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Abstract

A complex hyperbolic quasi-Fuchsian group is a discrete, faithful,
type preserving and geometrically finite representation of a surface
group as a subgroup of the group of holomorphic isometries of complex
hyperbolic space. Such groups are direct complex hyperbolic generali-
sations of quasi-Fuchsian groups in three dimensional (real) hyperbolic
geometry. In this article we present the current state of the art of the
theory of complex hyperbolic quasi-Fuchsian groups.

1 Introduction

The purpose of this paper is to outline what is known about the complex
hyperbolic analogue of quasi-Fuchsian groups. Discrete groups of complex
hyperbolic isometries have not been studied as widely as their real hyperbolic

∗IDP was supported by a Marie Curie Reintegration Grant fellowship (Contract No.
MERG-CT-2005-028371) within the 6th Community Framework Programme.
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counterparts. Nevertheless, they are interesting to study and should be more
widely known. The classical theory of quasi-Fuchsian groups serves a model
for the complex hyperbolic theory, but results do not usually generalise in a
straightforward way. This is part of the interest of the subject.

Complex hyperbolic Kleinian groups were first studied by Picard at
about the same time as Poincaré was developing the theory of Fuchsian and
Kleinian groups. In spite of work by several other people, including Giraud
and Cartan, the complex hyperbolic theory did not develop as rapidly as
the real hyperbolic theory. So, by the time Ahlfors and Bers were laying
the foundations for the theory of quasi-Fuchsian groups, complex hyperbolic
geometry was hardly studied at all. Later, work of Chen and Greenberg and
of Mostow on symmetric spaces led to a resurgence of interest in complex
hyperbolic discrete groups. The basic theory of complex hyperbolic quasi-
Fuchsian groups was laid out by Goldman and these foundations have been
built upon by many other people.

There are several sources of material on complex hyperbolic geometry.
The book of Goldman [27] gives an encyclopedic source of many facts, re-
sults and proofs about complex hyperbolic geometry. The forthcoming book
of Parker [47] is intended to give a gentler background to the subject, fo-
cusing on discrete groups. The book of Schwartz [61] also gives a general
introduction, but concentrates on the proof and application of a particular
theorem. Additionally, most of the papers in the bibliography contain some
elementary material but they often use different conventions and notation.
Therefore we have tried to make this paper as self contained as possible,
and we hope that it will become a useful resource for readers who want to
begin studying complex hyperbolic quasi-Fuchsian groups.

This paper is organised as follows. We give a wide ranging introduction
to complex hyperbolic geometry in Section 2. We then go on to discuss the
geometry of complex hyperbolic surface group representations in Section
3, including the construction of fundamental domains. One of the most
striking aspects of this theory is that, unlike the real hyperbolic case, there
is a radical difference between the case where our surface has punctures or
is closed (and without boundary). We discuss these two cases separately
in Sections 4 and 5. Finally, in Section 6 we give some open problems and
conjectures.

It is a great pleasure for us to present this survey as a contribution to a
volume in honour of Bill Harvey. Bill’s contributions to the classical theory
of Teichmüller and quasi-Fuchsian spaces have been an inspiration to us and,
more importantly, he is a good friend to both of us.
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2 Complex Hyperbolic Space

2.1 Models of complex hyperbolic space

The material in this section is standard. Further details may be found
in the books [27] or [47]. Let C2,1 be the complex vector space of complex
dimension 3 equipped with a non-degenerate, indefinite Hermitian form 〈·, ·〉
of signature (2, 1), that is 〈·, ·〉 is given by a non-singular 3 × 3 Hermitian
matrix H with 2 positive eigenvalues and 1 negative eigenvalue. There
are two standard matrices H which give different Hermitian forms on C2,1.
Following Epstein, see [14], we call these the first and second Hermitian
forms. Let z and w be the column vectors [z1, z2, z3]t and [w1, w2, w3]t

respectively. The first Hermitian form is defined to be:

〈z,w〉1 = w∗H1z = z1w1 + z2w2 − z3w3

where H1 is the Hermitian matrix:

H1 =

 1 0 0
0 1 0
0 0 −1

 .

The second Hermitian form is defined to be:

〈z,w〉2 = w∗H2z = z1w3 + z2w2 + z3w1

where H2 is the Hermitian matrix:

H2 =

 0 0 1
0 1 0
1 0 0

 .

There are other Hermitian forms which are widely used in the literature.
Given any two Hermitian forms of signature (2, 1) we can pass between

them using a Cayley transform. This is not unique for we may precompose
and postcompose by any unitary matrix preserving the relevant Hermitian
form. For example, one may check directly that the following Cayley trans-
form interchanges the first and second Hermitian forms:

C =
1√
2

 1 0 1
0

√
2 0

1 0 −1

 .
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In what follows we shall use subscripts only if it is necessary to specify which
Hermitian form to use. When there is no subscript, then the reader can use
either of these (or her/his favourite Hermitian form on C3 of signature (2, 1)).

Since 〈z, z〉 is real for all z ∈ C2,1 we may define subsets V−, V0 and V+

of C2,1 by

V− =
{
z ∈ C2,1| 〈z, z〉 < 0

}
,

V0 =
{
z ∈ C2,1 − {0}| 〈z, z〉 = 0

}
,

V+ =
{
z ∈ C2,1| 〈z, z〉 > 0

}
.

We say that z ∈ C2,1 is negative, null or positive if z is in V−, V0 or V+

respectively. Motivated by special relativity, these are sometimes called
time-like, light-like and space-like. Let P : C2,1 7−→ CP2 be the standard
projection map. On the chart of C2,1 where z3 6= 0 this projection map is
given by

P :

 z1

z2

z3

 7−→
(

z1/z3 z2/z3

)
∈ C2.

Because 〈λz, λz〉 = |λ|2 〈z, z〉 we see that for any non-zero complex scalar λ
the point λz is negative, null or positive if and only if z is. It makes sense
to describe Pz ∈ CP2 as positive, null or negative.

Definition 2.1 The projective model of complex hyperbolic space is defined
to be the collection of negative lines in C2,1 and its boundary is defined to
be the collection of null lines. In other words H2

C is PV− and ∂H2
C is PV0.

We define the other two standard models of complex hyperbolic space by
taking the section of C2,1 defined by z3 = 1 and considering PV− for the first
and second Hermitian forms. In particular, we define the standard lift of
z = (z1, z2) ∈ C2 to be z = [z1, z2, 1]t ∈ C2,1. It is clear that Pz = z. Points
in complex hyperbolic space will be those z ∈ C2 for which their standard
lift satisfies 〈z, z〉 < 0. Taking the first and second Hermitian forms, this
gives two models of complex hyperbolic space which naturally generalise,
respectively, the Poincaré disc and half plane models of the hyperbolic plane.

For the first Hermitian form we obtain z = (z1, z2) ∈ H2
C provided

〈z, z〉1 = z1z1 + z2z2 − 1 < 0

or, in other words |z1|2 + |z2|2 < 1.
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Definition 2.2 The unit ball model of complex hyperbolic space H2
C is

B2 =
{

z = (z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1
}

.

Its boundary ∂H2
C is the unit sphere

S3 =
{

z = (z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1
}

.

For the second Hermitian form we obtain z = (z1, z2) ∈ H2
C provided

〈z, z〉2 = z1 + z2z2 + z1 < 0.

In other words 2<(z1) + |z2|2 < 0.

Definition 2.3 The Siegel domain model of complex hyperbolic space H2
C

is
S2 =

{
z = (z1, z2) ∈ C2 : 2<(z1) + |z2|2 < 0

}
.

Its boundary is the one point compactification of R3. It turns out that this is
naturally endowed with the group structure of the Heisenberg group N. That
is ∂H2

C = N ∪ {∞} where

N =
{

z = (z1, z2) ∈ C2 : 2<(z1) + |z2|2 = 0
}

.

The standard lift of ∞ is the column vector [1, 0, 0]t ∈ C2,1.

2.2 Bergman metric

The Bergman metric on H2
C is defined by

ds2 = − 4
〈z, z〉2

det
[
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

]
.

Alternatively, it is given by the distance function ρ given by the formula

cosh2

(
ρ(z, w)

2

)
=
〈z,w〉 〈w, z〉
〈z, z〉 〈w,w〉

=
|〈z,w〉|2

|z|2|w|2

where z and w in V− are the standard lifts of z and w in H2
C and |z| =

√
−〈z, z〉.
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Substituting the first Hermitian form in these formulae gives the follow-
ing expressions for the Bergman metric and distance function for the unit
ball model

ds2 =
−4

(|z1|2 + |z2|2 − 1)2
det

(
|z1|2 + |z2|2 − 1 z1d z1 + z2d z2

z1d z1 + z2d z2 |d z1|2 + |d z2|2
)

=
4(|dz1|2 + |dz2|2 − |z1dz2 − z2dz1|2)

(1− |z1|2 − |z2|2)2

and

cosh2

(
ρ(z, w)

2

)
=

|1− z1w1 − z2w2|2

(1− |z1|2 − |z2|2)(1− |w1|2 − |w2|2)
.

Likewise, the Bergman metric on the Siegel domain is given by

ds2 =
−4

(z1 + |z2|2 + z1)2
det

(
z1 + |z2|2 + z1 d z1 + z2d z2

d z1 + z2d z2 |d z2|2
)

=
−4(z1 + |z2|2 + z1)|d z2|2 + 4|d z1 + z2d z2|2

(z1 + |z2|2 + z1)2
.

The corresponding distance formula is

cosh2

(
ρ(z, w)

2

)
=

|z1 + w1 + z2w2|2

(z1 + z1 + |z2|2)(w1 + w1 + |w2|2)
.

2.3 Isometries

Let U(2, 1) be the group of matrices that are unitary with respect to the
form 〈·, ·〉 corresponding to the Hermitian matrix H. By definition, each
such matrix A satisfies the relation A∗HA = H and hence A−1 = H−1A∗H,

where A∗ = A
T .

The group of holomorphic isometries of complex hyperbolic space is the
projective unitary group PU(2, 1) = U(2, 1)/U(1), where we make the natu-
ral identification U(1) = {eiθI, θ ∈ [0, 2π)} and I is the 3×3 identity matrix.
The full group of complex hyperbolic isometries is generated by PU(2, 1) and
the conjugation map (z1, z2) 7−→ (z1, z2).

For our purposes we shall consider instead the group SU(2, 1) of matrices
that are unitary with respect to H and have determinant 1. Therefore
PU(2, 1) = SU(2, 1)/{I, ωI, ω2I}, where ω is a non real cube root of unity,
and so SU(2, 1) is a 3-fold covering of PU(2, 1). This is analogous to the well
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known fact that SL(2, C) is the double cover of PSL(2, C) = SL(2, C)/{±I}.
Since SU(2, 1) comprises 3×3 matrices rather than 2×2 matrices we obtain
a triple cover rather than a double cover.

The usual trichotomy which classifies isometries of real hyperbolic spaces
also holds here. Namely:

(i) an isometry is loxodromic if it fixes exactly two points of ∂H2
C;

(ii) an isometry is parabolic if it fixes exactly one point of ∂H2
C;

(iii) an isometry is elliptic if it fixes at least one point of H2
C.

In Section 2.5 below we will give another geometrical interpretation of this
trichotomy.

2.4 The Heisenberg group and the boundary of H2
C

Each unipotent, upper triangular matrix in SU(2, 1) (with respect to the
second Hermitian form) has the form

T(ζ,v) =

 1 −
√

2 ζ −|ζ|2 + iv

0 1
√

2ζ
0 0 1


where ζ ∈ C and v ∈ R. There is a natural map φ : C × R given by
φ(ζ, v) = T(ζ,v). The set of unipotent, upper triangular matrices in SU(2, 1)
is group under matrix multiplication. In order to make φ a homomorphism,
we give C× R the following group operation:

(ζ, v) · (ζ ′, v′) = (ζ + ζ ′, v + v′ + 2=(ζζ ′),

that is the group structure of the Heisenberg group N.
Given a finite point z of ∂H2

C there is a unique unipotent, upper trian-
gular matrix in SU(2, 1) taking o = (0, 0) to z. Therefore we may identify
∂H2

C with the one point compactification of the Heisenberg group. (This
generalises the well known fact that the boundary of hyperbolic three-space
is the one point compactification of C.)

