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Chapter 1

The Circumcircle and the
Incircle

1.1 Preliminaries

1.1.1 Coordinatization of points on a line

Let B andC be two fixed points on a liné. Every pointX on £ can be coordinatized
in one of several ways:
(1) the ratio of divisiont = £X,
(2) theabsolutebarycentric coordinates: an expression¥ofs aconvexcombina-
tion of B andC:
X =(1-t)B+tC,

which expresses for an arbitrary poiitoutside the lineC, the vectorPX as a linear
combination of the vectorBB andPC:

PX = (1 —t)PB + tPC.

B X C

(3) thehomogeneoulsarycentric coordinates: the proportidfiC' : BX, which are
masses aB andC so that the resulting system (of two particles) batance poinat
X.
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1.1.2 Centers of similitude of two circles

Consider two circle®(R) andI(r), whose center® andI are at a distance apart.

Animate a pointX on O(R) and construct a ray throughoppositelyparallel to the
ray OX to intersect the circlé(r) at a pointY”. You will find that the lineXY” always

intersects the lin®1 at the same poin®. This we call thenternal center of similitude
of the two circles. It divides the segme@tl in the ratioOP : PI = R : r. The

absolute barycentric coordinates@fwith respect taDI are

_R-I47-0

P
R+r

Y
() P Q

v’

If, on the other hand, we construct a ray througtiirectly parallel to the ray0 X
to intersect the circlé(r) atY”’, the lineX'Y" always intersect®I at another poing).
This is theexternal center of similitudef the two circles. It divides the segmenf in
the ratioOQ : QI = R : —r, and has absolute barycentric coordinates

R-I—-7r-0O

@= R—r

1.1.3 Harmonic division

Two pointsX andY are said to divide two other poinfs andC' harmonicallyif
BX __BY
XC YC'

They areharmonic conjugatesf each other with respect to the segm&idt.

Exercises
1. If X, Y divide B, C harmonically, ther3, C divide X, Y harmonically.

2. Given a pointX on the lineBC, make use of the notion of the centers of simili-
tude of two circles to construct the harmonic conjugaté&okith respect to the
segmenBC. Distinguish between two cases wh&mdivides BC' internally and
externally.

1BPl _ 1

3. Given two fixed pointsB andC, the locus of the point® for which CP]

(constant) is a circle.
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1.1.4 Menelaus and Ceva Theorems

Consider a trianglel BC' with points X, Y, Z on the side line&3C, C A, AB respec-
tively.

Menelaus Theorem

The pointsX, Y, Z are collinear if and only if
BX COY AZ

XC YA zB~ "

A A

Ceva Theorem

The linesAX, BY, CZ are concurrent if and only if

BX O Az _
XC YA ZB
Ruler construction of harmonic conjugate

Let X be a point on the lineBC. To construct the harmonic conjugate &f with
respect to the segmeRC, we proceed as follows.

A

(1) Take any poin# outside the lineBC' and construct the lined B and AC'.

(2) Mark an arbitrary poinf on the lineAX and construct the lineBP andC P
to intersect respectively the linésA andAB atY andZ.

(3) Construct the lin&@” Z to intersectBC at X'.

ThenX and X’ divide B andC harmonically.
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1.1.5 The power of a point with respect to a circle

The power of a point P with respect to a circl€ = O(R) is the quantityC(P) :=
OP? — R2%. This is positive, zero, or negative accordingfass outside, on, or inside
the circleC. If it is positive, it is the square of the length of a tangewtni P to the
circle.

/ ’
T

Theorem (Intersecting chords)

If aline £ throughP intersects a circl€ at two pointsX andY’, the productPX - PY
(of signed lengths) is equal to the powermfnith respect to the circle.
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1.2 The circumcircle and the incircle of a triangle

For a generic trianglel BC, we shall denote the lengths of the sidesS, C A, AB by
a, b, c respectively. The symbd denoteswicethe area of the triangle.

1.2.1 The circumcircle

Thecircumcircle of triangle ABC is the unique circle passing through the three ver-
ticesA, B, C. Its center, theircumcenter O, is the intersection of the perpendicular
bisectors of the three sides. The circumradiuis given by the law of sines:

a b o
sinA  sinB  sinC’

2R =

1.2.2 The incircle

Theincircle is tangent to each of the three side€’, C A, AB (without extension).
Its center, theéncenter [, is the intersection of the bisectors of the three angle® Th
inradius r is related to the areaS by

S=(a+b+)r
If the incircle is tangent to the sidésC at X, CA atY, andAB at Z, then

AY:AZ:M, BZ:BX:M, C’X:C’Y:Lb_c.
2 2 2
These expressions are usually simplified by introducingsémiperimetes = %(a +

b+ c):
AY = AZ = s — a, BZ =BX =s—b, CX=CY=s—c

Also,r = 2.
S
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1.2.3 The centers of similitude of O) and (1)

Denote byl andT” respectively the internal and external centers of sinulbtof the
circumcircle and incircle of triangld BC'.

These are points dividing the segmént harmonically in the ratios

Or:TI=R:r, OoT':T'I=R: —7.

Exercises

1.

Use the Ceva theorem to show that the lides, BY, C'Z are concurrent. (The
intersection is called th&ergonne poinbf the triangle).

. Construct the three circles each passing through the Geegooint and tangent

to two sides of triangled BC'. The 6 points of tangency lie on a circle.

. Given three pointsd, B, C not on the same line, construct three circles, with

centers atd, B, C, mutually tangent to each othexternally

. Two circles are orthogonal to each other if their tangen@naintersection are

perpendicular to each other. Given three poitits3, C not on a line, construct
three circles with these as centers and orthogonal to e&eln ot

. The centersd and B of two circlesA(a) andB(b) are at a distancé apart. The

line AB intersect the circles at’ and B’ respectively, so thatl, B are between
A, B

(1) Construct the tangents frodl to the circleB(b), and the circle tangent to
these two lines and td (a) internally.

(2) Construct the tangents frof/ to the circleA(a), and the circle tangent to
these two lines and t8(b) internally.

(3) The two circles in (1) and (2) are congruent.
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Al

6. Given a pointZ on a line segmen#i B, construct a right-angled triangéBC
whose incircle touches the hypotenu$g at 7. *

7. (Paper Folding) The figure below shows a rectangular shesér containing
a border of uniform width. The paper may be any size and shmajpehe border
must be of such a width that the area of the inner rectangbesistly half that of
the sheet. You have no ruler or compasses, or even a penaimMst determine
the inner rectangle purely by paper foldirig.

8. Let ABC be a triangle with incentef.
(1a) Construct a tangent to the incircle at the point diaivedty opposite to its
point of contact with the sid&C'. Let this tangent intersect A atY; and AB
atZz,.
(1b) Same in part (a), for the sideA, and let the tangent interse4B at 7, and
BC at X,.

(1c) Same in part (a), for the sidéB, and let the tangent interseB”' at X5
andCA atYs.

(2) Note thatdY; = AZ,. Construct the circle tangent #C andAB atY3; and
Z5. How does this circle intersect the circumcircle of triamglBC?

9. The incircle ofAABC touches the sideBC, CA, AB atD, E, F respectively.
X is a point insideA ABC such that the incircle of X BC' touchesBC' at D
also, and toucheS' X and X B atY andZ respectively.

1P. Yiu, G. Leversha, and T. Seimiya, Problem 2415 and soluGoax Math.25 (1999) 110; 26 (2000)
62 — 64.
2Problem 2519Journal of Recreational Mathematic30 (1999-2000) 151 — 152.
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(1) The four pointsF, F, Z, Y are concyclic®
(2) What is thdocusof the center of the circl&F ZY? 4

1.2.4 The Heron formula

The area of trianglel BC is given by

g =/s(s —a)(s — b)(s — c).
This formula can be easily derived from a computation of thiediusr and the radius
of one of thetritangent circles of the triangle. Consider thexcircle I, (r,) whose
center is the intersection of the bisector of angland the external bisectors of angles
B andC. If the incircleI(r) and this excircle are tangent to the ling’ atY andY”’

respectively, then

I

(1) from the similarity of trianglesA/Y and AI,Y”,

r s—a

)
Ta S

(2) from the similarity of triangle€'IY and,CY”,
rere=(s—0)(s—c).

It follows that

S (LRI CRUIRT:)

S

SInternational Mathematical Olympiad 1996.
4IMO 1996.



Chapter 1: Circumcircle and Incircle 9

From this we obtain the famous Heron formula for the area dbagle:

S
5 =78= Vs(s —a)(s — b)(s — c).
Exercises
1. R= 4%
2.1, = 7b+f—a'

3. Suppose the incircle of triangld BC touches its side®3C, C A, AB at the
points X, Y, Z respectively. LetX’, Y/, Z’ be the antipodal points of, Y, Z
on the incircle. Construct the raysX’, BY’, andCZ’.

Explain the concurrency of these rays by considering alegtiints of contact
of the excircles of the triangle with the sides.
4. Construct theritangent circles of a triangleABC.

(1) Join each excenter to the midpoint of the correspondogyaf ABC. These
three lines intersect at a poift (This is called theéMittenpunktof the triangle).

(2) Join each excenter to the point of tangency of the ineimith the corre-
sponding side. These three lines are concurrent at anairer.

(3) The linesA P and AQ are symmetric with respect to the bisector of andgje
so are the line8 P, BQ andC P, C'Q (with respect to the bisectors of anglBs
andC).

5. Construct the excircles of a triangieBC.

(1) Let D, E, F be the midpoints of the sideBC, CA, AB. Construct the
incenterS of triangle DEF, ® and thetangents from S to each of the three
excircles.

(2) The 6 points of tangency are on a circle, whicloiithogonalto each of the
excircles.

5This is called the Spieker point of triangeBC.
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1.3 Euler’s formula and Steiner’s porism

1.3.1 Euler’s formula

The distance between the circumcenter and the incenteriaingle is given by
OI*> = R* — 2Rr.

Construct thesircumcircle O(R) of triangle ABC'. BisectangleA andmark the
intersectionM of the bisector with the circumcircle. Construct the cirdlg B) to
intersect this bisector at a point This is the incenter since

ZIBC = EAIMC = ééAAMC = %AABC,

and for the same reasefVCB = %4ACB. Note that
(1)IM = MB = MC =2Rsin 4,
() IA= =, and
2
(3) by the theorem of intersecting chord®: — OI? = thepowerof I with respect
to the circumcircle A - IM = 2Rr.

M

1.3.2 Steiner’s porism

6 Construct the circumcircléO) and the incircle(7) of triangle ABC. Animate a
point A’ on the circumcircle, and construct ttengents from A’ to the incircle(I).
Extend these tangents to intersect the circumcircle agai andC’. The linesB’'C’
is always tangent to the incircle. This is the famous theooenBteiner porismif
two given circles are the circumcircle and incircle of onatgle, then they are the
circumcircle and incircle of a continuous family pbristic triangles

6Also known as Poncelet’s porism.
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Exercises
1. r < 3R. When does equality hold?

2. Suppose&[ = d. Show that there is a right-angled triangle whose sided are
andR — r. Which one of these is the hypotenuse?

3. Given a point! inside a circleO(R), construct a circld (r) so thatO(R) and
I(r) are the circumcircle and incircle of a (family of poristiclngle(s).

4. Given the circumcenter, incenter, and one vertex of a ttegrapnstruct the tri-
angle.

5. Construct an animation picture of a triangle whose circurterelies on the in-
circle.”

"Hint: OI = r.
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1.4 Appendix: Mixtilinear incircles

A mixtilinear incircle of triangleA BC is one that is tangent to two sides of the triangle
and to the circumcircle internally. Denote by the point of tangency of the mixtilin-
ear incircleK (p) in angle A with the circumcircle. The centdk clearly lies on the
bisector of angled, andAK : KI = p: —(p—r). Interms of barycentric coordinates,

1
K= ;[—(p —r)A+ pl].
Also, since the circumcircl®(A’) and the mixtilinear incirclegl (A’) touch each other
atA’, we haveOK : KA’ = R — p : p, whereR is the circumradius. From this,
1
R

Comparing these two equations, we obtain, by rearrangingste

K= Z[pO+(R—p)AT].

RI—rO  R(p—71)A+r(R—p)A
R—r p(R—r1) '

We note some interesting consequences of this formulat &irall, it gives the
intersection of the lines joiningl A’ andOI. Note that the point on the lin@1 repre-
sented by the left hand side’l%.

A’ A’

M

This leads to a simple construction of the mixtilinear intgr8

Given a triangleABC, let P be the external center of similitude of the
circumcircle(O) and incircle(I). ExtendAP to intersect the circumcircle
at A’. The intersection ofti] andA’O is the centel 4 of the mixtilinear
incircle in angleA.

The other two mixtilinear incircles can be constructed k.

8P.Yiu, Mixtilinear incircles Amer. Math. Monthlyl06 (1999) 952 — 955.
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Exercises

1. Can any of the centers of similitude @) and(7) lie outside triangleA BC'?

2. There are three circles each tangent internally to the icinele at a vertex, and
externally to the incircle. It is known that the three linejng the points of
tangency of each circle wittO) and(I) pass through the internal centErof
similitude of (O) and (7). Construct these three circlés.

3. Let T be the insimilicenter ofO) and(I), with pedalsY” andZ onC A andAB
respectively. IfY” andZ’ are the pedals df andZ on BC, calculate the length
of Y'z'. 10

9A.P. Hatzipolakis and P. Yiu, Triads of circles, preprint.
10A P. Hatzipolakis and P. Yiu, Pedal triangles and their shagForum Geom.1 (2001) 81 — 90.






Chapter 2

The Euler Line and the
Nine-point Circle

2.1 The Euler line

2.1.1 Homothety

The similarity transformatiom (7", ) which carries a poini to the pointX’ which
dividesTX' : TX = r : 1is called thehomothetywith centerT” and ratior.

2.1.2 The centroid

The three medians of a triangle intersect at the centroidtiwdivides each median in
the ratio2 : 1. If D, E, F are the midpoints of the sidg3C, C'A, AB of triangle
ABC, the centroidG divides the mediam D in the ratioAG : GD = 2 : 1. The
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medialtriangle DEF is the image of triangled BC' under the homothetii(G, —%).
The circumcircle of the medial triangle has radi%lB. Its center is the poinlv =
h(G,—3)(O). This divides the segeme@G in the ratioOG : GN =2 : 1.

2.1.3 The orthocenter

The dilated triangle A’ B'C” is the image ofA BC' under the homotheth(G, —2). *
Since the altitudes of triangld BC' are the perpendicular bisectors of the sides of
triangle A’ B’C’, they intersect at the homothetic image of the circumcefteilhis
point is called theorthocenterof triangle ABC, and is usually denoted b§/. Note
that

OG:GH=1:2.

The line containing), G, H is called the Euler line of triangld BC'. The Euler
line is undefined for the equilateral triangle, since thesiatp coincide.

Exercises

1. A triangle is equilateral if and only if two of its circumceamf centroid, and
orthocenter coincide.

2. The circumcenteN of the medial triangle is the midpoint 61 H.

3. The Euler lines of triangle’ BC, HC A, H AB intersect at a point on the Euler
line of triangle ABC'. What is this intersection?

4. The Euler lines of triangle$ BC, IC A, I AB also intersect at a point on the
Euler line of triangled BC. ?

5. (Gossard’s Theorem) Suppose the Euler line of triacgh®” intersects the side
lines BC, CA, AB at X, Y, Z respectively. The Euler lines of the triangles
AY Z, BZX andCXY bound a triangle homothetic hBC with ratio —1 and
with homothetic center on the Euler line dBC.

6. What is thelocusof the centroids of the poristic triangles with the sametaine
circle and incircle of triangled BC'? How about the orthocenter?

7. Let A’B’C’ be a poristic triangle with the same circumcircle and ireirof
triangle ABC, and let the sides aB’C”’, C' A’, A’ B’ touch the incircle af{, Y,
Z.

(i) What is thelocusof the centroid ofX'Y Z?
(i) What is thelocusof the orthocenter oK'Y Z?
(iif) What can you say about the Euler line of the triangié” Z?

Litis also called the anticomplementary triangle.
2problem 1018Crux Mathematicorum
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2.2 The nine-point circle

2.2.1 The Euler triangle as a midway triangle

The image ofABC under the homothetki( P, %) is called themidwaytriangle of P.
The midway triangle of the orthocentéf is called theEuler triangle The circumcen-
ter of the midway triangle oP is the midpoint ofO P. In particular, the circumcenter
of the Euler triangle is the midpoint @ H, which is the same ad'. The medial
triangle and the Euler triangle have the same circumcircle

2.2.2 The orthic triangle as a pedal triangle

The pedalsof a point are the intersections of the sidelines with theesgonding per-
pendiculars througt®. They form thepedal triangleof P. The pedal triangle of the
orthocenter is called theorthic triangleof ABC.

B X c B X D c

The pedalX of the orthocented on the sideBC is also the pedal ofi on the
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same line, and can be regarded asréflectionof A in the line EF'. It follows that
/EXF =/FEAF = ZEDF,

since AEDF is a parallelogram. From this, the poiat lies on the circleDEF,
similarly for the pedal§” andZ of H on the other two side§'A and AB.

2.2.3 The nine-point circle

From§2.2.1,2 above, the medial triangle, the Euler triangle tararthic triangle have
the same circumcircle. This is called thime-point circleof triangle ABC. Its center
N, the midpoint ofO H, is called thenine-point centenof triangle ABC.

Exercises

1. Onthe Euler line,

OG:GN:NH=2:1:3.

2. Let P be a point on the circumcircle. What is tleeus of the midpoint ofH P?
Can you give a proof?

3. Let ABC be atriangle and® a point. The perpendiculars &tto PA, PB, PC
intersectBC, C A, AB respectively atd’, B/, C".
(1) A’, B', C" are collinear?

(2) The nine-point circles of the (right-angled) triangléslA’, PBB’, PCC’
are concurrent @ and another poinP’. Equivalently, their centers are collinear.
4

3B. Gibert, Hyacinthos 1158, 8/5/00.
4A.P. Hatzipolakis, Hyacinthos 3166, 6/27/01. The three midis of AA’, BB’, CC’ are collinear.
The three nine-point circles intersect/atand its pedal on this line.
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4. If the midpoints ofAP, BP, C'P are all on the nine-point circle, must be the
orthocenter of trianglel BC?°

5. (Paper folding) LetV be the nine-point center of triangleBC'.
(1) Fold the perpendicular td N at N to intersectC A atY andAB at Z.
(2) Fold the reflectiomd’ of A in the lineY Z.
(3) Fold the reflections aB in A’Z andC'in A'Y".
What do you observe about these reflections?

2.2.4 Triangles with nine-point center on the circumcircle

We begin with a circle, cent& and a pointV on it, and construct a family of triangles
with (O) as circumcircle andV as nine-point center.

(1) Construct the nine-point circle, which has cendrand passes through the
midpointM of ON.

(2) Animate a pointD on the minor arc of the nine-point circlesidethe circum-
circle.

(3) Construct the chor8C of the circumcircle withD as midpoint. (This is simply
the perpendicular t® D at D).

(4) Let X be the point on the nine-point circle antipodall?o Complete the paral-
lelogramO D X A (by translating the vectorDO to X).

The pointA lies on the circumcircle and the triangleBC has nine-point cente¥
on the circumcircle.

Here is an curious property of triangles constructed inway: let A’, B’, C’ be
the reflections of4, B, C in their own opposite sides. The reflection triangleB’C”
degenerates.e., the three pointst’, B/, C’ are collinear®

5Yes. See P. Yiu and J. Young, Problem 2437 and solu@onx Math.25 (1999) 173; 26 (2000) 192.
60. BottemaHoofdstukken uit de Elementaire Meetkun@bapter 16.
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2.3 Simson lines and reflections

2.3.1 Simson lines

Let P on the circumcircle of trianglel BC.

(1) Construct its pedals on the side lines. These pedalshaagscollinear. The
line containing them is called tH&mson lines(P) of P.

(2) Let P’ be the point on the cirucmcircle antipodal B Construct the Simson
line (P’) andtrace the intersection poirg(P)N (P’). Can you identify this locus?

(3) Let the Simson lins(P) intersect the side lineBC, CA, ABatX,Y, Z re-
spectively. The circumcenters of the trianges 7, BZ X, andC XY form a triangle
homothetic toABC at P, with ratio % These circumcenters therefore lie on a circle
tangent to the circumcircle &.

2.3.2 Line of reflections

Construct thereflections of the P in the side lines. These reflections are always
collinear, and the line containing them always passes girdbe orthocentef/, and
is parallel to the Simson ling(P).

2.3.3 Musselman’s Theorem: Point with given line of reflectioa

Let £ be a line through the orthocentar.

(1) Choose an arbitrary poid) on the line£ andreflectit in the side linesBC,
C A, AB to obtain the points\, Y, Z.

(2) Construct the circumcircles ofY Z, BZX andCXY. These circles have a
common pointP, which happens to lie on the circumcircle.

(3) Construct the reflections @? in the side lines of trianglel BC. These are on
the lineL.
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2.3.4 Musselman’s Theorem: Point with given line of reflectioa
(Alternative)

Animate a pointy on the circumcircle. Le®)’ be the second intersection of the line
HQ with the circumcircle.

(1) Thereflections X, Y, Z of @ on the side lineBC, C A, AB are collinear; so
are thoseX’,Y’, Z' of Q'

(2) The linesX X', YY', ZZ' intersect at a poinP, which happens to be on the
circumcircle.

(3) Construct the reflections @? in the side lines of trianglel BC. These are on
the lineHQ.

2.3.5 Blanc’s Theorem

Animate a pointP on the circumcircle, together with its antipodal poiit

(1) Construct the lineP P’ to intersect the side lineBC, CA, ABatX,Y, Z
respectively.

(2) Construct the circles with diametessX, BY, CZ. These three circles have
two common points. One of these is on the circumcircle. Létislpoint P*, and the
other common poind).

(3) What is thdocusof Q7?

(4) The line P*@Q passes through the orthocentér As such, it is the line of
reflection of a point on the circumcircle. What is this point?

(5) Construct the Simson lines &f and P’. They intersect at a point on the nine-
point circle. What is this point?

Exercises
1. Let P be a given point, andd’B’C’ the homothetic image ofABC under
h(P, —1) (so thatP is the common midpoint ciA’, BB’ andCC").

