ 𝐴′

1
𝑑′

1→ 𝐴′
0

𝑑′
0→ 𝐴′

−1
𝑑′

−1→ 𝐴′
−2 → ⋯

Now we consider the differential graded group (𝐴, 𝑑, 1). For each 𝑛 ∈ ℤ, the
group 𝐴𝑛 is called the group of n-cochains. The operator 𝑑 determines for each
𝑛 ∈ ℤ the groups

𝒞𝑛 ∶= 𝐴𝑛 ∩ 𝐾𝑒𝑟𝑑𝑛
which is called the group of n-cocycles and

ℬ𝑛 = 𝐴𝑛 ∩ 𝑑𝑛−1(𝐴𝑛−1)
which is called the group of n-coboundaries. Let the chain

⋯ → 𝐴−2
𝑑−2→ 𝐴−1

𝑑−1→ 𝐴0
𝑑0→ 𝐴1

𝑑1→ 𝐴2 → ⋯
For example 𝒞2 = 𝐴2 ∩ 𝐾𝑒𝑟𝑑2 = 𝐾𝑒𝑟𝑑2 and ℬ2 = 𝐴2 ∩ 𝑑1(𝐴1) = 𝑑1(𝐴1) =
𝐼𝑚𝑑1, so then ℬ2 ⊆ 𝒞2, since 𝐼𝑚𝑑1 ⊆ 𝐾𝑒𝑟𝑑2. In general we have that ℬ𝑛 ⊆ 𝒞𝑛,
because 𝑑𝑛−1(𝐴𝑛−1) ⊆ 𝐾𝑒𝑟𝑑𝑛.

Definition 3.1.5. The group
𝐻𝑛(𝐴) = 𝒞𝑛

ℬ𝑛
will be called the nth cohomology group of A.

Definition 3.1.6. Let (𝐴, 𝑑, 1) and (𝐵, 𝑑, 1) are differential graded groups and 𝑓 ∶
𝐴 → 𝐵 is a homomorphism of groups. Then 𝑓 is said to be an admissible map for
the (𝐴, 𝑑, 1) and (𝐵, 𝑑, 1) when 𝑓 ∘ 𝑑 = 𝑑 ∘ 𝑓 and 𝑓 maps 𝐴𝑛 into 𝐵𝑛 for every

𝑛 ∈ ℤ. It is clear that for the induced map 𝑓∗ ∶ 𝐻(𝐴) ∶=
+∞
∑
−∞

⊕𝐻𝑛(𝐴) → 𝐻(𝐵) ∶=
+∞
∑
−∞

⊕𝐻𝑛(𝐵) we have that

𝑓∗ ∶ 𝐻𝑛(𝐴) → 𝐻𝑛(𝐵), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈ ℤ
and 𝑓𝑛 = 𝑓|𝐴𝑛

∶ 𝐴𝑛 → 𝐵𝑛 such that 𝑓𝑛+1 ∘𝑑 = 𝑑 ∘𝑓𝑛 for every 𝑛 ∈ ℤ. This means
that

⋯ 𝐴−2 𝐴−1 𝐴0 𝐴1 𝐴2 ⋯

⋯ 𝐵−2 𝐵−1 𝐵0 𝐵1 𝐵2 ⋯

𝑑−2

𝑓−2

𝑑−1

𝑓−1

𝑑0

𝑓0

𝑑1

𝑓1 𝑓2
𝑑−2 𝑑−1 𝑑0 𝑑1
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where 𝑑𝑛 are differential operators, 𝑓𝑛 ∶ 𝐴𝑛 → 𝐵𝑛 such that 𝑓𝑛+1 ∘ 𝑑 = 𝑑 ∘ 𝑓𝑛 for
every 𝑛 ∈ ℤ.

Proposition 3.1.7. We consider the following commutative diagram of differential
graded groups, all of cohomological type, with exact rows and all maps admissible

0 𝐴 𝐵 𝐶 0

0 𝐴′ 𝐵′ 𝐶′ 0

𝑖

𝑓

𝑗

𝑔 ℎ
𝑖′ 𝑗′

Then the following diagram is commutative with exact rows.

⋯ 𝐻𝑛−1(𝐶) 𝐻𝑛(𝐴) 𝐻𝑛(𝐵) 𝐻𝑛(𝐶) 𝐻𝑛+1(𝐴) ⋯

⋯ 𝐻𝑛−1(𝐶′) 𝐻𝑛(𝐴′) 𝐻𝑛(𝐵′) 𝐻𝑛(𝐶′) 𝐻𝑛+1(𝐴′) ⋯

𝑑∗

ℎ∗

𝑖∗

𝑓∗

𝑗∗

𝑔∗

𝑑∗

ℎ∗ 𝑓∗

𝑑−2 𝑖′
∗ 𝑗′

∗ 𝑑∗

Proof. According to theorem 3.1.4 we have that the diagram is commutative with
exact rows. Also we notice that 𝑑∗ raises dimension by 1, since it is of cohomological
type.

3.2 G- modules
Definition 3.2.1. Let 𝑀 ≠ ∅ and 𝑅 be a ring (not necessary commutative with
identity). The 𝑀 will be called left 𝑅-module, when 𝑀 is an additive abelian group
equipped with a scalar multiplication

𝑅 × 𝑀 → 𝑀
(𝑟, 𝑚) ↦ 𝑟𝑚

such that

• (𝑟1 + 𝑟2)𝑚 = 𝑟1𝑚 + 𝑟2𝑚, for every 𝑚 ∈ 𝑀 and 𝑟1, 𝑟2 ∈ 𝑅

• 𝑟(𝑚1 + 𝑚2) = 𝑟𝑚1 + 𝑟𝑚2, for every 𝑟 ∈ 𝑅 and 𝑚1, 𝑚2 ∈ 𝑀

• 𝑟1(𝑟2𝑚) = (𝑟1𝑟2)𝑚, for every 𝑟1, 𝑟2 ∈ 𝑅 and 𝑚 ∈ 𝑀

If also 𝑅 be a ring with identity element 1, such that 1 ⋅ 𝑚 = 𝑚, for every 𝑚 ∈ 𝑀 ,
then 𝑀 is called unitary left 𝑅-module.
Similarly, we can define the right 𝑅-module (In general left 𝑅-modules and right
𝑅-modules are different). We denote the left 𝑅-module M by 𝑅𝑀 and the right 𝑅-
module M by 𝑀𝑅.
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Let 𝐺 be a finite group.

Definition 3.2.2. A𝐺-module𝐴 is an additive abelian group equipped with a scalar
multiplication

𝐺 × 𝐴 → 𝐴
(𝑔, 𝑎) ↦ 𝑔𝑎

such that the following axioms holds for every 𝜎, 𝜏 ∈ 𝐺 and 𝑎, 𝑏 ∈ 𝑀

• 1 ⋅ 𝑎 = 𝑎, for every 𝑎 ∈ 𝑀

• 𝜎(𝑎 + 𝑏) = 𝜎(𝑎) + 𝜎(𝑏)

• 𝜎(𝜏𝑎) = (𝜎𝜏)(𝑎)

We can interpret 𝐺-modules as modules over rings by introducing the integer
group ring of 𝐺. For every finite group 𝐺 we construct the integer group ring of 𝐺,

ℤ[𝐺] = {∑
𝜎∈𝐺

𝑛𝜎𝜎 | 𝑛𝜎 ∈ ℤ}

that is ℤ[𝐺] is a free abelian group with base 𝐺. The operations of ring ℤ[𝐺] are
defined as follow: the addition is defined by

∑
𝜎∈𝐺

𝑛𝜎𝜎 + ∑
𝜎∈𝐺

𝑚𝜎𝜎 = ∑
𝜎∈𝐺

(𝑛𝜎 + 𝑚𝜎)𝜎

and the multiplication is defined by

(∑
𝜎∈𝐺

𝑛𝜎𝜎)(∑
𝜎∈𝐺

𝑚𝜎𝜎) = ∑
𝜎∈𝐺

( ∑
𝑧𝑝=𝜎

𝑚𝑧𝑛𝑝)𝜎

= ∑
𝜎∈𝐺

(∑
𝑧∈𝐺

𝑚𝑧𝑛𝑧−1𝜎)𝜎

We may identify the elements of 𝐺, say 𝜎, with the elements 1 ⋅ 𝜎 of ℤ[𝐺] ,
and then we may view 𝐺 as embedded in ℤ[𝐺]. Now the 𝐺-module 𝐴 becomes
ℤ[𝐺]-module with the operation which defined by

(∑
𝜎∈𝐺

𝑛𝜎𝜎)(𝑎) = ∑
𝜎∈𝐺

𝑛𝜎(𝜎𝑎)

In addition, if 𝐴 is a left ℤ[𝐺]-module, then 𝐺 is embedded in ℤ[𝐺], so then 𝐴 be-
comes 𝐺-module.

For example, let 𝐺 be a finite group and we define the action of 𝐺 on 𝐴 to be the
trivial, that is𝐺×ℤ → ℤ, where (𝜎, 𝑛) ↦ 𝜎 ⋅𝑛 = 𝑛. Then ℤ becomes a 𝐺-module.
Similarly, ℚ and ℚ/ℤ are also 𝐺-modules with the trivial action. Moreover, the ad-
ditive group ℤ[𝐺] is a 𝐺-module.
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Now we will define two useful ideals of the ring ℤ[𝐺]. The first ideal

𝐼𝐺 = {∑
𝜎∈𝐺

𝑛𝜎𝜎 ∈ ℤ[𝐺] | ∑
𝜎∈𝐺

𝑛𝜎 = 0}

which is called augmentation ideal of ℤ[𝐺]. We have that 𝐼𝐺 is an ideal of ℤ[𝐺]
because it is the kernel of the homomorphism

𝜖 ∶ ℤ[𝐺] → ℤ
∑
𝜎∈𝐺

𝑛𝜎𝜎 ↦ ∑
𝜎∈𝐺

𝑛𝜎

The homomorphism 𝜖 is called augmentation map. Also, we denote by

𝑁𝐺 = ∑
𝜎∈𝐺

𝜎

the norm (or trace) of ℤ[𝐺]. For every 𝜏 ∈ 𝐺 we have that 𝜏𝑁𝐺 = 𝜏 ∑
𝜎∈𝐺

𝜎 =

∑
𝜎∈𝐺

𝜏𝜎 = ∑
𝜎∈𝐺

𝜎 = 𝑁𝐺. Therefore, ℤ𝑁𝐺 is an ideal of ℤ[𝐺] as well, where

ℤ𝑁𝐺 = {𝑛 ∑
𝜎∈𝐺

𝜎 | 𝑛 ∈ ℤ}

The map

𝜇 ∶ ℤ → ℤ[𝐺]
𝑛 ↦ 𝑛𝑁𝐺

is called coaugmentation of ℤ[𝐺]. Finally, we set

𝐽𝐺 = ℤ[𝐺]/ℤ𝑁𝐺

So thenwe have constructed two short exact sequences of rings with homomorphism
of rings as follow

0 → 𝐼𝐺
𝑖↪ ℤ[𝐺] 𝜖→ ℤ → 0 (1𝑎)

0 → ℤ
𝜇
→ ℤ[𝐺]

𝑗
→ 𝐽𝐺 → 0 (1𝑏)

Indeed, the sequence (1𝑎) is exact, since 𝜖 is surjective, 𝑖 is injective and 𝐾𝑒𝑟𝜖 =
𝐼𝑚𝑖. In the same way we have that the sequence (1𝑏) is exact as well. If now we
consider the rings as additive groups, then we have the following theorem:

Theorem 3.2.3. i) The ideal 𝐼𝐺 is a free abelian group with ℤ-base {𝜎 − 1 | 𝜎 ∈
𝐺 ∖ {1}}.
ii) 𝐽𝐺 is a free abelian group that is generated by {𝜎 mod ℤ𝑁𝐺, 𝜎 ≠ 1}
Finally, we have that a) ℤ[𝐺] = 𝐼𝐺 ⊕ ℤ ⋅ 1 ≅ 𝐼𝐺 ⊕ ℤ and
b) ℤ[𝐺] = ( ∑

𝜎∈𝐺∖{1}
ℤ𝜎) ⊕ ℤ𝑁𝐺 ≅ 𝐽𝐺 ⊕ ℤ
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Proof. i) If ∑
𝜎∈𝐺

𝑛𝜎𝜎 ∈ 𝐼𝐺, then ∑
𝜎∈𝐺

𝑛𝜎 = 0. Additionally,

∑
𝜎∈𝐺

𝑛𝜎𝜎 = ∑
𝜎∈𝐺∖{1}

𝑛𝜎(𝜎 − 1)

Thismeans that theℤ-module 𝐼𝐺 is generated by {𝜎−1 | 𝜎 ∈ 𝐺∖{1}}. It remains to
show that 𝐼𝐺 is a free group. If ∑

𝜎∈𝐺∖{1}
𝑛𝜎(𝜎−1) = 0 ⇒ ∑

𝜎∈𝐺
𝑛𝜎𝜎 − ∑

𝜎∈𝐺
𝑛𝜎 ⋅ 1

⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈ℤ[𝐺]

= 0

Then 𝑛𝜎 = 0, for every 𝜎 ≠ 1 and ∑
𝜎∈𝐺

𝑛𝜎 = 0, since ℤ[𝐺] is a free abelian group.

Hence, 𝐼𝐺 is a free abelian group which is generated by {𝜎 − 1 | 𝜎 ∈ 𝐺 ∖ {1}}.
Every element ∑

𝜎∈𝐺
𝑛𝜎𝜎 ∈ ℤ[𝔾] can be written uniquely in the form

∑
𝜎∈𝐺

𝑛𝜎𝜎 = ∑
𝜎∈𝐺

𝑛𝜎(𝜎 − 1) + (∑
𝜎∈𝐺

𝑛𝜎) ⋅ 1

Thus, ℤ[𝐺] = 𝐼𝐺 ⊕ ℤ ⋅ 1 ≅ 𝐼𝐺 ⊕ ℤ.

ii) Let ∑
𝜎∈𝐺

𝑛𝜎𝜎 mod ℤ𝑁𝐺 ∈ 𝐽𝐺. This can be written as

∑
𝜎∈𝐺

𝑛𝜎𝜎 = ∑
𝜎∈𝐺∖{1}

(𝑛𝜎 − 𝑛1)𝜎 + 𝑛1 ∑
𝜎∈𝐺

𝜎

≡ ∑
𝜎∈𝐺∖{1}

(𝑛𝜎 − 𝑛1)𝜎 mod ℤ𝑁𝐺

This implies that the 𝐽𝐺 as a ℤ-module is generated by {𝜎 mod ℤ𝑁𝐺, 𝜎 ≠ 1}.
Moreover,

∑
𝜎∈𝐺∖{1}

𝑛𝜎𝜎 ∈ ℤ𝑁𝐺 ⇒ ∑
𝜎≠1

𝑛𝜎𝜎 = 𝑛 ∑
𝜎∈𝐺

𝜎

⇒ 𝑛 ⋅ 1 + ∑
𝜎∈𝐺∖{1}

(𝑛 − 𝑛𝜎)𝜎 = 0

and then ∑
𝜎∈𝐺

𝜈𝜎𝜎 ∈ ℤ[𝐺], so 𝜈𝜎 = 0, for every 𝜎 ∈ 𝐺, that is 𝑛𝜎 = 0, for every 𝜎 ≠

1. Therefore, 𝐽𝐺 is a free abelian group which is generated by {𝜎 mod ℤ𝑁𝐺, 𝜎 ≠
1}. Finally, every element ∑

𝜎∈𝐺
𝑛𝜎𝜎 ∈ ℤ[𝔾] can be written uniquely in the form

∑
𝜎∈𝐺

𝑛𝜎𝜎 = ∑
𝜎∈𝐺∖{1}

(𝑛𝜎 − 𝑛1)𝜎 + 𝑛1𝑁𝐺

Hence, ℤ[𝐺] = ( ∑
𝜎∈𝐺∖{1}

ℤ𝜎) ⊕ ℤ𝑁𝐺 ≅ 𝐽𝐺 ⊕ ℤ.
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Definition 3.2.4. Let 𝑅 be a ring and 𝐼 is an ideal of 𝑅, then the annihilator of 𝐼 is
defined by

𝐴𝑛𝑛(𝐼) = {𝑎 ∈ 𝑅 | 𝑎𝐼 = 0}

The ideals 𝐼𝐺 and ℤ𝑁𝐺 of ℤ[𝐺] are dual to each other in the following sense.

Theorem 3.2.5. We have that: 1) 𝐼𝐺 = 𝐴𝑛𝑛(ℤ𝑁𝐺)
and 2) ℤ𝑁𝐺 = 𝐴𝑛𝑛(𝐼𝐺)

Proof. 1) Let 𝑎 = ∑
𝜎∈𝐺

𝑛𝜎𝜎 ∈ ℤ[𝐺] such that 𝑎 ∈ 𝐴𝑛𝑛(ℤ𝑁𝐺). That is

(∑
𝜎∈𝐺

𝑛𝜎𝜎)(ℤ𝑁𝐺) = 0 ⇒ (∑
𝜎∈𝐺

𝑛𝜎𝜎)𝑁𝐺 = 0 ⇒ ∑
𝜎∈𝐺

𝑛𝜎(𝜎𝑁𝐺) = 0

⇒ ∑
𝜎∈𝐺

𝑛𝜎𝑁𝐺 = 0 ⇒ (∑
𝜎∈𝐺

𝑛𝜎)𝑁𝐺 = 0 ⇒ ∑
𝜎∈𝐺

𝑛𝜎 = 0

so then 𝑎 ∈ 𝐼𝐺. Clearly, the converse is also true. Thus, 𝐼𝐺 = 𝐴𝑛𝑛(ℤ𝑁𝐺).
2) Let 𝑎 = ∑

𝜏∈𝐺
𝑛𝜏𝜏 ∈ ℤ[𝐺] such that 𝑎 ∈ 𝐴𝑛𝑛(𝐼𝐺). That is

∑
𝜏∈𝐺

𝑛𝜏𝜏 ∈ 𝐴𝑛𝑛(𝐼𝐺) ⇔ (∑
𝜏∈𝐺

𝑛𝜏𝜏)(𝜎 − 1) = 0, ∀𝜎 ∈ 𝐺

⇔ ∑
𝜏∈𝐺

𝑛𝜏𝜏𝜎 = ∑
𝜏∈𝐺

𝑛𝜏𝜏, ∀𝜎 ∈ 𝐺 ⇔ 𝑛𝜏 = 𝑛1, ∀𝜏 ∈ 𝐺

∑
𝜏∈𝐺

𝑛𝜏𝜏 = 𝑛1 ∑
𝜏∈𝐺

𝜏 = 𝑛1𝑁𝐺 ∈ ℤ𝑁𝐺

Hence, ℤ𝑁𝐺 = 𝐴𝑛𝑛(𝐼𝐺).
For every 𝐺-module A we can construct the following subgroups

𝐴𝐺 = {𝑎 ∈ 𝐴 | 𝜎(𝑎) = 𝑎, ∀𝜎 ∈ 𝐺}

which is called the group of fixed elements of 𝐴.

𝑁𝐺𝐴 = {𝑁𝐺𝑎 = ∑
𝜎∈𝐺

𝜎𝑎 | 𝑎 ∈ 𝐴}

𝑁𝐺𝐴 = {𝑎 ∈ 𝐴 | 𝑁𝐺𝑎 = 0}
𝐼𝐺𝐴 = {∑

𝜎∈𝐺
𝑛𝜎(𝜎𝑎𝜎 − 𝑎𝜎) | 𝑎𝜎 ∈ 𝐴}

That is 𝐼𝐺𝐴 is generated by the elements of the form 𝜎𝑎 − 𝑎, with 𝜎 ∈ 𝐺 and
𝑎 ∈ 𝐴. Also, 𝐼𝐺 = ℤ<𝜎 − 1 | 𝜎 ∈ 𝐺 ∖ {1} > and then 𝐴𝐺 = {𝑎 ∈ 𝐴 | 𝐼𝐺𝑎 = 0}
According to theorem 3.2.5 we have that 𝑁𝐺𝐴 ⩽ 𝐴𝐺 and 𝐼𝐺𝐴 ⩽ 𝑁𝐺

𝐴.
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⇝ 𝑁𝐺𝐴 ⩽ 𝐴𝐺

Let 𝑎 ∈ 𝐴 such that 𝑁𝐺𝑎 ∈ 𝑁𝐺𝐴, so 𝑁𝐺𝑎 = ∑
𝜎∈𝐺

𝜎𝑎, with 𝑎 ∈ 𝐴 then 𝜏(𝑁𝐺𝑎) =

∑
𝜎∈𝐺

𝜏𝜎𝑎 = ∑
𝜎∈𝐺

𝜎𝑎 = 𝑁𝐺𝑎, for every 𝜏 ∈ 𝐺 and 𝑁𝐺𝑎 ∈ 𝐴, since 𝐴 is a 𝐺-module.

⇝ 𝐼𝐺𝐴 ⩽ 𝑁𝐺
𝐴

Let 𝛽 = ∑
𝜎∈𝐺

𝑛𝜎(𝜎𝑎𝜎 − 𝑎𝜎) ∈ 𝐼𝐺𝐴. We will show that 𝑁𝐺𝛽 = 0. Then

ℤ𝑁𝐺𝛽 = 𝐴𝑛𝑛(𝐼𝐺)𝛽 = 0 ⇒ 𝑁𝐺𝛽 = 0

Thus we are able to construct the quotient groups 𝐴𝐺/𝑁𝐺𝐴 and 𝑁𝐺𝐴/𝐼𝐺𝐴. We
will see that they are the cohomology group of order −1 and 0, respectively.

Let 𝐴 be a 𝐺-module and 𝐻 ⩽ 𝐺. It is clear that 𝐴 is a 𝐻-module. If 𝐻 ⊴ 𝐺,
then the module of fixed elements 𝐴𝐻 = {𝑎 ∈ 𝐴 | ℎ𝑎 = 𝑎, ∀ℎ ∈ 𝐻} becomes a
𝐺/𝐻-module. Indeed, 𝐴𝐻 is an additive group, since 𝐴 is, and 𝐺/𝐻 acts on 𝐴𝐻 as
follow

𝐺/𝐻 × 𝐴𝐻 → 𝐴𝐻

(𝑔𝐻, 𝑎) ↦ (𝑔𝐻)𝑎 = 𝑔𝐻𝑎 = 𝑔𝑎

Now if 𝐴, 𝐵 are 𝐺-modules, then

𝐻𝑜𝑚(𝐴, 𝐵) = {𝑓 | 𝑓 ∶ 𝐴 → 𝐵, 𝑓 𝑖𝑠 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠}

Definition 3.2.6. We define the set of 𝐺-homomorphism

𝐻𝑜𝑚𝐺(𝐴, 𝐵) = { 𝑓 | 𝑓 ∶ 𝐴 → 𝐵, 𝑓 𝑖𝑠 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝜎𝑎) = 𝜎𝑓(𝑎), ∀𝜎 ∈ 𝐺 }

Proposition 3.2.7. 1) The additive group 𝐻𝑜𝑚(𝐴, 𝐵) becomes a 𝐺-module when
the action of 𝐺 is defined by

𝑓𝜎 = 𝜎(𝑓) = 𝜎 ∘ 𝑓 ∘ 𝜎−1, 𝑤ℎ𝑒𝑟𝑒 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵), 𝜎 ∈ 𝐺

2) 𝐻𝑜𝑚𝐺(𝐴, 𝐵) is a subgroup of 𝐻𝑜𝑚(𝐴, 𝐵). In fact,

𝐻𝑜𝑚𝐺(𝐴, 𝐵) = {𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵) | 𝑓𝜎 = 𝑓 ∀𝜎 ∈ 𝐺}

Proof. 1) It is clear that (𝑓1 + 𝑓2)𝜎 = 𝜎(𝑓1 + 𝑓2) = 𝜎 ∘ (𝑓1 + 𝑓2) ∘ 𝜎−1 =
𝜎 ∘ 𝑓1𝜎−1 + 𝜎 ∘ 𝑓2𝜎−1 = 𝑓𝜎

1 + 𝑓𝜎
2 . Also, 𝑓𝜎𝜏 = 𝜎𝜏(𝑓) = 𝜎𝜏 ∘ 𝑓 ∘ 𝜏−1𝜎−1 =

𝜎 ∘ 𝜏(𝑓) ∘ 𝜎−1 = 𝜎 ∘ 𝑓𝜏 ∘ 𝜎−1 = 𝜎(𝑓𝜏) = (𝑓𝜏)𝜎 and 𝑓1 = 1𝑓 = 𝑓 . Thus,
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𝐻𝑜𝑚(𝐴, 𝐵) is a 𝐺-module.
2)

𝐻𝑜𝑚𝐺(𝐴, 𝐵) = {𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵) ∶ 𝑓(𝜎𝑎) = 𝜎𝑓(𝑎)}
= {𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵) ∶ 𝑓 ∘ 𝜎 = 𝜎 ∘ 𝑓, ∀𝜎 ∈ 𝐺}
= {𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵) ∶ 𝜎 ∘ 𝑓 ∘ 𝜎−1 = 𝑓, ∀𝜎 ∈ 𝐺}
= {𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵) ∶ 𝑓𝜎 = 𝑓, ∀𝜎 ∈ 𝐺}

Moreover, it is plain that 𝐻𝑜𝑚𝐺(𝐴, 𝐵) is a subgroup of 𝐻𝑜𝑚(𝐴, 𝐵), since 1 ∈
𝐻𝑜𝑚𝐺(𝐴, 𝐵), 𝑓 + 𝑔 ∈ 𝐻𝑜𝑚𝐺(𝐴, 𝐵) for every 𝑓, 𝑔 ∈ 𝐻𝑜𝑚𝐺(𝐴, 𝐵) and −𝑓 ∈
𝐻𝑜𝑚𝐺(𝐴, 𝐵).
Proposition 3.2.8. Let 𝐴, 𝐴1, 𝐴2, 𝐵, 𝐵1, 𝐵2 be 𝐺-modules. Then:

1. If 𝜑 ∈ 𝐻𝑜𝑚(𝐴1, 𝐴) and 𝜓 ∈ 𝐻𝑜𝑚(𝐵, 𝐵1), then we may define a homomor-
phism of additive groups

(𝜑, 𝜓) ∶ 𝐻𝑜𝑚(𝐴, 𝐵) → 𝐻𝑜𝑚(𝐴1, 𝐵1)

by putting for 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵)

(𝜑, 𝜓)(𝑓) = 𝜓 ∘ 𝑓 ∘ 𝜙

2. If in addition 𝜙1 ∈ 𝐻𝑜𝑚(𝐴2, 𝐴1) and 𝜓1 ∈ 𝐻𝑜𝑚(𝐵1, 𝐵2), then

(𝜙1, 𝜓1) ∘ (𝜙, 𝜓) = (𝜙 ∘ 𝜙1, 𝜓1 ∘ 𝜓)

3. (𝜙, 𝜓) is additive in each variable
(𝜙, 0) and (0, 𝜓) are 0-maps
(1, 1) is the identity map.

4. If 𝜙 and 𝜓 are both 𝐺-homomorphisms, then (𝜙, 𝜓) is a 𝐺-homomorphism,
symbolically

(𝜙, 𝜓) ∈ 𝐻𝑜𝑚𝐺(𝐻𝑜𝑚(𝐴, 𝐵), 𝐻𝑜𝑚(𝐴1, 𝐵1)

5. If 𝜙 and 𝜓 are both 𝐺-homomorphisms, then (𝜙, 𝜓) maps 𝐻𝑜𝑚𝐺(𝐴, 𝐵) →
𝐻𝑜𝑚𝐺(𝐴1, 𝐵1), symbolically

(𝜙, 𝜓) ∈ 𝐻𝑜𝑚(𝐻𝑜𝑚𝐺(𝐴, 𝐵), 𝐻𝑜𝑚𝐺(𝐴1, 𝐵1)

Proof. Straightforward verification.

Proposition 3.2.9. Let 𝐴, 𝐵, 𝐶 and ℤ be 𝐺-modules, where, as usual, the action of
𝐺 on ℤ is the trivial, and we define ̂𝐴 = 𝐻𝑜𝑚(𝐴, ℤ). Then
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(i) ̂𝐴 is a 𝐺-module

(ii) If 𝐴 is a 𝐺-free with finite base, then so is ̂𝐴.

(iii) If 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵) and ̂𝑓 = (𝑓, 1), then ̂𝑓 ∈ 𝐻𝑜𝑚(�̂�, ̂𝐴). If moreover 𝑓 ∈
𝐻𝑜𝑚𝐺(𝐴, 𝐵), then ̂𝑓 ∈ 𝐻𝑜𝑚𝐺(�̂�, ̂𝐴).

(iv) If 𝑓, 𝑓1, 𝑓2 ∈ 𝐻𝑜𝑚(𝐴, 𝐵) and 𝑔 ∈ 𝐻𝑜𝑚(𝐵, 𝐶), then ̂𝑓1 + ̂𝑓2 = ̂𝑓1 + 𝑓2,
𝑔 ∘ 𝑓 = ̂𝑓 ∘ ̂𝑔, ̂1 = 1, ̂0 = 0.

(v) If 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵) is an epimorphism, then ̂𝑓 is a monomorphism.

Proof. (i) It follows from proposition 3.2.7

(ii) 𝐴 is a 𝐺-module, and then 𝐴 is a ℤ[𝐺]-module with the action (∑
𝜎∈𝐺

𝑛𝜎𝜎)𝑎 =

∑
𝜎∈𝐺

𝑛𝜎(𝜎𝑎). So 𝐴 =
𝑛

∑
𝑖=1

⊕ℤ𝐺𝑎𝑖, thus 𝐴 =
𝑛

∑
𝑖=1

⊕𝜎∈𝐺ℤ(𝜎𝑎𝑖). This means that 𝐴 is

a free ℤ-module with base {𝜎𝑎𝑖 | 𝑖 = 1, … , 𝑛, 𝜎 ∈ 𝐺}. For 𝑖 = 1, … , 𝑛 we define
𝑓𝑖 ∈ ̂𝐴 = 𝐻𝑜𝑚(𝐴, ℤ) as follows

𝑓𝑖(𝜎𝑎𝑗) = { 1, 𝑖𝑓 𝜎 = 1, 𝑖 = 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and we extend linearly from ℤ-basis to all of 𝐴. The set

{𝑓𝜏
𝑖 | 𝜏 ∈ 𝐺, 𝑖 = 1, … , 𝑛}

is a ℤ-basis of ̂𝐴, because

𝑓𝜏
𝑖 (𝜎𝑎𝑗) = 𝜏 ∘ 𝑓𝑖 ∘ 𝜏−1 ∘ 𝜎𝑎𝑗 { 1, 𝑖𝑓 𝜎 = 𝜏, 𝑖 = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑔(𝜎𝑎𝑖) =
𝑛

∑
𝑖=1

∑
𝜏∈𝐺

𝑚𝜏,𝑗𝑓𝜏
𝑗 (𝜎𝑎𝑖) = 𝑚𝜎,𝑖. Therefore, {𝑓𝜏

𝑖 | 𝜏 ∈ 𝐺, 𝑖 = 1, … , 𝑛} is a

ℤ[𝐺]-base of ̂𝐴, since

̂𝐴 =
𝑛

∑
𝑖=1

⊕𝜎∈𝐺ℤ𝑓𝜎
𝑖 =

𝑛
∑
𝑖=1

⊕𝜎∈𝐺𝑓ℤ𝜎
𝑖 =

𝑛
∑
𝑖=1

⊕𝑓ℤ[𝐺]
𝑖 =

𝑛
∑
𝑖=1

⊕ℤ[𝐺]𝑓𝑖

Thus, ̂𝐴 is a free ℤ[𝐺]-module with base {𝑓𝑖, 𝑖 = 1, … , 𝑛}

(iii)We have that 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵) and 1 ∶ ℤ → ℤ. Then ̂𝑓 = (𝑓, 1) ∶ 𝐻𝑜𝑚(𝐵, ℤ) →
𝐻𝑜𝑚(𝐴, ℤ). If 𝑓 ∈ 𝐻𝑜𝑚𝐺(𝐴, 𝐵), then according to proposition 3.2.8(4) we have
that (𝑓, 1) ∈ 𝐻𝑜𝑚𝐺(�̂�, ̂𝐴).
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(iv) It follows from the properties of symbol (𝜑, 𝜓).

(v) We have that 𝑓(𝐴) = 𝐵, since 𝑓 is epimorphism. We suppose that ̂𝑓(𝜏) = 0 for
some 𝜏 ∈ �̂� = 𝐻𝑜𝑚(𝐵, ℤ). That is

(𝑓, 1)(𝜏) = 0 ⇒ 1 ∘ 𝜏 ∘ 𝑓 = 0 ⇒ 𝜏 ∘ 𝑓 = 0

and since 𝑓(𝐴) = 𝐵 this implies that

(𝜏 ∘ 𝑓)(𝐴) = 0 ⇒ 𝜏(𝐵) = 0

hence 𝜏 = 0. Therefore, ̂𝑓 is monomorphism.

Proposition 3.2.10. Let 𝐴 be a 𝐺-module. Then we have the following isomor-
phisms:

1. 𝐻𝑜𝑚𝐺(ℤ[𝐺], 𝐴) ≅ 𝐴, as additive groups

2. 𝐻𝑜𝑚(ℤ, 𝐴) ≅ 𝐴, as 𝐺-modules

3. ℤ̂ ≅ ℤ, as 𝐺-modules

Proof. 1. Let 𝑓 ∈ 𝐻𝑜𝑚𝐺(ℤ[𝐺], 𝐴), then we have that 𝑓(∑ 𝑛𝜎𝜎) = ∑ 𝑛𝜎𝑓(𝜎 ⋅
1) = ∑ 𝑛𝜎𝜎(𝑓(1)) = (∑ 𝑛𝜎𝜎)𝑓(1). So any 𝑓 ∈ 𝐻𝑜𝑚𝐺(ℤ[𝐺], 𝐴) is determined
by 𝑓(1). Thus, for every 𝑎 ∈ 𝐴 there exists 𝑓 ∈ 𝐻𝑜𝑚𝐺(ℤ[𝐺], 𝐴) such that 𝑓(1) =
𝑎. We define

𝜙 ∶ 𝐻𝑜𝑚𝐺(ℤ[𝐺], 𝐴) → 𝐴
𝑓 ↦ 𝑓(1)

which is an isomorphism of groups. Indeed, 𝜙 is surjective, since for every 𝑎 ∈ 𝐴
there exists 𝑓 ∈ 𝐻𝑜𝑚𝐺(ℤ[𝐺], 𝐴)such that 𝑓(1) = 𝑎. In addition, 𝜙 is injective,
since if 𝑓(1) = 𝑔(1), then

(𝑓 − 𝑔)(1) = 0 ⇒ 𝑓 − 𝑔 = 0 ⇒ 𝑓 = 𝑔

and it is plain that 𝜙 is homomorphism.
2. In the same way with (1) we have that the map

𝜓 ∶ 𝐻𝑜𝑚𝐺(ℤ, 𝐴) → 𝐴
𝑓 ↦ 𝑓(1)

is an isomorphism of groups. Also, 𝜓(𝑓𝜎) = 𝑓𝜎(1) = (𝜎∘𝜎−1)(1) = 𝜎∘𝑓(1), since
ℤ is a 𝐺-module with the trivial action. So then 𝜓(𝑓𝜎) = 𝜓(𝜎(𝑓)) = (𝜎 ∘ 𝑓)(1) =
𝜎𝜓(𝑓), this means that 𝜓 is a 𝐺-homomorphism.
3. From (2) we have that 𝐻𝑜𝑚𝐺(ℤ, 𝐴) = 𝐻𝑜𝑚(ℤ, 𝐴)



70 Cohomology of Finite Groups

3.3 Definition of Cohomology Groups
Definition 3.3.1. Let 𝐺 be a finite group. A complete free resolution of group 𝐺 (or
of 𝐺-module ℤ with the trivial action) is defined to be the complex

⋯ 𝑋−3 𝑋−2 𝑋−1 𝑋0 𝑋1 𝑋2 ⋯

ℤ

0 0

𝑑−2 𝑑−1 𝑑0

𝜇

𝑑1

𝜖

𝑑2

where

(i) 𝑋𝑞 are free 𝐺-modules, 𝑞 ∈ ℤ
(ii) 𝜖, 𝜇, 𝑑𝑞 are 𝐺-homomorphisms

(iii) The triangle is commutative, that is 𝑑0 = 𝜇 ∘ 𝜖
(iv) The sequence is exact at every term.

