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Chapter 1

Introduction

A Riemannian manifold is a differentiable manifold endowed with an inner
product at its tangent bundle. In a Sub-Riemannian manifold, there is a dis-
tribution with a fibre inner product. Recall that a distribution is a smooth
family of k-planes, i.e., a linear subbundle of the tangent bundle of the mani-
fold. The distribution shall be called the horizontal tangent space and objects
tangent to it shall be called horizontal. In a Sub-Riemannian geometry, the
distance travelled between two points is defined as in Riemannian geometry
but here, we are allowed to travel only along horizontal curves which join
the two points. Thus define a finite distance if the Lie bracket generating
condition holds.

The awakening of Sub-Riemannian geometry is found in the work of Cara-
theodory on the Mathematical foundations of Thermodynamics and is re-
lated to Carnot’s Thermodynamic laws. This is the reason why Gromov
for instance, refers to Sub-Riemannian geometry as Carnot-Caratheodory
geometry. Caratheodory’s theorem is about codimension one distributions.
Such a distribution is defined by a single Plaffian equation ω = 0, where ω
is a nowhere vanishing 1-form. It is called integrable if through each point
there passes a hypersurface which is everywhere tangent to the distribution.
Formally, an integrable distribution is involuntive according to Frobenius’s
theorem; for codimension one distributions, this means that locally, there
exist functions λ and f such that ω = λdf . In this case, any horizontal path
passing through a point p0 must lie in S = f−1(f(p0)). Consequently, pairs
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Chapter 1. Introduction 8

of points p0 and p′0 that lie in different hypersurfaces cannot be connected by
a horizontal path. Caratheodory’s theorem is the converse of this statement.

Theorem 1.1. (C. Caratheodory) Let M be a connected manifold endowed
with a real analytic codimension one distribution. If there exist two points
that cannot be connected by a horizontal path then the distribution is inte-
grable.

Caratheodory’s theorem may be read backwards: if a codimension one
distribution is not integrable, then any two points can be connected with a
horizontal path. In distributions of arbitrary codimension, this generalises
to what is known as Chow’s theorem. This theorem is considered the corner-
stone of Sub-Riemannian geometry. We first recall Frobenius’ integrability
theorem: A distribution of codimension k is called integrable if through each
point passes a k-dimensional horizontal submanifold. It is called involutive,
if for every X and Y horizontal vector fields, the Lie bracket is horizon-
tal. Frobenius theorem asserts that a distribution is integrable if and only
if is involutive. We are interested in the opposite extreme of integrability;
a bracket generating or completely non-integrable distribution is such that
any tangent vector field may be written as the sum of iterated Lie Brackets
[X1, [[X2, [X3, ...]]] of horizontal vector fields.

Theorem 1.2. (Chow) For a completely non-integrable distribution on a
connected manifold, any two points can be connected by a horizontal path.

It follows that on a connected Sub-Riemannian manifold whose underly-
ing distribution is completely non-integrable, the distance between any two
points is finite since there exists at least one horizontal curve joining these
two points. Summing up, Sub-Riemannian geometry is a Riemannian geom-
etry together with a constraint on admissible directions of movements. In
Riemannian geometry any smoothly embedded curve has locally finite length.
In Sub-Riemannian geometry, a curve failing to satisfy the obligation of the
constraint has necessarily infinite length.

One of the key tools in Riemannian Geometry is the Levi-Civita connec-
tion. It allows us to combine local differential equations in global ones and
is useful in most modern descriptions of curvature and geodesics and un-
derlies many computational methods in differential geometry. Taking into



9

account that Sub-Riemannian Geometry is a natural generalization of Rie-
mannian Geometry, we would ask whether there exists a connection in Sub-
Riemannian Geometry which has similar properties as Levi-Civita connec-
tion. We operate under the assumption that the Sub-Riemannian metric
on the horizontal bundle has been extended to a Riemannian metric on the
whole space. This allows us to define a vertical bundle. Our first aim is to
find a general Sub-Riemannian analogue for the Levi-Civita connection and
establish its basic properties. There has been recently made effort to define
such geometrically useful connections in Sub-Riemannian geometry. This
necessity arose from the fact that the study of Sub-elliptic PDE and Sub-
Riemannian manifolds was by necessity local in nature. In order to obtain
more global results a new globally defined connection is used. In the special
cases of Riemannian and strictly pseudoconvex pseudohermitian manifolds,
this connection coincides with the Levi-Civita and the Tanaka-Webster con-
nections respectively. Furthermore, any covariant derivative of any horizontal
vector field will be independent of the choice of Riemann extension.

The above discussion brings us to curvature, which is the main subject
of this thesis. Due to the close relationship between the curvature with the
Levi-Civita connection, the topology of M and the analysis of the Laplacian
on M in Riemannian Geometry, the next natural step is to study curvature
for the associated connections described above. Some of the symmetries from
the Riemannian Geometry are preserved others are not. These symmetries
would in turn allow us to study Ricci curvature and the properties associated
with it. Again someone would be able to see the importance of these gen-
eralizations due to their importance in Riemannian geometry. For the same
reason as above, this applies for the gradient, the Hessian and the Laplacian.
The importance can also be seen by the applications of Sub-Riemannian
geometry in physics such as: The Heisenberg group and the Carnot group
in general, the sphere S3, some holonomic mechanical systems that arise in
physics as well as examples of Sub-Riemannian manifolds of constant hori-
zontal curvature and a horizontal Einstein gravitational tensor field.

This thesis is organised as follows:

In Chapter 2 we present the main definitions that will be used throughout
the text. In Chapter 3 we define the connections that will be used throughout
the text. In Chapter 4 we discuss the notions of Sub-Riemannian curvature
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and sectional curvature as well as Bianchi Identities. In Chapter 5 we de-
fine the Sub-Riemannian Ricci curvature and the notion of horizontal scalar
curvature, prove the Contracted Bianchi Identity, define the gradient of a
tensor, the Hessian, the horizontal Laplacian and vertical rigidity. Finally,
in Chapter 6, we discuss the differences between the Sub-Riemannian con-
nection and the Levi-Civita connection and state a Sub-Riemannian version
of the Bonnet-Myers theorem.

This thesis is primarily based in [1], which is considered one of the most
recent developments on the subject.



Chapter 2

Sub-Riemannian manifolds:
Definitions and Examples

In this Chapter, we start with the definitions in Section 2.1. In Section 2.3
we present some significant examples. as well as the definition of a tensor B
(when zero in some texts the manifolds with this property are called nearly
Riemannian manifolds) used in order to contract to tensors C(j), which are
then defined. Furthermore, we define j-traces, as well as j-normality of a
metric extension, strict normality and normality of VM . We then present
an example of a 4-dimensional Carnot group and study its properties. We
define the interior multiplication and present a formula about dω, which we
prove. We proceed to an example of a strictly pseudoconvex pseudohermitian
manifold with a Reeb vector field, where we present the Levi-metric and
use a Lemma in order to obtain Tanaka’s definition of normal for strictly
pseudoconvex pseudohermitian manifolds.

2.1 Definitions

Below we state the necessary definitions that will be used throughout the
text:

Definition 2.1. A Sub-Riemannian manifold is a smooth manifold M , a
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smooth constant rank distribution HM ⊂ TM and a smooth inner product
< ·, · > on HM , that is the horizontal bundle.

Definition 2.2. A Sub-Riemannian manifold with Complement, henceforth
SRC-manifold, is a Sub-Riemannian manifold together with a smooth bundle
VM such that HM ⊕ VM = TM . The bundle VM is known as the vertical
bundle.

Remark 2.3. Usually the following Lie bracket generating condition holds
for the subbundle ∆ = HM along with the above definitions:
A distribution ∆ ⊆ TM is called bracket generating if any local frame
{X1, . . . , Xn} for ∆ together with all of its iterated Lie brackets

[Xi, Xj], [Xi, [Xj, Xk]], . . .

spans TM .

Definition 2.4. Two SRC-manifolds M,N are SRC-isometric if there exists
a diffeomorphism

π : M 7→ N,

such that

π∗HM = HN,

π∗VM = V N,

< π∗X, π∗Y >N =< X, Y >M ,

for all horizontal vectors X, Y .

Definition 2.5. A SRC-manifold (M,HM,VM,< ·, · >) is r-graded if there
are smooth constant rank bundles V (j), 0 < j ≤ r, such that

VM = V (1) ⊕ · · · ⊕ V (r)

and
HM ⊕ V (j) ⊕

[
HM,V (j)

]
⊆ HM ⊕ V (j) ⊕ V (j+1),

for all 0 ≤ j ≤ r. Here we have adopted the convention that V (0) = HM
and V (k) = 0 for k > r.

Remark 2.6. 1. This condition above in the Definition 2.5 refers to the
sheaves of local sections of the bundle.
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2. The above Lie bracket in the Definition 2.5 has meaning only for local
vector fields.

Definition 2.7. The grading is j-regular if

HM ⊕ V (j) ⊕
[
HM,V (j)

]
= HM ⊕ V (j) ⊕ V (j+1)

and equiregular if it is j-regular for 0 ≤ j ≤ r.

Definition 2.8. A metric extension for an r-graded vertical complement is
a Riemannian metric g of < ·, · > that makes the split

TM = HM
⊕

1≤j≤r

V (j),

orthogonal.

For convenience of notation, we shall denote a section of V (k) by X(k) and
set

V̂ (j) =
⊕
k 6=j

V (k).

If the metric extension has been chosen, then V̂ (j) = (V (j))⊥ is defined to be
the orthogonal complement of V (j). For convenience, we shall often also ex-
tend the notation < ·, · > to the whole tangent space using it interchangeably
with g.

Remark 2.9. Every SRC-manifold that admits an r-grading also admits
k-gradings for all 1 ≤ k < r. To see this, set

Ṽ (j) = V (j), 0 ≤ j < k,

Ṽ (k) =
⊕
j≥k

V (j).

Definition 2.10. The unique 1-grading on each SRC-manifold, V (1) = VM
is called the basic grading.
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2.2 The tensor B

Definition 2.11. If a metric extension g has been chosen, we define

B(X, Y, Z) = (LZg)(X, Y ) = Zg(X, Y ) + g([X,Z], Y ) + g([Y, Z], X),

for vector fields X, Y, Z.

Remark 2.12. Recall that the definition for a tensor T for vector fields
X1, . . . , Xi, . . . , Xr, is that T (X1, . . . , Xr) is linear in each argument, meaning

T (X1, . . . , fX+hY, . . . , Xr) = fT (X1, . . . , X, . . . , Xr)+hT (X1, . . . , Y, . . . , Xr),

where f, h are real valued functions on M .

Remark 2.13. We can prove that

(LZg)(X, Y ) = Zg(X, Y ) + g([X,Z], Y ) + g([Y, Z], X),

Proof. We will use the formula, the proof of which follows the lines in [12],

(LZT )(X1, ..., Xk) = Z(T (X1, ..., Xk))−
k∑
i=1

T (X1, ...,LZXi, ..., Xk),

where T is a (0, k) tensor and Z, X1, ..., Xk are vector fields.

For k = 2 and T = g we apply the above formula and obtain

(LZg)(X, Y ) = Z(g(X, Y ))− g(X,LZY )− g(LZX, Y )

= Z(g(X, Y ))− g(X, [Z, Y ])− g([Z,X], Y )

= Z(g(X, Y )) + g([Y, Z], X) + g([X,Z], Y ),

due to the fact that LZX is the Lie Bracket. This is the desired result.

Remark 2.14. We observe that B is not tensorial in general and so cannot
be viewed as a map on vectors rather than vector fields. This arises from the
fact that

B(fX, hY, Z) = (LZg)(fX, hY )

= Zg(fX, hY ) + g([fX,Z], hY ) + g([hY, Z], fX)

= Z(fhg(fX, hY )) + hg([fX,Z], Y ) + fg([hY, Z], X),
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is not equal to

fhB(X, Y, Z) = fh(LZg)(X, Y ) = fhZg(X, Y )+fhg([X,Z], Y )+fhg([Y, Z], X).

However, we can define a symmetric tensor B(j) by setting B(j)(X, Y, Z) =

B(X, Y, Z) for X, Y ∈ V (j), Z ∈ V̂ (j) and declaring B(j) to be zero on the

orthogonal complement of V (j) × V (j) × V̂ (j). We can then contract these to
tensors

C(j) : TM × TM 7→ V (j)

defined by

g(C(j)(X, Y ), Z(j)) = B(j)(Xj, Z
(j), Yĵ),

where Xj is the projection of X to V (j) and Yĵ the projection to V̂ (j).

Additionally, we can define j-traces, by

trjB
(j)(Z) =

∑
j

B(j)(E
(j)
i , E

(j)
i , Z),

where {E(j)
i } are (local) orthonormal frames for V (j).

Definition 2.15. Suppose that M is an r-graded SRC-manifold with metric
extension g.

• We call the metric extension j-normal with respect to the grading if
B(j) ≡ 0.

• We call the metric extension strictly normal with respect to the grading
if it is j-normal for all 0 ≤ j ≤ r.

• We shall say VM is normal, if every metric extension and grading is
0-normal.

Remark 2.16. The tensors B(0) and C(0) depend only on the underlying
SRC-structure and are independent of the choice of grading and metric.
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2.3 Examples

2.3.1 Carnot groups

A Carnot group (of step r) is Lie group, whose Lie algebra g is stratified in
the sense that

g = g0 ⊕ · · · ⊕ gr−1,

[g0, gj] = gj+1, j = 1, . . . , r,

gr = 0,

together with a left invariant metric < ·, · > on HM = g0, the left translates
of g0.

The vertical bundle VM consists of the left-translates of

g = g1 ⊕ · · · ⊕ gr−1.

In addition to the basic grading, there is then a natural equiregular (r − 1)-
grading defined by setting V (j) to be the left translates of gj.

2.3.2 An example from four dimensions

Let M be the 4-dimensional Carnot group with Lie algebra induced by the
global left invariant vector fields X, Y, T, S with bracket structures

[X, Y ] = T, [X,T ] = S,

and all others being zero. Then

B(T, S,X) = (LXg)(T, S)

= Xg(T, S) + g([T,X], S) + g([S,X], T )

= 0 + (−1) + 0

= −1,

with all others vanishing.
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Proof. We have that

B(j)(X, Y, Z) = Zg(X, Y ) + g([X,Z], Y ) + g([Y, Z], X).