The identification is done as follows. If z is a finite point of the boundary
(that is any point besides ∞), then its standard lift is

z =

 z1

z2

1

 , 2<(z1) + |z2|2 = 0.
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We write ζ = z2/
√

2 ∈ C and this condition becomes 2<(z1) = −2|ζ|2.
Hence we may write z1 = −|ζ|2 + iv for v ∈ R. That is for (ζ, v) ∈ N:

z =

 −|ζ|2 + iv√
2ζ
1


The Heisenberg group is not abelian but is 2-step nilpotent. Therefore

any point in N of the form (0, t) is central and the commutator of any two
elements lies in the centre.

Geometrically, we think of the C factor of N as being horizontal and
the R factor as being vertical. We refer to T (ζ, v) as Heisenberg translation
by (ζ, v). A Heisenberg translation by (0, t) is called vertical translation
by t. It is easy to see the Heisenberg translations are ordinary translations
in the horizontal direction and shears in the vertical direction. The fact
that N is nilpotent means that translating around a horizontal square gives
a vertical translation, rather like going up a spiral staircase. We define
vertical projection Π : N → C to be the map Π(ζ, v) = ζ.

The Heisenberg norm is given by

|(ζ, v)| =
∣∣∣|ζ|2 − iv

∣∣∣1/2
.

This gives rise to a metric, the Cygan metric, on N by

ρ0((ζ1, v1), (ζ2, v2)) = |(ζ1, v1)−1 · (ζ2, v2)|.

2.5 Geodesic submanifolds

There are no totally geodesic, real hypersurfaces of H2
C, but there are are

two kinds of totally geodesic 2-dimensional subspaces of complex hyperbolic
space, (see Section 3.1.11 of [27]). Namely:

(i) complex lines L, which have constant curvature −1, and

(ii) totally real Lagrangian planes R, which have constant curvature −1/4.

Every complex line L is the image under some element of SU(2, 1) of the
complex line L1 where the first coordinate is zero:

L1 =
{

(z1, z2)t ∈ H2
C : z1 = 0

}
.
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The subgroup of SU(2, 1) stabilising L1 is thus the group of block diagonal
matrices S(U(1)×U(1, 1)) < SU(2, 1). The stabiliser of every other complex
line is conjugate to this subgroup. The restriction of the Bergman metric to
L1 is just the Poincaré metric on the unit disc with curvature −1.

Every Lagrangian plane is the image under some element of SU(2, 1) of
the standard real Lagrangian plane RR where both coordinates are real:

RR =
{

(z1, z2)t ∈ H2
C : =(z1) = =(z2) = 0

}
.

The subgroup of SU(2, 1) stabilising RR comprises matrices with real entries,
that is SO(2, 1) < SU(2, 1). The stabiliser of every other Lagrangian plane
is conjugate to this subgroup. The restriction of the Bergman metric to RR
is the Klein-Beltrami metric on the unit disc with curvature −1/4.

We finally define two classes of topological circles, which form the bound-
aries of complex lines and Lagrangian planes respectively:

(i) the boundary of a complex line is called a C-circle and

(ii) the boundary of a Lagrangian plane is called an R-circle.

The complex conjugation map ιR : (z1, z2) 7−→ (z1, z2) is an involution
of H2

C fixing the standard real Lagrangian plane RR. It too is an isometry.
Indeed any anti-holomorphic isometry of H2

C may be written as ιR followed
by some element of PU(2, 1). Any Lagrangian plane may be written as
R = B(RR) for some B ∈ SU(2, 1) and so ι = BιRB−1 is an anti-holomorphic
isometry of H2

C fixing R.
Falbel and Zocca [20] have used involutions fixing Lagrangian planes to

give the following characterisation of elements of SU(2, 1):

Theorem 2.4 (Falbel and Zocca [20]) Any element A of SU(2, 1) may
be written as A = ι1 ◦ ι0 where ι0 and ι1 are involutions fixing Lagrangian
planes R0 and R1 respectively. Moreover

(i) A = ι1 ◦ ι0 is loxodromic if and only if R0 and R1 are disjoint;

(ii) A = ι1 ◦ ι0 is parabolic if and only if R0 and R1 intersect in exactly
one point of ∂H2

C;

(iii) A = ι1 ◦ ι0 is elliptic if and only if R0 and R1 intersect in at least one
point of H2

C.
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2.6 Cartan’s angular invariant

Let z1, z2, z3 be three distinct points of ∂H2
C with lifts z1, z2 and z3.

Cartan’s angular invariant [9] is defined as follows:

A (z1, z2, z3) = arg(−〈z1, z2〉〈z2, z3〉〈z3, z1〉).

The angular invariant is independent of the chosen lifts zj of the points zj .
It is clear that applying an element of SU(2, 1) to our triple of points does
not change the Cartan invariant. The converse is also true.

Proposition 2.5 (Goldman, Theorem 7.1.1 of [27]) Let z1, z2, z3 and
z′1, z′2, z′3 be triples of distinct points of ∂H2

C. Then A(z1, z2, z3) = A(z′1, z
′
2, z

′
3)

if and only if there exists an A ∈ SU(2, 1) so that A(zj) = z′j for j = 1, 2, 3.
Moreover, A is unique unless the three points lie on a complex line.

The properties of A may be found in Section 7.1 of [27]. In the next
proposition we highlight some of them, see Corollary 7.1.3 and Theorem
7.1.4 on pages 213-4 of [27].

Proposition 2.6 (Cartan [9]) Let z1, z2, z3 be three distinct points of
∂H2

C and let A = A(z1, z2, z3) be their angular invariant. Then,

(i) A ∈ [−π/2, π/2];

(ii) A± π/2 if and only if z1, z2 and z3 all lie on a complex line;

(iii) A = 0 if and only if z1, z2 and z3 all lie on a Lagrangian plane.

Geometrically, the angular invariant A has the following interpretation;
see Section 7.1.2 of [27]. Let L12 be the complex line containing z1 and z2

and let Π12 denote orthogonal projection onto L12. The Bergman metric
restricted to L12 is just the Poincaré metric with curvature −1. Consider
the hyperbolic triangle ∆ in L12 with vertices z1, z2 and Π12(z3). Then the
angular invariant A(z1, z2, z3) is half the signed Poincaré area of ∆. That is,
the area of ∆ is |2A|. The sign of A is determined by the order one meets the
vertices of ∆ when going around ∂∆ in a positive sense with respect to the
natural orientation of L12. If one meets the vertices in a cyclic permutation
of z1, z2, Π12(z3) then A > 0; if one meets them in a cyclic permutation of
z2, z1, Π12(z3) then A < 0. In the case where Π12(z3) lies on the geodesic
joining z1 and z2 then the triangle is degenerate and has area zero. In the
case where z3 lies on ∂L12 then ∆ is an ideal triangle and has area π.
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2.7 The Korányi-Reimann cross-ratio

Cross-ratios were generalised to complex hyperbolic space by Korányi and
Reimann [35]. Following their notation, we suppose that z1, z2, z3, z4 are
four distinct points of ∂H2

C. Let z1, z2, z3 and z4 be corresponding lifts in
V0 ⊂ C2,1. The complex cross-ratio of our four points is defined to be

X = [z1, z2, z3, z4] =
〈z3, z1〉〈z4, z2〉
〈z4, z1〉〈z3, z2〉

.

We note that X is invariant under SU(2, 1) and independent of the chosen
lifts. More properties of the complex cross-ratio may be found in Section
7.2 of [27].

By choosing different orderings of our four points we may define other
cross-ratios. There are some symmetries associated to certain permutations,
see Property 5 on page 225 of [27]. After taking these into account, there are
three cross ratios that remain. Given four distinct points z1, . . . , z4 ∈ ∂H2

C,
we define

X1 = [z1, z2, z3, z4], X2 = [z1, z3, z2, z4], X3 = [z2, z3, z1, z4]. (1)

These three cross-ratios determine the quadruple of points up to SU(2, 1)
equivalence; see Falbel [16] or Parker and Platis [49].

Proposition 2.7 (Falbel [16]) Let z1, . . . , z4 be distinct points of ∂H2
C

with cross ratios X1, X2, X3 given by (1). If z′1, . . . , z′4 is another set be
distinct points of ∂H2

C so that

X1 = [z1, z2, z3, z4] = [z′1, z
′
2, z

′
3, z

′
4],

X2 = [z1, z3, z2, z4] = [z′1, z
′
3, z

′
2, z

′
4],

X3 = [z2, z3, z1, z4] = [z′2, z
′
3, z

′
1, z

′
4].

Then there exists A ∈ SU(2, 1) so that A(zj) = z′j for j = 1, 2, 3, 4.

In [16] Falbel has given a general setting for cross-ratios that includes
both Korányi-Reimann cross ratios and the standard real hyperbolic cross-
ratio. The normalisation (1) is somewhat different than his. The three cross-
ratios satisfy two real equations; in Falbel’s normalisation, the analogous
relations are given in Proposition 2.3 of [16]. In his general setting there
are six cross-ratios that lie on a complex algebraic variety in C6. Our cross-
ratios correspond to the fixed locus of an antiholomorphic involution on this
variety.
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Proposition 2.8 (Parker and Platis [49]) Let z1, z2, z3, z4 be any four
distinct points in ∂H2

C. Let X1, X2 and X3 be defined by (1). Then

|X2| = |X1| |X3|, (2)

2|X1|2<(X3) = |X1|2 + |X2|2 + 1− 2<(X1 + X2). (3)

The set of points X consisting of triples (X1, X2, X3) is thus an algebraic
variety which we call cross-ratio variety.

The cross-ratio variety X defined in Proposition 2.8 appears naturally in
the study of the space of configurations of four points in the unit sphere S3.
In the classical case, it is well known that a configuration of four points on
the Riemann sphere is determined up to Möbius equivalence by their cross-
ratio and the set F of equivalence classes of configurations is biholomorphic
to C−{0, 1} which may be identified to the set of cross-ratios of four pairwise
distinct points on CP1 (see section 4.4 of [5]). In the complex hyperbolic
setting, things are more complicated. Denote by C the set of configurations of
four points in S3. The group of holomorphic isometries of H2

C acts naturally
on C. Denote by F the quotient of C by this action. In [16], Falbel proved
the following.

Proposition 2.9 (Falbel [16]) There exists a CR map π : F → C3 such
that its image is X.

Now, there are plenty of analytical and geometrical structures on large
subsets of F , all inherited from the natural CR structure of the Heisenberg
group. Namely, (see [19]) there exists a complex structure and a (singular)
CR structure of codimension 2. To transfer these results to X, Falbel and
Platis strengthened Proposition 2.9 by proving that the map π is a CR-
embedding. Thus they prove the following.

Theorem 2.10 (Falbel and Platis [19]) Let X be the cross-ratio variety.
Then, except some subsets of measure zero, X is

(i) a 2-complex manifold and

(ii) admits a singular CR structure of codimension 2.

In [50] Parker and Platis explored the topology of the cross-ratio variety
by defining global coordinates on X using only geometrical tools.
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3 Representations of surface groups

In what follows we fix an oriented topological surface Σ of genus g with
p punctures; its Euler characteristic is thus χ = χ(Σ) = 2 − 2g − p. We
suppose that χ < 0. We denote by π1 = π1(Σ) the fundamental group of
Σ. A specific choice of generators for π1 is called a marking. The collection
of marked representations of π1 into a Lie group G up to conjugation will
be denoted by Hom(π1, G)/G. We shall consider Hom(π1, G)/G endowed
with the compact-open topology; this will enable us to make sense of what
it means for two representations to be close. We remark that in the cases
we consider, the compact-open topology is equivalent to the l2-topology on
the relevant matrix group.