So then a complete free resolution of 𝐺 (or 𝐺-complex) can be broken up into two
exact sequences of 𝐺-modules and 𝐺-homomorphisms, namely

0 ℤ 𝑋0 𝑋1 𝑋2 ⋯𝜖 𝑑1 𝑑2

which is called the positive part. From this arose the cohomology.

0 ℤ 𝑋−1 𝑋−2 𝑋−3 ⋯𝜇 𝑑−1 𝑑−2

which is called negative part and from this arose the homology. Conversely, if we
are given a positive part and negative part, then they can be combined (by putting
𝑑0 = 𝜇 ∘ 𝜖) to form a 𝐺-complex.

The positive and negative part combined by Tate and this combination is very
important because it leads to comprehensive study of them. For every group 𝐺 we
can construct at least one complete free resolution of 𝐺. We construct one complete
free resolution as follow which is called standard complete free resolution or stan-
dard complex of 𝐺:

For every 𝑞 ≥ 1 we define symbols [𝜎1, … , 𝜎𝑞] consisting of ordered 𝑛-tuples of
elements 𝜎𝑖 ∈ 𝐺, and we call them 𝑞-cells. The 𝑞-cells will be used as free genera-
tors of 𝐺-modules, that is we put

𝑋𝑞 = 𝑋−𝑞−1 = ∑
𝜎1,…,𝜎𝑞∈𝐺

⊕ℤ[𝐺][𝜎1, … , 𝜎𝑞]
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For 𝑞 = 0we put𝑋0 = 𝑋−1 = ℤ[𝐺][1], so that𝑋0 is a finite freeℤ[𝐺]-module with
a basis consisting of a single element 1 ∈ ℤ[𝐺] and the [1] is called empty cell. So
from the definition we have that … , 𝑋−2, 𝑋−1, 𝑋0, 𝑋1, 𝑋2, … are free 𝐺-modules
and the maps

𝜖 ∶ 𝑋0 → ℤ, 𝑤𝑖𝑡ℎ 𝜖(∑
𝜎∈𝐺

𝑛𝜎𝜎) = ∑
𝜎∈𝐺

𝑛𝜎

which is called augmentation map and

𝜇 ∶ ℤ → 𝑋−1, 𝑤ℎ𝑒𝑟𝑒 𝜇(𝑛) = 𝑛𝑁𝐺

which is called co-augmentation, are 𝐺-homomorphisms. Thereafter we will define
the homomorphisms 𝑑𝑞. It suffices to give the values of 𝑑𝑞 on the free generators
[𝜎1, … , 𝜎𝑞]. Now we define:
⇝ 𝑑0([1]) = 𝑁𝐺, for 𝑞 = 0

⇝ 𝑑1([𝜎]) = 𝜎[1] − [1], for 𝑞 = 1

⇝ 𝑑𝑞([𝜎1, … , 𝜎𝑞]) = 𝜎1[𝜎2, … , 𝜎𝑞]

+
𝑞−1
∑
𝑖=1

(−1)𝑖[𝜎1, … , 𝜎𝑖−1, 𝜎𝑖𝜎𝑖+1, 𝜎𝑖+2, … , 𝜎𝑞]

+ (−1)𝑞[𝜎1, … , 𝜎𝑞−1], 𝑓𝑜𝑟 𝑞 > 1

⇝ 𝑑−1([1]) = ∑𝜎∈𝐺(𝜎−1[𝜎] − [𝜎]), 𝑓𝑜𝑟 𝑞 = −1

⇝ 𝑑−𝑞−1([𝜎1, … , 𝜎𝑞]) = ∑
𝜎∈𝐺

𝜎−1[𝜎, 𝜎1, … , 𝜎𝑞] +

+ ∑
𝜎∈𝐺

𝑞
∑
𝑖=1

(−1)𝑖[𝜎1, … , 𝜎𝑖−1, 𝜎𝑖𝜎, 𝜎−1, 𝜎𝑖+1, … , 𝜎𝑞]

+ ∑
𝜎∈𝐺

(−1)𝑞+1[𝜎1, … , 𝜎𝑞, 𝜎], 𝑓𝑜𝑟 − 𝑞 − 1 < −1

According to the above definition we have construct the complex

⋯ 𝑋−3 𝑋−2 𝑋−1 𝑋0 𝑋1 𝑋2 ⋯

ℤ

0 0

𝑑−2 𝑑−1 𝑑0

𝜇

𝑑1

𝜖

𝑑2

which is called standard complex of 𝐺. We can prove that (𝑋, 𝑑, 𝜖, 𝜇) forms a
complete free resolution of 𝐺. By construct of standard complex of 𝐺 we have that
𝑋𝑞 are free 𝐺-modules, the maps 𝜖, 𝜇, 𝑑𝑞 are 𝐺-homomorphisms and 𝑑0 = 𝜇 ∘ 𝜖,
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since 𝜇 ∘ 𝜖(1) = 𝜇(1) = 𝑁𝐺 = 𝑑0([1]). It remains to show that the sequence is
exact. For its proof we use algebraic topology. Its proof is complicated so we skip
it. Thus if we have a group 𝐺, we can construct at least one 𝐺-complex which is the
standard 𝐺-complex and from this we define the cohomology groups.

Cohomology group of 𝐺-module A

Let 𝐺 be a finite group and 𝐴 be a 𝐺-module. Let also (𝑋, 𝑑, 𝜖, 𝜇) be a 𝐺-
complex. We define

𝐴𝑞 ∶= 𝐻𝑜𝑚𝐺(𝑋𝑞, 𝐴), 𝑞 ∈ ℤ
The elements of 𝐴𝑞 are 𝐺-homomorphisms from 𝑋𝑞 to 𝐴 and they are called 𝑞-
cochains of 𝐴. From the exact sequence

⋯ 𝑋−3 𝑋−2 𝑋−1 𝑋0 𝑋1 𝑋2 ⋯𝑑−2 𝑑−1 𝑑0 𝑑1 𝑑2

is defined the sequence

⋯ 𝐴−3 𝐴−2 𝐴−1 𝐴0 𝐴1 𝐴2 ⋯𝔡−2 𝔡−1 𝔡0 𝔡1 𝔡2 𝔡3

where 𝑑 ∶ 𝑋 → 𝑋, 1 ∶ 𝐴 → 𝐴 are 𝐺-homomorphisms and 𝔡 = (𝑑, 1). According
to proposition 3.2.8 we have that 𝔡 = (𝑑, 1) is an endomorphism of 𝐻𝑜𝑚𝐺(𝑋, 𝐴).
Since 𝑑𝑞 ∘ 𝑑𝑞+1 = 0, then we have that 𝔡𝑞+1 ∘ 𝔡𝑞(𝜑) = 𝔡𝑞+1(𝔡𝑞(𝜑)) = 𝔡𝑞+1(1 ∘ 𝜑 ∘
𝑑𝑞) = 𝔡𝑞+1(𝜑 ∘ 𝑑𝑞) = 1 ∘ 𝜑 ∘ 𝑑𝑞 ∘ 𝑑𝑞+1 = 𝜑 ∘ 0 = 0. That is 𝔡𝑞+1 ∘ 𝔡𝑞 = 0 and
then 𝐼𝑚𝔡𝑞 ⊆ 𝐾𝑒𝑟𝔡𝑞+1. Also from the above we have that (𝐻𝑜𝑚𝐺(𝑋, 𝐴), 𝔡, +1)
is a differential graded group of cohomological type.

Definition 3.3.2. We define

𝒞𝑞 = 𝒞𝑞(𝐺, 𝐴) = 𝐾𝑒𝑟𝔡𝑞+1

the group of q-cocycles of 𝐺 in 𝐴 and

ℬ𝑞 = ℬ𝑞(𝐺, 𝐴) = 𝐼𝑚𝔡𝑞

the group of q-coboundaries of 𝐺 in 𝐴.

Now we can define the cohomology group of 𝐺 in 𝐴.

Definition 3.3.3. The 𝑞𝑡ℎ derived group

ℋ𝑞(𝐺, 𝐴) = 𝒞𝑞/ℬ𝑞

is known as qth cohomology group of G in A.
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Strictly speaking, the cohomology groups should be denoted in such a way as to
indicate their dependence on the 𝐺-complex. It can be shown that the cohomology
groups are independent (up to isomorphism) of the choice of 𝐺-complex.

Now we try to analyze the sense of cohomology group. The group of 𝑞-cochains
𝐴𝑞 = 𝐻𝑜𝑚𝐺(𝑋𝑞, 𝐴) is the set of all 𝐺-homomorphisms 𝑓 ∶ 𝑋𝑞 → 𝐴. Since the 𝑞-
cells [𝜎1, … , 𝜎𝑞] are free generators of𝑋𝑞, then the𝐺-homomorphism 𝑓 ∶ 𝑋𝑞 → 𝐴
is determined by the values of 𝑓 in 𝑞-cells [𝜎1, … , 𝜎𝑞]. Thus, we can consider every
cochain as a function 𝑓 ∶ 𝐺 × … × 𝐺⏟⏟⏟⏟⏟

𝑞−𝑡𝑖𝑚𝑒𝑠
→ 𝐴. According to proposition 3.2.10 we

have that
𝐴0 = 𝐻𝑜𝑚𝐺(𝑋0, 𝐴) = 𝐻𝑜𝑚𝐺(ℤ[𝐺], 𝐴) ≅ 𝐴

as additive groups. Similarly,

𝐴−1 = 𝐻𝑜𝑚𝐺(𝑋−1, 𝐴) ≅ 𝐴

since 𝑋−1 = ℤ[𝐺]. From the definition of 𝑑𝑞 we have that the maps 𝔡𝑞 in the se-
quence

⋯ 𝐴−3 𝐴−2 𝐴−1 𝐴0 𝐴1 𝐴2 ⋯𝔡−2 𝔡−1 𝔡0 𝔡1 𝔡2 𝔡3

verify the following:
⇝ 𝔡0(𝑓) = 𝑓 ∘ 𝑑0 = 𝑁𝐺𝑓, 𝑓 ∈ 𝐴−1 ≅ 𝐴

⇝ (𝔡1𝑓)[𝜎] = (𝑓 ∘ 𝑑1)[𝜎] = 𝑓(𝜎[1] − [1])
= 𝜎𝑓 − 𝑓, ∀𝑓 ∈ 𝐴0 = 𝐴, ∀𝜎 ∈ 𝐺

⇝ (𝔡𝑞𝑓)([𝜎1, … , 𝜎𝑞]) = 𝜎1𝑓([𝜎2, … , 𝜎𝑞])

+
𝑞+1
∑
𝑖=1

(−1)𝑖𝑓([𝜎1, … , 𝜎𝑖−1, 𝜎𝑖𝜎𝑖+1, 𝜎𝑖+2, … , 𝜎𝑞])

+ (−1)𝑞𝑓([𝜎1, … , 𝜎𝑞−1]), 𝑓𝑜𝑟 𝑞 > 1, 𝑓 ∈ 𝐴𝑞−1

⇝ (𝔡−1𝑓)([1]) = ∑
𝜎∈𝐺

𝜎−1𝑓([𝜎]) − 𝑓([𝜎]), 𝑓𝑜𝑟 𝑓 ∈ 𝐴−2

⇝ (𝔡−𝑞−1𝑓)([𝜎1, … , 𝜎𝑞−1]) = ∑
𝜎∈𝐺

𝜎−1𝑓([𝜎, 𝜎1, … , 𝜎𝑞−1]) +

+ ∑
𝜎∈𝐺

𝑞
∑
𝑖=1

(−1)𝑖𝑓([𝜎1, … , 𝜎𝑖−1, 𝜎𝑖𝜎, 𝜎−1, 𝜎𝑖+1, … , 𝜎𝑞−1])

+ ∑
𝜎∈𝐺

(−1)𝑞+1𝑓([𝜎1, … , 𝜎𝑞−1, 𝜎]), 𝑓𝑜𝑟 𝑞 > 0, 𝑓 ∈ 𝐴−𝑞−2
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3.4 Low Dimensional Cohomology Group
As seen in the definition of group cohomology, it is in general painful to find the

𝑛𝑡ℎ cohomology group for an arbitrary finite group𝐺. In general the low dimension
cohomology groups are useful in algebraic applications.

; The group ℋ−1(𝐺, 𝐴)

We know that ℋ−1(𝐺, 𝐴) = 𝒞−1/ℬ−1 where

𝒞−1 = 𝐾𝑒𝑟𝔡0 = {𝑎 ∈ 𝐴−1 = 𝐴 ∶ 𝔡0(𝑎) = 0}
= {𝑎 ∈ 𝐴 ∶ 𝑁𝐺𝑎 = 0} = 𝑁𝐺

𝐴

and

ℬ−1 = 𝐼𝑚𝔡−1 = {𝑎 ∈ 𝐴−1 = 𝐴 ∶ 𝑎 = 𝔡−1(𝑓), 𝑓 ∈ 𝐴−2}
= {𝑎 ∈ 𝐴 ∶ 𝑎 = ∑

𝜎∈𝐺
[𝜎−1𝑓[𝜎] − 𝑓[𝜎]], 𝑓 ∈ 𝐴−2} = 𝐼𝐺𝐴

Thus,
ℋ−1(𝐺, 𝐴) = 𝑁𝐺

𝐴/𝐼𝐺𝐴
Corollary 3.4.1. If 𝐺 is a finite group with order 𝑛, then

ℋ−1(𝐺, ℤ) =< 0 >
Proof. It is clear that ℋ−1(𝐺, ℤ) = 𝑁𝐺

ℤ/𝐼𝐺𝐴ℤ and

𝑁𝐺ℤ = {𝑎 ∈ ℤ | 𝑁𝐺𝑎 = 0} = {𝑎 ∈ ℤ | ∑
𝜎∈𝐺

𝜎𝑎 = 0}

= {𝑎 ∈ ℤ | ∑
𝜎∈𝐺

𝑎 = 0}

since the action of 𝐺 in ℤ is the trivial, and then 𝑁𝐺ℤ = {𝑎 ∈ ℤ |𝑛𝑎 = 0}, where 𝑛
is the order of 𝐺, so 𝑁𝐺ℤ =< 0 > and

𝐼𝐺ℤ = {∑
𝜎∈𝐺

𝑛𝜎(𝜎𝑎𝜎 − 𝑎𝜎), 𝑎𝜎 ∈ ℤ} = {∑
𝜎∈𝐺

𝑛𝜎(𝑎𝜎 − 𝑎𝜎), 𝑎𝜎 ∈ ℤ}

since the action of 𝐺 in ℤ is the trivial, and then 𝐼𝐺ℤ =< 0 >. Therefore,

ℋ−1(𝐺, ℤ) =< 0 >

Corollary 3.4.2. If 𝐺 is a finite group with order 𝑛, then

ℋ−1(𝐺, ℚ/ℤ) = ( 1
𝑛ℤ)/ℤ
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Proof. We have that ℋ−1(𝐺, 𝐴) = 𝑁𝐺
𝐴/𝐼𝐺𝐴, where 𝐴 = ℚ/ℤ. Then

𝑁𝐺𝐴 = {𝑎 ∈ 𝐴 ∶ 𝑁𝐺𝑎 = 0} = {𝑎 ∈ ℚ/ℤ ∶ 𝑁𝐺𝑎 ∈ ℤ}
= {𝑎 ∈ ℚ/ℤ ∶ ∑

𝜎∈𝐺
𝜎𝑎 ∈ ℤ} = {𝑎 ∈ ℚ/ℤ ∶ ∑

𝜎∈𝐺
𝑎 ∈ ℤ}

= {𝑎 ∈ ℚ/ℤ ∶ 𝑛𝑎 ∈ ℤ} = {𝑎 ∈ ℚ/ℤ ∶ 𝑎 ∈ 1
𝑛ℤ}

= {𝑎 ∈ ℚ/ℤ ∶ 𝑎 = 1
𝑛ℤ + ℤ} = ( 1

𝑛ℤ/ℤ)

and

𝐼𝐺𝐴 = {∑
𝜎∈𝐺

𝑛𝜎(𝜎𝑎𝜎 − 𝑎𝜎), 𝑎𝜎 ∈ ℚ/ℤ} = {∑
𝜎∈𝐺

𝑛𝜎(𝑎𝜎 − 𝑎𝜎), 𝑎𝜎 ∈ 𝐴} =< 0 >

Hence,

ℋ−1(𝐺, 𝐴) = 𝑁𝐺
𝐴/𝐼𝐺𝐴 = ( 1

𝑛ℤ)/ℤ = ℤ/𝑛ℤ

; The group ℋ0(𝐺, 𝐴)

We have that
ℋ0(𝐺, 𝐴) = 𝒞0/ℬ0

where

𝒞0 = 𝐾𝑒𝑟𝔡1 = {𝑎 ∈ 𝐴0 = 𝐴 ∶ 𝔡1(𝑎) = 0}
= {𝑎 ∈ 𝐴 ∶ 𝜎𝑎 − 𝑎 = 0, ∀𝜎 ∈ 𝐺} = {𝑎 ∈ 𝐴 ∶ 𝜎𝑎 = 𝑎, ∀𝜎 ∈ 𝐺} = 𝐴𝐺

and

ℬ0 = 𝐼𝑚𝔡0 = {𝑎 ∈ 𝐴0 = 𝐴 ∶ 𝑎 = 𝔡0(𝑓), 𝑓 ∈ 𝐴−1 = 𝐴}
= {𝑎 ∈ 𝐴 ∶ 𝑎 = 𝑁𝐺𝑓, 𝑓 ∈ 𝐴} = 𝑁𝐺𝐴

Therefore,
ℋ0(𝐺, 𝐴) = 𝐴𝐺/𝑁𝐺𝐴

which is called norm residue group and it is very important in class field theory.

Corollary 3.4.3. Let 𝐺 be a finite group of order 𝑛 and 𝐴 be a 𝐺-module where the
action of 𝐺 on 𝐴 is the trivial, then

ℋ0(𝐺, 𝐴) = 𝐴/𝑛𝐴

In particular ℋ0(𝐺, ℤ) = ℤ/𝑛ℤ and ℋ0(𝐺, ℚ/ℤ) = (ℚ/ℤ)/𝑛(ℚ/ℤ) =< 0 >
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Proof. We have that
ℋ0(𝐺, 𝐴) = 𝐴𝐺/𝑁𝐺𝐴

where 𝐴𝐺 = 𝐴 and

𝑁𝐺𝐴 = {𝑁𝐺𝑎| 𝑎 ∈ 𝐴} = {∑
𝜎∈𝐺

𝜎𝑎 | 𝑎 ∈ 𝐴}

= {∑
𝜎∈𝐺

𝑎 |𝑎 ∈ 𝐴} = {𝑛𝑎 |𝑎 ∈ 𝐴} = 𝑛𝐴

Hence,
ℋ0(𝐺, 𝐴) = 𝐴/𝑛𝐴

and therefore, ℋ0(𝐺, ℤ) = ℤ/𝑛𝐴ℤ and ℋ0(𝐺, ℚ/ℤ) = (ℚ/ℤ)/𝑛(ℚ/ℤ) =< 0 >

We note that ℋ0(𝐺, ℚ/ℤ) = ℋ−1(𝐺, ℤ) and ℋ0(𝐺, ℤ) = ℋ−1(𝐺, ℚ/ℤ).
In general, it can be proved that ℋ𝑟(𝐺, ℚ/ℤ) ≅ ℋ𝑟−1(𝐺, ℤ) and ℋ𝑟(𝐺, ℤ) ≅
ℋ𝑟−1(𝐺, ℚ/ℤ).

We assume that 𝐿/𝐾 is a finite extension of order 𝑛 and 𝜎 is a 𝐾-automorphism
of 𝐿. If 𝐿/𝐾 is a Galois extension then 𝐺 = 𝐺𝑎𝑙(𝐿/𝐾) and the fixed field of 𝐺
ℱ(𝐺) = ℱ𝑖𝑥(𝐺) = 𝐾.

Corollary 3.4.4. Let 𝐾, 𝐿 be fields and 𝐿/𝐾 be a Galois extension with Galois
group 𝐺 = 𝐺𝑎𝑙(𝐿/𝐾) then

ℋ0(𝐺, 𝐿∗) ≅ 𝐾∗/𝑁𝐿/𝐾(𝐿∗)

where 𝑁𝐿/𝐾(𝐿∗) = { ∏
𝜎∈𝐺

𝜎(𝑎) | 𝑎 ∈ 𝐿∗} and 𝐿∗ becomes 𝐺-module with the nat-

ural action.

Proof. We know that
ℋ0(𝐺, 𝐴) = 𝐴𝐺/𝑁𝐺𝐴

So
ℋ0(𝐺, 𝐿∗) = 𝐿∗𝐺/𝑁𝐺𝐿∗

But 𝐿∗𝐺 = 𝐾∗, since 𝐿/𝐾 is Galois and we have that 𝑁𝐺𝐿∗ = {𝑁𝐺𝑎 |𝑎 ∈ 𝐿∗} =
{(∏

𝜎∈𝐺
𝜎)𝑎 | 𝑎 ∈ 𝐿∗} = {∏

𝜎∈𝐺
𝜎(𝑎) | 𝑎 ∈ 𝐿∗}. Thus, 𝑁𝐺𝐿∗ = 𝑁𝐿/𝐾(𝐿∗) and

therefore
ℋ0(𝐺, 𝐿∗) ≅ 𝐾∗/𝑁𝐿/𝐾(𝐿∗)
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; The group ℋ1(𝐺, 𝐴)

We know that
ℋ1(𝐺, 𝐴) = 𝒞1/ℬ1

where

𝒞1 = 𝐾𝑒𝑟𝔡2 = {𝑓 ∶ 𝐺 → 𝐴| 𝔡2(𝑓) = 0}
= {𝑓 ∶ 𝐺 → 𝐴 | (𝔡2𝑓)[𝜎, 𝜏] = 𝜎𝑓([𝜏]) − 𝑓([𝜎𝜏]) + 𝑓([𝜎]) = 0}
= {𝑓 ∶ 𝐺 → 𝐴 | 𝜎𝑓(𝜏) − 𝑓(𝜎𝜏) + 𝑓(𝜎) = 0}

Definition 3.4.5. Let 𝐴 be a 𝐺-module. The map 𝑓 ∶ 𝐺 → 𝐴 will be called crossed
homomorphism if 𝑓(𝜎𝜏) = 𝑓(𝜎) + 𝜎𝑓(𝜏), for every 𝜎, 𝜏 ∈ 𝐺

Thus, 𝒞1 = {𝑐𝑟𝑜𝑠𝑠𝑒𝑑 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠}.
and

ℬ1 = 𝐼𝑚𝔡1 = {𝑓 ∶ 𝐺 → 𝐴 | ∃𝑎 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝔡1(𝑎) = 𝑓}
= {𝑓 ∶ 𝐺 → 𝐴 | ∃𝑎 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝔡1𝑎)([𝜎]) = 𝑓([𝜎])}
= {𝑓 ∶ 𝐺 → 𝐴 | ∃𝑎 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜎𝑎 − 𝑎 = 𝑓(𝜎), ∀𝜎 ∈ 𝐺}

Definition 3.4.6. Let𝐴 be a𝐺-module. Themap 𝑓 ∶ 𝐺 → 𝐴will be called principal
crossed homomorphism if 𝑓(𝜎) = 𝜎𝑎 − 𝑎, for every 𝜎 ∈ 𝐺 and 𝑎 ∈ 𝐴.

Hence, ℬ1 = {𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠} and therefore

ℋ1(𝐺, 𝐴) = {𝑓 ∶ 𝐺 → 𝐴 | 𝑓 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚}
{𝑓 ∶ 𝐺 → 𝐴 | 𝑓 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚}

Remark 3.4.7. 1) If 𝐺 acts trivially on 𝐴, then

ℋ1(𝐺, 𝐴) = 𝐻𝑜𝑚(𝐺, 𝐴)
2) If 𝐴 = ℚ/ℤ then

ℋ1(𝐺, ℚ/ℤ) = 𝜒(𝐺)
where 𝜒(𝐺) is the character group of 𝐺.

Proof. 1) ℬ1 =< 0 > and

𝒞1 = {𝑓 ∶ 𝐺 → 𝐴 | 𝑓(𝜎𝜏) = 𝜎𝑓(𝜏) + 𝑓(𝜎), ∀𝜎, 𝜏 ∈ 𝐺}
= {𝑓 ∶ 𝐺 → 𝐴 | 𝑓(𝜎𝜏) = 𝑓(𝜏) + 𝑓(𝜎), ∀𝜎, 𝜏 ∈ 𝐺} = 𝐻𝑜𝑚(𝐺, 𝐴)

2) G acts trivially on 𝐴, so then we have that
ℋ1(𝐺, 𝐴) = 𝐻𝑜𝑚(𝐺, ℚ/ℤ) = 𝜒(𝐺)
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Theorem 3.4.8. Let 𝐿/𝐾 Galois extension and 𝐺 = 𝐺𝑎𝑙(𝐿/𝐾), then

ℋ1(𝐺, 𝐿∗) =< 1 >

This means that every crossed homomorphism is a principal crossed homomor-
phism.

Proof. A proof of this can be found in my diploma thesis [21], Chapter 2.

Corollary 3.4.9. (Hilbert’s theorem 90) Let 𝐿/𝐾 is a cyclic extension of degree 𝑛
with Galois group 𝐺 = 𝐺𝑎𝑙(𝐿/𝐾) =< 𝜎 >. If 𝑎 ∈ 𝐿, then 𝑁𝐿/𝐾(𝑎) = 1 if and
only if there exists 𝛽 ∈ 𝐿∗ such that 𝑎 = 𝜎(𝛽)

𝛽 , where 𝑁𝐿/𝐾 = ∏
𝜎∈𝐺

𝜎(𝑎).

Proof. A proof of this can be found in my diploma thesis [21], Chapter 2.

Corollary 3.4.10. Let𝐿/𝐾 is aGalois extensionwithGalois group𝐺 = 𝐺𝑎𝑙(𝐿/𝐾),
then

ℋ−1(𝐺, 𝐿∗) =
{𝑎 ∈ 𝐿∗ | 𝑁𝐿/𝐾(𝑎) = 1}

{∏
𝜎∈𝐺

𝑎𝜎−1
𝜎 | 𝑎𝜎 ∈ 𝐿∗}

If 𝐿/𝐾 is a cyclic extension then ℋ−1(𝐺, 𝐿∗) = 0.

Proof. We know that
ℋ−1(𝐺, 𝐿∗) = 𝑁𝐺

𝐿∗/𝐼𝐺𝐿∗

We have that

𝑁𝐺𝐿∗ = {𝑎 ∈ 𝐿∗ ∶ 𝑁𝐺𝑎 = 1} = {𝑎 ∈ 𝐿∗ ∶ ∏
𝜎∈𝐺

𝜎(𝑎) = 1}

= {𝑎 ∈ 𝐿∗ ∶ 𝑁𝐿/𝐾(𝑎) = 1}

since (𝐿∗, ⋅) is a 𝐺-module, and

𝐼𝐺𝐿∗ = {∏
𝜎∈𝐺

𝑎𝜎−1
𝜎 | 𝑎𝜎 ∈ 𝐿∗} = {∏

𝜎∈𝐺

𝜎(𝑎𝜎)
𝑎𝜎

| 𝑎𝜎 ∈ 𝐿∗}

according to corollary 3.4.9

If now 𝐿/𝐾 is cyclic extension, then

{𝑎 ∈ 𝐿∗ ∶ 𝑁𝐿/𝐾(𝑎) = 1} = {𝑎 ∈ 𝐿∗ | 𝑎 = 𝜎(𝛽)
𝛽 , 𝛽 ∈ 𝐿∗}

⊆ {∏
𝜎∈𝐺

𝜎(𝑎𝜎)
𝑎𝜎

| 𝑎𝜎 ∈ 𝐿∗}

Thus, ℋ−1(𝐺, 𝐿∗) = 0
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; The group ℋ2(𝐺, 𝐴)

We know that
ℋ2(𝐺, 𝐴) = 𝒞2/ℬ2

where

𝒞2 = 𝐾𝑒𝑟𝔡3 = {𝑓 ∶ 𝐺 × 𝐺 |𝔡3(𝑓) = 0}
= {𝑓 ∶ 𝐺 × 𝐺 | 𝜎𝑓(𝜏, 𝜌) + 𝑓(𝜎, 𝜏𝜌) = 𝑓(𝜎𝜏, 𝜌) + 𝑓(𝜎, 𝜏), ∀𝜎, 𝜏, 𝜌 ∈ 𝐺}

Definition 3.4.11. Let 𝐴 be a 𝐺-module. The map 𝑓 ∶ 𝐺 × 𝐺 → 𝐴 such that
𝜎𝑓(𝜏, 𝜌) + 𝑓(𝜎, 𝜏𝜌) = 𝑓(𝜎𝜏, 𝜌) + 𝑓(𝜎, 𝜏), for every 𝜎, 𝜏, 𝜌 ∈ 𝐺, will be called
factor sets.

Thus,
𝒞2 = {𝑓 ∶ 𝐺 × 𝐺 | 𝑓 𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑒𝑡𝑠}

In addition, 𝑓 ∈ ℬ2 = 𝐼𝑚𝔡2 if and only if there exists 𝑔 ∶ 𝐺 → 𝐴 such that
𝔡2(𝑔) = 𝑓 if and only if there exists 𝑔 ∶ 𝐺 → 𝐴 such that 𝜎𝑔(𝜏) − 𝑔(𝜎𝜏) + 𝑔(𝜎) =
𝑓(𝜎, 𝜏).

Definition 3.4.12. Let 𝐴 be a 𝐺-module. The map 𝑓 ∶ 𝐺 × 𝐺 → 𝐴 satisfying that
there exists 𝑔 ∶ 𝐺 → 𝐴 such that 𝜎𝑔(𝜏) − 𝑔(𝜎𝜏) + 𝑔(𝜎) = 𝑓(𝜎, 𝜏) will be called
splitting factor sets.

Therefore,

ℋ2(𝐺, 𝐴) = {𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑒𝑡𝑠}
{𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑒𝑡𝑠}

If we denote 𝑓(𝜎, 𝜏) as 𝑎𝜎,𝜏 and we consider the 𝐺-module 𝐴 multiplicative, then
we have that

{𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑒𝑡𝑠} = {{𝑎𝜎,𝜏 | 𝑎𝜎
𝜏,𝜌𝑎𝜎,𝜏𝜌 = 𝑎𝜎𝜏,𝜌𝑎𝜎,𝜏}

and

{𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑒𝑡𝑠} = { {𝑎𝜎,𝜏} | 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑚𝑎𝑝
{𝑏𝑝} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑏𝜎

𝜏 𝑏−1
𝜎𝜏 𝑏𝜎 = 𝑎𝜎𝜏

}

The 3𝑟𝑑 cohomology group ℋ3(𝐺, 𝐴) was calculated (for the first time) by
Teichmüller (1940). Moreover it has been proved that

ℋ−2(𝐺, ℤ) = 𝐺/[𝐺, 𝐺]

where [𝐺, 𝐺] is the commutator subgroup of 𝐺.
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3.5 Cyclic Cohomology
So far we have defined the basic cohomological maps and have studied some

properties of them. Nowwewill prove some central theorems of cohomology theory.
In this section we assume that 𝐺 is a finite cyclic group.

Proposition 3.5.1. Let 𝐺 is a cyclic group of order 𝑛 with generator 𝑔. If

0 → 𝐴 𝑖→ 𝐵
𝑗

→ 𝐶 → 0

is an exact sequence of 𝐺-modules and 𝐺-homomorphisms, then we have an exact
hexagon

ℋ0(𝐺, 𝐴) ℋ0(𝐺, 𝐵)

ℋ−1(𝐺, 𝐶) ℋ0(𝐺, 𝐶)

ℋ−1(𝐺, 𝐵) ℋ−1(𝐺, 𝐴)

𝑓1

𝑓6 𝑓2

𝑓5 𝑓3𝑓4

Proof. Wehave proved thatℋ0(𝐺, 𝐴) = 𝐴𝐺/𝑁𝐺𝐴 andℋ−1(𝐺, 𝐴) = 𝑁𝐺
𝐴/𝐼𝐺𝐴.

We must show that 𝑓𝑖 is well-defined homomorphisms for every 𝑖 = 1, … , 6 and
𝐾𝑒𝑟𝑓𝑖+1 = 𝐼𝑚𝑓𝑖, with 𝑖 = 1, … , 5,𝐾𝑒𝑟𝑓1 = 𝐼𝑚𝑓6. The maps 𝑓𝑖 with 𝑖 = 1, … , 6
are defined as follows:; 𝑓1 ∶ ℋ0(𝐺, 𝐴) ≅ 𝐴𝐺/𝑁𝐺𝐴 → ℋ0(𝐺, 𝐵) ≅ 𝐵𝐺/𝑁𝐺𝐵

𝑎 + 𝑁𝐺𝐴 ↦ 𝑖(𝑎) + 𝑁𝐺𝐵
𝑓1 is well-defined, since if 𝑎1 +𝑁𝐺𝐴 = 𝑎2 +𝑁𝐺𝐴, then 𝑎 ∶= 𝑎1 −𝑎2 ∈ 𝑁𝐺𝐴. We
would like to show that 𝑓1(𝑎1 + 𝑁𝐺𝐴) = 𝑓1(𝑎2 + 𝑁𝐺𝐴), that is 𝑖(𝑎1) + 𝑁𝐺𝐵 =
𝑖(𝑎2) + 𝑁𝐺𝐵 and then 𝑖(𝑎) = 𝑖(𝑎1 − 𝑎2) ∈ 𝑁𝐺𝐵. So it suffices to show that if
𝑎 ∈ 𝑁𝐺𝐴, then 𝑖(𝑎) ∈ 𝑁𝐺𝐵, with 𝑎 ∈ 𝐴𝐺. Let 𝑎 ∈ 𝐴𝐺, which means that 𝑔𝑎 = 𝑎.
Then, 𝑖(𝑎) = 𝑖(𝑔𝑎) = 𝑔𝑖(𝑎), that is 𝑖(𝑎) ∈ 𝐵𝐺. If 𝑎 ∈ 𝑁𝐺𝐴, then 𝑎 = ∑

𝜎∈𝐺
𝜎(𝑡),

with 𝑡 ∈ 𝐴. So

𝑓1(𝑎 + 𝑁𝐺𝐴) = 𝑖(𝑎) + 𝑁𝐺𝐵 = ∑
𝜎∈𝐺

𝑖(𝜎(𝑡)) + 𝑁𝐺𝐵

= ∑
𝜎∈𝐺

𝜎(𝑖(𝑡)) + 𝑁𝐺𝐵 = 𝑁𝐺𝐵

since 𝑖(𝑡) ∈ 𝐵. Also, 𝑓1 is homomorphism, since

𝑓(𝑎 + 𝑁𝐺𝐴 + 𝑏 + 𝑁𝐺𝐴) = 𝑓1(𝑎 + 𝑏 + 𝑁𝐺𝐴) = 𝑖(𝑎 + 𝑏) + 𝑁𝐺𝐵
= 𝑖(𝑎) + 𝑁𝐺𝐵 + 𝑖(𝑏) + 𝑁𝐺𝐵
= 𝑓1(𝑎 + 𝑁𝐺𝐴) + 𝑓1(𝑏 + 𝑁𝐺𝐴)
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; 𝑓2 ∶ ℋ0(𝐺, 𝐵) → ℋ0(𝐺, 𝐶)
𝑏 + 𝑁𝐺𝐵 ↦ 𝑖(𝑏) + 𝑁𝐺𝐶

Similar to 𝑓1 we can show that 𝑓2 is a well-defined homomorphism.