We observe that the first term in our case is always zero due to the fact that
it is of the form Z(0) or Z(1). Therefore

B(j)(X, Y, Z) = g([X,Z], Y ) + g([Y, Z], X).

We also observe that in this case we have

B(j)(X, Y, Z) = B(j)(Y,X,Z).

We now proceed to the computations. We have

B(X, Y, T ) = g([X,T ], Y ) + g([Y, T ], X) = g(S, Y ) + g(0, X) = 0 + 0 = 0

B(X, Y, S) = g([X,S], Y ) + g([Y, S], X) = g(0, Y ) + g(0, X) = 0 + 0 = 0

B(S, T,X) = g([S,X], T ) + g([T,X], S) = g(0, T ) + g(−S, S) = 0− 1 = −1

B(S, T, Y ) = g([S, Y ], T ) + g([T, Y ], S) = g(0, T ) + g(0, S) = 0 + 0 = 0.

The computation is complete.

Furthermore
[T,X] = −[X,T ] = −S, [S,X] = 0.

Now M admits an equiregular 2-grading defined by

V (1) =< T >, V (2) =< S > .

Let g be the metric making the global frame orthonormal. Then g is strictly
normal with respect to this 2-grading.

Proof. Using the same reasoning for B(j) as in the last proof we have:

B(0)(X, Y, T ) = g([X,T ], Y ) + g([Y, T ], X) = g(S, Y ) + g(0, X) = 0 + 0 = 0

B(0)(X, Y, S) = g([X,S], Y ) + g([Y, S], X) = g(0, Y ) + g(0, X) = 0 + 0 = 0

B(1)(S, S,X) = g([S,X], T ) + g([S,X], S) = 2g(0, T ) = 0

B(1)(S, S, Y ) = g([S, Y ], S) + g([S, Y ], S) = 2g(0, S) = 0

B(2)(T, T,X) = g([T,X], T ) + g([T,X], T ) = 2g(−S, T ) = 0

B(2)(T, T, Y ) = g([T, Y ], T ) + g([T, Y ], T ) = 2g(0, T ) = 0.
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To prove equiregularity, by definition, we need to show for 0 ≤ j ≤ 2 that

HM ⊕ V (j) ⊕ [HM,V (j)] = HM ⊕ V (j) ⊕ V (j+1).

For j = 0, V (1) =< T > and V (2) =< S > we have [HM,V (0)] =< T > and
therefore

HM ⊕ V (0)⊕ < T >= HM ⊕ V (0) ⊕ V (1),

or equivalently

HM⊕ < X, Y > ⊕ < T >= HM⊕ < X, Y > ⊕ < T > .

Therefore it is 0-regular.

For j = 1, V (1) =< T > and V (2) =< S > we have [HM,V (1)] =< S >
and therefore

HM ⊕ V (1)⊕ < S >= HM ⊕ V (1) ⊕ V (2),

or equivalently

HM⊕ < T > ⊕ < S >= HM⊕ < T > ⊕ < S > .

Therefore it is 1-regular.

For j = 2, V (1) =< T > and V (2) =< S > we have [HM,V (2)] =< 0 >=
{0} and therefore

HM ⊕ V (2)⊕ < 0 >= HM ⊕ V (2) ⊕ V (3),

or equivalently

HM⊕ < S > ⊕{0} = HM⊕ < S > ⊕0.

Therefore it is 2-regular, proving equiregularity and strict normality.

Remark 2.17. The above metric is not 1-regular with respect to the basic
grading. If that was the case, we get

B̃(0) ≡ 0,

but
B̃(1)(T, S,X) = −1.

Thus the metric is 0-normal with respect to the basic grading.
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Proof. By taking into consideration the above proofs, we have

B̃(0)(X, Y, T ) = g([X,T ], Y ) + g([Y, T ], X) = g(S, Y ) + g(0, X) = 0 + 0 = 0

B̃(0)(X, Y, S) = g([X,S], Y ) + g([Y, S], X) = g(0, Y ) + g(0, X) = 0 + 0 = 0

B̃(0)(Y,X, T ) = g([Y, T ], X) + g([X,T ], Y ) = g(0, Y ) + g(S,X) = 0 + 0 = 0

B̃(0)(Y,X, S) = g([Y, S], X) + g([X,S], Y ) = g(0, Y ) + g(0, X) = 0 + 0 = 0,

and

B̃(1)(T, S,X) = Tg(S,X)+g([T,X], S)+g([S,X], T ) = 0+g(−S, S)+g(0, T ) = −1.

Therefore the calculation is complete.

Remark 2.18. Any step r Carnot group with a bi-invariant metric extension
is strictly normal with respect to the equiregular (r− 1)-grading, but is only
0-normal with respect to the basic grading.

2.3.3 Example of a strictly pseudoconvex pseudoher-
mitian manifold

In order to proceed with the example will have to deal with some preliminaries

Definition 2.19. In this text ι is the interior multiplication or contraction
operator, thus

ιTω(·) = ω(T, ·).

Remark 2.20. It is well known that:
If ω ∈ Ω1M and X, Y ∈X (M), then

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

Proof. A proof is presented in [17] in the Bibliography (page 24 Corollary
3.4).

Example 2.21. Let (M,J, ω) be a strictly pseudoconvex pseudohermitian
manifold, (see [6]) with characteristic vector field T (called Reeb vector field)
such that ω(T ) = 1, ιTdω = 0 (in other words T ∈ ker dω).
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Due to Darboux’s theorem T is unique up to change of coordinates.

The horizontal bundle HM is defined to be the kernel of the 1-form ω or
in other words

kerω := HM.

An immediate consequence of the above formula for dω and the defining
properties of T is that [T,HM ] ⊂ HM . When J is extended to TM by
defining JT = 0, the Levi metric

g(A,B) = dω(A, JB) + ω(A)ω(B),

can be viewed as an extension of the Sub-Riemannian metric

< X, Y >= dω(X, JY ),

with
VM =< T > .

As VM is one dimensional, the basic grading is the only grading admitted
and since [T,HM ] ⊂ HM we see B(1) = 0 trivially. Thus the Levi metric is
always 1-normal and so strict normality is equivalent to 0-normality.

Lemma 2.22. The following equalities hold true in this example:

< [T,X], Y >= − < [[T,X], JY ], T >,

− < [[T,X], JY ], T >=< [[X, JY ], T ], T > + < [[JY, T ], X], T >,

< [[X, JY ], T ], T > + < [[JY, T ], X], T >= T < X, Y > + < [JY, T ], JX > .

Proof. As for our first equality we have

< [T,X], Y > = dω([T,X], JY ) + ω([T,X])ω(Y )

= dω([T,X], JY ) + 0

= [T,X]ω(JY )− JY ω([T,X])− ω([[T,X], JY ]])

= −ω([[T,X], JY ]).

and

< [[T,X], JY ], T > = dω([T,X], JY ], JT ) + ω([[T,X], JY ])ω(T )

= ω([[T,X], JY ]).
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The second equation is obtained by applying the Jacobi’s Identity

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

The third equality can be obtained if we take into account the two previous
equalities together with the fact that

B(X, Y, T ) = Tg(X, Y ) + g([X,T ], Y ) + g([Y, T ], X) = 0,

or, in other words

T < X, Y > + < [X,T ], Y > + < [Y, T ], X >= 0,

because

0 = T < X, Y > + < [X,T ], Y > + < [Y, T ], X >

= T (dω(X, JY ) + ω(X)ω(Y )) + (dω([X,T ], JY ) + ω([X,T ])ω(Y ))

+(dω([Y, T ], JX) + ω([Y, T ])ω(JX))

= T (dω(X, JY ) + 0) + (dω([X,T ], JY ) + 0) + (dω([Y, T ], JX) + 0)

= T (Xω(JY )− JY ω(X)− ω([X, JY ]))

+([X.T ]ω(JY )− JY ω([X,T ])− ω([[X,T ], JY ]))

+([Y, T ]ω(JX)− JXω([Y, T ])− ω([[Y, T ], JX]))

= (0− 0− 0) + (0− 0− 0) + (0− 0− 0)

= 0.

If the above are combined with the fact that

< [JY, T ], JX >=< [−X,T ], Y >=< [T,X], Y >,

and with Corollary 2.20 we get

< X, Y > = dω(X, JY ) + ω(x)ω(Y ) = dω(X, JY ) + 0

= dω(X, JY ) = Xω(JY )− JY ω(X)− ω([X, JY ])

= Xω(−X)− JY ω(X)− ω([X,−X])

= 0.
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Combining all the above equations we have

< [T,X], Y > = − < [[T,X], JY ], T >

= < [[X, JY ], T ], T > + < [[JY, T ], X], T ] >

= T < X, Y > + < [JY, T ], JX > .

This implies that 0-normality is equivalent to

< [T,X], Y >= − < [T, JY ], JX > .

Since we also have

< [T,X], Y >= − < J [Y, T ], JX >,

we obtain that this is equivalent to

[T, JY ] = J [T, Y ],

which is Tanaka’s definition of normal for a strictly pseudoconvex pseudo-
hermitian manifold. For more see in [8].



Chapter 3

Connections on SRC-manifolds

In Chapter 3, first we prove the existence of a unique connection for an
r-graded SRC-manifold with some desired traits. After this, an example
of global orthonormal frames of the horizontal and vertical bundle is pre-
sented along some formulas. We then continue our work from the example
4-dimensional Carnot group from Chapter 2 and utilize the above formulas in
order to obtain results. We present an example of a flat, equiregular, strictly
normal SRC-manifold. We return to the example of a strictly pseudocon-
vex pseudohermitian manifold from Chapter 2, present the Tanaka-Webster
connection and prove the torsion symmetry of the connection.

The tensors C(j) provide the essential ingredient for the definition of our
connections, which we are to follow. The idea boils down to using the Levi-
Civita connection on each component V (j) and using projections of the Lie
derivative mixed components. In general, this will not produce a connection
compatible with the metric, but we can use the tensors C(j) to adjust it
appropriately.

Lemma 3.1. If g is a metric extension of an r-graded SRC-manifold, then
there exists a unique connection ∇(r) on TM such that

• ∇(r) is compatible with the metric.

• V̂ (j) is parallel for all j.

23
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• Let Tor(r) be the torsion associated to ∇(r):

Tor(r)(A,B) = ∇(r)
A B −∇(r)

B A− [A,B].

Then Tor(r)(V (j), V (j)) ⊆ V̂ (j), for all j.

• < Tor(r)(X(j), Y (k)), Z(j) >=< Tor(r)(Z(j), Y (k)), X(j) > for all j, k.

Furthermore, if X, Y are horizontal vector fields, then

∇(r)X and Tor(r)(X, Y ),

are independent of the choice of grading and extension g. (They do however
depend on choice of VM .)

Proof. For a vector field Z, we denote the orthogonal projections of Z to
V (j) by Zj. Define a connection ∇(r) as follows: for X, Y, Z sections of V (j)

and T a section of V̂ (j) set:

a)

< ∇(r)
X Y, V̂ (j) >= 0,

for X, Y sections of V (j).

b) We use Koszul’s Formula to define ∇(r)

2 < ∇(r)
X Y, Z > = X < Y,Z > +Y < Z,X > −Z < X, Y >

− < X, [Y, Z] > − < Y, [X,Z] > + < Z, [X, Y ] >,

for X, Y, Z sections of V (j).

c) Finally

∇(r)
T Y = [T, Y ]j +

1

2
C(j)(Y, T ),

for X, Y, Z sections of V (j) and T section of V̂ (j).

(Recall that HM = V (0).)
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We will prove that this defines a connection with the desired properties.

For the first and second assertion we will be keeping in mind the work
done in [13] (pages 49-56) and will make use of the following formula (found
in page 51)

DV (j)

dt
=
∑
j

dυj
dt
Xj +

∑
i,j

dxi
dt
υj∇XiXj.

For the first assertion we take into account that for j 6= i we have

0 =
d

dt
< V (j), V (k) >=<

DV (j)

dt
, V (k) > + < V (j),

DV (k)

dt
> .

We also recall that
< ∇(r)

Xi
Xj, V̂

(j) >= 0,

due to the first condition from part a) of the definition of the connection.

In addition, we take into account

< Xj, V̂
(j) >= 0,

due to the definition of the metric in Definition 2.1, Chapter 2.

Therefore, we have

<
DV (j)

dt
, V̂ (j) >= 0,

for every j.

Furthermore, for k = j we have from the Koszul formula ( part b) of the
definition ) that

2 < ∇(r)
X Y, Z > = X < Y,Z > +Y < Z,X > −Z < X, Y >

− < X, [Y, Z] > − < Y, [X,Z] > + < Z, [X, Y ] >

2 < ∇(r)
X Z, Y > = X < Z, Y > +Z < Y,X > −Y < X,Z >

− < X, [Z, Y ] > − < Z, [X, Y ] > + < Y, [X,Z] >

and if we add these two equations together we get

X < Y,Z >=< ∇(r)
X Y, Z > + < ∇(r)

X Z, Y >
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and therefore we have proved metric compatibility for every j and the second
assertion.

For the third assertion for X, Y, Z ∈ V (j), using the Koszul formula we
have that

2 < Tor(X, Y ), Z >= 2 < ∇(r)
X Y −∇(r)

Y X − [X, Y ], Z >

= 2 < ∇(r)
X Y, Z > −2 < ∇(r)

Y X,Z > −2 < [X, Y ], Z >

= X < Y,Z > +Y < Z,X > −Z < X, Y >

− < X, [Y, Z] > − < Y, [X,Z] > + < Z, [X, Y ] >

−(X < Z, Y > +Z < Y,X > −Y < X,Z >

− < X, [Z, Y ] > − < Z, [X, Y ] > + < Y, [X,Z] >)

−2 < [X, Y ], Z >

= 0,

due to the fact that all terms cancel each other out.

This happens for every Z ∈ V (j), therefore

Tor(r)(V (j), V (j)) ⊆ V̂ (j).