Our main interest is in the case where G = SU(2, 1), that is representa-
tion variety consisting of marked representations up to conjugation into the
group of holomorphic isometries of complex hyperbolic space H2

C. In the
following section we review in brief the classical cases of spaces of marked
representations of π1 into G when G is SL(2, R) or SL(2, C). These spaces
are the predecessors of the space we study here.

3.1 The motivation from real hyperbolic geometry

It is well known that if ρ : π1 −→ SL(2, R) is a discrete and faithful repre-
sentation of π1, then ρ(π1) is called Fuchsian. In this case ρ is necessarily
geometrically finite. Moreover, ρ(π1) is necessarily totally loxodromic when
p = 0. If p > 0 then this condition would be replaced with type-preserving,
which requires that an element of ρ(π1) is parabolic if and only if it repre-
sents a peripheral curve. The group SL(2, R) is a double cover of the group
of orientation preserving isometries of the hyperbolic plane. The quotient
of the hyperbolic plane by ρ(π1) naturally corresponds to a hyperbolic (as
well as to a complex) structure on Σ.

Definition 3.1 The collection of distinct, marked Fuchsian representations,
up to conjugacy within SL(2, R), is the Teichmüller space of Σ, denoted
T = T (Σ) ⊂ Hom(π1, SL(2, R))/SL(2, R).

Among its many of properties, Teichmüller space is:

• topologically a ball of real dimension 6g − 6− 2p,

• a complex Banach manifold, equipped with a Kähler metric (the Weil-
Petersson metric) of negative holomorphic sectional curvature.
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We now consider representations of π1 to SL(2, C). We again require such
a representation ρ to be discrete, faithful, geometrically finite and, if p = 0
(respectively p > 0) totally loxodromic (respectively type preserving). We
call these representations quasi-Fuchsian.

Definition 3.2 The collection of distinct, marked quasi-Fuchsian repre-
sentations, up to conjugation in SL(2, C) is called (real hyperbolic) quasi-
Fuchsian space and is denoted by QR = QR(Σ) ⊂ Hom(π1, SL(2, C))/SL(2, C).

If ρ is a quasi-Fuchsian representation, then it corresponds to a three dimen-
sional hyperbolic structure on an interval bundle over Σ. Real hyperbolic
quasi-Fuchsian space QR(Σ):

• may be identified with the product of two copies of Teichmüller space
according to the Simultaneous Uniformization Theorem of Bers [6],

• it is a complex manifold of dimension 6g − 6 − 2p and it is endowed
with a hyper-Kähler metric whose induced complex symplectic form is
the complexification of the Weil-Petersson symplectic form on T (Σ);
see [52].

3.2 Complex hyperbolic quasi-Fuchsian space

Motivated by these two examples, one may consider representations of π1

into SU(2, 1) up to conjugation, that is Hom(π1,SU(2, 1))/SU(2, 1). A def-
inition consistent with the ones in the classical cases would then be the
following.

Definition 3.3 A representation in Hom(π1,SU(2, 1))/SU(2, 1) is said to
be complex hyperbolic quasi-Fuchsian if it is

• discrete,

• faithful,

• geometrically finite and

• type-preserving.

We remark that in the case where p = 0 we may replace “geometrically
finite” with “convex-cocompact” and we may replace “type-preserving” with
“totally loxodromic”.
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Since the group SU(2, 1) is a triple cover of the holomorphic isometry
group of complex hyperbolic space H2

C it turns out that such a representation
corresponds to a complex hyperbolic structure on a disc bundle over Σ.

There are two matters to clarify in Definition 3.3. The first has to do
with the geometrical finiteness of a representation. The notion of geometri-
cal finiteness in spaces with variable negative curvature generalises the one in
spaces with constant negative curvature and has been studied by Bowditch
in [8]. (We keep Bowditch’s labels, in particular there is no condition F3.)
These definitions require the extensions to complex hyperbolic space of sev-
eral familiar notion’s from the theory of Kleinian groups. We refer to [8]
for details of how this extension takes place. In particular, core(M) is the
quotient by Γ of the convex hull of the limit set Λ, that is the convex core;
thinε(M) is the part of M where the injectivity radius is less than ε, that
is the ε-thin part and thickε(M) is its complement. In [8] Bowditch ex-
plains that there is no condition F3 because that would involve finite sided
fundamental polyhedra.

Theorem 3.4 (Bowditch [8]) Let Γ be a discrete subgroup of SU(2, 1).
Let Λ ⊂ ∂H2

C be the limit set of Γ and let Ω = ∂H2
C − Λ be the domain of

discontinuity of Γ. Let MC(Γ) denote the orbifold (H2
C ∪ Ω)/Γ. Then the

following conditions are equivalent and any group satisfying one of them will
be called geometrically finite:

F1. MC(Γ) has only finitely many topological ends, each of which is a
parabolic end.

F2. Λ consists only of conical limit points and bounded parabolic fixed
points.

F4. There exists ε > 0 so that core(M) ∩ thickε(M) is compact. Here ε
is chosen small enough so that thinε(M) is the union of cusps and
Margulis tubes.

F5. There is a bound on the orders of every finite subgroup of Γ and there
exists η > 0 so that the η neighbourhood of core(M) has finite volume.

The second issue to clarify in Definition 3.3 concerns type-preserving
representations. As for Fuchsian groups, a type-preserving representation
is automatically discrete. This follows from the following theorem of Chen
and Greenberg. In spite of this, we include the hypothesis of discreteness
first because it reinforces the connection with the classical definition and,
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secondly, because our usual method of showing that a representation is quasi-
Fuchsian is to show that it is discrete. In particular we usually construct
a fundamental polyhedron and use Poincaré’s polyhedron theorem to verify
the other criteria.

Theorem 3.5 (Chen and Greenberg [10]) Let Γ be a discrete, non-elementary
subgroup of SU(2, 1). If the identity is not an accumulation point of elliptic
elements of Γ then Γ is discrete.

Note that in Chen and Greenberg’s statement, Corollary 4.5.3 of [10],
they suppose that Γ has more than one limit point and the lowest dimen-
sional, Γ-invariant, totally-geodesic subspace of H2

C has even dimensions.
Since the only odd dimensional, totally geodesic submanifolds of H2

C are

geodesics, in our case this means that Γ does not fix a point of H2
C and does

not leave a geodesic invariant. Hence Γ is non-elementary. (Our statement
does not hold for SU(3, 1), although Chen and Greenberg’s does. This is be-
cause there are totally loxodromic, non-elementary, non-discrete subgroups
of SO(3, 1) < SU(3, 1) preserving a copy of hyperbolic 3-space.)

This contrasts with the case of representations to SL(2, C). In our defini-
tion of complex hyperbolic quasi-Fuchsian we have included the conditions
that such a representation should be both discrete and totally loxodromic.

Definition 3.6 The space of all marked complex hyperbolic quasi-Fuchsian
representations, up to conjugacy, will be called complex hyperbolic quasi-
Fuchsian space

QC = QC(Σ) ⊂ Hom(π1, SU(2, 1))/SU(2, 1).

3.3 Fuchsian representations

It is reasonable to start our study of complex hyperbolic quasi-Fuchsian
space by considering the Fuchsian representations inside this space. There
are two ways to make a Fuchsian representation act on H2

C. These cor-
respond to the two types of totally geodesic, isometric embeddings of the
hyperbolic plane into H2

C as we have seen in section 2.5, namely, totally real
Lagrangian planes and complex lines.

(i) If a discrete, faithful representation ρ is conjugate to a representation
of π1 into SO(2, 1) < SU(2, 1) then it preserves a Lagrangian plane
and is called R-Fuchsian.

16



(ii) If a discrete, faithful representation ρ is conjugate to a representation
of π1 into S(U(1)×U(1, 1)) < SU(2, 1) then it preserves a complex line
and is called C-Fuchsian.

We shall see later that C-Fuchsian representations are distinguished in
the space QC(Σ).

3.4 Toledo invariant

Let G be PU(2, 1) or SU(2, 1) and ρ : π1 −→ G be a representation. There
is an important invariant associated to ρ called the Toledo invariant [65],
which is defined as follows. Let f̃ : Σ̃ → H2

C be a ρ-equivariant smooth

mapping of the universal cover Σ̃ of Σ. Then the Toledo invariant τ(ρ, f̃) is
defined as the (normalised) integral of the pull-back of the Kähler form ω

on H2
C. Namely,

τ(ρ, f̃) =
1
2π

∫
Ω

f̃∗ω

where Ω is a fundamental domain for the action of π1 on Σ̃. The main
properties of the Toledo invariant are the following.

Proposition 3.7 (i) τ is independent of f̃ and varies continuously with
ρ,

(ii) χ ≤ τ(ρ) ≤ −χ, see [12, 33].

Geometrically, one may think of the Toledo invariant as follows; see
Section 7.1.4 of [27]. Take a triangulation of Σ and consider the lift of this
triangulation to the equivariant embedding f̃(Σ̃) of the universal cover of
Σ constructed above. The result is a triangle ∆ in H2

C with vertices z1, z2,
z3. Suppose that the edges of ∆ are the oriented geodesic arcs from zj to
zj+1 (with indices taken mod 3). Since ω is an exact form on H2

C its integral
over ∆ only depends on the boundary, therefore the value of the integral is
independent of the choice of triangle filling the edges. Let L12 be the complex
line containing z1 and z2 and let Π12 denote the orthogonal projection to
L12. Then the integral of ω over ∆ is the signed area (with the Poincaré
metric) of the triangle in L12 with vertices z1, z2 and Π12(z3). This is called
Toledo’s cocycle [65]. It is easy to see that this is an extension of Cartan’s
angular invariant to the case of triangles whose vertices do not necessarily
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lie on ∂H2
C; compare Section 2.6. In order to find the Toledo invariant, one

repeats this construction over all triangles in the triangulation of Σ and takes
the sum. The result is 2πτ(ρ). For each triangle, the maximum value of the
Toledo cocycle is the hyperbolic area and this occurs if the boundary lies in
a complex line. The only way for the Toledo invariant to take its maximal
value is if all the triangles lie in the same complex line and are consistently
oriented, that is ρ is C-Fuchsian. In which case (when the triangles are all
positively oriented) we have τ(ρ) = A/2π = −χ(Σ), where A is the area of
Σ with a Poincaré metric. Likewise, applying an antiholomorphic isometry
of H2

C changes the orientation of the triangle ∆ and so changes the sign
of the Toledo cocycle. Thus, if all triangles are negatively oriented we get
τ(ρ) = −A/2π = χ(Σ).

If ρ is R-Fuchsian, then it is invariant under ιR and so τ(ρ) = −τ(ρ).
Hence τ(ρ) = 0. This gives a sketch proof of the following result. Note that
it may be the case that τ(ρ) = 0 and for ρ to not be R-Fuchsian.

Proposition 3.8 Suppose that ρ ∈ QC(Σ). Then,

(i) ρ is C-Fuchsian if and only if |τ(ρ)| = −χ, see [65],

(ii) if ρ is R-Fuchsian then τ(ρ) = 0, see [28].

3.5 Fundamental domains

We have already mentioned that unlike the case of constant curvature there
exist no totally geodesic hypersurfaces in complex hyperbolic space. Before
attempting to construct a fundamental domain in H2

C we must choose the
class of real hypersurfaces containing its faces. Moreover, since these faces
are not totally geodesic they may intersect in complicated ways. Therefore,
constructing fundamental domains in H2

C is quite a challenge. In sections 3.6
and 3.7 below we discuss two classes of hypersurfaces, namely bisectors and
packs. Fundamental domains whose faces are contained in bisectors have
been widely studied, in particular, this is the case for the construction of
Dirichlet domains. The idea goes back to Giraud and was developed further
by Mostow and Goldman (see [27] and the references therein). In section 4
we shall see how such domains were constructed by Goldman and Parker in
[29] and Gusevskii and Parker in [33]. On the other hand, in order to build
fundamental domains, Falbel and Zocca used C-spheres [20] and Schwartz
used R-spheres in [58] (for the relationship between C-spheres and R-spheres
see [18]). Packs have been used by Will [66] and by Parker and Platis [48].
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3.6 Bisectors

A bisector B is the locus of points equidistant from a given pair of points z1

and z2 in H2
C. In other words:

B = B(z1, z2) =
{

z ∈ H2
C : ρ(z, z1) = ρ(z, z2)

}
.

