
Introduction to the Geometry
of the Triangle

Paul Yiu

Summer 2001

Department of Mathematics
Florida Atlantic University

Version 13.0411

April 2013





Contents

1 The Circumcircle and the Incircle 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Coordinatization of points on a line . . . . . . . . . . . . . . 1
1.1.2 Centers of similitude of two circles . . . . . . . . . . . . . . 2
1.1.3 Harmonic division . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Menelaus and Ceva Theorems . . . . . . . . . . . . . . . . . 3
1.1.5 The power of a point with respect to a circle . . . . . . . . . . 4

1.2 The circumcircle and the incircle of a triangle . . . . . . . .. . . . 5
1.2.1 The circumcircle . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 The incircle . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 The centers of similitude of(O) and(I) . . . . . . . . . . . . 6
1.2.4 The Heron formula . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Euler’s formula and Steiner’s porism . . . . . . . . . . . . . . . .. 10
1.3.1 Euler’s formula . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Steiner’s porism . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Appendix: Mixtilinear incircles . . . . . . . . . . . . . . . . . . .. 12

2 The Euler Line and the Nine-point Circle 15
2.1 The Euler line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Homothety . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 The centroid . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 The orthocenter . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The nine-point circle . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 The Euler triangle as a midway triangle . . . . . . . . . . . . 17
2.2.2 The orthic triangle as a pedal triangle . . . . . . . . . . . . .17
2.2.3 The nine-point circle . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Triangles with nine-point center on the circumcircle. . . . . 19

2.3 Simson lines and reflections . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Simson lines . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Line of reflections . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Musselman’s Theorem: Point with given line of reflections . . 20
2.3.4 Musselman’s Theorem: Point with given line of reflections

(Alternative) . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Blanc’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 21



iv CONTENTS

2.4 Appendix: Homothety . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Three congruent circles with a common point and each tangent

to two sides of a triangle . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Squares inscribed in a triangle and the Lucas circles .. . . . 22
2.4.3 More on reflections . . . . . . . . . . . . . . . . . . . . . . . 23

3 Homogeneous Barycentric Coordinates 25
3.1 Barycentric coordinates with reference to a triangle . .. . . . . . . 25

3.1.1 Homogeneous barycentric coordinates . . . . . . . . . . . . .25
3.1.2 Absolute barycentric coordinates . . . . . . . . . . . . . . . .26

3.2 Cevians and traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Ceva Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Isotomic conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Equal-parallelian point . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Yff’s analogue of the Brocard points . . . . . . . . . . . . . . 32

3.4 Conway’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Conway’s formula . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 The Kiepert perspectors . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.1 The Fermat points . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.2 Perspective triangles . . . . . . . . . . . . . . . . . . . . . . 35
3.5.3 Isosceles triangles erected on the sides and Kiepert perspectors 36
3.5.4 The Napoleon points . . . . . . . . . . . . . . . . . . . . . . 37
3.5.5 Nagel’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Straight Lines 41
4.1 The equation of a line . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Two-point form . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Intercept form: tripole and tripolar . . . . . . . . . . . . . .. 42

4.2 Infinite points and parallel lines . . . . . . . . . . . . . . . . . . .. 44
4.2.1 The infinite point of a line . . . . . . . . . . . . . . . . . . . 44
4.2.2 Parallel lines . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Intersection of two lines . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Intersection of the Euler and Fermat lines . . . . . . . . . .. 46
4.3.2 Triangle bounded by the outer side lines of the squareserected

externally . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Pedal triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Perpendicular lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.1 The tangential triangle . . . . . . . . . . . . . . . . . . . . . 54
4.5.2 Line of ortho-intercepts . . . . . . . . . . . . . . . . . . . . . 55

4.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.1 The excentral triangle . . . . . . . . . . . . . . . . . . . . . 58



CONTENTS v

4.6.2 Centroid of pedal triangle . . . . . . . . . . . . . . . . . . . 59
4.6.3 Perspectors associated with inscribed squares . . . . .. . . . 59

5 Circles I 61
5.1 Isogonal conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 The circumcircle as the isogonal conjugate of the line atinfinity . . . 63
5.3 Simson lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Simson lines of antipodal points . . . . . . . . . . . . . . . . 66
5.4 Equation of the nine-point circle . . . . . . . . . . . . . . . . . . .68
5.5 Equation of a general circle . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Appendix: Miquel Theory . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.1 Miquel Theorem . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.2 Miquel associate . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.3 Cevian circumcircle . . . . . . . . . . . . . . . . . . . . . . 71
5.6.4 Cyclocevian conjugate . . . . . . . . . . . . . . . . . . . . . 71

6 Circles II 75
6.1 Equation of the incircle . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 The excircles . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Intersection of the incircle and the nine-point circle .. . . . . . . . 77

6.2.1 Radical axis of(I) and(N) . . . . . . . . . . . . . . . . . . 77
6.2.2 The line joining the incenter and the nine-point center . . . . 77

6.3 The excircles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4 The Brocard points . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5 Appendix: The circle triad(A(a), B(b), C(c)) . . . . . . . . . . . . 86