For the last assertion, we notice that for k = j we have that both sides are
equal to zero, due to the third assertion. For k 6= j we have using the third
equation in the definition and the definition of C(j) found in Section 2.2 of
Chapter 2 that

< Tor(r)(X(j), Y (k)), Z(j) >=< ∇(r)

X(j)Y
(k) −∇(r)

Y (k)X
(j) − [X(j), Y (k)], Z(j) >

=< ∇(r)

X(j)Y
(k), Z(j) > − < ∇(r)

Y (k)X
(j), Z(j) > − < [X(j), Y (k)], Z(j) >

=< [X(j), Y (k)]k, Z
(j) > +

1

2
< C(k)(Y (k), X(j)), Z(j) >

− < [Y (k), X(j)]j, Z
(j) > −1

2
< C(j)(X(j), Y (k)), Z(j) > − < [X(j), Y (k)], Z(j) >

= 0 +
1

2
(B(k)(Y

(k)
k , Z

(j)
k , X

(j)

k̂
))− 1

2
(B(j)(X

(j)
j , Z

(j)
j , Y

(k)

ĵ
))

=
1

2
(B(k)(Y

(k)
k , Z

(j)
k , X

(j)

k̂
))− 1

2
(B(j)(X

(j)
j , Z

(j)
j , Y

(k)

ĵ
))

= 0− 1

2
(B(j)(X

(j)
j , Z

(j)
j , Y

(k)

ĵ
))

= −1

2
(Y (k) < X(j), Z(j) > + < [X(j), Y (k)], Z(j) > + < [Z(j), Y (k)], X(j) >,
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as well as

< Tor(r)(Z(j), Y (k)), X(j) >=< ∇(r)

Z(j)Y
(k) −∇(r)

Y (k)Z
(j) − [Z(j), Y (k)], X(j) >

=< ∇(r)

Z(j)Y
(k), X(j) > − < ∇(r)

Y (k)Z
(j), X(j) > − < [Z(j), Y (k)], X(j) >

=< [Z(j), Y (k)]k, X
(j) > +

1

2
< C(k)(Y (k), Z(j)), X(j) >

− < [Y (k), Z(j)]j, X
(j) > −1

2
< C(j)(Z(j), Y (k)), X(j) > − < [Z(j), Y (k)], X(j) >

= 0 +
1

2
(B(k)(Y

(k)
k , X

(j)
k , Z

(j)

k̂
))− 1

2
(B(j)(Z

(j)
j , X

(j)
j , Y

(k)

ĵ
))

=
1

2
(B(k)(Y

(k)
k , X

(j)
k , Z

(j)

k̂
))− 1

2
(B(j)(Z

(j)
j , X

(j)
j , Y

(k)

ĵ
))

= 0− 1

2
(B(j)(Z

(j)
j , X

(j)
j , Y

(k)

ĵ
))

= −1

2
(Y (k) < Z(j), X(j) > + < [Z(j), Y (k)], X(j) > + < [X(j), Y (k)], Z(j) >).

Therefore all the assertions were proved.

For the uniqueness, suppose that connections∇ and∇′ satisfy the required
properties and set

A(Z,W ) = ∇WZ −∇′WZ.

Then for sections X, Y, Z of V (j), since the torsion terms are in V̂ (j) we

< A(X, Y ), Z > =< ∇XY −∇
′

XY, Z >

=
1

2
(X < Y,Z > +Y < Z,X > −Z < X, Y >

− < X, [Y, Z] > − < Y, [X,Z] > + < Z, [X, Y ] >)

− 1

2
(X < Y,Z > +Y < Z,X > −Z < X, Y >

− < X, [Y, Z] > − < Y, [X,Z] > + < Z, [X, Y ] >) = 0

and using

∇TY = [T, Y ]j +
1

2
C(j)(Y, T ),
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we have

< A(T,X), Y >=< ∇TX −∇
′

TX >

=< [T,X]j +
1

2
C(j)(Y, T )− ([T,X]j +

1

2
C(j)(Y, T )), Y >

= 0.

Therefore

< A(X, Y ), Z > = − < Y,A(X,Z) >

=< Y,A(Z,X) >

=< A(Z, Y ), X >

=< A(Y, Z), X >

= − < Z,A(X, Y ) >

(= 0).

Similarly if T is a section of V̂ (j),

< A(T,X), Y > = − < X,A(T, Y ) >

= − < X,Tor(T, Y )− Tor′(T, Y ) >

=< Tor(T,X)− Tor′(T,X), Y >

=< A(Y, Z), X >

= − < A(T,X), Y >

(= 0).

Thus A = 0, and the connection ∇ is the unique connection with the desired
properties. The required independence from g follows from Koszul Formula
and the independence of B and C(0) from the metric extension.

Remark 3.2. Furthermore if ∇ is the Levi-Civita connection for g, then for
sections X, Y of V (j), we have

∇(r)
X Y = (∇XY )(j).

Remark 3.3. An r-grading induces a family of connections ∇(1), ...,∇(r)

associated to each possible sub-grading. Each of these connections agrees
with the others in the sense that

∇(j)X(k) = ∇(r)X(k)
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whenever 1 ≤ k < j. In particular, for horizontal vector fields this means

∇(1)X = ∇(2)X = ... = ∇(r)X.

Thus the differences between the connections can be viewed as a choice in
how to differentiate vertical vectors. The connection ∇(1) associated to the
basic grading is referred to as the basic connection. We shall denote the basic
connection by ∇.

Corollary 3.4. If M admits an r-grading, then

1. Tor(r)(V (j), V (j)) = 0 if and only if V (j) is integrable,

2. Tor(r)(HM,V (j)) ⊂ HM ⊕ V (j) ⊕ V (j+1) for all j.

If the r-grading is j-normal then

Tor(r)(TM, V (j)) ⊆ V̂ (j+1).

If the r-grading is 0-normal and j-normal then

Tor(r)(HM,V (j)) ⊆ V (j+1),

with the equality holding if and only if the grading is j-regular.

Proof. For the first part we recall from [13] in the Bibliography (pages 50-51)
the following formulas

∇XY =
∑
k

(
∑
i,j

xiyjΓ
k
ij +X(yk))Xk,

∇YX =
∑
q

(
∑
i,j

xiyjΓ
q
ji +X(yi))Xq.

From this and the fact that the torsion is zero, we have

[X, Y ] = [
∑
i

xiXi,
∑
j

yjYj] =
∑
i,j

xiyj[Xi, Xj],

[X, Y ] = ∇XY −∇YX =
∑
k

ckXk,
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where
ck = (

∑
i,j

xiyjΓ
k
ij +X(yk))− (

∑
i,j

xiyjΓ
q
ji +X(yi)).

Therefore we have an involution and by Frobenius Theorem found in [6] in the
Bibliography (Specifically, found in page 159) we have that V (j) is integrable.

For the second part we have from the part c) of the definition of the
connection and the grading, for Z,Q arbitrary that

< ∇XY, Z > = < [X, Y ]j +
1

2
C(j)(Y,X), Z >

= < [X, Y ]j, Z > + <
1

2
C(j)(Y,X), Z >

:= < [X, Y ]j, Z > +
1

2
B(j)(Yj, Zj, Xĵ)

= 0 +
1

2
B(j)(Yj, Zj, Xĵ)

=
1

2
B(j)(Yj, Zj, Xĵ),

< ∇YX,Q > = < [Y,X]h +
1

2
C(h)(X, Y ), Q >

= < [Y,X]h, Q > + <
1

2
C(h)(X, Y ), Q >

:= < [Y,X]h, Q > +
1

2
B(h)(Xh, Qh, Yĥ)

= 0 +
1

2
B(h)(Xh, Qh, Yĥ)

=
1

2
B(h)(Xh, Qh, Yĥ),

[X, Y ] ⊂ [HM,V (j)] ⊂ V (j+1),

therefore we have that (corresponding to each equation above)

Z ∈ V̂ (j),

Q ∈ V̂ (0) := ĤM,

[X, Y ] ⊂ [HM,V (j)] ⊂ V (j+1),

for every j and therefore we have

Tor(r)(HM,V (j)) = HM ⊕ V (j) ⊕ [HM,V (j)] ⊂ HM ⊕ V (j) ⊕ V (j+1),
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for every j. Therefore the second part was proved.

If the r-grading is j-normal then

0 = B(j)(X, Y, Z) = B(Xj, Yj, Zĵ) = Zĵg(Xj, Yj)+g([Xj, Zĵ], Yj)+g([Yj, Zĵ], Xj).

Therefore for Z ∈ V (j) and

< Tor(r)(X, Y ), Z >=< ∇XY −∇YX − [X, Y ], Z >

=< ∇XY, Z > − < ∇YX,Z > − < [X, Y ], Z > .

We have two cases.

The first case is X ∈ V̂ (j) and Y ∈ V (j).

If we use the last formula from the definition of the connection we have

< ∇XY, Z > = < [X, Y ]j +
1

2
C(j)(Y,X), Z >

= < [X, Y ]j, Z > + <
1

2
C(j)(Y,X), Z >

= < [X, Y ]j, Z > +
1

2
B(j)(Y, Z,X)

= < [X, Y ]j, Z > +0

= < [X, Y ]j, Z >,

< ∇YX,Z > = < [Y,X]ĵ +
1

2
C(ĵ)(X, Y ), Z >

= < [Y,X]ĵ, Z > + <
1

2
C(ĵ)(X, Y ), Z >

= < [Y,X]ĵ, Z > +
1

2
B(ĵ)(X,Z, Y )

= < [Y,X]ĵ, Z > +0

= < [Y,X]ĵ, Z >,

< [X, Y ], Z > = < [X, Y ]j, Z > + < [X, Y ]ĵ, Z > .

The second case is X, Y ∈ V (j).

We have from the first Lemma of this section that

Tor(r)(V (j), V (j)) ⊆ V̂ (j),
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which is our case and therefore proved above.

If the r-grading is 0-normal and j-normal we have

0 = B(0)(X, Y, Z) = B(Xh, Yh, Zĥ) = Zĥg(Xh, Yh) + g([Xh, Zĥ], Yh) + g([Yh, Zĥ], Xh),

0 = B(j)(X, Y, Z) = B(Xj, Yj, Zĵ) = Zĵg(Xj, Yj) + g([Xj, Zĵ], Yj) + g([Yh, Zĵ], Xj).

and

< Tor(r)(X, Y ), Z >=< ∇XY, Z > − < ∇YX,Z > − < [X, Y ], Z >,

as above.

For Z ∈ V̂ (j+1), X ∈ V (0) := HM and Y ∈ V (j) we have from the last
equation of the definition of the connection and the first equation of the same
definition and the grading that

< ∇XY, Z > = < [X, Y ]j +
1

2
C(j)(Y,X), Z >

= < [X, Y ]j, Z > + <
1

2
C(j)(Y,X), Z >

= < [X, Y ]j, Z > +
1

2
B(j)(Y, Z,X)

= < [X, Y ]j, Z > +0

= < [X, Y ]j, Z >

= 0,

< ∇YX,Z > = < [Y,X]h +
1

2
C(h)(X, Y ), Z >

= < [Y,X]h, Z > + <
1

2
C(h)(X, Y ), Z >

= < [Y,X]h, Z > +
1

2
B(h)(X, Y, Z)

= < [Y,X]h, Z > +0

= < [Y,X]h, Z >

= 0,

< [X, Y ], Z > := < [X, Y ]j+1, Z > + < [X, Y ]
ĵ+1
, Z >= 0.

Therefore we have shown

Tor(r)(HM,V (j)) ⊆ V (j+1).
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We recall that j-regularity means that for all 0 ≤ j ≤ r we have

HM ⊕ V (j) ⊕ [HM,V (j)] = HM ⊕ V (j) ⊕ V (j+1).

Therefore if [HM,V (j)] = V (j+1) and repeat the above process we obtain

Tor(r)(HM,V (j)) = V (j+1),

which was the desired result.

Example 3.5. Suppose that HM has a global orthonormal frame {Xi} and
VM has global orthonormal frame {Tβ} with the following bracket identities:

[Xi, Xj] = ckijXk + cαijTα,

[Xi, Tβ] = ckiβXk + cαiβTα,

[Tγ, Tβ] = ckγβXk + cαγβTα.

Remark 3.6. This is always the case locally.

Then using the basic grading and connection we have

a) VM is normal if and only if ckiβ = −cikβ.

b) g is strictly normal if and only if cαiβ = −cβiα and ckiβ = −cikβ.

c) g is vertically rigid if and only if
∑
cβiβ = 0.

And if a), b), c) hold then we have

d) ∇XiXj = 1
2
(ckij + cjki + cikj)Xk, Tor(Xi, Xj) = −cαijTα,

e) ∇TβXj = 1
2
(cjkβ − ckjβ)Xk,

f) ∇XjTβ = 1
2
(cαjβ − c

β
jα)Tα,

g) ∇TγTβ = 1
2
(cαγβ + cβαγ + cγαβ)Tα, Tor(Tγ, Tβ) = −ckγβXk,

h) Tor(Xj, Tβ) = −1
2
(cjkβ + ckjβ)Xk − 1

2
(cαjβ + cβjα)Tα.
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Proof. We begin by observing that

[Xi, Xj] = ckijXk + cαijTα,

[Xj, Xi] = ckjiXk + cαjiTα,

If we add these equations we get, due to the cancelation of Lie brackets:

ckij = ckji,

cαij = cαji.

Furthermore, we observe

[Tγ, Tβ] = ckγβXk + cαγβTα,

[Tβ, Tγ] = ckβγXk + cαβγTα.

and therefore

ckγβ = cαγβ,

cαβγ = cαβγ.

We will use the aforementioned relations below.

For part a) of the example we have that the normality of VM is equivalent
to B(0)(Xi, Xj, Tβ) = 0. We have

0 = B(0)(Xi, Xj, Tβ)

= Tβg(Xi, Xj) + g([Xi, Tβ], Xj) + g([Xj, Tβ], Xi)

= 0 + g(ckiβXk + cαiβTα, Xj) + g(crjβXr + cmjβTm, Xi)

= ckiβg(Xk, Xj) + crjβg(Xr, Xi)

= ckiβδ
k
j + crjβδ

r
i ,

where δ is the Kronecker delta.
If we sum over k and r the last equation is equivalent to

ckiβ + cijβ = 0,

where k = j and r = i. Therefore it is equivalent to

ckiβ + cikβ = 0,
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which is what was required.
For part b) of the example we have that g is strictly normal if and only if

B(0)(Xi, Xj, Tβ) = 0

and
B(1)(Tβ, Tγ, Xi) = 0.