(1) The circlesAB’C’, BC' A’ andC A’ B’ intersect at a poinf) on the circum-
circle;

(2) The circlesABC’, BCA’ andC AB' intersect at a poin)’ such thatP is
the midpoint ofQQ’. 7

"MusselmanAmer. Math. Monthly47 (1940) 354 — 361. IP = (u : v : w), the intersection of the
three circles in (1) is the point

1
(bz(u—i-v—w)w—cz(w—l—u—v)v T )
on the circumcircle. This is the isogonal conjugate of thenitéipoint of the line
Z u(v+w7u)x:0.

‘ a?
cyclic
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2.4 Appendix: Homothety

Two triangles are homothetic if the corresponding sidegparallel.

2.4.1 Three congruent circles with a common point and each tan
gent to two sides of a triangle

8 Given a triangled BC, to construct three congruent circles passing through aemm
point P, each tangent to two sides of the triangle.

Lett be the common radius of these congruent circles. The cenftérsse circles,
1, I, I3, lie on the bisectorg A, I B, IC respectively. Note that the linds3 and
BC are parallel; so are the paifgl;, C A, andl, 1>, AB. It follows thatA I 1515 and
ABC are similar. Indeed, they are momothetidrom their common incentef. The
ratio of homothety can be determined in two ways, by congideheir circumcircles
and their incircles. Since the circumradii @rand R, and the inradii are — ¢ andr,

r—t _ r H _ Rr
we have™— = &. From thist = Rir
A

B C

How does this help constructing the circles? Note that thejbining the circum-
centersP andO passes through the center of homothgtgind indeed,
~ Rr
"R+
Rewriting this asOP : PI = R : r, we see thaP is indeed the internal center of
similitude of (O) and(I).

Now the construction is easy.

Ol:IP=R:t=R =R+r:r

2.4.2 Squares inscribed in a triangle and the Lucas circles

Given a triangleABC, to construct the inscribed square with a side aldhg we
contract the square erected externally on the same side bynathety at vertexA.
The ratio of the homothety i&, : h, + a, whereh, is the altitude onBC. Since
ha = 2, we have
he S
he +a S+a?

8Problem 2137Crux Mathematicorum
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The circumcircle is contracted into a circle of radius
S abe S abe

Ri=R - ——=—" = ,
S+a? 25 S+a®  2(5+a?)
and this passes through the two vertices of the inscribedhersidesAB and AC.
Similarly, there are two other inscribed squares on thesgitldé and A B, and two cor-
responding circles, tangent to the circumcircl®&andC respectively. Itis remarkable
that these three circles are mutually tangent to each oftierse are called the Lucas

circles of the triangle?

2.4.3 More on reflections
(1) The reflections of a lin€ in the side lines of trianglel BC' are concurrent if and

only if £ passes through the orthocenter. In this case, the int@sésta point on the

circumcircle.10

9See A.P. Hatzipolakis and P. Yiu, The Lucas circksier. Math. Monthly108 (2001) 444 — 446. After
the publication of this note, we recently learned that Edddaicas (1842 — 1891) wrote about this triad
of circles, considered by an anonymous author, as the thrdesmutually tangent to each other and each
tangent to the circumcircle at a vertex 4BC. The connection with the inscribed squares were found by

Victor Thébault (1883 — 1960).
1035 N. Collings, Reflections on a triangle, partMath. Gazette57 (1973) 291 — 293; M.S. Longuet-
Higgins, Reflections on a triangle, part 2, ibid., 293 — 296.
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(2) Construcparallel lines £, £;, and L. through theD, E, F be the midpoints
of the sidesBC, C A, AB of triangle ABC. Reflectthe linesBC in £,, CA in Ly,
andAB in L. These three reflection lines intersect at a point on the paniet circle!!

(3) Constructparallel lines £, £, and £ through the pedals of the verticels
B, C on their opposite sides. Reflect these lines in the resgesiile lines of triangle
ABC. The three reflection lines intersect at a point on the nivietgircle.?

11This was first discovered in May, 1999 by a high school studédam Bliss, in Atlanta, Georgia. A
proof can be found in F.M. van Lamoen, Morley related triangda the nine-point circleAmer. Math.
Monthly, 107 (2000) 941 — 945. See also, B. Shawyer, A remarkable carmme,Forum Geom.1 (2001)
69 —74.

bid.



Chapter 3

Homogeneous Barycentric
Coordinates

3.1 Barycentric coordinates with reference to a triangle

3.1.1 Homogeneous barycentric coordinates

The notion of barycentric coordinates dates back tibMs. In a given trianglel BC,
every pointP is coordinatized by a triple of numbefs : v : w) in such a way that
the system of massesat A, v at B, andw at C' will have its balance pointat P.
These masses can be taken in the proportions of the aregsnierP BC, PC A and
PAB. Allowing the pointP to be outside the triangle, we usigned area®f oriented
triangles. Thehomogeneous barycentric coordinate#sP with reference ttABC' is a
triple of numbergx : y : z) such that

x:y:2=APBC: APCA: APAB.

Examples

1. ThecentroidG has homogeneous barycentric coordindtes1 : 1). The areas
of the trianglesZ BC, GC A, andG AB are equal*

2. Theincenterl has homogeneous barycentric coordinétesb : ¢). If r denotes
the inradius, the areas of trianglé®C, ICA andI AB are respectivel)éra,
%rb, and%rc. 2

3. Thecircumcenter If R denotes the circumradius, the coordinates of the circum-
centerO are®

AOBC : AOCA : AOAB

1In Kimberling’s Encyclopedia of Triangle Centers, [ETC], the centroid appears &s;.
2|n ETC, the incenter appears A5, .
8In ETC, the circumcenter appears &S.
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1 1 1

= ZR?sin24: =R%sin2B : =R?sin2C
2 2 2

= sinAcosA:sinBcosB :sinCcosC

b2+02—a2.b A+a? -0 a? 4
2bc ' 2ca H¢ 2ab
= a?(D* + 2 —a?) (P +a® = V%) e + 02— ).

4. Points on the lineBC' have coordinates of the for(0 : y : z). Likewise, points
on CA and AB have coordinates of the formig : 0 : z) and(z : y : 0)
respectively.

Exercise
1. Verify that the sum of the coordinates of the circumcenteegiabove istS2:
a0+ —a®) + b2 (4 a® — b)) + A(a® + b — ) = 452,
whereS is twice the area of triangld BC'.

2. Find the coordinates of the excentéts.

3.1.2 Absolute barycentric coordinates

Let P be a point with (homogeneous barycentric) coordinatesy : z). If t+y+2z #
0, we obtain theabsolutebarycentric coordinates by scaling the coefficients to leave

unit sum:
- A+y-B+z-C

r+y—+z
If P and@ are given in absolute barycentric coordinates, the pBimthich divides
: . . . - P .
PQ intheratioPX : X@Q = p : ¢ has absolute barycentric coordmagesiin.

. . . . . pTq .
It is, however, convenient to perform calculations avaidittnominators of fractions.

P =

o= (=a:b:c),Iy=(a:=b:c),I.=(a:b:—c).
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We therefore adapt this formula in the following way:Af= (v : v : w) and@ =
(u' : v : w') are the homogeneous barycentric coordinates satistyig + w =
u' +v'+w’, the pointX dividing PQ in the ratioPX : XQ = p : ¢ has homogeneous
barycentric coordinates

(qu +pu' : qu+ pv’ : qu + pw').

Example: Internal center of similitudes of the circumcircle and the incircle

These points]” andT”, divide the segmern® I harmonically in the ratio of the circum-
radiusR = 4% and the inradius = 2. Note thatR : r = 2 : 2 = sabc : S2.
Since
O=(*b*+c*—a%):---:--1)

with coordinates sumS? andl = (a : b : ¢) with coordinates surs, we equalize
their sums and work with

(0]
1

(sa’(b* +c* —a?): -0,
(25%a : 25%b : 25%¢).

The internal center of similitud&' dividesOI in the ratioOT : TI = R : r, the
a-component of its homogeneous barycentric coordinatebeaaken as

5% . sa?(b? + ¢ — a®) + sabc - 25%a.
The simplification turns out to be easier than we would nolyredpect:

S% . sa?(b* + ¢ — a?) + sabc - 25%a
= 55%a%(b* 4 % — a® + 2bc)
= 5S%a*((b+¢)* —a?)
sS%a*(b+c+a)(b+c—a)
= 25°S?.a*(b+c—a).

The other two components have similar expressions obtdipegclically permuting
a, b, c. Itis clear that2s2S? is a factor common to the three components. Thus, the
homogeneous barycentric coordinates of the internal centmilitude are®

(a*(b+c—a):b*(c+a—0):c(a+b—c)).

Exercises

1. The external center of similitude ¢©) and(I) has homogeneous barycentric
coordinate$

(a*(a+b—c)(ct+a—b):b*(b+c—a)a+b—c):*(ct+a—b)(b+c—a)),

5In ETC, the internal center of similitude of the circumcircle and ittgircle appears as the poiftss.
6ln ETC, the external center of similitude of the circumcircle anditiaircle appears as the poifts.
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which can be taken as

a? b2 c?
<b+ca:c+ab:a+bc)'

. The orthocenteH lies on the Euler line and divides the segméxt externally

in the ratioOH : HG = 3 : —2. 7 Show that its homogeneous barycentric
coordinates can be written as

H = (tan A : tan B : tan C),

or equivalently,

o T 1
S\ +2—a? 4 a? -0 a2+ —c2)

. Make use of the fact that the nine-point cemédivides the segmer@G in the

ratioON : NG = 3 : —1 to show that its barycentric coordinates can be written
as?®
N = (acos(B —C) :bcos(C — A) : ccos(A— B)).

7In ETC, the orthocenter appears as the pdiit
8In ETC, the nine-point center appears as the paigt
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3.2 Cevians and traces

Because of the fundamental importance of the Ceva theorérnaitgle geometry, we
shall follow traditions and call the three lines joining angaP to the vertices of the
reference triangled BC the ceviansof P. The intersectionsip, Bp, Cp of these
cevians with the side lines are called thecesof P. The coordinates of the traces can
be very easily written down:

Ap=(0:y:2), Bp=(z:0:2z), Cp=(x:y:0).

3.2.1 Ceva Theorem

Three pointsX, Y, Z on BC, C A, AB respectively are the traces of a point if and
only if they have coordinates of the form

X =0 : vy : z
Y = 2« : 0 : z
=z : y 0,

for somez, y, z.

;

3.2.2 Examples
The Gergonne point

The points of tangency of the incircle with the side lines are

X = 0 : s—c : s—0b,
Y = s—c : 0 T s—a,
Z = s—b : s—a : 0.

These can be reorganized as

— 1 1
X = ? s—b STC’
Y = s—a 0 s—c?
z = 2 L 0.

@
|
e
w
|
>
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It follows that AX, BY, C'Z intersect at a point with coordinates

111
s—a s—b s—c)’

This is called theGergonne points,. of triangle ABC. °

The Nagel point

The points of tangency of the excircles with the correspogdides have coordinates

X = (0:s—b:s—c),
Y = (s—a:0:s5—2¢),
Z' = (s—a:s—-0:0).

These are the traces of the point with coordinates
(s—a:s—b:s—c).
This is theNagel pointN, of triangle ABC'. 1°

Exercises

1. The Nagel pointV, lies on the line joining the incenter to the centroid; it dies
IG intheratioIN, : N,G = 3 : —2.

9The Gergonne point appearsHTC as the pointX.
10The Nagel point appears ETC as the pointXs.
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3.3 Isotomic conjugates

The Gergonne and Nagel points are examples of isotomic gatga. Two points
and @ (not on any of the side lines of the reference triangle) ai@ teabe isotomic
conjugates if their respective traces are symmetric wispeet to the midpoints of the
corresponding sides. Thus,

BAp = AqC, CBp = BgA, ACp = CgB.
We shall denote the isotomic conjugatefoby P*. If P = (x : y : z), then

1 1 1
P*=(—:-:-
(- ; ~)

3.3.1 Equal-parallelian point

Given triangleABC, we want to construct a poirf® the three lines through which
parallel to the sides cut out equal intercepts. Pet= A + yB + zC in absolute
barycentric coordinates. The parallelBg cuts out an intercept of length — z)a. It
follows that the three intercepts parallel to the sides greakif and only if

1 1 1

l—z:1—y:l—2z=—-:-:—-.

a b c
The right hand side clearly gives the homogeneous baryicardordinates of *, the
isotomic conjugate of the incentér* This is a point we can easily construct. Now,
translating intcabsolutebarycentric coordinates:

1 1
I° = §[(1 —2)A+(1—-y)B+(1—-2)C] = 5(3G — P).
we obtainP = 3G — 2I°, and can be easily constructed as the point dividing the
segment/*G externally in the ratid®*P : PG = 3 : —2. The pointP is called the
equal-parallelian point of triangld BC. *?

A

B C

11The isotomic conjugate of the incenter appearSTiC as the pointXrs.
121t appears ifETC as the pointXgs.
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Exercises

1. Calculate the homogeneous barycentric coordinates ofjine-garallelian point
and the length of the equal paralleliah’.

2. Let A’B’C’ be the midway triangle of a poidt. The line B'C’ intersectaC A
at
B,=B'C'nCA, C,=B'C'nAB,
C,=C'ANAB, A,=C'ANBC,
A.=A'B'NBC, B.=AB NCA.
DetermineP for which the three segmenfs,C,, C, A, and A. B, have equal
lengths .24

3.3.2 Yff's analogue of the Brocard points

Consider a poinf = (z : y : z) satisfyingBAp = CBp = ACp = w. This means
that

z z Y
a = b: C=1W.
Y+ z Z+x Tr+y
Elimination ofz, y, = leads to
0 —-w  a—w
0=|b—w 0 —w | =(a—w)(b—w)(c—w)—w
—w  c—w 0

Indeed,w is the unique positive root of the cubic polynomial
(a—t)(b—t)(c—1t) — 3.

This gives the point
P ((c—w)éz(a—w>;’:<b—w>é>.
b—w c—w a—w

The isotomic conjugate
. a—w %
"\b—w

re((0) ()

CAP = ABP = BCP = w.

These points are usually called thé analogues of the Brocard point® They
were briefly considered by A.L. Crell&

ol

satisfies

13 . . . . b -
(ca+ab—be : ab+bec—ca : be+ca—ab). The common length of the equal parallehanﬂ%.
14A P. Hatzipolakis, Hyacinthos, message 3190, 7/13/81= (3bc — ca — ab : 3ca — ab — bc :
3ab — be — ca). This point is not in the current edition &TC. It is the reflection of the equal-parallelian

pointinI®. In this case, the common length of the segmem,;‘r_%% as in the equal-parallelian case.

a bc+ca’

15p, Yff, An analogue of the Brocard pointmer. Math. Monthly70 (1963) 495 — 501.
16A L. Crelle, 1815.
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3.4 Conway’s formula

3.4.1 Notation

Let S denotetwicethe area of trianglel BC'. For a real numbef, denoteS - cot 6 by
Sp. In particular,
b2 + ¢ —a? A +a-b? a’?+b>—¢c?
2 3 B 2 ) C 2
For arbitraryd and¢, we shall simply writeSy,, for Sy - S,,.
We shall mainly make use of the following relations.

Sa

Lemma
(1) S+ Sc = a2, Sc+ 84 =b2, 5S4+ Sp = 2.
(2) Sap+ Spc + Sca = S2.

Proof. (1) is clear. For (2), sincd + B + C = 180°, cot(A + B + C) is infinite. Its
denominator

cot A-cot B+ cotB-cotC +cotC-cotA—1=0.

From this,Sap+Spc+Sca = S?(cot A-cot B+cot B-cot C'+cot C-cot A) = S2.

Examples

(1) The orthocenter has coordinates

1 1 1

Note that in the last expression, the coordinate sufisis + Sca + Sap = S2.
(2) The circumcenter, on the other hand, is the point

0= (CLQSA : bQSB : CQSc) = (SA(SB —I—SC) : SB(SC +Sa4): Sc(SA +SB))-

Note that in this form, the coordinate sunisSaz + Spc + Sca) = 252

Exercises
1. Calculate the coordinates of the nine-point center in tesfifs,, Sz, Sc. 17

2. Calculate the coordinates of the reflection of the orthagantthe circumcenter,
i.e, the pointZ which divides the segme{ O in the ratioHL : LO = 2 : —1.
This is called thele Longchamps poirdf triangle ABC. 18

17N=(SQ+SBc:SQ+SCA 352+SAB)-
%BL:(SCA-i-SAB—SBC:~~~:~~-):(i+%—§:--~:~~-). It appears irETC as the
point Xog.
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3.4.2 Conway’s formula

If the swing angles of a poin® on the sideBC areZCBP = § andZBCP = ¢, the
coordinates ofP are
(—a2 :Se + Sga : S+ Sh).

The swing angles are chosen in the ranglg < 6, < 7. The anglef is pos-
itive or negative according as anglgg’ BP and Z/C B A have different or the same
orientation.

3.4.3 Examples
Squares erected on the sides of a triangle

Consider the squarBC X, X, erected externally on the sideC of triangle ABC.
The swing angles ak; with respect to the sid8C are

/CBX, =%, /BCX,=ZI.
4 2
Sincecot § = 1 andcot § =0,
X, =(—a*:Sc:Sp+89).
Similarly,
XQ = (—a2 : SC +S . SB)
Exercises
1. Find the midpoint ofX; X5.

2. Find the vertices of the inscribed squares with a side aeag*°.

19Recall that this can be obtained from applying the homothét, sfﬂ ) to the square3C' X1 X2
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3.5 The Kiepert perspectors

3.5.1 The Fermat points
Consider the equilateral triangleC X erected externally on the sid@C of triangle

ABC. The swing angles aréCBX = /BCX = 7. Sincecot 5 = %

S S
X=(-a*:Sc+—F=:8 +>,
<a RV R

which can be rearranged in the form

—a? 1 1
X = 5 = ! = ! < |-
Similarly, we write down the coordinates of the apekXesZ of the equilateral triangles
CAY and ABZ erected externally on the other two sides. These are

Y=g rxkxks: ——
SA+ﬁ SC-F%

and

Z:< 1S: 1S:>(<>(<>(<>k>(<>.

SA + % SB + %

Here we simply writex x x x x in places where the exact values of the coordinates are
not important. This is a particular case of the following gea situation.

3.5.2 Perspective triangles

SupposeX, Y, Z are points whose coordinates can be written in the form

X = skx%x*x Y : z,
Y = T Dok kokx ok o z,
Z = T : Y Dok ok ok ok ok,

The linesAX, BY, C'Z are concurrent at the poift = (z : y : z).

Proof. The intersection oAX and BC' is the trace ofX on the sideBC. It is the
point (0 : y : z). Similarly, the intersection®Y N C A andCZ N AB are the points
(x:0:z)and(z : y : 0). These three points are in turn the trace®of (z : y : 2).
Q.E.D.

We say that triangleX'Y Z is perspectivewith ABC, and call the pointP the
perspectonf XY Z.

We conclude therefore thtite apexes of the equilateral triangles erected externally
on the sides of a triangld BC' form a triangle perspective witd BC' at the point

1 1 1
F. = : : .
i (\/§SA+S V355 + 5 \/§SC+S>
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This is called the (positivefermat pointof triangle ABC'. 2°

Exercises

1. If the equilateral triangles are erected “internally” oe #ides, the apexes again
form a triangle with perspector

1 1 1
T <\/§SA—S V3Sp— S ﬁsc—s)’
the negative Fermat point of triangleBC. 2*

2. GiventriangleABC, extend the sidedC to B, andAB to C, suchthatC B, =
BC, = a. Similarly defineC, Ay, A., andB..

(a) Write down the coordinates @&, andC,, and the coordinates of the inter-
sectionA’ of BB, andC(C,.

(b) Similarly defineB’ andC’, and show thatl’ B’C" is perspective witd BC.
Calculate the coordinates of the perspecr.

3.5.3 Isosceles triangles erected on the sides and Kiepegrgpec-
tors

More generally, consider an isosceles triadglé A of base angle’YCA = LY AC =
0. The vertexY” has coordinates

(Sc + Sp : —b%: Sa + Sp).

20The positive Fermat point is also known as the first isogonitage It appears iETC as the pointXis.

21The negative Fermat point is also known as the second isogenier. It appears iETC as the point
X14.

22The Spieker point.
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If similar isosceles triangleX BC' andZ AB are erected on the other two sides (with
the same orientation), the linesX, BY', andC'Z are concurrent at the point

1 1 1
K(0) = : : .
() (SA+59 S+ Se SC"‘SG)

We call XY Z the Kiepert triangle and (6) the Kiepert perspectoof parametep.

A
A
Y
Y
Z
B c
BWO
X b's

3.5.4 The Napoleon points

The famous Napoleon theorem states thatcenters of the equilateral triangles erected
externally on the sides of a triangle form an equilaterahirgjle These centers are the

apexes of similar isosceles triangles of base aBgteerected externally on the sides.

They give the Kiepert perspector

1 1 1
<SA+\/§S'SB+\/§S'SC+¢55)'

This is called the (positive) Napoleon point of the triangfeAnalogous results hold
for equilateral triangles erected internally, leadingte begative Napoleon poifit

1 1 1
<SA_\/§S.SB_\/§S.SC_\/§S).

Exercises

1. The centers of the three squares erected externally ondes sf triangleA BC
form a triangle perspective witd BC. The perspector is called the (positive)

23The positive Napoleon point appearsiiC as the pointX 7.
24The negative Napoleon point appear&ifiC as the pointX .
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Vecten point. Why is this a Kiepert perspector? Identify iisgert parameter,
and write down its coordinate$?

2. Let ABC be a given triangle. Construct a small semicircle witlas center and
a diameter perpendicular 88C, intersecting the sid&8C. Animate a pointT
on this semicircle, antlide the semicircle.

(a) Construct the raypT and let it intersect the perpendicular bisecto3af' at
X.

(b) Reflectthe ray BT in the bisector of angle B, and construct the perpendic-
ular bisector ofA B to intersect this reflection &.

(c) Reflect AZ in the bisector of angle A, andreflect C X in the bisector of
angleC. Label the intersection of these two reflectidns

(d) Construct the perspectét of the triangleXY Z.
(e) What is thdocusof P asT traverses the semicircle?