6.5.1 The Steiner point . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Circles III 89
7.1 The distance formula . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Circle equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2.1 Equation of circle with center(u : v : w) and radiusρ: . . . . 91
7.2.2 The power of a point with respect to a circle . . . . . . . . . .91
7.2.3 Proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3 Radical circle of a triad of circles . . . . . . . . . . . . . . . . . .. 93
7.3.1 Radical center . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.2 Radical circle . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.3 The excircles . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.4 The de Longchamps circle . . . . . . . . . . . . . . . . . . . 95

7.4 The Lucas circles . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.5 Appendix: More triads of circles . . . . . . . . . . . . . . . . . . . 97



vi CONTENTS

8 Some Basic Constructions 99
8.1 Barycentric product . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.1.2 Barycentric square root . . . . . . . . . . . . . . . . . . . . . 100
8.1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 Harmonic associates . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.1 Superior and inferior triangles . . . . . . . . . . . . . . . . . 102

8.3 Cevian quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.4 The Brocardians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9 Circumconics 109
9.1 Circumconics as isogonal transforms of lines . . . . . . . . .. . . . 109
9.2 The infinite points of a circum-hyperbola . . . . . . . . . . . . .. . 113
9.3 The perspector and center of a circumconic . . . . . . . . . . . .. . 114

9.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.4 Appendix: Ruler construction of tangent atA . . . . . . . . . . . . . 116

10 General Conics 117
10.1 Equation of conics . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10.1.1 Carnot’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 117
10.1.2 Conic through the traces ofP andQ . . . . . . . . . . . . . . 118

10.2 Inscribed conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.2.1 The Steiner in-ellipse . . . . . . . . . . . . . . . . . . . . . . 119

10.3 The adjoint of a matrix . . . . . . . . . . . . . . . . . . . . . . . . 121
10.4 Conics parametrized by quadratic functions . . . . . . . . .. . . . . 122

10.4.1 Locus of Kiepert perspectors . . . . . . . . . . . . . . . . . . 122
10.5 The matrix of a conic . . . . . . . . . . . . . . . . . . . . . . . . . 124

10.5.1 Line coordinates . . . . . . . . . . . . . . . . . . . . . . . . 124
10.5.2 The matrix of a conic . . . . . . . . . . . . . . . . . . . . . . 124
10.5.3 Tangent at a point . . . . . . . . . . . . . . . . . . . . . . . . 124

10.6 The dual conic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.6.1 Pole and polar . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.6.2 Condition for a line to be tangent to a conic . . . . . . . . .. 125
10.6.3 The dual conic . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.6.4 The dual conic of a circumconic . . . . . . . . . . . . . . . . 125

10.7 The type, center and perspector of a conic . . . . . . . . . . . .. . 127
10.7.1 The type of a conic . . . . . . . . . . . . . . . . . . . . . . . 127
10.7.2 The center of a conic . . . . . . . . . . . . . . . . . . . . . . 127
10.7.3 The perspector of a conic . . . . . . . . . . . . . . . . . . . . 127

11 Some Special Conics 131
11.1 Inscribed conic with prescribed foci . . . . . . . . . . . . . . .. . . 131

11.1.1 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.1.2 The Brocard ellipse . . . . . . . . . . . . . . . . . . . . . . . 131
11.1.3 The de Longchamps ellipse . . . . . . . . . . . . . . . . . . 132
11.1.4 The Lemoine ellipse . . . . . . . . . . . . . . . . . . . . . . 132



CONTENTS vii

11.1.5 The inscribed conic with centerN . . . . . . . . . . . . . . . 133
11.2 Inscribed parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
11.3 Some special conics . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11.3.1 The Steiner circum-ellipsexy + yz + zx = 0 . . . . . . . . . 135
11.3.2 The Steiner in-ellipse

∑

cyclic x
2 − 2yz = 0 . . . . . . . . . . 135

11.3.3 The Kiepert hyperbola
∑

cyclic(b
2 − c2)yz = 0 . . . . . . . . 135

11.3.4 The superior Kiepert hyperbola
∑

cyclic(b
2 − c2)x2 = 0 . . . 136

11.3.5 The Feuerbach hyperbola . . . . . . . . . . . . . . . . . . . . 137
11.3.6 The Jerabek hyperbola . . . . . . . . . . . . . . . . . . . . . 137

11.4 Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
11.4.1 The Artzt parabolas . . . . . . . . . . . . . . . . . . . . . . . 139
11.4.2 Envelope of area-bisecting lines . . . . . . . . . . . . . . . .139
11.4.3 Envelope of perimeter-bisecting lines . . . . . . . . . . .. . 140
11.4.4 The tripolars of points on the Euler line . . . . . . . . . . .. 141

12 Some More Conics 143
12.1 Conics associated with parallel intercepts . . . . . . . . .. . . . . . 143

12.1.1 Lemoine’s thorem . . . . . . . . . . . . . . . . . . . . . . . 143
12.1.2 A conic inscribed in the hexagonW (P ) . . . . . . . . . . . . 144
12.1.3 Centers of inscribed rectangles . . . . . . . . . . . . . . . . .145