The second condition of part b) can be obtained from part a). For the other
condition we have

0 = B(1)(Tβ, Tγ, Xi)

= Xig(Tβ, Tγ) + g([Tβ, Xi], Tγ) + g([Tγ, Xi], Tβ)

= 0− g(ckiβXk + cαiβTα, Tγ)− g(criγXr + cmiγTm, Tβ)

= −cαiβg(Tα, Tγ)− cmiγg(Tm, Tβ)

= −cαiβδαγ − cmiγδmβ ,

where δ is again the Kronecker delta.
If we sum over α and m the last equation is equivalent to

cαiβ + cmiγ = 0,

where γ = α and m = β.
Therefore it is equivalent to

cαiβ + cβiα = 0,

which is what was required.

For part c) of the example we have that g is vertically rigid if and only if∑
i,β

(B(1)(Tβ, Tβ, Xi)) = 0.

We have

B(1)(Tβ, Tβ, Xi) = 0 + g([Tβ, Xi], Tβ) + g([Tβ, Xi], Tβ)

= 2g([Tβ, Xi], Tβ)

= −2g(ckiβXk + cαiβTα, Tβ)

= −2cαiβg(Tα, Tβ)

= −2cαiβδ
α
β .
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The required formula is now obtained after we take sums.

To prove d) we write:

∇XY =
∑
k

< ∇XY,Xk > Xk.

Then Koszul’s Formula gives:

2 < ∇XiXj, Xk > = Xk < Xi, Xj > +Xj < Xk, Xi > −Xk < Xi, Xj >

− < Xi, [Xj, Xk] > − < Xj, [Xi, Xk] > + < Xk, [Xi, Xj] >

= − < Xi, c
λ
jkXλ + cαjkT

α > − < Xj, c
s
ikXs + cβikT

β >

+ < Xk, c
m
ijXm + cγijT

γ >

= −cλjkδλι − csikδsj + cmij δ
m
k .

Summing up, we have

−cλjk − csik + cmij = cjik + cikj + ckij = ckij + cjki + cikj

and if we divide by 2 we get the required result.

This formula is used in order to find the torsion part of this point. We
have

Tor(Xi, Xj) = ∇XiXj −∇XjXi − [Xi, Xj]

=
1

2
(ckij + cjki + cikj)Xk −

1

2
(ckji + cikj + cikj)Xk − (ckijXk + cαijTα)

= −(cikj + ckij)Xk − cαijTα = cαijTα.

For part e) we make use of the following formula:

∇TY = [T, Y ]j +
1

2
C(j)(Y, T ),

used in the proof of Lemma 3.1.

We have

∇TβXj = [Tβ, Xj]h +
1

2
C(h)(Xj, Tβ).
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We also have

< [Tβ, Xj]h, Xk >= − < [Xj, Tβ], Xk >

= − < crjβXr + cmjβTm, Xk >

= −crjβδrk,

as well as

< C(h)(Xj, Tβ), Xk >= B(h)(Xj, Xk, Tβ)

= Tβg(Xj, Xk) + g([Xj, Tβ], Xk) + g([Xk, Tβ], Xj)

= 0 + g(cmjβXm + cqjβTq, Xk) + g(cskβXs + crkβTr, Xj)

= cmjβδ
m
k + cskβδ

s
j .

If we combine these two formulas we have

< [Tβ, Xj]h, Xk > +
1

2
< C(h)(Xj, Tβ), Xk > .

If we sum over β and j we obtain

< ∇TβXj, Xk >=< [Tβ, Xj]h+
1

2
C(h)(Xj, Tβ), Xk >= −ckjβ+

1

2
(cjkβ+ckjβ) =

1

2
(cjkβ−c

k
jβ),

which provides the desired result.

To prove the other points we use the same methods as used in the proof
of a), b), c), d) and e) and combining these with the new results that arise
as we progress.

To illustrate some important behavior, we shall highlight a particular case
of the previous example

Example 3.7. Let M be the 4 dimensional Carnot group of Example 2.3.2
of Chapter 2. Using the basic grading, we can easily compute that

∇XT = S − 1

2
S =

1

2
S,

∇XS = 0− 1

2
T = −1

2
T,

Tor(X, Y ) = −T,

Tor(X,T ) = −1

2
S,

Tor(X,S) = −1

2
T.
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All the other covariant derivatives of frame elements vanish.

Proof. We observe that

[X, Y ] = 0 ·X + 0 · Y + 1 · T + 0 · S,
[X,T ] = 0 ·X + 0 · Y + 0 · T + 1 · S,

therefore using the previously mentioned formulas, we have

∇XT =
1

2
(cα11 − c1

1α)Tα

=
1

2
(c1

11 − c1
11)T +

1

2
(c2

11 − c1
12)S

= 0 +
1

2
(1− 0)S =

1

2
S,

∇XS =
1

2
(cα12 − cα12)Tα

=
1

2
(c1

12 − c2
11)T +

1

2
(c2

12 − c2
12)S

=
1

2
(0− 1)T + 0 = −1

2
T,

Tor(X, Y ) = Tor(X1, X2)

= = cα11Tα

= −c1
11T1 − c2

11T2

= −1 · T + 0 = −T,

Tor(X,T ) = Tor(X1, T1)

= =
1

2
(c1
k1 + ck11)Xk −

1

2
(cα11 + c1

1α)Tα

= −1

2
(c1

11 + c1
11)X − 1

2
(c1

21 + c2
11)Y

= −1

2
(c1

11 + c1
11)T − 1

2
(c2

11 + c1
12)S

= −1

2
(0 + 0)X − 1

2
(1− 1)Y

= −1

2
(0 + 0)T − 1

2
(1 + 0)S

= −1

2
S,
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Tor(X,S) = Tor(X1, T2)

= =
1

2
(c1
k2 + ck12)Xk −

1

2
(cα12 + c2

1α)Tα

= −1

2
(c1

12 + c1
12)X − 1

2
(c1

21 + c2
12)Y

= −1

2
(c1

12 + c2
11)T − 1

2
(c1

12 + c2
12)S

= −1

2
(0 + 0)X − 1

2
(0 + 0)Y

= −1

2
(0− 1)T − 1

2
(0 + 0)S

= −1

2
T.

Remark 3.8. That the basic covariant derivatives of the natural vertical
frame do not vanish is typical of non-step 2 Carnot groups.

Remark 3.9. However, if we use the more refined 2-grading, then all covari-
ant derivatives of the frame elements vanish and the only non-trivial behavior
occurs in the torsion.

Proof. We calculate with the fomrulas mentioned in the first lemma that all
the covariant derivatives vanish.Then we have

Tor(2)(X, Y ) = −[X, Y ] = −T,
Tor(2)(X,T ) = −[X,T ] = −S,
Tor(2)(X,S) = −[X,S] = 0.

Example 3.10. Let M = R4 with the following global orthonormal frames
for HM and VM

X =
∂

∂x
,

Y =
∂

∂y
+ sinx

∂

∂t
− cosx

∂

∂s
,

T = cosx
∂

∂t
+ sinx

∂

∂s
,

S = − sinx
∂

∂t
+ cosx

∂

∂s
.
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Then we calculate

[X, Y ] = T = −[X,S],

[X,T ] = S,

with all other Lie brackets vanishing.

It is then possible to check that this is a strictly normal extension for the
basic grading and that the only non-trivial covariant derivatives are then
∇XT = S and ∇XS = T . This is an example of a flat, equiregular, strictly
normal SRC-manifold with step greater than 2.

Example 3.11. Let (M,J, ω) be a strictly pseudoconvex pseudohermitian
manifold.

Recall Example 2.19, from which we now continue our work.

We introduce the following definition:

Definition 3.12. The Tanaka-Webster connection is a unique connection
such that:

a) ω, dω and J are parallel

and the torsion satisfies

b) Tor(X, Y ) = dω(X, Y )T ,

c) Tor(T, JX) = −JTor(T,X),

where X, Y are horizontal.

For the existence and the uniqueness of the Tanaka-Webster connection
see [8] (Mainly Proposition 3.1 page 29).

The only defining property of the basic connection not clearly satisfied
by the Tanaka-Webster connection is torsion symmetry, which we will now
prove.
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Proof. But if we choose X, Y as any horizontal vector fields then the Jacobi
identity and [T,HM ] ⊂ HM implies

0 = ω([T, [X, JY ]] + [JY, [T,X]] + [X, [JY, T ]])

and we also have

−T < X, Y > + < [T,X], Y > − < [JY, T ], JX >

= −T < X, Y > + < [T,X], Y > − < [−X,T ],−Y >

= −T < X, Y > +2 < [T,X], Y >

= −T (dω(X, JY ) + ω(X)ω(Y ))

+2(dω([T,X], Y ) + ω([T,X])ω(Y ))

= 0 + 2(dω([T,X], Y ) + 0)

= 2(([T,X])ω(Y )− Y ω([T,X])− ω([[T,X], Y ])

= 2(0− 0− 0)

= 0.

For this reason

0 = ω([T, [X, JY ]] + [JY, [T,X]] + [X, [JY, T ]])

= −T < X, Y > + < [T,X], Y > − < [JY, T ], JX >

= − < ∇TX, Y > − < ∇TY,X > + < [T,X], Y > − < [JY, T ], JX >

= − < Tor(T,X), Y > − < J∇TY, JX > − < [JY, T ], JX >,

keeping in mind that due to the third part of the definition of the connection
< ∇XT, Y >= 0 and because (∇XJ)Y = 0,∀J is equivalent to

< (∇XJY ), Z >=< J(∇XY ), Z >,

we obtain

− < Tor(T,X), Y > − < J∇TY, JX > − < [JY, T ], JX >

= − < Tor(T,X), Y > + < X,∇TY > + < ∇TJY, JX >

− < Tor(T, JY ), JX >

= − < Tor(T,X), Y > − < Tor(T, JY ), JX > .

From the definition of Tanaka-Webster connection we have

− < Tor(T,X), Y > + < Tor(T, Y ), X >= 0,
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which implies
< Tor(T,X), Y >=< Tor(T, Y ), X > .

Thus the Tanaka-Webster connection satisfies the requirements of the basic
connection.

For more information about these kind of structures see [8], [9], [10] and
[21].



Chapter 4

Curvature and the Bianchi
Identities

In Chapter 4 we start with the definitions of Sub-Riemannian curvature and
also set KS, a type of sectional curvature. We then introduce the definitions
of a horizontally and vertically flat and flat extension and examples for each
case. We define a cyclic permutation of F as S, as well as torsion of second-
order. We continue with Symmetries of the Curvature Tensor, which are
proved and Bianchi Identities such as the Algebraic Bianchi Identity, along
with properties, as well as the Horizontal Bianchi Identity with the corre-
sponding proofs. We then present a Corollary, which is another symmetry
of the KS, which is proved and used in the rest of the text. Furthermore,
we define the Covariant derivative and we present and prove the Differential
Horizontal Bianchi Identity.

43
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4.1 Curvature Tensor and Sectional Curva-

ture

The Sub-Riemannian curvature tensor for a SRC-manifold with extension g
is defined by

R(A,B)C = ∇A∇BC −∇B∇AC −∇[A,B]C,

where ∇ is the basic connection.
We also set

KS(A,B,C,D) =< R(A,B)C,D > .

We note that for any vectors A,B ∈ TM , the restriction of the (1, 1)-tensor
R(A,B) to HM is independent of the choice of extension g.
This definition immediately yields notions of flatness in Sub-Riemannian Ge-
ometry.

Definition 4.1. 1. We say that anM is horizontally flat ifKS(·, ·, HM, ·) =
0, for any extension g.

2. We say that a particular extension is vertically flat if KS(·, ·, V M, ·) =
0.

3. We say that a particular extension is flat if KS = 0.

Remark 4.2. A SRC-manifold is horizontally flat if and only if in a neigh-
borhood of every point p ∈ M there is a local orthonormal frame {Ei} for
HM such that ∇Ei = 0. If HM is integrable, this local frame can be chosen
to be a coordinate frame.

A similar result holds for a vertically flat extension g and VM .

Proof. The proof of this Remark follows the lines of the proof of [7] (Specif-
ically, Theorem 7.3 page 89).

Example 4.3. Every step r Carnot group is horizontally flat for the basic
grading and flat for the (r − 1)-grading. The SRC-manifolds considered in
Example 2.3.2 and Example 3.10 are both flat.
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Proof. The result can be obtained through the computation that has already
been made in the examples.

For convenience of notation, it is useful to define the following

Definition 4.4. If S is any set and F : Sk 7→ L is any map into a vector
space L, we define SF to be the sum of all cyclic permutations of F . For
example if k = 3, then

SF (X, Y, Z) = F (X, Y, Z) + F (Y, Z,X) + F (Z,X, Y ).

Remark 4.5. An example of the cyclic construction in action is a compressed
form of the Jacobi identity for vector fields, namely S([X, [Y, Z]]) = 0. We
shall use it primarily to efficiently describe symmetries of the curvature ten-
sor.

Definition 4.6. The second-order torsion of ∇ is the (3,1)-tensor

Tor2(A,B,C) = Tor(A,Tor(B,C)).

We are now in a position to discuss the fundamental questions of curvature
symmetries. Many of the properties of the Riemannian curvature tensor go
through unchanged, with exactly the same proof.

4.2 Symmetries of the Curvature Tensor

Lemma 4.7. The Sub-Riemannian curvature tensor has the following sym-
metries

1. KS(A,B,C,D) = −KS(A,B,D,C).

2. KS(A,B,C,D) = −KS(B,A,C,D).

3. KS(TM, TM,HM,VM) = 0.
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Proof. The two first symmetries are a reproduction of the Riemannian cur-
vature proofs contained in any text on Riemannian geometry (For example
see [13] page 91 Proposition 2.5).

The third equality arises from the fact that we have an inner product (on
the horizontal bundle) of the form < ·, Q >,Q ∈ VM , therefore it is zero
due to the fact that:

KS(X, Y, Z,W ) =< R(X, Y )Z,W >

=< ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,W >

= 0.