3. Calculate the coordinates of the midpoint of the segnfent_. 26

4. Inside triangleA BC, consider two congruent circldg, (r1) andl,.(r;) tangent
to each other (externally), both to the siB€’, and toC' A and A B respectively.
Note that the center$,, and I,., together with their pedals oBC, form a
rectangle of sideg : 1. This rectangle can be constructed as the image under the
homothetyh(7, 2°) of a similar rectangle erected externally on the siie.

A
Iu} \\Iac
/ N =
¢ / \ \\\
B i N c
/ N\
/ \
/ \
/ \
/ \
\
/ \

(a) Make use of these to construct the two circles.

(b) Calculate the homogeneous barycentric coordinatdsegboint of tangency
of the two circles?’

SThis is K (%), the positive Vecten point. It appearsfiTC as X4ss.

26((b2 — )2 : (2 —a?)? : (a® —b?)?). This points appears IBTC asX115. It lies on the nine-point
circle.

2TThis dividesI D (D = midpoint of BC) in the ratio2r : a and has coordinatég? : ab+ S : ac+ S).
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(c) Similarly, there are two other pairs of congruent cisaba the sideg’A and
AB. The points of tangency of the three pairs have a perspé&ttor

111
bc+S ca+S ab+S)°

(d) Show that the pedals of the points of tangency on the otispeside lines of
ABC are the traces df

1 1 1
<bc+S+S’A ' ca—i—S—l—SB'ab—i—S—&-Sc)'

3.5.5 Nagel's Theorem
SupposeX, Y, Z are such that

LCAY = /BAZ = 0,
/ABZ = /CBX = ¢,
/BCX = LACY = 1.

The linesAX, BY, CZ are concurrent at the point

( 1 ) 1 ) 1 )
Sa+ Sp ' SB‘FSW ' Sc+5¢ '
A
A\
Z \
l
B ®

1. Let X', Y’, Z’' be respectively the pedals &fon BC, Y onC A, andZ on AB.
Show thatX'Y”’Z’ is a cevian triangle’®

/A

Exercises

28This point is not in the current edition &TC.
29This point is not in the current edition &TC.
39Floor van Lamoen.
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2. Fori = 1,2, let X,Y; Z; be the triangle formed with given anglés ; and;.
Show that the intersections

X=X XoNBC, Y=YYoNnCA, Z =71Z>NAB

form a cevian triangle3!

31Floor van LamoenX = (0 : Sy, — Syy : S — Ses)-
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Straight Lines

4.1 The equation of a line

4.1.1 Two-point form

The equation of the line joining two points with coordinates : y; : z1) and (s :
Y2 - 22) is

1 Y1 21
T2 Y2 22| =0,
r Yy =z

or
(Y122 — y221)x + (2122 — 2021)Y + (21Y2 — T2y1)2 = 0.
4.1.2 Examples

1. The equations of the side lindsC, C A, AB are respectivelyx = 0, y = 0,
z=0.

2. The perpendicular bisector d8C is the line joining the circumcented =
(a®S4 : b2Sp : ¢?Sc) to the midpoint ofBC, which has coordinate® : 1 : 1).
By the two point form, it has equation

(b?Sp — ?Sc)x — a’Say +a’Saz =0,

Sinceb?Sp — 2Sc = -+ = S4(Sp — Sc) = —Sa(b? — ¢?), this equation can
be rewritten as
(b — Az +a*(y—z) =0.

3. The equation of the Euler line, as the line joining the cadtfa : 1 : 1) to the
orthocente(Spc : Sca : Sap) is

(Sap — Sca)x + (Spc — Sap)y + (Sca — Spc)z =0,
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or
Z SA(SB - Sc)l‘ =0.

cyclic

4. The equation of th@I-line joining the circumcentefa®S4 : b2Sp : ¢2Sc) to
and the incentefa : b : ¢) is

0= Z (bQSBc - czScb):v = Z be(bSp — cSo)x.

cyclic cyclic
SincebSp — ¢S = -+ = —=2(b — ¢)s(s — a) (exercise), this equation can be
rewritten as
Z be(b —¢)s(s —a)r = 0.
cyclic
or )
S k-0, _,
a
cyclic

5. The line joining the two Fermat points

e = <\/§SA:|:S:\/§SB:|:S:\/§SC:ES>
= ((V3Sp+8)(V3Sc+£8):---:--1)

has equation

1 1
0= Z((\/gSB-‘rS)(\/gSC_S) (\/3519—S)(\/350+5)>aj

cyclic

Z (V385 = 8)(V35¢c + S) = (V3Sp + 5)(V3Sc — ) .
(3Spp — 5?)(3Scc — S?)

cyclic

- 2/3(Sp — 5¢)S
= X ((3533 — 52)(3Scc — 52)> "

cyclic

Clearing denominators, we obtain
> (S8~ Sc)(3Saa — §%)a =0.
cyclic
4.1.3 Intercept form: tripole and tripolar
If the intersections of a lin€ with the side lines are
X=(0:v:-w), Y =(-u:0:w), Z=(u:-v:0),

the equation of the ling is

E y + i =0.
u v w
We shall call the poinf = (u : v : w) thetripole of £, and the linel thetripolar of

P.
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Construction of tripole
Given a line£ intersectingBC, CA, AB at X, Y, Z respectively, let
A'=BYnCz, B' =CZnNAX, C' = AX N BY.

The linesAA’, BB’ andC'C” intersect at the tripolé of L.

Construction of tripolar
Given P with tracesAp, Bp, andCp on the side lines, let
X =BpCpnN BC, Y =CpApNCA, Z =ApBp N AB.

These pointsX, Y, Z lie on the tripolar ofP.

Exercises

1. Find the equation of the line joining the centroid to a givempP = (u : v : w).
1

2. Find the equations of the cevians of a paiht= (u : v : w).

3. Find the equations of the angle bisectors.

1Equation:(v — w)x + (w — w)y + (u — v)z = 0.



44 YIU: Introduction to Triangle Geometry

4.2 Infinite points and parallel lines

4.2.1 The infinite point of a line

The infinite point of a lineC has homogeneous coordinates given by the difference of
the absolutebarycentric coordinates of two distinct points on the lifes such, the
coordinate sum of an infinite point is zero. We think of all mit¢ points constituting
the line at infinity,L ., which has equatiom + y + z = 0.

Examples

1. The infinite points of the side lineBC, CA, ABare(0: —1:1),(1:0: —1),
(—=1:1:0) respectively.

2. The infinite point of thed—altitude has homogeneous coordinates

(0:8¢:Sp)—a*(1:0:0)=(—a’: Sc : Sp).

3. More generally, the infinite point of the liner + qy +rz =0is

(g—r:r—p:p—q).

4. The infinite point of the Euler line is the point

3(530 : SCA . SAB)*SS(l 01 1) ~ (3530*55 . 3SCA*SS . 3SAB*SS).

5. The infinite point of theD I-line is

(calc—a)(s —b) —abla—b)(s—c) - 1--+)
~ (a(a®(b+c) —2abc— (b+c)b—c)?):---1--0).

4.2.2 Parallel lines

Parallel lines have the same infinite point. The line throffgh (u : v : w) parallel to
L : px + qy + rz = 0 has equation

q—7r r—p p—4¢q
U v w
T Y z

=0.
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Exercises
1. Find the equations of the lines through= (u : v : w) parallel to the side lines.

2. Let DEF be the medial triangle oA BC, and P a point with cevian triangle
XY Z (with respect toABC'. Find P such that the linedDX, EY, FZ are
parallel to the internal bisectors of anglésB, C respectively?

2The Nagel pointP = (b+c—a: c+a—b:a+b— c). N. Dergiades, Hyacinthos, message 3677,
8/31/01.
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4.3 Intersection of two lines
The intersection of the two lines

T+ qy+riz=0,
P2+ qy + 122 =0
is the point
(Q17‘2 —q2r1 1 T1P2 — T2pP1 - P1q2 —P2Q1)~

The infinite point of a linel can be regarded as the intersectionCofvith the line at
infinity Lo : 2z +y+2=0.
Theorem

Three linep;x + ¢;y + r;z = 0,4 = 1,2, 3, are concurrent if and only if

P1 @1 T
b2 G2 T2
pPs g3 T3

=0.

4.3.1 Intersection of the Euler and Fermat lines

Recall that these lines have equations

> Sa(Sp = Sc)z =0,

cyclic

and
> (S5~ Sc)(354a — §%)a = 0.

cyclic

The A-coordinate of their intersection

= Sp(Sc —Sa)(Sa— SB)(3Scc — S?)

—Sc(Sa —SB)(Sc — S4)(3Spp — S?)
= (Sc —84)(Sa - SB)(SB(3Scc — S?) — Sc(3Spp — S?))
(Sc — Sa)(Sa — SB)(3SBc(Sc — SB) — S*(Sp — Sc))
= —(SB — Sc)(SC — SA)(SA — SB)(?)SBC + 52).

This intersection is the point
(3530 + 52 3Sca + 52 3SaB + 52).

Since(3Spc : 3Sca : 3Sap) and(S? : S? : S?) representd and G, with equal
coordinate sums, this point is the midpoint@f7. 3

3This point appears iETC asX3g1.



Chapter 4: Straight Lines a7

Remark

Lester has discovered that there is a circle passing the énodt points, the circum-
center, and the nine-point centérThe circle withG H as diameter, whose center is
the intersection of the Fermat and Euler line as we have slabowe, is orthogonal to
the Lester circle® It is also interesting to note that the midpoint between taerfat
points is a point on the nine-point circle. It has coordisdté? — ¢2)? : (c? — a?)? :
(a2 _ 62)2). 6

4.3.2 Triangle bounded by the outer side lines of the squaresected
externally

Consider the squarBC X . X, erected externally oC. SinceX,. = (—a® : S¢ :
Sp + 5), and the lineX, X.., being parallel taBC, has infinite poin{0 : —1 : 1), this
line has equation

(Sc + S + S)x + a*y + a*z = 0.

SinceSp + S = a?, this can be rewritten as
a®(x+y+z)+ Sz =0.

Similarly, if CAY,Y. andABZ,Z, are squares erected externally on the other two
sides, the line¥. Y, andZ, Z, have equations

V(@+y+2)+Sy=0

and
Alx+y+2)+852=0

4J.A. Lester, Triangles, Ill: complex centre functions and&@®theoremAequationes Math53 (1997)
4-35.

5P. Yiu, Hyacinthos, message 1258, August 21, 2000.

6This point appears ak115 in ETC.
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Zy

B* < X o
respectively. These two latter lines intersect at the point

A= (-0 + 2+ 8): b7 P).
Similarly, the linesZ, Z, and X, X . intersect at

B* = (a®: —(c*+a*+ 9) : ¢?),
and the linesX, X, andY,Y, intersect at

C* = (a®:b*: —(a®> +b* + 9)).
The triangleA* B*C* is perspective wittA BC' at the point

K = (a®:b*: ).

This is called thesymmedian poindf triangle ABC. ’

Exercises

1. The symmedian point lies on the line joining the Fermat mint

2. The line joining the two Kiepert perspectak§+-6) has equation

Z (SB — Sc)(SAA — 52 cot? 9)$ =0.
cyclic
Show that this line passes through a fixed pdint.
3. Show that triangle1? B C? has the same centroid as triangl&C.

4. Construct the parallels to the side lines through the synimemegoint. The 6
intersections on the side lines lie on a circle. The symmep@nt is the unique
point with this property?

"It is also known as the Grebe point, and appeaET( as the pointXs.
8The symmedian point.
9This was first discovered by Lemoine in 1883.
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5.

Let DEF be the medial triangle aA BC. Find the equation of the line joining
D to the excentel, = (—a : b : ¢). Similarly write down the equation of the
lines joining toF to I, and F' to I.. Show that these three lines are concurrent
by working out the coordinates of their common poifit.

. The perpendiculars from the excenters to the corresporsides are concur-
rent. Find the coordinates of the intersection by noting litas related to the
circumcenter and the incentét.

. Let D, E, F be the midpoints of the sidd3C', C A, AB of triangle ABC'. For
a point P with tracesAp, Bp, Cp, let X, Y, Z be the midpoints oBpCp,
CpAp, ApBp respectively. Find the equations of the linex, £Y, F'Z, and
show that they are concurrent. What are the coordinates ofitiersection??

. Let D, E, F be the midpoints of the sides &C', CA, AB of triangle ABC,
andX, Y, Z the midpoints of the altitudes from, B, C respeectively. Find the
equations of the line® X, FY, F'Z, and show that they are concurrent. What
are the coordinates of their intersectidd?

. Given triangleABC, extend the sidedC to B, andAB to C, suchthaCUB, =
BC, = a. Similarly defineCy, A, A., andB.. The linesB,C,, CyA;, and
A.B. bound a triangle perspective withBC'. Calculate the coordinate of the
perspectort*

10This is the Mittenpunkfa(s —a) : --- : - --); it appears irETC as Xg.
UThis is the reflection of in O. As such, it is the poir2O — I, and has coordinates

(a(@®4+a?b+c)—ab+c)2—(b+e)b—c)?):eeeroan).

This point appears a&4 in ETC.
12The intersection is the point dividing the segm& in the ratio3 : 1.
13This intersection is the symmedian poiiit= (a? : b2 : ¢2).

14 (

a(b+c) .

g -+ ). This appears ilETC as X¢s5.
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4.4 Pedal triangle

The pedals of a poinP = (u : v : w) are the intersections of the side lines with the
corresponding perpendiculars throuBhThe A—altitude has infinite poinly — A =
(0:Sc:88)— (Sg+Sc:0:0)=(—a®:Sc : Sp). The perpendicular through
to BC'is the line

—a2 SC SB

U v w | =0,
x Yy oz
or
—(Spv — Scw)x + (Spu + a*w)y — (Scu + a*v)z = 0.

Bipy
Crp)

B Alp) c
This intersectBC' at the point

A[p] =(0: Scu+a2v : SBu+a2w).

Similarly the coordinates of the pedals 6 and AB can be written down. The
triangle A;p) B;p1C(p is called thepedal triangleof triangle ABC:

A[p] 0 SCU + a’v Spu + a’w
B[p] = | Scv+b*u 0 Sav + b2w
Clp Spw+ u Saw + v 0

4.4.1 Examples
1. The pedal triangle of the circumcenter is clearly the mewiiahgle.

2. The pedal triangle of the orthocenter is called dinthic triangle. Its vertices are
clearly the traces off, namely, the point$0 : S¢ : Sg), (Sc : 0: Sa), and
(SB : SA : 0)

3. Let L be the reflection of the orthocent&rin the circumcente®. This is called
the de Longchamps point®> Show that the pedal triangle df is the cevian
triangle of some poinP. What are the coordinates &f? 16

15The de Longchamps point appears¥s in ETC.
16p — (5S4 : Sp : Sc) is the isotomic conjugate of the orthocenter. It appeaBTig@ as the pointXsg.
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4. Let L be the de Longchamps point again, with homogeneous bariceabrdi-
nates

(Sca+ Sap —Spc : Sap +Spc — Sca : Spc + Sca — Sap).

Find the equations of the perpendiculars to the side lingseatorresponding
traces of L. Show that these are concurrent, and find the coordinatelseof t

intersection.
The perpendiculart®C atA;, = (0: Sap+Spc—Sca : Sec+Sca—SaB)
is the line
—(Sp + Sc) Sc Sp
0 Sap+SBc —Sca Spc+Sca—Sap | =0.
T Y z
This is

52(53 —Se)x — az(SBC +Sca— Sap)y+ az(SBc —Sca+ Sag)z=0.

Similarly, we write down the equations of the perpendicailar the other two
traces. The three perpendiculars intersect at the pbint

(a%(S2.53 + 5553 — S3S2) - o).

Exercises

1. Let D, E, F be the midpoints of the sideBC, CA, AB, andA’, B’, C’ the
pedals ofA, B, C on their opposite sides. Show th&t= FC' N FB’,Y =
FA'NnDC',andZ = DB’ N EC' are collinear*®

2. Let X be the pedal ofi on the sideBC of triangle ABC. Complete the squares
AX X, A, andAX X, A, with X, and X, on the lineBC. 1°

17This point appears iETC asX197s. Conway calls this point thiegarithm of the de Longchamps paint

18These are all on the Euler line. See G. Leversha, Problem&3&8olutionCrux Mathematicorun24
(1998) 303: 25 (1999) 371 —372.

19A P. Hatzipolakis, Hyacinthos, message 3370, 8/7/01.
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(a) Calculate the coordinates df and A.. %°

(b) Calculate the coordinates df = BA. N CAy. 2t

(c) Similarly defineB’ and(C’. Triangle A’B’C" is perspective withABC.
What is the perspector?

(d) Let A” be the pedal ofd’ on the sideBC. Similarly defineB” andC”.
Show thatA” B”C" is perspective wittABC' by calculating the coordi-
nates of the perspectat.

ZOAb

(@®:—S:8)andA. = (a?: S : -9).

LA = (a?: S : S).
22The centroid.

23(

. This is called the first Vecten point; it appears’sss in ETC.

1 . 1 . 1 )
Sat+S  Sp+S8 ' Sc+8
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4.5 Perpendicular lines

Givenalinel : px+qy+rz = 0, we determine the infinite point of lines perpendicular
to it. 24 The line£ intersects the side lingSA and AB at the points” = (—r: 0 : p)
andZ = (¢ : —p : 0). Tofind the perpendicular from to £, we first find the equations
of the perpendiculars frofl to AB and fromZ to C A. These are

SB SA —82 SC —b2 SA
—r 0 p |=0 and g —-p 0 |=0
Y z x Yy z
These are
Sapx + (c2r — Spp)y+ Sarz = 0,
Sapz + Saqy+ (V’q— Sep)z = 0.

These two perpendiculars intersect at the orthocentelanigie AY Z, which is the
point

X' = (kxxx%:S4p(Sar— blg+ Scp) : Sap(Saq+ Sep — 027“)
~ (xxxxx:Sc(p—q)—Salg—71):Sa(qg—71)— Sp(r—p)).
The perpendicular from to £ is the lineAX’, which has equation

1 0 0
xxx So(p—q)—Salg—r) —Salg—7)+Sp(r—p) | =0,
x Y z

or
—(Salg—7) = Sp(r—p))y+ (Sc(p—q) — Salqg—1))z=0.
This has infinite point
(Sp(r—p)—Sc(p—q): Sc(p—q) — Salg—r): Salqg—7r) — Sp(r —p)).

Note that the infinite pointof is (¢ —r : r — p : p — ¢). We summarize this in the
following theorem.

24| learned of this method from Floor van Lamoen.
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Theorem
If aline £ has infinite poin{f : ¢ : h), the lines perpendicular t6 have infinite points
(f':g W)= (Spg—Sch:Sch—Saf:Saf— Sgg).

Equivalently, two lines with infinite point§f : g : k) and(f’ : ¢’ : k') are perpendic-
ular to each other if and only if

Saff' + Spgg + Schh' = 0.

4.5.1 The tangential triangle

Consider the tangents to the circumcircle at the verticdee radiusO A has infinite
point

(a®Sa :b*Sp : 2Sc) — (252 :0:0) = (—(b2Sp + 2S¢) : b*Sp : 2S¢).
The infinite point of the tangent at is
(b?*Spp — *Scc : Sco + Sa(b*Sp + *Sc) : —Sa(b*Sp + *Sc) — b*SpB).
Consider theB-coordinate:

CQScc-i-SA(bQSB +625(j) = CQSc(Sc+SA)+b2SAB = b2<CQSC+SAB) = 252,

c’

A’

Similarly, theC-coordinate =c252. It follows that this infinite point ig—(b? —
c?) : b? : —c?), and the tangent at is the line

7(1)2 o C2) b2 762

1 0 0
x y z




Chapter 4: Straight Lines 55

or simplyc?y+b%z = 0. The other two tangents arér +a?z = 0, andb?*z +a?y = 0.
These three tangents bound a triangle with vertices

A = (—a2 (2 02), B = (a2 c b 62), ! = (a2 -2 - —02).

This is called theangential triangleof ABC. It is perspective wittA BC at the point
(a? : b? : ¢?), the symmedian point.

4.5.2 Line of ortho-intercepts
25

Let P = (u: v : w). We consider the line perpendicular4d® at P. Since the line
AP has equatiomy — vz = 0 and infinite point — (v +w) : v : w), the perpendicular
has infinite point(Spv — Scw : Scw + Sa(v + w) : —Sa(v + w) — Spv) ~
(Spv — Scw : Sav + b*w : =S w — c*v). Itis the line

U v w
Spv— Scw  Sav+bPw —Siw—cv | =0.
x Yy z

This perpendicular line intersects the side IIB€’ at the point

(0 : u(Sav + b*w) — v(Spv — Scw) : —u(Saw + *v) — w(Spv — Scw))
~ (0:(Sau— Spv+ Scw)v + b*wu : —((Sau+ Spv — Scw)w + Puv)).

A

BN

Similarly, the perpendicular t8 P at P intersects’ A at

(—((=Sau 4+ Spv + Scw)u + a*vw) : 0 : (Sau+ Spv — Scw)w + c2uwv)

25B. Gibert, Hyacinthos, message 1158, August 5, 2000.
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and the perpendicular 0P at P intersectsA B at
((=Sau + Spv + Scw)u + a*vw : —((Sau — Spv + Scw)v + b*wu) : 0).

These three points are collinear. The line containing thaseguation

x
Z (—=Sau+ Spv + Scw)u + a?vw 0

cyclic

Exercises

1. If triangle ABC is acute-angled, the symmedian point is the Gergonne pbint o
the tangential triangle.

2. Given a line£, construct the two points each havidgas its line of ortho-
intercepts 8

3. The tripole of the line of ortho-intercepts of the incentettie point - : sﬁb :
L) 27

S—cC

4. Calculate the coordinates of the tripole of the line of ofihiercepts of the nine-
point center?®

5. Consider a lineC : px + qy +rz = 0.

(1) Calculate the coordinates of the pedalsio3, C on the linel. Label these
pointsX,Y, Z.

(2) Find the equations of the perpendiculars frdmY’, Z to the corresponding
side lines.

(3) Show that these three perpendiculars are concurreshtjetermine the coor-
dinates of the common point.

This is called theorthopoleof £.

6. Animate a pointP on the circumcircle. Contruct the orthopole of the diameter
OP. This orthopole lies on the nine-point circle.

7. Consider triangled BC with its incircle I (r).

(a) Construct a circléX,(py) tangent toBC at B, and also externally to the
incircle.