12.2 Lines simultaneously bisecting perimeter and area . . .. . . . . . . 147
12.3 Parabolas with vertices of a triangle as foci

and sides as directrices . . . . . . . . . . . . . . . . . . . . . . . . . 149
12.4 The Soddy hyperbolas and Soddy circles . . . . . . . . . . . . . .. 150

12.4.1 The Soddy hyperbolas . . . . . . . . . . . . . . . . . . . . . 150
12.4.2 The Soddy circles . . . . . . . . . . . . . . . . . . . . . . . . 150

12.5 Appendix: Constructions with conics . . . . . . . . . . . . . . .. . 152
12.5.1 The tangent at a point onC . . . . . . . . . . . . . . . . . . . 152
12.5.2 The second intersection ofC and a lineℓ throughA . . . . . . 152
12.5.3 The center ofC . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.5.4 Principal axes ofC . . . . . . . . . . . . . . . . . . . . . . . 152
12.5.5 Vertices ofC . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.5.6 Intersection ofC with a lineL . . . . . . . . . . . . . . . . . 153





Chapter 1

The Circumcircle and the
Incircle

1.1 Preliminaries

1.1.1 Coordinatization of points on a line

LetB andC be two fixed points on a lineL. Every pointX onL can be coordinatized
in one of several ways:

(1) the ratio of divisiont = BX
BC

,
(2) theabsolutebarycentric coordinates: an expression ofX as aconvexcombina-

tion ofB andC:
X = (1− t)B + tC,

which expresses for an arbitrary pointP outside the lineL, the vectorPX as a linear
combination of the vectorsPB andPC:

PX = (1− t)PB+ tPC.

P

B CX

(3) thehomogeneousbarycentric coordinates: the proportionXC : BX, which are
masses atB andC so that the resulting system (of two particles) hasbalance pointat
X.
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1.1.2 Centers of similitude of two circles

Consider two circlesO(R) andI(r), whose centersO andI are at a distanced apart.
Animate a pointX onO(R) and construct a ray throughI oppositelyparallel to the
rayOX to intersect the circleI(r) at a pointY . You will find that the lineXY always
intersects the lineOI at the same pointP . This we call theinternal center of similitude
of the two circles. It divides the segmentOI in the ratioOP : PI = R : r. The
absolute barycentric coordinates ofP with respect toOI are

P =
R · I + r ·O

R+ r
.

O

I

X
Y ′

Y

P Q

If, on the other hand, we construct a ray throughI directly parallel to the rayOX
to intersect the circleI(r) atY ′, the lineXY ′ always intersectsOI at another pointQ.
This is theexternal center of similitudeof the two circles. It divides the segmentOI in
the ratioOQ : QI = R : −r, and has absolute barycentric coordinates

Q =
R · I − r ·O

R− r
.

1.1.3 Harmonic division

Two pointsX andY are said to divide two other pointsB andC harmonicallyif

BX

XC
= −BY

Y C
.

They areharmonic conjugatesof each other with respect to the segmentBC.

Exercises

1. If X, Y divideB, C harmonically, thenB, C divideX, Y harmonically.

2. Given a pointX on the lineBC, make use of the notion of the centers of simili-
tude of two circles to construct the harmonic conjugate ofX with respect to the
segmentBC. Distinguish between two cases whenX dividesBC internally and
externally.

3. Given two fixed pointsB andC, the locus of the pointsP for which |BP ||CP | = k

(constant) is a circle.
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1.1.4 Menelaus and Ceva Theorems

Consider a triangleABC with pointsX, Y , Z on the side linesBC, CA, AB respec-
tively.

Menelaus Theorem

The pointsX, Y , Z are collinear if and only if

BX

XC
· CY
Y A

· AZ
ZB

= −1.

A

B CX

Y

Z P

X

Y

Z

A

B C

Ceva Theorem

The linesAX,BY , CZ are concurrent if and only if

BX

XC
· CY
Y A

· AZ
ZB

= +1.

Ruler construction of harmonic conjugate

Let X be a point on the lineBC. To construct the harmonic conjugate ofX with
respect to the segmentBC, we proceed as follows.

P

X

Y
Z

A

B C X′

(1) Take any pointA outside the lineBC and construct the linesAB andAC.
(2) Mark an arbitrary pointP on the lineAX and construct the linesBP andCP

to intersect respectively the linesCA andAB atY andZ.
(3) Construct the lineY Z to intersectBC atX ′.
ThenX andX ′ divideB andC harmonically.
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1.1.5 The power of a point with respect to a circle

The powerof a pointP with respect to a circleC = O(R) is the quantityC(P ) :=
OP 2 − R2. This is positive, zero, or negative according asP is outside, on, or inside
the circleC. If it is positive, it is the square of the length of a tangent from P to the
circle.

P

T

T ′

X
Y

O

Theorem (Intersecting chords)

If a lineL throughP intersects a circleC at two pointsX andY , the productPX ·PY
(of signed lengths) is equal to the power ofP with respect to the circle.
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1.2 The circumcircle and the incircle of a triangle

For a generic triangleABC, we shall denote the lengths of the sidesBC, CA,AB by
a, b, c respectively. The symbolS denotestwice the area of the triangle.