; 𝑓4 ∶ ℋ−1(𝐺, 𝐴) → ℋ−1(𝐺, 𝐵)
𝑎 + 𝐼𝐺𝐴 ↦ 𝑖(𝑎) + 𝐼𝐺𝐵

We will show that 𝑓4 is well-defined. It suffices to show that if 𝑎 ∈ 𝐼𝐺𝐴, then
𝑖(𝑎) ∈ 𝐼𝐺𝑏, with 𝑎 ∈ 𝑁𝐺

𝐴

𝑎 ∈ 𝑁𝐺
𝐴 ⇒ 𝑁𝐺𝐴 = 0 ⇒ ∑

𝜎∈𝐺
𝜎𝑎 = 0

Then 𝑁𝐺𝑖(𝑎) = ∑
𝜎∈𝐺

𝜎(𝑖(𝑎)) = ∑
𝜎∈𝐺

𝑖(𝜎(𝑎)) = 𝑖(∑
𝜎∈𝐺

𝜎(𝑎)) = 𝑖(0) = 0, which

means that 𝑖(𝑎) ∈ 𝑎 ∈ 𝑁𝐺
𝐵. If 𝑎 ∈ 𝐼𝐺𝐴, then 𝑎 = ∑

𝜎∈𝐺
(𝜎𝑡 − 𝑡), with 𝑡 ∈ 𝐴. So

𝑓4(𝑎 + 𝐼𝐺𝐴) = 𝑖(𝑎) + 𝐼𝐺𝐵 = 𝑖(∑
𝜎∈𝐺

(𝜎𝑡 − 𝑡)) + 𝐼𝐺𝐵

= ∑
𝜎∈𝐺

[𝑖(𝜎𝑡) − 𝑖(𝑡)] + 𝐼𝐺𝐵

= ∑
𝜎∈𝐺

[𝜎𝑖(𝑡) − 𝑖(𝑡)] + 𝐼𝐺𝐵 = 𝐼𝐺𝐵

since 𝑖(𝑡) ∈ 𝐵

In addition, 𝑓4 is homomorphism, since

𝑓4(𝑎 + 𝐼𝐺𝐴 + 𝑏 + 𝐼𝐺𝐴) = 𝑓4(𝑎 + 𝑏 + 𝐼𝐺𝐴) = 𝑖(𝑎 + 𝑏) + 𝐼𝐺𝐵
= 𝑖(𝑎) + 𝐼𝐺𝐵 + 𝑖(𝑏) + 𝐼𝐺𝐵
= 𝑓4(𝑎 + 𝐼𝐺𝐴) + 𝑓4(𝑏 + 𝐼𝐺𝐴)

; 𝑓5 ∶ ℋ−1(𝐺, 𝐵) → ℋ−1(𝐺, 𝐶)
𝑏 + 𝐼𝐺𝐵 ↦ 𝑗(𝑏) + 𝐼𝐺𝐶

Similar to 𝑓4, we can prove that 𝑓5 is a well defined homomorphism.

; 𝑓3 ∶ ℋ0(𝐺, 𝐶) ≅ 𝐶𝐺/𝑁𝐺𝐶 → ℋ−1(𝐺, 𝐴) ≅ 𝑁𝐺
𝐴/𝐼𝐺𝐴

𝑐 + 𝑁𝐺𝐶 ↦ 𝑎 + 𝐼𝐺𝐴
is defined as follows: Let 𝑐 ∈ 𝐶𝐺. Then there exists 𝑏 ∈ 𝐵 such that 𝑗(𝑏) = 𝑐, since
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𝑗 is surjective. Also, 𝑗(𝑔𝑏 − 𝑏) = 𝑔𝑗(𝑏) − 𝑗(𝑏) = 𝑔𝑐 − 𝑐 = 0 and

𝑁𝐺(𝑔𝑏 − 𝑏) = ∑
𝑔′∈𝐺

𝑔′(𝑔𝑏 − 𝑏) = ∑
𝑔′∈𝐺

𝑔′(𝑔𝑏) − ∑
𝑔′∈𝐺

𝑔′𝑏

= ∑
𝑔′∈𝐺

(𝑔′𝑔)𝑏 − ∑
𝑔′∈𝐺

𝑔′𝑏

= ∑
𝑔′∈𝐺

𝑔′𝑏 − ∑
𝑔′∈𝐺

𝑔′𝑏 = 0

since 𝐺 is a finite group. We have that 𝑗(𝑔𝑏 − 𝑏) = 0 , which means that 𝑔𝑏 − 𝑏 ∈
𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖, so then there exists 𝑎 ∈ 𝐴 such that 𝑖(𝑎) = 𝑔𝑏 − 𝑏. Now we define

𝑓3(𝑐 + 𝑁𝐺𝐶) = 𝑎 + 𝐼𝐺𝐴

with 𝑗(𝑏) = 𝑐, 𝑏 ∈ 𝐵, 𝑗(𝑔𝑏 − 𝑏) = 0 and 𝑖(𝑎) = 𝑔𝑏 − 𝑏. We will show that 𝑓3 is
well-defined. It suffices to show that if 𝑐 ∈ 𝑁𝐺𝐶, then 𝑎 ∈ 𝐼𝐺𝐴. Then,𝑁𝐺(𝑖(𝑎)) =
𝑁𝐺(𝑔𝑏 − 𝑏) = 0 and this implies that 𝑖(𝑁𝐺𝑎) = 0, so then 𝑁𝐺𝑎 = 0, since 𝑖 is
injective. Thus, 𝑎 ∈ 𝑁𝐺

𝐴. If 𝑐 ∈ 𝑁𝐺𝐶, then 𝑐 = 𝑁𝐺𝑡 = ∑
𝜎∈𝐺

𝜎𝑡, with 𝑡 ∈ 𝐶. So

there exists 𝑏 ∈ 𝐵 such that 𝑗(𝑏) = 𝑐, since 𝑗 is surjective, and 𝑓3(𝑐 + 𝑁𝐺𝐶) =
𝑎 + 𝐼𝐺𝐴, where i(a)=gb-b, by construction of 𝑓3. Since 𝑡 ∈ 𝐶, then 𝑡 = 𝑗(𝑣), for
some 𝑣 ∈ 𝐵, which implies that 𝑗(𝑏) = 𝑐 = ∑

𝜎∈𝐺
𝜎𝑡 = ∑

𝜎∈𝐺
𝜎𝑗(𝑣) = 𝑗(∑

𝜎∈𝐺
𝜎𝑢), so

then
𝑗(𝑏) = 𝑗(∑

𝜎∈𝐺
𝜎𝑢) ⇒ 𝑗(∑

𝜎∈𝐺
𝜎𝑢 − 𝑏) = 0

This means that ∑
𝜎∈𝐺

𝜎𝑢 − 𝑏 ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖, which implies that there exists 𝑥 ∈ 𝐴

such that 𝑖(𝑥) = ∑
𝜎∈𝐺

𝜎𝑢 − 𝑏 = 𝑣 + 𝑔𝑣 + ⋯ + 𝑔𝑛−1𝑣 − 𝑏. Then 𝑖(𝑔𝑥) = 𝑔𝑣 + 𝑔2𝑣 +

⋯ + 𝑣 − 𝑔𝑏. So, 𝑖(𝑥) − 𝑖(𝑔𝑥) = 𝑔𝑏 − 𝑏 = 𝑖(𝑎) and then 𝑥 − 𝑔𝑥 = 𝑎, since 𝑖 is
injective, which means that 𝑎 ∈ 𝐼𝐺𝐴. Thus, 𝑓3(𝑐 + 𝑁𝐺𝐶) = 𝑎 + 𝐼𝐺𝐴 = 𝐼𝐺𝐴. It
remains to show that 𝑓3 is homomorphism. Let 𝑐, 𝑑 ∈ 𝐶𝐺.

𝑓3(𝑐 + 𝑁𝐺𝐶 + 𝑑 + 𝑁𝐺𝐶) = 𝑓3(𝑐 + 𝑑 + 𝑁𝐺𝐶) = 𝑎 + 𝐼𝐺𝐴

Since, 𝑐 + 𝑑 ∈ 𝐶𝐺 we have that there exists 𝑏 ∈ 𝐵 such that 𝑗(𝑏) = 𝑐 + 𝑑 and
𝑗(𝑔𝑏 − 𝑏) = 0, 𝑖(𝑎) = 𝑔𝑏 − 𝑏 (𝐼). Also, since 𝑐, 𝑑 ∈ 𝐶𝐺 there exist 𝑏𝑐, 𝑏𝑑 ∈ 𝐵
such that 𝑗(𝑏𝑐) = 𝑐 and 𝑗(𝑏𝑑) = 𝑑. We know that 𝑗 is homomorphism, so then

𝑗(𝑏𝑐 + 𝑏𝑑) = 𝑗(𝑏𝑐) + 𝑗(𝑏𝑑) = 𝑐 + 𝑑 = 𝑗(𝑏)
⇒ 𝑗(𝑏𝑐 − 𝑏𝑑 − 𝑏) = 0 ⇒ 𝑏𝑐 − 𝑏𝑑 − 𝑏 ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖

This means that there exists 𝑎′ ∈ 𝐴 such that

𝑖(𝑎′) = 𝑏𝑐 − 𝑏𝑑 − 𝑏 (𝐼𝐼)
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In addition, 𝑗(𝑔𝑏𝑐 − 𝑏𝑐) = 𝑗(𝑔𝑏𝑑 − 𝑏𝑑) = 0, which implies that there exists 𝑎𝑑 ∈ 𝐴
such that 𝑖(𝑎𝑑) = 𝑔𝑏𝑑 − 𝑏𝑑, and then 𝑖(𝑎𝑐 + 𝑎𝑑) = 𝑔(𝑏𝑐 − 𝑏𝑐 + 𝑔𝑏𝑑 − 𝑏𝑑) =
𝑔(𝑏𝑐 + 𝑏𝑑) − (𝑏𝑐 + 𝑏𝑑). We multiply the equation (𝐼𝐼) by 𝑔 and then

𝑔𝑏𝑐 − 𝑔𝑏𝑑 − 𝑔𝑏 = 𝑔𝑖(𝑎′) ⇒ 𝑔(𝑏𝑐 − 𝑏𝑑) − 𝑔𝑏 = 𝑔𝑖(𝑎′)
⇒ 𝑖(𝑎𝑐 + 𝑎𝑑) + 𝑏𝑐 + 𝑏𝑑 − 𝑔𝑏 = 𝑔𝑖(𝑎′)
(𝐼𝐼)
⇒ 𝑖(𝑎𝑐 + 𝑎𝑑) + 𝑖(𝑎′) + 𝑏 − 𝑔𝑏 = 𝑔𝑖(𝑎′)
(𝐼)
⇒ 𝑖(𝑎𝑐 + 𝑎𝑑) + 𝑖(𝑎′) + 𝑏 − 𝑖(𝑎) − 𝑏 = 𝑔𝑖(𝑎′)
⇒ 𝑖(𝑎𝑐 + 𝑎𝑑) − 𝑖(𝑎) = 𝑖(𝑔𝑎′) − 𝑖(𝑎′)
⇒ 𝑖(𝑎𝑐 + 𝑎𝑑 − 𝑎) = 𝑖(𝑔𝑎′ − 𝑎′)

This implies that 𝑎𝑐 +𝑎𝑑 −𝑎 = 𝑔𝑎′ −𝑎′, since 𝑖 is injective, and then 𝑎𝑐 +𝑎𝑑 −𝑎 ∈
𝐼𝐺𝐴, which implies that 𝑎𝑐 +𝑎𝑑 +𝐼𝐺𝐴 = 𝑎+𝐼𝐺𝐴. Hence, 𝑓3(𝑐 +𝑁𝐺𝐶)+𝑓3(𝑑 +
𝑁𝐺𝐶) = 𝑓3(𝑐 + 𝑁𝐺𝐶 + 𝑑 + 𝑁𝐺𝐶).

; 𝑓6 ∶ ℋ−1(𝐺, 𝐶) ≅ 𝑁𝐺
𝐶/𝐼𝐺𝐶 → ℋ0(𝐺, 𝐴) ≅ 𝐴𝐺/𝑁𝐺𝐴

Firstly we will define the 𝑓6. Let 𝑐 ∈ 𝑁𝐺
𝐶, then there exists 𝑏 ∈ 𝐵 such that

𝑗(𝑏) = 𝑐. We have that 𝑗(𝑁𝐺𝑏) = 𝑁𝐺(𝑗(𝑏)) = 𝑁𝐺(𝑐) = 0, which means that
𝑁𝐺𝑏 ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖. So there exists 𝑎 ∈ 𝐴 such that 𝑖(𝑎) = 𝑁𝐺𝑏. Hence, we
define 𝑓6(𝑐 + 𝐼𝐺𝐶) = 𝑎 + 𝑁𝐺𝐴, where 𝑗(𝑏) = 𝑐, 𝑏 ∈ 𝐵 and 𝑖(𝑎) = 𝑁𝐺𝑏. We will
prove that 𝑓6 is well-defined. It suffices to show that if 𝑐 ∈ 𝐼𝐺𝐶, then 𝑎 ∈ 𝑁𝐺𝐴.
We have that 𝑎 ∈ 𝐴𝐺 and

𝑖(𝑔𝑎) = 𝑔𝑖(𝑎) = 𝑔(𝑁𝐺𝑏) = 𝑔 ∑
𝜎∈𝐺

𝜎𝑏

= ∑
𝜎∈𝐺

𝑔𝜎𝑏 = ∑
𝜎∈𝐺

𝜎𝑏 = 𝑁𝐺𝑏 = 𝑖(𝑎)

This implies that 𝑖(𝑔𝑎) = 𝑖(𝑎) and then 𝑔𝑎 = 𝑎, since 𝑖 is injective, that is 𝑎 ∈ 𝐴𝐺.
If 𝑐 ∈ 𝐼𝐺𝐶, then 𝑐 = ∑

𝜎∈𝐺
(𝜎𝑡 − 𝑡) for some 𝑡 ∈ 𝐶, so there exists 𝑣 ∈ 𝐵 such that

𝑗(𝑣) = 𝑡, since 𝑗 is surjective. Thus,
𝑗(𝑏) = 𝑐 = ∑

𝜎∈𝐺
(𝜎𝑡 − 𝑡) = ∑

𝜎∈𝐺
(𝜎𝑗(𝑣) − 𝑗(𝑣)) = 𝑗(∑

𝜎∈𝐺
(𝜎𝑣 − 𝑣))

⇒ 𝑗(∑
𝜎∈𝐺

(𝜎𝑣 − 𝑣) − 𝑏) = 0 ⇒ − ∑
𝜎∈𝐺

(𝜎𝑣 − 𝑣) + 𝑏 ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖

This means that there exists 𝑥 ∈ 𝐴 such that

𝑖(𝑥) = 𝑏 − ∑
𝜎∈𝐺

(𝜎𝑣 − 𝑣) (∗)

We apply 𝑁𝐺 on both sides of equation (∗), so
𝑁𝐺𝑖(𝑥) = 𝑁𝐺(𝑏 − ∑

𝜎∈𝐺
(𝜎𝑣 − 𝑣)) ⇒

𝑖(𝑁𝐺𝑥) = 𝑁𝐺(𝑏) − ∑
𝜎∈𝐺

[𝑁𝐺(𝜎𝑣) − 𝑁𝐺(𝑣)]
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But 𝑁𝐺𝑣 = ∑
𝜎∈𝐺

𝜎𝑣 = 𝑣 + 𝑔𝑣 + ⋯ + 𝑔𝑛−1𝑣, 𝑁𝐺(𝑔𝑣) = 𝑔𝑣 + 𝑔2𝑣 + ⋯ + 𝑣

and 𝑖(𝑎) = 𝑁𝐺𝑏. Thus, 𝑖(𝑁𝐺𝑥) = 𝑖(𝑎), which implies that 𝑁𝐺𝑥 = 𝑎, since 𝑖 is
injective, so then 𝑎 ∈ 𝑁𝐺𝐴. Therefore, if 𝑐 ∈ 𝐼𝐺𝐶, then

𝑓6(𝑐 + 𝐼𝐺𝐶) = 𝑎 + 𝑁𝐺𝐴 = 𝑁𝐺𝐴

It remains to show that 𝑓6 is homomorphism. Let 𝑐, 𝑑 ∈ 𝑁𝐺
𝐶. Then

𝑓6(𝑐 + 𝑁𝐺
𝐶 + 𝑑 + 𝑁𝐺

𝐶) = 𝑓6(𝑐 + 𝑑 + 𝑁𝐺
𝐶) = 𝑎 + 𝑁𝐺𝐴

where 𝑖(𝑎) = 𝑁𝐺𝑏, 𝑗(𝑏) = 𝑐 + 𝑑.
Since 𝑐, 𝑑 ∈ 𝑁𝐺

𝐶, then there exists 𝑏𝑐 ∈ 𝐵 and 𝑏𝑑 ∈ 𝐵 such that 𝑗(𝑏𝑐) = 𝑐,
𝑗(𝑏𝑑) = 𝑑 and 𝑓6(𝑐 + 𝑁𝐺

𝐶) = 𝑎𝑐 + 𝑁𝐺𝐴, where 𝑁𝐺𝑏𝑐 = 𝑖(𝑎𝑐), (𝑗(𝑏𝑐) = 𝑐),
𝑓6(𝑑+𝑁𝐺

𝐶) = 𝑎𝑑+𝑁𝐺𝐴, where𝑁𝐺𝑏𝑑 = 𝑖(𝑎𝑑).We claim that 𝑎𝑐+𝑎𝑑−𝑎 ∈ 𝑁𝐺𝐴.
Indeed,

𝑖(𝑎) = 𝑁𝐺𝑏 = ∑
𝜎∈𝐺

𝜎𝑏 = 𝑏 + 𝑔𝑏 + … + 𝑔𝑛−1𝑏 (𝐼𝐼𝐼)

Then

𝑗(𝑏𝑐) + 𝑗(𝑏𝑑) = 𝑗(𝑏𝑐 + 𝑏𝑑) = 𝑐 + 𝑑 = 𝑗(𝑏)
⇒ 𝑗(𝑏𝑐 + 𝑏𝑑) = 𝑗(𝑏) ⇒ 𝑏𝑐 + 𝑏𝑑 − 𝑏 ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖

This implies that there exists 𝑎′ ∈ 𝐴 such that

𝑖(𝑎′) = 𝑏𝑐 + 𝑏𝑑 − 𝑏 (𝐼𝑉 )

Additionally,

𝑖(𝑎𝑐) = 𝑁𝐺𝑏𝑐 = 𝑏𝑐 + 𝑔𝑏𝑐 + … + 𝑔𝑛−1𝑏𝑐 (𝑉 )

𝑖(𝑎𝑑) = 𝑁𝐺𝑏𝑑 = 𝑏𝑑 + 𝑔𝑏𝑑 + … + 𝑔𝑛−1𝑏𝑑 (𝑉 𝐼)
From the equations (𝐼𝐼𝐼), (𝑉 )(𝑉 𝐼) we have that

𝑖(𝑎𝑐 + 𝑎𝑑 − 𝑎) = 𝑏𝑐 + 𝑏𝑑 − 𝑏 + 𝑔(𝑏𝑐 + 𝑏𝑑 − 𝑏) + … + 𝑔𝑛−1(𝑏𝑐 + 𝑏𝑑 − 𝑏)
(𝐼𝑉 )
⇒ 𝑖(𝑎𝑐 + 𝑎𝑑 − 𝑎) = 𝑖(𝑎′) + 𝑔𝑖(𝑎′) + … + 𝑔𝑛−1𝑖(𝑎′) = 𝑁𝐺𝑖(𝑎′) = 𝑖(𝑁𝐺𝑎′)

⇒ 𝑖(𝑎𝑐 + 𝑎𝑑 − 𝑎) = 𝑖(𝑁𝐺𝑎′)

Thus, 𝑎𝑐 + 𝑎𝑑 − 𝑎 = 𝑁𝐺𝑎′, since 𝑖 is injective, that is 𝑎𝑐 + 𝑎𝑑 − 𝑎 ∈ 𝑁𝐺𝐴 ⇒
𝑎𝑐+𝑎𝑑+𝑁𝐺𝐴 = 𝑎+𝑁𝐺𝐴. Hence, 𝑓6(𝑐+𝑁𝐺

𝐶)+𝑓6(𝑑+𝑁𝐺
𝐶) = 𝑓6(𝑐+𝑑+𝑁𝐺

𝐶)

Therefore all homomorphisms are well-defined. It remains to show the exactness.

; 𝐾𝑒𝑟𝑓1 = 𝐼𝑚𝑓6

Let 𝑎 ∈ 𝐴𝐺 such that 𝑓1(𝑎 + 𝑁𝐺𝐴) = 0 ⇒ 𝑖(𝑎) + 𝑁𝐺𝐵 = 𝑁𝐺𝐵 ⇒ 𝑖(𝑎) ∈
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𝑁𝐺𝐵 ⇒ 𝑖(𝑎) = ∑
𝜎∈𝐺

𝑔𝑏, 𝑏 ∈ 𝐵. Let 𝑗(𝑏) = 𝑐, then 𝑓6(𝑐 + 𝐼𝐺𝐶) = 𝑎 + 𝑁𝐺𝐴, by

the definition of 𝑓6. Thus, 𝐾𝑒𝑟𝑓1 ⊆ 𝐼𝑚𝑓6. Let now 𝑎 + 𝑁𝐺𝐴 ∈ 𝐼𝑚𝑓6, then there
exists 𝑐 ∈ 𝑁𝐺

𝐶 such that 𝑓6(𝑐 + 𝐼𝐺𝐶) = 𝑎 + 𝑁𝐺𝐴, where 𝑗(𝑏) = 𝑐, 𝑏 ∈ 𝐵 and
𝑖(𝑎) = 𝑁𝐺𝑏. So

𝑓1(𝑎 + 𝑁𝐺𝐴) = 𝑖(𝑎) + 𝑁𝐺𝐵 = 𝑁𝐺𝑏 + 𝑁𝐺𝐵 = 𝑁𝐺𝐵
⇒ 𝑎 + 𝑁𝐺𝐴 ∈ 𝐾𝑒𝑟𝑓1

that is 𝐼𝑚𝑓6 ⊆ 𝐾𝑒𝑟𝑓1

; 𝐾𝑒𝑟𝑓2 = 𝐼𝑚𝑓1

Let 𝑏 + 𝑁𝐺𝐵 ∈ 𝐾𝑒𝑟𝑓2 so then

𝑓2(𝑏 + 𝑁𝐺𝐵) = 𝑁𝐺𝐶 ⇒ 𝑗(𝑏) + 𝑁𝐺𝐶 = 𝑁𝐺𝐶
⇒ 𝑗(𝑏) ∈ 𝑁𝐺𝐶 ⇒ 𝑗(𝑏) = ∑

𝜎∈𝐺
𝜎𝑐

Since 𝑗 is surjective there exists 𝑏′ ∈ 𝐵 such that 𝑐 = 𝑗(𝑏′). So then 𝑗(𝑏) =

𝑗(
𝑛−1
∑
𝑖=1

𝑔𝑖𝑏′), which implies that 𝑏−
𝑛−1
∑
𝑖=1

𝑔𝑖𝑏′ ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖. Thus there exists 𝑎 ∈ 𝐴

such that 𝑖(𝑎) = 𝑏 −
𝑛−1
∑
𝑖=1

𝑔𝑖𝑏′. Then 𝑓1(𝑎 + 𝑁𝐺𝐴) = 𝑖(𝑎) + 𝑁𝐺𝐵 = 𝑏 −
𝑛−1
∑
𝑖=1

𝑔𝑖𝑏′ +
𝑁𝐺𝐵 = 𝑏 + 𝑁𝐺𝐵, that is 𝑏 + 𝑁𝐺𝐵 ∈ 𝐼𝑚𝑓1. Consequently, 𝐾𝑒𝑟𝑓2 ⊆ 𝐼𝑚𝑓1. Let
now 𝑏 + 𝑁𝐺𝐵 ∈ 𝐼𝑚𝑓1. This means that 𝑓1(𝑎 + 𝑁𝐺𝐴) = 𝑏 + 𝑁𝐺𝐵, with 𝑎 ∈ 𝐴𝐺.
Then 𝑓2(𝑏 + 𝑁𝐺𝐵) = 𝑓2(𝑓1(𝑎 + 𝑁𝐺𝐴)) = 𝑓2(𝑖(𝑎) + 𝑁𝐺𝐵) = 𝑗(𝑖(𝑎)) + 𝑁𝐺𝐶 =
0 + 𝑁𝐺𝐶 = 𝑁𝐺𝐶, that is 𝑏 + 𝑁𝐺𝐵 ∈ 𝐾𝑒𝑟𝑓2. Hence, 𝐼𝑚𝑓1 ⊆ 𝐾𝑒𝑟𝑓2.

; 𝐾𝑒𝑟𝑓3 = 𝐼𝑚𝑓2

Let 𝑐 + 𝑁𝐺𝐶 ∈ 𝐾𝑒𝑟𝑓3. That is

𝑓3(𝑐 + 𝑁𝐺𝐶) = 𝐼𝐺𝐴 ⇒ 𝑎 + 𝐼𝐺𝐴 = 𝐼𝐺𝐴 ⇒ 𝑎 ∈ 𝐼𝐺𝐴

where 𝑗(𝑏) = 𝑐, 𝑏 ∈ 𝐵, 𝑗(𝑔𝑏 − 𝑏) = 0 and 𝑖(𝑎) = 𝑔𝑏 − 𝑏. We have that 𝑓2(𝑏 +
𝑁𝐺𝐵) = 𝑗(𝑏) + 𝑁𝐺𝐶 = 𝑐 + 𝑁𝐺𝐶, that is 𝑐 + 𝑁𝐺𝐶 ∈ 𝐼𝑚𝑓2. So then 𝐾𝑒𝑟𝑓3 ⊆
𝐼𝑚𝑓2. Conversely, let 𝑐+𝑁𝐺𝐶 ∈ 𝐼𝑚𝑓2, that is 𝑓2(𝑏+𝑁𝐺𝐵) = 𝑐+𝑁𝐺𝐶, for some
𝑏 ∈ 𝐵𝐺, where 𝑗(𝑏) = 𝑐. Then 𝑓3(𝑐 + 𝑁𝐺𝐶) = 𝑎 + 𝐼𝐺𝐴, where 𝑗(𝑏) = 𝑐, 𝑏 ∈ 𝐵𝐺,
𝑗(𝑔𝑏 − 𝑏) = 0 and 𝑖(𝑎) = 𝑔𝑏 − 𝑏 = 0, since 𝑏 ∈ 𝐵𝐺, so then 𝑎 = 0, since 𝑖 is
injective. Thus,

𝑓3(𝑐 + 𝑁𝐺𝐶) = 𝐼𝐺𝐴 ⇒ 𝑐 + 𝑁𝐺𝐶 ∈ 𝐾𝑒𝑟𝑓3

That is 𝐼𝑚𝑓2 ⊆ 𝐾𝑒𝑟𝑓3.
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; 𝐾𝑒𝑟𝑓4 = 𝐼𝑚𝑓3

Let 𝑎 + 𝐼𝐺𝐴 ∈ 𝐾𝑒𝑟𝑓4, that is 𝑓4(𝑎 + 𝐽𝐺𝐴) = 𝐼𝐺𝐵. Let 𝑗(𝑏) = 𝑐 then 𝑓3(𝑐 +
𝑁𝐺𝐶) = 𝑎′ + 𝐼𝐺𝐴, where 𝑖(𝑎′) = 𝑔𝑏 − 𝑏, 𝑗(𝑔𝑏 − 𝑏) = 0. So 𝑓4(𝑎′ + 𝐼𝐺𝐴) =
𝑖(𝑎′) + 𝐼𝐺𝐵 = 𝑔𝑏 − 𝑏 + 𝐼𝐺𝐵 = 𝐼𝐺𝐵. This implies that

𝑓4(𝑎 + 𝐽𝐺𝐴) = 𝑓4(𝑎′ + 𝐼𝐺𝐴) ⇒ 𝑓4(𝑎 − 𝑎′ + 𝐼𝐺𝐴) = 𝐼𝐺𝐵
⇒ 𝑎 − 𝑎′ + 𝐼𝐺𝐴 = 𝐼𝐺𝐴 ⇒ 𝑎 + 𝐼𝐺𝐴 = 𝑎′ + 𝐼𝐺𝐴

Thus, 𝑓3(𝑐 + 𝑁𝐺𝐶) = 𝑎 + 𝐼𝐺𝐴, that is 𝑎 + 𝐼𝐺𝐴 ∈ 𝐼𝑚𝑓3 and then 𝐾𝑒𝑟𝑓4 ⊆
𝐼𝑚𝑓3. For the converse, let 𝑎 + 𝐼𝐺𝐴 ∈ 𝐼𝑚𝑓3, this means that 𝑓3(𝑐 + 𝑁𝐺𝐶) =
𝑎 + 𝐼𝐺𝐴, where 𝑗(𝑏) = 𝑐, 𝑏 ∈ 𝐵, 𝑖(𝑎) = 𝑔𝑏 − 𝑏 and 𝑗(𝑔𝑏 − 𝑏) = 0. Then,
𝑓4(𝑎 + 𝐼𝐺𝐴) = 𝑖(𝑎) + 𝐼𝐺𝐵 = 𝑔𝑏 − 𝑏 + 𝐼𝐺𝐵 = 𝐼𝐺𝐵, which means that 𝑎 + 𝐼𝐺𝐴 ∈
𝐾𝑒𝑟𝑓4. Hence, 𝐼𝑚𝑓3 ⊆ 𝐾𝑒𝑟𝑓4.

; 𝐾𝑒𝑟𝑓5 = 𝐼𝑚𝑓4

Let 𝑏 + 𝐼𝐺𝐵 ∈ 𝐾𝑒𝑟𝑓5, that is

𝑓5(𝑏 + 𝐽𝐺𝐵) = 𝐼𝐺𝐶 ⇒ 𝑗(𝑏) + 𝐼𝐺𝐶 = 𝐼𝐺𝐶 ⇒ 𝑗(𝑏) ∈ 𝐼𝐺𝐶

We have that 𝑁𝐺𝐵 ⊆ 𝑁𝐺𝐵 ⊆ 𝐵𝐺. So, 𝑏 ∈ 𝐵𝐺, which means that 𝑔𝑏 = 𝑏, and then
𝑗(𝑔𝑏) = 𝑗(𝑏). Since, 𝑗(𝑏) ∈ 𝐼𝐺𝐶 then 𝑗(𝑏) = ∑

𝜎∈𝐺
(𝜎𝑐 − 𝑐) = ∑

𝜎∈𝐺
𝜎𝑗(𝑏′) − 𝑗(𝑏′),

with 𝑏′ ∈ 𝐵. Thus,

𝑗(𝑏) = 𝑗(∑
𝜎∈𝐺

𝜎𝑏′ − 𝑏′) ⇒ 𝑗(∑
𝜎∈𝐺

𝜎𝑏′ − 𝑏′ − 𝑏) = 0

We multiply the last expression with 𝑔 and then

𝑔𝑗(∑
𝜎∈𝐺

𝜎𝑏′ − 𝑏′ − 𝑏) = 0 ⇒ 𝑗(∑
𝜎∈𝐺

𝑔𝜎𝑏′ − 𝑔𝑏′ − 𝑔𝑏) = 0

⇒ 𝑗(∑
𝜎∈𝐺

()𝑔𝑏′ − 𝑔𝑏′) − 𝑔𝑏) = 0 ⇒ 𝑗(𝑔𝑏) = 0 ⇒ 𝑗(𝑏) = 0

Hence, we have that 𝑗(𝑏) = ∑
𝜎∈𝐺

[𝜎𝑗(𝑏′) − 𝑗(𝑏′)] = ∑
𝜎∈𝐺

[𝜎𝑗(𝑖(𝑎′)) − 𝑗(𝑖(𝑎′))] = 0,

which means that 𝑏 ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖. This means that there exists 𝑎 ∈ 𝐴 such
that 𝑖(𝑎) = 𝑏. Then 𝑓4(𝑎 + 𝐼𝐺𝐴) = 𝑖(𝑎) + 𝐼𝐺𝐵 = 𝑏 + 𝐼𝐺𝐵, that is 𝑏 + 𝐼𝐺𝐵 ∈
𝐼𝑚𝑓4. So 𝐾𝑒𝑟𝑓5 ⊆ 𝐼𝑚𝑓4. Conversely, let 𝑏 + 𝐼𝐺𝐵 ∈ 𝐼𝑚𝑓4, this means that
𝑓4(𝑎 + 𝐼𝐺𝐴) = 𝑖(𝑎) + 𝐼𝐺𝐵 = 𝑏 + 𝐼𝐺𝐵, where 𝑏 = 𝑖(𝑎) for some 𝑎 ∈ 𝑁𝐺

𝐴. Then,
𝑓5(𝑏 + 𝐼𝐺𝐵) = 𝑗(𝑏) + 𝐼𝐺𝐶 = 𝑗(𝑖(𝑎)) + 𝐼𝐺𝐶 = 𝐼𝐺𝐶, that is 𝑏 + 𝐼𝐺𝐵 ∈ 𝐾𝑒𝑟𝑓5.
Consequently, 𝐼𝑚𝑓4 ⊆ 𝐾𝑒𝑟𝑓5.

; 𝐾𝑒𝑟𝑓6 = 𝐼𝑚𝑓5
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Let 𝑐+𝐼𝐺𝐶 ∈ 𝐾𝑒𝑟𝑓6, which means that 𝑓6(𝑐+𝐼𝐺𝐶) = 𝑁𝐺𝐴. But 𝑓6(𝑐+𝐼𝐺𝐵) =
𝑎 + 𝑁𝐺𝐴, where 𝑗(𝑏) = 𝑐, 𝑏 ∈ 𝐵, 𝑖(𝑎) = 𝑁𝐺𝑏, then

𝑎 + 𝑁𝐺𝐴 = 𝑁𝐺𝐴 ⇒ 𝑎 ∈ 𝑁𝐺𝐴
So 𝑓5(𝑏 + 𝐼𝐺𝐵) = 𝑗(𝑏) + 𝐼𝐺𝐶 = 𝑐 + 𝐼𝐺𝐶, that is 𝑐 + 𝐼𝐺𝐶 ∈ 𝐼𝑚𝑓5 and then
𝐾𝑒𝑟𝑓6 ⊆ 𝐼𝑚𝑓5. For the converse, let 𝑐 + 𝐼𝐺𝐶 ∈ 𝐼𝑚𝑓5, that is there exist 𝑏 ∈ 𝐵
such that 𝑗(𝑏) = 𝑐. Thus, 𝑓5(𝑏 + 𝐼𝐺𝐵) = 𝑗(𝑏) + 𝐼𝐺𝐶 = 𝑐 + 𝐼𝐺𝐶 and then
𝑓6(𝑐 + 𝐼𝐺𝐶) = 𝑎 + 𝑁𝐺𝐴, where 𝑗(𝑏) = 𝑐, 𝑖(𝑎) = 𝑁𝐺𝑏, for some 𝑏 ∈ 𝑁𝐺

𝐵, that is

𝑁𝐺𝑏 = 0 ⇒ 𝑖(𝑎) = 0 ⇒ 𝑎 = 0
Therefore, 𝑓6(𝑐+𝐼𝐺𝐶) = 𝑎+𝑁𝐺𝐴 = 𝑁𝐺𝐴, which implies that 𝑐+𝐼𝐺𝐶 ∈ 𝐾𝑒𝑟𝑓6,
that is 𝐼𝑚𝑓5 ⊆ 𝐾𝑒𝑟𝑓6.