(b) Show that the radius of the cirdlé,) is p, = &=22°,

(c) Let X.(p.) be the circle tangent t&C at C, and also externally to the
incircle. Calculate the coordinates of the pedabf the intersectiolBX_.N
CX, on the lineBC. 2°

260ne of these points lies on the circumcircle, and the othehemine-point circle.

27This is a point on theD I-line of triangle ABC. It appears irETC as X57. This point dividesOI in
theratioOX57 : O =2R+1r: 2R —r.

28(q2(35% — Sp4):---:---). This pointis not in the current edition &TC.

20: (s —¢)?: (s —b)?).




Chapter 4: Straight Lines 57

(d) DefineB’ andC’. Show thatA’B’C" is perspective wittABC' and find
the perspectof®

30( (Sja)z : (sjb)z : (Sjc)2 ). This point appears iETC as X279. See P. Yiu, Hyacinthos, message
3359, 8/6/01.
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4.6 Appendices

4.6.1 The excentral triangle

The vertices of the excentral triangle ABC are the excenters,, I, I..

(1) Identify the following elements of the excentral triéagn terms of the elements
of triangle ABC.
Excentral triangld,I;,I. Triangle ABC

Orthocenter I

Orthic triangle TriangleABC

Nine-point circle Circumcircle

Euler line OI-line

Circumradius 2R

Circumcenter " = Reflection ofl in O
Centroid divide€)I in the ratio—1 : 4.

The centroid of the excentral triangle is also the centréid AV, . 3!

(2) LetY be the intersection of the circumcirgl®) with the linel.1I, (other than
B). Note thatY” is the midpoint ofl.I,. The lineY O intersectaC A at its midpointE
and the circumcircle again at its antipodé. SinceF is the common midpoint of the
segmenthQa andQQba

() YE = 2(rc +7,);

(i) BY' = L(ro — 7).

SinceYY’ = 2R, we obtain the relation

Ta+ 7 +7rc=4R+ 1.

31problem 10763 and solutioAmer. Math. Monthly108 (2001) 671.
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4.6.2 Centroid of pedal triangle

We determine the centroid of the pedal trianglg?oby first equalizing the coordinate
sums of the pedals:

Appp = (0:Scu+a’v: Spu+ a’w) ~ (0:b°(Scu+ a®v) : B> (Spu + a’w))
Bipp = (Scv+b°u:0:Sav+bw) ~ (a®(Scv +b°u) : 0: *a®(Sav + bPw))
Clipp = (Spw+cPu:Saw+c®v:0) ~ (a®b*(Spw + u) : a®b*(Saw + *v) : 0).

The centroid is the point
(2a2b202u+a2025'cv+a2b233w b2 Scut2a?b?v+aih? Saw : b2CQSBu+caa2SAU+2a2b262w).

This is the same point & if and only if

20202’y + a’c?Scv + aPh?Spw = ku,
b2c2Scu +  2a%bcRv +  a?bPSaw = kv,
b2c2Spu  + c2a’Sav + 2d%bPw = kw

for somek. Adding these equations, we obtain
3a20%c (u + v 4+ w) = k(u 4+ v + w).

If P = (u:v:w)is a finite point, we must have = 3a?b*c?. The system of
equations becomes

—a?b’cu 4+ a’c?Scv + a?b?Spw = 0,
2c2Scu  —  a’b?’ctv + a?b?Saw = 0,
B2c2Spu 4+ 2a?Sav —  a?b?Rw = 0.

Now it it easy to see that

- S S S Se  —b?
22 .22 . 92,2 _ A |, c A . c
b*c*u: ca®v : a”b*w = ‘SA N ‘SB _e2 .’53 Sa

= bQCQ—SAAZC2SC+SABISCA+b2SB

= §%2.6%2.492

= 1:1:1.

It follows thatu : v : w = a? : b? : ¢, andP is the symmedian point.

Theorem (Lemoine)

The symmedian point is the only point which is the centroidobwn pedal triangle.

4.6.3 Perspectors associated with inscribed squares

Consider the squaté, A. A, A inscribed in triangleA BC, with A, A. on BC. These
have coordinates

Apy=(0:Sc+S:85p), A.=(0:S¢c:S+09),

A =(a*:5:0), AL =(a?:0:9).
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Similarly, there are inscribed squar&s B, B, B.. and C,,C,C;C" on the other two
sides.

Here is a number of perspective triangles associated watketsquares? In each
case, we give the definition of,, only.

n A, Perspector of A, B, C),

1 BB.NCGC orthocenter

2 BA.NCA; circumcenter

3 BC/NCB, symmedian point

4 B!'B/NCJC{ symmedian point

5 B.B,NC.C} X493:(#2b2:“.:“.)

6 CpAyNA.B. Kiepert perspector K (arctan 2)
7T CoA.NA,B, Kiepert perspector K (arctan2)
8 C,A,NBA] (Sgijs)

9 CC/LA;, N B(IIA{: X394 = (aQSAA :b2Spp : CQSC(;)

ForAs, BCA!A), CAB/!B! andABCj C! are the squares constructed externally
on the sides of triangld BC.

32K.R. Dean, Hyacinthos, message 3247, July 18, 2001.
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5.1 Isogonal conjugates

Let P be a point with homogeneous barycentric coordinatesy : z).
(1) The reflection of the ceviad P in the bisector of anglel intersects the line

2

BC at the pointX’ = (0 : % s ).

z
Proof. Let X be theA-trace of P, with ZBAP = 6. This is the pointX = (0 : y :
2) = (0:84—8p : —c?)in Conway’s notation. It follows tha§s — Sy : —c2 =y : 2.
If the reflection ofA X (in the bisector of anglel) intersectsBC at X', we haveX’ =
2

(0:=b%:84—8p) = (0: —b?c?: c2(Sa — Sp)) = (0: %z : 2y) = (0 : L <.

Yy z

B X x’ C
(2) Similarly, the reflections of the ceviad$P and CP in the respective angle
bisectors interseet'A atY’ = (‘;—2 :0: é) andAB atZ' = (% : % : 0).
(3) These pointsX’, Y’, Z’ are the traces of
2 b2 2
P = <a = C) = (ayz : b?zx : Pay).
r Yy z

The point P* is called theisogonal conjugatedf P. Clearly, P is the isogonal
conjugate ofP*.
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5.1.1 Examples

1.

The isogonal conjugate of the centrditis the symmedian poink = (a? : b2 :
c?).

. The incenter is its own isogonal conjugate; so are the egcent

1 1

. The isogonal conjugate of the orthocentér= (g : 5 : é) is (a?S4 :

Sa
b2Sp : ¢2S¢), the circumcenter.

. The isogonal conjugate of the Gergonne pdigt= (-- : 1. : L) is the

point (a?(s — a) : b*(s — b) : ¢*(s — ¢)), the internal center of similitude of the
circumcircle and the incircle.

. The isogonal conjugate of the Nagel point is the externaterenf similitude of

(O) and(I).

Exercises

1.

Let A’, B’, C’ be the circumcenters of the trianglesBC, OCA, OAB. The
triangle A’ B’C’ has perspector the isogonal conjugate of the nine-poirtecén

. Let P be a given point. Construct the circumcircles of the pedahgles of P

and of P*. What can you say about these circles and their centers?

. Theisodynamic pointsre the isogonal conjugates of the Fermat pofts.

(a) Construct the positive isodynamic poiit. This is a point on the line joining
O and K. How does this point divide the segmeni?

(b) Construct the pedal triangle &f;. What can you say about this triangle?

. Show that the isogonal conjugate of the Kiepert perspeki@) = (ﬁ :

5505 ¢ 3o4s;) is always on the lin®DK. How does this point divide the

segmenODK?

. The perpendiculars from the vertices 4BC to the corresponding sides of the

pedal triangle of a poinP concur at the isogonal conjugate Bf

IThis is also known as the Kosnita point, and appeafTig€ as the pointXs..
2These appear iETC as the points\5 and X1g.
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5.2 The circumcircle as the isogonal conjugate of the
line at infinity
Let P be a point on the circumcircle.

(1) If AX and AP are symmetric with respect to the bisector of anglendBY’,
B P symmetric with respect to the bisector of anglethenAX andBY are parallel.

Proof. Suppose/PAB = § andZPBA = ¢. Note that? + ¢ = C. SinceZ X AB =
A+60and/ZYBA = B+ ¢, we have/ X AB + /Y BA = 180° andAX, BY are
parallel.

(2) Similarly, if CZ andC P are symmetric with respect to the bisector of angle
thenCZ is parallel toAX andBY'.

It follows that the isogonal conjugate of a point on the amnaircle is an infinite
point, and conversely. We may therefore regard the circratecas the isogonal conju-
gate of the line at infinity. As such, the circumcircle hasattn

alyz + b?zx + Py = 0.

Exercises
1. Animate a pointP on the circumcircle.
(1) Construct théocusof isogonal conjugatesf points on the lineD P.
(2) Construct the isogonal conjugafeof the infinite point of the line) P.
The point lies on the locus in (1).

2. Animatea pointP on the circumcircle. Find thiecusof theisotomic conjugate
pe.3

3The linea?x + b2y + 2z = 0.
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3. Let P and@ be antipodal points on the circumcircle. The linfeQ* andQP*

joining each of these points to theotomic conjugate of the other intersect
orthogonally on the circumcircle.

. Let P and@ be antipodal points on the circumcircle. What is the locushef t

intersection ofP P* andQQ*?

. LetP = (u:v:w). The linesAP, BP, C'P intersect the circumcircle again at

the points
AP —a*ow o w
o\ v +b2w ’
—bwu
B®) = T
(u a?w + 2u w) ’
2
cP = NI
YUy +a?v

These form the vertices of ti@rcumcevian trianglef P.
(a) The circumcevian triangle d@? is always similar to the pedal triangle.

(b) The circumcevian triangle of the incenter is perspectith the intouch
triangle. What is the perspector?

(c) The circumcevian triangle d? is always perspective with the tangential tri-
angle. What is the perspector?

4The external center of similitude of the circumcircle and tharcle.

o4

4 4
@ (-Gt Gt G,
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5.3 Simson lines

Consider the pedals of a poift= (u : v : w):

A[p] = (0:Scu+ a’v Spu + azw),
B[p] = (ch+b2u :0: SA’U—‘y-b2’LU)7
Clpp = (Spw + c*u : Sqw + v 2 0).

These pedals aP are collinear if and only ifP lies on the circumcircle, since

0 Scu+a’v  Spu+ aw
Scv + bu 0 Sav + b2w
Spw + u  Saw + v 0
a® Scu+a?v Spu+dPw
b2 0 Sav + b2w
2 Saqw+ v 0

(u+v+w)

= (u+v+w)(Sap + Spc + Sca)(a*vw + b*wu + c*uv).

If P lies on the circumcircle, the line containing the pedalsited theSimson line

s(P) of P. If we write the coordinates aP in the form(ﬁ D2 ﬁ) = (a?gh :

f g h
b2hf : % fg) for an infinite point(f : g : ), then

App) = (0:a*Scgh+ a®b*hf : a®Spgh + a*c® fg)
(0:h(=Sc(h+ f)+ (Sc+Sa)f) : g(=Sp(f +g) + (Sa + SB)f))
(0: —h(Sch—8Saf):9(Saf — Spg)).

This becomesip) = (0 : —hg’ : gh') if we write (f' : ¢’ : h') = (Spg — Sch :
Sch —Saf:Saf — Sgg) for the infinite point of lines in the direction perpendicula
to (f : g: h). Similarly, Bpy = (hf' : 0: —fh') andClp) = (—gf" : fg’' : 0). The
equation of the Simson line is

f g

h
ST+ =y+ S2=0.
g

2 2
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It is easy to determine the infinite point of the Simson line:

Bp)—Cipy = A(Scv 4 b*u: 0: Sqv+ b*w) — b*(Spw + 2u s Saw + v : 0)
(k% % 0 —b2(Saw + ) : A (Sav + bPw))

; (k%% :Sch—Saf:Saf—Spg)
= (f':g :h).

The Simson lines(P) is therefore perpendicular to the line definify It passes
through, as we have noted, the midpoint betwékand P, which lies on the nine-
point circle.

5.3.1 Simson lines of antipodal points

Let P and@ be antipodal points on the circumcircle. They are isogonajugates of
the infinite points of perpendicular lines.

Therefore, the Simson linet P) ands(Q) are perpendicular to each other. Since
the midpoints ofH P and H(Q are antipodal on the nine-point circle, the two Simson
lines intersect on the nine-point circle.
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Exercises

1. Animate a point P on the circumcircle of trianglel BC andtrace its Simson
line.

2. Let H be the orthocenter of trianglé BC, and P a point on the circumcircle.
Show that the midpoint off P lies on the Simson ling(P) and on the nine-point
circle of triangleABC.

3. Let £ be the lineZ 4 £ 4 2 = 0, intersecting the side lineBC, C A, AB of
triangle ABC atU, V, W respectively.

(a) Find the equation of the perpendiculars®6’, CA, AB atU, V, W re-
spectively®

(b) Find the coordinates of the vertices of the triangle lmehby these three
perpendiculars’

(c) Show that this triangle is perspective withBC' at a pointP on the cir-
cumcircle 8

(d) Show that the Simson line of the poiRtis parallel tol.

6(Spv + Scw)z + a?wy + a?vz = 0, etc.
"(=S2u2+S s puv+Spovw+Sc awu : b2(c2uv—S uw—Spow) : 2 (b2uw—Suv—Scvw),
etc.

8p — a® e
—a2vw+Sguv+Scuw : :
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5.4 Equation of the nine-point circle

To find the equation of the nine-point circle, we make use effgtet that it is obtained
from the circumcircle by applying the homothétyG, —1). If P = (z : y : z) is a
point on the nine-point circle, then the point
Q=3G-2P=(z+y+2)1:1:1)-2(x:y:2)=(y+z—a:2+z—y:2+y—2)
is on the circumcircle. From the equation of the circumeirebe obtain
a*(z+z—y)(x+y—2)+0 (@ +y—2)(y+z—a)+(y+2—z)(z+a—y) = 0.
Simplifying this equation, we have
0= Z a(x? —y? + 29z — 2°) = Z (a® — 2 — b)2? + 2ad°yz,
cyclic cyclic

or

Z Saz? —a’yz = 0.

cyclic
Exercises

1. Verify that the midpoint between the Fermat points, nantlly,point with coor-
dinates
((b2 _ 62)2 . (62 _ a2)2 . (a2 _ b2)2)7

lies on the nine-point circle.
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5.5 Equation of a general circle

Every circleC is homothetic to the circumcircle by a homothety, $4¥, k), where
T = uA+vB + wC (in absolute barycentric coordinate) is a center of siodl ofC
and the circumcircle. This means thafH{x : y : z) is a point on the circl€, then

h(T,k)(P) = kP+(1-k)T ~ (z+tu(z+y+z) : y+tv(z+y+2) : z+tw(z+y+2)),

wheret = % lies on the circumcircle. In other words,

0 > aP(ty+v(z+y+2)(tr+w@+y+2)

cyclic

= Z a*(yz + t(wy +v2)(x +y + 2) + tPow(z +y + 2)?)

cyclic

= (aPyz+ bV?zx + ACay) + 1( Z a*(wy +v2))(z +y + 2)
cyclic

+t2(a?vw + bPwu + Fuv)(z + y + 2)?
Note that the last two terms factor as the product eéfy + z and anothelinear form
It follows that every circle can be represented by an eqoatfdhe form
a’yz + b2zx + Cay + (x4 y + 2)(pr + qy +r2) = 0.
The linepz + qy + rz = 0 is theradical axisof € and the circumcircle.
Exercises
1. The radical axis of the circumcircle and the nine-pointleiiis the line

Sax+ Spy+ Scz=0.

2. The circle through the excenters has center at the refleotiéin O, and radius
2R. Find its equation®

Sa?yz + b2zx + Cxy + (x + y + 2)(bex + cay + abz) = 0.
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5.6 Appendix: Miquel Theory

5.6.1 Miquel Theorem

Let X, Y, Z be points on the line®8C, C A, and AB respectively. The three circles
AY Z, BZX,andCXY pass through a common point.

5.6.2 Miquel associate

SupposeX, Y, Z are the traces aP = (u : v : w). We determine the equation of the
circle AY Z. 0 Writing it in the form

a*yz +b’zx + Py + (x +y+2)(pr+qy +72) =0

we note thap = 0 since it passes through = (1 : 0 : 0). Also, with (z : y : 2) =

(u: 0 :w), we obtain = —Ulji:jt. Similarly, with (z : y : 2) = (u : v : 0), we obtain

q=— lfj:f} The equation of the circle

Cavz: a’yz +b?zx + Cay — (x+y + 2) (Tfj_’z]er uljj_“uz) =0.

Likewise, the equations of the other two circles are

Crzx : a’yz + b2z + oy — (v +y + z)(,lfi’fux+ Uajz,z) =0,

and the one throug', X, andY has equation

Coxy : a?yz + b2z + Aoy — (v +y+2)(LL a4 2wy =0,

w—+u v4+w

By Miquel’'s Theorem, the three circles intersect at a pdihtwhich we call the

Miquel associat®f P. The coordinates of’ satisfy the equations
u bu v a’v b2w a’w

Y z= T+ z= T+ Y.
u-+v w+u u—+v v+ w w+u v+ w

10For the case whelX, Y, Z are the intercepts of a line, see J.P. Ehrmaeijner's theorems on the
complete quadrilateralForum Geometricorum, forthcoming.
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Solving these equations, we have

, a? a*vw  bPwu  uv
P = - + + ,
v+ w v+w wHu u+v

b2 <a2vw b2wu cuv )
+ ;

:eru v+ w w+u u-+v

) 2 a2ow n b2wu Auv
"u+v\v+w wHu utv ’

Examples
P Miquel associate P’

centroid circumcenter

orthocenter orthocenter
Gergonne point incenter
2 3 2 2 2 2 2

incenter (et rar(btc)—a(b ;‘fj"‘c =) F)) L))

Nagel Point  (a(a® +a?(b+c) —alb+c)2 = (b+c)(b—c)?) 1)

5.6.3 Cevian circumcircle

The cevian circumcircle aP is the circle through its traces. This has equation
(aPyz 4+ b2z + Cay) — (x +y + 2)(pr + qu +r2) =0,

where

n a?vw n b2wu n cuw
v wr = , U wr = , U vg = .
q v+ w p w+u p 4 U+

Solving these equations, we have

1 < a?vw b2wu czuv>
- 9

p =

% v+ w w—+u u—+v
1 ([ a?vw b2wu cuv
q = Y - + )
20\v4+w wH+u u+wv
1 a?vw b2wu Auv
r = — — .
2w\v+w wH+u u+twv

5.6.4 Cyclocevian conjugate

The cevian circumcircle intersects the liB&' at the points given by
a’yz — (y + 2)(qy +r2) = 0.
This can be rearranged as

@+ (q+r—a®)yz+rz2=0.
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The product of the two roots af : z is g Since one of the rootg : z = v : w, the
other root is%‘j. The second intersection is therefore the point

1 1
X' =0:rw:qu=0: —: —.
qu Tw

Similarly, the “second” intersections of the circléY Z with the other two sides can
be found. The ceviand X', BY’, andCZ" intersect at the poirt : - : ;7). We

qu
denote this by (P) and call it thecyclocevian conjugatef P. Explicitly,

P 1 1 1
C( )7 _ a?vw + b2wu + ccuv T avw _ b2wu ccuv ' avw + b2wu _ cuv |

v+w w—+u u+v v+w w—+u u+v v+w w—+u u+tv

Examples

1. The centroid and the orthocenter are cyclocevian conjsg#teir common ce-
vian circumcircle being the nine-point circle.

2. The cyclocevian conjugate of the incenter is the point

1
<a3+a2(b+c)—a(b2+bc+c2)—(b+c)(b2+cz) e )

Theorem

Given a pointP, let P’ be its Miquel associate ar@ its cyclocevian conjugate, with
Miquel associate)’.

L=
.=
. T/

(a) P’ and(Q’ are isogonal conjugates.

(b) The linesPQ andP’Q’ are parallel.

(c) The “second intersections” of the pairs of circks Z, AY'Z’; BZX, BZ' X'
andC XY, CX'Y' form a triangleA’ B'C’ perspective withABC.

(d) The “Miquel perspector” in (c) is the intersection of ttiéinear polars ofP
and@ with respect to trianglet BC'.
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Exercises

1. For a real numbet, we consider the triad of points
Xe=(0:1-¢:1), Yi=(@:0:1-1), Zy=(1-t:t:0)

on the sides of the reference triangle.
(a) The circlesAY; Z;, BZ, X, andC X,Y; intersect at the point

M; = (a*(=a®t(1 —t) + %> + 2 (1 —1)?)
2 (a®(1— )2 = b*t(1 —t) + 2t?)
S (a1 — )2 = Pl —t))).

(b) Writing M; = (z : y : 2), eliminatet to obtain the following equation im,
Y, 2.

b2a? 4 a®y? + a?b?2? — ctay — brzr — atyz = 0.
(c) Show that the locus a¥/, is a circle.

(d) Verify that this circle contains the circumcenter, tlyensnedian point, and

the twoBrocard points
1 1 1
Qe:(z))

1 1 1

and
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6.1 Equation of the incircle

Write the equation of the incircle in the form
alyz+bPze + ey — (e +y+2)(pr+qy+rz) =0

for some undetermined coefficienisq, r. Since the incircle touches the sid&” at
the point(0 : s —c:s—b),y: z=s—c:s—bisthe only root of the quadratic
equationa®yz + (y + z)(gy + rz) = 0. This means that

2

qy® + (¢ + 7 —a®)yz +r2* = k((s = b)y — (s — ¢)2)

for some scalak.

Comparison of coefficients givés= 1 andg = (s—b)?,r = (s—c)?. Similarly, by
considering the tangency with the lidé4, we obtainp = (s — a)? and (consistently)
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r = (s — ¢)2. It follows that the equation of the incircle is
2 2 2 2 2 2 _
a‘yz+bze +cry— (e +y+2)((s—a)y*z+ (s —b)*y+ (s —¢)°z) = 0.
The radical axis with the circumcircle is the line
(s —a)’z+ (s —b)*y + (s —c)?z = 0.