1.2.1 The circumcircle

Thecircumcircle of triangleABC is the unique circle passing through the three ver-
ticesA, B, C. Its center, thecircumcenterO, is the intersection of the perpendicular
bisectors of the three sides. The circumradiusR is given by the law of sines:

2R =
a

sinA
=

b

sinB
=

c

sinC
.

D

O

A

B C

I

A

B CX

Y

Z

1.2.2 The incircle

The incircle is tangent to each of the three sidesBC, CA, AB (without extension).
Its center, theincenter I, is the intersection of the bisectors of the three angles. The
inradius r is related to the area12S by

S = (a+ b+ c)r.

If the incircle is tangent to the sidesBC atX, CA atY , andAB atZ, then

AY = AZ =
b+ c− a

2
, BZ = BX =

c+ a− b

2
, CX = CY =

a+ b− c

2
.

These expressions are usually simplified by introducing thesemiperimeters = 1
2 (a+

b+ c):

AY = AZ = s− a, BZ = BX = s− b, CX = CY = s− c.

Also, r = S
2s .
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1.2.3 The centers of similitude of(O) and (I)

Denote byT andT ′ respectively the internal and external centers of similitude of the
circumcircle and incircle of triangleABC.

OI

A

B CX

Y

Z

T
T ′

M

M ′

These are points dividing the segmentOI harmonically in the ratios

OT : TI = R : r, OT ′ : T ′I = R : −r.

Exercises

1. Use the Ceva theorem to show that the linesAX,BY , CZ are concurrent. (The
intersection is called theGergonne pointof the triangle).

2. Construct the three circles each passing through the Gergonne point and tangent
to two sides of triangleABC. The 6 points of tangency lie on a circle.

3. Given three pointsA, B, C not on the same line, construct three circles, with
centers atA,B, C, mutually tangent to each otherexternally.

4. Two circles are orthogonal to each other if their tangents atan intersection are
perpendicular to each other. Given three pointsA, B, C not on a line, construct
three circles with these as centers and orthogonal to each other.

5. The centersA andB of two circlesA(a) andB(b) are at a distanced apart. The
lineAB intersect the circles atA′ andB′ respectively, so thatA,B are between
A′,B′.

(1) Construct the tangents fromA′ to the circleB(b), and the circle tangent to
these two lines and toA(a) internally.

(2) Construct the tangents fromB′ to the circleA(a), and the circle tangent to
these two lines and toB(b) internally.

(3) The two circles in (1) and (2) are congruent.
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A′

A B
B′

6. Given a pointZ on a line segmentAB, construct a right-angled triangleABC
whose incircle touches the hypotenuseAB atZ. 1

7. (Paper Folding) The figure below shows a rectangular sheet ofpaper containing
a border of uniform width. The paper may be any size and shape,but the border
must be of such a width that the area of the inner rectangle is exactly half that of
the sheet. You have no ruler or compasses, or even a pencil. You must determine
the inner rectangle purely by paper folding.2

8. LetABC be a triangle with incenterI.

(1a) Construct a tangent to the incircle at the point diametrically opposite to its
point of contact with the sideBC. Let this tangent intersectCA atY1 andAB
atZ1.

(1b) Same in part (a), for the sideCA, and let the tangent intersectAB atZ2 and
BC atX2.

(1c) Same in part (a), for the sideAB, and let the tangent intersectBC atX3

andCA atY3.

(2) Note thatAY3 = AZ2. Construct the circle tangent toAC andAB atY3 and
Z2. How does this circle intersect the circumcircle of triangleABC?

9. The incircle of△ABC touches the sidesBC,CA,AB atD,E, F respectively.
X is a point inside△ABC such that the incircle of△XBC touchesBC atD
also, and touchesCX andXB atY andZ respectively.

1P. Yiu, G. Leversha, and T. Seimiya, Problem 2415 and solution, Crux Math.25 (1999) 110; 26 (2000)
62 – 64.

2Problem 2519,Journal of Recreational Mathematics, 30 (1999-2000) 151 – 152.
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(1) The four pointsE, F , Z, Y are concyclic.3

(2) What is thelocusof the center of the circleEFZY ? 4

1.2.4 The Heron formula

The area of triangleABC is given by

S

2
=
√

s(s− a)(s− b)(s− c).

This formula can be easily derived from a computation of the inradiusr and the radius
of one of thetritangent circles of the triangle. Consider theexcircleIa(ra) whose
center is the intersection of the bisector of angleA and the external bisectors of angles
B andC. If the incircleI(r) and this excircle are tangent to the lineAC atY andY ′

respectively, then

s− c

s− a

r

ra

I

Aa

Ba

Ca

s− c

s− b

A

B
C

Ia

X

Y

Z

(1) from the similarity of trianglesAIY andAIaY ′,

r

ra
=
s− a

s
;

(2) from the similarity of trianglesCIY andIaCY ′,

r · ra = (s− b)(s− c).

It follows that

r =

√

(s− a)(s− b)(s− c)

s
.

3International Mathematical Olympiad 1996.
4IMO 1996.
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From this we obtain the famous Heron formula for the area of a triangle:

S

2
= rs =

√

s(s− a)(s− b)(s− c).

Exercises

1. R = abc
2S .

2. ra = S
b+c−a .

