A robust and efficient implementation for the segment Voronoi diagram

Menelaos 1. Karavelas
University of Notre Dame, Computer Science and Engineering Department
Notre Dame, IN 46556, U.S.A.
mkaravel@cse.nd.edu

Abstract

In this paper we present an efficient algorithm
for the computation of the segment Voronoi dia-
gram in two dimensions. Our algorithm can han-
dle not only disjoint segments or segments that
share endpoints, but also segments that may in-
tersect at their interior. It is incremental and the
expected cost of inserting n (possibly intersecting)
sites (points or segments) is O((n + m)log?n),
where m is the number of points of intersection of
the (open) segments in the input site set. Finally,
we describe the implementation of our algorithm,
that uses techniques such as geometric filtering,
and present experiments that show the robustness,
efficiency and scalability of our implementation.

Keywords: Segment Voronoi diagram; Voronoi
diagram hierarchy; geometric filtering

1. Introduction

The Euclidean Voronoi diagram for a set of lin-
ear segments is one of the most well studied
structures in computational geometry. Appli-
cations include biology, computer graphics, pat-
tern recognition, motion planning, shape repre-
sentation, mesh generation and NC machining (cf.
[Kir79, Lee82, BY98, Hel01] and the references
therein).

The algorithms proposed so far assume that the
segments are either disjoint or that they are al-
lowed to intersect only at endpoints and use a va-
riety of algorithmic paradigms. Drysdale and Lee
[DL78] show how to compute the segment Voronoi
diagram in time O(nlog?n), where n is the num-
ber of input segments. Kirkpatrick [Kir79], Lee
[Lee82] and Yap [Yap87] present worse-case opti-
mal O(nlogn) divide-and-conquer algorithms for
this problem. Another worst-case optimal algo-

rithm, using the sweep-line paradigm, is described
by Fortune [For87]. Boissonnat et al. [BDS'92]
and Klein et al. [KMM93] provide O(nlogn)
randomized incremental algorithms for computing
the segment Voronoi diagram. The algorithm in
[BDST92] was later on made dynamic by Dobrindt
and Yvinec [DY93]. Finally, Alt and Schwarzkopf
[AS95] describe a randomized incremental algo-
rithm for constructing the Voronoi diagram of a
set of planar curve segments, a special case of
which are line segments. Its expected running
time is O(nlogn), but it requires the computa-
tion of a Voronoi diagram for points, one per curve
(line) segment to be inserted in the diagram.

In contrast to the above-mentioned algorithms,
which assume that numerical computations are
performed exactly, Imai [Ima96], Sugihara et
al. [SITIO0] and Held [HelO1] present algorithms
and implementations for computing the segment
Voronoi diagram using floating-point arithmetic.
The resulting diagram may not be the exact one,
due to the numerical errors introduced by the
floating-point arithmetic, but it is guaranteed to
have the correct topology of a Voronoi diagram.
The only exact implementation that we are aware
of for computing the segment Voronoi diagram is
that by M. Seel [See]. It requires the input to be
homogeneous points of integer coordinates and it
is essentially the adaptation to the case of line
segments of the algorithm in [KMMO93] for ab-
stract Voronoi diagrams. Burnikel et al. [BMS94]
present a detailed study of the numerical preci-
sion required for the incircle test of this algo-
rithm using exact arithmetic, while the remaining
predicates are analyzed by Burnikel in his thesis
[Bur96.

In this paper we present a new randomized in-
cremental algorithm for computing the Voronoi
diagram for a set S of points and segments. It ex-
tends the generic paradigm presented in Karavelas

N

Figure 1.

The Voronoi diagram (gray) for a set of 8 closed segments and 2 points (black). Left:

weakly intersecting sites. Right: strongly intersecting sites; the points with white interior are points of

intersection.

and Yvinec [KYO03], where the Voronoi diagram
for a set of (piecewise) smooth disjoint convex ob-
jects is computed using a hierarchy of Voronoi dia-
grams as a location data structure. The fact that
we want to allow segments to intersect at end-
points or at their interior, makes the extension
from this generic paradigm non-trivial, since we
have to build the hierarchy of Voronoi diagrams
in a consistent way. As a result, analyzing the hi-
erarchy and the cost of insertion of a single site
becomes much more complicated.

When we allow the input segments to intersect
at their interior the resulting Voronoi diagram is
no longer an instance of an abstract Voronoi dia-
gram (the bisectors are no longer homeomorphic
to a line), and the classical Voronoi diagram the-
ory does not apply. Moreover, the algorithm in
[KY03] requires a preprocessing step, thus it is
no longer incremental. The key idea is to con-
sider the points and segments in the arrangement
A(S) of S: the segments in A(S) are now dis-
joint or intersect only at their endpoints. Our
algorithm exploits this fact. It maintains the in-
variant that the Voronoi diagram of the sites that
have already been inserted is in fact the Voronoi
diagram of the sites in the arrangement of the in-
put. This is achieved by appropriately splitting,
in an on-line fashion, the input segments, as well
as the segments already inserted in the diagram,
into subsegments, using their points of intersec-
tion (cf. Fig. 1). The expected running time
of our algorithm is O((n 4+ m)log®n), where n is
the size of the input set S and m = O(n?) is the

complexity of the arrangement A(S).