However, many symmetry properties of the Riemannian curvature tensor
require additional assumptions in the Sub-Riemannian case. Most of these
symmetries are naturally related to the Bianchi Identities.

4.3 Bianchi Identities

4.3.1 Algebraic Bianchi Identities

We will need some preliminaries first:

Remark 4.8. The following hold:

Tor(A,B + C) = Tor(A,B) + Tor(A,C),

Tor(A,−B) = Tor(−A,B) = −Tor(A,B) = Tor(B,A).

Proof. The proof follows from the linearity property of connections.

Lemma 4.9. For any vector fields X, Y, Z,

SR(X, Y )Z = −STor2(X, Y, Z) + S(∇Tor(X, Y, Z)).

Where ∇Tor(X, Y, Z) = ∇ZTor(X, Y ).

Furthermore:
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1. If X, Y, Z ∈ V (j) then

S(∇Tor(X, Y, Z)) ∈ V̂ (j).

2. If X, Y, Z ∈ V (j) and the grading is j-normal, then

−STor2(X, Y, Z) ∈ V̂ (j).

3. If X, Y, Z ∈ V (j) and the grading is j-normal and V̂ (j) is integrable
then

−STor2(X, Y, Z) ∈ V̂ (j).

Proof. The equality is proven as follows:

SR(X, Y )Z = S(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z).

From the definition of S and its linearity this is equal to:

S(∇Z∇XY −∇Z∇YX −∇[X,Y ]Z)

= S(∇Z(∇XY −∇YX)−∇[X,Y ]Z).

Also, from the definition of torsion this is equal to:

S(∇Z([X, Y ] + Tor(X, Y ))−∇[X,Y ]Z)

= S((∇Z [X, Y ]−∇[X,Y ]Z) +∇ZTor(X, Y )).

Again from the definition of torsion this is equal to:

S([Z[X, Y ]] + Tor(Z, [X, Y ]) +∇ZTor(X, Y )) := A.

From the Jacobi identity we have:

S([Z[X, Y ]]) = [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

We also have from the definition of the covariant derivative that:

(∇Tor)(X, Y, Z) = (∇ZTor)(X, Y ) = ∇ZTor(X, Y )−Tor(∇ZX, Y )−Tor(X,∇ZY )

and therefore if we apply S and use it’s linearity we have

S(Tor(∇ZX, Y ) + Tor(X,∇ZY ) + (∇ZTor)(X, Y )) = S(∇ZTor(X, Y )),
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where we keep in mind that (∇ZTor)(X, Y ) = (∇Tor)(X, Y, Z).

Now we continue the work from A taking into consideration the above
arguments:

A = S(Tor(Z, [X, Y ])+Tor(∇ZX, Y )+Tor(X,∇ZY ))+S(∇Tor)(X, Y, Z) := B

Therefore we have, due to the aforementioned Remark 4.8:

S(Tor(Z, [X, Y ]−∇XY +∇YX))

= S(Tor(Z, [X, Y ]) + Tor(Z,−∇XY ) + Tor(Z,∇YX))

= S(Tor(Z, [X, Y ]) + Tor(∇ZX, Y ) + Tor(X,∇ZY )).

We now combine the previously mentioned results and continue from B:

B = S(Tor(Z, [X, Y ] +∇XY −∇YX)) + S(∇Tor)(X, Y, Z),

from the definition of the torsion and the torsion of second order we have

= −STor2(X, Y, Z) + S(∇Tor)(X, Y, Z),

which was the desired equality.

The other assertions in the lemma occur from analysing the terms STor2

and S(∇Tor). Since both of them are tensorial, we can compute using normal
and semi-normal frames.

1. First let X, Y, Z be elements of a seminormal frame for V (j) at p then

S(∇Tor)(X, Y, Z) = S((∇ZTor)(X, Y )) = S((∇XTor)(Y, Z))

= S(∇XTor(Y, Z)− Tor(∇XY, Z)− Tor(Y,∇XZ)).

But we know that each torsion part belongs in V̂ (j). Due to the fact
that this is bundle parallel, we have obtained part 1 of the lemma.

2. We now proceed to part 2 of lemma. We operate under the assump-
tion that the frame is j-normal and be able to use a normal frame
at p. If X is an element of this frame then Tor(X,TM) ⊂ V̂ (j) then

Tor(Z,Tor(X, Y )) ⊂ V̂ (j) is of the form Tor(X,TM) where X ∈ V (j).
Therefore part 2 is proven.
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3. For the last part of the lemma we have assumed j-normal grading and
integrability of V̂ (j) and for X, Y ∈ V (j) and Z arbitrary we have

STor2(X, Y, Z) = STor(X,Tor(Y, Z))

= Tor(X,Tor(Y, Z)) + Tor(Y,Tor(Z,X)) + Tor(Z,Tor(X, Y ))

= Tor(Z,Tor(X, Y )).

However we have that

(Tor(Z,Tor(X, Y )))j

= (∇Z(Tor(X, Y ))−∇Tor(X,Y )Z − [Z,Tor(X, Y )])j

= (−[Z,Tor(X, Y )])j = −[Zĵ,Tor(X, Y )]j = 0,

because V̂ (j) is integrable. Therefore we have proved the lemma.

4.3.2 Horizontal Algebraic Biachi Identity

Corollary 4.10. If X, Y, Z,W are horizontal vector fields and VM is normal,
then

< SR(X, Y )Z,W >= 0.

If VM is also integrable, then this can be relaxed to any three of X, Y, Z,W
horizontal.

Proof. If we combine the previous Lemma 4.9 with the given condition we
have

SR(X, Y )Z = −STor2(X, Y, Z) + S(∇Tor(X, Y, Z)),

S(∇Tor(X, Y, Z)) ∈ V̂ (j),

−STor2(X, Y, Z) ∈ V̂ (j),

in any of the cases mentioned. But W is horizontal in the first case so

< SR(X, Y )Z,W >=< −STor2(X, Y, Z) + S(∇Tor(X, Y, Z)),W >

=< −STor2(X, Y, Z),W > + < S(∇Tor(X, Y, Z)),W >

= 0.
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The most difficult case that may present is if X, Y, Z are given horizontal
and W arbitrary. Then we have

SR(X, Y )Z = −STor2(X, Y, Z) + S(∇Tor(X, Y, Z)) = 0 + 0 = 0.

Therefore the inner product is again zero.

Corollary 4.11. If VM is normal and X, Y, Z,W are horizontal vector fields
then

KS(X, Y, Z,W ) = KS(Z,W,X, Y ).

If VM is also integrable, then this can be relaxed to any three of X, Y, Z,W
horizontal.

Proof. Using the Lemma 4.7 about the symmetries of the curvature tensor
and the Horizontal Algebraic Bianchi Identity that was shown above, we have

KS(X, Y, Z,W ) +KS(Y, Z,X,W ) +KS(Z,X, Y,W ) =< SR(X, Y )Z,W >,

KS(Y, Z,W,X) +KS(Z,W, Y,X) +KS(W,Y, Z,X) =< SR(Y, Z)W,X >,

KS(Z,W,X, Y ) +KS(W,X,Z, Y ) +KS(X,Z,W, Y ) =< SR(Z,W )X, Y >,

KS(W,X, Y, Z) +KS(X, Y,W,Z) +KS(Y,W,X,Z) =< SR(W,X)Y, Z >,

combined with these two relations from Lemma 4.7

KS(X, Y, Z,W ) = −KS(X, Y,W,Z),

KS(X, Y, Z,W ) = −KS(Y,X,Z,W ).

We see that due to Corollary 4.10 the first four equations are equal to zero.
Also the first 4 equations if added have the terms of the first two columns
canceled out giving us combined again with the two relations from Lemma
4.9 that

KS(Z,X, Y,W ) +KS(W,Y, Z,X) +KS(X,Z,W, Y ) +KS(Y,W,X,Z)

= S < SR(X, Y )Z,W >,

is equivalent to

KS(Z,X, Y,W )−KS(Y,W,Z,X) +KS(X,Z,W, Y )−KS(Y,W,Z,X)

= S < SR(X, Y )Z,W >,
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which give us

2KS(Z,X, Y,W )− 2KS(Y,W,Z,X) = S < SR(X, Y )Z,W > .

If we use the Horizontal Algebraic Bianchi Identity we see that the right
hand side of the last relation is zero, therefore we have that the following is
equivalent

2KS(Z,X, Y,W )− 2KS(Y,W,Z,X) = S < SR(X, Y )Z,W >,

with
2KS(Z,X, Y,W )− 2KS(Y,W,Z,X) = 0,

which in turn is equivalent to

KS(Z,X, Y,W ) = KS(Y,W,Z,X).

Which is the desired equality.

4.3.3 Differential Horizontal Bianchi Identities

Definition 4.12. The covariant derivative for a horizontal (p, r) tensor A
field on M is defined as follows:

(∇XA)(ω1, . . . , ωp, hX1, . . . , hXr) = X(A(ω1, . . . , ωp, hX1, . . . , hXr))

−
p∑
i=1

A(ω1, . . . ,∇Xωi, . . . , ωp, hX1, . . . , hXr)

−
r∑
j=1

A(ω1, . . . , ωp, hX1, . . . ,∇XhXj, . . . , hXr).

Lemma 4.13. 1. For any vector fields X, Y, Z,W

S((∇WR)(X, Y )))Z = S(R(Tor(X,W ), Y ))Z.

2. If VM is normal and integrable and X, Y, Z,W, V ∈ HM then

(∇KS)(X, Y, Z,W, V )+(∇KS)(X, Y,W, V, Z)+(∇KS)(X, Y, V, Z,W ) = 0.
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Proof. To prove our first equality, we observe first that

(∇WR)(X, Y )Z = ∇W (R(X, Y ))Z −R(∇WX, Y )Z

−R(X,∇WY )Z −R(X, Y )∇WZ

= [∇W , R(X, Y )]Z −R(∇WX, Y )Z −R(X,∇WY )Z.

Due to the linearity of S and by using the Jacobi Identity

S([∇X , [∇Y ,∇Z ]]) = 0,

we have

S((∇WR)(X, Y ))Z = S([∇W , R(X, Y )])Z −S(R(∇WX, Y ))Z

−S(R(X,∇WY ))Z.

Due to the fact that
R(X, Y ) = −R(Y,X)

and
R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] = [∇X ,∇Y ]−∇[X,Y ],

we have

S((∇WR)(X, Y ))Z = S([∇W , [∇X ,∇Y ]−∇[X,Y ]])Z

−S(R(∇WX, Y ))Z

+S(R(∇WY,X))Z.

Using the definition of S and the Jacobi Identity we have

S((∇WR)(X, Y ))Z = S([∇W [∇X ,∇Y ]])−S([∇W ,∇[X,Y ]])Z

−S(R(∇WX, Y ))Z + S(R(∇XW,Y ))Z.

We now use the linearity properties of R and of S as well as the definition
of torsion we will obtain Using the definition of S and the Jacobi Identity
we have

S((∇WR)(X, Y ))Z = −S([∇W ,∇[X,Y ]])Z + S(R(∇XW −∇WX, Y ))Z

= −S([∇W ,∇[X,Y ]])Z + S(R([X,W ] + Tor(X,W ), Y ))Z

= −S([∇W ,∇[X,Y ]])Z + S(R([X,W ], Y ) + S(R(Tor(X,W ), Y ))Z.
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However we have

R([X,W ], Y ) = ∇[X,W ]∇Y −∇Y∇[X,W ] −∇[[X,W ],Y ]

and now if we apply S we have the Jacobi identity, due to linearity of the
connections we have S(∇[[X,W ],Y ]) = 0 combined with the fact that we have

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]

and therefore

−S([∇W ,∇[X,Y ]])Z + S(R([X,W ], Y ) + S(R(Tor(X,W ), Y ))Z

= −S([∇W ,∇[X,Y ]])Z + S([∇[X,W ],∇Y ]−∇[[X,W ],Y ])

+S(R(Tor(X,W ), Y ))Z

= −S([∇W ,∇[X,Y ]])Z + S([∇[X,W ],∇Y ]) + S(R(Tor(X,W ), Y ))Z

and by using the definition of S we have

= −S([∇W ,∇[X,Y ]])Z + S([∇[Y,X],∇W ]) + S(R(Tor(X,W ), Y ))Z

= −S([∇W ,∇[X,Y ]])Z + S([∇W ,∇[X,Y ]])Z + S(R(Tor(X,W ), Y ))Z

= S(R(Tor(X,W ), Y ))Z.