3. Suppose the incircle of triangleABC touches its sidesBC, CA, AB at the
pointsX, Y , Z respectively. LetX ′, Y ′, Z ′ be the antipodal points ofX, Y , Z
on the incircle. Construct the raysAX ′,BY ′, andCZ ′.

Explain the concurrency of these rays by considering also the points of contact
of the excircles of the triangle with the sides.

4. Construct thetritangent circles of a triangleABC.

(1) Join each excenter to the midpoint of the corresponding side ofABC. These
three lines intersect at a pointP . (This is called theMittenpunktof the triangle).

(2) Join each excenter to the point of tangency of the incircle with the corre-
sponding side. These three lines are concurrent at another pointQ.

(3) The linesAP andAQ are symmetric with respect to the bisector of angleA;
so are the linesBP ,BQ andCP ,CQ (with respect to the bisectors of anglesB
andC).

5. Construct the excircles of a triangleABC.

(1) Let D, E, F be the midpoints of the sidesBC, CA, AB. Construct the
incenterS of triangleDEF , 5 and thetangents from S to each of the three
excircles.

(2) The 6 points of tangency are on a circle, which isorthogonalto each of the
excircles.

5This is called the Spieker point of triangleABC.
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1.3 Euler’s formula and Steiner’s porism

1.3.1 Euler’s formula

The distance between the circumcenter and the incenter of a triangle is given by

OI2 = R2 − 2Rr.

Construct thecircumcircle O(R) of triangleABC. BisectangleA andmark the
intersectionM of the bisector with the circumcircle. Construct the circleM(B) to
intersect this bisector at a pointI. This is the incenter since

∠IBC =
1

2
∠IMC =

1

2
∠AMC =

1

2
∠ABC,

and for the same reason∠ICB = 1
2∠ACB. Note that

(1) IM =MB =MC = 2R sin A
2 ,

(2) IA = r

sin A
2

, and

(3) by the theorem of intersecting chords,R2 −OI2 = thepowerof I with respect
to the circumcircle =IA · IM = 2Rr.

OI

A

B C

M

O

I

A

B CX

Y

Z

B′

A′

C′

1.3.2 Steiner’s porism
6 Construct the circumcircle(O) and the incircle(I) of triangleABC. Animate a
pointA′ on the circumcircle, and construct thetangents fromA′ to the incircle(I).
Extend these tangents to intersect the circumcircle again at B′ andC ′. The linesB′C ′

is always tangent to the incircle. This is the famous theoremon Steiner porism:if
two given circles are the circumcircle and incircle of one triangle, then they are the
circumcircle and incircle of a continuous family ofporistic triangles.

6Also known as Poncelet’s porism.
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Exercises

1. r ≤ 1
2R. When does equality hold?

2. SupposeOI = d. Show that there is a right-angled triangle whose sides ared, r
andR− r. Which one of these is the hypotenuse?

3. Given a pointI inside a circleO(R), construct a circleI(r) so thatO(R) and
I(r) are the circumcircle and incircle of a (family of poristic) triangle(s).

4. Given the circumcenter, incenter, and one vertex of a triangle, construct the tri-
angle.

5. Construct an animation picture of a triangle whose circumcenter lies on the in-
circle.7

7Hint: OI = r.
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1.4 Appendix: Mixtilinear incircles

A mixtilinear incircle of triangleABC is one that is tangent to two sides of the triangle
and to the circumcircle internally. Denote byA′ the point of tangency of the mixtilin-
ear incircleK(ρ) in angleA with the circumcircle. The centerK clearly lies on the
bisector of angleA, andAK : KI = ρ : −(ρ−r). In terms of barycentric coordinates,

K =
1

r
[−(ρ− r)A+ ρI].

Also, since the circumcircleO(A′) and the mixtilinear incircleK(A′) touch each other
atA′, we haveOK : KA′ = R− ρ : ρ, whereR is the circumradius. From this,

K =
1

R
[ρO + (R− ρ)A′].

Comparing these two equations, we obtain, by rearranging terms,

RI − rO

R− r
=
R(ρ− r)A+ r(R− ρ)A′

ρ(R− r)
.

We note some interesting consequences of this formula. First of all, it gives the
intersection of the lines joiningAA′ andOI. Note that the point on the lineOI repre-
sented by the left hand side isT ′.

I

O

K

A′

A

B C

O

KA

A′

A

B C

T−

M

I

This leads to a simple construction of the mixtilinear incircle: 8

Given a triangleABC, let P be the external center of similitude of the
circumcircle(O) and incircle(I). ExtendAP to intersect the circumcircle
atA′. The intersection ofAI andA′O is the centerKA of the mixtilinear
incircle in angleA.

The other two mixtilinear incircles can be constructed similarly.

8P.Yiu, Mixtilinear incircles,Amer. Math. Monthly106 (1999) 952 – 955.
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Exercises

1. Can any of the centers of similitude of(O) and(I) lie outside triangleABC?

2. There are three circles each tangent internally to the circumcircle at a vertex, and
externally to the incircle. It is known that the three lines joining the points of
tangency of each circle with(O) and(I) pass through the internal centerT of
similitude of(O) and(I). Construct these three circles.9

OI

A

B C

T+

3. Let T be the insimilicenter of(O) and(I), with pedalsY andZ onCA andAB
respectively. IfY ′ andZ ′ are the pedals ofY andZ onBC, calculate the length
of Y ′Z ′. 10

O
I

A

B C

T

X

Y

Z

Y ′Z′

9A.P. Hatzipolakis and P. Yiu, Triads of circles, preprint.
10A.P. Hatzipolakis and P. Yiu, Pedal triangles and their shadows,Forum Geom., 1 (2001) 81 – 90.