Definition 3.5.2. (Herbrand Quotient) Let 𝐺 be a finite cyclic group and 𝐴 is a
𝐺-module. Then Herbrand Quotient of 𝐴 is

ℎ(𝐺, 𝐴) = |ℋ0(𝐺, 𝐴)|
|ℋ−1(𝐺, 𝐴)|

provided that both orders |ℋ0(𝐺, 𝐴)|, |ℋ−1(𝐺, 𝐴)| are finite.
Example 3.5.3. 1)Let 𝐿 = ℚ(𝑖) and 𝐺 = {1, 𝜎} =< 𝜎 >, where 𝜎 sends any
element to its complex conjugate. The extension 𝐿/ℚ is Galois and 𝐺 = 𝐺𝑎𝑙(𝐿/ℚ).
Then (𝐿∗, ⋅) is a 𝐺-module.
We have that
(𝐿∗)𝐺 = ℚ, since 𝐿/ℚ is Galois.
𝑁𝐺𝐿∗ = {𝑁𝐺(𝑎 + 𝑏𝑖) | 𝑎 + 𝑏𝑖 ∈ 𝐿∗} = {𝑎 + 𝑏𝑖 + 𝑎 − 𝑏𝑖 | 𝑎 + 𝑏𝑖 ∈ 𝐿∗} ≅ 2ℚ

𝑁𝐺𝐿∗ = {𝑎 + 𝑏𝑖 ∈ 𝐿∗ | 𝑁𝐺(𝑎 + 𝑏𝑖) = 0} = {𝑎 + 𝑏𝑖 ∈ 𝐿∗ | 2𝑎 = 0}
= {𝑖𝑏 ∈ 𝐿∗ | 𝑏 ∈ ℚ} = 𝑖ℚ ≅ ℚ

𝐼𝐺𝐿∗ = {∑𝜎∈𝐺 𝑛𝜎(𝜎𝑎 − 𝑎), 𝑎 ∈ 𝐿∗} = {−2𝑛𝜎𝑖𝑏, 𝑛𝜎 ∈ ℤ, 𝑏 ∈ ℚ} ≅ 2ℚ
Thus,

ℎ(𝐺, 𝐿∗) = |ℋ0(𝐺, 𝐿∗)|
|ℋ−1(𝐺, 𝐿∗)| = |𝐿∗)𝐺/𝑁𝐺𝐿∗|

| 𝑁𝐺
𝐿∗/𝐼𝐺𝐿∗| = 1

2) 𝐾 = 𝔽3(𝑖), 𝐾/𝔽3 Galois with 𝐺 = 𝐺𝑎𝑙(𝐾/𝔽3) = {1, 𝜎}, where 𝜎 sends any
element to its complex conjugate modulo 3. Then 𝐾∗ is a 𝐺-module. We have
(𝐾∗)𝐺 = 𝔽3
𝑁𝐺𝐾∗ = {𝑁𝐺(𝑎+𝑏𝑖) | 𝑎+𝑏𝑖 ∈ 𝐾∗} = {𝑎+𝑏𝑖+𝑎−𝑏𝑖 = 2𝑎 | 𝑎+𝑏𝑖 ∈ 𝐿∗} ≅ 𝔽3

𝑁𝐺𝐾∗ = {𝑎 + 𝑏𝑖 ∈ 𝐾∗ | 𝑁𝐺(𝑎 + 𝑏𝑖) = 0} = {𝑎 + 𝑏𝑖 ∈ 𝐾∗ | 2𝑎 = 0}
= {𝑖𝑏 ∈ 𝐾∗ | 𝑏 ∈ 𝔽3} ≅ 𝔽3

𝐼𝐺𝐾∗ = {∑𝜎∈𝐺 𝑛𝜎(𝜎𝑎 − 𝑎), 𝑎 ∈ 𝐾∗} = {−2𝑛𝜎𝑖𝑏, 𝑛𝜎 ∈ ℤ, 𝑏 ∈ 𝔽3} ≅ 𝔽3
Thus,

ℎ(𝐺, 𝐾∗) = |ℋ0(𝐺, 𝐾∗)|
|ℋ−1(𝐺, 𝐾∗)| = |𝐾∗)𝐺/𝑁𝐺𝐾∗|

| 𝑁𝐺
𝐾∗/𝐼𝐺𝐾∗| = 1
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A reasonable question has been arisen is if the Herbrand quotient exists, is it
always an integer?
Lemma 3.5.4. (Herbrand Lemma) Let 0 → 𝐴 → 𝐵 → 𝐶 → 0 be a short exact
sequence of 𝐺-modules where at least two of ℎ(𝐺, 𝐴), ℎ(𝐺, 𝐵) and ℎ(𝐺, 𝐶) are
defined then

ℎ(𝐺, 𝐴)ℎ(𝐺, 𝐶)
ℎ(𝐺, 𝐵) = 1

Proof. From proposition 3.5.1 we have that the hexagon is exact. Let 𝑛𝑖 ∶= |𝐼𝑚𝑓𝑖|.
Then ℋ0(𝐺, 𝐴)/𝐾𝑒𝑟𝑓1 ≅ 𝐼𝑚𝑓1, so

|ℋ0(𝐺, 𝐴)| = |𝐾𝑒𝑟𝑓1||𝐼𝑚𝑓1| = |𝐼𝑚𝑓6|𝑛1 = 𝑛6𝑛1

Similarly, |ℋ0(𝐺, 𝐵)| = 𝑛1𝑛2, |ℋ0(𝐺, 𝐶)| = 𝑛2𝑛3, |ℋ−1(𝐺, 𝐴)| = 𝑛3𝑛4,
|ℋ−1(𝐺, 𝐵)| = 𝑛4𝑛5, |ℋ−1(𝐺, 𝐶)| = 𝑛5𝑛6. Then,

𝑛1𝑛6𝑛2𝑛3𝑛4𝑛5 = 𝑛1𝑛2𝑛3𝑛4𝑛5𝑛6 ⇒
|ℋ0(𝐺, 𝐴)||ℋ0(𝐺, 𝐶)||ℋ−1(𝐺, 𝐵)| = |ℋ0(𝐺, 𝐵)||ℋ−1(𝐺, 𝐴)||ℋ−1(𝐺, 𝐶)|
If two Herbrand quotients of ℎ(𝐺, 𝐴), ℎ(𝐺, 𝐵) and ℎ(𝐺, 𝐶) are defined, then

| ℋ0(𝐺, 𝐴)|
|ℋ−1(𝐺, 𝐴)|

|ℋ−1(𝐺, 𝐵)|
|ℋ0(𝐺, 𝐵)|

|ℋ0(𝐺, 𝐶)|
|ℋ−1(𝐺, 𝐶)| = 1

Herbrand Lemma and the exact hexagon in proposition 3.5.1 can be extended to
n number of groups.
Proposition 3.5.5. If 𝐴 is a finite 𝐺-module, then

ℎ(𝐺, 𝐴) = 1
Proof. The sequence

0 → 𝐴𝐺 𝑖→ 𝐴
𝑗

→ 𝐼𝐺𝐴 → 0
where 𝑓(𝑎 = 𝑔𝑎 − 𝑎), is exact sequence, since 𝑖 ∶ 𝐴𝐺 → 𝐴, 𝑎 ↦ 𝑎 is injective with
𝐼𝑚𝑖 = 𝐴𝐺 and f is surjective with 𝐾𝑒𝑟𝑓 = 𝐼𝑚𝑖. In addition, the sequence

0 → 𝑁𝐺
𝐴

𝑗
→ 𝐴 ℎ→ 𝑁𝐺𝐴 → 0

where ℎ(𝑎) = 𝑁𝐺𝑎, is exact sequence, since 𝑗 ∶ 𝑁𝐺
𝐴 → 𝐴 is injective, ℎ is

surjective and 𝐼𝑚𝑗 = 𝐾𝑒𝑟ℎ. Thus, we have that
𝐴/𝐾𝑒𝑟𝑓 ≅ 𝐼𝐺𝐴 𝑎𝑛𝑑 𝐴/𝐾𝑒𝑟ℎ ≅ 𝑁𝐺𝐴

This implies that |𝐴| = |𝐼𝐺𝐴||𝐾𝑒𝑟𝑓| = |𝐼𝐺𝐴||𝐼𝑚𝑖| = |𝐼𝐺𝐴||𝐴𝐺| and |𝐴| =
|𝑁𝐺𝐴||𝐾𝑒𝑟ℎ| = |𝑁𝐺𝐴||𝐼𝑚𝑗| = |𝑁𝐺𝐴|| 𝑁𝐺

𝐴|. Hence,

ℎ(𝐺, 𝐴) = ℋ0(𝐺, 𝐴)
ℋ−1(𝐺, 𝐴) = |𝐴𝐺/𝑁𝐺𝐴|

| 𝑁𝐺
𝐴/𝐼𝐺𝐴| = 1
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Since we use ℋ−1 only in cyclic cohomology, it has a cohomlogical meaning
only when 𝐺 is finite cyclic group. In this case we have the following:

Proposition 3.5.6. We have that

ℋ−1(𝐺, 𝐴) ≅ ℋ1(𝐺, 𝐴)

Proof. We assume that 𝐺 =< 𝑔 > of order n. We have proved that

ℋ1(𝐺, 𝐴) = {𝑓 ∶ 𝐺 → 𝐴 | 𝑓 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚}
{𝑓 ∶ 𝐺 → 𝐴 | 𝑓 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚}

We define

𝜑 ∶ 𝒞1(𝐺, 𝐴) → 𝑁𝐺𝐴
𝑓 ↦ 𝑓(𝑔)

Firstly, we will show that 𝜑 is well-defined. Let 𝑓 ∈ 𝒞1(𝐺, 𝐴), that is 𝑓 is a crossed
homomorphism. We will show that 𝑓(𝑔) ∈ 𝑁𝐺

𝐴, that is 𝑁𝐺𝑓(𝑔) = 0. We have
proved that if 𝑓 is a crossed homomorphism, then

𝑓(𝑔𝑘) =
𝑘−1
∑
𝑖=0

𝑔𝑖𝑓(𝑔)

and if 𝐺 =< 𝑔 > of order n, then

𝑛−1
∑
𝑖=0

𝑔𝑖𝑓(𝑔) = 0 ⇒ 𝑓(𝑔𝑛) = 0 ⇒ 𝑓(1) = 0

Thus,

𝑁𝐺𝑓(𝑔) =
𝑛−1
∑
𝑖=0

𝑔𝑖𝑓(𝑔) = 0 ⇒ 𝑓(𝑔𝑛) = 0 ⇒ 𝑓(𝑔) ∈ 𝑁𝐺
𝐴

Also, it is clear that 𝜑 is a homomorphism. In addition, we will show that 𝜑 is
surjective. Let 𝑎 ∈ 𝑁𝐺

𝐴, then 𝑁𝐺𝑎 = 0. Let also ℎ such that ℎ(𝑔) = 𝑎 and

ℎ(𝑔𝑚) =
𝑚−1
∑
𝑖=0

𝑔𝑖ℎ(𝑔) =
𝑚−1
∑
𝑖=0

𝑔𝑖𝑎. So ℎ is a crossed homomorphism and therefore ℎ

is surjective. Clearly, 𝜑 is injective, since 𝑓 ∈ 𝐾𝑒𝑟𝜑, then we have that 𝜑(𝑓) = 0
which is equivalently with 𝑓(𝑔) = 0 and then 𝑓 = 0. Therefore, 𝜑 is an isomor-
phism. Furthermore, if 𝑓 ∈ ℬ1(𝐺, 𝐴), then 𝑓(𝑔) = 𝑔𝑎 − 𝑎, for some 𝑎 ∈ 𝐴,
that is 𝑓(𝑔) ∈ 𝐼𝐺𝐴. Then 𝜑 is an isomorphism between 𝒞1(𝐺, 𝐴)/ℬ1(𝐺, 𝐴) and
𝑁𝐺𝐴/𝐼𝐺𝐴. This means that 𝒞1(𝐺, 𝐴)/ℬ1(𝐺, 𝐴) ≅ 𝑁𝐺

𝐴/𝐼𝐺𝐴. This complete the
proof.
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Proposition 3.5.7. Let 𝐺 =< 𝑔 > is a finite cyclic group. Then

ℋ𝑞(𝐺, 𝐴) ≅ 𝐴𝐺/𝑁𝐺𝐴 = ℋ0(𝐺, 𝐴), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑒𝑣𝑒𝑛 𝑞 ≥ −1
and

ℋ𝑞(𝐺, 𝐴) ≅ 𝑁𝐺
𝐴/𝐼𝐺𝐴 = ℋ−1(𝐺, 𝐴), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑜𝑑𝑑 𝑞 ≥ −1

Proof. According to proposition 3.5.6 we have that ℋ−1(𝐺, 𝐴) ≅ ℋ1(𝐺, 𝐴). We
assume that |𝐺| = 𝑚 and 𝑁 ∶= 𝑁𝐺 = 1 + 𝑔 + 𝑔2 + ⋯ + 𝑔𝑚−1, then 𝑁 can be
thought as a map ℤ[𝐺] → ℤ[𝐺]. Also, 𝑁(𝑔 − 1) = (𝑔 − 1)𝑁 = 𝑔𝑚 − 1 = 0 where
the multiplication by 𝑔 − 1 is another map from ℤ[𝐺] → ℤ[𝐺]. Since 𝐺 is a finite
cyclic group we can construct a free resolution of 𝐺-module ℤ

⋯ 𝑁→ ℤ[𝐺]
𝑔−1
→ ℤ[𝐺] 𝑁→ ⋯

𝑔−1
→ ℤ[𝐺] 𝜖→ ℤ → 0 (∗)

That is

⋯ 𝑋2 𝑋1 𝑋0 𝑋−1

ℤ
0

𝑑3 𝑑2 𝑑1 𝑑0

𝜖

where 𝑑𝑖 = { 𝑁, 𝑖 = 𝑒𝑣𝑒𝑛
𝑔 − 1, 𝑖 = 𝑜𝑑𝑑

𝑑 is 𝐺-homomorphism with 𝑑2 = 0 and 𝑋𝑖 = ℤ[𝐺] are free 𝐺-modules. We will
show the exactness of the above sequence (𝑋, 𝑑, −1). Let 𝐺 = {1, 𝑔, … , 𝑔𝑚−1},

𝑁 =
𝑚−1
∑
𝑛=0

𝑔𝑖 and 𝛾 ∈ ℤ[𝐺], that is 𝛾 =
𝑚−1
∑
𝑛=0

𝑐𝑖𝑔𝑖, 𝑐𝑖 ∈ ℤ. We have that 𝐼𝑚𝑑 ⊆

𝐾𝑒𝑟𝑑, since 𝑑2 = 0. It remains to show the converse. If 𝑛 is odd, then

𝛾 ∈ 𝐾𝑒𝑟(𝑔1) ⇔ 𝑔𝛾 = 𝛾

⇒
𝑚−1
∑
𝑖=0

𝑐𝑖𝑔𝑖 =
𝑚−1
∑
𝑖=0

𝑐𝑖𝑔𝑖+1 ⇒ 𝑐𝑖 = 𝑐, ∀𝑖 = 0, … , 𝑚 − 1

so 𝛾 = 𝑁𝑐, which means that 𝛾 ∈ 𝐼𝑚𝑁 . If 𝑛 is even, then

𝛾 ∈ 𝐾𝑒𝑟𝑁 ⇒ 𝑁𝛾 = 0 ⇒ 𝑁(
𝑚−1
∑
𝑖=0

𝑐𝑖𝑔𝑖) = 0

⇒ (
𝑚−1
∑
𝑖=0

𝑐𝑖)𝑁 = 0 ⇒
𝑚−1
∑
𝑖=0

𝑐𝑖 = 0

so 𝛾 =
𝑚−1
∑
𝑖=0

𝑐𝑖𝑔𝑖 =
𝑚−1
∑
𝑖=0

𝑐𝑖(𝑔𝑖 − 1), which means that 𝛾 ∈ 𝐼𝑚(𝑔 − 1). Thus,

𝐼𝑚(𝑔 − 1) = 𝐾𝑒𝑟𝑁 . For the augmentation map

𝜖 ∶ ℤ[𝐺] → ℤ, 𝑤ℎ𝑒𝑟𝑒 ∑
𝜎∈𝐺

𝑛𝜎𝜎 ↦ ∑
𝜎∈𝐺

𝑛𝜎
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we have that 𝜇 ∘ 𝜖(1) = 𝑑0(1). Hence, (𝑋, 𝑑, −1) is a free resolution. In the se-
quence (∗) we apply 𝐻𝑜𝑚𝐺(𝑋𝑞, 𝐴). We have proved that 𝐻𝑜𝑚𝐺(ℤ[𝐺], 𝐴) ≅ 𝐴,
𝐻𝑜𝑚𝐺(ℤ, 𝐴) ≅ 𝐴. So,

0 → 𝐻𝑜𝑚𝐺(ℤ, 𝐴)
(𝜖,1)
→ 𝐻𝑜𝑚𝐺(𝑋0, 𝐴)

(𝑑1,1)
→ ⋯

That is
0 → 𝐴

(𝜖,1)
→ 𝐴

(𝑑1,1)
→ ⋯

Then
0 → 𝐴

(𝑑1,1)
→ 𝐴

(𝑑2,1)
→ ⋯

We set 𝔡𝑞 = (𝑑𝑞, 1). We have that

ℋ𝑞(𝐺, 𝐴) = 𝒞𝑞/ℬ𝑞 = 𝐾𝑒𝑟𝔡𝑞+1/𝐼𝑚𝔡𝑞

For 𝑞 ≥ 1 : If 𝑞 is even then

𝐾𝑒𝑟𝔡𝑞+1 = {𝑎 ∈ 𝐴 ∶ (𝑑𝑞+1, 1)𝑎 = 0} = {𝑎 ∈ 𝐴 ∶ (𝑔 − 1, 1)𝑎 = 0} = 𝐴𝐺

and
𝐼𝑚𝔡𝑞 = 𝐼𝑚(𝑑𝑞, 1) = 𝐼𝑚(𝑁, 1) = (𝑁, 1)𝐴 = 𝑁𝐺𝐴

Thus, ℋ𝑞(𝐺, 𝐴) = 𝐴𝐺/𝑁𝐺𝐴.
If 𝑞 is odd then

𝐾𝑒𝑟𝔡𝑞+1 = 𝐾𝑒𝑟(𝑁, 1) = {𝑎 ∈ 𝐴 ∶ (𝑁, 1)𝑎 = 0}
= {𝑎 ∈ 𝐴 ∶ 𝑁𝑎 = 0} = 𝑁𝐺

𝐴

and
𝐼𝑚𝔡𝑞 = 𝐼𝑚(𝑑𝑞, 1) = 𝐼𝑚(𝑔 − 1, 1) = (𝑔 − 1, 1)𝐴 = 𝐼𝐺𝐴

Thus, ℋ𝑞(𝐺, 𝐴) = 𝑁𝐺
𝐴/𝐼𝐺𝐴. This complete the proof.

In particular we have that ℋ𝑞(𝐺, 𝐴) ≅ ℋ𝑞+2(𝐺, 𝐴), for every 𝑞 ≥ −1.

3.6 Cohomology Theorems
Now we will mention some theorems of cohomology without their proofs. For

their proofs see [19].

Theorem 3.6.1. (Dimension Shifting) Let 𝐴 be a 𝐺-module. Then there exists 𝐺-
modules 𝐴+ and 𝐴− such that for every subgroup 𝐻 of 𝐺

ℋ𝑛−1(𝐻, 𝐴−) ≅ ℋ𝑛(𝐻, 𝐴) ≅ ℋ𝑛+1(𝐻, 𝐴+)

for every 𝑛 ∈ ℤ.
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Theorem 3.6.2. Let
0 ⟶ 𝐴 𝑖⟶ 𝐵

𝑗
⟶ 𝐶 ⟶ 0

be an exact sequence of 𝐺-modules and 𝐺-homomorphisms. Then the induced infi-
nite sequence

⋯ ⟶ ℋ𝑞(𝐺, 𝐴) ⟶ ℋ𝑞(𝐺, 𝐵) ⟶ ℋ𝑞(𝐺, 𝐶) 𝛿⟶
ℋ𝑞+1(𝐺, 𝐴) ⟶ ℋ𝑞+1(𝐺, 𝐵) ⟶ ℋ𝑞+1(𝐺, 𝐶) ⟶ ⋯

where 𝛿 is the connecting homomorphism, is also exact. It is called the exact coho-
mology sequence.

Definition 3.6.3. Let 𝐺 be a finite group and 𝑀 be a 𝐺-module. The 𝐺-module 𝑀
is called cohomologically trivial if and only if ℋ𝑟(𝑆, 𝑀) = {0} for every 𝑟 ∈ ℤ
and 𝑆 ⩽ 𝐺.

Theorem 3.6.4. (Nakayama-Tate) Let 𝐺 be a finite group and 𝑀 is a 𝐺-module.
Thenℋ𝑟(𝑆, 𝑀) = ℋ𝑟+1(𝑆, 𝑀) = {0} if and only if𝑀 is cohomologically trivial.

Theorem 3.6.5. Let 𝑀 be a 𝐺-module such that for every subgroup 𝑆 of 𝐺 we
have that ℋ1(𝑆, 𝑀) = {0} and ℋ2(𝑆, 𝑀) is cyclic of order |𝐺|. Then for every
subgroup 𝑆 of 𝐺 and for every 𝑟 we have that

ℋ𝑟(𝑆, 𝑀) = ℋ𝑟−2(𝑆, ℤ)

In particular, if 𝑟 = 0 and 𝑆 = 𝐺, then

ℋ0(𝐺, 𝑀) = ℋ−2(𝐺, ℤ)

That is
𝑀𝐺/𝑁𝐺𝑀 ≅ 𝐺/[𝐺, 𝐺]

The last equality is very important in number theory. If 𝐿/𝐾 is Galois extension
of algebraic number fields and 𝐺 = 𝐺𝑎𝑙(𝐿/𝐾) then this equality give us the Artin
reciprocity law.

Theorem 3.6.6. Let𝐺 be a finite group and𝐺𝑝 is a p-Sylow subgroup of𝐺, for every
prime number 𝑝. If 𝑀 is a 𝐺-module and ℋ𝑟(𝐺𝑝, 𝑀) = {0}, for every 𝑝 ∣ |𝐺|,
then ℋ𝑟(𝐺, 𝑀) = {0}

Then we will mention some functions whose properties are important for the
proof of theorems that we have mentioned above.
Also we will study the behavior of cohomology group if we change the group 𝐺.

Let 𝐴 be a 𝐺-module and 𝐻 is a subgroup of 𝐺. Clearly, 𝐴 is a 𝐻-module. If 𝐻 is
a normal subgroup of 𝐺, then it is clear that 𝐴𝐻 is a 𝐺/𝐻-module.
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We wonder which is the relation between the cohomology groups

ℋ𝑟(𝐺/𝐻, 𝐴𝐻), ℋ𝑟(𝐺, 𝐴), ℋ𝑟(𝐻, 𝐴)

We have defined the homomorphism of pairs (definition 5.1.11)

(𝜆, 𝑓) ∶ (𝐺, 𝐴) → (𝐺′, 𝐴′)

In addition we have that if (𝜆, 𝑓) ∶ (𝐺, 𝐴) → (𝐺′, 𝐴′) is a homomorphism of pairs,
then for every 𝑛 there exists a homomorphism

(𝜆, 𝑓)∗ ∶ ℋ𝑛(𝐺, 𝐴) → ℋ𝑛(𝐺′, 𝐴′)

For 𝑓 = 1𝐴 and 𝜆 = 𝑖 ∶ 𝐻 ↪ 𝐺, we take the homomorphism of pairs

(𝑖, 1) ∶ (𝐺, 𝐴) → (𝐻, 𝐴)

which induce the map

(𝑖, 1)∗ ∶ ℋ𝑛(𝐺, 𝐴) → ℋ𝑛(𝐻, 𝐴)

The map (𝑖, 1)∗ will be called restriction of 𝐺 in 𝐻 and it denoted by 𝑟𝑒𝑠𝑡 ∶=
𝑟𝑒𝑠𝑡𝐺→𝐻 . We can prove that the restriction is transitive, that is if 𝐻′ ⩽ 𝐻 ⩽ 𝐺,
then

𝑟𝑒𝑠𝑡𝐺→𝐻′ = 𝑟𝑒𝑠𝑡𝐻→𝐻′ ∘ 𝑟𝑒𝑠𝑡𝐺→𝐻

We assume now that H is a normal subgroup of G, then 𝐴𝐻 is a 𝐺/𝐻-module. Let
𝜋 ∶ 𝐺 → 𝐺/𝐻 be the natural projection and 𝑖 ∶ 𝐴𝐻 ↪ 𝐴 be an injection. Then
𝐴𝐻 becomes a 𝐺-module under 𝜋. So,

(𝜋, 𝑖) ∶ (𝐺/𝐴, 𝐴𝐻) → (𝐺, 𝐴)

is a homomorphism of pairs and then we have

(𝜋, 𝑖)∗ ∶ ℋ𝑛(𝐺/𝐴, 𝐴𝐻) → ℋ𝑛(𝐺, 𝐴), 𝑛 ≥ 1

Themap (𝜋, 𝑖)∗ is called inflation of𝐺/𝐻 in𝐺 and is denoted by 𝑖𝑛𝑓 ∶= 𝑖𝑛𝑓𝐺/𝐻↪𝐺.
Also, we can prove that the inflation is transitive, that is if 𝐻2 ⩽ 𝐻1 ⩽ 𝐺 and
𝐻1, 𝐻2 are normal subgroups of 𝐺 then the following diagram is commutative

ℋ𝑛(𝐺/𝐻1, 𝐴𝐻1) ℋ𝑛(𝐺/𝐻2, 𝐴𝐻2)

ℋ𝑛(𝐺, 𝐴)

𝑛 ≥ 1
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Theorem 3.6.7. If
0 → 𝐴 → 𝐵 → 𝐶 → 0

is an exact sequence of 𝐺-modules and 𝐺-homomorphisms and if 𝐻 is a normal
subgroup of 𝐺 such that

0 → 𝐴𝐻 → 𝐵𝐻 → 𝐶𝐻 → 0
is an exact sequence, then the following diagram is commutative

ℋ𝑛(𝐺/𝐻, 𝐶𝐻) ℋ𝑛+1(𝐺/𝐻, 𝐴𝐻)

ℋ𝑛(𝐺, 𝐶) ℋ𝑛+1(𝐺, 𝐴)
𝑖𝑛𝑓 𝑖𝑛𝑓

There exists a respective statement for the restrictions as well.
Now we will mention a basic theorem of cohomology.

Theorem 3.6.8. If 𝐴 is a 𝐺-module and 𝐻 is a normal subgroup of 𝐺, then the
sequence

0 → ℋ1(𝐺/𝐻, 𝐴𝐻) → ℋ1(𝐺, 𝐴) → ℋ1(𝐻, 𝐴)
is exact sequence.

If 𝐴 = ℤ, then the map
𝑟𝑒𝑠𝑡 ∶ ℋ−2(𝐺, ℤ) → ℋ−2(𝐻, ℤ)

induce the map
𝐺/[𝐺, 𝐺] → 𝐻/[𝐻, 𝐻]

which is called transfer (Verlagerung).
If 𝐻 is a subgroup of 𝐺 and [𝐺 ∶ 𝐻] < ∞, then we can define a map

ℋ𝑛(𝐻, 𝐴) → ℋ𝑛(𝐺, 𝐴)
which is called corestriction and is denoted by 𝑐𝑜𝑟𝑒𝑠𝑡𝐻→𝐺. In addition, we have
the following

Theorem 3.6.9. If [𝐺 ∶ 𝐻] = 𝑛, then
𝑐𝑜𝑟𝑒𝑠𝑡𝐻→𝐺 ∘ 𝑟𝑒𝑠𝑡𝐺→𝐻 = 𝑛𝐼𝑑

Let 𝐺 be a group and ℤ[𝐺] is the integer group ring. If 𝐴, 𝐵 are 𝐺-modules then
we can construct a ℤ-module, the so called tensor product of𝐴, 𝐵, which is denoted
by 𝐴 ⊗ℤ 𝐵. This can be 𝐺-module.

Theorem 3.6.10. (Shapiro’s Lemma) Let 𝐻 be a subgroup of 𝐺 and 𝑀 is a 𝐻-
module, then ℤ[𝐺] ⊗ℤ[𝐻] 𝑀 is a left 𝐺-module and

ℋ𝑛(𝐺, 𝐼𝑛𝑑𝐺
𝐻𝑀) = ℋ𝑛(𝐻, 𝑀)

where 𝐼𝑛𝑑𝐺
𝐻𝑀 = ℤ[𝐺] ⊗ℤ[𝐻] 𝑀 .



Chapter 4

Cohomology of Profinite Groups

In second chapter of this thesis we defined the profinite groups and in third chap-
ter we investigated the cohomology group of finite groups. We wonder what happen
if the group is profinite. For this reason in this chapter we will define the cohomol-
ogy group of a profinite group and we will study some useful statements.

Let 𝐾 be a perfect field and �̄� be the algebraic closure of 𝐾. We know that the
extension �̄�/𝐾 is an infinite extension. In particular, it is Galois and 𝐺𝑎𝑙(�̄�/𝐾)
is a profinite group.

�̄� ⟷ {𝑖𝑑}
| |

𝐾 ⟷ 𝐺𝑎𝑙(�̄�/𝐾)

We know that

𝐺 = 𝐺𝑎𝑙(�̄�)/𝐾 = lim←−
𝑁

𝑁 ⊴ 𝐺,
𝑁 = 𝑜𝑝𝑒𝑛

𝐺/𝑁 = lim←−
𝐾 ≤ 𝐿 ≤ �̄�,
𝐿/𝐾 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒

𝐺𝑎𝑙(𝐿/𝐾)

It’s worth noting that �̄� = lim−→
𝐿/𝐾 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒

𝑎𝑛𝑑 𝐺𝑎𝑙𝑜𝑖𝑠

𝐿

4.1 Discrete Modules
Let 𝐺 be a group and 𝑅 be a ring (not necessarily commutative ring). We have

defined that a left 𝐺 module 𝐴 is an additive abelian group equipped with a scalar
multiplication

𝐺 × 𝐴 → 𝐴
(𝜎, 𝑎) ↦ 𝜎𝑎

95
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such that the following axioms holds for every 𝑎, 𝑏 ∈ 𝐴 and 𝜎, 𝜏 ∈ 𝐺:
i) 𝜎(𝑎 + 𝑏) = 𝜎(𝑎) + 𝜎(𝑏)
ii) (𝜎 + 𝜏)𝑎 = 𝜎𝑎 + 𝜏𝑎
iii) (𝜎𝜏)(𝑎) = 𝜎(𝜏(𝑎))

If also 1𝑎 = 𝑎 for every 𝑎 ∈ 𝐴, then 𝐴 is called unitary.

We assume that 𝐺 is a profinite group and 𝑀 is a unitary 𝐺-module. Then 𝐺 is
a topological group and 𝑀 , as an abelian group, can be considered as a topological
group equipped with the discrete topology.

Definition 4.1.1. Let 𝐺 a profinite group and 𝑀 a unitary 𝐺-module. We will call
𝑀 discrete 𝐺-module if the group action 𝐺 × 𝑀 → 𝑀 is continuous.

It suffices to remark that if 𝐺 is a finite group, then the above definition of dis-
crete 𝐺-module is the same with the common definition of a 𝐺-module.

Theorem 4.1.2. Let 𝐺 be a profinite group and 𝑀 is a unitary 𝐺-module. Then the
following are equivalent:
i) 𝑀 is a discrete 𝐺-module,
ii) For every 𝑚 ∈ 𝑀 , the stabilizer

𝐺𝑚 = {𝑔 ∈ 𝐺 ∶ 𝑔𝑚 = 𝑚}

is an open subgroup of 𝐺,
iii) If ℬ(1) is a basis of open neighborhoods of 1 consisting of open normal sub-
groups of 𝐺. Then

𝑀 = ⋃
𝐻∈ℬ(1)

𝑀𝐻

where 𝑀𝐻 = {𝑚 ∈ 𝑀 ∶ ℎ𝑚 = 𝑚, ∀ℎ ∈ 𝐻}.
Proof. "𝑖) ⇒ 𝑖𝑖)" We assume that 𝑀 is a discrete 𝐺-module. Let 𝑚 ∈ 𝑀 . We take
the singleton {𝑚} which is open because 𝑀 is a topological group with discrete
topology. Also, we know that the map 𝑓 ∶ 𝐺 × 𝑀 → 𝑀 is continuous, so then
the preimage of {𝑚} under f, 𝑓−1({𝑚}), is open. Moreover, the preimage of {𝑚}
under the restriction of 𝐺 × 𝑀 → 𝑀 to 𝐺 × {𝑚} is 𝐺𝑚 × {𝑚}. Consequently,
𝐺𝑚 × {𝑚} is open, so then 𝐺𝑚 is open as well. Therefore, 𝐺𝑚 is open for each
𝑚 ∈ 𝑀 .
"𝑖𝑖) ⇒ 𝑖𝑖𝑖)" We assume that for every 𝑚 ∈ 𝑀 , the stabilizer

𝐺𝑚 = {𝑔 ∈ 𝐺 ∶ 𝑔𝑚 = 𝑚}

is an open subgroup of 𝐺. Let ℬ(1) be a basis of open neighborhood of 1 consisting
of open normal subgroups of 𝐺. It is clear that ⋃

𝐻∈ℬ(1)
𝑀𝐻 ⊆ 𝑀 . Let now 𝑚 ∈ 𝑀 .

Then 𝐺𝑚 = {𝑔 ∈ 𝐺 ∶ 𝑔𝑚 = 𝑚} is an open neighborhood of 1, because 1 ∈ 𝐺𝑚 as
𝐺𝑚 acts on 𝑀 , so 1 ∈ 𝐺𝑚 because 1 ⋅ 𝑚 = 𝑚. This implies that there exists 𝐻 ∈
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ℬ(1) satisfying that 𝐻 ⊆ 𝐺𝑚. But 𝑀𝐺𝑚 = {𝑚′ ∈ 𝑀 ∶ 𝑔𝑚′ = 𝑚′, ∀𝑔 ∈ 𝐺𝑚},
so then 𝑚 ∈ 𝑀𝐺𝑚 ⊆ 𝑀𝐻 , that is 𝑚 ∈ ⋃

𝐻∈ℬ(1)
𝑀𝐻 . Hence, 𝑀 = ⋃

𝐻∈ℬ(1)
𝑀𝐻 .