We want to prove

0 = (∇KS)(X, Y, Z,W, V ) + (∇KS)(X, Y,W, V, Z) + (∇KS)(X, Y, V, Z,W ),

which is equivalent to

0 = (∇VK
S)(X, Y, Z,W ) + (∇ZK

S)(X, Y,W, V ) + (∇WK
S)(X, Y, V, Z).
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By using the Definition 4.12 of the Covariant derivative we have

0 = (∇VK
S)(X, Y, Z,W ) + (∇ZK

S)(X, Y,W, V ) + (∇WK
S)(X, Y, V, Z)

= (∇V (KS(X, Y, Z,W ))−KS(∇VX, Y, Z,W )−KS(X,∇V Y, Z,W )

−KS(X, Y,∇VZ,W )−KS(X, Y, Z,∇VW ))

+(∇Z(KS(X, Y,W, V ))−KS(∇ZX, Y,W, V )−KS(X,∇ZY,W, V )

−KS(X, Y,∇ZW,V )−KS(X, Y,W,∇ZV ))

+(∇W (KS(X, Y, V, Z))−KS(∇WX, Y, V, Z)−KS(X,∇WY, V, Z)

−KS(X, Y,∇WV, Z)−KS(X, Y, V,∇WZ))

= ∇V (KS(X, Y, Z,W )) +∇Z(KS(X, Y,W, V )) +∇W (KS(X, Y, V, Z))

−(KS(X,∇V Y, Z,W ) +KS(X,∇ZY,W, V ) +KS(X,∇WY, V, Z))

−(KS(X, Y,∇VZ,W ) +KS(X, Y,W,∇ZV ) +KS(X, Y,∇ZW,V )

+KS(X, Y, V,∇WZ) +KS(X, Y, Z,∇VW ) +KS(X, Y,∇WV, Z))

−(KS(∇VX, Y, Z,W ) +KS(∇ZX, Y,W, V ) +KS(∇WX, Y, V, Z))

and by the compatibility of the metric, after applying Corollary 4.7, Corollary
4.11, the definition of KS and use it’s linearity we have

∇V (KS(X, Y, Z,W )) +∇Z(KS(X, Y,W, V )) +∇W (KS(X, Y, V, Z))

−(KS(X,∇V Y, Z,W ) +KS(X,∇ZY,W, V ) +KS(X,∇WY, V, Z))

−(KS(X, Y,∇VZ,W ) +KS(X, Y,W,∇ZV ) +KS(X, Y,∇ZW,V )

+KS(X, Y, V,∇WZ) +KS(X, Y, Z,∇VW ) +KS(X, Y,∇WV, Z))

−(KS(∇VX, Y, Z,W ) +KS(∇ZX, Y,W, V ) +KS(∇WX, Y, V, Z))

= ∇V (KS(Z,W,X, Y )) +∇Z(KS(W,V,X, Y )) +∇W (KS(V, Z,X, Y ))

−(KS(Z,W,X,∇V Y ) +KS(W,V,X,∇ZY ) +KS(V, Z,X,∇WY ))

−(KS(∇VZ,W,X, Y ) +KS(W,∇ZV,X, Y ) +KS(∇ZW,V,X, Y )

+KS(V,∇WZ,X, Y ) +KS(∇WV, Z,X, Y ) +KS(Z,∇VW,X, Y ))

−(KS(Z,W,∇VX, Y ) +KS(W,V,∇ZX, Y ) +KS(V, Z,∇WX, Y ))
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∇V (KS(Z,W,X, Y )) +∇Z(KS(W,V,X, Y )) +∇W (KS(V, Z,X, Y ))

−(KS(Z,W,X,∇V Y ) +KS(W,V,X,∇ZY ) +KS(V, Z,X,∇WY ))

−(KS(∇VZ,W,X, Y ) +KS(W,∇ZV,X, Y ) +KS(∇ZW,V,X, Y )

+KS(V,∇WZ,X, Y ) +KS(∇WV, Z,X, Y ) +KS(Z,∇VW,X, Y ))

−(KS(Z,W,∇VX, Y ) +KS(W,V,∇ZX, Y ) +KS(V, Z,∇WX, Y ))

= (∇V (< R(Z,W )X, Y >) +∇Z(< R(W,V )X, Y ) >)

+∇W (< R(V, Z)X, Y >))

−(KS(Z,W,X,∇V Y ) +KS(W,V,X,∇ZY ) +KS(V, Z,X,∇WY ))

−(KS(Tor(V, Z) + [V, Z],W,X, Y ) +KS(Tor(Z,W ) + [Z,W ], V,X, Y )

+KS(Tor(W,V ) + [W,V ], Z,X, Y ))

−(KS(Z,W,∇VX, Y ) +KS(W,V,∇ZX, Y ) +KS(V, Z,∇WX, Y ))

= (< ∇V (R(Z,W )X), Y > + < ∇Z(R(W,V )X), Y > + < ∇W (R(V, Z)X), Y >

+(KS(Z,W,X,∇V Y ) +KS(W,V,X,∇ZY ) +KS(V, Z,X,∇WY ))

−(KS(Z,W,X,∇V Y ) +KS(W,V,X,∇ZY ) +KS(V, Z,X,∇WY ))

−(KS(Tor(V, Z),W,X, Y ) +KS([V, Z],W,X, Y )

+KS(Tor(Z,W ), V,X, Y ) +KS([Z,W ], V,X, Y )

+KS(Tor(W,V ), Z,X, Y ) +KS([W,V ], Z,X, Y ))

−(KS(Z,W,∇VX, Y ) +KS(W,V,∇ZX, Y ) +KS(V, Z,∇WX, Y ))

=< ∇V (R(Z,W )X), Y > + < ∇Z(R(W,V )X), Y > + < ∇W (R(V, Z)X), Y >

−(KS(Tor(V, Z),W,X, Y ) +KS(Tor(Z,W ), V,X, Y ) +KS(Tor(W,V ), Z,X, Y )

+KS([V, Z],W,X, Y ) +KS([Z,W ], V,X, Y ) +KS([W,V ], Z,X, Y ))

−(KS(Z,W,∇VX, Y ) +KS(W,V,∇ZX, Y ) +KS(V, Z,∇WX, Y ))

=< ∇V (R(Z,W )X), Y > + < ∇Z(R(W,V )X), Y > + < ∇W (R(V, Z)X), Y >

−(< R(Tor(V, Z),W )X, Y > + < R(Tor(Z,W ), V )X, Y )+ < R(Tor(W,V ), Z)X, Y >

+ < R([V, Z],W )X, Y > + < R([Z,W ], V )X, Y > + < R([W,V ], Z)X, Y ) >)

−(< R(Z,W )∇VX, Y > + < R(W,V )∇ZX, Y > + < R(V, Z)∇WX, Y >),
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or using the symbol S and the definition and linearity of KS we have

< ∇V (R(Z,W )X), Y > + < ∇Z(R(W,V )X), Y > + < ∇W (R(V, Z)X), Y >

−(< R(Tor(V, Z),W )X, Y > + < R(Tor(Z,W ), V )X, Y )+ < R(Tor(W,V ), Z)X, Y >

+ < R([V, Z],W )X, Y > + < R([Z,W ], V )X, Y > + < R([W,V ], Z)X, Y ) >)

−(< R(Z,W )∇VX, Y > + < R(W,V )∇ZX, Y > + < R(V, Z)∇WX, Y >)

=< (S(∇V (R(Z,W ))))X, Y > −(< (S(R(Tor(V, Z),W )))X, Y >)

−(< (S(R([V, Z],W )))X, Y >)− (< (S(R(Z,W )∇V ))X, Y >),

which is equivalent to

< (S(∇V (R(Z,W ))−R(Tor(V, Z),W )

−R([V, Z],W )−R(Z,W )∇V ))X, Y > .

We now focus on

S(∇V (R(Z,W ))−R(Tor(V, Z),W )−R([V, Z],W )−R(Z,W )∇V ).

We have

S(∇V (R(Z,W ))) = S(∇V∇Z∇W −∇V∇W∇Z −∇V∇[Z,W ]),

S(R([V, Z],W )) = S(∇[V,Z]∇W −∇W∇[V,Z] −∇[[V,Z],W ]),

S(R(Z,W )∇V ) = S(∇Z∇W∇V −∇W∇Z∇V −∇[Z,W ]∇V ).

If we subtract the two last equations from the first and keep in mind the
linearity of S we have

S(∇V (R(Z,W ))−R([V, Z],W )−R(Z,W )∇V )

= S(∇V (R(Z,W )))−S(R([V, Z],W ))−S(R(Z,W )∇V )

= S(∇V∇Z∇W −∇V∇W∇Z −∇V∇[Z,W ])

−S(∇[V,Z]∇W −∇W∇[V,Z] −∇[[V,Z],W ])

−S(∇Z∇W∇V −∇W∇Z∇V −∇[Z,W ]∇V )

= (S(∇V∇Z∇W )−S(∇Z∇W∇V ))− (S(∇V∇W∇Z)−S(∇W∇Z∇V ))

−(S(∇V∇[Z,W ])−S(∇W∇[V,Z]))− (S(∇[V,Z]∇W )−S(∇[Z,W ]∇V ))

+(S(∇[[Z,V ],W ]))

= 0− 0− 0− 0 + 0

= 0.
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Therefore we obtained

S(∇V (R(Z,W ))−R([V, Z],W )−R(Z,W )∇V ) = 0.

For this reason we have

< (S(∇V (R(Z,W ))−R(Tor(V, Z),W )

−R([V, Z],W )−R(Z,W )∇V ))X, Y >

=< (S(−R(Tor(V, Z),W ))X, Y > .

If we recall Remark 4.8, where some properties of Torsion are described, we
have

Tor(V, Z) = −Tor(Z, V )

and therefore the equation above is equal to

< (S(R(Tor(Z, V ),W ))X, Y > .

We now make the following observation by using Corollary 4.11

< R(Tor(Z, V ),W )X, Y > = KS(Tor(Z, V ), X, Y )

= KS(X, Y,Tor(Z, V ),W ).

We also know from Lemma 3.1 that

Tor(V (j), V (j)) ⊂ V̂ (j)

and by part 1 and 3 of Corollary 4.7 that

KS(TM, TM,HM,VM) = 0 = KS(TM, TM, VM,HM).

In our case we have

< (S(R(Tor(Z, V ),W ))X, Y >= 0,

which proves the Lemma.
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Chapter 5

Ricci Curvature and Bochner
Formula

In Chapter 5 we begin by defining the Sub-Riemannian Ricci curvature and
the notion of the horizontal scalar curvature. We continue with some prop-
erties about Ricci curvature derived from previous results. We proceed to
the Contracted Bianchi Identity. We then define the horizontal gradient of
a tensor T , as well as the horizontal Hessian of T , the symmetric horizontal
Hessian T and the horizontal Laplacian of T . We also define vertical rigidity.
We then continue to a Lemma where equivalent forms of vertical rigidity
are presented and proved and use it to advance to a Lemma 5.10, where a
formula about the Laplacian is proved. The chapter is completed with the
proof of a Sub-Riemannian generalization of Bochner Formula.

5.1 Ricci Curvature and properties

We will investigate the Sub-Riemannian notion of the Ricci curvature and
create a geometrically defined horizontal Laplace operator. The relationship
between the horizontal Laplacian and Ricci curvature will be studied and in
the end the Sub-Riemannian version of Bonner-Myers theorem will be pre-
sented.

59
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Definition 5.1. 1. The Sub-Riemannian Ricci curvature of ∇ is defined
by

RicS(A,B) =
∑
k

KS(A,Xk, Xk, B),

where by Xk we denote any horizontal orthonormal frame.

2. We now introduce the notion of the horizontal scalar curvature that is
defined by

Sh = trhRicS =
∑
k

RicS(Xk, Xk).

Remark 5.2. 1. It should also be mentioned that the scalar curvature is
independent of the choice of extension g as is the Ricci curvature when
restriction to horizontal vector fields is made.

2. It should be mentioned that in general the Ricci curvature for the
canonical connection is not symmetric.

Despite the above remark, if we use Corollary 4.11 and other already men-
tioned properties of the connection, we have

Lemma 5.3. 1. If VM is normal and X, Y ∈ HM then

RicS(X, Y ) = RicS(Y,X).

2. If VM is normal and integrable then

RicS(VM,HM) = 0.

Proof. For the first part we have from the definition that

RicS(X, Y ) :=
∑
k

KS(X,Xk, Xk, Y ).

If we apply the Corollary 4.11 and then Lemma 4.7 we have∑
k

KS(X,Xk, Xk, Y ) =
∑
k

KS(Xk, Y,X,Xk) = −
∑
k

KS(Y,Xk, X,Xk)
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and if we apply the Lemma 4.7 again and use the definition we have

−
∑
k

KS(Y,Xk, X,Xk) =
∑
k

KS(Y,Xk, Xk, X) := RicS(Y,X)

and therefore

RicS(X, Y ) = RicS(Y,X).

For the second part we have from the definition that

RicS(U,X) :=
∑
k

KS(U,Ek, Ek, X)

and if we apply Lemma 4.7 twice we have∑
k

KS(U,Ek, Ek, X) = −
∑
k

KS(Ek, U, Ek, X) =
∑
k

KS(Ek, U,X,Ek)

and if we use Corollary 4.11 and the Lemma 4.7 after, we obtain∑
k

KS(Ek, U,X,Ek) =
∑
k

KS(X,Ek, Ek, U) = 0,

due to the fact that KS is of the form KS(TM, TM,HM,VM) = 0 and
therefore

RicS(U,X) = 0,

which was the desired result.

Lemma 5.4. Suppose VM is normal and integrable, then for all horizontal
vectors X

∇XSh = 2
∑

(∇RicS)(Ej, X,Ej),

where Ei is an orthonormal frame for HM . Equivalently,

∇Sh = 2trh(∇RicS).

Proof. Let X be any element of a normal frame at p. We recall the Differ-
ential Bianchi Identity

(∇VK
S)(X, Y, Z,W ) + (∇ZK

S)(X, Y,W, V ) + (∇WK
S)(X, Y, V, Z) = 0.
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We apply the Differential Bianchi Identity to Ei, Ej, Ej, Ei, X and sum over
i and j. We have

(∇XK
S)(Ei, Ej, Ej, Ei)+(∇EjK

S)(Ei, Ej, Ei, X)+(∇EiK
S)(Ei, Ej, X,Ej) = 0.

If we expand we obtain

(∇XK
S)(Ei, Ej, Ej, Ei) + (∇EjK

S)(Ei, Ej, Ei, X) + (∇EiK
S)(Ei, Ej, X,Ej)

= ∇X(KS(Ei, Ej, Ej, Ei))−KS(∇XEi, Ej, Ej, Ei)−KS(Ei,∇XEj, Ej, Ei)

−KS(Ei, Ej,∇XEj, Ei)−KS(Ei, Ej, Ej,∇XEi)

∇Ej(K
S(Ei, Ej, Ei, X))−KS(∇EjEi, Ej, Ei, X)−KS(Ei,∇EjEj, Ei, X)

−KS(Ei, Ej,∇EjEi, X)−KS(Ei, Ej, Ei,∇EjX)

+∇Ei(K
S(Ei, Ej, X,Ej))−KS(∇EiEi, Ej, X,Ej)−KS(Ei,∇EiEj, X,Ej)

−KS(Ei, Ej,∇EiX,Ej)−KS(Ei, Ej, X,∇EiEj).