Chapter 2

The Euler Line and the
Nine-point Circle

2.1 The Euler line

2.1.1 Homothety

The similarity transformationh(T, r) which carries a pointX to the pointX ′ which
dividesTX ′ : TX = r : 1 is called thehomothetywith centerT and ratior.

O
N

G

D

EF

A

B C

G
H O

N

A′

B′C′ A

B C

2.1.2 The centroid

The three medians of a triangle intersect at the centroid, which divides each median in
the ratio2 : 1. If D, E, F are the midpoints of the sidesBC, CA, AB of triangle
ABC, the centroidG divides the medianAD in the ratioAG : GD = 2 : 1. The
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medial triangleDEF is the image of triangleABC under the homothetyh(G,− 1
2 ).

The circumcircle of the medial triangle has radius1
2R. Its center is the pointN =

h(G,− 1
2 )(O). This divides the segementOG in the ratioOG : GN = 2 : 1.

2.1.3 The orthocenter

The dilated triangleA′B′C ′ is the image ofABC under the homothetyh(G,−2). 1

Since the altitudes of triangleABC are the perpendicular bisectors of the sides of
triangleA′B′C ′, they intersect at the homothetic image of the circumcenterO. This
point is called theorthocenterof triangleABC, and is usually denoted byH. Note
that

OG : GH = 1 : 2.

The line containingO, G, H is called the Euler line of triangleABC. The Euler
line is undefined for the equilateral triangle, since these points coincide.

Exercises

1. A triangle is equilateral if and only if two of its circumcenter, centroid, and
orthocenter coincide.

2. The circumcenterN of the medial triangle is the midpoint ofOH.

3. The Euler lines of trianglesHBC,HCA,HAB intersect at a point on the Euler
line of triangleABC. What is this intersection?

4. The Euler lines of trianglesIBC, ICA, IAB also intersect at a point on the
Euler line of triangleABC. 2

5. (Gossard’s Theorem) Suppose the Euler line of triangleABC intersects the side
linesBC, CA, AB atX, Y , Z respectively. The Euler lines of the triangles
AY Z,BZX andCXY bound a triangle homothetic toABC with ratio−1 and
with homothetic center on the Euler line ofABC.

6. What is thelocusof the centroids of the poristic triangles with the same circum-
circle and incircle of triangleABC? How about the orthocenter?

7. Let A′B′C ′ be a poristic triangle with the same circumcircle and incircle of
triangleABC, and let the sides ofB′C ′,C ′A′,A′B′ touch the incircle atX, Y ,
Z.

(i) What is thelocusof the centroid ofXY Z?

(ii) What is thelocusof the orthocenter ofXY Z?

(iii) What can you say about the Euler line of the triangleXY Z?

1It is also called the anticomplementary triangle.
2Problem 1018,Crux Mathematicorum.
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2.2 The nine-point circle

2.2.1 The Euler triangle as a midway triangle

The image ofABC under the homothetyh(P, 12 ) is called themidwaytriangle ofP .
The midway triangle of the orthocenterH is called theEuler triangle. The circumcen-
ter of the midway triangle ofP is the midpoint ofOP . In particular, the circumcenter
of the Euler triangle is the midpoint ofOH, which is the same asN . The medial
triangle and the Euler triangle have the same circumcircle.

O

A

B C

A′

B′ C′
P

O′
O

N

D

EF

A

B C

H

X

Y

Z

A′

B′
C′

2.2.2 The orthic triangle as a pedal triangle

Thepedalsof a point are the intersections of the sidelines with the corresponding per-
pendiculars throughP . They form thepedal triangleof P . The pedal triangle of the
orthocenterH is called theorthic triangleof ABC.

A

B CX

Y

Z P

D

EF

A

B C

H

X

The pedalX of the orthocenterH on the sideBC is also the pedal ofA on the
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same line, and can be regarded as thereflectionof A in the lineEF . It follows that

∠EXF = ∠EAF = ∠EDF,

sinceAEDF is a parallelogram. From this, the pointX lies on the circleDEF ;
similarly for the pedalsY andZ of H on the other two sidesCA andAB.

2.2.3 The nine-point circle

From§2.2.1,2 above, the medial triangle, the Euler triangle, andthe orthic triangle have
the same circumcircle. This is called thenine-point circleof triangleABC. Its center
N , the midpoint ofOH, is called thenine-point centerof triangleABC.