Unlike the case of segments that intersect only
at endpoints, the question of how to represent
the sites in the diagram becomes important. If
points of intersection are represented by their co-
ordinates, their bit complexity can increase ex-
ponentially with respect to the size of the input.
To this effect, we describe how to represent the
sites in the Voronoi diagram in a consistent man-
ner that takes into consideration knowledge about
the history of construction of the sites in the di-
agram. Moreover, this representation guarantees
that the bit complexity of every site in the dia-
gram is a constant multiple of the bit complexity
of the input, thus independent of the size of the
input. This representation is coupled with a tech-
nique we call geometric filtering (Wein [Wei02] has
referred to this approach as “high-level” filtering,
in contrast to “floating-point” or “arithmetic” fil-
tering). Geometric filtering consists of exploiting
the representation of the sites in order to filter
out seemingly degenerate configurations without
resulting to exact arithmetic.

One final novel aspect of this work is the im-
plementation of our algorithm. To the best of our
knowledge, this is the first truly generic and real-
istically efficient implementation for the segment
Voronoi diagram based on the exact computation
paradigm.

The rest of the paper is structured as follows.
In Section 2 we provide some basic definitions. In
Section 3 we describe our algorithm, and in Sec-
tion 4 we give a brief complexity analysis. Sec-

tion 5 discusses how points and segments are rep-
resented and how this representation is coupled
with our filtering technique. Finally, in Section 6
we present our implementation and experimental
results obtained by it.

2. Definitions

Let S be a set of distinct disjoint sites, where a site
S € S is either a closed linear segment ¢ or a point
p. We refer to the interior of a segment ¢, denoted
by t°, as an open segment. The interior of a point
is the empty set. We say that two sites, open or
closed, intersect if they share at least one common
point. In this paper we only deal with sites such
that each pair has at most one common point.
The case of pairs of intersecting sites having more
than one common point can be dealt with within
our framework easily, but due to space limitations
we will not discuss it. We say that two closed
intersecting sites weakly intersect if their common
point does not lie in the interior of any of the two
sites. Finally, we say that two closed intersecting
sites strongly intersect if their common point lies
in the interior of at least one of the two sites.

The distance of a point € E? from a closed site
S; is defined as 0(z,S;) = min{|jlz — y|| : y € S;}.
Let Hz'j = {x € E? . 5(1’,52) < 5($,Sj)} The
bisector m;; of S; and S}, i.e., the locus of points
at equal distance from S; and S; is then the set
H;; N Hj;. Since the set S contains only disjoint
sites, the bisectors are curves homeomorphic to
the line. The Voronoi cell V(S;) is defined to
be the set of points in # € E? that are closer
(or at equal distance) to S; than to any other
site S; in S, ie., V(S;) = NizjH;;. The con-
nected sets of points that belong to the intersec-
tion of exactly two Voronoi cells are called Voronoi
edges, whereas the the points that belong to at
least three Voronoi cells are called Voronoi ver-
tices. The subdivision of the plane into Voronoi
vertices, edges and cells is called the Voronoi dia-
gram V(S) of S. The collection of Voronoi vertices
and edges is called the 1-skeleton Vi (S) of S.

If sites are allowed to weakly intersect the bisec-
tors m;; can become two-dimensional. The stan-
dard technique for avoiding two-dimensional bi-
sectors is to consider segments not as one object,
but rather as three, namely, the two endpoints
and the open segment (e.g., cf. [Bur96]). For the
Voronoi diagram to be well defined, we now need

to define the bisector of an open segment ¢; and
its endpoint p;. In this case the bisector m;; of t7
and p; is the line perpendicular to ¢t that passes
through p;. The set H;; is the closed halfplane de-
limited by 7;; that contains ¢7. Moreover, we have
to distinguish between the set Sz of input sites and
the set S of sites in the Voronoi diagram. Sz will
always consist of closed sites, whereas S consists of
the points and open segments in the arrangement
of S7. Given these modifications in the definition
of H;; we can now define the Voronoi diagram for
a set S7 of weakly intersecting sites in exactly the
same manner as for disjoint sites.

Let us now consider two weakly intersecting
sites S;, S;. A circle tangent to both S; and S; is
a bitangent Voronoi circle C;j. Given three sites
S;, S; and Sy, a circle tangent to all three of them
is called a tritangent Voronoi circle Cyj,. Points
on Voronoi edges are centers of bitangent Voronoi
circles, whereas Voronoi vertices are centers of tri-
tangent Voronoi circles. Let now S &€ Sz. We say
that S is in conflict with a (bitangent or tritan-
gent) Voronoi circle C' if S intersects the interior
of the disk bounded by C. Moreover, S is in con-
flict with a Voronoi edge e € V(S), if it is in con-
flict with at least one of the disks bounded by the
Voronoi circles centered on e. We can then define
the conflict region Rgs(S) of S to be the set of
points on the 1-skeleton V;(S) corresponding to
Voronoi circles that are in conflict with S.

3. The algorithm

In this section we describe our algorithm for com-
puting the Voronoi diagram for a set of possibly
intersecting sites. We start by describing our algo-
rithm for the case of weakly and then for strongly
intersecting sites. We then discuss the location
data structure for weakly intersecting sites and we
conclude by presenting the modifications needed
in order to handle strongly intersecting sites. In
the text below, S will denote the set of sites that
have already been inserted in the diagram, and S
will be the site to be inserted.