"𝑖𝑖𝑖) ⇒ 𝑖)" Let ℬ(1) be a basis of open neighborhood of 1 consisting of open
normal subgroups of 𝐺. Then 𝑀 = ⋃

𝐻∈ℬ(1)
𝑀𝐻 . We will prove that 𝐺 is a discrete

𝐺-module. It suffices to show that 𝑓 ∶ 𝐺 × 𝑀 → 𝑀 with (𝑔, 𝑚) ↦ 𝑔𝑚 is a
continuous map. For this it suffices to show that for every open set 𝐴 in 𝑀 , the
preimage of 𝐴 under 𝑓 , 𝑓−1(𝐴), is an open set in 𝐺 × 𝑀 . Let 𝑎, 𝑏 ∈ 𝑀 and 𝑔 ∈ 𝐺
such that 𝑔𝑎 = 𝑏. Since 𝑏 ∈ 𝑀 we have that 𝑏 ∈ ⋃

𝐻∈ℬ(1)
𝑀𝐻 . This implies that there

exists 𝐻 ∈ ℬ(1) such that 𝑏 ∈ 𝑀𝐻 , which means that ℎ𝑏 = 𝑏 for each ℎ ∈ 𝐻.
Thus, 𝐻𝑔 × {𝑎} is an open neighborhood of (𝑔, 𝑎) and 𝑓(𝐻𝑔 × {𝑎}) = {𝑏}, since
𝑓(ℎ𝑔, 𝑎) = ℎ𝑔𝑎 = ℎ𝑏 = 𝑏. Hence, 𝐻𝑔 × {𝑎 ⊆ 𝑓−1({𝑏})}. That is for every
(𝑔, 𝑎) ∈ 𝑓−1({𝑏}) there exists 𝑈 = 𝐻𝑔 × {𝑎} which is an open neighborhood
of (𝑔, 𝑎) such that 𝑈 = 𝐻𝑔 × {𝑎} ⊆ 𝑓−1({𝑏}). Consequently, 𝑓−1({𝑏}) is open.
Moreover, we have that 𝑀 is a unitary 𝐺−module and it is a topological group
equipped with the discrete topology. So ℬ = {{𝑏}, 𝑏 ∈ 𝑀} form a basis of 𝑀 . For
this reason it suffices to check that 𝑓−1({𝑏}) is open. Therefore, it is easy to see that
𝑓−1(𝐴) is open in 𝐺 × 𝑀 for every open subset 𝐴 of 𝑀 , since 𝐴 will be a union of
sets that belong in base ℬ, that is 𝐴 = ⋃

𝑏∈𝑀
{𝑏}. But then 𝑓−1(𝐴) = ⋃

𝑏∈𝑀
𝑓−1({𝑏})

and 𝑓−1({𝑏}) is open. Consequently, 𝑓−1(𝐴) is open as a union of open sets. Hence,
𝑓 is continuous.

Theorem 4.1.2 implies immediately that submodules and quotients of discrete
𝐺-modules are again discrete 𝐺-modules.
Comment 4.1.3. We say that 𝐺 acts trivially on 𝐴 if 𝜎𝑎 = 𝑎 for all 𝑎 ∈ 𝐴. Thus
𝐴𝐺 = 𝐴 if and only if the action is trivial. When ℤ, ℚ, ℚ/ℤ are considered as 𝐺-
modules, this is with the trivial action, unless stated otherwwise.
Example 4.1.4. Let 𝑀 be an abelian group and 𝐺 is a profinite group that acts
trivially on 𝑀 . Then 𝑀 is a discrete 𝐺-module. Indeed, 𝑀𝐺 = 𝑀 . Let ℬ(1) is a
basis of open neighborhood of 1 consisting of open normal subgroups of 𝐺. If 𝐻 ∈
ℬ(1), then 𝑀𝐻 = 𝑀 , because 𝑀𝐺 = 𝑀 and 𝐻 ⩽ 𝐺. Thus, 𝑀 = ⋃

𝐻∈ℬ(1)
𝑀𝐻 . So

then according to theorem 4.1.2 we have that 𝑀 is a discrete 𝐺-module
Example 4.1.5. Let ℚ𝑝 be the field of rational 𝑝-adic numbers. Then

𝑎(𝑏 + ℤ𝑝) = 𝑎𝑏 + ℤ𝑝, 𝑓𝑜𝑟𝑎 ∈ ℤ𝑝, 𝑏 ∈ ℚ𝑝

defines a discrete ℤ𝑝 structure on ℚ𝑝/ℤ𝑝.

Example 4.1.6. In the following examples �̄� denotes the separable closure of 𝐾.

1) Let 𝑀 ∶= �̄� an additive abelian group, �̄�/𝐾 Galois extension

𝐺𝑎𝑙(�̄�/𝐾) × �̄� → �̄�
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The action of 𝐺𝑎𝑙(�̄�/𝐾) on (�̄�, +) defines the 𝑀 ∶= �̄� as a discrete 𝐺𝑎𝑙(�̄�/𝐾)-
module.
It is clear that the (�̄�, +) is a unitary 𝐺𝑎𝑙(�̄�/𝐾)-module and discrete as well. In-
deed, we notice that �̄� = ⋃

𝐿
𝐿 where 𝐾 ⩽ 𝐿 ⩽ �̄� and 𝐿/𝐾 is finite. Clearly,

⋃
𝐿

𝐿 ⊆ �̄�, where 𝐾 ⩽ 𝐿 ⩽ �̄� and 𝐿/𝐾 is finite. Also, let 𝛼 ∈ �̄� then 𝛼 is al-

gebraic over 𝐾, and then 𝐾(𝛼)/𝐾 is algebraic and finite. That is 𝛼 ∈ 𝐿 such that
𝐿/𝐾 is finite. Thus, �̄� = ⋃

𝐿
𝐿 = ⋃

𝐿
�̄�𝐺𝑎𝑙(�̄�/𝐿) where 𝐾 ⩽ 𝐿 ⩽ �̄� and 𝐿/𝐾 is

finite, so then from theorem 4.1.2 we have that (�̄�, +) is a discrete 𝐺-module

2) The (�̄�∗, ⋅) is a discrete 𝐺-module, where 𝐺 = 𝐺𝑎𝑙(�̄�/𝐾). Clearly, the (�̄�∗, ⋅)
is a unitary 𝐺-module and we can prove that (�̄�∗, ⋅) is a discrete 𝐺-module in like
way with the previous.

3) The roots of unity of �̄�, 𝜇(�̄�), is a discrete 𝐺-module, where 𝐺 = 𝐺𝑎𝑙(�̄�/𝐾).

4) Let𝐸 an elliptic curve over𝐾, where𝐾 is an algebraic number field. Then𝐸(�̄�)
is an additive abelian group. Also, it is a discrete 𝐺𝑎𝑙(�̄�/𝐾)-module. Indeed, since
𝐸(�̄�) = ⋃

𝐿
𝐸(𝐿), where 𝐾 ⩽ 𝐿 ⩽ �̄� and 𝐿/𝐾 is finite.

4.2 Construction of the Cohomology Groups
Throughout this section 𝐺 will denote a profinite group and 𝑀 a discrete 𝐺-

module.

For 𝑞 ≥ 1, let 𝐶𝑞(𝐺, 𝑀) denote the set of all continuous map from 𝐺𝑞 to 𝑀 , that is

𝐶𝑞(𝐺, 𝑀) = {𝑥 ∶ 𝐺𝑞 → 𝑀 |𝑥𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠}

For 𝑞 ≥ 1 we define the homomorphisms of groups

𝔡𝑞+1 ∶ 𝐶𝑞(𝐺, 𝑀) → 𝐶𝑞+1(𝐺, 𝑀)

with

(𝔡𝑞+1𝑓)(𝑔1, … , 𝑔𝑞+1) = 𝑔1𝑓(𝑔2, … , 𝑔𝑞+1)

+
𝑞

∑
𝑖=1

(−1)𝑖𝑓(𝑔1, … , 𝑔𝑖−1, 𝑔𝑖𝑔𝑖+1, 𝑔𝑖+2, … , 𝑔𝑞+1)

+ (−1)𝑞+1𝑓(𝑔1, … , 𝑔𝑞)

where 𝑓 ∈ 𝐶𝑞(𝐺, 𝑀)
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For 𝑞 = 0: we define 𝔡1 ∶ 𝐶0(𝐺, 𝑀) → 𝐶1(𝐺, 𝑀) with 𝔡1𝑓(𝑔) = 𝑔𝑓 − 𝑓 ,
𝑓 ∈ 𝐶0(𝐺, 𝑀).
We know that 𝐶0(𝐺, 𝑀) = 𝑀 . The maps 𝔡 are called coboundary maps. Moreover
we have proved that 𝔡𝑞+1 ∘ 𝔡𝑞 = 0, ∀𝑞 ≥ 1. Thus, the chain

0 ⟶ 𝐶0(𝐺, 𝑀)
𝔡1⟶ 𝐶1(𝐺, 𝑀)

𝔡2⟶ ⋯

is a cochain complex. We define the 𝑞-cocycles group of 𝐺 as follows

𝒵𝑞(𝐺, 𝑀) = 𝐾𝑒𝑟𝔡𝑞+1

and the 𝑞-coboundaries group of 𝐺 by

ℬ𝑞(𝐺, 𝑀) = 𝐼𝑚𝔡𝑞, 𝑓𝑜𝑟 𝑞 ≥ 1

and
ℬ0(𝐺, 𝑀) ∶= {0}

In this case the cocycles and the coboundaries are continuous maps in contrast with
the case of finite groups. Thus we define the 𝑞-cohomology group of 𝐺 by

ℋ𝑞(𝐺, 𝑀) = 𝒵𝑞(𝐺, 𝑀)
ℬ𝑞(𝐺, 𝑀)

We denote the elements of ℋ𝑞(𝐺, 𝑀) by [𝑓] = 𝑓 + ℬ𝑞(𝐺, 𝑀).

We can calculate the cohomology groups of low dimension.

Proposition 4.2.1. Let 𝐺 a profinite group and 𝑀 discrete 𝐺-module. Then

ℋ0(𝐺, 𝑀) = 𝑀𝐺

Proof. By definition we have that ℋ0(𝐺,𝑀) = 𝒵0(𝐺,𝑀)
ℬ0(𝐺,𝑀) . Also, it is clear that

ℬ0(𝐺, 𝑀) = {0} and 𝒵0(𝐺, 𝑀) = 𝐾𝑒𝑟𝔡1 = {𝑚 ∈ 𝑀 ∶ 𝑔𝑚 − 𝑚 = 0, ∀𝑔 ∈
𝐺} = 𝑀𝐺.

Proposition 4.2.2. Let 𝐺 a profinite group and 𝑀 discrete 𝐺-module. Then the first
cohomology group of 𝑀 is defined as

ℋ1(𝐺, 𝑀) = {𝑓 ∶ 𝐺 → 𝑀, 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑓 𝑖𝑠 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚}
{𝑓 ∶ 𝐺 → 𝑀, 𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑓 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝𝑖𝑠𝑚}

Proof. By definition we have that ℋ1(𝐺,𝑀) = 𝒵1(𝐺,𝑀)
ℬ1(𝐺,𝑀) . Also,

𝒵1(𝐺, 𝑀) = 𝐾𝑒𝑟𝔡2 = {𝑓 ∶ 𝐺 → 𝑀, 𝑓 𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ∶ 𝔡2𝑓 = 0}
= {𝑓 ∶ 𝐺 → 𝑀, 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑓 𝑖𝑠 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚}
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Proposition 4.2.3. Let 𝐺 a profinite group and 𝑀 discrete 𝐺-module. Then the
second cohomology group of 𝑀 is defined as

ℋ2(𝐺, 𝑀) = {𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑒𝑡𝑠}
{𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑒𝑡𝑠}

Remark 4.2.4. 1) If the profinite group 𝐺 acts trivially on the discrete 𝐺-module
𝑀 . Then ℋ0(𝐺, 𝑀) = 𝑀 (This is true for finite groups as well) and ℋ1(𝐺, 𝑀) =
𝐻𝑜𝑚𝑐𝑜𝑛𝑡(𝐺, 𝑀).
2) If 𝐺 is a profinite group and the sequence

0 ⟶ 𝐴 ⟶ 𝐵 ⟶ 𝐶 ⟶ 0

is a short exact sequence of discrete 𝐺-modules, then the sequence

0 ⟶ ℋ0(𝐺, 𝐴) ⟶ ℋ0(𝐺, 𝐵) ⟶ ℋ0(𝐺, 𝐶) 𝛿⟶
ℋ1(𝐺, 𝐴) ⟶ ℋ1(𝐺, 𝐵) ⟶ ℋ1(𝐺, 𝐶) ⟶ ⋯

is also exact.

4.3 Compatible Pairs
In this section we will define the compatible pairs and we will study some useful

propositions.

Definition 4.3.1. Let 𝜓 ∶ 𝐺 → 𝐻 be a continuous homomorphism of profinite
groups. Let also 𝐴 be a discrete 𝐺-module and 𝐵 a discrete 𝐻-module. We assume
that 𝜑 ∶ 𝐵 → 𝐴 is a continuous homomorphism of topological groups. We say that
the pair (𝜓, 𝜙) is compatible if

𝜑(𝜓(𝑔)𝑏) = 𝑔𝜑(𝑏)

for all 𝑔 ∈ 𝐺 and 𝑏 ∈ 𝐵
Proposition 4.3.2. Let 𝜓 ∶ 𝐺 → 𝐻 , 𝜑 ∶ 𝐵 → 𝐴 be a compatible pair.
i) For every 𝑞 ≥ 0 there exists an induced homomorphism of 𝑞 − 𝑐𝑜𝑐ℎ𝑎𝑖𝑛𝑠

(𝜓, 𝜑)∗
𝑞 ∶ 𝐶𝑞(𝐻, 𝐵) → 𝐶𝑞(𝐺, 𝐴)

where (𝜓, 𝜑)∗
𝑞(𝑓) = 𝜑 ∘ 𝑓 ∘ 𝜓.

ii) For every 𝑞 ≥ 0 the following diagram is commutative

𝐶𝑞(𝐻, 𝐵) 𝐶𝑞+1(𝐻, 𝐵)

𝐶𝑞(𝐺, 𝐴) 𝐶𝑞+1(𝐺, 𝐴)

𝔡𝑞+1

𝑓𝑞 𝑓𝑞+1

𝔡𝑞+1
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where 𝑓𝑞 = (𝜓, 𝜑)∗
𝑞.

iii) For every 𝑞 ≥ 0 there exists an induced homomorphism

ℋ𝑞(𝐻, 𝐵) → ℋ𝑞(𝐺, 𝐴)
[𝑓] ↦ [(𝜓, 𝜑)∗

𝑞(𝑓)]
which we also denote by (𝜓, 𝜑)∗

𝑞.

Proof. i) It is clear that (𝜓, 𝜑)∗
𝑞 is a homomorphism of groups and also for every

𝑓 ∈ 𝐶𝑞(𝐻, 𝐵) the (𝜓, 𝜑)∗
𝑞(𝑓) is continuous as a composition of continuous maps.

ii) It’s proof is a straightforward computation that follows from the definitions of
the coboundary map and compatible pairs. It suffices to show that

(𝜓, 𝜑)∗
𝑞+1 ∘ 𝔡𝑞+1 = 𝔡𝑞+1 ∘ (𝜓, 𝜑)∗

𝑞

(𝔡𝑞+1 ∘ (𝜓, 𝜑)∗
𝑞(𝑓))(𝑔1, … , 𝑔𝑞+1) =

= 𝑔1((𝜓,𝜑)∗
𝑞(𝑓)(𝑔1,…,𝑔𝑞+1)) +

𝑞
∑
𝑖=1

(−1)𝑖((𝜓,𝜑)∗
𝑞(𝑓))(𝑔1,…,𝑔𝑖−1,𝑔𝑖𝑔𝑖+1,𝑔𝑖+2,…,𝑔𝑞+1)

+ (−1)𝑞+1((𝜓, 𝜑)∗
𝑞(𝑓))(𝑔1, … , 𝑔𝑞)

= 𝑔1(𝜑(𝑓(𝜓(𝑔1),…,𝜓(𝑔𝑞+1)))) +
𝑞

∑
𝑖=1

(−1)𝑖𝜑(𝑓(𝜓(𝑔1),…,𝜓(𝑔𝑖−1),𝜓(𝑔𝑖𝑔𝑖+1),𝜓(𝑔𝑖+2),…,𝜓(𝑔𝑞+1)))

+ (−1)𝑞+1(𝜑(𝑓(𝜓(𝑔1), … , 𝜓(𝑔𝑞)))

In addition,

(𝜓, 𝜑)∗
𝑞+1(𝔡𝑞+1(𝑓(𝑔1, … , 𝑔𝑞+1)) =

= (𝜑 ∘ (𝔡𝑞+1 ∘ 𝑓 ∘ 𝜓)(𝑔1, … , 𝑔𝑞+1) = 𝜙(𝔡𝑞+1(𝑓(𝜓(𝑔1)), … , 𝜓(𝑔𝑞+1)))

= 𝜑[𝑔1𝑓 (𝜓(𝑔2),…,𝜓(𝑔𝑞+1)) +
𝑞

∑
𝑖=1

(−1)𝑖𝑓 (𝜓(𝑔1),…,𝜓(𝑔𝑖−1),𝜓(𝑔𝑖𝑔𝑖+1),𝜓(𝑔𝑖+2),…,𝜓(𝑔𝑞+1))

+ (−1)𝑞+1(𝑓(𝜓(𝑔1), … , 𝜓(𝑔𝑞))]

= 𝑔1𝜑(𝑓(𝜓(𝑔2),…,𝜓(𝑔𝑞+1))) +
𝑞

∑
𝑖=1

(−1)𝑖𝜑(𝑓(𝜓(𝑔1),…,𝜓(𝑔𝑖−1),𝜓(𝑔𝑖𝑔𝑖+1),𝜓(𝑔𝑖+2),…,𝜓(𝑔𝑞+1)))

+ (−1)𝑞+1𝜑(𝑓(𝜓(𝑔1), … , 𝜓(𝑔𝑞)))

Thus, (𝜓, 𝜑)∗
𝑞+1 ∘ 𝔡𝑞+1 = 𝔡𝑞+1 ∘ (𝜓, 𝜑)∗

𝑞
iii) Firstly we note that if 𝑓 ∈ 𝒵𝑞(𝐻, 𝐵), then 𝔡𝑞+1(𝑓) = 0. So then from (ii) we
have that 𝔡𝑞+1((𝜓, 𝜑)∗

𝑞(𝑓)) = (𝜓, 𝜑)∗
𝑞+1(𝔡𝑞+1(𝑓)) = 0. This means that if 𝑓 ∈

𝒵𝑞(𝐻, 𝐵), then (𝜓, 𝜑)∗
𝑞(𝑓) ∈ 𝐾𝑒𝑟𝔡𝑞+1 = 𝒵𝑞(𝐺, 𝐴). So the restriction of (𝜓, 𝜑)∗

𝑞 ∶
𝐶𝑞(𝐻, 𝐵) → 𝐶𝑞(𝐺, 𝐴) to 𝒵𝑞(𝐻, 𝐵) is the map 𝒵𝑞(𝐻, 𝐵) → 𝒵𝑞(𝐺, 𝐴). Let 𝜋𝑞 ∶
𝒵𝑞(𝐺, 𝐴) → ℋ𝑞(𝐺, 𝐴) be the canonical projection. Then we have the following
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𝒵𝑞(𝐻, 𝐵)
(𝜓,𝜑)∗

𝑞
→ 𝒵𝑞(𝐺, 𝐴)

𝜋𝑞
→ ℋ𝑞(𝐺,𝐴) = 𝒵𝑞(𝐺,𝐴)

ℬ𝑞(𝐺,𝐴)
𝑓 ↦ (𝜓, 𝜑)∗

𝑞(𝑓) =∶ 𝑔 ↦ 𝑔 + ℬ𝑞(𝐺, 𝐴)
Hence by composing (𝜓, 𝜑)∗

𝑞 with 𝜋𝑞 we obtain a homomorphism

𝜑𝑞 ∶ 𝒵𝑞(𝐻, 𝐵) → ℋ𝑞(𝐺, 𝐴)
where 𝜑𝑞 ∶= 𝜋𝑞 ∘ (𝜓, 𝜑)∗

𝑞. It suffices to show that ℬ𝑞(𝐻, 𝐵) ⊆ 𝐾𝑒𝑟𝜑𝑞. Indeed,
if ℬ𝑞(𝐻, 𝐵) ⊆ 𝐾𝑒𝑟𝜑𝑞 then we know that there exists a unique homomorphism of
groups

𝒵𝑞(𝐺, 𝐴)
ℬ𝑞(𝐺, 𝐴) → ℋ𝑞(𝐺, 𝐴)

That is
ℋ𝑞(𝐻, 𝐵) → ℋ𝑞(𝐺, 𝐴)

with [𝑓] ↦ [(𝜓, 𝜑)∗
𝑞(𝑓)]. It remains to show that ℬ𝑞(𝐻, 𝐵) ⊆ 𝐾𝑒𝑟𝜑𝑞. Let 𝑓 ∈

ℬ𝑞(𝐻, 𝐵) = 𝐼𝑚𝔡𝑞. That is there exists 𝑔 ∈ 𝐶𝑞−1(𝐻, 𝐵) such that 𝑓 = 𝔡𝑞(𝑔).
Then (𝜓, 𝜑)∗

𝑞(𝑓) = (𝜓, 𝜑)∗
𝑞(𝔡𝑞(𝑔)) = 𝔡𝑞((𝜓, 𝜑)∗

𝑞−1(𝑔)) ∈ ℬ𝑞(𝐺, 𝐴). So 𝜋𝑞 ∘
(𝜓, 𝜑)∗

𝑞(𝑓) = 𝜋𝑞(𝔡𝑞((𝜙, 𝜓)∗
𝑞−1(𝑔))) = 𝔡𝑞((𝜙, 𝜓)∗

𝑞−1(𝑔)) + ℬ𝑞(𝐺, 𝐴) = ℬ𝑞(𝐺, 𝐴),
which implies that 𝑓 ∈ 𝐾𝑒𝑟(𝜑𝑞) =. Therefore, for every 𝑞 ≥ 0 induced a homo-
morphism

ℋ𝑞(𝐻, 𝐵) → ℋ𝑞(𝐺, 𝐴)
[𝑓] ↦ [(𝜓, 𝜑)∗

𝑞(𝑓)]

The maps (𝜓, 𝜑)∗
𝑞, that we have just constructed, behave functorially in the fol-

lowing sense.

Proposition 4.3.3. We assume that 𝐺1
𝜓1→ 𝐺2

𝜓2→ 𝐺3 and 𝐴3
𝜙2→ 𝐴2

𝜙1→ 𝐴1 are
such that (𝜓1, 𝜙1) and (𝜓2, 𝜙2) are both compatible pairs. Then (𝜓2 ∘ 𝜓1, 𝜙1 ∘ 𝜙2)
is compatible and for each 𝑞 ≥ 0 we have that (𝜓2 ∘ 𝜓1, 𝜙1 ∘ 𝜙2)∗

𝑞 = (𝜓1, 𝜙1)∗
𝑞 ∘

(𝜓2, 𝜙2)∗
𝑞.

Proof. Firstly we will show that (𝜓2 ∘ 𝜓1, 𝜙1 ∘ 𝜙2) is compatible. Since (𝜓1, 𝜙1)
is compatible, then 𝜑1(𝜓1(𝑔1)𝑎2) = 𝑔1𝜑1(𝑎2) for every 𝑔1 ∈ 𝐺1 and 𝑎2 ∈ 𝐴2.
Similarly, 𝜑2(𝜓2(𝑔2)𝑎3) = 𝑔2𝜑2(𝑎3) for every 𝑔2 ∈ 𝐺2 and 𝑎3 ∈ 𝐴3, because
(𝜓2, 𝜙2) is compatible. Then,𝜑1∘𝜑2(𝜓2∘𝜓1(𝑔1)𝑎3) = 𝜑1(𝜓1(𝑔1)𝜙2(𝑎3)) = 𝑔1𝜙1∘
𝜙2(𝑎3), for every 𝑔1 ∈ 𝐺1, 𝑎3 ∈ 𝐴3. Thus, (𝜓2∘𝜓1, 𝜙1∘𝜙2) is compatible. It remains
to show that (𝜓2 ∘ 𝜓1, 𝜙1 ∘ 𝜙2)∗

𝑞 = (𝜓1, 𝜙1)∗
𝑞 ∘ (𝜓2, 𝜙2)∗

𝑞. Indeed,

(𝜓1, 𝜙1)∗
𝑞 ∘ (𝜓2, 𝜙2)∗

𝑞(𝑓(𝑔1, … , 𝑔𝑛)) =
𝜑1 ∘ (𝜓2, 𝜙2)∗

𝑞 ∘ 𝑓(𝜓1(𝑔1, … , 𝑔𝑛)) =
𝜑1 ∘ (𝜓2, 𝜙2)∗

𝑞 ∘ 𝑓(𝜓1(𝑔1), … , 𝜓1(𝑔𝑛)) =
𝜑1 ∘ 𝜑2 ∘ 𝑓 ∘ 𝜓2 ∘ 𝜓1(𝑔1, … , 𝑔𝑛) =
(𝜓2 ∘ 𝜓1, 𝜙1 ∘ 𝜙2)∗

𝑞(𝑓(𝑔1, … , 𝑔𝑛))
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Remark 4.3.4. If 𝜓, 𝜙 are identity maps, then the (𝜓, 𝜙)∗
𝑞 is identity map as well.

Proof. It is clear that if 𝜓, 𝜙 are identity maps, then (𝜓, 𝜙)∗
𝑞(𝑓) = 𝜙∘𝑓 ∘𝜓 = 𝑓 .

4.4 Change of the group 𝐺
In this section wewill studywhat happens to the cohomology groupℋ𝑞(𝐺, 𝐴) if

we change the group 𝐺. If 𝜓 ∶ 𝐺 → 𝐻 is a continuous homomorphism of profinite
groups and 𝜙 ∶ 𝐵 → 𝐴 is a group homomorphism, where 𝐴 is a discrete 𝐺-module
and 𝐵 is a discrete 𝐻-module, then we have defined when 𝜓, 𝜙 are compatible pair.
For such a compatible pair of homomorphisms we obtain a homomorphism of the
groups of 𝑞-cochains

(𝜓, 𝜑)∗
𝑞 ∶ 𝐶𝑞(𝐻, 𝐵) → 𝐶𝑞(𝐺, 𝐴), 𝑓𝑜𝑟𝑞 ≥ 0

given by (𝜓, 𝜑)∗
𝑞(𝑓) = 𝜑 ∘ 𝑓 ∘ 𝜓. We have proved that (𝜓, 𝜑)∗

𝑞 commutes with 𝔡 for
every 𝑞 ≥ 0. Therefore, (𝜓, 𝜑)∗

𝑞 induces homomorphisms

(𝜓, 𝜑)∗
𝑞 ∶ ℋ𝑞(𝐻, 𝐵) → ℋ𝑞(𝐺, 𝐴), 𝑓𝑜𝑟𝑞 ≥ 0

of the cohomology groups. Also, we have proved that (𝜓, 𝜑)∗
𝑞 behave functorially.

In particular, for every 𝑞 ≥ 0 ℋ𝑞(A,-) is a functor from the category of discrete
𝐺-module to the category of abelian groups.

Remark 4.4.1. Let 𝐼 be a directed index set. Let also (𝐺𝑖, 𝜋𝑖𝑗)𝐼 be a projective
system of profinite groups and (𝐴𝑖, 𝜆𝑖𝑗) be a direct system of abelian groups, where
each 𝐴𝑖 is a discrete 𝐺𝑖-module, such that for each pair 𝑖 ≤ 𝑗 in 𝐼 , the maps

𝜋𝑖𝑗 ∶ 𝐺𝑗 → 𝐺𝑖 𝑎𝑛𝑑 𝜆𝑖𝑗 ∶ 𝐴𝑖 → 𝐴𝑗

are compatible. Then for each 𝑞 ≥ 0, we obtain in a natural way that the family

{(ℋ𝑞(𝐺𝑖, 𝐴𝑖), (𝜋𝑖𝑗, 𝜆𝑖𝑗)∗
𝑞), 𝑖 ≤ 𝑗, 𝑖, 𝑗 ∈ 𝐼}

is a direct system.

Proof. Since the maps

𝜋𝑖𝑗 ∶ 𝐺𝑗 → 𝐺𝑖 𝑎𝑛𝑑 𝜆𝑖𝑗 ∶ 𝐴𝑖 → 𝐴𝑗

are compatible, then according to proposition 4.3.2 there exists an induced homo-
morphism

(𝜋𝑖𝑗, 𝜆𝑖𝑗)∗
𝑞 ∶ ℋ𝑞(𝐺𝑖, 𝐴𝑖) → ℋ𝑞(𝐺𝑗, 𝐴𝑗)

Additionally, if 𝑖 = 𝑗, then
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(𝜋𝑖𝑖, 𝜆𝑖𝑖)∗
𝑞 ∶ ℋ𝑞(𝐺𝑖, 𝐴𝑖) → ℋ𝑞(𝐺𝑖, 𝐴𝑖)

[𝑓] ↦ [𝜆𝑖𝑖 ∘ 𝑓 ∘ 𝜋𝑖𝑖]
But 𝜋𝑖𝑖 and 𝜆𝑖𝑖 are identity maps, so then (𝜋𝑖𝑖, 𝜆𝑖𝑖)∗

𝑞 = 𝐼𝑑ℋ𝑞(𝐺𝑖,𝐴𝑖). Moreover, if
𝑖 ≤ 𝑗 ≤ 𝑘 with 𝑖, 𝑗, 𝑘 ∈ 𝐼 then

ℋ𝑞(𝐺𝑖, 𝐴𝑖) ℋ𝑞(𝐺𝑘, 𝐴𝑘)

ℋ𝑞(𝐺𝑗, 𝐴𝑗)

(𝜋𝑖𝑘,𝜆𝑖𝑘)∗
𝑞

(𝜋𝑖𝑗,𝜆𝑖𝑗)∗
𝑞 (𝜋𝑗𝑘,𝜆𝑗𝑘)∗

𝑞

(𝜋𝑗𝑘, 𝜆𝑗𝑘)∗
𝑞 ∘(𝜋𝑖𝑗, 𝜆𝑖𝑗)∗

𝑞([𝑓]) = (𝜋𝑗𝑘, 𝜆𝑗𝑘)∗
𝑞([𝜆𝑖𝑗∘𝑓 ∘𝜋𝑖𝑗]) = [𝜆𝑗𝑘∘𝜆𝑖𝑗∘𝑓 ∘𝜋𝑖𝑗∘𝜋𝑗𝑘] =

[𝜆𝑖𝑘 ∘ 𝑓 ∘ 𝜋𝑖𝑘] = (𝜋𝑖𝑘, 𝜆𝑖𝑘)∗
𝑞([𝑓]) as 𝜋𝑖𝑘 = 𝜋𝑖𝑗 ∘ 𝜋𝑗𝑘 and 𝜆𝑖𝑘 = 𝜆𝑗𝑘 ∘ 𝜆𝑖𝑗.

Consequently, {(ℋ𝑞(𝐺𝑖, 𝐴𝑖), (𝜋𝑖𝑗, 𝜆𝑖𝑗)∗
𝑞), 𝑖 ≤ 𝑗, 𝑖, 𝑗 ∈ 𝐼} is a direct system.

Let
𝐺 = lim←−𝐼

𝐺𝑖 𝑎𝑛𝑑 𝐴 = lim−→𝐼
𝐴𝑖

and let that 𝜋𝑖 ∶ 𝐺 → 𝐺𝑖 and 𝜆𝑖 ∶ 𝐴𝑖 → 𝐴 are the homomorphisms which defined
by the definition of projective and direct limit, respectively. Then 𝐴 can be consid-
ered as a discrete 𝐺-module in the following manner. Given 𝑎 ∈ 𝐴 and 𝜎 ∈ 𝐺, then
for some 𝑖 ∈ 𝐼 and 𝑎𝑖 ∈ 𝐴𝑖 one has 𝜆𝑖(𝑎𝑖) = 𝑎, then we define

𝜎(𝛼) = 𝜆𝑖[𝜋𝑖(𝜎)𝑎𝑖]

This is a well defined continuous action of 𝐺 on 𝐴. It is clear that 𝜎(𝑎) + 𝜎(𝑏) =
𝜆𝑖[𝜋𝑖(𝜎)𝑎𝑖] + 𝜆𝑖[𝜋𝑖(𝜎)𝑏𝑖] = 𝜆𝑖[𝜋𝑖(𝜎)(𝑎𝑖 + 𝑏𝑖)]𝜎(𝑎 + 𝑏), with 𝜆𝑖(𝑎𝑖 + 𝑏𝑖) = 𝑎 + 𝑏
as 𝜆𝑖(𝑎𝑖) = 𝑎 and 𝜆𝑖(𝑏𝑖) = 𝑏. Also, (𝜎𝜏)(𝑎) = 𝜆𝑖[𝜋𝑖(𝜎𝜏)𝑎𝑖], 𝜆𝑖(𝑎𝑖) = 𝑎 and
𝜎(𝜏(𝑎)) = 𝜎(𝜆𝑖[𝜋𝑖(𝜏)𝑎𝑖]), where 𝜆𝑖(𝑎𝑖) = 𝑎, then 𝜎(𝜏(𝑎)) = 𝜎(𝜆𝑖[𝜋𝑖(𝜏)𝑎𝑖]) =
𝜆𝑖[𝜋𝑖(𝜎)𝑏𝑖]. where 𝜆𝑖(𝑏𝑖) = 𝜆𝑖[𝜋𝑖(𝜏)𝑎𝑖] ⇒ 𝜆𝑖(𝑏𝑖 − 𝜋𝑖(𝜏)𝑎𝑖) = 0 and then 𝑏𝑖 −
𝜋𝑖(𝜏)𝑎𝑖 = 0. So 𝜎(𝜏(𝑎)) = 𝜆𝑖[𝜋𝑖(𝜎)𝑏𝑖] = 𝜆𝑖[𝜋𝑖(𝜎)𝜋𝑖(𝜏)𝑎𝑖] = 𝜆𝑖[𝜋𝑖(𝜎𝜏)𝑎𝑖]
with 𝜆𝑖(𝑎𝑖) = 𝑎. Thus, 𝜎(𝜏(𝑎)) = (𝜎𝜏)(𝑎). In addition, 1𝑎 = 𝜆𝑖[𝜋𝑖(1)𝑎𝑖], where
𝜆𝑖(𝑎𝑖) = 𝑎, so ten 1𝑎 = 𝜆𝑖(𝑎𝑖) = 𝑎. Moreover, it is clear that 𝜆𝑖 is continuous
homomorphism, because 𝐴𝑖 is a discrete space and every function from a discrete
topological space to another topological space is continuous. Additionally, the ac-
tion 𝐺𝑖 × 𝐴𝑖 → 𝐴𝑖 is continuous, as 𝐴𝑖 is a discrete 𝐺𝑖-module. Thus the action
𝐺 × 𝐴 → 𝐴 is continuous as composition of continuous maps. Therefore 𝐴 is a
discrete 𝐺-module.
Now we are able to study the following general statement.