6.1.1 The excircles

The same method gives the equations of the excircles:

a’yz + b2zx + ry — (x+y + 2) (5P + (s — )’y + (s — b)?2)
a’yz + b2zx + Pay — (x+y+ 2)((s — ¢)?z + 52y + (s — a)*2)
a’yz + b2zx + Fay — (x+y + 2)((s — b)2x + (s — a)’y + 5%2)

)

0
0,
0

Exercises

1. Show that the Nagel point of triangkeBC' liesonits incircle if and only if one
of its sides is equal t§. Make use of this to design an animation picture showing
a triangle with its Nagel point on the incircle.

2. (a) Show that the centroid of triangléBC' lies on the incircle if and only if
5(a? 4+ b% + %) = 6(ab + be + ca).
(b) Let ABC be anequilateraltriangle with centet), andC the circle, cente0,
radius half that of the incirle aA BC. Show that the distances from an arbitrary
point P on € to the sidelines ofABC are the lengths of the sides of a triangle
whose centroid is on the incircle.
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6.2 Intersection of the incircle and the nine-point circle

We consider how the incircle and the nine-point circle iséet. The intersections of
the two circles can be found by solving their equations siamdously:

a’yz + 0% zx + Aoy — (z+y+2)((s —a)’z + (s — b)*y + (s — ¢)?2) = 0,
1
a*yz + V2zx + Ay — i(z +y+2)(Saz+ Spy + Scz) = 0.

6.2.1 Radical axis of(/) and (V)
Note that

(s—a)2—%SA = i((b+c—a)2—(b2+02—a2)) = %(a2—a(b+c)—|—bc) = %(a—b)(a—c).
Subtracting the two equations we obtain the equation of dldécal axis of the two

circles:
L (a=b)la—c)x+b—a)b—c)y+ (c—a)(c=b)z=0.

We rewrite this as
z Y z 0

b—c c—a a—b
There are two points with simple coordinates on this line:

P=((b—c):(c—a):(a—b)),

and
Q= (a(b—1c)? :b(c—a)?®: c(a —b)?).

Making use of these points we obtain a very simple paranatiniz of points on the
radical axisC, exceptP:

(x:y:2)=(a+t)(b—c)*: (b+t)(c—a)®:(c+t)(a—0b)?)

for somet.

6.2.2 The line joining the incenter and the nine-point center

We find the intersection of the radical axisand the line joining the centedsand N.
It is convenient to write the coordinates of the nine-poienter in terms ofi, b, c.
Thus,

N = (@*(0* +c2) — (b* — ) : b2 (* + a?) — (2 —a?)? : P (a® + 1) — (a® — b%)?)

with coordinate sun8S2.1

IStart withN = (S2 + Spc @ --- & - -+ ) (with coordinate surd.S2) and rewriteS? + Sgo = --- =
$(@2(b? +¢*) — (b2 — 2)?).
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We seek a real numbérfor which the point

(a®(b* + ) — (b* — *)? + ka
V(2 +a?) — (2 —a®)? + kb
A (a® +b?) — (a* — b*)? + ke)

on the lineI N also lies on the radical axi&. With £ = —2abc, we have

a®(b* + %) — (b* — *)? — 2a°be
a*(b—c)? — (b* — ?)
= (b—c)*(a®*—(b+c)?
= 4s(a —s)(b—c)?,

and two analogous expressions by cyclic permutations bfc. These give the coor-
dinates of a point o® with t = —s, and we conclude that the two lines intersect at the
Feuerbach point

F=((s—a)(b—c)?:(s=b)(c—a)*:(s—c)(a—Db)?).

We proceed to determine the ratio of divisibf' : F'N. From the choice ok, we
have
F ~8S8%. N —2abc-2s-1=85%- N —4dsabc- 1.

This means that

NF :FI = —4sabc: 85% = —8s5RS :85? = —sR: S =R: —2r = 3T
The pointF is the external center of similitude of the nine-point @rahd the incircle.

However, if a center of similitude of two circles lies on theddical axis, the circles
must be tangent to each other (at that center).

2proof: Consider two circles of radji andg, centers at a distanagapart. Suppose the intersection
of the radical axis and the center line is at a distancieom the center of the circle of radiys then
2 2 2 2 ; d?+p2—q? d2—p2+442 s o
z? —p® = (d —z)* — ¢°. From this,z = =—5-—%-, andd — z = “~—5~%. The division ratio is
x:d—x = d?>+p?—q? : d®>—p?+4>. Ifthisis equal tg : —q, thenp(d? —p?+¢2)+q(d?>+p?—¢2) = 0,
(p+q)(d® — (p — q)?) = 0. From thisd = |p — g/, and the circles are tangent internally.
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Feuerbach’s Theorem

The nine-point circle and the incircle are tangent intdyntal each other at the point
F, the common tangent being the line
T Y z

b—c+c—a a—b:

0.

The nine-point circle is tangent to each of the excirclegmdlly. The points of
tangency form a triangle perspective wHIBC' at the point

Fl = ((b+c)2 (c+a)? (a—l—b)Q)'

s—a s—b = s—c

Exercises
1. Show thatF" and F” divide I and N harmonically.

2. Find the equations of the common tangent of the nine-pointecand the excir-
cles.®

3. Apart from their common tangent &t,, the nine-point circle and thé-excircle
have another pair of common tangents, intersecting at éxarnal center of

0.

3Tangent to thed-excircle: =+ Ej’_a — uj_b =
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similitude A’. Similarly defineB’ andC’. The triangleA’ B’C" is perspective
with ABC. What is the perspectof?

4. Let/ be a diameter of the circumcircle of triang&3C. Animate a pointP on ¢

and construct itpedal circle the circle through the pedals £fon the side lines.
The pedal circle always passes through a fixed point on threepimt circle.

What is this fixed point if the diameter passes through thenitec@

4The Feuerbach point.
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6.3 The excircles

Consider the radical axes of the excircles with the circuahei These are the lines

s*r+(s—c)’y+(s—b)%z = 0,
(s c)x+sy+(s—a)22 = 0,
(s—b)2z+ (s —a)’y+s*2 = 0.

These three lines bound a triangle with vertices

A= (=(bto)a’+ (b+0)): b(a +b2—c) o( +a? = b?)),
B = (a(a’ +b2 2)~ —(c+a)(t® + (c+a)®) : c(b? + ¢ — a?)),
C' = (a(c®+a®>—=b*) :b(b® +c* —a?): —(a+b)(c®+ (a+b)?)).

The triangleA’ B'C" is perspective wittd BC at the Clawson poirit

a b e
S4a Sp Sc /)
Exercises

1. Let Ay be the pedal o on the opposite sid8C of triangle ABC. Construct
circle B(Ag) to intersectAB at C;, andC (so thatC} in on the extension of
AB), and circleC'(Ap) to intersectAC at andB. and B/, (so thatB_, in on the
extension ofAC).

5This point appears iETC as the pointX1g.
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(a) Let A, be the intersection of the lind3.C} andC;, B.. Similarly defineB;
andC;. Show thatd; B, C, is perspective witld BC' at the Clawson poinf.

(b) LetAy = BB.NCCYy, B, = CC,NAA., andCy = AA,NBB,. Show that
Ao B2Cs is perspective wittA BC'. Calculate the coordinates of the perspector.
7

(c)LetA; = BB.NCC;, B3 = CCI,NAA,, andCs = AA; N BB,,. Show that
A3 BsCs is perspective wittd BC'. Calculate the coordinates of the perspector.
8

2. Consider theB- andC-excircles of triangleA BC'. Three of their common tan-
gents are the side lines of triangkeBC. The fourth common tangent is the
reflection of the lineBC in the line joining the excenterg and /..

(a) Find the equation of this fourth common tangent, andenddwn the equa-
tions of the fourth common tangents of the other two pairsofreles.

(b) Show that the triangle bounded by these 3 fourth commugetats is homo-
thetic to the orthic triangle, and determine the homothegiater.®

6A.P.Hatzipolakis, Hyacmthos message 1663, October 2H).20
X278 —(m coect )
BXog1 = (552 i)
9The Clawson point. See R. Lyness and G.R. Veldkamp, Probléna6@ solutionCrux Math.9 (1983)
23 -24.
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6.4 The Brocard points

Consider the circle through the verticdsand B and tangent to the siddC' at the
vertex A. Since the circle passes throughand B, its equation is of the form

a’yz +b2zx + Fay —rz(z+y+2) =0

for some constant. Since it is tangent telC at A, when we sety = 0, the equation
should reduce te? = 0. This means that = b2 and the circle is

Caap: a’yz + vz + Aoy — b2z2(x +y+2) = 0.

Similarly, we consider the analogous circles

Cpre : a’yz + b2z + oy — Fx(z +y+2) = 0.
and

. 2 2 2 2 _
Coca: a’yz +b°zx + c*xy —a’y(x +y + 2) = 0.

These three circles intersect at foeward Brocard point

1 1 1

This point has the property that

LABQ_, = /BCQ_, = LCAQ._,.

In reverse orientations there are three cir€lgg g, Cgcc, andCe 4 4 intersecting
at thebackward Brocard point

1 1 1

LBAQ, = /ZCBQ = LACQ, .

satisfying
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Note from their coordinates that the two Brocard points aogénal conjugates.
This means that the 6 angles listed above are all equal. Wetelédme common value
by w and call this theBrocard angleof triangle ABC'. By writing the coordinates of
Q_, in Conway'’s notation, it is easy to see that

1
cotw = 5(5’,4 +Sp+ S¢).

The linesBQ2,_ andCQ_, intersect atd_,. Similarly, we haveB_, = CQ,. N
AQ_,,andC_, = AQ,. N BQ_,. Clearly the triangledA_,B_,C_, is perspective to
ABC at the point

ko= (s (B,

which is the isotomic conjugate of the symmedian pditt.

Exercises
1. The midpoint of the segmefit_, Q. is theBrocard midpoint?
(a®(b* + c2) : B*(c* + a?) : *(a® + b?)).
Show that this is a point on the lif@K.

2. The Brocard circle is the circle through the three poitts,, B_.,, andC_,,. It
has equation
a?b3c?

X z
Trp Attt (Grptg) =

a’yz + b?zx + Pay —

Show that this circle also contains the two Brocard p6int and(2,_, the cir-
cumcenter, and the symmedian point.

10Thijs is also known as theird Brocard point It appears as the poid-¢ in ETC.
11The Brocard midpoint appears BTC as the pointXsg.
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3. Let XY Z be the pedal triangle ¢&_, and X'Y’Z’ be that ofQ},_.
A

B Xx’ C

(a) Find the coordinates of these pedals.
(b) Show that”’ 7 is parallel toBC.

(c) The triangle bounded by the three lifésZ, Z’ X and X'Y is homothetic to
triangle ABC. What is the homothetic centet?

(d) The trianglesXY Z andY”’Z’ X’ are congruent.

12The symmedian point.
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6.5 Appendix: The circle triad (A(a), B(b),C(c))

Consider the circled(a). This circle intersects the lind B at the two pointfc + a :
—a:0),(c—a:a:0),andAC at(a+b:0: —a)and(b—a:0: a). It has equation

Cu: d*yz+b%zx + Pay + (x+y+ 2)(a®x + (¢ — Ay + (a® —b?)z) = 0.
Similarly, the circlesB(b) andC(c) have equations

Cy:  alyz+bzz+ Cay + (¢ +y+2)((0? — Az + 0Py + (0° - a®)z) =0,
and

C.:  a*yz+bizatcay+ (v +y+2)((? —b*)r+ (¢ —a®)y +c?2) =0.

These are called the de Longchamps circles of triadgk”. The radical centeL. of
the circles is the pointx : y : z) given by

a*z+(a?—c)y+(a* =)z = (V=) a+b2y+(b*—a?)z = (P —b?)z+(* —a?)y+c 2.
Forming the pairwise sums of these expressions we obtain
Saly+2)=8p(z+2z)=Sc(z+y).

From these,

1 1 1

—:—:— =80 :Sca:S
SA SB SC BC CA AB;

Yy+z:iz+r:ir+y=
and
r:y:z=_Sca+Sap—SBc:Sap+ Spc —Sca:Spc +Sca — Sas.
This is called thede Longchamps poirdf the triangle.*® It is the reflection of the
orthocenter in the circumcentée., L =2 - O — H.

Exercises

1. Show that the intersections 6f andC,. are the reflections ofl
(i) in the midpoint of BC', and
(ii) in the perpendicular bisector @C.
What are the coordinates of these points?

2. The circleC, intersects the circumcircle & andC’.

3. The de Longchamps poitit is the orthocenter of the anticomplementary trian-
gle, and triangled’ B’C" is the orthic triangle.

13The de Longchamps point appears as the p#igs in ETC.
W1:1:1)andA’ = (—a? : b2 — 2 : 2 — b?).
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6.5.1 The Steiner point

The radical axis of the circumcircle and the cir€lgis the line
a’x + (a® — )y + (a* = b*)z = 0.

This line intersects the side lineéC' at point

1 1
A':(O:C2_a2:a2_b2>.

Similarly, the radical axis of; hasb-intercept

1 1
B/:<b2—02:0:a2—b2>7

and that ofC. hasc-intercept

1 1
Cl(bQ—CZ:CQ—aZ :0).

These three pointd’, B’, C’ are the traces of the point with coordinates

11
R2_2 2_ag2 a2_p2 )

This is a point on the circumcircle, called tBéeiner point*®

Exercises

1. The antipode of the Steiner point on the circumcircle isezhtheTarry point
Calculate its coordinate&®

2. Reflect the verticesi, B, C' in the centroidG to form the points4’, B, C’
respectively. Use théive-point conic command to construct the conic through
A, B, C, A', B',C”. This is theSteiner circum-ellipseApart from the vertices,
it intersects the circumcircle at the Steiner point.

3. Use thefive-point conic command to construct the conic through the vertices
of triangle ABC, its centroid, and orthocenter. This is a rectangular Hyglar
called theKiepert hyperbolawhich intersect the circumcircle, apart from the
vertices, at the Tarry point.

15This point appears akgg in ETC.
1

1G(W—(b4+c4) :---:---). The Tarry point appears the poiils in ETC.
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7.1 The distance formula

Let P = uA+vB+wC and@Q = v’ A +v'B + w'C be given in absolute barycentric
coordinates. The distance between them is given by

PQ* = Sa(u—u')?+ Sp(v —v')? + So(w — w')?

B C
Proof. ThroughP and@ draw lines parallel toA B and AC respectively, intersecting
atR. The barycentric coordinates &fcan be determined in two wayR. = P+h(B—
C) = Q+k(A—-C) for someh andk. It follows thatR = uA+(v+h)B+(w—h)C =
(v +k)A+v' B+ (W' —k)C, fromwhichh = —(v — v’) andk = v — u'. Applying
the law of cosines to triangl2Q R, we have
PQ* = (ha)?® + (kb)* — 2(ha)(kb) cos C

= h%a® + k*b* — 2hkSc

= (Sp+Sc)v—v)? 4 (So+Sa)(u—u)?*+2(u—u)(v—v)Sc

= Sa(u—u)?+Spv—1")2

+Sc[(u—u')? +2(u—u') (v —v') + (v —v').

The result follows since

(u—u)+@w—-v)=w+v)— (W +)=1-w)—-(1-w)=—(w-—u).
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The distance formula in homogeneous coordinates
If P=(z:y:2)and@ = (u: v : w), the distance betweef and@ is given by
1
PQ|* = — 2,
PQP = T aRE Ty T 2 Sallv rwr —uly+2)

cyclic

Exercises

1. The distance fronP = (z : y : z) to the vertices of trianglel BC' are given by

cy? + 28z + b2

AP? =
(@+y+2)
Bp: — a’z? +2Spzx + *a?
N (@+y+22 7
op? b22? + 2Scxy + a’y?
(x+y+2)?

2. The distance betweeR = (z : y : z) and@ = (u : v : w) can be written as

IPQP2 = 1 . Z 02v2+25Avw+2b2w2x _a2yz+b2,zg:+§2xy
T+y+z (u+v+ w) (z+y+2)

cyclic

3. Compute the distance between the incenter and the nin¢gesiterN = (52 +
Sa: 8%+ Sp: 5%+ Sc). Deduce Feuerbach’s theorem by showing that this is
% — r. Find the coordinates of the Feuerbach pdiras the point dividingV 7
externally in the ratidR : —2r.
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7.2 Circle equations

7.2.1 Equation of circle with center(u : v : w) and radius p:

02 + 25 40w + b2w? 2)
—p? )z

a’yz+bzw+ oy — (@ +y+2) Y < (u+ v+ w)?

cyclic
7.2.2 The power of a point with respect to a circle

Consider a circl&® := O(p) and a pointP. By the theorem on intersecting chords, for
any line throughP intersectingC at two pointsX andY’, the produc{ PX||PY| of
signedlengths is constant. We call this product th@werof P with respect ta2. By
considering the diameter through we obtain/OP|? — p? for the power of a poinf’
with respect ta(p).

7.2.3 Proposition

Letp, q, r be the powers ofl, B, C with respect to a circl€.
(1) The equation of the circle is

a’yz + b2zx + Py — (v +y + 2)(pr + qy +12) = 0.
(2) The center of the circle is the point
(a*Sa+Sp(r—p)—Sc(p—q) : b*Sp+Sc(p—q)—Sa(r—p) : 2Sc+Sa(q—r)—Sp(r—p).
(3) The radius of the circle is given by

e a?b?c® — 2(a?Sap + b2Spq + 2Scr) + Salg —1)? + Sp(r —p)? + Sc(p — q)?
B 452 '

Exercises

1. Let X, Y, Z be the pedals ofi, B, C on their opposite sides. The pedalsiof
onCAandAB,Y on AB, BC,andZ onC A, BC are on a circle. Show that
the equation of the circle i3

1
ayz + b?zx + oy — W(x +y+2)(Saaz+ Sppy+ Sccz) =0.

2. Let P = (u : v : w) with cevian triangleXY Z.

(a) Find the equations of the circlesBY and ACZ, and the coordinates of
their second intersectiod’.

1This is called theTaylor circleof triangle ABC. Its center is the poink3gg in ETC. This point is also
the intersection of the three lines through the midpoint aheside of theorthic triangle perpendicular to
the corresponding side of BC.
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(b) Similarly defineB’ andC’. Show that triangled’ B'C’ is perspective with
ABC. ldentify the perspectof.

Z(v‘i—w ;.- :---). See Tatiana Emelyanov, Hyacinthos, message 3309, 7/27/01.
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7.3 Radical circle of a triad of circles
Consider three circles with equations
a’yz + b2z + oy — (v +y + 2)(pir + qiy +1i2) = 0, 1=1,2,3.

7.3.1 Radical center

Theradical centerP is the point with equal powers with respect to the three egcl
Its coordinates are given by the solutions of the system oatons.

P1T + Yy + 112 =p2x + @y + 122 = p3T + q3Y + 13%2.

Explicitly, if we write

P1r @1 T
M=1|p2 q@ r2],
b3 g3 T3
then,P = (u : v : w) with 3
1 g1 ™ p 1 7 p1oq 1
u=11 g 72, v=|p2 1 7|, w=|p2 ¢ 1].
1 g3 r3 p3 1 73 p3 g3 1

7.3.2 Radical circle

There is a circle orthogonal to each of the circtgsi = 1,2,3. The center is the
radical centerP above, and its square radius is thegativeof the common power of
P with respect to the circlesge.,

a®vw + b*wu + Auv det M
(u+v+w)? utv+w

This circle, which we call theadical circle of the given triad, has equation

D (Po+bPw)a® + 25 auyz — det(M)(z +y + 2)* = 0,

cyclic

In standard form, it is

1
2 2 2 . 2 2 —
a“yz+b zx+cmy—7u o+ w (w+y+z)(§ (c*v 4+ b*w — det(M))z) = 0.

cyclic
The radical circle is real if and only if
(u+ v+ w)(piu + gv + riw) — (a*vw + b*wu + Fuv) > 0

foranyi =1,2,3.

SProof: pru + q1v 4+ riw = pau + q2v + row = p3u + q3v + raw = det M.
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7.3.3 The excircles

The radical center of the excircles is the paiht= (u : v : w) given by

1 (s—c¢)? (s—0b)? 1 (s—¢)? (s—a)?
u = 1 52 (s—a)? | = 0 cla+b) —cla—0b)
1 (s—a)? 52 0 blc—a) blc+a)

= be(a+b)(c+a)+ be(a—b)(c —a) = 2abe(b+ ¢),

and, likewisep = 2abc(c + a) andw = 2abe(a + b). Thisis the poinfb+c: c+a:
a + b), called theSpieker centerlt is the incenter of the medial triangle.

N
Ia
Since, with(u, v,w) = (b+ ¢,c + a,a + b),

(u+v+w)(s*u+ (s — ¢)%v + (s — b)*w) — (a®vw + b*wu + Fuv)
= (a+b+c)(2abc+2a3 —|—Za2(b+c)) — (a—i—b—&-c)(abc—i—Za?’)
= (a+b+c)(abc+ ZaZ(b +¢)),

the square radius of the orthogonal circle is

abc+ > a*(b+c) 1.,
a+b+c _.”_4(T +5%).
The equation of the radical circle can be written as
Z (s —b)(s — c)z* + asyz = 0.

cyclic




Chapter 7: Circles 95

7.3.4 The de Longchamps circle

The radical centek of the circle triad(A(a), B(b), C(c)) is the point(x : y : z) given
by

a*z+(a®—c)y+(a*—b*)z = (V¥ =) a+b2y+(b*—a?)z = (*—b?)z+(c* —a?)y+cz.
Forming the pairwise sums of these expressions we obtain
Saly+2z)=Sp(z+x)=Sc(x+y).

From these,

1 1 1
y—&—z.z—i—x.x—l—y—S—A.g.%

= Spc :Sca:Sas,
and
z:y:z2=_Sca+Sap —Spc:Sap+ Spc— Sca:Spc+ Sca — Sas.

This is called thede Longchamps poirtdf the triangle. It is the reflection of the
orthocenter in the circumcentee., . = 2 - O — H. The de Longchamps circle is the
radical circle of the triadi(a), B(b) andC(c). It has equation

a*yz + V2 zx + Fay — (v +y + 2)(a®x + b2y + *2) = 0.

This circle is real if and only if trianglel BC' is obtuse - angled.
It is also orthogonal to the triad of circlé®(A), E(B), F(C)).°

Exercises

1. The radical center of the triad of circle§ R,,), B(Rs), andC(R,.) is the point

252.0 — a’R*(A — Ay) — bV*R}(B — By) — ¢*R*(C — Chy).