The corresponding construction in real hyperbolic geometry gives a hyper-
bolic hyperplane, which is totally geodesic. We have already seen that
there are no totally geodesic real hypersurfaces in complex hyperbolic space.
Therefore B is not totally geodesic. However, it is as close as it can be to
being totally geodesic, in that it is foliated by totally geodesic subspaces in
two distinct ways. For an extensive treatment of bisectors readers should
see [27].

Let z1 and z2 be any two points of H2
C. Then z1 and z2 lie in a unique

complex line L, which we call the the complex spine of B. (Note that
the complex spine is often denoted Σ, but this conflicts with our use of Σ
to denote a surface.) The restriction of the Bergman metric to L is the
Poincaré metric. Thus the points in L equidistant from z1 and z2 lie on a
Poincaré geodesic in L, which we call the spine of B and denote by σ. The
endpoints of the spine are called the vertices of B. Goldman shows (page
154 of [27]) that a bisector is completely determined by its vertices and so
SU(2, 1) acts transitively on the set of all bisectors.

Following earlier work of Giraud, Mostow describes a foliation of bisec-
tors by complex lines as follows (see also Section 5.1.2 of [27]):

Theorem 3.9 (Mostow [46]) Let B be a bisector and let σ and L denote
its spine and complex spine respectively. Let ΠL denote orthogonal projection
onto L and for each s ∈ σ let Ls be the complex line so that ΠL(Ls) = s.
Then

B =
⋃
s∈σ

Ls =
⋃
s∈σ

Π−1
L (s).

Goldman describes a second foliation of bisectors, this time by Lagrangian
planes.

Theorem 3.10 (Goldman [27]) Let B be a bisector with spine σ. Then
B is the union of all Lagrangian planes containing σ.

The complex lines Ls defined in Theorem 3.9 are called the slices of B.
The Lagrangian planes defined in Theorem 3.10 are called the meridians
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of B. Together the slices and the meridians of a bisector give geographical
coordinates. The reason for this name is that the boundary of a bisector
in ∂H2

C is topologically a sphere, called by Mostow a spinal sphere. The
boundaries of the slices and meridians are C-circles and R-circles that foliate
the spinal sphere in a manner analogous to lines of latitude and lines of
longitude, respectively, on the earth.

3.7 Packs

Bisectors are rather badly adapted to R-Fuchsian representations. When
considering representations close to an R-Fuchsian representation it is more
convenient to use a different class of hypersurfaces, called packs. There is a
natural partial duality, resembling mirror symmetry, in complex hyperbolic
space between complex objects (such as complex lines) and totally real ob-
jects (such as Lagrangian planes), see the discussion in the introduction to
[18]. From this point of view, packs are the dual objects to bisectors. Packs
were introduced by Will in [66] and in their general form by Parker and
Platis in [48].

Let A be a loxodromic map in SU(2, 1). Then, it has two fixed points in
∂H2

C. Moreover, there exists a complex number λ = l + iθ ∈ R+ × (−π, π]

(the complex length of A) such that the eigenvalues of A are eλ, eλ−λ, e−λ.
For any x ∈ R define Ax to be the element of SU(2, 1) which has the same
eigenvectors as A, but its eigenvalues are the eigenvalues of A raised to the
xth power. Hence we immediately see that Ax is a loxodromic element of
SU(2, 1) for all x ∈ R−{0} and A0 = I. The following Proposition, see [48]
holds.

Proposition 3.11 Let R0 and R1 be disjoint Lagrangian planes in H2
C and

let ι0 and ι1 be the respective inversions. Consider A = ι1ι0 (which is
loxodromic map by Theorem 2.4) and its powers Ax for each x ∈ R. Then:

(i) ιx defined by Ax = ιxι0 is inversion in a Lagrangian plane Rx = Ax/2(R0).

(ii) Rx intersects the complex axis LA of A orthogonally in a geodesic γx.

(iii) The geodesics γx are the leaves of a foliation of LA.

(iv) For each x 6= y ∈ R, Rx and Ry are disjoint.
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Definition 3.12 Given disjoint Lagrangian planes R0 and R1, then for each
x ∈ R let Rx be the Lagrangian plane constructed in Proposition 3.11. Define

P = P(R0, R1) =
⋃
x∈R

Rx =
⋃
x∈R

Ax/2(R0).

Then P is a real analytic 3-submanifold which we call the pack determined by
R0 and R1. We call the axis of C = ι1ι0 the spine of P and the Lagrangian
planes Rx for x ∈ R the slices of P.

Observe that P contains L, the complex line containing γ, the spine of P.
The following Proposition is obvious from the construction and emphasises
the similarity between bisectors and packs (compare it with Section 5.1.2 of
[27]).

Proposition 3.13 Let P be a pack. Then P is homeomorphic to a 3-ball
whose boundary lies in ∂H2

C. Moreover, H2
C −P, the complement of P, has

two components, each homeomorphic to a 4-ball.

We remark that the boundary of P contains the boundary of the complex
line L and is foliated by the boundaries of the Lagrangian planes Rx. Since
it is also homeomorphic to a sphere, it is an example of an R-sphere (hybrid
sphere), see [18, 58].

The definition of packs associated to loxodromic maps A that preserve
a Lagrangian plane (that is with θ = =(λ) = 0) was given by Will. We call
the resulting pack flat.

Proposition 3.14 (Will, Section 6.1.1 of [66]) Suppose that the geodesic
γ lies on a totally real plane R. Then the set

P(γ) = Π−1
R (γ) =

⋃
z∈γ

Π−1
R (z).

is the flat pack determined by the Lagrangian planes R0 = Π−1
R (z0) and

R1 = Π−1
R (z1) for any distinct points z0, z1 ∈ γ. Moreover, for each z ∈ γ,

the Lagrangian plane Π−1
R (z) is a slice of P(γ).

Let A ∈ SU(2, 1) be a loxodromic map with eigenvalues eλ, eλ−λ, e−λ

where λ = l+ iθ ∈ R+×(−π, π]. Suppose that P is a pack determined by A,
as in Definition 3.12. We define the curl factor of P to be κ(P) = θ/λ = tan(arg(λ)).
Note that flat packs have curl factor 0. Platis [56] proves that two packs P1

and P2 are isometric if and only if κ(P1) = κ(P2). In particular, SU(2, 1)
acts transitively on the set of flat packs.
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4 Punctured surfaces

In the study of complex hyperbolic quasi-Fuchsian representations of a sur-
face group, there are qualitatively different conclusions, depending whether
p = 0 or p > 0. Thus we examine each case separately. We will suppose
in this section that Σ is a surface with genus g and p > 0 punctures having
Euler characteristic χ = 2− 2g − p < 0.

4.1 Ideal triangle groups and the three times punctured sphere

The first complex hyperbolic deformation space to be completely described
is that of the group generated by reflections in the sides of an ideal triangle
[29, 57]. This group has an index two subgroup corresponding to the thrice
punctured sphere. In the case of constant negative curvature these groups
are rigid. However, variable negative curvature allows us to deform the
group.

Let Σ be a three times punctured sphere and π1 = π1(Σ) its fundamen-
tal group. Abstractly π1 is a free group on two generators and we may
choose the generators α and β so that loops around the three punctures are
represented by α, β and αβ. If ρ : π1 −→ SU(2, 1) is a type-preserving repre-
sentation of π1 then ρ(α), ρ(β) and ρ(αβ) are all parabolic. We consider the
special case where each of these three classes is represented by a unipotent
parabolic map (that is a map conjugate to a Heisenberg translation). Let
u1, u2 and u0 be the fixed points of the unipotent parabolic maps A = ρ(α),
B = ρ(β) and AB = ρ(αβ). Let Lj be the complex line spanned by uj−1 and
uj+1 where the indices are taken mod 3. Let Ij ∈ SU(2, 1) be the complex
reflection of order 2 fixing Lj . A consequence of our hypothesis that A, B
and AB are unipotent is that A = I1I0 and B = I0I1. Thus ρ(π1) = 〈A, B〉
has index 2 in 〈I0, I1, I2〉. There is a one (real) dimensional space of rep-
resentations ρ of π1 with the above properties, the parameter being the
angular invariant of the three fixed points A(u0, u1, u2) ∈ [−π/2, π/2].

It remains to decide which of these groups are quasi-Fuchsian. This ques-
tion was considered by Goldman and Parker in [29]. They partially solved
the problem and gave a conjectural picture of the complete solution. This
conjecture was proved by Schwartz in [57], who also gave a more concep-
tual proof in [60]. We restate the main result in terms of the three times
punctured sphere:

Theorem 4.1 (Goldman and Parker [29], Schwartz [57]) Let Σ be a
three times punctured sphere with fundamental group π1. Let ρ : π1 −→ SU(2, 1)
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be a representation of π1 so that the three boundary components are repre-
sented by unipotent parabolic maps with fixed points u0, u1 and u2. Let
A = A(u0, u1, u2) be the angular invariant of these fixed points.

(i) If −
√

125/3 < tan(A) <
√

125/3 then ρ is complex hyperbolic quasi-
Fuchsian.

(ii) If tan(A) = ±
√

125/3 then ρ is discrete, faithful and geometrically
finite and has accidental parabolics.

(iii) If
√

125/3 < | tan(A)| < ∞ then ρ is not discrete.

(iv) If A = ±π/2 then ρ is the trivial representation.

Outline of proof. The proof of (i) and (ii) involves constructing a fun-
damental domain for Γ = ρ(π1). The proof of (iii) follows by showing that
I0I1I2 (or equivalently A−1BAB−1 = (I0I1I2)2) is elliptic of infinite order.
The proof of (iv) is trivial since in this case all three lines coincide.

Proposition 4.2 (Gusevskii and Parker [32]) Let ρ be as in Theorem
4.1 then the Toledo invariant τ(ρ) is zero.

4.2 The modular group and punctured surface groups

Let Γ = PSL(2, Z) be the classical modular group. It is well known that
Γ is generated by an element of order two and an element of order three
whose product is parabolic. There are six possibilities for the representation
depending on the types of the generators of orders 2 and 3.

If A is a complex reflection in a point p then A preserves all complex
lines through p; if A is a complex reflection in a complex line L then A
preserves all complex lines orthogonal to L. Given two complex reflections
there is a unique complex line through their fixed point(s) or orthogonal to
their fixed line(s) respectively. This line is preserved by both reflections and
hence by the group they generate. For any representation of the modular
group in PU(2, 1), the order 2 generator of the modular group must be a
complex reflection. Therefore, if the order 3 generator is also a complex
reflection then this representation necessarily preserves a complex line and
so is C-Fuchsian. The condition that the product of the two generators is
parabolic completely determines the representation up to conjugacy.
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In the remaining two cases, we consider representations where the order
3 generator is not a complex reflection, that is it has distinct eigenvalues.
There are two cases, namely when the order 2 generator is a complex reflec-
tion in a point or in a line. The former case was considered by Parker and
Gusevskii [33] and Falbel and Koseleff [17] independently. The latter case
was considered by Falbel and Parker [18]. In both cases the representation
may be parametrised as follows. Let u0 be the fixed point of the product of
the generators, which is parabolic by hypothesis. Let u1 and u2 be the im-
ages of this parabolic fixed point under powers of the order 3 generator. We
then define A = A(u0, u1, u2) to be the angular invariant of these three fixed
points. It turns out that this angular invariant completely parametrises the
representation. In particular, in each case the parabolic map is not unipo-
tent, but corresponds to a screw-parabolic map with rotational part of angle
A.

The complex hyperbolic quasi-Fuchsian space of the modular group was
entirely described by Falbel and Parker in [18].