Proposition 4.4.2. Let 𝐼 be a directed index set. Let also (𝐺𝑖, 𝜋𝑖𝑗)𝐼 be a projective
system of profinite groups and (𝐴𝑖, 𝜆𝑖𝑗) be a direct system of abelian groups, where
each 𝐴𝑖 is a discrete 𝐺𝑖-module, such that for each pair 𝑖 ≤ 𝑗 in 𝐼 , the maps

𝜋𝑖𝑗 ∶ 𝐺𝑗 → 𝐺𝑖 𝑎𝑛𝑑 𝜆𝑖𝑗 ∶ 𝐴𝑖 → 𝐴𝑗
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are compatible. If 𝐺 = lim←−𝐼
𝐺𝑖 𝑎𝑛𝑑 𝐴 = lim−→𝐼

𝐴𝑖, then for each 𝑞 ≥ 0

ℋ𝑞(𝐺, 𝐴) ≅ lim−→𝐼
ℋ𝑞(𝐺𝑖, 𝐴𝑖)

Proof. According to remark 4.4.1 we have that the family

{(ℋ𝑞(𝐺𝑖, 𝐴𝑖), (𝜋𝑖𝑗, 𝜆𝑖𝑗)∗
𝑞), 𝑖 ≤ 𝑗, 𝑖, 𝑗 ∈ 𝐼}

is a direct system. So then lim−→𝐼
ℋ𝑞(𝐺𝑖, 𝐴𝑖) makes sense. From the definition of

cohomology we have that

ℋ𝑞(𝐺, 𝐴) = ℋ𝑞(𝐶𝑞(𝐺, 𝐴))

and
ℋ𝑞(𝐺𝑖, 𝐴𝑖) = ℋ𝑞(𝐶𝑞(𝐺𝑖, 𝐴𝑖))

Since lim−→𝑖∈𝐼
is an exact functor in the category of abelian group, then we have that

lim−→𝑖∈𝐼
ℋ𝑞(𝐺𝑖, 𝐴𝑖) ≅ lim−→𝑖∈𝐼

ℋ𝑞(𝐶𝑞(𝐺𝑖, 𝐴𝑖))

= ℋ𝑞(lim−→𝑖∈𝐼
(𝐶𝑞(𝐺𝑖, 𝐴𝑖))) (4.1)

where
{(𝐶𝑞(𝐺𝑖, 𝐴𝑖), (𝜋𝑖𝑗, 𝜆𝑖𝑗)∗

𝑞), 𝑖 ≤ 𝑗, 𝑖, 𝑗 ∈ 𝐼}
is a direct system, and 𝜋𝑖𝑗, 𝜆𝑖𝑗 are defined like the remark 4.4.1. That is (𝐺𝑖, 𝜋𝑖𝑗)
is a projective system of profinite groups and (𝐴𝑖, 𝜆𝑖𝑗) is a direct system of abelian
groups, where 𝐴𝑖 are 𝐺𝑖-modules, such that for each pair 𝑖 ≤ 𝑗 in 𝐼 , the maps

𝜋𝑖𝑗 ∶ 𝐺𝑗 → 𝐺𝑖 𝑎𝑛𝑑 𝜆𝑖𝑗 ∶ 𝐴𝑖 → 𝐴𝑗

are compatible. Then according to proposition 4.3.2 we have that for every 𝑞 ≥ 0
there exists an induced homomorphism

(𝜋𝑖𝑗, 𝜆𝑖𝑗)∗
𝑞 ∶ 𝐶𝑞(𝐺𝑖, 𝐴𝑖) → 𝐶𝑞(𝐺𝑗, 𝐴𝑗)

𝑓 ↦ 𝜆𝑖𝑗 ∘ 𝑓 ∘ 𝜋𝑖𝑗

In addition, if 𝑖 = 𝑗 then

(𝜋𝑖𝑖, 𝜆𝑖𝑖)∗
𝑞 ∶ 𝐶𝑞(𝐺𝑖, 𝐴𝑖) → 𝐶𝑞(𝐺𝑖, 𝐴𝑖)

and𝜋𝑖𝑖, 𝜆𝑖𝑖 are identitymaps. Thus, (𝜋𝑖𝑖, 𝜆𝑖𝑖)∗
𝑞 = 𝐼𝑑𝐶𝑞(𝐺𝑖,𝐴𝑖). If 𝑖 ≤ 𝑗 ≤ 𝑘, 𝑖, 𝑗, 𝑘 ∈

𝐼 , then
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𝐶𝑞(𝐺𝑖, 𝐴𝑖) 𝐶𝑞(𝐺𝑘, 𝐴𝑘)

𝐶𝑞(𝐺𝑗, 𝐴𝑗)

(𝜋𝑖𝑘,𝜆𝑖𝑘)∗
𝑞

(𝜋𝑖𝑗,𝜆𝑖𝑗)∗
𝑞 (𝜋𝑗𝑘,𝜆𝑗𝑘)∗

𝑞

(𝜋𝑗𝑘, 𝜆𝑗𝑘)∗
𝑞 ∘ (𝜋𝑖𝑗, 𝜆𝑖𝑗)∗

𝑞(𝑓) = (𝜋𝑗𝑘, 𝜆𝑗𝑘)∗
𝑞(𝜆𝑖𝑗 ∘ 𝑓 ∘ 𝜋𝑖𝑗) = 𝜆𝑗𝑘 ∘ 𝜆𝑖𝑗 ∘ 𝑓 ∘ 𝜋𝑖𝑗 ∘ 𝜋𝑗𝑘 =

𝜆𝑖𝑘 ∘ 𝑓 ∘ 𝜋𝑖𝑘 = (𝜋𝑖𝑘, 𝜆𝑖𝑘)∗
𝑞(𝑓) as 𝜋𝑖𝑘 = 𝜋𝑖𝑗 ∘ 𝜋𝑗𝑘 and 𝜆𝑖𝑘 = 𝜆𝑗𝑘 ∘ 𝜆𝑖𝑗.

Therefore {(𝐶𝑞(𝐺𝑖, 𝐴𝑖), (𝜋𝑖𝑗, 𝜆𝑖𝑗)∗
𝑞), 𝑖 ≤ 𝑗, 𝑖, 𝑗 ∈ 𝐼} form a direct system. So then

lim−→𝑖∈𝐼
(𝐶𝑞(𝐺𝑖, 𝐴𝑖)) makes sense. In order to show that

ℋ𝑞(𝐺, 𝐴) ≅ lim−→𝐼
ℋ𝑞(𝐺𝑖, 𝐴𝑖)

it suffices to show that there exist isomorphisms

lim−→𝑖∈𝐼
𝐶𝑞(𝐺𝑖, 𝐴𝑖) ≅ 𝐶𝑞(𝐺, 𝐴), 𝑞 ≥ 0

which commute with the maps 𝔡𝑞. Then from equation 4.1 we have that

lim−→𝑖∈𝐼
ℋ𝑞(𝐺𝑖, 𝐴𝑖) ≅ ℋ𝑞(lim−→𝑖∈𝐼

(𝐶𝑞(𝐺𝑖, 𝐴𝑖)))

≅ ℋ𝑞(𝐶𝑞(𝐺, 𝐴)) = ℋ𝑞(𝐺, 𝐴)

For every 𝑖 ∈ 𝐼 we define

𝑓𝑖 ∶ 𝐶𝑞(𝐺𝑖, 𝐴𝑖) → 𝐶𝑞(𝐺, 𝐴)

with 𝑓𝑖(𝑥𝑖) = 𝜆𝑖 ∘ 𝑥𝑖 ∘ 𝜋𝑖, where 𝑓𝑖 ∶= (𝜋𝑖, 𝜆𝑖)∗
𝑞

lim−→𝑖∈𝐼
𝐶𝑞(𝐺𝑖, 𝐴𝑖) 𝐶𝑞(𝐺, 𝐴)

𝐶𝑞(𝐺𝑖, 𝐴𝑖)

𝐶𝑞(𝐺𝑗, 𝐴𝑗)

𝜃

𝜑𝑖

𝜑𝑗

𝑓𝑖

𝑓𝑗

𝜑𝑖𝑗

where 𝜑𝑖𝑗 ∶= (𝜋𝑖𝑗, 𝜆𝑖𝑗)∗
𝑞. By definition of direct limit we have that 𝜑𝑖 = 𝜑𝑗 ∘ 𝜑𝑖𝑗.

Also,it is easy to see that 𝑓𝑖 = 𝑓𝑗 ∘ 𝜑𝑖𝑗. Indeed, for 𝑖 ≤ 𝑗 then 𝑓𝑗 ∘ 𝜑𝑖𝑗(𝑥𝑖) =
𝑓𝑗((𝜋𝑖𝑗, 𝜆𝑖𝑗)∗

𝑞(𝑥𝑖) = 𝑓𝑗(𝜆𝑖𝑗 ∘𝑥𝑖 ∘𝜋𝑖𝑗) = 𝜆𝑗 ∘𝜆𝑖𝑗 ∘𝑥𝑖 ∘𝜋𝑖𝑗 ∘𝜋𝑗 = 𝜆𝑖 ∘𝑥𝑖 ∘𝜋𝑖 = 𝑓𝑖(𝑥𝑖),
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as 𝜋𝑖 = 𝜋𝑖𝑗 ∘ 𝜋𝑗 and 𝜆𝑖 = 𝜆𝑗 ∘ 𝜆𝑖𝑗. So then according to universal property of direct
limit there exists a unique homomorphism

𝜃 ∶ lim−→𝑖∈𝐼
𝐶𝑞(𝐺𝑖, 𝐴𝑖) → 𝐶𝑞(𝐺, 𝐴)

satisfying that 𝑓𝑖 = 𝜃 ∘ 𝜑𝑖. Thereafter we will show that 𝜃 commutes with 𝔡 in the
following sense: for every 𝑖 ∈ 𝐼 the diagram

𝐶𝑞(𝐺𝑖, 𝐴𝑖) 𝐶𝑞+1(𝐺𝑖, 𝐴𝑖)

𝐶𝑞(𝐺, 𝐴) 𝐶𝑞+1(𝐺, 𝐴)

𝔡𝑞+1

(𝜋𝑖,𝜆𝑖)∗
𝑞 (𝜋𝑖,𝜆𝑖)∗

𝑞+1

𝔡𝑞+1

commutes. But the above diagram is commutative according to proposition 4.3.2. It
remains to show that 𝜃 is injective and surjective.
For the injectivity, let 𝑥 ∈ lim−→𝑖∈𝐼

𝐶𝑞(𝐺𝑖, 𝐴𝑖) with 𝜃(𝑥) = 0. From proposition 2.4.4

we have that
lim−→𝑖∈𝐼

𝐶𝑞(𝐺𝑖, 𝐴𝑖) = ⋃
𝑖∈𝐼

𝜑𝑖(𝐶𝑞(𝐺𝑖, 𝐴𝑖))

Thus there is 𝑘 ∈ 𝐼 such that 𝜑𝑘(𝑥𝑘) = 𝑥 with 𝑥𝑘 ∈ 𝐶𝑞(𝐺𝑘, 𝐴𝑘). For 𝑖 ≥ 𝑘
let 𝑥𝑖 = 𝜑𝑘𝑖(𝑥𝑘). Then 0 = 𝜃(𝑥) = 𝜃(𝜑𝑘(𝑥𝑘)) = 𝜃 ∘ 𝜑𝑘(𝑥𝑘) = 𝑓𝑘(𝑥𝑘) = 𝑓𝑖 ∘
𝜑𝑘𝑖(𝑥𝑘) = 𝑓𝑖(𝑥𝑖) = (𝜋𝑖, 𝜆𝑖)∗

𝑞(𝑥𝑖) = 𝜆𝑖 ∘ 𝑥𝑖 ∘ 𝜋𝑖, that is for 𝑖 ≥ 𝑘 𝜆𝑖 ∘ 𝑥𝑖 ∘ 𝜋𝑖 = 0.
For 𝑖 ≥ 𝑘 we define

𝑋 = {𝜎𝑖 = (𝜎𝑖1
, … , 𝜎𝑖𝑞

) ∈ 𝐺𝑞
𝑖 |𝑥𝑖(𝜎𝑖) ≠ 0}

We will show that for some 𝑖 ≥ 𝑘, 𝑋𝑖 = ∅, this implies that 𝑥𝑖(𝜎) = 0, for every
𝜎 ∈ 𝑋𝑖 and since 𝑥𝑖 is continuous then 𝑥𝑖 = 0. Then 𝑥𝑖 = 0 ⇒ 𝜑𝑘𝑖(𝑥𝑘) = 0 ⇒
𝜑𝑖 ∘ 𝜑𝑘𝑖(𝑥𝑘) = 0 ⇒ 𝜑𝑘(𝑥𝑘) = 0 ⇒ 𝑥 = 0. This implies that 𝜃 is injective. It
remains to show that for some 𝑖 ≥ 𝑘, 𝑋𝑖 = ∅. We have that 𝐺𝑞

𝑖 is compact from
Tychonoff’s theorem since𝐺𝑖 is compact. So then, 𝑥𝑖(𝐺𝑞

𝑖 ) is compact, because 𝑥𝑖 is
continuous. In addition, the abelian groups 𝐴𝑖 are topological groups equipped with
discrete topology, as it is a discrete 𝐺𝑖-modules. So then 𝑥𝑖(𝐺𝑞

𝑖 ) ⊆ 𝐴𝑖 is a topo-
logical space equipped with discrete topology. We assume that 𝑥𝑖(𝐺𝑞

𝑖 ) is infinite.
Then 𝑥𝑖(𝐺𝑞

𝑖 ) is covered of infinite number of singleton sets. But then there isn’t a
finite subcover. This means that 𝑥𝑖(𝐺𝑞

𝑖 ) isn’t compact. But this is impossible, since
𝑥𝑖(𝐺𝑞

𝑖 ) is compact. Thus, 𝑥𝑖(𝐺𝑞
𝑖 ) is finite set and then 𝑥𝑖 takes only finite number of

values. Hence 𝑋𝑖 is finite and therefore it is compact. On the other hand 𝑖 ≥ 𝑗 ≥ 𝑘
implies that

𝜋𝑖𝑗(𝑋𝑖) ⊆ 𝑋𝑗

Indeed, if 𝜎𝑖 ∈ 𝑋𝑖, then 𝑥𝑖(𝜎𝑖) ≠ 0. In our case 𝑗 ≤ 𝑖, so 𝜑𝑗𝑖(𝑥𝑗) = 𝑥𝑖. Thus,
𝑥𝑖(𝜎𝑖) ≠ 0 ⇒ 𝜑𝑗𝑖 ∘ 𝑥𝑗(𝜎𝑖) ≠ 0 ⇒ (𝜆𝑗𝑖 ∘ 𝑥𝑗 ∘ 𝜋𝑗𝑖)(𝜎𝑖) ≠ 0 and since 𝜆𝑗𝑖 is
a homomorphism then 𝑥𝑗 ∘ 𝜋𝑗𝑖(𝜎𝑖) ≠ 0. This means that 𝜋𝑗𝑖(𝜎𝑖) ∈ 𝑋𝑗, that is
𝜋𝑗𝑖(𝑋𝑖) ⊆ 𝑋𝑗.
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𝑋𝑗 𝑋𝑘

𝑋𝑖

𝜋𝑘𝑗

𝜋𝑗𝑖 𝜋𝑘𝑖

and 𝜋𝑘𝑗 ∘ 𝜋𝑗𝑖(𝜎𝑖) = 𝜋𝑘𝑗(𝜎𝑗) = 𝜎𝑘 = 𝜋𝑘𝑖(𝜎𝑖).
Therefore,

{(𝑋𝑗, 𝜋𝑖𝑗), 𝑖 ≥ 𝑗 ≥ 𝑘, 𝑖, 𝑗 ≥ 𝑘}
form a projective system of compact spaces. If 𝜎 = (𝜎1, … , 𝜎𝑞) ∈ lim−→

𝑖≥𝑘
𝑋𝑖 ⊆ 𝐺𝑞,

then it is clear that (𝜃(𝑥))(𝜎) ≠ 0. Indeed,

(𝜃(𝑥))(𝜎) = (𝜃(𝜑𝑘(𝑥𝑘)))(𝜎) = (𝑓𝑘(𝑥𝑘))(𝜎) =
(𝑓𝑘(𝑥𝑘))(𝜎) = ((𝑓𝑖 ∘ 𝜑𝑘𝑖)(𝑥𝑘)(𝜎) = (𝑓𝑖(𝑥𝑖))(𝜎) =
((𝜋𝑖, 𝜆𝑖)∗

𝑞(𝑥𝑖))(𝜎) = (𝜆𝑖 ∘ 𝑥𝑖 ∘ 𝜋𝑖)(𝜎) =
(𝜆𝑖 ∘ 𝑥𝑖)(𝜎𝑖)

But𝑥𝑖(𝜎𝑖) ≠ 0 and𝜆𝑖 is a homomorphism, then (𝜆𝑖∘𝑥𝑖)(𝜎𝑖) ≠ 0. So (𝜃(𝑥))(𝜎) ≠ 0.
But from our hypothesis we have that 𝜃(𝑥) = 0. Hence, lim−→

𝑖≥𝑘
𝑋𝑖 = ∅. Therefore,

according to theorem 2.2.5 there exists 𝑖 ≥ 𝑘 such that 𝑋𝑖 = ∅. It remains to show
that 𝜃 is surjective. Let 𝑥 ∈ 𝐶𝑞(𝐺, 𝐴), that is 𝑥 ∶ 𝐺𝑞 → 𝐴 is continuous. We will
prove that there exists 𝑦 ∈ lim−→𝑖∈𝐼

𝐶𝑞(𝐺𝑖, 𝐴𝑖) such that 𝜃(𝑦) = 𝑥. We have known

from proposition 2.4.4

lim−→𝑖∈𝐼
𝐶𝑞(𝐺𝑖, 𝐴𝑖) = ⋃

𝑖∈𝐼
𝜑𝑖(𝐶𝑞(𝐺𝑖, 𝐴𝑖))

Thus there is 𝑘 ∈ 𝐼 such that 𝜑𝑘(𝑥𝑘) = 𝑦 with 𝑥𝑘 ∈ 𝐶𝑞(𝐺𝑘, 𝐴𝑘). For 𝑖 ≥ 𝑘 let
𝑥𝑖 = 𝜑𝑘𝑖(𝑥𝑘), then 𝜃(𝑦) = 𝜃(𝜑𝑘(𝑥𝑘)) = 𝑓𝑘(𝑥𝑘) = 𝑓𝑖 ∘ 𝜑𝑘𝑖(𝑥𝑘) = 𝑓𝑖(𝑥𝑖) =
(𝜋𝑖, 𝜆𝑖)∗

𝑞(𝑥𝑖) = 𝜆𝑖 ∘ 𝑥𝑖 ∘ 𝜋𝑖. So it suffices to show that there exists a continuous
map 𝑥𝑖 ∈ 𝐶𝑞(𝐺𝑖, 𝐴𝑖) such that 𝑥 = 𝜆𝑖 ∘ 𝑥𝑖 ∘ 𝜋𝑖 for some 𝑖 ∈ 𝐼 . We have that 𝐺𝑞

is compact from Tychonoff’s theorem since 𝐺 is compact. Also, 𝑥(𝐺𝑞) is compact,
because 𝑥 is continuous. Thus, 𝑥(𝐺𝑞) is finite set, since 𝐴 is a discrete 𝐺-module,
and then 𝑥𝑖 takes only finite number of values, say

𝑥(𝐺𝑞) = {𝑎1, … , 𝑎𝑛} ⊆ 𝐴

Then there exists 𝑗 ∈ 𝐼 such that 𝜆𝑗(𝐴𝑗) = 𝑥(𝐺𝑞). Moreover, we have that 𝑥 ∶
𝐺𝑞 → 𝐴 is continuous and 𝐴 is a discrete 𝐺-module, then 𝑥 is locally constant
according to proposition 1.1.10. This means that for each 𝜎 ∈ 𝐺𝑞 there is an open
neighborhood 𝑈 of 𝜎 such that 𝑥 is constant on 𝑈 . This implies that for each 𝑔 ∈ 𝐺
there exists an open neighborhood 𝑈 ′ of 𝑔 in 𝐺 such that 𝑥 is constant on 𝑈 ′𝑞 of
𝐺𝑞. So for 𝑔 = 1 there exists an open neighborhood 𝑈 ′ of 1 in 𝐺 such that 𝑥 is
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constant on 𝑈 ′𝑞 of 𝐺𝑞. But 𝐺 is a profinite group and from lemma 2.3.6 there exists
an open normal subgroup 𝑈𝑙 of 𝐺 with 𝑈𝑙 ⊆ 𝑈 ′ such that 𝑥 is constant on 𝑈𝑞

𝑙 of
𝐺𝑞. Additionally, 𝑥 is constant on the cosets of 𝑈𝑞

𝑙 in 𝐺𝑞. Also, the set

{𝜋−1
𝑘 (𝑈𝑘), 𝑤ℎ𝑒𝑟𝑒𝑈𝑘 ⊴ 𝐺𝑘, 𝑈𝑘 = 𝑜𝑝𝑒𝑛, ∀𝑘 ∈ 𝐼}

form a basis of open neighborhood of 1 in𝐺. Hence, there exists𝑈𝑖 ⊴ 𝐺𝑖, 𝑈𝑖 𝑖𝑠 𝑜𝑝𝑒𝑛
with 𝜋−1

𝑖 (𝑈𝑖) = 𝑈 ⊆ 𝑈𝑙 for some 𝑖. So we can define 𝐺/𝑈 and (𝐺/𝑈)𝑞 as well.
We may assume that 𝑖 ≥ 𝑗. Then 𝑥 = ̄𝑥 ∘ 𝑝, where 𝑝 ∶ 𝐺𝑞 → 𝐺𝑞/𝑈𝑞 is the nat-
ural projection and ̄𝑥 ∶ 𝐺𝑞/𝑈𝑞 → 𝐴 is defined by ̄𝑥(𝜎𝑈𝑞) = 𝑥(𝜎). Clearly, ̄𝑥 is
well defined. Indeed, let 𝜎𝑈𝑞 = 𝜏𝑈𝑞 ⇒ 𝜎𝜏−1 ∈ 𝑈𝑞. But 𝑈𝑞 ⊆ 𝑈𝑞

𝑙 ⊆ 𝑈 ′𝑞, since
𝑈 ⊆ 𝑈𝑙 ⊆ 𝑈 ′. So 𝑥(𝑔′) = 𝑥(1) for every 𝑔′ ∈ 𝑈 ′𝑞 and then 𝑥(𝑔) = 𝑥(1) for every
𝑔 ∈ 𝑈𝑞. Thus,

𝑥(𝜎𝜏−1) = 𝑥(1) ⇔ 𝑥(𝜎)𝑥(𝜏) = 1 ⇔
𝑥(𝜎) = 𝑥(𝜏) ⇔ ̄𝑥(𝜎𝑈𝑞) = ̄𝑥(𝜏𝑈𝑞)

The homomorphism 𝜋𝑖 induce the homomorphism 𝑤𝑞
𝑖 ∶ 𝐺𝑞 → 𝐺𝑞

𝑖 /𝑈𝑞
𝑖 where

𝑤𝑞
𝑖 (𝑔1, … , 𝑔𝑞) = (𝜋𝑖(𝑔1), … , 𝜋𝑖(𝑔𝑞)𝑈𝑞

𝑖 . Then,

𝐾𝑒𝑟𝑤𝑞
𝑖 = {(𝑔1, … , 𝑔𝑞) ∈ 𝐺𝑞 ∶ (𝜋𝑖(𝑔1), … , 𝜋𝑖(𝑔𝑞)) ∈ 𝑈𝑞

𝑖 }
= {(𝑔1, … , 𝑔𝑞) ∈ 𝐺𝑞 ∶ (𝑔1, … , 𝑔𝑞) ∈ (𝜋−1

𝑖 (𝑈𝑖))𝑞 = 𝑈𝑞} = 𝑈𝑞

So then induced a homomorphism

𝜋′
𝑖 ∶ 𝐺𝑞/𝑈𝑞 → 𝐺𝑞

𝑖 /𝑈𝑞
𝑖

where 𝜋′
𝑖((𝑔1, … , 𝑔𝑞)𝑈𝑞) = (𝜋𝑖(𝑔1), … , 𝜋𝑖(𝑔𝑞))𝑈𝑞

𝑖 . In particular, 𝜋′
𝑖 is injective,

since

𝐾𝑒𝑟𝜋′
𝑖 = {(𝑔1, … , 𝑔𝑞)𝑈𝑞 ∈ 𝐺𝑞/𝑈𝑞 ∶ (𝜋𝑖(𝑔1), … , 𝜋𝑖(𝑔𝑞)) ∈ 𝑈𝑞

𝑖 }
= {(𝑔1, … , 𝑔𝑞)𝑈𝑞 ∈ 𝐺𝑞/𝑈𝑞 ∶ (𝑔1, … , 𝑔𝑞) ∈ (𝜋−1

𝑖 (𝑈𝑖))𝑞 = 𝑈𝑞} = 𝑈𝑞

Let 𝑥𝑖 ∶ (𝐺𝑖/𝑈𝑖)𝑞 → 𝐴𝑖 such that 𝜆𝑖 ∘ 𝑥𝑖 ∘ 𝜋′
𝑖 = 𝑥.

𝐺𝑞/𝑈𝑞 𝜋′
𝑖⟶ 𝐺𝑞

𝑖 /𝑈𝑞
𝑖

𝑥𝑖⟶ 𝐴𝑖
𝜆𝑖⟶ 𝐴

�̄�

We define 𝑥𝑖 = ̄𝑥 ∘ 𝜋𝑖, where 𝜋𝑖 ∶ 𝐺𝑞
𝑖 → 𝐺𝑞

𝑖 /𝑈𝑞
𝑖 is the natural projection.

𝐺𝑞
𝑖

𝑝𝑖⟶ 𝐺𝑞
𝑖 /𝑈𝑞

𝑖
�̄�𝑖⟶ 𝐴𝑖

𝑥𝑖

Clearly, 𝑥𝑖 is continuous, since ̄𝑥𝑖, 𝑝𝑖 are continuous. Moreover, 𝑥 = ̄𝑥 ∘ 𝑝 = 𝜆𝑖 ∘
̄𝑥𝑖 ∘ 𝜋′

𝑖 ∘ 𝑝 and 𝜆𝑖 ∘ 𝑥𝑖 ∘ 𝜋𝑖 = 𝜆𝑖 ∘ ̄𝑥𝑖 ∘ 𝑝𝑖 ∘ 𝜋𝑖.

𝐺𝑞 𝜋𝑖⟶ 𝐺𝑞
𝑖

�̄�𝑖⟶ 𝐺𝑞
𝑖 /𝑈𝑞

𝑖 𝑎𝑛𝑑 𝐺𝑞 𝑝
⟶ 𝐺𝑞

𝑖
𝜋′

𝑖⟶ 𝐺𝑞
𝑖 /𝑈𝑞

𝑖
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and it is clear that 𝜋′
𝑖 ∘ 𝑝 = 𝑝𝑖 ∘ 𝜋𝑖, since

𝜋′
𝑖(𝑝(𝑔1, … , 𝑔𝑞)) = 𝜋′

𝑖((𝑔1, … , 𝑔𝑞)𝑈𝑞) = (𝜋𝑖(𝑔1), … , 𝜋𝑖(𝑔𝑞))𝑈𝑞
𝑖

𝑝𝑖(𝜋𝑖(𝑔1, … , 𝑔𝑞)) = 𝑝𝑖(𝜋𝑖(𝑔1), … , 𝜋𝑖(𝑔𝑞)) = (𝜋𝑖(𝑔1), … , 𝜋𝑖(𝑔𝑞))𝑈𝑞
𝑖

Therefore 𝑥 = 𝜆𝑖 ∘ 𝑥𝑖 ∘ 𝜋𝑖.

Corollary 4.4.3. Let 𝐺 be a profinite group and 𝐴 be a discrete 𝐺-module. Then

ℋ𝑞(𝐺, 𝐴) = lim−→
𝑈∈𝒰

ℋ𝑞(𝐺/𝑈, 𝐴𝑈)

where 𝒰 is the set of all open normal subgroups of 𝐺 and 𝐴𝑈 = {𝑏 ∈ 𝐴|𝜎𝑏 =
𝑏, ∀𝜎 ∈ 𝑈}.
Proof. We have proved in theorem 2.3.9 that

𝐺 = lim←−
𝑈∈𝒰

𝐺/𝑈

Since 𝐴 is a discrete 𝐺-module then

𝐴 = ⋃
𝑈∈𝒰

𝐴𝑈 = lim−→
𝑈∈𝒰

𝐴𝑈

Also, the 𝐴𝑈 is a 𝐺/𝑈 − 𝑚𝑜𝑑𝑢𝑙𝑒 with the action
𝐺/𝑈 × 𝐴𝑈 → 𝐴𝑈

(𝑔𝑈, 𝑎) ↦ (𝑔𝑈)𝑎 = 𝑔𝑎, 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴𝑈

Clearly, (𝐴𝑈 , +) is an abelian group and also (𝑔𝑈)(𝑎 + 𝑏) = 𝑔(𝑎 + 𝑏) = 𝑔𝑎 + 𝑔𝑏 =
(𝑔𝑈)𝑎 + (𝑔𝑈)𝑏, (𝑔𝑖𝑈𝑔2𝑈)𝑎 = (𝑔1𝑔2𝑈)𝑎 = 𝑔1𝑔2𝑎 = 𝑔1(𝑔2𝑎) = 𝑔1((𝑔2𝑈)𝑎) =
(𝑔1𝑈)((𝑔2𝑈)𝑎) and (𝑈)𝑎 = 𝑎. Thus, 𝐴𝑈 is a unitary 𝐺/𝑈–𝑚𝑜𝑑𝑢𝑙𝑒. In addition,
the action is continuous by construction. So then 𝐴𝑈 is a discrete 𝐺/𝑈 -module.
Finally, it is plain that if 𝑈 ⩽ 𝑉 with 𝑈, 𝑉 are open normal subgroups of 𝐺 and 𝐴
a discrete 𝐺-module, then there exists a normal inclusion of abelian groups

𝑖𝑛𝑐𝑈,𝑉 ∶ 𝐴𝑉 ↪ 𝐴𝑈

Moreover, the 𝑝𝑈,𝑉 ∶ 𝐺/𝑈 → 𝐺/𝑉 , where 𝑔𝑈 ↦ 𝑔𝑉 , and the inclusion 𝑖𝑛𝑐𝑈,𝑉
are compatible maps. Indeed, let 𝑔𝑈 ∈ 𝐺/𝑈 and 𝑎 ∈ 𝐴𝑉 then

𝑖𝑛𝑐𝑈,𝑉 (𝑝𝑈,𝑉 (𝑔𝑈)𝑎) = 𝑖𝑛𝑐𝑈,𝑉 ((𝑔𝑉 )𝑎) = (𝑔𝑉 )𝑎 =
𝑔𝑎 = (𝑔𝑈)𝑎 = (𝑔𝑈)𝑖𝑛𝑐𝑈,𝑉 (𝑎)

Therefore, according to proposition 4.4.2 we have that for each 𝑞 ≥ 0

ℋ𝑞(𝐺, 𝐴) = lim−→
𝑈∈𝒰

ℋ𝑞(𝐺/𝑈, 𝐴𝑈)



4.5 Special Mappings 111

4.5 Special Mappings
In this sectionwewill study some special homomorphisms of cohomology groups,

which they connect the cohomology group of a group𝐺with the cohomology group
of a subgroup of 𝐺.

; The Inflation

Let 𝑁 be a closed normal subgroup of a profinite group 𝐺, and let also 𝐴 be a
discrete 𝐺-module. We have proved that the action of 𝐺/𝑁 in 𝐴𝑁

𝐺/𝑁 × 𝐴𝑁 → 𝐴𝑁

(𝜎𝑁, 𝑎) ↦ 𝜎𝑁 = 𝜎𝑎, 𝜎 ∈ 𝐺, 𝑎 ∈ 𝐴𝑁

is continuous. Thus, 𝐴𝑁 is a discrete 𝐺/𝑁 -module. It is plain that the projection
𝑝𝑁 ∶ 𝐺 → 𝐺/𝑁, 𝑔 ↦ 𝑔𝑁 and the inclusion 𝑖𝑁 ; 𝐴𝑁 → 𝐴 are compatible
maps. Indeed, 𝐴 is a discrete 𝐺-module, 𝐴𝑁 is a discrete 𝐺/𝑁 -module, 𝑖𝑁 is a
continuous homomorphism and 𝑖𝑁(𝑝𝑁(𝑔)𝑎) = 𝑔𝑖𝑁(𝑎) for 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴𝑁 , since
𝑖𝑁(𝑝𝑁(𝑔)𝑎) = 𝑖𝑁((𝑔𝑁)𝑎) = 𝑖𝑁(𝑔𝑎) = 𝑔𝑎 = 𝑔𝑖𝑁(𝑎). So then according to propo-
sition 4.3.2 we have that for each 𝑞 ≥ 0 induced a homomorphism

(𝑝𝑁 , 𝑖𝑁)∗
𝑞 ∶ ℋ𝑞(𝐺/𝑁, 𝐴𝑁) → ℋ𝑞(𝐺, 𝐴)

that is called Inflation and is denoted by

𝐼𝑛𝑓 = 𝐼𝑛𝑓𝐺/𝑁
𝐺

That is,
𝐼𝑛𝑓 = 𝐼𝑛𝑓𝐺/𝑁

𝐺 ∶ ℋ𝑞(𝐺/𝑁, 𝐴𝑁) → ℋ𝑞(𝐺, 𝐴)
In particular for 𝑞 = 0:

𝐼𝑛𝑓 = 𝐼𝑛𝑓𝐺/𝑁
𝐺 ∶ ℋ0(𝐺/𝑁, 𝐴𝑁) → ℋ0(𝐺, 𝐴)

is the identity map, because ℋ0(𝐺, 𝐴) = 𝐴𝐺 and ℋ0(𝐺/𝑁, 𝐴𝑁) = 𝐴𝐺.

We assume that 𝑞 > 0 and 𝑥 ∈ ̄𝑥 ∈ ℋ𝑞(𝐺/𝑁, 𝐴𝑁), this means that 𝑥 ∶ (𝐺/𝑁)𝑞 →
𝐴𝑁 continuous 𝑞−𝑐𝑜𝑐𝑦𝑐𝑙𝑒. Then the 𝐼𝑛𝑓( ̄𝑥) has as one of its representatives a con-
tinuous 𝑞 − 𝑐𝑜𝑐𝑦𝑐𝑙𝑒 𝑦 ∶ 𝐺𝑞 → 𝐴 satisfying that 𝑦(𝜎1, … , 𝜎𝑞) = 𝑥(𝜎1𝑁, … , 𝜎𝑞𝑁).

Proposition 4.5.1. If 𝑓 ∶ 𝐺 → 𝐺1 and 𝑔 ∶ 𝐺1 → 𝐺2 are surjective continuous
homomorphisms, then

𝐼𝑛𝑓𝐺1
𝐺 ∘ 𝐼𝑛𝑓𝐺2

𝐺1
= 𝐼𝑛𝑓𝐺2

𝐺

Proof.

𝐺
𝑓

⟶ 𝐺1
𝑔

⟶ 𝐺2
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where 𝐺1 = 𝐺/𝑁 and 𝐺2 = 𝐺/𝐻 , 𝑁 ⊆ 𝐻 .

𝐼𝑛𝑓𝐺1
𝐺 ∶ ℋ𝑞(𝐺/𝑁, 𝐴𝑁) → ℋ𝑞(𝐺, 𝐴)

𝐼𝑛𝑓𝐺2
𝐺1

∶ ℋ𝑞(𝐺/𝐻, 𝐴𝐻) → ℋ𝑞(𝐺/𝑁, 𝐴𝑁)

𝐼𝑛𝑓𝐺2
𝐺 ∶ ℋ𝑞(𝐺/𝐻, 𝐴𝐻) → ℋ𝑞(𝐺, 𝐴)

Also, 𝐴𝐻
𝑖𝐻,𝑁
↪ 𝐴𝑁 𝑖𝑁↪ 𝐴. Thus, from proposition 4.3.3 we have that

(𝑔 ∘ 𝑓, 𝑖𝑁 ∘ 𝑖𝐻,𝑁)∗
𝑞 = (𝑓, 𝑖𝑁)∗

𝑞 ∘ (𝑔, 𝑖𝐻,𝑁)∗
𝑞 ⇒

𝐼𝑛𝑓𝐺1
𝐺 ∘ 𝐼𝑛𝑓𝐺2

𝐺1
= 𝐼𝑛𝑓𝐺2

𝐺

Proposition 4.5.2. Let 𝑁 be a closed normal subgroup of a profinite group 𝐺. Let
also 𝑓 ∶ 𝐴 → 𝐵 be a 𝐺-homomorphism. Then 𝑓 induces a 𝐺/𝑁 -homomorphism

𝑓𝑁 ∶ 𝐴𝑁 → 𝐵𝑁

and the following diagram

ℋ𝑞(𝐺/𝑁, 𝐴𝑁) ℋ𝑞(𝐺/𝑁, 𝐵𝑁)

ℋ𝑞(𝐺, 𝐴) ℋ𝑞(𝐺, 𝐵)

(𝑖𝑑,𝑓𝑁)∗
𝑞

𝐼𝑛𝑓 𝐼𝑛𝑓

(𝑖𝑑,𝑓)∗
𝑞

commutes. That is 𝐼𝑛𝑓 is amorphism of the functorsℋ𝑞(𝐺/𝑁, ∗𝑁) andℋ𝑞(𝐺/𝑁, ∗)
on the functor of discrete 𝐺-modules, for every 𝑞 ∈ ℤ.
Proof. We have that 𝑓𝑁 ∶ 𝐴𝑁 → 𝐵𝑁 , 𝑓𝑁(𝑎) = 𝑓(𝑎), for 𝑎 ∈ 𝐴 and then
𝑓𝑁((𝑔𝑁)𝑎) = 𝑓𝑁(𝑔𝑎) = 𝑓(𝑔𝑎) = 𝑔𝑓(𝑎) = 𝑔𝑓𝑁(𝑎) = (𝑔𝑁)𝑓𝑁(𝑎). Thus, 𝑓𝑁 is
a 𝐺/𝑁 -homomorphism. It remains to show that 𝐼𝑛𝑓 ∘ (𝑖𝑑, 𝑓𝑁)∗

𝑞 = (𝑖𝑑, 𝑓)∗
𝑞 ∘ 𝐼𝑛𝑓 .