3.1. Weakly intersecting sites

The insertion procedure consists of four steps:

1. Find the first conflict of the site S with the
Voronoi skeleton V;(S).

2. Find the entire conflict region of S with
Vi (S).

3. Construct the Voronoi diagram of V(SU{S}).

4. Update the location data structure.

We will postpone the discussion on nearest
neighbor queries and the location data structure
updates until the next section. We will first de-
scribe the insertion procedure if the site S is a
point p. The first step of the insertion starts by
finding the nearest neighbor Ng(p) of p among the
sites in S (if p is at equal distance to more than
one site, any of these sites can be chosen arbitrar-
ily). Once Ns(p) has been determined, one of two
things can happen. If Ns(p) is a point and p is the
same point as its nearest neighbor, there is noth-
ing to be done: the point has already been inserted
in the diagram. Otherwise, p has to be in conflict
with at least one of the edges on the boundary
of V(Ns(p)). The first step of the insertion then
terminates by considering the Voronoi edges on
the boundary of V(Ns(p)), and returning one in
conflict with p.

The second step of the insertion is based on the
fact that the conflict region Rs(p) of p is a sim-
ply connected subset of V;(S) — possibly through
the edges on the boundary of the cell of the site
at infinity (cf. [KMM93, KY03]). There are two
possibilities as to the type of conflict of p with
the Voronoi edge e that was found at the end of
the first step. Either p is in conflict with at least
one of the endpoints of e or it is in conflict with
a simply connected subset of the interior of e. In
the latter case we have found the entire conflict
region of p with respect to V(S). In the former
case though, i.e., when one of the endpoints of e
is in conflict with p, we need to find the rest of the
conflict region. This is done by performing a DFS
on the Voronoi skeleton, until all Voronoi edges in
conflict with p are found.

At the end of the second step we have discov-
ered the entire conflict region Rs(p), and in par-
ticular, we have discovered its boundary ORs(p).
The third step simply consists of using this bound-
ary to construct the Voronoi cell of S.

If the site S is a closed segment ¢, we first insert
the endpoints p} and p} of ¢ in the diagram V(S)
using the procedure described above. Since p; and
p} are necessarily neighbors of ¢° in the Voronoi
diagram V(S U {p}, p/,t°}), t° has to be in con-
flict with at least one of the Voronoi edges on the

boundary of the Voronoi cell of p; or p}. Thus,
the first conflict of t° with V(S U {p},p{}), can
be found by examining the Voronoi edges on the
boundary of V(p}) or V(p) in V(SU{p}, p}}) (i-e.,
we can omit the nearest neighbor query step). The
remaining steps of the insertion are performed as
in the case of points. Note that if a segment has
already been inserted, this can be detected during
the location of the first conflict, in which case the
insertion stops.

3.2. The location data structure

The location data structure we use here is similar
to the location data structure used in [KY03] to
compute the Voronoi diagram for a set of disjoint
smooth convex objects in the plane. In order to
comply with the requirement that segments are
treated as three different objects, the two end-
points and the interior, the way the hierarchy is
created in [K'Y03] has to be modified. We describe
how this is done below.

The Voronoi diagram hierarchy, denoted by
H(S), is a hierarchical data structure similar to
the Delaunay hierarchy introduced by Devillers
[Dev02]. It consists of a set of Voronoi diagrams
V(8),¢=0,1,..., L, where the sets Sy, form a hi-
erarchy of subsets of S, ie., §5=85,285 D...D
Sr. The hierarchy H(S) is built together with the
Voronoi diagram V(S) according to three rules:

1. Every site in S7 is inserted in V(Sy) = V(S).

2. A site S inserted in V(Sy), for some ¢ > 0, is
inserted in V(Sy11) with probability 8, 0 <
g <1

3. If an open segment is inserted in V(Sy), both
its endpoints are inserted in V(Sy) as well.

It is easy to show that the expected size of
H(S) is O(ﬁn) and that its expected height
is O(logy/3n), where n is the cardinality of St.
Note that if a site has been inserted at some level
¢, it has also been inserted at all levels ¢/ with
¢ < (. The height h(S) of a site is the maxi-
mum level in which it has been inserted. h(S)
is computed before S is actually inserted in the
diagram, and by definition h(S) = H with prob-
ability 8. In this context, if the site to be in-
serted is a segment ¢, rule (3) above requires that

h(pt) = h(p) = h(t°) = h(t).

In contrast to the construction of the hierar-
chy, which is done in a bottom-up fashion, near-
est neighbor queries are performed in a top-down
manner. Let € E2 be a query point for which we
want to find its nearest neighbor in V(S). We start
by finding the nearest neighbor of x in the top-
most diagram V(Sr) by means of a simple walk.
The simple walk starts from any site S; € Sy, and
compares the distance d(z, S;) with the distances
0(x, S) to the neighbors S of S; in V(Sg). If some
neighbor S; of S; is found to be closer to x than
S;, the walk proceeds to S;. If all neighbors of S;
are further from z than S;, then S; is the nearest
neighbor of z in V(Sr). At the remaining levels of
the hierarchy the same simple walk is performed,
but now the starting site is the nearest neighbor of
x at the previous level. The expected number of
sites visited at each level of H(S) when performing
the simple walk is O(1/53) (cf. [KY03]).

The nearest neighbor query described above
takes O(n) time. As we will see in Section 4,
we can improve this time to O(log?n) by mak-
ing use of the cell trees. The cell trees are as-
sociated with the Voronoi cells of each Voronoi
diagram in H(S). In particular, the cell tree of
the Voronoi cell Vy(S;) of S; in V(Sy) contains, for
each Voronoi vertex v € V;(S;), the direction d;(v)
of the ray whose apex is the point of S; closest to
v, and which passes through v. The directions
d;(v) are sorted according to their angle with the
z-axis. When S; is visited during the simple walk
at level ¢, we need to locate the direction d;(x)
in the cell tree. Suppose that d;(x) is located be-
tween the directions d;(v1) and d;(ve). In order
to find a new candidate nearest neighbor for x it
suffices to look at the neighbor S; of S; in V(S;)
sharing the vertices v; and vo.