4The de Longchamps point appears as the pliig in ETC.
5G. de Longchamps, Sur un nouveau cercle remarquable du plantdangle, Journal de Math.
Sreciales 1886, pp. 57 — 60, 85 — 87, 100 — 104, 126 — 134.
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7.4 The Lucas circles

6

Consider the squard, A. A, A inscribed in triangleA BC, with A;, A, on BC.
Since this square can be obtained from the square erectethally on BC via the
homothetyh(A4, 2Jrs) the equation of the circl€ 4 through A, Aj and A/, can be
easily written down:

a2
a’?+ S
Likewise if we construct inscribed squar&s B, B, B., and C,,C,C; C?, on the other
two sides, the corresponding Lucas circles are

Ca: a’yz + b*zx + oy — (2 4y +2)(ty +b*2) =0.

2

Cp: a2yz+b22x+c2xy—m-(w+y+z)(02x+a2z) =0,
and

2 2 2 c? 2 2
Ceo: ayz+bz;z;—t—cxy—m.(x—t—y—t—z)(bm—t—ay):O.

The coordinates of the radical center satisfy the equations

a?(Cy+b%z)  ba’z+cPx)  A(VPx+ay)

a2+ S b2+ S 2+ S
Since this can be rewritten as
Y oz r T Yy o L2 L2
it follows that
z bz’;:——bQ—i—c —ad?+S: A+ - +S5: >+ -2+ S,

and the radical center is the point
(a*(254 + 9) : b*(2Sp + 9) : *(2S¢c + 9)).

The three Lucas circles are mutually tangent to each othempadints of tangency
being

A = (a’Sa:b*(Sp+9):A(Sc+S)),
B' = (a*(Sa+9):0?Sp:*(Sc +9)),
C' = (a®(S4+48):b*(S+S):Se).

Exercises

1. These point of tangency form a triangle perspective witBC. Calculate the
coordinates of the perspectér.

6A.P. Hatzipolakis and P. Yiu, The Lucas circlésner. Math. Monthly108 (2001) 444 — 446.
"(a%2(Sa + S) : b2(Sg + S) : ¢2(Sc + S)). This point appears |ETC asX571 and is called the
Kenmotu point. It is the isogonal conjugate of the Vecten p()g?r—

sB+s sc+s)
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7.5 Appendix: More triads of circles
1. (a) Construct the circle tangent to the circumcirciernally at A and also to
the sideBC.
(b) Find the coordinates of the point of tangency with the $d”.
(c) Find the equation of the circl@.

(d) Similarly, construct the two other circles, each tarigaternally to the
circumcircle at a vertex and also to the opposite side.

(e) Find the coordinates of the radical center of the thresas.®
2. Construct the three circles each tangent to the circuneaisdernallyat a vertex

and also to the opposite side. Identify the radical centbichvis a point on the
circumcircle 1°

3. Let X, Y, Z be the traces of a poitft on the side lineBC, C A, AB of triangle
ABC.

(a) Construct the three circles, each passing through aweftABC and
tangent to opposite side at the tracerbf

(b) Find the equations of these three circles.

(c) The radical center of these three circles is a point irddpnt ofP. What

is this point?

4. Find the equations of the three circles each through a vartebthe traces of the
incenter and the Gergonne point on the opposite side. WHag isatlical center
of the triad of circles??

5. Let P = (u : v : w). Find the equations of the three circles with the cevian

segmentsAAp, BBp, CCp as diameters. What is the radical center of the triad

n12

6. Given a pointP. The perpendicular fronP to BC intersectsC' A at Y, and
AB atZ,. Similarly defineZ,, X;, and X, Y.. Show that the circleglY, Z 4,
BZ,X, andCX_Y, intersect at a point on the circumcircle 453C. 13

8a2yz + b2zx + ay — ﬁ(az +y+ 2)(Py + b%2) = 0.
%(a?(a® 4+ a(b+c) —bc): ---:---). This point appears a&595 in ETC.

10(;% : c‘fa : acjb>. This point appears ak11o in ETC.

11The external center of similitude of the circumcircle andriclei.

12F|oor van Lamoen, Hyacinthos, message 214, 1/24/00.
BIf P = (u: v : w), this intersection i$ vsBQ—QwsC ' wSo—usy | uSAC—Z'USB ); itis the infinite point
of the line perpendicular té/ P. A.P. Hatzipolakis and P. Yiu, Hyacinthos, messages 12184,12215,
8/17/00.
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Exercises

Consider triangleABC' with three circlesA(R,), B(Ry), andC(R.). The circle
B(Ry) intersectsdB atZ, = (Ry : c— Ry : 0)andZ,_ = (—Rp : ¢+ Ry : 0). Sim-
ilarly, C(R.) intersectAC atY,y = (R.: 0: b—R.)andY,_ = (—R.: 0: b+ R,).
14

1. Show that the centers of the circld¥’, . 7, andAY,_Z,_ are symmetric with
respect to the circumcentér.

2. Find the equations of the circletY, | Z,, andAY,_Z,_. %
3. Show that these two circles intersect at
—a? b —c
Q=|——"—"—F:1=':'1=
bRy —cR. Ry R.
on the circumcircle.

4. Find the equations of the circlesY, 7, and AY,_Z,, and show that they

intersect at
o (L
bRy, +cR. Ry R.

on the circumcircle®®
5. Show that the lin€)Q’ passes through the pointsa? : b? : ¢2) and 7
P = (a*(—a*R? + b*R} + *R2) : -+ :---).
6. If W is the radical center of the three circld$R,), B(R), andC(R.), then
P=(1-t)0O+t-W for
. 2a2b%c?
- R3G2SA + R§b2SB + RgC2SC.

7. Find Pif R, = a, R, = b, andR, = c. 8
8. FindPifR,=s—a,R,=s—b,andR, = s — ¢. 19
9. Ifthe three circlesA(R,), B(Ry), andC(R,) intersectal?’ = (u : v : w), then
P = (a*(b*c*u® — a®>Savw + b2 Spwu + *Scuv) -+ 1 ---).
10. Find P if W is the incenter?®
11. If W = (u: v : w) is on the circumcircle, the = Q = Q' = W.

14 P. Hatzipolakis, Hyacinthos, message 3408, 8/10/01.

Ba2yz + b%2x + oy —e(z +y + 2)(c- Rpyy + b+ Rez) = 0fore = £1.

02yz + b2zx + 2oy — e(x +y + 2)(c- Ryy — b Rez) = 0fore = £1.

QQ": (b®°R? — ?R2)z + a?(R2y — R%z) = 0.

Bg2(b* + ¢t —a?) : b2(c* + a* — bY) : 2(a* + b* — ¢*)). This point appears a&22 in ETC.

19(“2(“2_2“(2'*_'2)"'("2“2)) :---:---). This point does not appear in the current editioE®T.

20( a” . b2 . c )
s—a " s—b ' s—c




Chapter 8

Some Basic Constructions

8.1 Barycentric product

Let X, X5 be two points on the lin&C, distinct from the vertice®, C, with homoge-
neous coordinate® : y1 : z1) and(0 : y» : 29). Fori = 1,2, complete parallelograms
AK; X;H; with K; on AB andH; on AC. The coordinates of the poinf$;, K; are

A
H>
K1
Hy
K2
B X, X X C
Hy=(y1:0:21), Ky =(z1:91:0);
Hy = (y2:0: 29), Ky = (22:92:0)
From these,
BHiNCKy = (y122: 9192 : 2122),
BH;NCKy = (y221: 9192 : 2122).

Both of these points havé-trace(0 : y1y2 : 2122). This means that the line joining
these intersections passes through

Given two pointsP = (z : y : z) and@ = (u : v : w), the above construction
(applied to the traces on each side line) gives the tracesegboint with coordinates
(zu : yv : zw). We shall call this point thbarycentric producbf P and@, and denote
itby P- Q.
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In particular, thebarycentric squaref a pointP = (u : v : w), with coordinates
(u? : v? : w?) can be constructed as follows:

(1) Complete a parallelogratB, ApC, with B, onC A andC, on AB.

(2) ConstructBB, N CC,, and join it to A to intersectBC at X .

(3) Repeat the same constructions using the tracesAmand A B respectively to
obtainY onCA andZ on AB.

Then,X, Y, Z are the traces of the barycentric squaré’of

8.1.1 Examples

(1) The Clawson pointg"- % 1 5 ) can be constructed as the barycentric product
of the incenter and the orthocenter.

(2) The symmedian point can be constructed as the baryceqare of the incen-
ter.

(3) If P = (u+ v + w) is an infinite point, its barycentric square can also be
constructed as the barycentric producfoénd its inferior(v + w : w + u : u + v):

P? = (4?0 w?)
= (—u(v4+w): —v(w+u): —wlu+v))
= (u:v:iw)-(v+w:w+u:u+o).

8.1.2 Barycentric square root

Let P = (u : v : w) be a point in the interior of triangld BC, the barycentric square
root /P is the pointQ in the interior such thaf)? = P. This can be constructed as
follows.

(1) Construct the circle witlBC' as diameter.

(2) Construct the perpendicular BC at the traced p to intersect the circle at. !
Bisect angleBX C to intersectBC at X'.

(3) Similarly obtainY” onC A andZ’ on AB.

The pointsX’, Y’, Z’ are the traces of the barycentric square roaPof

11t does not matter which of the two intersections is chosen.
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The square root of the orthocenter

Let ABC be an acute angled triangle so that the orthocefiter an interior point. Let
X be theA-trace ofv/H. The circle through the pedal3 ), Cj ) and X is tangent
to the sideBC.

8.1.3 Exercises

1. Construct a point whose distances from the side lines agoptional to the radii
of the excircles?

2. Find the equation of the circle throughandC, tangent (internally) to incircle.
Show that the point of tangency has coordinates

(sa—Za | (ss—_cb)2 : (ss—_bc)Q)'

Construct this circle by making use of the barycentric dhpower” of the Ger-
gonne point.

3. Construct the square of an infinite point.

4. A circle is tangent to the sidBC of triangle ABC' at the A—trace of a point
P = (u:v:w) and internally to the circumcircle at’. Show that the lined A’
passes through the poifitu : bv : vw).

Make use of this to construct the three circles each tangéernally to the cir-
cumcircle and to the side lines at the trace$of

5. Two circles each passing through the incertare tangent ta3C at B andC
respectively. A circlgJ,) is tangent externally to each of these, and3@ at
X. Similarly defineY andZ. Show thatX'Y Z is perspective witdBC, and
find the perspecto?.

6. Let Py = (f1:91: h1)andPy = (f2 : g2 : ha) be two given points. Denote by
X;,Y;, Z; the traces of these points on the sides of the referencgleidBC.

(a) Find the coordinates of the intersectiois = BY; N CZ; and X_ =
BY;NCZy. 4
(b) Find the equation of the lin& , X_.°

(c) Similarly define pointsy,, Y_, Z, and Z_. Show that the three lines
X4+ X_,Y Y ,andZ, Z_ intersect at the point

(fifo(grha + hig2) = grg2(hafa + fiha) : hiha(fig92 + g1f2)).

2This has coordindate§_“— : --- : ---) and can be constructed as the barycentric product of the
incenter and the Gergonne point.
3The barycentric square root oF % : < b 5+ 37— )- See Hyacinthos, message 3394, 8/9/01.

s

“Xi=fife: fige i hifes X— = fife i g1f2 : frho.
5(f2g2h2 — f2g1h1)z — f1fo(frhe — hif2)y + f1f2(g1fo — fig2)z = 0..
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8.2 Harmonic associates
Theharmonic associatesf a pointP = (u : v : w) are the points
AP = (—u:v:w), BY = (u:—v:w), CP = (u:v:—w).

The pointA” is the harmonic conjugate & with respect to the cevian segmebt p,
ie.,
AP : PAp = —AA? : A¥ Ap;

similarly for B andC*. The triangleA”CPCT is called theprecevian triangle
of P. This terminology is justified by the fact thatBC' is the cevian triangle’ in
APBPCP | Itis also convenient to regaid, A”, B, C* as a harmonic quadruple in
the sense that any three of the points constitute the haoassociates of the remaining
point.

BP

CP

AP

Examples

(1) The harmonic associates of the centroid, can be consttas the intersection of
the parallels to the side lines through their opposite westi They form theuperior
triangle of ABC.

(2) The harmonic associates of the incenter are the exesenter

(3) If P is an interior point with square rod). The harmonic associates @fcan
also be regarded as square roots of the same point.

8.2.1 Superior and inferior triangles

The precevian triangle of the centroid is called sluperiortriangle of ABC. If P =
(u:v:w),thepoint(—u+v+w:u—v+w:u+v—w), which dividesPG in the



Chapter 8: Some Basic Constructions 103

ratio3 : —2, has coordinateg: : v : w) relative to the superior triangle, and is called
thesuperiorof P.

Along with the superior triangle, we also consider the cetigangle ofG as the
inferior triangle. The poin{v + w : w + u : u + v), which dividesPG in the ratio
3 : —1, has coordinategu : v : w) relative to the inferior triangle, and is called the
inferior of P.

Exercises

1. If Pisthe centroid of its precevian triangle, show tiais the centroid of trian-
gle ABC.

2. The incenter and the excenters form the only harmonic quéelmhich is also
orthocentric,i.e., each one of them is the orthocenter of the triangle formed by
the remaining three points.
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8.3 Cevian quotient

Theorem

For any two points” and@ not on the side lines ol BC, the cevian triangle oP and
precevian triangle) are perspective. IP = (u : v : w) and@ = (z : y : 2), the
perspector is the point

P/Qz(a:(—%—i—y—i—i):y

(% w

Proposition

P/(P/Q) = Q.

Proof. Direct verification.

This means that iP/Q = Q’, thenP/Q’' = Q.

Exercises

1. Show thatP/(P - P) =P - (G/P).

2. Identify the following cevian quotients.
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P Q P/Q
incenter centroid

incenter symmedian point
incenter Feuerbach point

centroid circumcenter

centroid symmedian point
centroid Feuerbach point
orthocenter symmedian point
orthocenter (alb—c):--vive)

Gergonne point  incenter
3. LetP=(u:v:w)and@ = (v : v’ : w') be two given points. If
X:BPCPQAAQ7 Y:CPAPQBBQ, Z:APBPHCCQ,

show thatAp X, BpY andCpZ are concurrent. Calculate the coordinates of
the intersection®

6(uu/ (vw’ +wv') : ---: ---); see J. H. Tummers, Points remarquables, agsaain triangle Nieuw
Archief voor WiskundéV 4 (1956) 132 — 139. O. Bottema, Une construction par rapparh triangle,
ibid., IV 5 (1957) 68 — 70, has subsequently shown that thikespole of the linePQ with respect to the
circumconic throughP? and@.
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8.4 The Brocardians

The Brocardians of a poif® = (u : v : w) are the points

1 1 1 1 1 1
PH:(::> and PF:(::).
w U v vow u

Construction of Brocardian points

Examples

(1) The Brocard point§)_, and(),_ are the Brocardians of the symmedian pdint

(2) The Brocardians of the incenter are calledibmbek points

1 1 1 1 1 1
I,=(-:-:- and I_=(-:-:—-].
c a b b ¢ a

Theorientedparallels throughi_, to BC, C A, AB intersect the side§'A, AB, BC at
Y,Z, X suchthatl .Y = 1,7 =1_,X. Likewise, the parallels through_ to BC,



Chapter 8: Some Basic Constructions 107

CA, AB intersect the sided B, BC,CAatZ, X Ysuch thal . Z =1_X=1_Y.
These 6 segments have Iengﬂ;atrsfylngg = 14+ 1+ 1, one half of the length of the
equal parallelians drawn through + + - S

(3) If oriented parallels are drawn through the forward Bwalian point of the (pos-
itive) Fermat pointF’, , and intersect the sid€sA, AB, BC at X, Y, Z respectively,
then the triangleX'Y Z is equilateral’

7S. Bier, Equilateral triangles formed by oriented paradiedi,Forum Geometricoruml (2001) 25 — 32.






Chapter 9

Circumconics

9.1 Circumconics as isogonal transforms of lines

A circumconic is one that passes through the vertices ofgfegence triangle. As such
it is represented by an equation of the form

C: pyz + qzx + rxy = 0,

and can be regarded as the isogonal transform of the line
. p 4 r._

The circumcircle is the isogonal transform of the line atriit§i Therefore, a cir-
cumconic is an ellipse, a parabola, or a hyperbola accoalrits isogonal transform
intersects the circumcircle at 0, 1, or 2 real points.

Apart from the three vertices, the circumconic intersehts ¢circumcircle at the
isogonal conjugate of the infinite point of the lie

T 11
b2r —c2q " c2p—a?r " a2q—0b%p )’

We call this the fourth intersection of the circumconic witie circumcircle.

Examples

(1) The Lemoine axis is the tripolar of the Lemoine (symmajjgoint, the line with

equation
Y

€T z -
atpt =0
Its isogonal transform is the Steiner circum-ellipse

yz + zx +xy =0.
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The fourth intersection with the circumcircle at the Steipeint *

111
b2—¢2 ¢2—qa2 a2-02)"

T

(2) The Euler lin€>" ., ;. (b* — ¢?)Sax = 0 transforms into thderabek hyperbola

cyclic

Z a?(b* — *)Sayz = 0.

cyclic

Since the Euler infinity point (5SS —3Spc : SS —3Sca : SS —3Sap) = (Sca +

Sap —2Spc :---: -+ +), the fourth intersection with the circumcircle is the pdint
(rrsimmoe )
Sca+ Sap —2Spc '
A
(@)
B C

1The Steiner point appears &%g in ETC.
2This is the pointX74 in ETC.
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(3) The Brocard axi®) K has equation
V2 (0 — ) + 2a*(? — a®)y + a®b*(a® — b*)z = 0.
Its isogonal transform is thi§iepert hyperbola
(b — Ayz + (¢ — a®)zx + (a* — b}y = 0.

The fourth intersection with the circumcircle is tharry point 2

1 1 1
(SBC —Saa  Sca— S Sap— SCC> '

This is antipodal to the Steiner point, since the Euler lind the Lemoine axis are
perpendicular to each othér.
(4) Recall that the tangent to the nine-point circle at thadfeach pointF' =
(b=c)*)(b+c—a):(c—a)?)(c+a—>b):(a—0b)?a+b-rc))istheline
T Y z

b—c+c—a+a—b:

0.

Applying the homothety (G, —2), we obtain the line

(b—c)z+ (c—a)®y+(a—b)?*2=0

tangent to the point;2- : b_. _c_)atthe circumcircle.®

c—a " a—b

The isogonal transform of this line is the parabola

a*(b — ¢)*yz + b*(c — a)*22 + *(a — b)%zy = 0.

Exercises

1. Let P be a point. The first trisection point of the cevia® is the pointA’
dividing AAp in the ratiol : 2, i.e, AA’ : A’Ap = 1 : 2. Find the locus of
P for which the first trisection points of the three cevians@kinear. For each
suchP, the line containing the first trisection points always gasthrough the
centroid.

2. Show that the Tarry point as a Kiepert perspectdiis-(§ — w)).

3. Show that the circumconieyz + qzx 4+ rzy = 0 is a parabola if and only if

p? 4+ ¢® + 1% —2qr — 2rp — 2pq = 0.

3The Tarry point appears as the poi¥igs in ETC.

4The Lemoine axis is the radical axis of the circumcircle andrime-point; it is perpendicular to the
Euler line joining the centers of the two circles.

5This point appears ak1qg in ETC.
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4. Animate a pointP on the circumcircle of trianglel BC and draw the lin€ P.
(a) Construct the poin® on the circumcircle which is the isogonal conjugate
of the infinite point ofO P.
(b) Construct the tangent .

(c) Choosea point X on the tangent line af), and construct thésogonal
conjugate X * of X.

(d) Find thelocusof X*.
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9.2 The infinite points of a circum-hyperbola

Consider a linel intersecting the circumcircle at two poinisand@. The isogonal
transform of£ is a circum-hyperbol&. The directions of the asymptotes of the hyper-
bola are given by its two infinite points, which are the isaglaonjugates of and(.
The angle between them is one half of that of the/a€g.

These asymptotes are perpendicular to each other if andifolyand@Q are an-
tipodal. In other words, the circum-hyperbola is rectaaguif and only if its isogonal
transform is a diameter of the circumcircle. This is alsoieajent to saying that the
circum-hyperbola is rectangular if and only if it contaife torthocenter of triangle
ABC.

Theorem

Let P and@ be antipodal points on the circumcircle. The asymptoteseféctangular
circum-hyperbola which is the isogonal transfornftp are the Simson lines d? and

Q

It follows that the center of the circum-hyperbola is thensection of these Simson
lines, and is a point on the nine-point circle.
Exercises

1. Let P = (u : v : w) be a point other than the orthocenter and the vertices of
triangle ABC'. The rectangular circum-hyperbola througtas equation

Z u(Spv — Scw)yz = 0.

cyclic
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9.3 The perspector and center of a circumconic

The tangents at the vertices of the circumconic
pyz +qzx +raey =0
are the lines
ry+qz =0, re+pz =0, qxr + py = 0.
These bound the triangle with vertices
(=p:q:7), (p:—q:7),  (pig:-7).
This is perspective wittd BC' at the pointP = (p : ¢ : r), which we shall call the
perspector of the circumconic.

We shall show in a later section that the center of the cir@mmucis the cevian
quotient

Q=G/P=@wv+w—u):v(w+u—2v):wlu+ov—w)).

Here we consider some interesting examples based on thinéadt = G/Q if Q =
G/P. This means that the circumconics with centBrand@ have perspectors at the
other point. The two circumconics intersect at

u v w
v—w w—u u—v/’

Circumconic with center K

9.3.1 Examples

Since the circumcircle (with centé?) has perspector at the symmedian pdintthe
circumconic with centeK hasO as perspector. This intersects the circumcircle at the

point®
a? _ b2 ) 2
b2—c2 2—q2 a2-02)"

This point can be constructed as the antipode of the isogmmgligate of the Euler
infinity point.

Circumconic with incenter as perspector
The circumconic with incenter as perspector has equation
ayz + bzx + cxy = 0.

This has cente/I = (a(b+c¢—a) : b(c+a — D) : ¢c(a + b — ¢)), the Mittenpunkt.
The circumconic with the incenter as center has equation

a(s —a)yz + b(s —b)zx + ¢(s — ¢c)xy = 0.