Theorem 4.3 (Falbel and Parker [18]) Let ρ : PSL(2, Z) −→ PU(2, 1)
be a complex hyperbolic representation of the modular group. Let A be the
angular invariant described above. Then:

(i) There are four rigid C-Fuchsian representations for which the elliptic
element of order 2 and 3 are complex reflections.

(ii) If the order 3 generator is not a complex reflection and the order 2
generator is a complex reflection in a point then ρ is complex hyperbolic
quasi-Fuchsian for all A ∈ [−π/2, π/2].

(iii) If the order 3 generator is not a complex reflection and the order 2
generator is a complex reflection in a line then:

(a) If
√

15 < | tan(A)| ≤ ∞ then ρ is complex hyperbolic quasi-
Fuchsian.

(b) If tan(A) = ±
√

15 then ρ is discrete, faithful and geometrically
finite and has accidental parabolics.

(c) If −
√

15 < tan(A) <
√

15 then ρ is either not faithful or not
discrete.

In (ii) and (iii) the representation ρ may be lifted to an isomorphic repre-
sentation to SU(2, 1). In (i) this cannot be done.
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Outline of proof. In (i) the four cases correspond to the different possi-
bilities of reflection in a point or line for each of the generators.

In cases (ii) and (iii)(a) the authors construct a parametrised family of
fundamental domains. In case (iii)(c) the commutator of the order two and
order 3 generators is elliptic. In PSL(2, Z) this element corresponds to(

0 −1
1 0

) (
−1 −1
1 0

) (
0 1
−1 0

) (
0 1
−1 −1

)
=

(
1 1
1 2

)
.

�

Proposition 4.4 (Gusevskii and Parker [33]) Let ρ and A be as in Theorem
4.3 (ii). Then τ(ρ) = A/3π.

One remarkable fact is that the groups in Theorem 4.1 (ii) and Theorem
4.3 (iii)(b) are commensurable, and they are each commensurable with an
SU(2, 1) representation of the Whitehead link complement, as proved by
Schwartz [58].

Let π1 be the fundamental group of an orbifold Σ and suppose that
ρ : π1 −→ SU(2, 1) is a representation with Toledo invariant τ = τ(ρ). Let
π̂1 be an index d subgroup of π1 (π̂1 is the fundamental group of an orbifold
Σ̂ which is a d-fold cover of Σ). The restriction of ρ from π1 to π̂1 gives a
representation ρ̂ : π̂1 −→ SU(2, 1). In each case the universal cover Σ̃ is the
same and so the integral defining τ(ρ̂) is the same as the integral defining
τ(ρ) but taken over d copies of a fundamental domain. Hence τ(ρ̂) = dτ(ρ).
Millington showed that any punctured surface group arises as a finite index
subgroup of the modular group:

Proposition 4.5 (Millington [43]) Let p > 0, g ≥ 0, e2 ≥ 0 and e3 ≥ 0
be integers and write d = 12(g− 1)+6p+3e2 +4e3. If d > 0 then there is a
subgroup of the modular group PSL(2, Z) of index d which is the fundamental
group of an orbifold of genus g with p punctures removed, e2 cone points of
angle π and e3 cone points of angle 2π/3.

We may combine the above observations to prove that for any punctured
surface there exists a representation taking any value of the Toledo invariant
in the interval [χ,−χ].

Theorem 4.6 (Gusevskii and Parker [33]) Let Σ be a surface of genus
g with p punctures and Euler characteristic χ = 2−2g−p < 0. There exists
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a continuous family of complex hyperbolic quasi-Fuchsian representations ρt

of π1(Σ) into SU(2, 1) whose Toledo invariant τ(ρt) varies between χ and
−χ.

Sketch of proof. Let Σ be a surface of genus g with p punctures. Using
Proposition 4.5, there is a type preserving representation of π1(Σ) as a
subgroup of PSL(2, Z) of index d = 12g − 12 + 6p. By restricting the
representations constructed in Theorem 4.3 (ii) to this subgroup, we can
construct a one parameter family complex hyperbolic quasi-Fuchsian repre-
sentations of π1 to SU(2, 1). It remains to compute the Toledo invariants of
these representations. Using the discussion above and Proposition 4.4 the
Toledo invariant of the representation corresponding to the parameter A is
τ = Ad/3π = (4g − 4 + 2p)A/π where A varies between −π/2 and π/2.
Hence τ varies between −2g + 2− p = χ and 2g − 2 + p = −χ. �

We remark that similar arguments show that the representations con-
structed in Theorem 4.3 (iii) also have Toledo invariant τ = A/3π. Therefore
a similar argument may be used to construct representations of punctured
surface groups that interpolate between C-Fuchsian groups and groups with
accidental parabolics. Moreover, if τ1 is the Toledo invariant of these limit
groups then tan(πτ1/2χ) = ∓

√
15.

4.3 A special case: the once punctured torus

In his thesis [67], Will considered the case where g = p = 1, that is the once
punctured torus. In this section Σ will denote the once punctured torus and
π1 its fundamental group. Consider an R-Fuchsian representation ρ0 of π1.
This is generated by two loxodromic maps A and B whose axes intersect and
whose commutator is parabolic. Suppose ρ0(π1) fixes the Lagrangian plane
R. Let R0 be the Lagrangian plane orthogonal to R through the intersection
of the axes of A and B. Let I0 denote the (anti-holomorphic) involution
fixing R0. Then I0 conjugates A to A−1 and B to B−1. I1 = I0A and
I2 = BI0 are also antiholomorphic involutions. We see that ρ0(π1) = 〈A,B〉
is an index 2 subgroup of the group 〈I0, I1, I2〉. If a representation ρ of
π1 is an index 2 subgroup of a group generated by three anti-holomorphic
involutions, then we say ρ is Lagrangian decomposable. Will is able to
construct a three dimensional family of Lagrangian decomposable punctured
torus groups:

Theorem 4.7 (Will [67]) Let Σ be the once punctured torus and let T (Σ)
denote its Teichmüller space. Then for all x ∈ T (Σ) and all α ∈ [−π/2, π/2]
there is a representation ρx,α : π1 −→ SU(2, 1) with the following properties:
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(i) ρx,α and ρy,β are conjugate if and only if x = y and α = β.

(ii) For all x ∈ T (Σ) and all α ∈ [−π/4, π/4] then ρx,α is complex hyper-
bolic quasi-Fuchsian.

(iii) ρx,α is R-Fuchsian if and only if α = 0.

(iv) If α ∈ [−π/2,−π/4) or (π/4, π/2] then there exists an x ∈ T (Σ) so
that ρ(x, α) is either not faithful or not discrete.

It is easy to deduce from the details of Will’s construction, that τ(ρx,α) = 0
for all x ∈ T (Σ) and all α ∈ [−π/2, π/2].

Sketch of proof. Will’s basic idea is to take an ideal triangle in the hyper-
bolic plane and to consider points moving along each of the three boundary
arcs. These points are parametrised by the signed distance t0, t1 and t2 re-
spectively from point that is the orthogonal projection of the opposite vertex
onto this edge. These three points will be the fixed points of involutions I0,
I1 and I2. He shows that the product (I0I1I2)2 will be parabolic (fixing
one of the vertices of the triangle) if and only if t1 + t2 + t3 = 0. If this
condition is satisfied then the group generated by A = I0I1 and B = I2I0 is
a representation of a punctured torus group to and any two of the lengths
parametrise T (Σ).

We embed the picture above in a Lagrangian plane R in H2
C. We con-

struct Lagrangian planes R0, R1 and R2 through the three points on the
sides of the triangle and which each make an angle π/2 + α with R, in a
sense which he makes precise. The (anti-holomorphic) involution Ij fixes Rj

for j = 0, 1, 2. This then gives a representation of π1 to SU(2, 1) generated
by A = I0I1 and B = I2I0. The restriction of the action of this group to R
is just the action constructed in the previous paragraph and only depends
on t0, t1 and α. This is the representation ρx,α.

When α ∈ [−π/4, π/4] Will constructs a fundamental domain for the
action of 〈I0, I1, I2〉 on H2

C. This domain is bounded by three packs each of
whose slices makes an angle π/2+α with R. The intersection of this domain
with R is just the triangle with which we began.

When α ∈ [−π/2,−π/4) or α ∈ (π/4, π/2] Will considers groups with
t0 = t1 and he shows that for large t0 = t1 then A = I0I1 is elliptic. Indeed,
writing t = t0 = t1 he shows that tr(A) = 3+e−4t +4e−2t cos(2α). For these
values of α we have cos(2α) < 0 and so A is parabolic when e−2t = − cos(2α)
and elliptic when e−2t < − cos(2α). �
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4.4 Disconnectedness of complex hyperbolic quasi-Fuchsian
space

Dutenhefner and Gusevskii proved in [13] that in the non compact case,
there exist complex hyperbolic quasi-Fuchsian representations of a the fun-
damental group of a surface Σ which cannot be connected to a Fuchsian
representation by a path lying entirely in QC(Σ). Therefore, the complex
hyperbolic quasi-Fuchsian space QC(Σ) is not connected.

Theorem 4.8 (Dutenhefner and Gusevskii [13]) There exist complex
hyperbolic quasi-Fuchsian representations of π whose limit set is a wild knot.

Outline of proof. In the first place, the authors construct a complex hy-
perbolic quasi-Fuchsian group whose limit set is a wild knot. To do so, they
consider a non trivial knot K (in fact a granny knot) inside the Heisenberg
group N and a finite collection Sk, . . . , S

′
k, k = 1, . . . , n of Heisenberg spheres

placed along K such that there exists an enumeration T1, . . . , T2n of the
spheres of this family such that each Tk is tangent to Tk−1 and Tk+1 and is
disjoint from all the rest (we take the indices cyclically). and T2n and T1

which are tangent. They call such a collection a Heisenberg string of beads.
They prove then that there exist Ak ∈ SU(2, 1) such that

• Ak(Sk) = S′
k, k = 1, . . . , n,

• Ak map the exterior of Sk into the interior of S′
k, k = 1, . . . , n and

• Ak maps the points of tangency of Sk to the points of tangency of S′
k,

k = 1, . . . , n

Consider the group Γ = 〈A1, . . . , An〉. By Poincaré’s polyhedron theorem,
Γ is complex hyperbolic quasi-Fuchsian and its limit set is a wild knot. �

5 Closed surfaces

We now turn our attention to the case of closed surfaces Σ without boundary,
that is the case p = 0 and g ≥ 2.

5.1 The representation variety

We begin by discussing the representation variety of π1, the fundamental
group of Σ. In particular, for the moment we do not consider discrete-
ness. There are some differences between the case of representations to
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SU(2, 1) and to PU(2, 1). That is to say, between the representation vari-
eties Hom(π1,SU(2, 1))/SU(2, 1) and Hom(π1,PU(2, 1))/PU(2, 1). Mostly,
we concentrate on the case of representations to SU(2, 1). Many of our re-
sults go through in both cases. For our first result, we distinguish between
the two cases:

Proposition 5.1 (Goldman, Kapovich, Leeb [28]) Let π1 be the fun-
damental group of a closed surface of genus g ≥ 2.

(i) Let ρ : π1 −→ PU(2, 1) be a representation of π1 to PU(2, 1). Then
τ ∈ 2

3Z.

(i) Let ρ : π1 −→ SU(2, 1) be a representation of π1 to SU(2, 1). Then
τ ∈ 2Z.

Because τ is locally constant and varies continuously (with respect to
the compact-open topology) with ρ then we immediately have:

Corollary 5.2 The Toledo invariant is constant on components of Hom(π1,PU(2, 1))/PU(2, 1)
or Hom(π1,SU(2, 1))/SU(2, 1). That is, if ρ1 and ρ2 are representations with
τ(ρ1) 6= τ(ρ2) then ρ1 and ρ2 are in different components of the representa-
tion variety.

Now, there is a converse to Corollary 5.2 due to Xia, see [71]. Namely,
that the Toledo invariant τ distinguishes the components of the whole rep-
resentation variety.