When an insertion is performed, we also need
to update the cell trees. This can be done, at
each level of H(S), by removing from the exist-
ing cell trees the directions corresponding to ver-
tices in the diagram that will be destroyed, and
adding the directions of the new vertices in the
diagram. Finally, we need to create the cell tree
for the newly inserted site.

3.3. Strongly intersecting sites

In this section we describe how to further modify
the algorithm and the location data structure in
the case of strongly intersecting sites. The modi-

Figure 2. The insertion procedure when the new
point p lies on the interior of a segment ¢7: ¢7 is
replaced in S by the open segments pip and pp/,
and the edges v}(p)p and v/ (p)p are added in the
Voronoi diagram V(S).

fications presented here, as well as the complexity
analysis in the following section, constitute the
major non-trivial extensions with respect to the
approach in [KY03].

Suppose that we have a point site p that
strongly intersects with a segment t;, i.e., p € ¢;.
Clearly, ¢7 must also be the nearest neighbor of
pin S. Let €/(p) and €/ (p) be the two edges on
the boundary of V'(t7) intersected by the two rays
perpendicular to ¢, with apex p (cf. Fig. 2).
Let v}(p) and v/ (p) be the points of intersection
of these rays with e}(p) and €/ (p), respectively.
We are now ready to describe the insertion of a
point p, that possibly intersects with a segment
already inserted in the diagram. We start by find-
ing the nearest neighbor Ns(p) of p. If Ns(p) is
a point and Ng(p) = p, there is nothing to be
done. If Ng(p) is either a point different from p
or an open segment that p does not intersect with,
the insertion procedure continues as described in
Subsection 3.1. Otherwise, let Ns(p) be the open
segment t7 (cf. Fig. 2). We first add p to S, and
replace t7 in S by the open segments pip and pp/
where p; and p! are the endpoints of t;. We then
search for the edges €}(p) and €/ (p), split them at

vi(p) and v/ (p), and add the segments v}(p)p and
v!(p)p in the Voronoi diagram.

If the site to be inserted is a (closed) segment ¢,
we first insert its two endpoints p; and p}, as de-
scribed above. Then, using p; (or p}) as a starting
point, we search for the first conflict of ¢° with the
current Voronoi diagram and subsequently search
for its entire conflict region. During this search,
before testing a Voronoi edge e of the existing dia-
gram for a potential conflict, we test whether one
of the sites that define the supporting bisector of
e intersects with ¢°. If such a site .S; is found the
search is stopped. In the case that S; is a point
p;, we recursively insert the open segments pépi
and p;p/. If S; is an open segment ¢¢, we first test
if t> and t; coincide. If this is indeed the case,
t° has already been inserted, and there is noth-
ing more to be done. Otherwise, we compute the
point of intersection py of t° with ¢7, insert it in
the Voronoi diagram and then recursively insert
the open segments pipy and pyp}.

We finally need to discuss how the location data
structure is affected by allowing strongly intersect-
ing sites. The main idea here is to modify the
Voronoi diagram at all levels of the location data
structure in such a way so as to preserve the three
rules according to which the location data struc-
ture is built. When we allow intersecting sites, a
segment site that has already been inserted in the
diagram may be split in two or more subsegments.
Essentially, what we do is to propagate these splits
at all levels of the hierarchy.

More specifically, if the site to be inserted is a
point p, and p intersects with an open segment
t? € S, we recompute the height of p, with the
new height being hpe (p) = max{h(p), h(t7)}. We
then insert p in all diagrams V(Sy) with height
£ < hpew (p)

Let us consider now the situation where the site
to be inserted is a segment ¢. We denote by 7; the
set of open subsegments of ¢ that appear in the
Voronoi diagram after the insertion of . An end-
point p; of a segment 7° € 7; will be inserted as
described above (the initial height of p, is defined
to be h(p;) = h(t)). Finally, an open segment
7° € 7; will be inserted in all Voronoi diagrams
V(Sp) with £ < h(t), ie., h(r°) = h(t). It is
easy to show that the expected height of the hier-
archy remains O(logy/3n). The expected size of
V(Sy) is O(B*(n +m)), £ =0,1,...,L, and thus
the expected size of the entire hierarchy becomes

O(ﬁ(n + m)). Finally, the number of sites vis-
ited by the simple walk is O(%(l + 1)) per level.

4. Complexity analysis

Let n be the cardinality of the set St of input sites,
consisting of points or closed segments. Let also
m be the number of pairs of strongly intersecting
sites in S7z. The cost of inserting a site can be
decomposed into the following subcosts:

1. Cost of finding the first conflicts.

2. Cost of finding the conflict regions and up-
dating the Voronoi diagrams.

3. Cost of inserting points of intersection at lev-
els higher than their original height.

4. Cost of updating the cell trees.

Finding the nearest neighbors of a site, at all
levels of the hierarchy, takes O(%(l + ™) log ny)

time per level and O((142) log? n) overall, where
ng = O(B%(n 4+ m)) is the cardinality of S;. Once
the nearest neighbor at level £ is found, we can
find the first conflict at this level in time O(log ny).
Hence, the expected total cost of finding the first
conflicts at all levels of H(S) is O((1+ 2)log®n).
Let ky be the number of changes (number of de-
stroyed and created edges) in the Voronoi diagram
at level ¢ because of sites inserted at that level in
the diagram. The sites inserted at level ¢ are of
two types: (i) sites whose height is ¢ and (ii) in-
tersection points whose original height was smaller
than £. The cost of finding the conflict region and
updating the Voronoi diagram for sites of the first
type is O(ky). The number of sites of the sec-
ond type is O(ky) and inserting each one of them
takes O(log(ng + ky¢)) time. Finally, the cost of
updating the cell trees at level £ of the hierarchy
takes O(kylog(ng + k¢)) time. Summing up the
various costs, we conclude that the cost per inser-
tion is O((1+) log® n) + S Okelog(n+ke)).
By applying a randomized analysis similar to that
in [BY98, Chapter 5], we can show that k, =
O(B*(1 +m/n)). Hence the expected cost per in-
sertion is O((1 + 2)log®n), yielding a total of
O((n + m)log?n) for inserting n sites. The ex-
pectation in the analysis above refers to the order
of insertion. Note that the hierarchy introduces
another kind of randomization, that has also been
taken into account in our analysis.

b1 D2

S1

q2 qs3
52 ps3

q1

Figure 3. Site representation. The point sy is
represented by the four points p1, ¢1, p2 and go.
The segment p;s; is represented by the points pq,
q1, P2, g2 and a boolean which is set to true to
indicate that the first endpoint in not a point of
intersection. The segment s1so is represented by
the six points: p1, q1, P2, g2, p3 and q3. The
remaining (non-input) points and segments in the
figure are represented similarly.

5. Representation and filtering

In the case where we have no strongly intersecting
segments, segment sites are represented by their
endpoints. In the case of strongly intersecting seg-
ments, point sites, that are points of intersection,
are represented by four points, namely by the end-
points of the segments that define them (cf Fig.
3). Segment sites that have endpoints that are
points of intersection are represented either by
four points and a boolean or by six points depend-
ing on whether only one or both endpoints are
points of intersection. The representation allows
us to achieve two goals that are very important
for the efficiency of our implementation:

e We are able to avoid an exponential blow up
on the bit complexity of the coordinates of the
points of intersection. Such an exponential
blow up could easily occur if we had chosen to
represent points of intersection by their coor-
dinates. Moreover, our representation allows
us to guarantee that the algebraic degrees of
the predicates in our algorithm are bounded
by a constant, independently of the size of
the input.

e Our representation is coupled very naturally,
with what we call geometric filtering, which
is discussed below.

5.1. Site representation

Burnikel [Bur96] showed that in the case of weakly
intersecting sites represented in homogeneous co-
ordinates of bit size b, the maximum bit size of
the algebraic expressions involved in the predi-
cates is 40b + O(1). In the case of strongly in-
tersecting sites, the maximum degree of the ex-
pressions involved in the predicates depends on
how we represent the points of intersection and
the subsegments of input segments. For exam-
ple, if we choose to represent the points of inter-
section by their coordinates and the subsegments
by their endpoints, the algebraic degree of the
predicates involved can increase arbitrarily: con-
sider two strongly intersecting segments ¢; and ¢,
whose endpoints have homogeneous coordinates of
size b. Their intersection point will have homoge-
neous coordinates of bit size 6b+O(1). This effect
can be cascaded, which implies that after inserting
k (input) segments we can arrive at having points
of intersection whose bit sizes are exponential with
respect to k, i.e., their homogeneous coordinates
will have bit size ©(2¥b). Not only the points of in-
tersection, but also the adjacent subsegments will
be represented by quantities of arbitrarily high bit
size, and as a result we would not be able to give
a bound on the bit sizes of the quantities involved
in the evaluation of the predicates.

Such a behavior is undesirable. For robustness,
efficiency, and scalability purposes, it is critical
that the bit size of the algebraic expressions in the
predicates does not depend on the input size. For
this reason, as well as for others to be discussed
below, we decided to represent sites in a implicit
manner, which somehow encodes the history of
their construction. In particular, we exploit the
fact that points of intersection always lie on two
input segments, and that segments that are not
part of the input are always supported by input
segments.

For example, let us consider the configuration
in Fig. 3. We assume that the segments t; = p;q;,
1 =1,2,3, are inserted in that order. Upon the in-
sertion of to, our algorithm will split the segment
t; into the subsegments p;s; and siq;, then add
s1, and finally insert the subsegments pgs; and
s1g2. How do we represent the five new sites? s
will be represented by its two defining segments
t1 and t3. The segment p;s; will be represented
by two segments, a point, and a boolean. The

first segment is t1, which is always the segment
with the same support as the newly created seg-
ment. The second segment is 5 and the point is
p1. The boolean indicates whether the first end-
point of pysy is an input point; in this case the
boolean is equal to true. The segment siq; will
also be represented by two segments, a point, and
a boolean, namely, t; (the supporting segment of
s1q1), t2 and false (it is the second endpoint of
s1¢1 that is an input point). Subsegments paso
and sago are represented analogously. Consider
now what happens when we insert 3. The point
so will again be represented by two segments, but
not siq; and t3. In fact, it will be represented by
t1 (the supporting segment of s1q1) and t3. s2q;
will be represented by two segments, a point, and
a boolean (t1, t3 and false), and similarly for p3so
and s2g3. On the other hand, both endpoints of
8189 are non-input points. In such a case we repre-
sent the segment by three input segments. More
precisely, s1so is represented by the segments ¢q
(the supporting segment of s1q1), ta (it defines s;
along with ¢1) and t3 (it defines sy along with 7).
The five different presentations, two for points
(coordinates; two input segments) and three for
segments (two input points; two input segments,
an input point and a boolean; three input seg-
ments), form a closed set of representations and
thus represent any point of intersection or sub-
segment regardless of the number of input seg-
ments. Moreover, every point (input or inter-
section) has homogeneous coordinates of bit size
at most 3b + O(1). The supporting lines of the
segments (they are needed in some of the pred-
icates) have coefficients which are always of bit
size 2b + O(1). As a result, the bit size of the ex-
pressions involved in our predicates will always be
O(b), independently of the size of the input.