Thetwointersectatthepoirﬁtﬁ: b,

c
c—a " a—b

) which is a point on the circumcirclé.

6This point appears a&11¢ in ETC.
"This point appears aX1qg in ETC.
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Exercises
1. Let P be the Spieker center, with coordinatést c¢: ¢+ a : a + b).

(&) Show that the circumconic with perspectois an ellipse.
(b) Find the cente€) of the conic®

(c) Show that the circumconic with centét (and perspecto@) is also an
ellipse.

(d) Find the intersection of the two conids.

2. If P is the midpoint of the Brocard poinf3_, and{2,_, what is the pointp =
G/P? What is the common point of the two circumconics with cengerd
perspectors aP andQ? 1°

3. Let P and@ be the center and perspector of the Kiepert hyperbola. Whyeis t
circumconic with cente) and perspectaP a parabola? What is the intersection
of the two conics?!

4. Animate a pointP on the circumcircle and construct tkécumconic with P
as center. What can you say about the type of the coniP a&aries on the
circumcircle?

5. Animate a pointP on the circumcircle and construct te&gcumconic with P
as perspector. What can you say about the type of the corfit\@sies on the
circumcircle?

8Q = (a(b+ ¢) : b(c + a) : c(a + b)). This point appears iETC as X3r.
o

9(’;_—; =% g;g) This point does not appear in the curr2ent editioEFtC.

10Q = symmedian point of medial triangle; common poin(%—Q;—Z; :---:-+-). This point does not
appear in the current edition &TC.

11(1)2_@%% :---:---). This point does not appear in the current editioEdT.
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9.4 Appendix: Ruler construction of tangent atA

(1) P = ACN BD;
2)Q =ADNCE;
(3)R=PQNBE.
ThenAR is the tangent ad.




Chapter 10

General Conics

10.1 Equation of conics

10.1.1 Carnot's Theorem

Suppose a coni€ intersect the side lineBC at X, X', CAatY,Y’, andAB at Z,
Z', then
BX BX' CY CY' Az AZ

XC X'C YA Y'A ZB Z'B
Proof. Write the equation of the conic as

fa? + gy® + hz? + 2pyz + 2qzx + 2ray = 0.

The intersections with the linBC' are the two point$0 : y; : z1) and(0 : ys2 : 22)
satisfying
gy® + hz* 4 2pyz = 0.

From this,
BX BX' 2z g
XC X'C n Y1Yy2 n h
Similarly, for the other two pairs of intersections, we have

cy CoY' h AZ AZf

YA YA f  ZB ZB g

The product of these division ratios is clearly 1.
The converse of Carnot’s theorem is also trueXifX’, Y, Y’, Z, Z’ are points on
the side lines such that

BX BX' CY OV AZ AZ _
XC X'C YA Y'A ZB 7Z'B

then the 6 points are on a conic.
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Corollary

If X,Y, Z are the traces of a poiit, thenX’, Y’, Z’ are the traces of another point
Q.

10.1.2 Conic through the traces of? and @)

LetP = (u:v:w)and@ = (v : v’ : w'). By Carnot's theorem, there is a conic
through the 6 points. The equation of the conic is

22 1 1
Z — = + yz = 0.
uu/ vw’  v'w

cyclic

Exercises

1. Show that the points of tangency of tHeexcircle withAB, AC, the B-excircle
with BC, AB, and theC-excircle withC' A, C'B lie on a conic. Find the equation
of the conic!

2. Let P = (u : v : w) be a point not on the side lines of triangle3C.

(a) Find the equation of the conic through the traceB aind the midpoints of
the three sideg.

(b) Show that this conic passes through the midpointd Bf BP andC P.

(c) For which points is the conic an ellipse, a hyperbola?

3. GivenapointP? = (u:v:w)andalinel : 5 + % 4 % = 0, find the locus of
the pole ofC with respect to the circumconics through 3

2 2
1 2 +(s—a) _
chclic 7+ 2 S(Siaﬂj Yz = 0.

2z:cyclic _’Uw$2 + u(v + w)yz =0.
3The conic through the traces sfandQ = (u/ : v’ : w’); Jean-Pierre Enrmann, Hyacinthos, message
1326, 9/1/00.
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10.2 Inscribed conics

An inscribedconic is one tangent to the three side lines of triangjieéC'. By Carnot’s
theorem, the points of tangency must either be the tracepoiid P (Ceva Theorem)
or the intercepts of a line (Menelaus Theorem). Indeedgftibnic is non-degenerate,
the former is always the case. If the conic is tangeBat (0 : ¢ : ) and toC A at
(p:0:r),thenits equation must be

2 y? 22 Yz 22 2xy

L e Y
p2 ¢ 2 qr rp Pq

fore = £1. If e = —1, then the equation becomes

2
<_$+y+2> o,
p q T

and the conic is degenerate. The inscribed conic therem@uation

x? 2 22 2uz 2z 2z
724_.7%_’_72_&_7_#:
p q r qr rp pq

and touchesBC at (0 : ¢ : r). The points of tangency form a triangle perspective with
ABC at(p: q: ), which we call the perspector of the inscribed conic.

0

10.2.1 The Steiner in-ellipse
The Steiner in-ellipse is the inscribed conic with perspe€t. It has equation

22 +y? + 2% — 2yz — 220 — 22y = 0.

Exercises
1. The locus of the squares of infinite points is the Steinellipse

22 +y? + 2% — 2yz — 220 — 22y = 0.
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2. Let € be the inscribed conic
2

”
cyclic p q

tangent to the side lines& = (0: ¢ :7),Y =(p:0:7r),andZ = (p: ¢ : 0)
respectively. Consider an arbitrary po@t= (u : v : w).
(a) Find the coordinates of the second intersectonf € with X Q. 4

(b) Similarly defineB’ andC’. Show that triangled’ B’C’ is perspective with
ABC, and find the perspectar.

2
Al g = (- ),

Wi“'i'“)-
P q ”
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10.3 The adjoint of a matrix
Theadjoint of a matrix (not necessarily symmetric)
air a2 as
M= a2 a2 a

asy asz as3

is thetransposeof the matrix formed by the cofactors éf:

(22033 — 423032 —a120a33 + a13a32 (12023 — Q22013
M# = | —asiazs +axsaszi  aiasz — a13az;  —ai1a23 + az1a;3
Q21032 — 31022  —a11G32 + A31G12 411022 — 412021

Proposition

(1) MM# = M#M = det(M)I.
(2) M## = (det M)M.

Proposition

Let (4, j, k) be a permutation of the indices 1, 2, 3.

(1) If the rows of a matrix\/ are the coordinates of three points, the line joining
andP; has coordinates given by tiieth column of M #.

(2) If the columns of a matrix/ are the coordinates of three lines, the intersection
of L; andL; is given by thek-row of M#.
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10.4 Conics parametrized by quadratic functions
Suppose
Ty z=ag+art + agt? : by 4+ byt + bot? i co 4 c1t + cot?
Elimination oft gives
(p1z 4+ q1y +7112)° — (Pox + qoy + 102) (P22 + qoy + 122) = 0,

where the coefficients are given by the entries of the adgittie matrix

apgp aip am
M=1| b b b |,
Co C1 Co

Po qGo To
M¥=p ¢ m |.
P2 G2 T2

This conic is nondegenerate providée (M) # 0.

namely,

10.4.1 Locus of Kiepert perspectors

Recall that the apexes of similar isosceles triangles of bagles constructed on the
sides of triangleA BC form a triangleA’ B C? with perspector

1 1 1
K(0) = : : .
(©) (SA+59 Sp+ Sy Sc-I—Sg)
Writing ¢t = Sy, and clearing denominators, we may take

(x:y:2)=(Spo+a’t+1*:Sca+ bt +t>: Sap + 2t +12).
SBC’ a2 1
M = Sca b 1 ,
Sap 2 1

b2 — 2 2 —a? a?® — b?
M# = ( —Sa(b? =) —=Sp(c* —a?®) —Sc(a® —b?) )

With

we have

SAA(b2 —02) 533(62 —a2) Scc(CLQ —b2)
Writing u = (b* — ¢2)x, v = (c? — a?)y, andw = (a® — b?)z, we have

(SAu+SBv+SCw)2 — (u+v+w)(Saau+ Sppv+ Sccw) =0,
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which simplifies into

0 = Z (2SBC - SBB — SCC)'Uw — Z (b2 _ 02)2’0’[1}.

cyclic cyclic
In terms ofz, y, z, we have, after deleting a common factefa® — b%)(b? — ¢?)(c? —

a?),
Z (b* — ?)yz = 0.

cyclic

This is the circum-hyperbola which is the isogonal transfof the line

Z b2 (b* — c*)x = 0.

cyclic
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10.5 The matrix of a conic

10.5.1 Line coordinates

In working with conics, we shall find it convenient to use matrotations. We shall
identify the homogeneous coordinates of a pdint (z : y : z) with therow matrix
(z y =z ),anddenote it by the sanfe A line £ with equationpz + qy + rz =0
is represented by theolumn matrix

p
L= q
T
(so thatPL = 0). We shall callL theline coordinatesf £.

10.5.2 The matrix of a conic

A conic given by a quadratic equation
fa? + gy + hz? + 2pyz + 2qzx + 2rzy = 0

can be represented by in matrix fof\/ Pt = 0, with

fr
M = r g )
q D

We shall denote the conic (M ).
Let P be a point on the coni€. Thetangentat P is the lineM P?.

T" R

10.5.3 Tangent at a point
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10.6 The dual conic

10.6.1 Pole and polar

Thepolar of a pointP (with respect to the coni€(M)) is the lineM P¢, and thepole
of a line L is the pointL*M#. Conversely, ifL intersects a coni€ at two pointsP
and@, thepoleof L with respect ta is the intersection of the tangentsrand@.

Exercises

1. A conic is self-polar if each vertex is the pole of its oppesitde. Show that the
matrix of a self-polar conic is a diagonal matrix.

2. If P lies on the polar of), then(@ lies on the polar of°.

10.6.2 Condition for a line to be tangent to a conic

Aline L : pz + qy + rz = 0 is tangent to the coni€(M) if and only if L' M# L = 0.
If this condition is satisfied, the point of tangencylisi/ #.

10.6.3 The dual conic

Let M be the symmetric matrix

for

T g .

q p
Thedual conicof € = C(M) is the conic represented by the adjoint matrix

gh—p* pg—rh TP—y9q
M# =\ pg—hr hf—q* qr—fp |.

m—gq qr—fp fg—1?

TR

Therefore, a linel : px + qy + rz = 0 is tangent taC(M/) if and only if the point
L' = (p:q:r)isonthe dual coni€(M#).

10.6.4 The dual conic of a circumconic

The dual conic of the circumconjgyz + gzx + rzy = 0 (with perspectol® = (p : ¢ :
7)) is the inscribed conic
Z —p?2% + 2qryz =0

cyclic

with perspecto”® = (5 : ; : ;). The center is the poirfy + 1 : 7 +p: p + q).
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Exercises

1. The polar of(u : v : w) with respect to the circumconjgyz + qzx + ray = 0
is the line
p(wy + vz) + q(uz + wz) + r(ve + uy) = 0.

2. Find the equation of the dual conic of the incircle. Deducedfkach’s theorem
by showing that the radical axis of the nine-point circle #mlincircle, namely,
the line

is tangent to the incirclé.

3. Show that the common tangent to the incircle and the ninetpmicle is also
tangent to the Steiner in-ellipse. Find the coordinates®fint of tangency’

4. LetP = (u:v:w)and@Q = (v : v : w’) be two given points. If
XZBPOPOAAQ, Y:CPAPQBBQ, ZZAPBPQOCQ,

show thatdp X, BpY andCpZ are concurrent at the pole &fQ) with respect
to the circumconic throug and(. 8

5. The tangents at the vertices to the circumcircle of triangleC' intersect the
side linesBC, CA, AB at A’, B’, C’ respectively. Thaecondagents fromA4’,
B’, C' to the circumcircle have points of tangen&y Y, Z respectively. Show
that XY Z is perspective wittd BC and find the perspectdt.

Gchclic(S - a)yz =0.
“(b—¢)?: (c—a)? : (a—b)2). This point appears a&1¢se in ETC.
80. Bottema, Une construction par rappéarun triangle Nieuw Archief voor WiskundgV 5 (1957)
68-70.
a?(b* +c* —a*) : - -). This is a point on the Euler line. It appears¥s, in ETC. See
D.J. Smeenk and C.J. Bradley Problem 2096 and soluflams Mathematicorun21 (1995) 344; 22(1996)
374 - 375.



Chapter 10: General Conics 127

10.7 The type, center and perspector of a conic

10.7.1 The type of a conic

The conic®(M) is an ellipse, a parabola, or a hyperbola according ashthmcteristic
GM#*@ is positive, zero, or negative.
Proof. Settingz = —(z + y), we reduce the equation of the conic into

(h+ f—2q)2° +2(h—p—q+r)ay+ (g+h—2p)y* = 0.
This has discriminant

(h—p—q+r)*—(g+h—2p)(h+ f—2q)
= W= (g+h)(h+f)—2h(p+q—r)
+2(h+ fip+2(g+h)g+ (p+q—7)*+4pq
—(fg+gh—+hf)+2(fp+gq+hr) + (0° + ¢* + % — 2pq — 2qr — 2rp)

which is the negative of the sum of the entries\éf*. From this the result follows.

10.7.2 The center of a conic

The center of a conic is the pole of the line at infinity. As suble center of(M) has
coordinates; M #, formed by the column sums af/ #:

(p(g+r—p)—(gg+rh)+gh : q(r+p—q)—(rh+pf)+hf : r(p+q—r)—(pf+q9)+f9).

10.7.3 The perspector of a conic
Theorem (Conway)

Let ¢ = (M) be a nondegenerate, non-self-polar conic. The triangtaddrby the
poles of the sidelines is perspective wHtBC', and has perspector

( 111 >

gr—pf rp—qg pg—rh)’

Proof. The coordinates of these poles are given by the columns adfent matrix
M#. These are the points

A = (*****: 1 : 1 >,
rp—qg pq—rh
1 1
B = ( Tokok ok ok ok o ),
qr—pf pq—rh

1 1
C' = ( : *****)
qr—pf rp—qg

From these it is clear that’ B'C’ is perspective wittA BC at the point given above.

. 111 . .
The pomt(qrfpf ik qurh> is called theperspectoiof the conicC(M).
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Proposition

The center of the inscribed conic with perspedtois the inferior of P*.

Exercises
1. Let (f : ¢ : h) be an infinite point. What type of conic does the equation
a2x2 b2y2 6222

+ +
f g h

=0

represent?®
2. Find the perspector of the conic through the traceB ahd(@.

3. Find the perspector of the conic through the 6 points of taogef the excircles
with the side lines!!

4. Acircumconicis an ellipse, a parabola or a hyperbola adngrais the perspector
is inside, on, or outside the Steiner in-ellipse.

5. Let € be a conic tangent to the side lind$3 and AC' at B andC respectively.

(a) Show that the equation 6fis of the formz? — kyz = 0 for somek.

(b) Show that the center of the conic lies on thenedian.

(c) Construct the parabola in this family as a five-point coH

(d) Design an animation of the conic as its center travetsed tmedian.'3

6. Prove that the locus of the centers of circumconics thra@ggthe conic through
the traces of? and the midpoints of the side¥.

1Oparabola.
2 )2 . . o
n abi(%:) ;... :...). This points appears ilBTC as X3gs.
12The parabola has equatieff — 4yz = 0.
13)f the center igt : 1 : 1), then the conic containg : —2 : t).
14Fl00r van Lamoen and Paul Yiu, Conics loci associated withiaspRorum Geometricorurrforthcom-

ing.
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Some Special Conics

11.1 Inscribed conic with prescribed foci

11.1.1 Theorem

The foci of an inscribed central conic are isogonal conjegat

Proof. Let ', and F; be the foci of a conic, and, 75 the points of tangency from a
point P. Then/F,PT, = /F>PT5,. Indeed, ifQ,, Q- are the pedals of, F; on
the tangents, the product of the distanégg); and F>(Q- to the tangents is constant,
being the square of the semi-minor axis.

o
Q

Given a pair of isogonal conjugates, there is an inscribaitawith foci at the two
points. The center of the conic is the midpoint of the segment

11.1.2 The Brocard ellipse

Z breta? — 20*?Pyz =0

cyclic
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The Brocard ellipse is the inscribed ellipse with foci at Brecard points
Q. = (a®b®: 0% : 2a?),
Q. = (ad®:d%? %),
Its center is the Brocard midpoint
(a®(b* + c2) : B*(c* + a?) : *(a® +b?)),
which is the inferior of(b%c? : c2a? : ab?), the isotomic conjugate of the symmedian
point. It follows that the perspector is the symmedian point
Exercises
1. Show that the equation of the Brocard ellipse is as given@abov

2. The minor auxiliary circle is tangent to the nine-point k¢ What is the point
of tangency?

11.1.3 The de Longchamps ellipse
3
Z V(b4 ¢ — a)z? — 2a®beyz = 0,

cyclic

The de Longchamps ellipse is the conic through the traceleoinicenter/, and
has center af.

Exercises
1. Given that the equation of the conic is show that it is alwaysléipse.

2. By Carnot’s theorem, the “second” intersections of thepe#iwith the side lines
are the traces of a poi®. What is this point?

3. The minor axis is the ellipse is along the liogd. What are the lengths of the
semi-major and semi-minor axes of the ellip8e?

11.1.4 The Lemoine ellipse

Construct the inscribed conic with fo€l and K.

Find the coordinates of the center and the perspector.

The points of tangency with the side lines are the traceseftsymmedians of
trianglesGBC, GC A, andGAB.

1V. Thébault, Problem 385American Mathematical MonthiAPH,205.
2Jean-Pierre Ehrmann, Hyacinthos, message 209, 1/22/00.

SE. Catalan, Note sur I'ellipse de Longchampsurnal Math. Spciales IV 2 (1893) 28—-30.
4 b . _c

(sfa T s—b s:c)'
S andr
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11.1.5 The inscribed conic with centetV

This has fociO and H. The perspector is the isotomic conjugate of the circunarent
It is the envelope of the perpendicular bisectors of the sggsnjoiningH to a point
on the circumcircle. The major auxiliary circle is the nipent circle.

Exercises
1. Show that the equation of the Lemoine ellipse is
Z mix? —2mimiyz =0
cyclic

wherem,, my, m. are the lengths of the medians of triangi&C'.
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11.2 Inscribed parabola

Consider the inscribed parabola tangent to a given linechwvie regard as the tripolar
ofapointP = (u:v:w). Thus,t : £+ 2+ 2 = (. The dual conic is the circumconic

w

passes through the centrditl: 1: 1) andP* = (1 : 1. 1) |tis the circumconic

v —w w—u u—v
e# + + =0.
T Y z

The inscribed parabola, being the dual®f, is
Z —(v —w)?*x? + 2w — u)(u —v)yz = 0.
cyclic

The perspector is the isotomic conjugate of that of its diiais is the point

111
v—w w—u U—v

on the Steiner circum-ellipse.

The center of the parabola is the infinite paint— w : w — v : w — v). This gives
the direction of the axis of the parabola. It can also be dgghthe infinite focus of the
parabola. The other focus is the isogonal conjugate

a® b2 c?

v—w w—u U—v

on the circumcircle.
The axis is the line through this point parallekto+vy+wz = 0. The intersection
of the axis with the parabola is the vertex

(<sB<w—u>—Sc<u—v>>2 >

v—w

The directrix, being the polar of the focus, is the line
Sa(v—w)x+ Sp(w—u)y+ Sc(u—v)z =0.
This passes through the orthocenter, and is perpendicutaetine
ur + vy + wz = 0.

Itis in fact the line of reflections of the focus. The tangetthe vertex is the Simson
line of the focus.
Where does the parabola touch the given line?

(w2 (v — w) : v} (w — u) : w?(u —v)),
the barycentric product aP and the infinite point of its tripolar, the given tangent, or
equivalently the barycentric product of the infinite poiftlee tangent and its tripole.
Exercises

1. Animate a pointP on the Steiner circum-ellipse and construct the inscribed
parabola with perspectdr.
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11.3 Some special conics

11.3.1 The Steiner circum-ellipsery + yz + zx =0

Construct the Steiner circum-ellipse which has centereaténtroidG.
The fourth intersection with the circumcircle is the Steipeint, which has coor-

dinates
1 . 1 ) 1
2 —c2 2_qa2 a2-02)"

Construct this point as the isotomic conjugate of an infipgant.

The axes of the ellipse are the bisectors of the akglgs. ® Construct these axes,
and the vertices of the ellipse.

Construct the foci of the ellipsé.

These foci are called the Bickart points. Each of them haptbperty that three
cevian segments are equal in lendth.

11.3.2 The Steiner in-ellipse

Exercises

2?2 —2yz =0

cyclic

1. Let € be a circumconic through the centr@il The tangents ad, B, C' intersect
the sidelineBC, CA, AB atA’, B', C’ respectively. Show that the liné B'C’
is tangent to the Steiner in-ellipse at the centeg.of

11.3.3 The Kiepert hyperbola}_ b’ —c?)yz =0

The asymptotes are the Simson lines of the intersectiorfeedBtocard axi®) K with
the circumcirclel® These intersect at the center which is on the nine-poinkecidsn
easy way to construct the center as the intersection of the-pwint circle with the
pedal circle of the centroidhearer to the orthocentet!

cyclic (

Exercises

1. Find the fourth intersection of the Kiepert hyperbola witle tircumcircle, and
show that it is antipodal to the Steiner poitt.

6J.H. Conway, Hyacinthos, message 1237, 8/18/00.

"The principal axis of the Steiner circum-ellipse containtihg foci is theleast square lindor the three
vertices of the triangle. See F. Gremmen, Hyacinthos, mes&iye2/00.

80. Bottema, On some remarkable points of a trianiiepw Archief voor Wiskund@9 (1971) 46 — 57;
J.R. Pounder, Equal ceviar@rux Mathematicorumé (1980) 98 — 104; postscriphid. 239 — 240.

9J.H. Tummers, Problem 3®yiskundige Opgaven met de Oplossing81 (1955) 31-32.

10These asymptotes are also parallel to the axes of the Stdiipses. See, J.H. Conway, Hyacinthos,
message 1237, 8/18/00.