Theorem 5.3 (Xia [71]) If τ(ρ1) = τ(ρ2) then ρ1 and ρ2 lie in the same
component of the representation variety Hom(π1,SU(2, 1))/SU(2, 1).

We know that τ(ρ) ∈ [χ,−χ] = [2 − 2g, 2g − 2] and (for the SU(2, 1)
representation variety) τ(ρ) ∈ 2Z. Therefore τ(ρ) takes one of the 2g − 1
values 2−2g, 4−2g, . . . , 2g−4, 2g−2. For each one of these values of τ(ρ)
there is a component of Hom(π1,SU(2, 1))/SU(2, 1).

5.2 C-Fuchsian representations

Let us consider the components for which τ(ρ) = ∓χ = ±(2g− 2). Suppose
that ρ0 is a C-Fuchsian representation. Then, using Proposition 3.8 we
know that τ(ρ0) = ∓χ. Because τ is constant on the components of
Hom(π1,SU(2, 1))/SU(2, 1), we see that any deformation ρt of ρ0 also has
τ(ρt) = τ(ρ0) = ∓χ. Therefore, ρt is also C-Fuchsian, again using Proposition
3.8. Thus we have proved the following result, known as the Toledo-Goldman
rigidity theorem:
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Theorem 5.4 (Goldman [25], Toledo [64, 65]) Given a C-Fuchsian rep-
resentation ρ0 ∈ QC(Σ) then any nearby representation ρt is also C-Fuchsian.

In fact, we can give a complete description of this component. Let
ρ : π1 −→ SU(2, 1) be a C-Fuchsian representation of π1. This means that
ρ(π1) preserves a complex line L. We may suppose that L is {0} ×C ⊂ C2,
that is the z2 axis, in the unit ball model of H2

C. This means that ρ is a
reducible representation

ρ : π1 −→ S(U(1)×U(1, 1)) < SU(2, 1).

That is, each element A ∈ ρ(π1) is a block diagonal matrix. The upper left
block A1 is a 1×1 block in U(1), in other words A1 = eiθ for some θ ∈ [0, 2π).
The lower right hand block is a 2× 2 block A2 in U(1, 1) with determinant
e−iθ. This means that eiθ/2A2 ∈ SU(1, 1). Hence we can write ρ = ρ1 ⊕ ρ2

where ρ1 : π1 −→ U(1) is given by ρ(γ) = A1 and ρ2 : π1 −→ U(1, 1) is
given by ρ(γ) = A2. This is equivalent to ρ′2 : π1 −→ SU(1, 1) is given by
ρ(γ) = eiθ/2A2. Thus ρ1 is an abelian representation and ρ2 is (a lift of) a
Fuchsian representation. Note that after applying the canonical projection
from U(1, 1) to PU(1, 1) the resulting Möbius transformation is indepen-
dent of det(A2). Thus as Fuchsian representations ρ2 and ρ′2 are the same.
The representations ρ1 and ρ′2 are independent. The space of (irreducible)
Abelian representations is 2g copies of S1, that is a 2g-dimensional torus T 2g

(note that since the only relation is a product of commutators, we have a
free choice of points in S1 for each of the 2g generators of π1). The space of
Fuchsian representations up to conjugacy is Teichmüller space T (Σ), which
is homeomorphic to R6g−6. Thus we have

Proposition 5.5 (Goldman [26]) Let Σ be a closed surface of genus g ≥ 2.
The two components of Hom(π1,SU(2, 1))/SU(2, 1) where τ = ∓χ = ±(2g−2)
are made up of discrete faithful Fuchsian representations in T 2g ×T (Σ). In
particular, these two components have dimension 8g − 6.

Every representation with τ 6= ∓χ is irreducible. One may compute the
dimension using Weyl’s formula to obtain:

Proposition 5.6 (Goldman [26]) Let Σ be a closed surface of genus g ≥ 2.
Each of the 2g − 3 components of Hom(π1,SU(2, 1))/SU(2, 1) for which
τ 6= ∓χ = ±(2g − 2) has dimension 16g − 16.
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In contrast to the two components of Hom(π1,SU(2, 1))/SU(2, 1) with
τ = ∓χ, the other components of the representation variety are not easy
to describe. In particular, they contain representations that are not quasi-
Fuchsian. We expect the picture is that each of these other components
contains (probably infinitely many) islands of quasi-Fuchsian representa-
tions; see Problem 6.1. As yet very little is known. In the following sections
we will summarise the current state of knowledge.

5.3 Complex hyperbolic quasi-Fuchsian space is open

We use the following theorem of Guichard.

Theorem 5.7 (Guichard [31]) Let G be a semi-simple group with finite
centre and let G∗ be a subgroup of G of rank 1. If Γ is a convex-cocompact
subgroup of G∗ then there exists an open neighbourhood U of an injection of
Γ in G into the space of representations Hom(Γ, G)/G consisting of discrete,
faithful, convex-cocompact representations.

Guichard proves this result using the theory of Gromov hyperbolic metric
spaces. In particular, he shows that there is a neighbourhood of Γ compris-
ing quasi-isometric embeddings of Γ into G. Using a theorem of Bourdon
and Gromov [7] he then deduces that the groups in this neighbourhood are
discrete, faithful and convex-cocompact.

Corollary 5.8 (Guichard [31]) Let Σ be a closed surface of genus g and
let ρ0 : π1 −→ SU(2, 1) be a complex hyperbolic quasi-Fuchsian representa-
tion of π1. Then there exists an open neighbourhood U = U(ρ0) so that any
representation ρ ∈ U is complex hyperbolic quasi-Fuchsian.

Combining this Corollary 5.8 and Proposition 5.6 we obtain

Corollary 5.9 There are open sets of dimension 16g − 16 in QC(Σ).

In [48] Parker and Platis proved a version of Corollary 5.8 in the case
where ρ0 is R-Fuchsian. They started with a fundamental domain for the
group ρ0(π1) whose faces are contained in packs. This domain is the preim-
age under orthogonal projection of a fundamental polygon for the action of
ρ0(π1) on its invariant Lagrangian plane. They then showed directly that
this fundamental domain may be continuously deformed into a fundamental
domain for ρ(π1). Such a domain has faces contained in packs and has the
same combinatorial type as the original domain.
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5.4 The Euler number

Let ρ : π1 −→ SU(2, 1) be a complex hyperbolic quasi-Fuchsian representa-
tion of π1. Let M = f̃(Σ̃) be an equivariant surface defined by f̃ : Σ̃ −→ M ⊂ H2

C.
The quotient of M by Γ = ρ(π1) is a surface homeomorphic to Σ and H2

C/Γ
is a disc bundle over this surface. The relation in π1 corresponds to moving
around the boundary of a fundamental domain for the action of Γ on M .
In doing so it is easy to check that a tangent vector rotates by a total angle
of 2πχ = (4 − 4g)π, that is χ = 2 − 2g whole turns. As this happens the
discs in the normal direction also rotate by a certain number of whole turns.
This number is called the Euler number e = e(ρ) of ρ. The Euler number
measures how far H2

C/Γ is from being a product of Σ with a disc. We now
demonstrate how to find the Euler number for C-Fuchsian and R-Fuchsian
representations.

An elliptic map in SU(1, 1) fixing the origin in the ball model lifts to
S(U×U(1, 1)) as

Aθ =

 1 0 0
0 eiθ/2 0
0 0 e−iθ/2

 .

This acts on (z1, z2) ∈ H2
C via its standard lift as Aθ : (z1, z2) 7−→ (eiθ/2z1, e

iθz2).
In this case M is the (complex) z2 axis. We may identify tangent vectors
to M at the origin with vectors (0, z2) and normal vectors to M at the
origin with vectors (z1, 0). Hence Aθ acts as rotation by θ on vectors tan-
gent to M and by rotation through θ/2 on vectors normal to M . Suppose
ρ(π1) < S(U(1)×U(1, 1)) < SU(2, 1) is a C-Fuchsian representation. The re-
lation in π1 corresponds to a rotation of a tangent vector to M by χ = 2−2g
whole turns (that is by an angle of (4−4g)π). Hence the normal vector makes
half this number of turns. Thus the Euler number is e(ρ) = 1− g = χ/2.

An elliptic map in SO(2, 1) fixing the origin in the ball model embeds in
SO(2, 1) as

Bθ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

This acts on (z1, z2) ∈ H2
C via its standard lift as Bθ : (z1, z2) 7−→ (cos θz1−sin θz2, sin θz1+cos θz2).

In this case M is the set where z1 and z2 are both real. We may identify
tangent vectors to M at the origin with vectors (x1, x2) and normal vectors
to M at the origin with vectors (iy1, iy2) where x1, x2, y1, y2 are all real. It
is clear that tangent vectors and normal vectors are all rotated through an-
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gle θ. Suppose ρ(π1) < SO(2, 1) < SU(2, 1) is an R-Fuchsian representation.
Since the relation in π1 corresponds to a rotation of of a tangent vector to
M of χ = 2 − 2g whole turns. Hence the normal vector makes the same
number of turns. Thus the Euler number is e(ρ) = 2− 2g = χ.

5.5 Construction of examples

Besides rigidity Theorem 5.4 and Proposition 5.5 which describe completely
the components of QC(Σ) comprising of C-Fuchsian representations, none of
the above results imply anything about discreteness. The first result towards
this direction is due to Goldman, Kapovich and Leeb, see Theorem 1.2 of
[28]:

Theorem 5.10 (Goldman, Kapovich and Leeb [28]) Let Σ be a closed
surface of genus g and let π1 be its fundamental group. For each even in-
teger t with 2 − 2g ≤ t ≤ 2g − 2 there exists a convex-cocompact discrete
and faithful representation ρ of π1 with τ(ρ) = t. Furthermore, the complex
hyperbolic manifold M = H2

C/ρ(π1) is diffeomorphic to the total space of an
oriented R2 bundle ξ over Σ with the Euler number

e(ξ) = χ(Σ) + |τ(ρ)/2|.

Outline of proof. We have already seen that R-Fuchsian or C-Fuchsian
representations give examples of representations with τ = 0 or τ = ±(2g−2)
and the correct Euler numbers.

Let t be an even integer with 0 < t < 2g − 2. Let Σ1 be a (possibly
disconnected) subsurface of Σ with the following properties:

(i) χ(Σ1) = −t,

(ii) each boundary component is an essential simple closed curve in Σ and
distinct boundary components are not homotopic,

(iii) each component of Σ1 has an even number of boundary components.

It is easy to see that for each even integer t with 0 < t < 2g − 2 we can can
find such a Σ1. Let Σ2 be the interior of Σ−Σ1. Then Σ2 is also a (possibly
disconnected) subsurface of Σ.

The authors start with a piecewise hyperbolic structure on Σ with the
following properties. First, Σ1 has constant curvature −1 and Σ2 has con-
stant curvature −1/4. Secondly, each boundary component of Σ1 and Σ2
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is a geodesic with the same length l which is sufficiently short, they take
sinh(l) < 6/35. Next, the main step for the proof is the construction of a
complete complex hyperbolic manifold M together with a piecewise totally
geodesic isometric embedding f : Σ → M such that

(i) f is a homotopy equivalence,

(ii) the Toledo invariant of M equals −χ(Σ1) = t and

(iii) M is diffeomorphic to the total space of an oriented disc bundle which
has the Euler number χ(Σ1)/2 + χ(Σ2).

The method they use to construct M is obtained by taking a C-Fuchsian
representation of the fundamental group of (each component of) Σ1 and
an R-Fuchsian representation of the fundamental group of (each component
of) Σ2. They then use a version of the Klein-Maskit combination theorem
to sew these representations together. The hypothesis that all the bound-
ary components are short guarantees that the resulting representation is
discrete.