5.2. Geometric filtering

As we have already mentioned our representation
is coupled very naturally, with what we call geo-
metric filtering. The technique amounts to per-
forming simple geometric tests exploiting the rep-
resentation of our data, as well as the geomet-
ric structure inherent in our problem, in order to
evaluate predicates in seemingly degenerate con-
figurations. Geometric filtering can be seen as a
preprocessing step before performing arithmetic
filtering. Roughly speaking, by arithmetic filter-

ing we mean that we first try to evaluate the pred-
icates using a fixed-precision floating-point num-
ber type (such as double), and at the same time
keep error bounds on the numerical errors of the
computations we perform. If the numerical errors
are too big and do not permit us to evaluate the
predicate, we switch to an exact number type, and
repeat the evaluation of the predicate. Geomet-
ric filtering can help by eliminating situations in
which the arithmetic filter will fail, thus decreas-
ing the number of times we need to evaluate a
predicate using exact arithmetic.

Let us consider a simple, yet very effective, ap-
plication of geometric filtering. Suppose we want
to determine if two non-input points are identical
(we assume here that the input sites are repre-
sented by doubles). In order to do that we need
to compute their coordinates and compare them.
If the two points are identical, the answer to our
question using double arithmetic may be wrong
(due to numerical errors), in which case we will
have to reside to the more expensive exact com-
putation. Instead, before testing the coordinates
for equality, we can use the representation of the
points to potentially answer the question. More
specifically, and this is the geometric filtering part
of the computation, we can first test if the defining
segments of the two points are the same. If they
are not, then we proceed to comparing their co-
ordinates as usual. Testing the defining segments
for equality does not involve any arithmetic opera-
tions on the input, but rather only comparisons on
doubles. By performing this very simple test we
avoid a numerically difficult computation, which
could be performed thousands of times during the
computation of a Voronoi diagram.

6. Implementation and experi-
mental results

In this section we present our implementation, and
discuss its performance in three series of experi-
ments, designed to test different aspects of our
algorithm and implementation.

Our code has been written in C+4 and it fol-
lows the design of CGAL [CGAO03]. The Voronoi
diagram is represented by its dual and we use
CcAL’s triangulation data structure to do that.
The version of CGAL used is 3.0. We have not
implemented the cell trees discussed in Subsec-

Results for the RANDOMSEGMENTS data set

[n | oy [N | Operations | Number type [| T(n,N) | R(n,N) |
50 | e | o | e e T
250 | 7634 23652 FIELEI;LDS Rt ﬁ}‘;gﬁ i Z::l ig:gg igﬂ
500 | eous | ssop |TELptSAM L pertrest p S8 L
2500 | 697630 | 2100390 [TIED T SQRT | Hter - Z:;(ll e A

Table 1. Results for the RANDOMSEGMENTS and ROADNETWORK series of experiments. T'(n,N) is
the total time (in seconds) for computing the Voronoi diagram of n sites. m is the number of strongly
intersecting pairs of input segments and N is the number of Voronoi cells in the diagram. R(n,N) is the
(dimensionless) quantity 10*7'(n, N)/(N log,q V). The column labeled “Operations” indicates the kind

of arithmetic operations used in the evaluation of the predicates.

Results for the ALIGNEDSQUARES data set

n | N | Operations | Number type [| T(n,N) | R(n,N) [T(n,N) | R(n,N)
Random shuffling? Yes No

500 1000 FIELD 4+ SQRT | filter 4 real 0.43 1.433 0.58 1.933
RING filter + Gmpq 0.4 1.333 0.59 1.967
FIELD 4+ SQRT filter + real 5.23 1.308 8.43 2.108
5000 10000 RING filter + Gmpq 4.89 1.222 8.5 2.125
FIELD 4+ SQRT | filter + real 56.22 1.124 239.12 4.782
50000 100000 RING filter + Gmpq 53.24 1.065 239.43 4.789
FIELD 4+ SQRT filter + real 625.96 1.043 4461.54 7.436
500000 | 1000000 RING filter + Gmpq 588.59 0.981 4467.83 7.446

Table 2. Results for the RANDOMSEGMENTS and ROADNETWORK series of experiments. T'(n, V) is the
total time (in seconds) for computing the Voronoi diagram of n sites. N is the number of Voronoi cells
in the diagram. R(n,N) is the (dimensionless) quantity 10*T'(n, N)/(Nlog;y N). The column labeled
“Operations” indicates the kind of arithmetic operations used in the evaluation of the predicates. There
are no strongly intersecting pairs of segments in this data set.

tion 3.2; we use the simple walk at each level of
the Voronoi hierarchy. Our code has two modes of
operation, depending on whether we assume that
strongly intersecting sites exist in the input data
or not. The user has the ability to indicate which
mode of operation is to be used. By default our al-
gorithm checks for strongly intersecting sites. In
the case of strongly intersecting sites our imple-
mentation of the hierarchy differs from the one
described in Subsections 3.2 and 3.3. In particu-
lar, at the higher levels of the hierarchy, i.e., for
all V(Sp), £ > 0, we only insert point sites and seg-
ment endpoints, rather than the segments them-
selves. As a result, all Voronoi diagrams V(Sy),
¢ > 0, are actually Voronoi diagrams of points.
We are currently in the process of implementing
the hierarchy as discussed in Subsections 3.2 and
3.3. Moreover, we will provide the user with the
choice of whether or not to include segments at

the upper levels of the hierarchy. The experimen-
tal results shown below, as well as results on other
data sets not presented in this paper, indicate that
such a choice, although without any theoretical
guarantees, seems to work very well.