11The other intersection is the center of the Jerabek hyperbihis is based on the following theorem:
Let P be a point on a rectangular circum-hyperb@larhe pedal circle of? intersects the nine-point circle
at the centers of and of (the rectangular circum- hyperbola which is) the is@d@onjugate of the line
OP. See A.P. Hatzipolakis and P. Yiu, Hyacinthos, messages 4243249, 8/19/00.

12The Tarry point.
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2. Show that the Kiepert hyperbola is the locus of points whagelars are per-
pendicular to the Euler liné?

3. Let A’B’C’ be the orthic triangle. The Brocard axes (the line joinirgt¢hcum-
center and the symmedian point) of the triangleB’'C’, A’BC’, and A’B’C
intersect at the Kiepert centéf.

(b* — c*)x* =0

Consider the locus of point8 for which the three point#®, P* (isotomic conjugate)
and P* (isogonal conjugate) are collinear.= (z : y : z), then we require

11.3.4 The superior Kiepert hyperbola)

cyclic

x y z
0 = Yz zZT xy
a’yz blzx cxy

a’ryz(y? — 22) + b2zwy(2? — 2?) + Aayz(2? — y?)
= —ayz((b* — A2 + (2 — a®)y? + (a* — b*)2?).

Excluding points on the side lines, the locusfofs the conic
(b — A)a? + (2 — a®)y? + (a® — bH)22 = 0.
We note some interesting properties of this conic:

e |t passes through the centroid and the vertices of the supeidngle, namely,
the four pointg(+1 : £1: £1).

¢ |t passes through the four incenters, namely, the four pdits : +b : +c).
Since these four points form an orthocentric quadruplectiméc is a rectangular
hyperbola.

¢ Since the matrix representing the conic is diagonal, théecef the conic has
coordinates ;1 : 15 : —x137), Which is the Steiner point.

c2—a? " a?2-b?

Exercises

1. All conics passing through the four incenters are tangeouo fixed straight
lines. What are these line$?

2. Let P be a given point other than the incenters. Show that the ceftiee conic
through P and the four incenters is the fourth intersection of theuwicircle
and the circumconic with perspectBr- P (barycentric square ap). 1°

130. Bottema and M.C. van Hoorn, Problem 6B8Heuw Archief voor Wiskundév 1 (1983) 79. See also
R.H. Eddy and R. Fritsch, On a problem of Bottema and van Habich, IV 13 (1995) 165 — 172.

14Floor van Lamoen, Hyacinthos, message 1251, 8/19/00.

15The conicC is self-polar. Its dual conic passes through the four iremntThis means that the coric
are tangent to the 4 linesax + +by + £cz = 0.

18F|oor van Lamoen, Hyacinthos, message 1401, 9/11/00.
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3. Let X be the pedal oA on the sideBC of triangle ABC'. For a real numbet,
let A; be the point on the altitude throughsuch thatX A; = t- X A. Complete
the squarest; X X, A, and A, X XA, with X}, and X, on the lineBC. '’ Let
A, = BA. N CA,;, and A} be the pedal ofi; on the sideBC. Similarly define
B} andC}’. Show that as varies, triangledy B;'C}’ is perspective wittdi BC,
and the perspector traverses the Kiepert hyperbdla.

11.3.5 The Feuerbach hyperbola

Z alb—c)(s—a)yz=0

cyclic

This is the isogonal transform of th@/-line. The rectangular hyperbola through
the incenter. Its center is the Feuerbach point.

11.3.6 The Jerabek hyperbola

The Jerabek hyperbola
Z a?(b* — c*)Sa 0
— =

cyclic

is the isogonal transform of the Euler line. Its center isghimt
(0* — c®)%84 : (¢ — a?)?Sp : (a® — b*)2S0)

on the nine-point circlet?

Exercises

1. Find the coordinates of the fourth intersection of the Fleaehn hyperbola with
the circumcircle?®

2. Animate a pointP on the Feuerbach hyperbola, and construct its pedal circle.
This pedal circle always passes through the Feuerbach point

3. Three particles are moving at equal speeds along the paopdsnrd from/ to
the side lines. They form a triangle perspective witBC'. The locus of the
perspector is the Feuerbach hyperbola.

4. The Feuerbach hyperbola is the locus of pdintor which the cevian quotient
I/P lies on theOI-line.?!

17A.P. Hatzipolakis, Hyacinthos, message 3370, 8/7/01.

187 P, Hatzipolakis, Hyacinthos, message 3370, 8/7/01.

19The Jerabek center appears¥gs in ETC.

20( 0T B TeG—gz |1+ ). This point appears ak 104 in ETC.
21p. Yiu, Hyacinthos, message 1013, 6/13/00.
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5. Find the fourth intersection of the Jerabek hyperbola withdircumcircle??

6. Let/ be a line througlD. The tangent atf to the rectangular hyperbola which
is the isogonal conjugate éfintersects at a point on the Jerabek hyperbdta.

22( a? :--.:.--). This point appears a&74 in ETC.

2a47a2(b2+62)7(b2762)2

23B. Gibert, Hyacinthos, message 4247, 10/30/01.
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11.4 Envelopes
The envelope of the parametrized family of lines

(ap + art + agt®)x + (bo + bit + bat®)y + (co + 1t + cat?)z2 =0
is the conié*

(a12 + by + c12)* — 4(apz + boy + co2)(asx + boy + c22) = 0,
provided that the determinant

ap a1 a2
bo b1 ba| #£0.
Ch €1 C2

Proof. This is the dual conic of the conic parametrized by

T yYy:z= a()+a1t+a2t2 : b() +b1t+b2t2 : Co +Clt+02t2.

11.4.1 The Artzt parabolas

Consider similar isosceles triangld8 BC, AB?C andABC? constructed on the sides
of triangle ABC.. The equation of the lin&?C? is

(8% — 284t — t%)x + (S% +2(Sa + Sp)t +t2)y + (S? +2(Sc + Sa)t +1%)z = 0,
wheret = Sy = S - cot 0. As 6 varies, this envelopes the conic

(=Sax+ Py +022) — S (x+y+2)(~r+y+2)=0

11.4.2 Envelope of area-bisecting lines

Let Y be a point on the linedC. There is a unique poinZ on AB such that the
signed area ofAZY is half of triangleABC. We callY Z an area-bisecting line. If
Y=(01-t:0:t),thenZ =(1— % : 5 :0)=(2t—1:1:0. ThelineYZ has
equation
1—-¢t 0 ¢
O=|2t—1 1 0 |=—to+ (—t+2y+ (1 —1)z.
T Yy z

This envelopes the conic
(x+y+2)*—8yz=0.

This conic has representing matrix

24This can be rewritten 85 (4apaz — a?)z? + 2(2(bocz + baco) — bici)yz = 0.
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with adjoint matrix

This is ahyperbolawith center at the vertex.

To construct this as a 5-point conic, we need only find 3 pantshe hyperbola.
Here are three obvious points: the centr6id(1 : —1 : 0) and(1 : 0 : —1). Unfor-
tunately the latter two are infinite point: they give the Bn&B and AC' as asymptotes
of the hyperbola. This means that the axes of the hyperbeltharbisectors of angle
A. Thus images of7 in these axes give three more points on the hyperbola. To find a
fifth point, we setr = 0 and obtainy + z)2 —8yz =0, ...,y —3z: 2z = £2v/2: 1,

y:z=3+2V2:1=(V2+1)?:1=v2+1:V2F 1

11.4.3 Envelope of perimeter-bisecting lines

Let Y be a point on the lineAC. There is a unique poinZ on AB such that the
(signed) lengths of the segmemd” and AZ add up to the semiperimeter of triangle
ABC. We callY Z a perimeter-bisecting line. lAY = ¢, thenAZ = s —t. The
coordinates of the pointsaté = (b—t:0:t)andZ = (c—s+t:s—t:0). The
line Y Z has equation

(t? — st)x + (t* — (s —c)t)y + (1> — (s + b)t + bs)z = 0.
These lines envelopes the conic

(sx+ (s —c)y+ (s +b)2)> —4bsz(z +y+2) =0

with representing matrix

52 s(s—c¢) s(s —b)
SES —¢) (s —c)? (s=b)(s—c¢)

This conic is a parabola tangent to the liéd and AB at the point{—(s — b) :
0:s)and(—(s —c):5:0).2°

25These are the points of tangency of theexcircle with the side lines.
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11.4.4 The tripolars of points on the Euler line
A typical point on the Euler line

> Sa(Sp—Sc)r=0

cyclic
has coordinate§Sgc +t: Sca +t: Sap + t), with tripolar

1
2 Sporit "

cyclic

or
0= (W+tw+t)z= Y (Spc +a*Sat +t*)z.

cyclic cyclic

The envelope is the conic
((12SAJC + bZSBy + 62802)2 —4Sapc(x+y+ 2)(Sax+ Sy + Scz) =0.
This can be rewritten as

> Saa(Sp — Sc)*a® — 2Spc(Sc — Sa)(Sa — Sp)yz = 0.
cyclic

This can be rewritten as
> Saa(Sp — Sc)*a® = 28pc (S — Sa)(Sa — Sp)yz = 0.
cyclic

It is represented by the matrix

Saa(Sp —Sc)? —SaB(SB —Sc)(Sc —Sa) —Sca(Sa—5SB)(Sp—Sc)
M=| —Sap(Sp—5Sc)(Sc —5Sa) SpB(Sc — Sa) —Spc(Sc — Sa)(Sa— SB)
Sca(Sa—SB)(Sp—Sc) —Sc(Sc —Sa)(Sa—Ss) Scc(Sa — SB)

This is clearly an inscribed conic, tangent to the side lineshe points(0 :
Sc(Sa—SB):Sp(Sc—S54)), (Sc(Sa—Sp):0:54(S — S¢)), and(Sg(Sc —
Sa):Sa(Sp — Sc) : 0). The perspector is the poifft

( 1 . 1 _ 1 >
Sa(Sp—Sc)  Sp(Sc —Sa)  Sc(Sa—SB))’

The isotomic conjugate of this perspector being an infirdiatp the conic is a parabol.

26This point appears akg4s in ETC.
27The focus is the poink 12 in ETC:

a2 b2 c2
(SA(SB —8Sc¢)  Sp(Sc—Sa) " Sc(Sa-— 53)) ’
Its directrix is the line of reflection of the focuse.,

Z Saa(Sp — Sc)x =0.

cyclic
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Exercises

1. Animate a point P on the circumcircle, and construct a ciré@éP), centerP,
and radius half of the inradius. Find the envelope of thecaldixis ofC(P) and
the incircle.

2. Animate a point P on the circumcircle. Construct the isotomic conjugate ®f it

isogonal conjugats,e., the point@Q = (P*)*. What is the envelope of the line
joining PQ? %8

28The Steiner point.
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Some More Conics

12.1 Conics associated with parallel intercepts

12.1.1 Lemoine’s thorem

Let P = (u : v : w) be a given point. Construct parallels througho the side lines,
intersecting the side lines at the points

Yo=(u:0:v+w), Zo=(u:v+w:0);
Zy=(w+u:v:0), Xo=(0:v:w+u);
Xe=0:u+v:w), Ye=(u+v:0:w).
A
Zy
ZHM
B X, X C

Theses points lie on a coni€ p, with equation

Z vw(v + w)z® — u(vw + (w + u)(u + v))yz = 0.

cyclic
This equation can be rewritten as

- (u+v+w)?(uyz + vex + wry)
+ (x4+y+2)(vwlv+ w)z + wu(w +u)y +uwv(u+v)z) = 0.

From this we obtain
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Theorem (Lemoine)

The conic through the 6 parallel intercepts Bfis a circle if and only if P is the
symmedian point.

Exercises

1. Show that the coni€p through the 6 parallel intercepts throughis an ellipse,
a parabola, or a hyperbola according/ass inside, on, or outside the Steiner
in-ellipse, and that its center is the midpoint of tReand the cevian quotient
G/p.1

2. Show that the Lemoine circle is concentric with the Brocardle. 2

12.1.2 A conic inscribed in the hexagonV’ (P)

While Cp is a conic circumscribing the hexagd¥i(P) = Y,Y.Z,Z, X . X5, there is
another conic inscribed in the same hexagon. The sides dietkeegon have equations

Y,Y.: y=0; Y.Zy: —vwz+ w(w+ u)y + v(u+v)z =0;
IyZy: z=0; ZoXe: w4 w)r —wuy + u(u+v)z =0;
X Xp: =0 XpY, o v(v+w)x + u(w+ u)y —uvz = 0.

These correspond to the following points on the dual cohie:vertices and

1_w+u.u+’u v+w_ 1_u+v v+w_w+u_ 1
: " - , - - , o " : .

It is easy to note that these six points lie on the circumconic

v+ w w4+ u U+ v
+ +
T Y z

=0.

It follows that the 6 lines are tangent to the incribed conic

Z (v +w)?x? — 2(w + u)(u +v)yz = 0,

cyclic

with center(2u + v + w : u + 2v + w : © + v + 2w) and perspector
111
v+w wHu utv)’

1The center has coordinates(2vw+u(v+w—u)) : v(2wut+v(w+u—v)) : w(2uv+w(utv—w)).
2The center of the Lemoine circle is the midpoint betwégandG/K = O.
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Zy

Exercises

1. Find the coordinates of the points of tangency of this ifxdiconic with the
Y.Z,, Z,X. and XY, and show that they form a triangle perspective with

ABC at?®
w0t w?
v+w wHu utv/’

12.1.3 Centers of inscribed rectangles

Let P = (x : y : z) be a given point. Construct the inscribed rectangle whgsedge
is the parallel taBC throughP. The vertices of the rectangle on the sid&s andAB
arethe point§z : y + z: 0) and(x : 0 : y + 2).

The center of the rectangle is the point

A = (a*z:a*(x+y+2)— Spr:ad(x+y+2) — Scx).

Similarly, consider the two other rectangles with top eddpeugh P parallel to
C' A and AB respectively, with centerB’ andC’. The triangleA’ B'C’ is perspective
with ABC'if and only if

(a*(z +y+2) — Spx)(b*(z + y + 2) — Scy)(*(x +y + ) — Saz)
= (*(z+y+2)—Scx)(b?(x +y+z)— Say)(P(z+y+2) — Spz).

The first terms of these expressions cancel one another, geedast terms. Further
cancelling a common factar+ y + z, we obtain the quadratic equation

> a*Sa(Sp - Sc)yz+ (x+y+2) Y b*(Sp— Sc)z=0.

cyclic

3 0?2 w? w? . . w? w? w2
(wtw: s ) (G rwtus i) and(Ghg - e ru o).




144 YIU: Introduction to Triangle Geometry

This means that the locus @f for which the centers of the inscribed rectangles
form a perspective triangle is a hyperbola in the pencil geed by the Jerabek hyper-
bola

ZazSA(SB —Sc)yz=0

and the Brocard axi® K
> 6P (S — So)r =
cyclic

Since the Jerabek hyperbola is the isogonal transform dEtther line, it contains the
point H* = O andG* = K. The conic therefore passes throughand K. It also

contains the de Longchamps poibt= (—Sgc + Sca + Sap : -+ : ---) and the
point(SB +Sc—8Sa:Sc+84—8Sg:54+S5B —Sc).4

P Perspector
circumcenter (55— : 252 ISCA | soTg B)
symmedian point (3a% + bg ca® + 3b2 27 a2 + b2 + 3¢?)
de Longchamps point (Spc(S? + QSAA) o)
(Ba2—b2—c2:-onn) (m;.......)

Exercises

1. Show that the three inscribed rectangles are similar if aiigib P is the point

a? _ b> ) c?
t+a2 t4+0b2 t+c2)’

wheret is the unique positive root of the cubic equation

3 — (a0 + b2 + 2a®)t? — 2a*b*c = 0.

“None of these perspectors appears in the current editigi 6f
5Corrected by Peter Moses, 11/10/04.
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12.2 Lines simultaneously bisecting perimeter and area

Recall from§11.4.2 that thed-area-bisecting lines envelope the conic whose dual is

represented by the matrix
2 1 1
M, = 1 0 -1 ].
1 -1 0
On the other hand, the-perimeter-bisecting lines envelope another conic whosd d
is represented by
2(s—a) s—b s—c
My = s—b 0 -5 .
s—c -5 0

To find a line simultaneously bisecting the area and perimete seek an intersection
of of the two dual conics represented bf; andM-. In the pencil of conics generated
by these two, namely, the conics represented by matricéedbtmt¢M; + M, there
is at least one member which degenerates into a union of tes.liThe intersections
of the conics are the same as those of these lines with anyfdherm. Now, for any
real parametet,

20t+s—a) t+s—b t+s—c
det(tM; + My) = t+s—0b 0 —(t+s)
t+s—c —(t+s) 0

= 2t+s)(t+s—b)(t+s—c)—2(t+35)?*(t+s—a)
= 20@t+s)[t+s—=b)(t+s—c)+(t+s)(t+s—a)
= —2(t+s)[2(t + 5)* — 25(t + 5) + be]

By choosingt = —s, we obtain
(—2(1 —b —c)
—sMy+My=| -b 0 O
—c 0 0
which represents the degenerate conic
2ax? + 2bxy + 2cxy = 2x(ax + by + cz) = 0.
In other words, the intersections of the two dual conics lagesame as those
2 oy +rz—yz=0

(represented by/,) and the linesx = 0 andaz + by + cz = 0.

With 2 = 0 we obtainyz = 0, and hence the point® : 0 : 1) and(0 : 1 : 0) on
the dual conic. These correspond to the line$ and AB. These clearly are not area
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bisecting lines. This means that such a line must pass thrthejincenter, and with
corresponding satisfying

20t? — (a+b+c)t+c=0.

From this,

_(a+b+e)E/(a+b+c)2—8bc  sEs2—2be

4b 2b

The division points oAC are

(17t:0:t):(2b75$\/5272bc:0:sj:\/5272bc).



Chapter 12: Some More Conics 147

12.3 Parabolas with vertices of a triangle as foci
and sides as directrices

Given triangleA BC', consider the three parabolas each with one vertex as foditha
opposite side as directrix, and call thesedhe b—, andc—parabolas respectively. The
vertices are clearly the midpoints of the altitudes. No tithese parabolas intersect.
Each pair of them, however, has a unique common tangenthviditbe perpendicular
bisector of a side of the triangle. The three common tangéetefore intersect at the
circumcenter.

The points of tangency of the perpendicular biseé&6rwith theb— andc—parabolas
are inverse with respect to the circumcircle, for they aréistanceﬁ and% from
the circumcenter. These points of tangency can be easily constructed asvillo
Let H be the orthocenter of triangléBC, H, its reflection in the sid&C. It is well
known thatH, lies on the circumcircle. The intersections®H, andC H, with the
perpendicular bisector @®C' are the points of tangency with tlhe- andc—parabolas
respectively.

Exercises

1. Find the equation of the-parabola®

6_62,2 a?(c?y? 4+ 2Sayz + b%22) = 0.
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12.4 The Soddy hyperbolas and Soddy circles

12.4.1 The Soddy hyperbolas

Given triangleABC, consider the hyperbola passing throughand with foci atB
andC. We shall call this the-Soddy hyperbola of the triangle, since this and related
hyperbolas lead to the construction of the famous Soddiecifithe reflections of in

the sideBC and its perpendicular bisector are clearly points on theedayperbola, so

is the symmetric oA with respect to the midpoint d8C'. The vertices of the hyperbola
on the transverse axiBC are the point§0: s —b:s—c¢),and(0: s—c: s —b), the
points of tangency of the sidBC with the incircle and thed-excircle.

Likewise, we speak of th&- and C-Soddy hyperbolas of the same triangle, and
locate obvious points on these hyperbolas.

12.4.2 The Soddy circles

Given triangleABC, there are three circles centered at the vertices and nwtaal
gent to each other externally. These are the cirdles— a), B(s — b), andC(s — c¢).

The Soddy circlef triangle ABC are the two circles each tangent to these three cir-
cles, all externally or all internally. The centers of thed8y circles clearly are the
intersections of the three Soddy hyperbolas.
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Exercises
1. Show that the equation of-Soddy hyperbola is

F, = (c+a—0b)a+b—rc)(y*+2%)
—2(a® + (b—¢)*)yz — 4b(b — ¢)zx + 4(b — c)cay = 0.
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12.5 Appendix: Constructions with conics

Given 5 points4, B, C, D, E, no three of which are collinear, and no four concyclic,
the conicC. Through these 5 points is either an ellipse, a parabolahgparbola.

12.5.1 The tangent at a point ore

(1) P:= ACN BD;
2)Q :=ADNCE;
(3)R:= PQNBE.
AR is the tangent afl.

12.5.2 The second intersection df and a line ¢ through A
(1) P:= ACNBE;

(2)Q:= (N BD;
B)R:= PQNCD;
(4) A’ := (N ER.

A’ is the second intersection 6fand?.

12.5.3 The center of2

(1) B’ := the second intersection Gfwith the parallel througtB to AC;
(2) £, := the line joining the midpoints BB’ and AC;
(3) ¢’ :=the second intersection Gfwith the parallel througlt' to AB;
(4) £.. := the line joining the midpoints of'C’ and AB;
(5) O := £, N L. is the center of the coni€.

12.5.4 Principal axes of®

(1) K(O) := any circle through the centér of the conicC.
(2) Let M be the midpoint ofAB. Construct (lOM and (i) the parallel through
O to AB each to intersect the circle at a point. Join these two poinfisrm a linel.
(3) Repeat (2) for another chorti”, to form a line?’.
@P:=int.
(5) Let K P intersect the circld((O) at X andY".
Then the line®) X andOY are the principal axes of the cortic

12.5.5 \Vertices of©

(1) Construct the tangent &t to intersect to the axe3.X andQOY at P and( respec-
tively.

(2) Construct the perpendicular feet and@’ of A on the axe®© X andOY'.

(3) Construct a tanger®7" to the circle with diameteP P’. The intersections of
the lineO X with the circleO(T') are the vertices on this axis.

(4) Repeat (3) for the circle with diametéx)’.
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12.5.6 Intersection ofC with a line £

Let F' be a focus{ a directrix, anc: = the eccentricity.

() LetH = LN,

(2) Take an arbitrary poinP with pedal@ on the directrix.

(3) Construct a circle, centd?, radiuse - PQ.

(4) ThroughP construct the parallel td, intersecting the directrix ab.

(5) ThroughO construct the parallel t&'H, intersecting the circle above X and
Y.

(6) The parallels through' to PX andPY intersect the given ling€ at two points
on the conic.