Indeed, let 𝑔 ∈ 𝐶𝑞(𝐺/𝑁, 𝐴𝑁), then 𝐼𝑛𝑓 ∘ (𝑖𝑑, 𝑓𝑁)∗
𝑞([𝑔]) = 𝐼𝑛𝑓([𝑓𝑁 ∘ 𝑔 ∘ 𝑖𝑑]) =

𝐼𝑛𝑓([𝑓𝑁 ∘ 𝑔]) = [𝑖𝑁 ∘ 𝑓𝑁 ∘ 𝑔 ∘ 𝑝𝑁 ], since 𝐼𝑛𝑓 = (𝑝𝑁 , 𝑖𝑁)∗
𝑞, with 𝑝𝑁 ∶ 𝐺 → 𝐺/𝑁 ,

𝑔 ↦ 𝑔𝑁 and 𝑖𝑁 ∶ 𝐵𝑁 ↪ 𝐵, 𝑏 ↦ 𝑏. Also, 𝐼𝑛𝑓 = (𝑝𝑁 , 𝑖′
𝑁)∗

𝑞, where 𝑝𝑁 ∶ 𝐺 →
𝐺/𝑁 , 𝑖′

𝑁 ∶ 𝐴𝑁 ↪ 𝐴, so then (𝑖𝑑, 𝑓)∗
𝑞 ∘ 𝐼𝑛𝑓([𝑔]) = (𝑖𝑑, 𝑓)∗

𝑞([𝑖′
𝑁 ∘ 𝑔 ∘ 𝑝𝑁 ]) =

[𝑓 ∘ 𝑖𝑁 ∘ 𝑔 ∘ 𝑝𝑁 ∘ 𝑖𝑑] = [𝑓 ∘ 𝑖′
𝑁 ∘ 𝑔 ∘ 𝑝𝑁 ].

𝐴𝑁 𝐵𝑁

𝐴 𝐵

𝑓𝑁

𝑖′
𝑁 𝑖𝑁

𝑓

But 𝑖𝑁 ∘𝑓𝑁(𝑎) = 𝑓𝑁(𝑎) = 𝑓(𝑎) = 𝑖′
𝑁(𝑎) for every 𝑎 ∈ 𝐴𝑛. So 𝐼𝑛𝑓∘(𝑖𝑑, 𝑓𝑁)∗

𝑞([𝑔])
= (𝑖𝑑, 𝑓)∗

𝑞 ∘ 𝐼𝑛𝑓([𝑔]).
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Proposition 4.5.3. Let 0 ⟶ 𝐴 𝑖⟶ 𝐵
𝑗

⟶ 𝐶 ⟶ 0 be a short exact sequence of

discrete 𝐺-modules and we assume that 0 ⟶ 𝐴𝑛 𝑖𝑁
⟶ 𝐵𝑁 𝑗𝑁

⟶ 𝐶𝑁 ⟶ 0 is also
exact. Then the following diagram

ℋ𝑞(𝐺/𝑁, 𝐶𝑁) ℋ𝑞+1(𝐺/𝑁, 𝐴𝑁)

ℋ𝑞(𝐺, 𝐶) ℋ𝑞+1(𝐺, 𝐴)

𝛿

𝐼𝑛𝑓 𝐼𝑛𝑓

𝛿

commutes of every 𝑞 ≥ 0, where 𝛿 is the connecting homomorphism.

; The Restriction

Let 𝑆 be a closed subgroup of a profinite group 𝐺. For each discrete 𝐺-module
𝐴 we have that 𝐴𝐺 ⊆ 𝐴𝑆. This inclusion defines a homomorphism

ℋ0(𝐺, 𝐴) → ℋ0(𝑆, 𝐴)

and this extends to a sequence of homomorphisms

𝑅𝑒𝑠 ∶= 𝑅𝑒𝑠𝐺
𝑆 ∶ ℋ𝑞(𝐺, 𝐴) → ℋ𝑞(𝑆, 𝐴),′ , ∀𝑞 ≥ 0

that are called restrictions1.

We can describe these homomorphisms in terms of cochains as follows. Let 𝑥 ∶
𝐺𝑞 → 𝐴 be a continuous 𝑞-cocycle, then a representative continuous 𝑞 − 𝑐𝑜𝑐𝑦𝑐𝑙𝑒
𝑦 ∶, 𝑆𝑞 → 𝐴 of 𝑅𝑒𝑥( ̄𝑥) ∈ ℋ𝑞(𝑆, 𝐴) given by

𝑦(𝜎1, 𝜎2, … , 𝜎𝑞) = 𝑥(𝜎1, 𝜎2, … , 𝜎𝑞) ∈ 𝐴, 𝜎1, … , 𝜎𝑞 ∈ 𝑆

We notice that if 0 ⟶ 𝐴 ⟶ 𝐵 ⟶ 𝐶 ⟶ 0 is an exact sequence of discrete
𝐺 − 𝑚𝑜𝑑𝑢𝑙𝑒𝑠, then it is still exact when it considered as a sequence of discrete
𝑆 − 𝑚𝑜𝑑𝑢𝑙𝑒𝑠. Thus, by definition of restriction 𝑅𝑒𝑠 we obtain that the following
diagram

⋯ ℋ𝑞−1(𝐺, 𝐴) ℋ𝑞(𝐺, 𝐴) ℋ𝑞(𝐺, 𝐵) ℋ𝑞(𝐺, 𝐶) ⋯

⋯ ℋ𝑞−1(𝑆, 𝐶) ℋ𝑞(𝑆, 𝐴) ℋ𝑞(𝑆, 𝐵) ℋ𝑞(𝑆, 𝐶) ⋯

𝛿

𝑅𝑒𝑠 𝑅𝑒𝑠 𝑅𝑒𝑠 𝑅𝑒𝑠
𝛿

is commutative with exact rows.
1𝑅𝑒𝑠 = (𝑖𝑛𝑐𝑙, 𝑖𝑑)∗

𝑞, where 𝑖𝑛𝑐𝑙 ∶ 𝑆 ↪ 𝐺 and 𝑖𝑑 ∶ 𝐴 → 𝐴.
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Proposition 4.5.4. Let 𝑇 ⊆ 𝑆 ⊆ 𝐺 be profinite groups. Then

𝑅𝑒𝑠𝑆
𝑇 ∘ 𝑅𝑒𝑠𝐺

𝑆 = 𝑅𝑒𝑠𝐺
𝑇

and 𝑇 ⊆ 𝑆 closed subgroups of 𝐺.

Proof.
𝑅𝑒𝑠𝑆

𝑇 ∶ ℋ𝑞(𝑆, 𝐴) → ℋ𝑞(𝑇 , 𝐴)
𝑅𝑒𝑠𝐺

𝑆 ∶ ℋ𝑞(𝐺, 𝐴) → ℋ𝑞(𝑆, 𝐴)
𝑅𝑒𝑠𝐺

𝑇 ∶ ℋ𝑞(𝐺, 𝐴) → ℋ𝑞(𝑇 , 𝐴)

𝑆
𝑖1↪ 𝐺, 𝐴 𝑖𝑑→ 𝐴,

𝑇
𝑖2↪ 𝐺, 𝐴 𝑖𝑑→ 𝐴,

𝑇
𝑖3↪ 𝑆, 𝐴 𝑖𝑑→ 𝐴

The maps (𝑖1, 𝑖𝑑), (𝑖3, 𝑖𝑑) are compatible maps. Thus according to proposition 4.3.3
we have that

(𝑖1 ∘ 𝑖3, 𝑖𝑑 ∘ 𝑖𝑑)∗
𝑞 = (𝑖3, 𝑖𝑑)∗

𝑞 ∘ (𝑖1, 𝑖𝑑)∗
𝑞

𝑅𝑒𝑠𝑆
𝑇 ∘ 𝑅𝑒𝑠𝐺

𝑆 = 𝑅𝑒𝑠𝐺
𝑇

.



Chapter 5

Some Applications of Cohomology

5.1 Group Extensions
The extension problem in group theory is the classification of all extension groups

of a given group A by a given group G. In this section we study the extension prob-
lem for the case of abelian groups and their connection with cohomology.

Let 𝐴 be an abelian multiplicative group and𝐺 be an arbitrary multiplicative group.
Every exact sequence

1 → 𝐴 𝑖→ 𝑈
𝑗

→ 𝐺 → 1 (5.1)

will be called group extension of A by G. Since 𝑖 is an inclusion map then 𝑖(𝐴) ≅
𝐴 ⩽ 𝑈 , but 𝑖(𝐴) = 𝐾𝑒𝑟𝑗 ⊴ 𝑈 , so then 𝐴 ⊴ 𝑈 and 𝑈/𝐴 ≅ 𝐺. We would like to
determine the possible solutions of this problem, that is, we want to find all group
extensions 𝑈 of 𝐴 such that 𝑈/𝐴 ≅ 𝐺.

Now we consider the map 𝑝 ∶ 𝐺 → 𝑈 satisfying that for every 𝑔 ∈ 𝐺we choose
a representative 𝑢𝑔 ∈ 𝑈 so that 𝑗(𝑢𝑔) = 𝑔, that is 𝑗 ∘ 𝑝 = 1𝐺. The set

{𝑢𝑔 | 𝑔 ∈ 𝐺}

will be called a complete system of representatives for 𝐺 in 𝑈 (or section for 𝐺
in 𝑈 ). (Of course, it is really the map 𝑝 ∶ 𝐺 → 𝑈 , where 𝑔 ↦ 𝑢𝑔 which should be
called section). We have that

𝑗(𝑢𝑔𝑢𝜏) = 𝑗(𝑢𝑔)𝑗(𝑢𝜏) = 𝑔𝜏 = 𝑗(𝑢𝑔𝜏) ⇒ 𝑗(𝑢𝑔𝑢𝜏) = 𝑗(𝑢𝑔𝜏)
⇒ 𝑗(𝑢𝑔𝑢𝜏𝑢−1

𝑔𝜏 ) = 1 ⇒ 𝑢𝑔𝑢𝜏𝑢−1
𝑔𝜏 ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖

Thus there exists unique1 𝑎𝑔,𝜏 ∈ 𝐴 such that 𝑢𝑔𝑢𝜏𝑢−1
𝑔𝜏 = 𝑎𝑔,𝜏 , which implies that

𝑢𝑔𝑢𝜏 = 𝑎𝑔,𝜏𝑢𝑔𝜏 , ∀𝑔, 𝜏 ∈ 𝐺 (5.2)

1Since 𝑖 is injective.
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Clearly, {𝑎𝑔,𝜏 | 𝑔, 𝜏 ∈ 𝐺} is a standard 2-cochain of 𝐺 in 𝐴.

For purposes of simplicity we assume that 𝐴 is an abelian group, because it suf-
fices for our needs. Now, 𝑈 acts on 𝐴 by inner automorphisms, that is 𝑈 × 𝐴 →
𝐴, (𝑢, 𝑎) ↦ 𝑎𝑢 = 𝑢𝑎𝑢−1. Since 𝐴 is abelian then 𝐴 acts trivially on 𝐴, so there is
induced a “natural” action of 𝐺 on 𝐴. In more details we define the action

𝐺 × 𝐴 → 𝐴
(𝑔, 𝑎) ↦ 𝑎𝑔 = 𝑢𝑔𝑎𝑢−1

𝑔 (⋆)
Proposition 5.1.1. The abelian group 𝐴 equipped with the above action becomes a
𝐺-module.

Proof. (𝐴, +) is an abelian group. Also, let 𝑎, 𝑏 ∈ 𝐴 and 𝜎 ∈ 𝐺, then (𝑎𝑏)𝜎 =
𝑢𝜎𝑎𝑏𝑢−1

𝜎 = 𝑢𝜎𝑎𝑢−1
𝜎 𝑢𝜎𝑏𝑢−1

𝜎 = 𝑎𝜎𝑏𝜎. In addition, let 𝑎 ∈ 𝐴 and 𝜎, 𝜏 ∈ 𝐺, then
(𝑎𝜏)𝜎 = (𝑢𝜏𝑎𝑢−1

𝜏 )𝜎 = 𝑢𝜎𝑢𝜏𝑎𝑢−1
𝜏 𝑢−1

𝜎 = 𝑢𝜎𝑢𝜏𝑎(𝑢𝜎𝑢𝜏)−1 5.2= 𝑎𝜎,𝜏𝑢𝜎𝜏𝑎𝑢−1
𝜎𝜏 𝑎−1

𝜎,𝜏 =
𝑎𝜎,𝜏𝑎𝜎𝜏𝑎−1

𝜎,𝜏 = 𝑎𝜎𝜏 . Finally, 𝑎1 = 𝑢1𝑎𝑢−1
1 = 𝑎, since 𝑢1 ∈ 𝐴. Therefore, 𝐴 is a

𝐺-module.

Proposition 5.1.2. This action of 𝐺 on 𝐴 is independent of the choice of represen-
tatives {𝑢𝑔}.
Proof. Let {𝑢𝑔, 𝑔 ∈ 𝐺} be a section of 𝐺 in 𝑈 . Let also {𝑣𝜎 | 𝜎 ∈ 𝐺} be another
section of 𝐺 in 𝑈 . If 𝑔 ∈ 𝐺, then 𝑗(𝑢𝑔) = 𝑔 = 𝑗(𝑣𝑔) ⇒ 𝑗(𝑢𝑔) = 𝑗(𝑣𝑔) ⇒
𝑖(𝑣𝑔𝑢−1

𝑔 ) = 1 ⇒ 𝑣𝑔𝑢−1
𝑔 ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖. So then there exists a unique 𝑎𝜎 ∈ 𝐴 such

that 𝑖(𝑎𝜎) = 𝑣𝑔𝑢−1
𝑔 , but 𝑖(𝐴) ≅ 𝐴 and so 𝑖(𝑎𝑔) = 𝑐𝑔 ∈ 𝐴. Thus, 𝑐𝑔 = 𝑣𝑔𝑢−1

𝑔 ⇒
𝑣𝑔 = 𝑐𝑔𝑢𝑔, with 𝑐𝑔 ∈ 𝐴. Then, 𝑎𝑔 = 𝑣𝑔𝑎𝑣−1

𝑔 = 𝑐𝑔𝑢𝑔𝑎𝑢−1
𝑔 𝑐−1

𝑔 = 𝑢𝑔𝑎𝑢−1
𝑔 , since

𝑐𝑔, 𝑢𝑔𝑎𝑢−1
𝑔 ∈ 𝐴 and 𝐴 is abelian group. Therefore, the action is independent of the

section.

Thus, we can fix a section, say {𝑢𝑔 | 𝑔 ∈ 𝐺}. Then, every 𝑢 ∈ 𝑈 has a unique
expression of the form

𝑢 = 𝑎𝑢𝑔, 𝑤𝑖𝑡ℎ 𝑎 ∈ 𝐴, 𝑔 ∈ 𝐺
which is given by 𝑗(𝑢) = 𝑔 and 𝑎 = 𝑢𝑢−1

𝑔 . Also the action can be written as

𝑎𝑔𝑢𝑔 = 𝑢𝑔𝑎 (5.3)

It follows that themultiplication in𝑈 can be described in terms of themultiplications
in𝐴 and in𝐺, the action of𝐺 on𝐴 and the 2-cochain {𝑎𝑔,𝜏}. Hence, if 𝑢, 𝑣 ∈ 𝑈 then
there exists 𝑎 ∈ 𝐴 such that 𝑢 = 𝑎𝑢𝑔, for some 𝑔 ∈ 𝐺 and there exists 𝛽 ∈ 𝐴 such
that 𝑢 = 𝛽𝑢𝜏 , for some 𝜏 ∈ 𝐺. Then 𝑢𝑣 = 𝑎𝑢𝑔𝛽𝑢𝜏 = 𝑎𝛽𝑔𝑢𝑔𝑢𝜏 = 𝑎𝛽𝑔𝑎𝑔,𝜏𝑢𝑔𝜏 , that
is

𝑢𝑣 = 𝑎𝛽𝑔𝑎𝑔,𝜏𝑢𝑔𝜏
Moreover, associativity in 𝑈 , since 𝑈 is a group, leads to the below equality for
every 𝑔, 𝜏, 𝜌 ∈ 𝐺

(𝑢𝑔𝑢𝜏)𝑢𝜌 = (𝑎𝑔,𝜏𝑢𝑔𝜏)𝑢𝜌 = 𝑎𝑔,𝜏(𝑢𝑔𝜏𝑢𝜌) = 𝑎𝑔,𝜏𝑎𝑔𝜏,𝜌𝑢𝑔𝜏𝜌
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and

𝑢𝑔(𝑢𝜏𝑢𝜌) = 𝑢𝑔(𝑎𝜏,𝜌𝑢𝜏𝜌)𝑢𝑔𝑎𝜏,𝜌𝑢𝜏𝜌 = 𝑎𝑔
𝜏,𝜌𝑢𝑔𝑢𝜏𝜌 = 𝑎𝑔

𝜏,𝜌𝑎𝑔,𝜏𝜌𝑢𝑔𝜏𝜌

Therefore, for every 𝑔, 𝜏, 𝜌 ∈ 𝐺

𝑎𝑔,𝜏𝑎𝑔𝜏,𝜌 = 𝑎𝑔
𝜏,𝜌𝑎𝑔,𝜏𝜌 (5.4)

This formula is the multiplicative form of the factor sets. Thus, {𝑎𝑔,𝜏} is a standard
2-cocycle of 𝐺 in 𝐴.

If now {𝑣𝑔 | 𝑔 ∈ 𝐺} is another section of 𝐺 in 𝑈 , then 𝑣𝑔 = 𝑐𝑔𝑢𝑔, with 𝑐𝑔 ∈ 𝐴.
Additionally, 𝑣𝑔𝑣𝜏 = 𝛽𝑔,𝜏𝑣𝑔𝜏 where {𝛽𝑔,𝜏} is also a standard 2-cocycle of 𝐺 in
𝐴. One may wonder which is the connection between {𝑎𝑔,𝜏} and {𝛽𝑔,𝜏}. From the
equation

𝑣𝑔𝑣𝜏 = (𝑐𝑔𝑢𝑔)(𝑐𝜏𝑢𝜏) = 𝑐𝑔𝑐𝑔
𝜏𝑢𝑔𝑢𝜏 = 𝑐𝑔𝑐𝑔

𝜏𝑎𝑔,𝜏𝑢𝑔𝜏
= 𝑐𝑔𝑐𝑔

𝜏𝑎𝑔,𝜏𝑐−1
𝑔𝜏 𝑣𝑔𝜏 = 𝑐𝑔𝑐𝑔

𝜏𝑐−1
𝑔𝜏 𝑎𝑔,𝜏𝑣𝑔𝜏

This implies that 𝛽𝑔,𝜏𝑣𝑔𝜏 = 𝑐𝑔𝑐𝑔
𝜏𝑐−1

𝑔𝜏 𝑎𝑔,𝜏𝑢𝑔𝜏 and then

𝛽𝑔,𝜏𝑎−1
𝑔,𝜏 = 𝑐𝑔𝑐𝑔

𝜏𝑐−1
𝑔𝜏

Thus, {𝛽𝑔,𝜏𝑎−1
𝑔,𝜏} is a 2-coboundary of 𝐺 in 𝐴, that is

{𝛽𝑔,𝜏𝑎−1
𝑔,𝜏} ∈ ℬ2 ⇔ {𝛽𝑔,𝜏}ℬ2 = 𝑎𝑔,𝜏ℬ2

This means that the cocycles {𝑎𝑔,𝜏} and {𝛽𝑔,𝜏} belong to the same cohomology
class in ℋ2(𝐺, 𝐴). It should be noted that the action of 𝐺 in 𝐴 which used for co-
homology is derived from the short exact sequence (5.1) and is expressed by the
formula (⋆).

We now suppose that 𝐺 is a multiplicative group, finite or infinite, and 𝐴 is a 𝐺-
module with the action

𝐺 × 𝐴 → 𝐴
(𝑔, 𝑎) ↦ 𝑎𝑔

By a solution of the extension problem for the pair (G,A) we mean an exact
sequence of the form (5.1), that is a triple (𝑈, 𝑖, 𝑗) such that the action of 𝐺 on 𝐴
determined by short exact sequence (5.1) and expressed by the formula (⋆) coincides
with the given action of𝐺 on𝐴. Thenwe say that the (𝑈, 𝑖, 𝑗) is an extension of𝐴 by
𝐺. Therefore, we have proved that every extension, (𝑈, 𝑖, 𝑗), of 𝐴 by 𝐺 determines
an element of ℋ2(𝐺, 𝐴).
Our next step is to show that, conversely, an element 𝛼 ∈ ℋ2(𝐺, 𝐴) determines a
solution (𝑈, 𝑖, 𝑗) of the extension problem and such that the associated cohomology
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class in ℋ2(𝐺, 𝐴) is precisely 𝛼 ∈ ℋ2(𝐺, 𝐴). Let now {𝑎𝑔,𝜏} be a 2-cocycle of 𝐺
in 𝐴 which belongs to the class 𝛼 ∈ ℋ2(𝐺, 𝐴). In particular, the equation

𝑎𝑔,𝜏𝑎𝑔𝜏,𝜌 = 𝑎𝑔
𝜏,𝜌𝑎𝑔,𝜏𝜌, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑔, 𝜏, 𝜌 ∈ 𝐺

holds. For 𝑔 = 𝜏 = 1 we have the following formula

𝑎1,𝜌 = 𝑎1,1 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜌 ∈ 𝐺 (5.5)

For 𝜏 = 𝜌 = 1 we have that
𝑎𝑔,1 = 𝑎𝑔

1,1 (5.6)

For 𝜏 = 𝑔−1 = 𝜌−1 we have that

𝑎𝑔,𝑔−1𝑎1,1 = 𝑎𝑔
𝑔−1,𝑔𝑎𝑔

1,1 (5.7)

Now, for every 𝑔 ∈ 𝐺 we choose a formal symbol 𝑢𝑔 and let

𝑈 ∶= {(𝑎, 𝑢𝑔) | 𝑎 ∈ 𝐴, 𝑔 ∈ 𝐺} (5.8)

and we define the multiplication in 𝑈 according to the rule

(𝑎, 𝑢𝑔)(𝛽, 𝑢𝜏) = (𝑎𝛽𝑔𝑎𝑔,𝜏 , 𝑢𝑔,𝜏), 𝑤𝑖𝑡ℎ 𝑎, 𝛽 ∈ 𝐴, 𝑔, 𝜏 ∈ 𝐺 (5.9)

Proposition 5.1.3. The (𝑈, ⋅) is a multiplicative group.
Proof. It is clear that 𝑈 is closed under multiplication, since if (𝑎, 𝑢𝑔), (𝛽, 𝑢𝜏) ∈ 𝑈
then (𝑎, 𝑢𝑔)(𝛽, 𝑢𝜏) = (𝑎𝛽𝑔𝑎𝑔,𝜏 , 𝑢𝑔,𝜏) ∈ 𝑈 . Also, the multiplication in 𝑈 is associa-
tive, since

((𝑎, 𝑢𝑔)(𝛽, 𝑢𝜏))(𝛾, 𝑢𝜌) = (𝑎𝛽𝑔𝑎𝑔,𝜏𝛾𝑔𝜏𝑎𝑔𝜏,𝜌, 𝑢𝑔𝜏𝜌)
and

(𝑎, 𝑢𝑔)((𝛽, 𝑢𝜏)(𝛾, 𝑢𝜌)) = (𝑎(𝛽𝛾𝜏𝑎𝜏,𝜌)𝑔𝑎𝑔,𝜏𝜌, 𝑢𝑔,𝜏,𝜌) = (𝑎𝛽𝑔𝑎𝑔,𝜏𝛾𝑔𝜏𝑎𝑔𝜏,𝜌, 𝑢𝑔𝜏𝜌)

In addition, let (𝑥, 𝑢𝜌) ∈ 𝑈 be a left identity in 𝑈 , then for every 𝑎 ∈ 𝐴 and 𝑔 ∈ 𝐺
we have that (𝑥, 𝑢𝜌)(𝑎, 𝑢𝑔) = (𝑎, 𝑢𝑔) ⇒ (𝑥𝑎𝜌𝑎𝜌,𝑔, 𝑢𝜌𝑔) = (𝑎, 𝑢𝑔), which implies
that 𝑥𝑎𝜌𝑎𝜌,𝑔 = 𝑎 and 𝑢𝜌𝑔 = 𝑢𝑔. So then 𝜌 = 1 and 𝑥𝑎1𝑎1,𝑔 = 𝑎 5.5⇒ 𝑥𝑎𝑎1,1 = 𝑎 ⇒
𝑥 = 𝑎−1

1,1. Thus, (𝑎−1
1,1, 𝑢1) is a left identity. Similarly,we can prove that (𝑎−1

1,1, 𝑢1) is
a right identity. Thus, (𝑎−1

1,1, 𝑢1) is identity of 𝑈 . Finally, given (𝑥, 𝑢𝜌) ∈ 𝑈 then

(𝑎−1
1,1𝑎−1

𝑔−1,𝑔(𝑎𝑔−1)−1, 𝑢𝑔−1)(𝑎, 𝑢𝑔) = (𝑎−1
1,1, 𝑢1)

so then (𝑎−1
1,1𝑎−1

𝑔−1,𝑔(𝑎𝑔−1)−1, 𝑢𝑔−1) is a left inverse of (𝑎, 𝑢𝑔). Similarly, this is and
right inverse. Thus, (𝑎−1

1,1𝑎−1
𝑔−1,𝑔(𝑎𝑔−1)−1, 𝑢𝑔−1) is inverse. Therefore, (𝑈, ⋅) is a mul-

tiplicative group.

Now we define the maps
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𝑖 ∶ 𝐴 → 𝑈
𝑎 ↦ (𝑎𝑎−1

1,1, 𝑢1)
and

𝑗 ∶ 𝑈 → 𝐺
(𝑎, 𝑢𝑔) ↦ 𝑔

Proposition 5.1.4. The sequence

1 → 𝐴 𝑖→ 𝑈
𝑗

→ 𝐺 → 1 (5.10)

is a short exact sequence.

Proof. Firstly, 𝑖 is an monomorphism. It is clear that 𝑖 is a homomorphism. Also,
𝑖(𝑎) = 1𝑢 ⇔ (𝑎𝑎−1

1,1, 𝑢1) = (𝑎−1
1,1, 𝑢1) ⇔ 𝑎 = 1, which means 𝐾𝑒𝑟𝑖 = {1}.So 𝑖

is injective. In addition, 𝑗 is epimorphism. It is clear that 𝑗 is homomorphism, since
𝑗((𝑎, 𝑢𝑔1

)(𝛽, 𝑢𝑔2
)) = 𝑔1𝑔2 = 𝑗(𝑎, 𝑢𝑔1

)𝑗(𝛽, 𝑢𝑔2
) and 𝑗 is surjective by construction,

since 𝑗(𝑎, 𝑢𝑔) = 𝑔. Finally, it remains to show that 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖. Indeed, 𝐾𝑒𝑟𝑗 =
{(𝑎, 𝑢𝑔) ∈ 𝑈 ∶ 𝑗(𝑎, 𝑢𝑔) = 1} = {(𝑎, 𝑢𝑔) ∶ 𝑔 = 1} = {(𝑎, 𝑢1) ∈ 𝑈, 𝑎 ∈ 𝐴} =
{(𝑎𝑎1,1𝑎−1

1,1) ∈ 𝑈, 𝑎 ∈ 𝐴} = 𝐼𝑚𝑖. Therefore the sequence 5.10 is exact.
Proposition 5.1.5. The action of 𝐺 on 𝐴 determined by the short exact sequence
5.10 coincides with the original action, that is

𝑖(𝑎𝑔) = (1, 𝑢𝑔)(𝑎𝑎−1
1,1, 𝑢1)(1, 𝑢𝑔)−1

Proof. We consider {(1, 𝑢𝑔), | 𝑔 ∈ 𝐺} be a section of 𝐺 in 𝑈 . We must also verify
that the 2-cocycle of 𝐺 in 𝐴 determined by this exact sequence coincides with the
one from which the construction started. We must check that

(1, 𝑢𝑔)(1, 𝑢𝜏) = 𝑖(𝑎𝑔,𝜏)(1, 𝑢𝑔𝜏)

Indeed, (1, 𝑢𝑔)(1, 𝑢𝜏) = (𝑎𝑔,𝜏 , 𝑢𝑔𝜏) and 𝑖(𝑎𝑔,𝜏)(1, 𝑢𝑔𝜏) = (𝑎𝑔,𝜏𝑎−1
1,1, 𝑢1)(1, 𝑢𝑔𝜏) =

(𝑎𝑔,𝜏𝑎−1
1,1𝑎1,𝑔𝜏 , 𝑢𝑔𝜏) = (𝑎𝑔,𝜏𝑎−1

1,1𝑎1,1, 𝑢𝑔𝜏) = (𝑎𝑔,𝜏,𝑢𝑔𝜏
). Finally, it remains to show

that 𝑖(𝑎𝑔) = (1, 𝑢𝑔)(𝑎𝑎−1
1,1, 𝑢1)(1, 𝑢𝑔)−1. We have that 𝑖(𝑎𝑔) = (𝑎𝑔𝑎−1

1,1, 𝑢1) and

(1, 𝑢𝑔)(𝑎𝑎−1
1,1, 𝑢1)(1, 𝑢𝑔)−1 = ((𝑎𝑎−1

1,1)𝑔𝑎𝑔,1, 𝑢𝑔)(1, 𝑢𝑔)−1

= (𝑎𝑔(𝑎𝑔
1,1)−1𝑎𝑔,1, 𝑢𝑔)(𝑎−1

1,1𝑎−1
𝑔−1,𝑔, 𝑢𝑔−1)

= (𝑎𝑔(𝑎𝑔
1,1)−1𝑎𝑔,1(𝑎𝑔

1,1)−1(𝑎𝑔
𝑔−1,𝑔)−1𝑎𝑔,𝑔−1, 𝑢1)

5.6= (𝑎𝑔(𝑎𝑔
1,1)−1𝑎𝑔

1,1(𝑎𝑔
1,1𝑎𝑔

𝑔−1,𝑔)−1𝑎𝑔,𝑔−1, 𝑢1)
5.7= (𝑎𝑔(𝑎1,1𝑎𝑔,𝑔−1)−1𝑎𝑔,𝑔−1, 𝑢1)
= (𝑎𝑔𝑎−1

1,1𝑎−1
𝑔,𝑔−1𝑎𝑔,𝑔−1, 𝑢1)

= (𝑎𝑔𝑎−1
1,1, 𝑢1) = 𝑖(𝑎𝑔)
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The foregoing discussion shows that a 2-cocycle {𝑎𝑔,𝜏} belonging to the cohomol-
ogy class 𝛼 ∈ ℋ2(𝐺, 𝐴) leads to an extension (𝑈, 𝑖, 𝑗) of 𝐴 by 𝐺. If we take any
other 2-cocycle {𝑏𝑔,𝜏} belonging to the cohomology class 𝛼 ∈ ℋ2(𝐺, 𝐴) then it
also leads to a solution to extension problem. So it is desirable to compare solu-
tions of the same extension problem and for this reason we are led to the following
definition.

Definition 5.1.6. Let (𝑈, 𝑖, 𝑗) and (𝑈 ′, 𝑖′, 𝑗′) be extensions of 𝐴 by 𝐺. We say that
the extensions (𝑈, 𝑖, 𝑗) and (𝑈 ′, 𝑖′, 𝑗′) are equivalent if there exists a homomor-
phism 𝜑 ∶ 𝑈 → 𝑈 ′ such that the following triangles are commutative, this means
that 𝑗′ ∘ 𝜑 = 𝑗 and 𝜑 ∘ 𝑖 = 𝑖′.

𝑈

1 𝐴 𝐺 1

𝑈 ′

𝑖

𝜑

𝑗

𝑖′ 𝑗′

Remark 5.1.7. If there exists a homomorphism 𝜑 ∶ 𝑈 → 𝑈 ′ as it was described in
the above definition, then 𝜑 is automatically an isomorphism.

Proof. Firstly, it is clear that 𝜑 is an injective, since

𝑢 ∈ 𝐾𝑒𝑟𝜑 ⇔ 𝜑(𝑢) = 1 ⇔ 𝑗′(𝜑(𝑢)) = 𝑗′(1) = 1
⇒ 𝑗(𝑢) = 1 ⇒ 𝑢 ∈ 𝐾𝑒𝑟𝑗 = 𝐼𝑚𝑖

Thus, there exists 𝑎 ∈ 𝐴 such that 𝑖(𝑎) = 𝑢, so then 𝜑(𝑢) = 1 ⇒ 𝜑(𝑖(𝑎)) =
1 ⇒ 𝑖′(𝑎) = 1 and since 𝑖′ is injective then 𝑎 = 1. It remains to show that 𝜑 is
surjective. Let 𝑢′ ∈ 𝑈 ′, then 𝑗′(𝑢′) = 𝑔, 𝑔 ∈ 𝐺. Since 𝑗 is surjective then there
exists 𝑢 ∈ 𝑈 such that 𝑗(𝑢) = 𝑔 ⇒ 𝑗′(𝜑(𝑢)) = 𝑗′(𝑢′) ⇒ 𝑗′(𝜑(𝑢)𝑢′−1) = 1.
This means that 𝜑(𝑢)𝑢′−1 ∈ 𝐾𝑒𝑟𝑗′ = 𝐼𝑚𝑖′, that is there exists 𝑎 ∈ 𝐴 such that
𝑖′(𝑎) = 𝜑(𝑢)𝑢′−1 ⇒ 𝜑(𝑢(𝑖(𝑎))−1) = 𝑢′, where 𝑢(𝑖(𝑎))−1 ∈ 𝑈 . So then 𝜑 is
surjective. Therefore, 𝜑 is isomorphism.

Comment 5.1.8. 𝜑 is called equivalence of (𝑈, 𝑖, 𝑗) and (𝑈 ′, 𝑖′, 𝑗′).

Proposition 5.1.9. Equivalent extensions of𝐴 by𝐺 determine the same cohomology
class 𝛼 ∈ ℋ2(𝐺, 𝐴) (in particular they determine the same cocycle).

Proof. Let (𝑈, 𝑖, 𝑗) and (𝑈 ′, 𝑖′, 𝑗′) be equivalent extensions of𝐴 by𝐺 and𝜑 ∶ 𝑈 →
𝑈 ′ is isomorphism. Let also {𝑢𝑔, 𝑔 ∈ 𝐺} be a section of𝐺 in𝑈 . Then {𝑎𝑔,𝜏}, which
is defined by the formula

𝑢𝑔𝑢𝜏 = 𝑎𝑔,𝜏𝑢𝑔𝜏
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is a 2-cocycle which belonging to 𝛼 ∈ ℋ2(𝐺, 𝐴). We set now 𝑢′
𝑔 ∶= 𝜑(𝑢𝑔). Then

𝑗′(𝑢′
𝑔) = 𝑗′(𝜑(𝑢𝑔)) = 𝑗′ ∘ 𝜑(𝑢𝑔) = 𝑗(𝑢𝑔) = 𝑔 and so {𝑢′

𝑔 = 𝜑(𝑢𝑔) | 𝑔 ∈ 𝐺} is a
section of 𝐺 in 𝑈 ′. We have that 𝑢′

𝑔𝑢′
𝜏 = 𝜑(𝑢𝑔)𝜑(𝑢𝜏) = 𝜑(𝑢𝑔𝑢𝜏) = 𝜑(𝑎𝑔,𝜏𝑢𝑔𝜏) =

𝜑(𝑎𝑔,𝜏)𝜑(𝑢𝑔𝜏) = 𝜑(𝑎𝑔,𝜏)𝑢′
𝑔𝜏 .