Arithmetic filtering is supported by our imple-
mentation, and we use CGAL’s filtering mecha-
nism to this end (cf. [Pio99]). We have imple-
mented two methods for computing the predicates
per mode of operation, that depend on the type of
operations supported exactly by the number type
used. In both modes of operation, one of the two
methods assumes that field operations (4, —, X,
/) and square roots (y/) are supported exactly.
The second method assumes that only ring opera-
tions (+, —, x) are supported exactly, if our algo-
rithm operates under the assumption that there
no strongly intersecting sites. Otherwise, we re-
quire that field operations are supported exactly.

Finally, the sites in the segment Voronoi diagram
are represented as discussed in Section 5, whereas
geometric filtering is extensively used throughout
the predicate evaluations. Our code will be avail-
able in the next public release of CGAL.

We have tested our algorithm on three series
of experiments, code-named RANDOMSEGMENTS,
ALIGNEDSQUARES and ROADNETWORK. All ex-
periments were run on an Intel Xeon processor at
2GHz with 512K cache running Linux. The ex-
ecutables were created using the GNU g++ com-
piler, version 3.3.2, with optimization flags -03
-march=pentium4 -mcpu=pentium4.
periments we used CGAL’s arithmetic filtering and
the following exact number types: LEDA’s real
and CGAL’s Gmpq (which is based on the GMP
package [Gra]). The versions of LEDA and GMP
used are 4.4.1 and 4.1.2, respectively. reals sup-
port field operations and square roots exactly,
whereas Gmpq supports field operations exactly.
The reason for testing different number types is to
test the sensitivity of our implementation with re-
spect to the number type used. The experiments
here are not intended to be exhaustive with re-
spect to the possible choices of number types, but
rather provide some qualitative results.

In our ex-

The first series of experiments consists of n ran-
dom segments in an axis-aligned square of edge
length 2 - 10° centered at the origin, and n €
{50, 250,500, 2500} (see Table 1). Since in this
case we have intersecting segments, we use the
mode of operation that checks for intersections.
The second series of experiments consists of axis-
aligned squares of edge length and inter-distance
100, aligned on a w-by-h grid, where (w,h) €
{(25,5), (50,25), (250, 50), (500, 250)} (see Table
2). The input to our algorithm consists of n =
4wh segments. Notice that the data sets in this se-
ries are highly degenerate, and have been designed
so as to test the robustness of our implementa-
tion under degeneracies. The third series are real
world data of road networks of seven countries,
obtained from the “Digital Chart of the World”
database [DCW] (see Table 3). The results shown
here are representative of the behavior of our al-
gorithm /implementation on all data sets from this
database.

As it can be seen from the last two series of
experiments, performing random shuffling before
inserting the data generally enhances the per-
formance of our algorithm. Random shuffling

10

spreads evenly the input sites, and as a result the
shuffled input does not contain any patterns that
may be present in the original input. As a result
the point location is performed over a more evenly
distributed set of sites, which conforms with our
randomized analysis. This effect is very striking
in the ALIGNEDSQUARES data set (we get speed-
ups up to a factor of 7). In this case random
shuffling also decreases drastically the number of
degenerate or near-degenerate configurations en-
countered during the evaluation of the predicates,
which results in fewer predicate evaluations using
exact arithmetic. The time to perform random
shuffling is included in our timings.

We mentioned in the introduction that the only
other implementation of the segment Voronoi di-
agram that we know of, using the exact computa-
tion paradigm, is that by M. Seel [See]. We bench-
marked that implementation against ours. Our
implementation is about two orders of magnitude
faster. For example, for the ALIGNEDSQUARES
data set, and for n = 500, the implementation by
M. Seel takes about 13 seconds if random shuffling
is performed and about 76 seconds if random shuf-
fling is not performed. For larger n the memory
requirements of the M. Seel’s implementation re-
sult in disk swapping or the system runs out of
memory (our test platform had 1GB of memory).

In general, the time spent for computing the
Voronoi diagram is O((n + m)logn), i.e., a logn
factor better than the predicted running time (re-
call that we have not implemented the cell trees).
The time spent is generally insensitive to the num-
ber type used. One final comment should be made
with respect to the road network data tagged
“U.S.A.”. This consists of the combined road
network data from [DCW] for the 48 contiguous
United States. Unlike other road network data
tested, there exists one point of intersection in this
data set, that our algorithm handles successfully.