ON

D

EF

A

B C

H

X

Y

Z

A′

B′
C′

Exercises

1. On the Euler line,
OG : GN : NH = 2 : 1 : 3.

2. Let P be a point on the circumcircle. What is thelocusof the midpoint ofHP?
Can you give a proof?

3. LetABC be a triangle andP a point. The perpendiculars atP toPA, PB, PC
intersectBC, CA,AB respectively atA′,B′, C ′.

(1)A′,B′, C ′ are collinear.3

(2) The nine-point circles of the (right-angled) trianglesPAA′, PBB′, PCC ′

are concurrent atP and another pointP ′. Equivalently, their centers are collinear.
4

3B. Gibert, Hyacinthos 1158, 8/5/00.
4A.P. Hatzipolakis, Hyacinthos 3166, 6/27/01. The three midpoints ofAA′, BB′, CC′ are collinear.

The three nine-point circles intersect atP and its pedal on this line.



Chapter 2: Euler Line and Nine-point Circle 19

4. If the midpoints ofAP , BP , CP are all on the nine-point circle, mustP be the
orthocenter of triangleABC? 5

5. (Paper folding) LetN be the nine-point center of triangleABC.

(1) Fold the perpendicular toAN atN to intersectCA atY andAB atZ.

(2) Fold the reflectionA′ of A in the lineY Z.

(3) Fold the reflections ofB in A′Z andC in A′Y .

What do you observe about these reflections?

2.2.4 Triangles with nine-point center on the circumcircle

We begin with a circle, centerO and a pointN on it, and construct a family of triangles
with (O) as circumcircle andN as nine-point center.

(1) Construct the nine-point circle, which has centerN , and passes through the
midpointM of ON .

(2) Animate a pointD on the minor arc of the nine-point circleinsidethe circum-
circle.

(3) Construct the chordBC of the circumcircle withD as midpoint. (This is simply
the perpendicular toOD atD).

(4) LetX be the point on the nine-point circle antipodal toD. Complete the paral-
lelogramODXA (by translating the vectorDO toX).

The pointA lies on the circumcircle and the triangleABC has nine-point centerN
on the circumcircle.

Here is an curious property of triangles constructed in thisway: letA′, B′, C ′ be
the reflections ofA, B, C in their own opposite sides. The reflection triangleA′B′C ′

degenerates,i.e., the three pointsA′,B′, C ′ are collinear.6

5Yes. See P. Yiu and J. Young, Problem 2437 and solution,Crux Math.25 (1999) 173; 26 (2000) 192.
6O. Bottema,Hoofdstukken uit de Elementaire Meetkunde, Chapter 16.
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2.3 Simson lines and reflections

2.3.1 Simson lines

Let P on the circumcircle of triangleABC.
(1) Construct its pedals on the side lines. These pedals are always collinear. The

line containing them is called theSimson lines(P ) of P .
(2) LetP ′ be the point on the cirucmcircle antipodal toP . Construct the Simson

line (P ′) andtrace the intersection points(P )∩ (P ′). Can you identify this locus?
(3) Let the Simson lines(P ) intersect the side linesBC, CA, AB atX, Y , Z re-

spectively. The circumcenters of the trianglesAY Z,BZX, andCXY form a triangle
homothetic toABC atP , with ratio 1

2 . These circumcenters therefore lie on a circle
tangent to the circumcircle atP .

O

N

A

B C

H

P

Q

O

N

A

B C

H

P

2.3.2 Line of reflections

Construct thereflections of the P in the side lines. These reflections are always
collinear, and the line containing them always passes through the orthocenterH, and
is parallel to the Simson lines(P ).

2.3.3 Musselman’s Theorem: Point with given line of reflections

LetL be a line through the orthocenterH.
(1) Choose an arbitrary pointQ on the lineL andreflect it in the side linesBC,

CA,AB to obtain the pointsX, Y , Z.
(2) Construct the circumcircles ofAY Z, BZX andCXY . These circles have a

common pointP , which happens to lie on the circumcircle.
(3) Construct the reflections ofP in the side lines of triangleABC. These are on

the lineL.
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2.3.4 Musselman’s Theorem: Point with given line of reflections
(Alternative)

Animate a pointQ on the circumcircle. LetQ′ be the second intersection of the line
HQ with the circumcircle.

(1) ThereflectionsX, Y , Z of Q on the side linesBC, CA, AB are collinear; so
are thoseX ′, Y ′, Z ′ of Q′.

(2) The linesXX ′, Y Y ′, ZZ ′ intersect at a pointP , which happens to be on the
circumcircle.

(3) Construct the reflections ofP in the side lines of triangleABC. These are on
the lineHQ.

2.3.5 Blanc’s Theorem

Animate a pointP on the circumcircle, together with its antipodal pointP ′.
(1) Construct the linePP ′ to intersect the side linesBC, CA, AB at X, Y , Z

respectively.
(2) Construct the circles with diametersAX, BY , CZ. These three circles have

two common points. One of these is on the circumcircle. Labelthis pointP ∗, and the
other common pointQ.

(3) What is thelocusof Q?
(4) The lineP ∗Q passes through the orthocenterH. As such, it is the line of

reflection of a point on the circumcircle. What is this point?
(5) Construct the Simson lines ofP andP ′. They intersect at a point on the nine-

point circle. What is this point?

Exercises

1. Let P be a given point, andA′B′C ′ the homothetic image ofABC under
h(P,−1) (so thatP is the common midpoint ofAA′,BB′ andCC ′).