Finally, for even integers t with 2− 2g < t < 0, the required representa-
tion is obtained by applying an antiholomorphic isometry to the represen-
tation constructed above with τ = −t. �

The reason that Σ1 is required to have an even number of components
(and hence χ(Σ1) is even) is rather subtle. In order to be able to use the
Klein-Maskit combination theorem, each curve γ in the common bound-
ary component of Σ1 and Σ2 must be represented by an element A of
SU(2, 1) that is (up to conjugation) simultaneously a loxodromic element
of S(U(1) × U(1, 1)) and of SO(2, 1). In particular it has real trace greater
than +3. Hence, the U(1) part of its representation in S(U(1)×U(1, 1)) must
be +1 and hence it lies in {+1} × SU(1, 1) and corresponds to an element
of SU(1, 1) with trace greater than +2.

Suppose that Σ0 is a three-holed sphere with boundary components γ1,
γ2 and γ3. For any choice of hyperbolic metric on Σ0 we may associate
a geometrical representation ρ0 : π1(Σ0) −→ PU(1, 1). Consider any lift
of ρ0 to SU(1, 1). Let A1, A2 and A3 be the three elements of SU(1, 1)
representing the boundary loops. Then either all three traces are negative
or else one is negative and the other two positive (see page 9 of Gilman [23]
for example). This means that for at least one of the boundary components
the corresponding element of SU(2, 1) has trace less than −1, and hence it
corresponds to a glide reflection in SO(2, 1). By studying the decomposition
of Σ1 into three holed spheres, we can see that each boundary component
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may be represented by an element of SU(1, 1) positive trace if and only if
the number of boundary components is even.

Further examples have been constructed by Anan’in, Grossi and Gusevskii
[2, 3]. In their construction, they consider a group generated by complex in-
volutions R1, . . . , Rn fixing complex lines L1, . . . , Ln respectively with two
properties. First, the complex lines are pairwise ultra-parallel and, secondly,
the product R1 . . . Rn is the identity. They give conditions that determine
whether such a group is discrete and they do so by constructing a fundamen-
tal polyhedron whose faces are contained in bisectors. These groups contain
a complex hyperbolic quasi-Fuchsian subgroup of index 2 or 4. In partic-
ular they give a series of examples where the Euler number takes different
values. Subsequently, a related construction was given by Gaye [22]. He con-
siders groups of the same type as those considered in [2] but he constructs
fundamental polyhedra whose faces are contained in C-spheres.

5.6 Complex hyperbolic Fenchel-Nielsen coordinates

It is useful to find ways of putting coordinates in complex hyperbolic quasi-
Fuchsian space. One way to do it is to mimic the construction of Fenchel-
Nielsen coordinates for Teichmüller space and the related complex Fenchel-
Nielsen coordinates for quasi-Fuchsian space.

For clarity, we shall recall in brief how Fenchel-Nielsen coordinates are
defined; see [21] or Wolpert [68], [69]. Let γj for j = 1, . . . , 3g−3 be a curve
system (some authors call this a partition) that is, a maximal collection
of disjoint, simple, closed curves on Σ that are neither homotopic to each
other nor homotopically trivial. The complement of such a curve system
is a collection of 2g − 2 three-holed spheres. If Σ has a hyperbolic metric
then, without loss of generality, we may choose each γj in our curve system
to be the geodesic in its homotopy class. The hyperbolic metric on each
three-holed sphere is completely determined by the hyperbolic length lj > 0
of each of its boundary geodesics. There is a real twist parameter kj that
determines how these three-holed spheres are attached to one another. From
an initial configuration, the two three holed spheres with common boundary
component may be rotated relative to one another. The absolute value of
the twist |kj | measures the distance they are twisted and the sign denotes
the direction of their relative twist. The theorem of Fenchel and Nielsen
states that each (6g − 6)-tuple

(l1, . . . , l3g−3, k1, . . . , k3g−3) ∈ R3g−3
+ × R3g−3
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determines a unique hyperbolic metric on Σ and each hyperbolic metric
arises in this way.

Kourouniotis [39] and Tan [63] extended the theorem of Fenchel and
Nielsen to the case of real hyperbolic quasi-Fuchsian space of Σ. In this ex-
tension both the length parameters and the twist parameters become com-
plex. The elements of ρ(π1) ∈ SL(2, C) corresponding to γj in the curve
system are now loxodromic with, in general, non-real trace. Thus the imagi-
nary part of the length parameter represents the holonomy angle when mov-
ing around γj . Likewise, the imaginary part of the twist parameter becomes
the parameter of a bending deformation about γj ; see also [51] for more de-
tails of this correspondence and how to relate these parameters to traces of
matrices. The main difference from the situation with real Fenchel-Nielsen
coordinates is that, while distinct quasi-Fuchsian representations determine
distinct complex Fenchel-Nielsen coordinates, it is not at all clear which set
of coordinates give rise to discrete representations, and hence to a quasi-
Fuchsian structure. In fact the boundary of the set of realisable coordinates
is fractal.

In [49], Parker and Platis define Fenchel-Nielsen coordinates for repre-
sentations π1(Σ) to SU(2, 1) for which the 3g−3 curves in a curve system are
represented by loxodromic maps. It is clear that this is a proper subset of
the representation variety and contains complex hyperbolic quasi-Fuchsian
space. The coordinates are 16g − 16 real parameters that distinguish non-
conjugate irreducible representations and 8g−6 real parameters that distin-
guish non-conjugate representations that preserve a complex line (compare
to Propositions 5.5 and 5.6). As with the complex Fenchel-Nielsen coordi-
nates described by Kourouniotis and Tan it is not clear which coordinates
correspond to discrete representations. However, the coordinates in [49] de-
termine the group up to conjugacy and distinguish between non-conjugate
representations. The major innovation of Parker and Platis in this paper
is the use of cross-ratios (recall section 2.7) in addition to complex length
and twist-bend parameters. First, for representations that do not preserve
a complex line, and so are irreducible, the following holds.

Theorem 5.11 (Parker and Platis [49]) Let Σ be a surface of genus g
with a simple curve system γ1, . . . , γ3g−3. Let ρ : π1(Σ) −→ Γ < SU(2, 1)
be an irreducible representation of the fundamental group π1(Σ) to SU(2, 1)
with the property that ρ(γj) = Aj is loxodromic for each j = 1, . . . , 3g − 3.
Then there exist 4g − 4 complex parameters and 2g − 2 points on the cross-
ratio variety X that completely determine ρ up to conjugation.

For representations that preserve a complex line several of the previous
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parameters are real the following holds.

Theorem 5.12 (Parker and Platis [49]) Let Σ be a surface of genus g
with a simple curve system γ1, . . . , γ3g−3. Let ρ : π1(Σ) −→ Γ < S(U(1)×U(1, 1))
be a reducible representation of the fundamental group π1(Σ) to SU(2, 1) that
preserves a complex line and which has the property that ρ(γj) = Aj is lox-
odromic for each j = 1, . . . , 3g− 3. Then there exist 8g− 6 real parameters
that completely determine ρ up to conjugation.

5.7 The boundary of complex hyperbolic quasi-Fuchsian space

We now investigate what happens as we approach the boundary of quasi-
Fuchsian space. Cooper, Long and Thistlethwaite [11] have proved a com-
plex hyperbolic version of Chuckrow’s theorem. They prove it for sequences
of representations of groups that are not virtually nilpotent. We state it for
the special case we are interested in here, namely the case of surface groups.

Theorem 5.13 (Theorem 2.7 of [11]) Let π1 be the fundamental group
of a hyperbolic surface of finite type. Suppose that ρk : π1 −→ SU(2, 1) is an
algebraically convergent sequence of discrete, faithful representations of π1.
Then the limit representation is discrete and faithful.

In Section 2.7 of [30] Greenberg used the classical version of Chuckrow’s
theorem to construct some of the first examples of geometrically finite Kleinian
groups. Roughly speaking, his argument is the following: Consider a space
X of discrete, faithful, geometrically finite, type-preserving SL(2, C)-representations
of a given abstract group so that X is open and the boundary of X in the
space of all representations contains a continuum. The example Greenberg
considers is Riley’s example of groups generated by two parabolic maps,
now known as the Riley slice of Schottky space. Then Greenberg considers
a sequence of representations ρk converging to the boundary of X. Because
X is open the limit representation ρ0 is not in X. By Chuckrow’s theorem
ρ0 is both discrete and faithful. Therefore ρ0 must either contain addi-
tional parabolics or be geometrically infinite. This reasoning applies in our
case. Greenberg goes on to argue that, since for a matrix to be parabolic
in SL(2, C) involves a codimension 2 condition (trace equals ±2), there are
only countably many boundary points with additional parabolic elements.
Therefore there must be geometrically infinite examples on the boundary.
In the case of SU(2, 1) the condition to be parabolic has codimension 1
(f(τ) = 0 where f(τ) is Goldman’s function Theorem 6.2.4 of [27]).

37



Therefore it could be the case that the boundary of complex hyper-
bolic quasi-Fuchsian space is made up of geometrically finite representations
where (at least) one conjugacy class in π1 is represented by parabolic ele-
ments of SU(2, 1). The locus where a particular conjugacy class is parabolic
is a real analytic codimension 1 subvariety (with respect to suitable coordi-
nates, such as the complex hyperbolic Fenchel-Nielsen coordinates described
in Section 5.6). Therefore a conjectural picture is that complex hyperbolic
quasi-Fuchsian space has a polyhedral or cellular structure. The (real) codi-
mension 1 cells correspond to a single extra class of parabolic maps. These
intersect in lower dimensional cells. The cells of codimension k correspond
to k classes becoming parabolic.

5.8 Complex hyperbolic quakebending

Let ρ0 be a representation of the fundamental group π1 of Σ into some Lie
group G. A deformation of ρ0 is a curve ρt = ρ(t) such that ρ(0) = ρ0.
Deformations in Teichmüller and real quasi-Fuchsian spaces are very well
known and have been studied extensively, at least throughout the last thirty
years. Below we state some basic facts about them.

In the case of Teichmüller space T (Σ), the basic deformation is the
Fenchel-Nielsen deformation; a thorough study of this has been carried out
by Wolpert in [69]. We cut Σ0 along a simple closed geodesic α, rotate one
side of the cut relative to the other and attach the sides in their new position.
This deformation involves continuously changing the corresponding Fenchel-
Nielsen twist parameter while holding all the others fixed. The hyperbolic
metric in the complement of the cut extends to a hyperbolic metric in the
new surface. In this way a deformation ρt (depending on the free homotopy
class of α) is defined and its infinitesimal generator tα is the Fenchel-Nielsen
vector field. Such vector fields are very important: at each point of T (Σ),
6g−6 of such fields form a basis of the tangent space of T (Σ). Moreover, the
Weil-Petersson Kähler form of T (Σ) may be described completely in terms
of the variations of geodesic length of simple closed geodesics under the
action of these fields. The basic formula for this is Wolpert’s first derivative
formula: If α, β are simple closed geodesics in Σ0, lα is the geodesic length
of α and tβ is the Fenchel-Nielsen vector field associated to β then then at
the point ρ0 we have

tβlα =
∑

p∈α∩β

cos(φp),

where φp is the oriented angle of intersection of α and β at p. Another
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basic formula concerns the mixed variations tβtγlα; the reader should see
for instance [70] or [69] for details.

In [41] Kourouniotis, using ideas of Thurston and working in the spirit
of Wolpert’s construction of the Fenchel-Nielsen deformation, constructs a
quasiconformal homeomorphism of the complex plane which he calls the
bending homeomorphism. Given a hyperbolic structure on Σ, from this
homeomorphism he obtains a quasi-Fuchsian structure on Σ.