Furthermore, by applying the Lemma 4.7 we have

∇Ej(K
S(Ei, Ej, Ei, X))−KS(∇EjEi, Ej, Ei, X)−KS(Ei,∇EjEj, Ei, X)

−KS(Ei, Ej,∇EjEi, X)−KS(Ei, Ej, Ei,∇EjX)

= −∇Ej(K
S(Ej, Ei, Ei, X)) +KS(Ej,∇EjEi, Ei, X) +KS(∇EjEj, Ei, Ei, X)

+KS(Ej, Ei,∇EjEi, X) +KS(Ej, Ei, Ei,∇EjX)

= −(∇EjK
S)(Ej, Ei, Ei, X)

and by applying the Lemma 4.7 again we have

∇Ei(K
S(Ei, Ej, X,Ej))−KS(∇EiEi, Ej, X,Ej)−KS(Ei,∇EiEj, X,Ej)

−KS(Ei, Ej,∇EiX,Ej)−KS(Ei, Ej, X,∇EiEj)

= −∇Ei(K
S(Ei, Ej, Ej, X)) +KS(∇EiEi, Ej, Ej, X) +KS(Ei,∇EiEj, Ej, X)

+KS(Ei, Ej, Ej,∇EiX) +KS(Ei, Ej,∇EiEj, X)

= −(∇EiK
S)(Ei, Ej, Ej, X),

which means the sums over i, j of two last terms of the Identity are equal.
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Therefore we have∑
i,j

(∇EjK
S)(Ei, Ej, Ei, X) +

∑
i,j

(∇EiK
S)(Ei, Ej, X,Ej)∑

i,j

(∇EjK
S)(Ei, Ej, Ei, X) +

∑
j,i

(∇EjK
S)(Ej, Ei, X,Ei)

= −2
∑
i,j

(∇EjK
S)(Ej, Ei, Ei, X) = −2(∇EjRicS)(Ej, X)

= −2(∇RicS)(Ej, X,Ej).

We have ∑
i,j

(∇XK
S)(Ei, Ej, Ej, Ei) +

∑
i,j

(∇EjK
S)(Ei, Ej, Ei, X) +

+
∑
i,j

(∇EiK
S)(Ei, Ej, X,Ei) = 0,

which is equivalent to∑
i,j

(∇XK
S)(Ej, Ei, Ei, Ej)− 2(∇RicS)(Ej, X,Ej) = 0,

or in other words
∇XSh = 2(∇RicS)(Ej, X,Ej),

which was the desired formula.

For the next Corollary recall Remark 2.3.

Corollary 5.5. Suppose that M is a connected SRC-manifold such that
HM bracket generates, dim(HM) = d > 2 and that VM is normal and
integrable.

If RicS(X, Y ) = λ < X, Y > for all horizontal all vectors X, Y then λ must
be constant.

Proof. Let Ei be a normal frame at p ∈M . Then at p,

Sh =
∑
i

RicS(Ei, Ei) = λd.



Chapter 5. Ricci Curvature and Bochner Formula 64

Keeping in mind Corollary 4.11, we have

2trh(∇RicS)(Ej) = 2
∑
i,j

(∇EiRicS)(Ej, Ei) = 2
∑
i,j

(∇EiRicS)(Ei, Ej) = 2Ejλ.

Since EjSh = 2trh(∇RicS)(Ej), we must have d = 2 or Ejλ = 0. Therefore all
horizontal vector fields annihilate λ. As HM bracket generates, this imples
that λ is constant.

5.2 Operators

One of our purposes is to use Bochner type results to study the relationships
between curvature, geometry and topology on Sub-Riemannian manifolds.
To use this theory, we shall need a geometrically defined subelliptic Laplacian.

Definition 5.6. 1. For a tensor T, the horizontal gradient of T is defined
by

∇hT =
∑
i

∇EiT⊗ Ei,

where {Ei} is an orthonormal frame for HM . The gradients ∇Ej are

defined similarly for V (j).

2. The horizontal Hessian of T is defined by

∇2
hT(X, Y ) = (∇X∇Y −∇∇XY )T,

for X, Y ∈ HM and zero otherwise.

3. The symmetric horizontal Hessian T is defined to be

∆2,sym
h T(X, Y ) =

1

2
(∇2

hT(X, Y ) +∇2
hT(Y,X)).

4. The horizontal Laplacian of T is defined by

∆hT = tr(∇2
hT) = (∇Ei∇Ei −∇∇EiEi)T.
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The horizontal Laplacian does not behave as nicely as its Riemannian
counterpart. To remedy this we will make below an additional assumption
of the metric extension.

Definition 5.7. For a metric extension of an r-grading we define a 1-form
Rg by

Rg(υ) =
∑
j>0

∑
i

B(j)(E
(j)
i , E

(j)
i , υ0),

where E
(j)
i is an orthonormal frame for V (j).

We say that a complement VM is vertically rigid if there exists a metric
extension g such that Rg ≡ 0.

Lemma 5.8. For an orientable SRC-maifold, the following are equivalent:

1. VM is vertically rigid.

2. There exists a volume form dV on M such that for any horizontal vector
field

divX = trh(∇X) =
∑
i

< ∇EiX,Ei >,

where Ei is an orthonormal frame for HM .

3. Every metric extension g is vertically conformal to a metric g̃ with Rg̃.

Furthermore, if HM bracket generates, then the volume form in (b) is unique
up to constant multiplication.

Proof. ((1) =⇒ (2))

We first note that for the particular metric extension g with Rg ≡ 0, we
have ∑

j>0

∑
i

< Tor(E
(j)
i , X), E

(j)
i >= 0.

This is due to the fact that

0 = Rg =
∑
j>0

∑
i

B(j)(E
(j)
i , E

(j)
i , X).
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We have that

B(j)(E
(j)
i , E

(j)
i , X) = X < E

(j)
i , E

(j)
i > + < [E

(j)
i , X], E

(j)
i > + < [E

(j)
i , X], E

(j)
i >

= 2 < [E
(j)
i , X], E

(j)
i >

= 0.

We also have∑
j>0

∑
i

< Tor(E
(j)
i , X), E

(j)
i >=

∑
j>0

∑
i

< ∇
E

(j)
i
X−∇XE

(j)
i −[E

(j)
i , X], E

(j)
i > .

For j > 0 from the third formula of the definition of the connection we have

< ∇
E

(j)
i
X −∇XE

(j)
i − [E

(j)
i , X], E

(j)
i >

=< ∇
E

(j)
i
X,E

(j)
i > − < ∇XE

(j)
i , E

(j)
i > − < [E

(j)
i , X], E

(j)
i >

=< [E
(j)
i , X]h +

1

2
C(h)(X,E

(j)
i ), E

(j)
i >

− < [X,E
(j)
i ]j +

1

2
C(j)(E

(j)
i , X), E

(j)
i > − < [E

(j)
i , X], E

(j)
i >

=
1

2
B(h)(Xh, (E

(j)
i )h, (E

(j)
i )ĥ)−

1

2
B(j)((E

(j)
i )j, (E

(j)
i )j, Xĵ)

= 0− < [E
(j)
i , X], E

(j)
i >

= 0.

Therefore we proved the above relation.

Now we recall the standard result from (see [4], appendix 6) that since
∇ is metric compatible and HM is parallel, the divergence operator for the
metric volume from g satisfies

divgX = trh(∇+ Tor)(X)

= trh(∇X) +
∑
j>0

∑
i

< Tor(E
(j)
i , X), E

(j)
i >

= trh(∇X)−Rg(X)

= trh(∇X).

Thus we can set dV = dVg.
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((2) =⇒ (3))

We consider metrics vertically conformal to an arbitrary extension g,

gλ =

{
g on HM,

eλg on VM.

Now if dVg = eµdV , then set λ = − µ
dim(VM)

so dVgλ . Then for horizontal X

trh(∇X)−Rgλ(X) = divgλX = divX = trh(∇X),

so Rgλ ≡ 0.

Since the proof of ((3) =⇒ (1)) is trivial, the proof of the lemma is com-
plete.

For the uniqueness part, we note that if Ω = eλdV then for any horizontal
X, we have divΩX = divX − X(λ). If the two divergences agree on the
horizontal vector fields and HM bracket generates, this immediately implies
that λ is a constant.

Remark 5.9. For an orientable, vertically rigid SRC-manifold, there is then
a 1-dimensional family of volume form for which divX = tr(∇X). We shall
often refer to such a volume form. Vertical rigidity therefore gives us a
canonical notion of integration on a SRC-manifold that does not depend on
the choice of metric extension.

As an immediate consequence, we have

Lemma 5.10. Suppose that M is orientable and VM is vertically rigid.
Then on functions

∆ =
∑
i

E2
i + Eidiv(Ei),

where the divergence is taken with respect to a rigid volume form.

Proof. For functions we have that

∇(f) =
∑
i

∇Ei(f)⊗ Ei =
∑
i

Ei(Ei(f)).
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Therefore combined with the fact that

divX =
∑
i

< ∇EiX,Ei >,

we have

∆(f) = div(grad(f))

=
∑
k

< ∇Ek(grad(f)), Ek >=
∑
k

∑
i

< ∇Ek(Ei(f)Ei), Ek > .

Due to the definition of connectors (∇X(fY ) = X(f)Y + f∇XY ):

∇Ek(Ei(f)Ei) = (Ek(Ei(f))Ek) + Ei(f)∇EkEi,

we have

=
∑
k

∑
i

< Ek(Ei(f))Ei + Ei(f)∇EkEi, Ek >

=
∑
k

∑
i

(< Ek(Ei(f))Ei, Ek > + < Ei(f)∇EkEi, Ek >)

=
∑
k

∑
i

Ek(Ei(f)(< Ei, Ek >) +
∑
k

∑
i

Ei(f)(< ∇EkEi, Ek >)

=
∑
i

Ei(Ei(f)) +
∑
i

Ei(f)
∑
k

(< ∇EkEi, Ek >)

=
∑
i

Ei(Ei(f)) +
∑
i

Ei(f)div(Ei) =
∑
i

(Ei(Ei(f)) + Ei(f)div(Ei)).

Therefore we have obtained the required formula.

5.3 Sub-Riemannian generalization of Bochner

Formula

Before we prove the generalization, we introduce some terminology.

Definition 5.11. We define J : TM × TM 7→ TM by

< J(A,Z), B >=< Tor(A,B), Z > .
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Remark 5.12. We recall that a vector field F is closed if and only if A 7→<
F,A > is a closed 1-form or in other words ω(A) =< F,A > is closed.

Due to the fact that the form is closed and if we recall from Corollary 2.20
that

dω(A,B) = Aω(B)−Bω(A)− ω([A,B]),

from the compatability of the metric we obtain

0 = A < F,B > −B < F,A > − < F, [A,B] >

= < ∇AF,B > + < F,∇AB >

−(< ∇BF,A > + < F,∇BA >)− < F, [A,B] >

= < ∇AF,B > − < ∇BF,A > − < Tor(B,A), F > .

Combined with the fact that

< J(A,F ), B >=< Tor(A,B), F >= − < Tor(B,A), F >= − < J(B,F ), A >,

because as we have shown Tor(A,B) = −Tor(B,A).

The above imply that

< ∇BF,A >=< ∇AF,B > − < J(B,F ), A >=< ∇AF,B > + < J(A,F ), B > .

Applying Lemma 5.8 on a vertically rigid SRC-manifold of the horizontal
Laplacian allows the following generalisation of the classical Bochner formu-
las:

Theorem 5.13. If F is a closed vector field and Fk is the projection of F to
V (k) then

1

2
∆h|Fj|2 = RicS(Fj, Fh) + |∇hFj|2

+
∑
i

(< Ei,∇2
hFj(Fj, Ei) > −2 < ∇EiF,Tor(Ei, Fj) >

+ < F, (∇Tor)(Fj, Ei, Ei) > − < F,Tor2(Ei, Ei, Fj) >),

where Ei is any orthonormal horizontal frame.
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Proof. We set u = 1
2
|Fj|2; then for a horizontal vector field Y and an arbitrary

vector field in V (j) we then have

< ∇hu, Y > := < gradhu, Y >

:= Y (u)

= Y (
1

2
< Fj, Fj >)

= < ∇Y Fj, Fj >

= < ∇Y < F,Z >, Fj >

= << ∇Y F,Z >, Fj > + << ∇YZ, F >, Fj >

= < ∇Y F, Fj > + < ∇YZ, Fj >

= < ∇Y F, Fj > +0

= < ∇FjF, Y > + < J(Fj, F ), Y > .

Therefore we obtain

∇hu = ∇FjFh + J(Fj, F )h,

where by h we mean horizontal.

In order to prove the main result we need two preliminaries. The first
preliminary is for horizontal X, Y

∇2
hu(X, Y ) = X < Y,∇hu > − < ∇XY,∇hu >=< Y,∇X∇hu > .

The second preliminary is

< ∇XJ(Fj, F ), X > = X < J(Fj, F ), X > − < J(Fj, F ),∇XX >

= X < F,Tor(Fj, X) > − < J(Fj, F ),∇XX >

= < ∇XF,Tor(Fj, X) > + < F,∇XTor(Fj, X) >

− < F,Tor(Fj,∇XX) > .

We now proceed to the proof of the Bochner Formula.

For a horizontal vector field X, we have by making use of the above pre-
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liminaries

∇2
hu(X,X) = < ∇X∇hu,X >

= < ∇X∇FjFh, X > + < ∇XJ(Fj, F )h, X >

= KS(X,Fj, Fh, X)+ < ∇Fj∇XFh, X > + < ∇[X,Fj ]Fh, X >

+ < ∇XJ(Fj, F )j, X >

= KS(X,Fj, Fh, X)+ < ∇Fj∇XFh, X >

+ < ∇∇XFj−∇FjX−Tor(X,Fj)Fh, X > + < ∇XJ(Fj, F )h, X >

= KS(X,Fj, Fh, X)+ < ∇Fj∇XFh −∇∇FjXFh, X >

+ < ∇∇XFj−Tor(X,Fj)Fh, X > + < ∇XJ(Fj, F )h, X > .

We now focus on

< ∇∇XFj−Tor(X,Fj)Fh, X > .

We have

< ∇∇XFjFh−Tor(X,Fj)Fh, X >=< ∇∇XFjFh, X > − < ∇Tor(X,Fj)Fh, X >

and if we use the preliminaries we obtain

< ∇∇XFjFh, X > − < ∇Tor(X,Fj)Fh, X >

=< ∇XFj,∇XFj > + < F,Tor(X,∇XFj) >

−(< ∇XF,Tor(X,Fj) > + < F,Tor(X,Tor(X,Fj)) >),

due to the fact that

< ∇XFj,∇XFj > = < ∇∇XFjFj, X > + < J(∇XFj.Fj), X >

= < ∇∇XFjFj, X > + < Tor(∇XFj, X), Fj >

= < ∇∇XFjFj, X > − < Tor(X,∇XFj), Fj >

and

< ∇Tor(X,Fj)F,X > = < ∇XF,Tor(X,Fj) > + < J(X,F ),Tor(X,Fj) >

= < ∇XF,Tor(X,Fj) > + < Tor(X,Tor(X,Fj)), F > .