Acknowledgments

The author wishes to thank Mariette Yvinec for
helpful comments on preliminary versions of this
paper, and Andreas Fabri and Sylvain Pion for
discussions on the code design. This work started
while the author was at INRIA, and at the time
he was supported in part by the IST Programme
of the EU as a Shared-cost RTD (FET Open)
Project IST-2000-26473 (ECG - Effective Compu-

Results for the ROADNETWORK data set |

| n | N | Operations | Number type [[T(n,N) [R(n,N) | T(n,N) [R(n,N)
Random shuffling? Yes No

e[s | oroe [[l e R [30 [

cramy | o | ooy [t S [e [[
e | e | sy [T SO oo [L [[t

| o | ooy [e o L [[

et | gy | e | P S e e g e @
s | e | oo [P SO [e e [[[

vsa | e | ey [EBp SO0 Moo [g0 Lo Ly 1

Table 3. Results for the RANDOMSEGMENTS and ROADNETWORK series of experiments. T'(n, V) is the
total time (in seconds) for computing the Voronoi diagram of n sites. N is the number of Voronoi cells
in the diagram. R(n,N) is the (dimensionless) quantity 10*T'(n, N)/(N log;, N). The column labeled
“Operations” indicates the kind of arithmetic operations used in the evaluation of the predicates. There
are no strongly intersecting segments in this data set, except for the U.S.A. data set which has one pair
of strongly intersecting segments.

tational Geometry for Curves and Surfaces).

References

[AS95]

[BDS192]

[BMS94]

[Bur96]

H. Alt and O. Schwarzkopf. The
Voronoi diagram of curved objects. In
Proc. 11th Annu. ACM Sympos. Com-
put. Geom., pages 89-97, 1995.

J.-D. Boissonnat, O. Devillers,
R. Schott, M. Teillaud, and M. Yvinec.
Applications of random sampling to
on-line algorithms in computational
geometry. Discrete Comput. Geom.,
8:51-71, 1992.

C. Burnikel, K. Mehlhorn, and
S. Schirra. How to compute the
Voronoi diagram of line segments:
Theoretical and experimental results.
In Proc. 2nd European Sympos. Algo-
rithms, volume 855 of LNCS, pages
227-239, 1994.

C. Burnikel. Ezact Computation of
Voronoi Diagrams and Line Segment
Intersections. Ph.D thesis, Universitét
des Saarlandes, March 1996.

[BY98]

[CGAO3)]

[DCW]

[Dev02]

[DL78]

[DY93]

[For87]

11

J.-D. Boissonnat and M. Yvinec. Al-
gorithmic Geometry. Cambridge Uni-
versity Press, UK, 1998. Translated by
Hervé Bronnimann.

The CGAL Manual, 2003. Release 3.0.

Digital chart of the world.
http://www.maproom.psu.edu/dcw/.

O. Devillers. The Delaunay hierar-
chy. Internat. J. Found. Comput. Sci.,
13:163-180, 2002.

R. L. Drysdale, Il and D. T. Lee. Gen-
eralized Voronoi diagrams in the plane.
In Proc. 16th Allerton Conf. Commun.
Control Comput., pages 833-842, 1978.

K. Dobrindt and M. Yvinec. Re-
membering conflicts in history yields
dynamic algorithms. In Proc. 4th
Annu. Internat. Sympos. Algorithms
Comput., volume 762 of LNCS, pages
21-30. Springer-Verlag, 1993.

S. J. Fortune. A sweepline algorithm
for Voronoi diagrams. Algorithmica,
2:153-174, 1987.

[Gra|

[Hel01]

[Ima96]

[Kir79]

[KMMO93]

[KY03]

[Lee82]

[Pi099]

[See]

[SITI00]

T. Granlund. GMP, the GNU
multiple precision arithmetic library.
http://www.swox.com/gmp/.

M. Held. VRONI: An engineering ap-
proach to the reliable and efficient com-
putation of Voronoi diagrams of points
and line segments. Comput. Geom.
Theory Appl., 18:95-123, 2001.

T. Imai. A topology oriented algorithm
for the Voronoi diagram of polygons.
In Proc. 8th Canad. Conf. Comput.
Geom., pages 107-112. Carleton Uni-
versity Press, Ottawa, Canada, 1996.

D. G. Kirkpatrick. Efficient computa-
tion of continuous skeletons. In Proc.
20th Annu. IEEE Sympos. Found.
Comput. Sci., pages 18-27, 1979.

R. Klein, K. Mehlhorn, and S. Meiser.
Randomized incremental construction
of abstract Voronoi diagrams. Comput.
Geom.: Theory & Appl., 3(3):157-184,
1993.

M. I. Karavelas and M. Yvinec. The
Voronoi diagram of planar convex ob-
jects. In Proc. 11th Furopean Sym-
pos. Algorithms, volume 2832 of LNC'S,
pages 337-348, 2003.

D. T. Lee. Medial axis transformation
of a planar shape. IEEFE Trans. Pattern
Anal. Mach. Intell., PAMI-4(4):363—
369, 1982.

S. Pion. Interval arithmetic: An effi-
cient implementation and an applica-
tion to computational geometry. In
Workshop on Applications of Interval
Analysis to systems and Control, pages
99-110, 1999.

M. Seel. The AVD LEP user manual.
http://www.mpi-sb.mpg.de/LEDA /
friends/avd.html.

K. Sugihara, M. Iri, H. Inagaki, and
T. Imai. Topology-oriented implemen-
tation - an approach to robust geomet-
ric algorithms. Algorithmica, 27(1):5-
20, 2000.

12

[Wei02]

[Yap87]

R. Wein. High-level filtering for ar-
rangements of conic arcs. In Proc. 10th

FEuropean Sympos. Algorithms, volume
2461 of LNCS, pages 884-895, 2002.

C. K. Yap. An O(nlogn) algorithm for
the Voronoi diagram of a set of sim-
ple curve segments. Discrete Comput.
Geom., 2:365-393, 1987.