Epstein and Marden took a different and much more general point of
view in [15]. Given a hyperbolic structure ρ0 on a closed surface Σ, then
for every finite geodesic lamination Λ in Σ with complex transverse measure
µ and a simple closed geodesic α in Σ0, there exists an isometric map h,
depending on α, of Σ0 into a hyperbolic 3-manifold Mh (the quakebend
map). The image of this map is a pleated surface Σh, that is a complete
hyperbolic surface which may be viewed as the original surface bent along
the leaves of the lamination in angles depending on the imaginary part of µ,
with its flat pieces translated relative to the leaves in distances depending
on the real part of µ. The pleated surface Σh is then the boundary of the
convex hull of Mh. For small t ∈ C, quakebending along Λ with transverse
measure tµ produces injective homomorphisms of π1(Σ) into PSL(2, C) with
quasi-Fuchsian image and in this way we obtain a deformation ρtµ (the
quakebend curve) of quasi-Fuchsian space QR(Σ) with initial point our given
hyperbolic structure, that is a point in the Teichmüller space T (Σ) of Σ.
It is evident that the Fenchel-Nielsen deformation as well as Kourouniotis’
bending deformation are special cases of the above construction; the first
is induced from the case where µ is real (pure earthquake) and the second
from the case where µ is imaginary (pure bending). Infinitesimal generators
of quakebend curves are the holomorphic vector fields Tµ. If α is a simple
closed geodesic in Σ0 and in the case where λ is finite with leaves γ1, . . . , γn,
then at the point ρ0 we have

Tµlα =
dl(ρtµ)

dt
(0) =

n∑
k=1

<(ζk) · cos(φk)

where ζk = µ(α∩γk) and φk are the oriented angles of intersection of α and
γk. This formula is a generalisation of Kerckhoff’s formula when µ ∈ R, see

[38]. Epstein and Marden also give formulae for the second derivative as
well as generalisation of these in the case where Λ is infinite.

In [40] Kourouniotis revisits the idea of bending. Based on [15] and
using his bending homeomorphism as in [41], he constructs quakebending
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curves in Q(Σ) but there, the initially point ρ0 is a quasi-Fuchsian structure
on Σ. Moreover in [42] he goes on to define the variations of the complex
length λα of a simple closed curve under bending along (Λ, µ). Platis used
Kourouniotis’ results to describe completely the complex symplectic form
of QR(Σ) in [52, 53]. This form may be thought as the complexification
of the Weil-Petersson symplectic form of T (Σ). We remark finally that
generalisations of the derivative formulae were given for instance by Series
in [62].

In [4], Apanasov took the point view of Kourouniotis in [41] to construct
bending curves in QC(Σ). In fact he proved the following

Theorem 5.14 (Apanasov [4]) Let ρ0 be an R−Fuchsian representation
of π1 and write Γ0 = ρ0(π1). Then for any simple closed geodesic α ∈ H2

R/Γ0

and for sufficiently small t ∈ R there exists a (continuous) bending deforma-
tion ρt of ρ0 induced by Γ0−equivariant quasiconformal homeomorphisms Ft

of H2
C.

Platis in [54] followed the strategy suggested by Epstein and Marden in
[15]. Let ρ0 be an R−Fuchsian representation of π1 with Γ0 = ρ0(π1). Then,
M0 = H2

C/Γ0 is a complex hyperbolic manifold and embedded in M0 there is
a hyperbolic surface Σ0 = H2

R/Γ0. For every finite geodesic lamination Λ in
Σ with complex transverse measure µ and a simple closed geodesic α in Σ0,
there is an isometric map BC, depending on α, of M0 into a complex hyper-
bolic manifold Mh. (the complex hyperbolic quakebend map). Restricted
to Σ0 the image of this map is a pleated surface Σh, something which is
entirely analogous to the classical case. The pleated surface Σh is naturally
embedded in Mh. By Corollary 5.8, for small t ∈ R, complex hyperbolic
quakebending along Λ with transverse measure tµ produces complex hyper-
bolic quasi-Fuchsian groups. That is,

Theorem 5.15 (Platis [54]) There is an ε > 0 such that for all t with
|t| < ε the complex hyperbolic quakebend curve ρtµ lies entirely in QC(Σ).

Platis also discusses the variations of the complex hyperbolic length
λ = l + iθ of ρtµ. The induced formulae are natural generalisations of
Epstein-Marden’s formulae. For instance, for the first derivative of λ at ρ0

we have the following.

dl

dt
(0) =

n∑
k=1

<(ζk) · cos(φk),
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dθ

dt
(0) =

n∑
k=1

=(ζk) ·
3 cos2(φk)− 1

2
.

Remark 5.16 We remark that in view of Corollary 5.8 and Theorem 5.10,
the condition ρ0 is R−Fuchsian is now quite restrictive. Complex hyperbolic
quakebending curves may be constructed in exactly the same way at least
when the starting point ρ0 is an arbitrary point of QC(Σ) with even Toledo
invariant τ(ρ0). This construction is carried out in [55].

6 Open problems and conjectures

Below we list a number of open problems concerning both compact and non
compact cases. We also state a number of conjectures.

Problem 6.1 Describe the topology of QC(Σ). For example:

(i) In the case when p = 0 describe the components of QC(Σ) with the
same Toledo invariant.

(ii) For |τ(ρ)| < 2g − 2, is each of these components homeomorphic to a
ball of dimension 16g − 16?

(iii) In the case when p > 0 describe the components of QC(Σ).

(iv) For p > 0 is QC(Σ) an open subset of Hom(π1,SU(2, 1))/SU(2, 1)?

(v) Is each component homeomorphic to a ball?

We have seen that QC(Σ) is disconnected. In the compact case the
Toledo invariant distinguishes components of the representation variety Hom(π1,SU(2, 1))/SU(2, 1)
[71] and each component is non-empty [28]. The Euler number gives a finer
classification of QC(Σ). As yet it s not known which values of the Euler
number can arise; compare [2]. When p > 0 there are quasi-Fuchsian repre-
sentations whose limit set is a wild knot [13]. It is natural to ask which wild
knots arise in this way and whether this construction extends to the case of
p = 0.

Problem 6.2 Describe representations in ∂QC(Σ). For example:

(i) Does ∂QC(Σ) admit a cell structure where each cell of codimension k
corresponds to k elements of π1 being represented by parabolic maps?
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(ii) If the answer to (i) is positive then characterise which elements of π1

correspond to codimension 1 cells and which combinations correspond
to cells of higher codimension?

(iii) Is every representation in QC(Σ) geometrically finite?

(iv) Does every quasi-Fuchsian representation of a punctured surface arise
in the boundary of the quasi-Fuchsian space of a closed surface?

It is tempting to suggest that the codimension 1 cells correspond exactly
to the simple closed curves on Σ. However, the case of the three times
punctured sphere, Theorem 4.1, suggests that there are other curves that
may be pinched in this way.

A starting point could be to consider surface subgroups of complex hy-
perbolic triangle groups. Let q1, qj , q3 integers at least 2 (possibly including
∞) and consider three involutions Ij each fixing a complex line so that
Ij+1Ij−1 is elliptic of order qj when qj is finite and parabolic when qj is
∞ (all indices are taken mod 3). Then 〈I1, I2, I3〉 is a representation of a
(q1, q2, q3) triangle reflection group.

Conjecture 6.3 (Schwartz [59]) Let q1, q2 and q3 be integers at least 2
and let 〈I1, I2, I3〉 < SU(2, 1) be the corresponding representation of the
(q1, q2, q3) triangle reflection group. Then 〈I1, I2, I3〉 is a discrete, faith-
ful, type-preserving, geometrically finite representation if and only if I1I2I3

and IjIj+1IjIj−1 for j = 1, 2, 3 are all loxodromic.
Moreover, the values of the qj determine which of these four words be-

comes parabolic first.

The Coxeter group generated by reflections in the sides of a hyperbolic
triangle contains a surface group as a torsion-free, finite index subgroup (in-
deed it contains infinitely many such surface groups). Therefore every dis-
crete, faithful, type-preserving, geometrically finite representation 〈I1, I2, I2〉
contains quasi-Fuchsian subgroups of finite index. If Schwartz’s conjecture
is true then the subgroups of the corresponding representations where one
of I1I2I3, IjIj+1IjIj−1 is parabolic will lie in ∂QC(Σ).

There are also natural questions about the geometric and analytical
structures of QC(Σ). Goldman [24] and Hitchin [34] have shown that the
representation variety Hom(π1,SU(2, 1))/SU(2, 1) admits natural symplec-
tic and complex structures. Our next problem concerns these structures.

Problem 6.4 Let Σ be a closed surface. Examine geometrical and analyti-
cal structures of QC(Σ).
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(i) Do the natural symplectic and complex structures on Hom(π1,SU(2, 1))/SU(2, 1)
given by Goldman and Hitchin naturally pass to QC(Σ)?

(ii) Take a complex hyperbolic quakebending deformation with starting point
any irreducible representation. From this, define then geometrically a
symplectic structure in the whole QC(Σ) such that it agrees with the
Weil-Petersson symplectic form of Teichmüller space at R-Fuchsian
representations.

(iii) What can you say about the complex structure? For instance do com-
plex hyperbolic Fenchel-Nielsen coordinates induce such a complex struc-
ture on QC(Σ)?

The answer to Problem 6.4 (i) is affirmative in the classical cases of
Hom(π1,SL(2, R))/SL(2, R) and Hom(π1,SL(2, C))/SL(2, C). That is, com-
plex and symplectic structures pass naturally to T (Σ) and QR(Σ) respec-
tively. We conjecture that the answer is also affirmative in the complex
hyperbolic case. We also conjecture that the answer to Problem 6.4 (iii) is
negative.

Conjecture 6.5 For p = 0 there is a hyperkähler structure in QC(Σ).

Quasi-conformal maps are the major tool used to define Teichmüller
space. These have been generalised to complex hyperbolic space by Mostow,
Chapter 21 of [45]. Also, Korányi and Reimann [36] have developed an ex-
tensive theory of quasiconformal mappings on the Heisenberg group. These
may be extended to H2

C [37]. However, it is not known whether these qua-
siconformal mappings are strong enough to describe the whole of QC(Σ).

Conjecture 6.6 For p = 0 any two representations in the same component
of QC(Σ) are quasiconformally conjugate.

In the non compact case, by a theorem of Miner, see [44], type preserving
C−Fuchsian and R−Fuchsian representations are never quasiconformally
conjugate. In the compact case, the authors believe that there is strong
evidence that this conjecture is true. For instance Aebischer and Miner
showed in [1] that the complex quasi-Fuchsian space of a classical Schottky
group has this property.
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compleses et déformation. Preprint.

[23] J. Gilman; Two-Generator Discrete Subgroups of PSL(2, R). Memoirs
of the American Mathematical Society 561, 1995.

[24] W.M. Goldman; The symplectic nature of fundamental groups of
surfaces. Adv. in Math. 54 (1984) 200–225.

[25] W.M. Goldman; Representations of fundamental groups of surfaces. In
“Geometry and Topology”, ed. J. Alexander & J. Harer, Lecture
Notes in Mathematics 1167 (1985) 95–117.

[26] W.M. Goldman; Convex real projective structures on compact
surfaces. J. Diff. Geom. 31 (1990) 791–845.

[27] W.M. Goldman; Complex Hyperbolic Geometry. Oxford University
Press, 1999.

45



[28] W.M. Goldman, M.E. Kapovich & B. Leeb; Complex hyperbolic
manifolds homotopy equivalent to a Riemann surface. Comm. Anal.
Geom. 9 (2001) 61–95.

[29] W.M. Goldman & J.R. Parker; Complex hyperbolic ideal triangle
groups. J. reine angew. Math., 425 (1992) 71–86.

[30] L. Greenberg; Finiteness theorems for Fuchsian and Kleinian groups.
In “Discrete Groups and Automorphic Functions”, ed W.J. Harvey,
Academic Press (1977) 199–257.

[31] O. Guichard; Groupes plongés quasi isométriquement dans un groupe
de Lie. Math. Ann., 330 (2004) 331–351.

[32] N. Gusevskii & J.R. Parker; Representations of free Fuchsian groups
in complex hyperbolic space. Topology 39 (2000) 33–60.

[33] N. Gusevskii & J.R. Parker; Complex hyperbolic quasi-Fuchsian
groups and Toledo’s invariant. Geometriae Dedicata, 97 (2003)
151–185.

[34] N.J. Hitchin; Hyper-Kähler manifolds. Séminaire Bourbaki, Vol.
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