Chapter 5. Ricci Curvature and Bochner Formula 72

Therefore

KS(X,Fj, Fh, X)+ < ∇Fj∇XFh −∇∇FjXFh, X >

+ < ∇∇XFj−Tor(X,Fj)Fh, X > + < ∇XJ(Fj, F )h, X >

= KS(X,Fj, Fh, X)+ < ∇Fj∇XFh −∇∇FjXFh, X >

+(< ∇XFj,∇XFj > + < F,Tor(X,∇XFj) >

−(< ∇XF,Tor(X,Fj) > + < F,Tor(X,Tor(X,Fj)) >))

+ < ∇XJ(Fj, F )h, X >

= KS(X,Fj, Fh, X)+ < ∇2
hFh(Fj, X), X >

+(|∇XFj|2+ < F,Tor(X,∇XFj) >

−(< ∇XF,Tor(X,Fj) > + < F,Tor2(X,X, Fj) >)

+ < ∇XJ(Fj, F )h, X > .

We now show that

< F,Tor(X,∇XFj) > − < ∇XF,Tor(X,Fj) > + < ∇XJ(Fj, F )h, X >

= −2 < ∇XF,Tor(X,Fj) > + < F, (∇Tor)(Fj, X,X) >,

or equivalently

< F,Tor(X,∇XFj) > + < ∇XF,Tor(X,Fj) > + < ∇XJ(Fj, F )h, X >

=< F,∇XTor(Fj, X) > − < F,Tor(Fj,∇XX) > − < F,Tor(∇XFj, X) >,

or in other words

< ∇XF,Tor(X,Fj) > + < ∇XJ(Fj, F )h, X >

=< F,∇XTor(Fj, X) > − < F,Tor(Fj,∇XX) > .

By metric compatibility we have

< ∇XJ(Fj, F ), X > = X < J(Fj, F ), X > − < J(Fj, F ),∇XX >

= X < Tor(Fj, X), F > − < Tor(Fj,∇XX), F >

= < ∇XTor(Fj, X), F > + < Tor(Fj, X),∇XF >

− < Tor(Fj,∇XX), F > .

Therefore the above equation holds.
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This implies that

KS(X,Fj, Fh, X)+ < ∇2
hFh(Fj, X), X > +|∇XFj|2

+(< F,Tor(X,∇XFj) >

−(< ∇XF,Tor(X,Fj) > + < F,Tor2(X,X, Fj) >))

+ < ∇XJ(Fj, F )h, X >,

is equal to

KS(X,Fj, Fh, X)+ < ∇2
hFh(Fj, X), X > +|∇XFj|2

−2 < ∇XF,Tor(X,Fj) > + < F, (∇Tor)(Fj, X,X) >

− < F,Tor2(X,X, Fj) > .

If we set X = Ei and sum over i, we get the desired result.
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Chapter 6

Comparison with the
Riemannian Geometry

In the final Chapter, we compare the Sub-Riemannian connection to the
Levi-Civita connection for a metric extension. Then the Bonnet-Myers is
presented as well as a Sub-Riemannian version of the Theorem, which does
not apply for Riemannian manifolds.

6.1 Comparison with the Riemannian Curva-

tures

We now make a refinement to the operator J (Specifically Definition 5.11
used in Chapter 5), presented in the proof of the Sub-Riemannian version of
the Bochner formula

< J1(A,B), C > = < Tor(A,C), B1 >,

< J0(A,B), C > = < Tor(A,C), B0 >,

where B = B0 +B1.

Lemma 6.1. For any SRC-manifold (with no restriction on dimVM) the
Levi-Civita connection associated to g can be computed from the basic con-
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nection for g as follows

∇XY = ∇XY −
1

2
Tor(X, Y ) + J1(X, Y ),

∇TT = ∇TT −
1

2
J0(T, T ),

∇TX = ∇TX +
1

2
J0(X,T )− Tor(T,X)1,

∇XT = ∇XT +
1

2
J0(X,T )− Tor(X,T )0.

We now utilize the above formulas in order to obtain the following Corol-
lary

Corollary 6.2. If X, Y are horizontal vector fields and T is a vertical vector
field then

K
S
(X, Y, Y,X) = KS(X, Y, Y,X)− 3

4
|Tor(X, Y )|2

− < J1(Y, Y ), J1(X,X) > +|J1(X,X)|2,

K
S
(T,X,X, T ) = KS(T,X,X, T ) +

1

4
|J0(X,T )|2,

+ < ∇Tor(T,X,X)− Tor(X,Tor(X,T )), T >

+ < ∇Tor(X,T, T ), X > −|Tor(X,T )0|2,

K
S
(X, Y, T,X) = KS(X, Y, T,X) +

1

2
< ∇Tor(Y,X,X), T >

+ < ∇Tor(X,T, Y )−∇Tor(Y, T,X), X > .

This may not be the complete list of curvature terms, however if the prop-
erties of Riemannian and Sub-Riemannian curvatures and polarization iden-
tities it is sufficient to compute all sectional and Ricci curvatures for the case
dimVM = 1.

Remark 6.3. If M is strictly normal, then second equation from the Corol-
lary 6.2 is equivalent to

K
S
(T,X,X, T ) =

1

4
|J0(X,T )|2

and therefore, if HM is bracket generated of step 2, there will be at least one
plane with positive sectional curvature. The Riemannian approach in order
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to generalise results concerning negative sectional curvatures is likely to be
of high difficulty.

6.2 A Sub-Riemannian version of Bonnet–Myers

theorem

In the early steps of Sub-Riemannian Geometry, Riemannian approximations
were commonly made. By that we mean, for a chosen Riemannian extension
g = g0 ⊕ g1 we would re-scale as gλ = g0 ⊕ λ2g1 and study them for λ →
∞. The idea is that by blowing up vertical directions, the movement in
these directions would be extremely inefficient and therefore Riemannian
geodesics would converge to Sub-Riemannian geodesics. However, this study
is problematic regarding the effects of curvature and this kind of re-scaling
enlarges vertical curvatures much more compared to the horizontal ones.
This approach is only useful if λ→ 0.

In this section, Ricci and sectional curvatures of this re-scaled Riemannian
metric will be presented in terms of the basic connection. To simplify things,
we shall restrict our study to dimVM = 1 and therefore only the basic
grading will be needed.

In order to proceed, a Riemannian metric extension g = g0 ⊕ g1 is chosen.
The basic connection will be expressed in terms of this metric. From now on
E1, . . . , Ed will be an orthonormal frame for HM with respect to g and U
will be a unit length vector in VM , with respect to g.

Provided that we only use constants for our re-scaling, it can be verified
that the covariant derivatives for the basic connection associated to the re-
scaled metric will not differ from the base metric. Therefore, by being careful
to how the re-scaling is made on each term, we can obtain the Riemannian
Ricci curvatures for the metrics gλ = g0 ⊕ λ2g1.

For Y ∈ HM and T ∈ VM , with the inner products and norms computed
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in the unscaled metric we have

Ric
λ
(Y, Y ) = λ0(Ric(Y, Y )+ < ∇Tor(U, Y, Y ), U > − < Tor2(Y, Y, U), U >)

+λ2(−1

2

∑
i

|Tor(Ei, Y )|2)

+λ−2(< ∇Tor(Y, U, U), Y > −|Tor(Y, U)0|2

+
∑
i

(|J1(Ei, Y )|2− < J1(Ei, Ei), J
1(Y, Y ) >)),

Ric
λ
(Y, T ) = λ0(

∑
i

< ∇Tor(Ei, T, Y )−∇Tor(Y, T,Ei), Ei >)

+λ2(
1

2
< trh(∇Tor(Y )), T >),

Ric
λ
(T, T ) = λ0(

∑
i

< ∇Tor(Ei, T, T ), Ei > −|Tor(Ei, T )h|2)

+λ2(
∑
i

< ∇Tor(Ei, Ei, T ), T >)

+λ4(
∑
i

1

4
|J0(Ei, T |2).

In the case of a strictly normal SRC-manifold, these formulas come down to

Ric
λ
(Y, Y ) = λ0Ric(Y, Y )− λ2

2

∑
i

|Tor(Ei, Y )|2,

Ric
λ
(Y, T ) =

λ2

2
< trh(∇Tor(Y )), T >,

Ric
λ
(T, T ) =

λ4

4

∑
i

|J0(Ei, T )|2 =
λ4

4

∑
i,j

|Tor(Ei, Ej)|2.

Definition 6.4. The torsion bounds of M are defined by

kmij = sup
{
|Tor(X(i), X(j))m|2 : |X(i), X(j)| ≤ 1

}
.

Remark 6.5. Note that 0 ≤ kmij ≤ +∞.

We also recall the Bonnet-Myers theorem from Riemannian Geometry:
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Theorem 6.6. Let M a complete, connected m-dimensional Riemannian
manifold, m ≥ 2. If there is an R > 0 such that

Ricp(X,X) ≥ (m− 1)

R2
,∀X ∈ TpM, p ∈M,

then we have the following consequences:

1. diam(M) ≤ πR.

2. M is compact.

3. π1(M) is a finite group.

Theorem 6.7. Suppose g is strictly normal for the basic grading and VM
is integrable. If k1

00 < ∞ and there are constants ρ1 > 0 and ρ2 > 0 such
that

R(A,A) ≥ ρ1|A0|2 + ρ2|A1|2,

where

R(A,A) = RicS(A0, A0)+ < A, trh(∇Tor(A0)) > +
1

4

∑
i,j

| < Tor(Ei, Ej), A > |2

and if we add the assumption that dimVM = 1, then there are constants
λ, c ≥ 0 such that

Ric
λ
(A,A) ≥ cgλ(A,A),

for all vectors A, where gλ is a re-scaled metric.

Remark 6.8. Note that from standard polarization arguments one can de-
fine

R(A,B) =
1

4
(R(A+B,A+B)−R(A−B,A−B)).

If Theorem 6.7 is combined with the classical Bonnet-Myers (Theorem 6.6)
we have

Corollary 6.9. Under the same assumptions as Theorem 6.7, we have that
M is compact and has a finite fundamental group.
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Definition 6.10. We define the following symmetric 2-tensors

B(X, Y ) =< ∇Tor(X,U, U), Y > − < Tor(X,U)hTor(Y, U)h >

and

K (X, Y ) =
∑
i

(< J1(Ei, X), J1(Ei, Y ) > − < J1(Ei, Ei), J
1(X, Y ) >),

where U is a unit length vertical vector.

The tensor B is a genuinely SRC-invariant when dimVM = 1, but has no
good invariant generalization when dimVM > 1.

Furthermore, K is only a vertically conformal SRC-invariant.

With these in mind we obtain the following theorem, which is a purely
Sub-Riemannian result as the conditions are trivially false when restricted
to Riemannian manifolds:

Theorem 6.11. Let M be an SRC-manifold with dimVM = 1 and bounded
curvature and torsion. If there are constants a, b > 0 such that for all hori-
zontal vectors Y , we have

trhB ≥ a|T |2

and

B(Y, Y ) + K (Y, Y ) ≥ b|Y |2,

then M is compact and has finite fundamental group.

Proof. The condition of bounded curvature implies that for small λ there
will be some, possibly large, constant M such that

2Ric
λ
(T, Y ) ≤ 2M |T ||Y | ≤ a

4
|T |2 +

4M2

a
|Y |2.

Since trhB ≥ a|T |2 globally, for sufficiently small λ, we have

Ric
λ
(T, T ) ≥ a

2
|T |2.
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We also have with usage of metric compatibility, the formulas in the definition
of the Connection, Corollary 3.4 and orthogonality we have

(< ∇Tor(U, Y, Y ), U > − < Tor2(Y, Y, U), U >)

=< ∇Tor(U, Y, Y ), U > − < Tor2(Y, Y, U), U >

=< ∇Y Tor(U, Y ), U > − < Tor(Y,Tor(Y, U)), U >

=< ∇Y Tor(U, Y ), U > −0

=< ∇Y∇UY −∇Y∇YU −∇Y [U, Y ], U >

= Y < ∇UY, U > − < ∇UY,∇YU > −Y < ∇YU,U > + < ∇YU,∇YU >

−Y < [U, Y ], U > + < [U.Y ],∇YU >

= Y < Tor(U, Y ), U > + < ∇YU,∇YU > + < [U.Y ],∇YU >

= 0+ < ∇YU,∇YU > + < [U.Y ],∇YU >

=< ∇YU −∇UY − [Y, U ],∇YU >

=< Tor(Y, U),∇YU >

= 0

and since B(Y, Y ) + K (Y, Y ) ≥ b|Y |2, again for small λ, we have

Ric
λ
(Y, Y ) ≥ b

2λ2
|Y |2.

Then for small enough λ we have

Ric
λ
(T + Y, T + Y ) ≥

(
b

2λ2
− 4M2

α

)
|Y |2 +

α

4
|T |2.

Therefore we have for small enough λ

Ric
λ
(T + Y, T + Y ) ≥ c|T + Y |2,

for some positive constant c. The result then follows from the classical Bon-
net–Myers theorem.

For more information about this Chapter see Chapters 4 and 5 in [1].
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[10] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface,
Journal of Differential Geometry, 13: 24-41 (1978).

83



Bibliography 84

[11] L. Capogna, D. Danielli, S. D.Pauls, J. T. Tyson, An introduction to
the Heisenberg group and the Sub-Riemannian Isoperimetric Problem,
Progress in Mathematics. 259. Berlin: Birkhauser, (2007).

[12] Peter Petersen, Riemannian Geometry 3rd Edition, Graduate Texts in
Mathematics - Springer, (2016).

[13] Manfredo Perdigao do Carmo, Riemannian Geometry 3rd Edition,
Mathematics, theory and applications, Birhäuser Boston, (1993).
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