1 𝐴 𝑈 𝐺 1

1 𝐴 𝑈 ′ 𝐺 1

𝑖

𝑖𝑑

𝑗

𝜑 𝑖𝑑
𝑖′ 𝑗′

Thus, 𝜑|𝐴 = 𝑖𝑑, since 𝜑 is injective. Hence, 𝑢′
𝑔𝑢′

𝜏 = 𝜑(𝑎𝑔,𝜏)𝑢′
𝑔,𝜏 . This means that

{𝑎𝑔,𝜏} is a 2-cocycle belonging to 𝛼 ∈ ℋ2(𝐺, 𝐴). Therefore equivalent extensions
of 𝐴 by 𝐺 determine the same cohomology class 𝛼 ∈ ℋ2(𝐺, 𝐴).

It is also true that cocycles belonging to the same cohomology class𝛼 ∈ ℋ2(𝐺, 𝐴)
determine equivalent extensions of 𝐴 by 𝐺. Its proof will follow.

We suppose that (𝑈, 𝑖, 𝑗) is an extension of 𝐴 by 𝐺 and (𝑈 ′, 𝑖′, 𝑗′) is an exten-
sion of 𝐴′ by 𝐺′. Let also 𝑓 ∶ 𝐴 → 𝐴′ and 𝜆 ∶ 𝐺 → 𝐺′ be homomorphisms, that
is

1 𝐴 𝑈 𝐺 1

1 𝐴′ 𝑈 ′ 𝐺′ 1

𝑖

𝑓

𝑗

𝜑 𝜆
𝑖′ 𝑗′

We would like to decide if there exists a homomorphism 𝜑 ∶ 𝑈 → 𝑈 ′ such
that the squares of the above diagram are commutative. For this reason we choose
{𝑢𝑔 | 𝑔 ∈ 𝐺} be a section of 𝑈 and {𝑢′

𝑔′ | 𝑔′ ∈ 𝐺′} be a section of 𝑈 ′ and let
{𝑎𝑔,𝜏}, {𝑎′

𝑔′𝜏′} be the corresponding 2-cocycles. We suppose that there exists such
a homomorphism of groups 𝜑 ∶ 𝑈 → 𝑈 ′ such that the squares are commutative.
Then for any 𝑢 = 𝑎𝑢𝑔 ∈ 𝑈 we have 𝜑(𝑢) = 𝜑(𝑎)𝜑(𝑢𝑔) = 𝑓(𝑎)𝜑(𝑢𝑔), since
𝜑|𝐴 = 𝑓 , so that 𝜑 determined completely as soon as the values 𝜑(𝑢𝑔) are pre-
scribed. But 𝑗′(𝜑(𝑢𝑔)) = 𝜆(𝑗(𝑢𝑔)) = 𝜆(𝑔) = 𝑗′(𝑢′

𝜆(𝑔)) ⇒ 𝑗′(𝜑(𝑢𝑔)𝑢′−1
𝜆(𝑔)) =

1 ⇒ 𝜑(𝑢𝑔)𝑢′−1
𝜆(𝑔) ∈ 𝐾𝑒𝑟𝑗′ = 𝐼𝑚𝑖′. So then there exists 𝑐′

𝑔 ∈ 𝐴′ such that
𝜑(𝑢𝑔) = 𝑐′

𝑔𝑢′
𝜆(𝑔), for every 𝑔 ∈ 𝐺.

In the usual way we define the action of 𝐺 on 𝐴′ as follows
𝐺 × 𝐴′ → 𝐴′

(𝑔, 𝑎′) ↦ (𝑎′)𝑔 = (𝑎′)𝜆(𝑔)

Thus we view 𝐴′ as a 𝐺′-module. Then {𝑐′
𝑔, 𝑔 ∈ 𝐺} is a standard 1-cochain of 𝐺 in

𝐴′ which, in virtue of 𝜑(𝑢) = 𝑓(𝑎)𝜑(𝑢𝑔) and 𝜑(𝑢𝑔) = 𝑐′
𝑔𝑢′

𝜆(𝑔) , serves to describe
𝜑.
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Proposition 5.1.10. The map 𝑓 ∶ 𝐴 → 𝐴′ is a 𝐺-homomorphism, that is

𝑓(𝑎𝑔) = 𝑓(𝑎)𝑔

Proof.

𝑓(𝑎𝑔) = 𝜑(𝑎𝑔) = 𝜑(𝑢𝑔𝑎𝑢−1
𝑔 ) = 𝜑(𝑢𝑔)𝜑(𝑎)𝜑(𝑢𝑔)−1 = 𝑐′

𝑔𝑢′
𝜆(𝑔)𝑓(𝑎)𝑢′−1

𝜆(𝑔)𝑐′−1
𝑔

= 𝑐′
𝑔𝑓(𝑎)𝜆(𝑔)𝑐′−1

𝑔 = 𝑓(𝑎)𝜆(𝑔) = 𝑓(𝑎)𝑔

Let us introduce the symbol (𝐺, 𝐴), which is called pair, to signify that 𝐴 is a
𝐺-module. Similarly, (𝐺′, 𝐴′)-pair signify that 𝐴′ is a 𝐺′-module.
Definition 5.1.11. Let (𝐺, 𝐴) and (𝐺′, 𝐴′) be pairs. If we have a homomorphism 𝜆 ∶
𝐺′ → 𝐺 (so that 𝐴 becomes a 𝐺′-module) and a 𝐺′-homomorphism 𝑓 ∶ 𝐴 → 𝐴′

then the composite object (𝜆, 𝑓) is called homomorphism of pairs and symbolically
we write

(𝜆, 𝑓) ∶ (𝐺, 𝐴) → (𝐺′, 𝐴′)

Note that if 𝐺, 𝐺′ are finite groups, 𝐴 is a 𝐺-module and 𝜆 ∶ 𝐺 → 𝐺′ is a ho-
momorphism. Then 𝐴 becomes a 𝐺′-module with the action 𝑔′𝑎 = (𝜆𝑔′)𝑎, where
𝑔′ ∈ 𝐺′ and 𝑎 ∈ 𝐴.

Moreover according to the above definition and proposition we have that (1, 𝑓) ∶
(𝐺, 𝐴) → (𝐺, 𝐴′) and (𝜆, 1) ∶ (𝐺′, 𝐴′) → (𝐺, 𝐴′) are homomorphisms of pairs.
Proposition 5.1.12. If {𝑎𝑔,𝜏} belongs to cohomology class 𝛼 ∈ ℋ2(𝐺, 𝐴) and
{𝑎′

𝑔,𝜏} belongs to cohomology class 𝛼′ ∈ ℋ2(𝐺′, 𝐴′), then
(1, 𝑓)∗(𝛼) = (𝜆, 1)∗(𝛼′)

(In particular, the last equality says that the 2-cocycles {𝑓(𝑎𝑔,𝜏)} and {𝑎′
𝜆(𝑔),𝜆(𝜏)}

of 𝐺 in 𝐴′ differ by the coboundary of the 1-cochain {𝑐′
𝑔}.)

Proof. Indeed, we have that

𝜑(𝑢𝑔𝑢𝜏) = 𝜑(𝑎𝑔,𝜏𝑢𝑔𝜏) = 𝜑(𝑎𝑔,𝜏)𝜑(𝑢𝑔𝜏)
= 𝑓(𝑎𝑔,𝜏)𝜑(𝑢𝑔𝜏) = 𝑓(𝑎𝑔,𝜏)𝑐′

𝑔𝜏𝑢′
𝜆(𝑔𝜏)

and

𝜑(𝑢𝑔)𝜑(𝑢𝜏) = 𝑐′
𝑔𝑐′𝜆(𝑔)

𝜏 𝑐′
𝜏𝑢′

𝜆(𝜏) = 𝑐′
𝑔𝑐′𝜆(𝑔)

𝜏 𝑢′
𝜆(𝑔)𝑢′

𝜆(𝜏)
= 𝑐′

𝑔𝑐′𝑔
𝜏 𝑎′

𝜆(𝑔)𝜆(𝜏)𝑢′
𝜆(𝑔)𝜆(𝜏) = 𝑐′

𝑔𝑐′𝑔
𝜏 𝑎′

𝜆(𝑔)𝜆(𝜏)𝑢′
𝜆(𝑔𝜏)

But 𝜑 is a homomorphism, so then 𝑓(𝑎𝑔,𝜏)𝑐′
𝑔𝜏𝑢′

𝜆(𝑔𝜏) = 𝑐′
𝑔𝑐′𝑔

𝜏 𝑎′
𝜆(𝑔)𝜆(𝜏)𝑢′

𝜆(𝑔𝜏), which
implies that

𝑓(𝑎𝑔,𝜏) = 𝑎′
𝜆(𝑔)𝜆(𝜏)𝑐′

𝑔𝑐′𝑔
𝜏 𝑐′−1

𝑔𝜏
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Theorem 5.1.13. Let (𝑈, 𝑖, 𝑗) be an extension of 𝐴 by 𝐺 which determines 𝛼 ∈
ℋ2(𝐺, 𝐴) and let (𝑈 ′, 𝑖′, 𝑗′) be an extension of 𝐴′ by 𝐺′ which determines 𝛼′ ∈
ℋ2(𝐺′, 𝐴′). We suppose that 𝑓 ∶ 𝐴 → 𝐴′ and 𝜆 ∶ 𝐺 → 𝐺′ are homomorphisms
and that 𝐴′ viewed as a 𝐺-module by putting (𝑎′)𝑔 = (𝑎′)𝜆(𝑔). Then there exists a
homomorphism 𝜑 ∶ 𝑈 → 𝑈 ′ such that the following diagram

1 𝐴 𝑈 𝐺 1

1 𝐴′ 𝑈 ′ 𝐺′ 1

𝑖

𝑓

𝑗

𝜑 𝜆
𝑖′ 𝑗′

is commutative diagram if and only if

(i) 𝑓 is a 𝐺-homomorphism

(ii) 𝑓∗(𝛼) = (1, 𝑔)∗(𝛼) = (𝜆, 1)∗(𝛼′). That is the 2-cocycles {𝑓(𝑎𝑔,𝜏)} and
{𝑎′

𝜆(𝑔),𝜆(𝜏)} of 𝐺 in 𝐴′ differ by a coboundary.

Proof. “ ⇒ ” We have proved according to propositions 5.1.10 and 5.1.12.

“ ⇐ ” We suppose that (𝑖) and (𝑖𝑖) hold. We choose {𝑢𝑔 | 𝑔 ∈ 𝐺} ⊆ 𝑈 and
𝑢′

𝑔 | 𝑔′ ∈ 𝐺′ ⊆ 𝑈 ′ be sections of 𝑈 and 𝑈 ′, respectively. If we write

𝑢𝑔𝑢𝜏 = 𝑎𝑔,𝜏𝑢𝑔𝜏 , 𝑢′
𝑔′𝑢′

𝜏′ = 𝑎_𝑔′, 𝜏 ′𝑢′
𝑔′𝜏′

then the cocycle {𝑎𝑔,𝜏} belong to cohomology class 𝛼 ∈ ℋ2(𝐺, 𝐴) and the cocycle
{𝑎′

𝑔′,𝜏′} belong to cohomology class 𝛼′ ∈ ℋ2(𝐺′, 𝐴′). According to the condition
(𝑖) we have that

𝑓(𝑎𝑔) = 𝑓(𝑎)𝑔 (5.11)
and from condition (𝑖𝑖) we have that there exists a 1-cochain {𝑐′

𝑔 ∈ 𝐴′} such that
𝑓(𝑎𝑔,𝜏) = 𝑎′

𝜆(𝑔)𝜆(𝜏)𝑐′
𝑔𝑐′𝑔

𝜏 𝑐′−1
𝑔𝜏 (5.12)

We define 𝜑 ∶ 𝑈 → 𝑈 ′, by 𝜑(𝑎𝑢𝑔) = 𝑓(𝑎)𝑐′
𝑔𝑢′

𝜆(𝑔)
Then 𝜑 is a homomorphism, since

𝜑(𝑎𝑢𝑔𝑏𝑢𝜏) = 𝜑(𝑎𝑏𝑔𝑢𝑔𝑢𝜏) = 𝜑(𝑎𝑏𝑔𝑎𝑔,𝜏𝑢𝑔𝜏)
= 𝑓(𝑎𝑏𝑔𝑎𝑔,𝜏)𝑐′

𝑔𝜏𝑢′
𝜆(𝑔𝜏) = 𝑓(𝑎)𝑓(𝑏𝑔)𝑓(𝑎𝑔,𝜏)𝑐′

𝑔𝜏𝑢′
𝜆(𝑔𝜏)

and

𝜑(𝑎𝑢𝑔)𝜑(𝑏𝑢𝜏) = 𝑓(𝑎)𝑐′
𝑔𝑢′

𝜆(𝑔)𝑓(𝑏)𝑐′
𝜏𝑢′

𝜆(𝜏)
= 𝑓(𝑎)𝑐′

𝑔𝑓(𝑏)𝜆(𝑔)𝑢′
𝜆(𝑔)𝑐′

𝜏𝑢′
𝜆(𝜏)

= 𝑓(𝑎)𝑓(𝑏)𝜆(𝑔)𝑐′
𝑔𝑐′𝜆(𝑔)

𝜏 𝑢′
𝜆(𝑔)𝑢′

𝜆(𝜏)
= 𝑓(𝑎)𝑓(𝑏)𝑔𝑐′

𝑔𝑐′𝑔
𝜏 𝑎′

𝜆(𝑔),𝜆(𝜏)𝑢′
𝜆(𝑔𝜏)

5.11=
5.12

𝑓(𝑎)𝑓(𝑏𝑔)𝑓(𝑎𝑔,𝜏)𝑐′
𝑔𝜏𝑢′

𝜆(𝑔𝜏)
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It remains to show that the above diagram is commutative. It suffices to show that
𝜆∘𝑗 = 𝑗′ ∘𝜑 and 𝜑∘𝑖 = 𝑖′ ∘𝑓 . Since 𝑢1 ∈ 𝐴, we have that 1 = 𝜑(1) = 𝜑(𝑢−1

1 𝑢1) =
𝑓(𝑢−1

1 )𝑐′
1𝑢′

𝜆(1) = 𝑓(𝑢1)−1𝑐′
1𝑢′

1 and therefore 𝑓(𝑢1) = 𝑐′
1𝑢′

1. Also, 𝜆 ∘ 𝑗 = 𝑗′ ∘ 𝜑,
since 𝜑(𝑖(𝑎)) = 𝜑(𝑎) = 𝜑(𝑎𝑢−1

1 )𝑢1 = 𝑓(𝑎𝑢−1
1 )𝑐1𝑢′

1 = 𝑓(𝑎𝑢−1
1 )𝑓(𝑢1) = 𝑓(𝑎) =

𝑖′(𝑓(𝑎)). In addition, 𝜑 ∘ 𝑖 = 𝑖′ ∘ 𝑓 , since 𝜆 ∘ 𝑗(𝑎𝑢𝑔) = 𝜆(𝑗(𝑎𝑢𝑔)) = 𝜆(𝑔) and
𝑗′ ∘ 𝜑(𝑎𝑢𝑔) = 𝑗′(𝜑(𝑎𝑢𝑔)) = 𝑗′(𝑓(𝑎)𝑐′

𝑔𝑢′
𝜆(𝑔)) = 𝜆(𝑔). This complete the proof.

Definition 5.1.14. By ℰ(𝐺, 𝐴) = 𝐸𝑥𝑡(𝐺, 𝐴) will be denoted the set of equivalence
classes of extensions of 𝐴 by 𝐺.
Theorem 5.1.15. We suppose that the abelian group 𝐴 is a 𝐺-module, where 𝐺 is
finite or infinite. Then there is a natural 1-1 correspondence between the elements
of ℰ(𝐺, 𝐴) and the elements of ℋ2(𝐺, 𝐴).
Proof. It remains only to show that if {𝑎𝑔,𝜏} and {𝑏𝑔,𝜏} are 2-cocycles belonging to
𝛼 ∈ ℋ2(𝐺, 𝐴) and (𝑈, 𝑖, 𝑗), (𝑈 ′, 𝑖′, 𝑗′) are the extensions they determine according
to our construction, then these extensions are equivalent. To do this we simply apply
the theorem 5.1.13 with 𝐴′ = 𝐴, 𝐺′ = 𝐺, 𝜆 = 𝑓 = 1 and 𝛼′ = 𝛼

1 𝐴 𝑈 𝐺 1

1 𝐴 𝑈 ′ 𝐺 1

𝑖

𝑓=1

𝑗

𝜑 𝜆=1

Since 𝑓 = 1 then 𝑓 is a 𝐺-homomorphism and also the 2-cocycles {𝑓(𝑎𝑔,𝜏)} =
{𝑎𝑔,𝜏} and {𝑎′

𝜆(𝑔),𝜆(𝜏)} = {𝑎′
𝑔,𝜏} of 𝐺 in 𝐴′ differ by a coboundary. So then ac-

cording to 5.1.13 there exists a homomorphism 𝜑 ∶ 𝑈 → 𝑈 ′ such that the above
diagram is commutative. This means that there exists a homomorphism𝜑 ∶ 𝑈 → 𝑈 ′

such that the following diagram is commutative,

𝑈

1 𝐴 𝐺 1

𝑈 ′

𝑖 𝑗

and then we have proved that 𝜑 is isomorphism. This complete the proof.

5.2 The Brauer Group
Definition 5.2.1. Let 𝐾 be a field. The ring 𝐴 is called K − algebra when 𝐴 is
also a 𝐾-vector space and for every 𝜆 ∈ 𝐾 and 𝑎, 𝑏 ∈ 𝐴 holds that

(𝜆𝑎)𝑏 = 𝑎(𝜆𝑏) = 𝜆(𝑎𝑏)
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(The addition in 𝐴 as a vector space is the addition as a ring.)

The dimension of 𝐾-algebra 𝐴, 𝑑𝑖𝑚𝐾𝐴, is the dimension of 𝐴 as a 𝐾-vector
space.

Definition 5.2.2. The center of the 𝐾-algebra 𝐴 is defined as follows

𝒵(𝐴) = {𝑎 ∈ 𝐴 | 𝑎𝑏 = 𝑏𝑎, ∀𝑏 ∈ 𝐴}

Definition 5.2.3. The 𝐾-algebra 𝐴 will be called simple when the only two-sided
ideals are the < 0 > and 𝐴.

Proposition 5.2.4. Let𝐾 be a field and𝐴 be a finite dimensional simple𝐾-algebra.
Then the center of 𝐴, 𝒵(𝐴), is a field.
Proof. For its proof see ([6], proposition 5.3, p.12).

Definition 5.2.5. The 𝐾-algebra 𝐴 is called division algebra over the field 𝐾 if
for any element 𝛼 ∈ 𝐴 with 𝛼 ≠ 0, there exists its multiplicative inverse in 𝐴.

Proposition 5.2.6. For every division 𝐾-algebra 𝐷 it is hold that

𝒵(𝐷) ≅ 𝒵(𝑀𝑛(𝐷)), ∀𝑛 > 0

Proof. For its proof see ([6], proposition 5.3, p.12).

Let𝐾 be a field and𝐴 be a𝐾-algebra. Without loss of generality we can assume
that 𝐾 ⊂ 𝐴. Then, in general 𝐾 ⊂ 𝒵(𝐴).
Definition 5.2.7. The 𝐾-algebra 𝐴 will be called central K − algebra when

𝐾 = 𝒵(𝐴)

Definition 5.2.8. An Azumaya − algebra over that field 𝐾 is a finite dimen-
sional, central, simple 𝐾-algebra.

Definition 5.2.9. Two Azumaya algebras 𝐴 and 𝐵 are equivalent, and it is denoted
by 𝐴~𝐵, if there exist 𝑟, 𝑠 ∈ ℕ such that

𝐴 ⊗𝐾 𝑀𝑟(𝐾) ≅ 𝐵 ⊗𝐾 𝑀𝑠(𝐾)

This relation is an equivalence relation.

Definition 5.2.10. TheBrauer group,𝐵𝑟(𝐾), is defined as the set of all similarity
classes

[𝐴] = {𝐵 | 𝐵 𝑖𝑠 𝐴𝑧𝑢𝑚𝑎𝑦𝑎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝐾 𝑎𝑛𝑑 𝐵~𝐴}

endowed with the multiplication

[𝐴][𝐵] = [𝐴 ⊗𝐾 𝐵]
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If now 𝐿/𝐾 is an extension of fields, then the map

𝑟𝐿/𝐾 ∶ 𝐵𝑟(𝐾) → 𝐵𝑟(𝐿)
[𝐴] ↦ [𝐴 ⊗𝐾 𝐿]

is a group homomorphism.

Definition 5.2.11. Let 𝐴 be an Azumaya-algebra over the field 𝐾 and 𝐿/𝐾 is a
field extension. The field 𝐿 is a splitting field for the algebra 𝐴 when

[𝐴] ∈ 𝐾𝑒𝑟(𝑟𝐿/𝐾)
The group

𝐵𝑟(𝐿/𝐾) ∶= 𝐾𝑒𝑟(𝑟𝐿/𝐾)
is called relative Brauer subgroup of 𝐾 over 𝐿.

Finally, if the extension 𝐿/𝐾 is Galois extension, then we have that

ℋ2(𝐺𝑎𝑙(𝐿/𝐾), 𝐿∗) ≅ 𝐵𝑟(𝐿/𝐾)
For its proof see ([6], Theorem 14.3, p.15).

5.3 The Inverse Problem of Galois Theory
Let𝑁/𝐾 be a finite or infinite Galois extension. We have proved that the Galois

group 𝐺𝑎𝑙(𝑁/𝐾) equipped with Krull topology is a topological group. Moreover,
we have proved that 𝐺𝑎𝑙(𝑁/𝐾) is compact, Hausdorff and totally disconnected.
Therefore, according to theorem 2.3.10 we have that the Galois group 𝐺𝑎𝑙(𝑁/𝐾)
equipped with Krull topology is a profinite group. In particular we can describe the
Galois group of even an infinite Galois extension as a projective limit of finite Galois
groups. More precisely if 𝑁/𝐾 is a Galois extension, then

𝐺𝑎𝑙(𝑁/𝐾) ≅ lim←−𝐿
𝐺𝑎𝑙(𝐿/𝐾)

where 𝐿/𝐾 is a finite Galois extension with 𝐾 ⊆ 𝐿 ⊆ 𝑁 .

An easy result in Galois Theory is the following:

Proposition 5.3.1. Every finite group is isomorphic to the Galois group of some field
extension.

Proof. The Ideas of the proof ∶
Let 𝐺 be the finite group of order 𝑛. Then according to Cayley’s theorem we have
that 𝐺 ⩽ 𝑆𝑛. We consider 𝐾 = 𝐾(𝑡1, … , 𝑡𝑛) and 𝐹 = 𝐾(𝑠1, … , 𝑠𝑛) where
𝑡1, … , 𝑡𝑛 are the roots of general polynomial of degree 𝑛

𝑔(𝑋) = 𝑋𝑛 − 𝑠1𝑋𝑛−1 + 𝑠2𝑋𝑛−2 + ⋯ + (−1)𝑛𝑠𝑛 ∈ 𝐾(𝑠1, 𝑠2, … , 𝑠𝑛)[𝑋]
and 𝑠1, … , 𝑠𝑛 are the elementary symmetric functions of 𝑡1, … , 𝑡𝑛. Then we have
that 𝐿/𝐹 is Galois extension and 𝐺𝑎𝑙(𝐿/𝐾) ≅ 𝑆𝑛.
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𝐿 < 𝑖𝑑𝑁 >

𝐸 = ℱ(𝐺) 𝐺

𝐹 𝐺𝑎𝑙(𝐿/𝐹) ≅ 𝑆𝑛

According to fundamental theorem of Galois theory we have that 𝐿/𝐸 is a Galois
extension and

𝐺 ≅ 𝐺𝑎𝑙(𝐿/𝐸)
This means that 𝐺 is realizable as Galois group of some extension.

We now generalize this fact to profinite groups. More precisely we will prove
that every profinite group is the Galois group of some field extension. For doing this
we will require just one more lemma, which we state and prove now.

Lemma 5.3.2. Let 𝐹 be a field and 𝐺 be a profinite group of automorphisms of 𝐹
such that for every 𝑥 ∈ 𝐹 , the stabilizer

𝑆(𝑥) = {𝜎 ∈ 𝐺 | 𝜎(𝑥) = 𝑥}

is an open subgroup of 𝐺. Then

𝐺 = 𝐺𝑎𝑙(𝐹/𝐹 𝐺)

where 𝐹 𝐺 = {𝑥 ∈ 𝐹 | 𝜎(𝑥) = 𝑥, ∀𝜎 ∈ 𝐺}.

Proof. Let 𝑥1, … , 𝑥𝑛 ∈ 𝐹 . Then the group 𝐻 =
𝑛

⋂
𝑖=1

𝑆(𝑥𝑖) is open in 𝐺, by hypoth-

esis. Also 𝐺 is compact, since 𝐺 is profinite, and 𝐻 is open, so then according to
proposition 1.2.14, (𝑖𝑖𝑖) we have that 𝐻 is closed of finite index. We consider the
group 𝑁 ∶= ⋂

𝑔∈𝐺
𝑔𝐻𝑔−1. Since 𝐻 is closed, so is 𝑔𝐻𝑔−1, and then 𝑁 is closed as

well. It is clear that𝑁 is a normal subgroup. Thus,𝑁 is closed of finite index, which
implies that 𝑁 is open according to proposition 1.2.14, (𝑖𝑖𝑖). This means that 𝐺/𝑁
is finite. Let 𝐿 ∶= 𝐹 𝐺(𝐺𝑥1, … , 𝐺𝑥𝑛), where 𝐺𝑥𝑖 = {𝜎(𝑥𝑖) | 𝜎 ∈ 𝐺}. We have
that

𝐹 𝐺 ⊆ 𝐿 ⊆ 𝐹
The action of 𝐺/𝑁 on 𝐿 is the following

𝐺/𝑁 × 𝐿 → 𝐿
(𝑔𝑁, 𝑙) ↦ (𝑔𝑁)(𝑙)
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and then it is clear that (𝑔𝑁)(𝐹 𝐺) = 𝐹 𝐺 and (𝑔𝑁)(𝐺𝑥𝑖) = 𝐺𝑥𝑖. In addition, this
action is faithful, since if (𝑔1𝑁)(𝐺𝑥𝑖) = (𝑔2𝑁)(𝐺𝑥𝑖), for every 𝑖 = 1, 2, … , 𝑛,
then we have that

(𝑔1𝑁)(𝜎𝑥𝑖) = (𝑔2𝑁)(𝜎𝑥𝑖), ∀𝜎 ∈ 𝐺
⇒ 𝑔1𝜎𝐻𝜎−1(𝜎𝑥𝑖) = 𝑔2𝜎𝐻𝜎−1(𝜎𝑥𝑖), 𝑠𝑖𝑛𝑐𝑒 𝑁 = ⋂

𝑔∈𝐺
𝑔𝐻𝑔−1

⇒ 𝑔1𝜎𝐻𝑥𝑖 = 𝑔2𝜎𝐻𝑥𝑖
⇒ (𝑔1𝜎)(𝑥𝑖) = (𝑔2𝜎)(𝑥𝑖), ∀𝜎 ∈ 𝐺, ∀𝑖 = 1, … , 𝑛
⇒ (𝑔−1

2 𝑔1)(𝜎(𝑥𝑖)) = 𝜎(𝑥𝑖)
⇒ (𝜎−1𝑔−1

2 𝑔1𝜎)(𝑥𝑖) = 𝑥𝑖, ∀𝜎 ∈ 𝐺, ∀𝑖 = 1, … , 𝑛

This means that

𝜎−1𝑔−1
2 𝑔1𝜎 ∈ 𝑆(𝑥𝑖), ∀𝜎 ∈ 𝐺, ∀𝑖 = 1, … , 𝑛

which implies that

𝜎−1𝑔−1
2 𝑔1𝜎 ∈

𝑛
⋂
𝑖=1

𝑆(𝑥𝑖) = 𝐻

⇒ 𝑔−1
2 𝑔1 ∈ 𝜎𝐻𝜎−1, ∀𝜎 ∈ 𝐺

Thus 𝑔−1
2 𝑔1 ∈ ⋂

𝑔∈𝐺
𝑔𝐻𝑔−1 = 𝑁 ⇒ 𝑔1𝑁 = 𝑔2𝑁 . Hence, the finite group 𝐺/𝑁 can

be regarded as an automorphism group of the field 𝐿 and the fixed field of 𝐺/𝑁 is
𝐹 𝐺. A result of Artin in classical Galois theory asserts that if 𝐾 be a field and 𝐺
be a finite group of automorphisms of 𝐾, then 𝐾/𝐾𝐺 is a finite Galois extension,
𝐺 = 𝐺𝑎𝑙(𝐾/𝐾𝐺) and |𝐺| = [𝐾 ∶ 𝐾𝐺]. In our case we have that 𝐺/𝑁 is a finite
group of automorphisms of𝐿, so then according to Artin’s result we have that𝐿/𝐹 𝐺

is a finite Galois extension, 𝐺/𝑁 = 𝐺𝑎𝑙(𝐿/𝐹 𝐺) and |𝐺/𝑁| = [𝐿 ∶ 𝐹 𝐺]. The field
𝐹 is the union of the above 𝐿 and {𝑁} are open normal subgroups of 𝐺. So then

𝐺 ≅ lim←−𝑁
𝐺/𝑁 = lim←−𝐿

𝐺𝑎𝑙(𝐿/𝐹 𝐺) = 𝐺𝑎𝑙(𝐹/𝐹 𝐺)

We are now able to prove the following result.

Theorem 5.3.3. (Waterhouse, 1974) Every profinite group is the Galois group of
some field extension.

Proof. Let 𝐺 be a profinite group and let

𝑆 = ⋃̇
𝑁

𝐺/𝑁, 𝑤ℎ𝑒𝑟𝑒 𝑁 ⊴ 𝐺, 𝑁 𝑖𝑠 𝑜𝑝𝑒𝑛 (𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑢𝑛𝑖𝑜𝑛)

Let 𝐾 be any field. We can take the elements of 𝑆 as indeterminates and form the
purely transcendetal extension 𝐿 = 𝐾(𝑆). The natural action of 𝐺 on 𝑆
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𝐺 × 𝑆 → 𝑆
(𝜎, 𝜏𝑁) ↦ 𝜎(𝜏𝑁) = 𝜎𝜏𝑁

is well defined, since 𝑆 is the disjoint union. Also the action of 𝐺 on 𝑆 is faithful,
since if 𝜎1(𝜏𝑁) = 𝜎2(𝜏𝑁), then

𝜎1𝜏𝑁 = 𝜎2𝜏𝑁 ⇒ 𝜏−1𝜎−1
2 𝜎1𝜏 ∈ 𝑁

⇒ 𝜎−1
2 𝜎1 ∈ 𝜏𝑁𝜏−1 = 𝑁

Thus 𝜎−1
2 𝜎1 ∈ 𝑁 , for every open normal subgroup 𝑁 of 𝐺, which implies that

𝜎−1
2 𝜎1 ∈ ⋂ 𝑁 = {1} and so 𝜎1 = 𝜎2. In addition let 𝜏𝑁 ∈ 𝑆, then

𝑆(𝜏𝑁) = {𝑔 ∈ 𝐺 | 𝑔(𝜏𝑁) = 𝜏𝑁} = {𝑔 ∈ 𝐺 | 𝑔𝜏𝑁 = 𝜏𝑁}
= {𝑔 ∈ 𝐺 | 𝜏−1𝑔𝜏𝑁 = 𝑁} = {𝑔 ∈ 𝐺 | 𝜏−1𝑔𝜏 ∈ 𝑁}
= {𝑔 ∈ 𝐺 | 𝑔 ∈ 𝜏𝑁𝜏−1} = {𝑔 ∈ 𝐺 | 𝑔 ∈ 𝐺} = 𝑁

The action of 𝐺 on 𝑆 as a group of permutations induces a homomorphism 𝜃 from
𝐺 to the group of field 𝐾-automorphisms of 𝐿, that is

𝜃 ∶ 𝐺 → 𝐴𝑢𝑡𝐾(𝐿), 𝜎 ↦ 𝜃(𝜎)

where 𝜃(𝜎)(𝑠) = 𝜎(𝑠), for every 𝑠 ∈ 𝑆. Furthermore, 𝜃 is injective, since the action
of 𝐺 on 𝑆 is faithful and therefore 𝐺 ⩽ 𝐴𝑢𝑡𝐾(𝐿). It remains to show that the
stabilizer 𝑆(𝑢), for every 𝑢 ∈ 𝐿 is an open subgroup of 𝐺. Let 𝑢 ∈ 𝐿 then we have
that 𝑢 ∈ 𝐾(𝑠1, … , 𝑠𝑟), for some 𝑟, where 𝑠𝑖 = 𝜏𝑖𝑁𝑖, for 𝑖 = 1, … , 𝑟. We have that

𝑆(𝜏1𝑁1) ∩ … ∩ 𝑆(𝜏𝑟𝑁𝑟) ⩽ 𝑆(𝑢) ⇒ 𝑁1 ∩ ⋯ ∩ 𝑁𝑟 ⩽ 𝑆(𝑢)

So 𝑆(𝑢) is open for every 𝑢 ∈ 𝐿, since𝑁1 ∩⋯∩𝑁𝑟 ⩽ 𝑆(𝑢) and𝑁1 ∩⋯∩𝑁𝑟 is
open. Hence, according to lemma 5.3.2we have that the extension𝐿/𝐿𝐺 is a Galois
extension and

𝐺 ≅ 𝐺𝑎𝑙(𝐿/𝐿𝐺)
This means that 𝐺 is realizable as Galois group of some extension.

Although this proof let us choose any field𝐾 we like, we have no way to control
𝐿𝐺.

One of the most famous conjecture in group theory is the so called

Inverse Problem of Galois Theory. Given a finite group G, does there exist a
finite Galois extension 𝐾 of ℚ such that 𝐺𝑎𝑙(𝐾/ℚ) ≅ 𝐺?

An important result about Inverse Problem of Galois Theory is due to Shafare-
vich. We wish to mention here the following result of Shafarevich about solvable
groups.
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Theorem 5.3.4. Every finite solvable group is realizable over ℚ as a Galois group
of some extension.

Its proof is very difficult. It uses Algebraic Number Theory and Cohomology
of Profinite Groups (see [13], Chapter IX, §6). In the special case where the given
finite group G is of odd order the same result has been proven by J. Neukirch (see
[12], p. 135-164).

More can be read about the Inverse Galois Problem in [17].

Finally, we will mention a conjecture about the Galois group of the extension
ℚ̄/ℚ𝑎𝑏 and this conjecture is due to Shafarevich.

Shafarevich Conjecture:
The absolute Galois group ofℚ𝑎𝑏,𝐺𝑎𝑙(ℚ̄/ℚ𝑎𝑏) is a free profinite group of countable
rank. Here ℚ𝑎𝑏 is the maximal abelian extension over ℚ.

If the conjecture has a positive answer, then the Inverse Problem of Galois The-
ory over ℚ𝑎𝑏 has an affirmative answer.
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