(1) The circlesAB′C ′,BC ′A′ andCA′B′ intersect at a pointQ on the circum-
circle;

(2) The circlesABC ′, BCA′ andCAB′ intersect at a pointQ′ such thatP is
the midpoint ofQQ′. 7

7Musselman,Amer. Math. Monthly, 47 (1940) 354 – 361. IfP = (u : v : w), the intersection of the
three circles in (1) is the point

(

1

b2(u+ v − w)w − c2(w + u− v)v
: · · · : · · ·

)

on the circumcircle. This is the isogonal conjugate of the infinite point of the line

∑

cyclic

u(v + w − u)

a2
x = 0.
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2.4 Appendix: Homothety

Two triangles are homothetic if the corresponding sides areparallel.

2.4.1 Three congruent circles with a common point and each tan-
gent to two sides of a triangle

8 Given a triangleABC, to construct three congruent circles passing through a common
pointP , each tangent to two sides of the triangle.

Let t be the common radius of these congruent circles. The centersof these circles,
I1, I2, I3, lie on the bisectorsIA, IB, IC respectively. Note that the linesI2I3 and
BC are parallel; so are the pairsI3I1, CA, andI1I2,AB. It follows that△I1I2I3 and
ABC are similar. Indeed, they are inhomotheticfrom their common incenterI. The
ratio of homothety can be determined in two ways, by considering their circumcircles
and their incircles. Since the circumradii aret andR, and the inradii arer − t andr,
we haver−t

r
= r

R
. From this,t = Rr

R+r .
A

B C

How does this help constructing the circles? Note that the line joining the circum-
centersP andO passes through the center of homothetyI, and indeed,

OI : IP = R : t = R :
Rr

R+ r
= R+ r : r.

Rewriting this asOP : PI = R : r, we see thatP is indeed the internal center of
similitude of(O) and(I).

Now the construction is easy.

2.4.2 Squares inscribed in a triangle and the Lucas circles

Given a triangleABC, to construct the inscribed square with a side alongBC we
contract the square erected externally on the same side by a homothety at vertexA.
The ratio of the homothety isha : ha + a, whereha is the altitude onBC. Since
ha = S

a
, we have

ha
ha + a

=
S

S + a2
.

8Problem 2137,Crux Mathematicorum.
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The circumcircle is contracted into a circle of radius

Ra = R · S

S + a2
=
abc

2S
· S

S + a2
=

abc

2(S + a2)
,

and this passes through the two vertices of the inscribed on the sidesAB andAC.
Similarly, there are two other inscribed squares on the sidesCA andAB, and two cor-
responding circles, tangent to the circumcircle atB andC respectively. It is remarkable
that these three circles are mutually tangent to each other.These are called the Lucas
circles of the triangle.9

O

A

B C O

A

B C

H

2.4.3 More on reflections

(1) The reflections of a lineL in the side lines of triangleABC are concurrent if and
only if L passes through the orthocenter. In this case, the intersection is a point on the
circumcircle.10

9See A.P. Hatzipolakis and P. Yiu, The Lucas circles,Amer. Math. Monthly, 108 (2001) 444 – 446. After
the publication of this note, we recently learned that Eduoard Lucas (1842 – 1891) wrote about this triad
of circles, considered by an anonymous author, as the three circles mutually tangent to each other and each
tangent to the circumcircle at a vertex ofABC. The connection with the inscribed squares were found by
Victor Thébault (1883 – 1960).

10S.N. Collings, Reflections on a triangle, part 1,Math. Gazette, 57 (1973) 291 – 293; M.S. Longuet-
Higgins, Reflections on a triangle, part 2, ibid., 293 – 296.
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A

B C

H

(2) Constructparallel linesLa, Lb, andLc through theD, E, F be the midpoints
of the sidesBC, CA, AB of triangleABC. Reflect the linesBC in La, CA in Lb,
andAB in Lc. These three reflection lines intersect at a point on the nine-point circle.11

A

B C

H
N

D

EF

A

B C

H N

X

Y

Z

(3) Constructparallel linesLa, Lb, andLc through the pedals of the verticesA,
B, C on their opposite sides. Reflect these lines in the respective side lines of triangle
ABC. The three reflection lines intersect at a point on the nine-point circle.12

11This was first discovered in May, 1999 by a high school student, Adam Bliss, in Atlanta, Georgia. A
proof can be found in F.M. van Lamoen, Morley related triangles on the nine-point circle,Amer. Math.
Monthly, 107 (2000) 941 – 945. See also, B. Shawyer, A remarkable concurrence,Forum Geom., 1 (2001)
69 – 74.

12Ibid.
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Homogeneous Barycentric
Coordinates

3.1 Barycentric coordinates with reference to a triangle

3.1.1 Homogeneous barycentric coordinates

The notion of barycentric coordinates dates back to Möbius. In a given triangleABC,
every pointP is coordinatized by a triple of numbers(u : v : w) in such a way that
the system of massesu at A, v at B, andw at C will have its balance pointat P .
These masses can be taken in the proportions of the areas of trianglePBC, PCA and
PAB. Allowing the pointP to be outside the triangle, we usesigned areasof oriented
triangles. Thehomogeneous barycentric coordinatesof P with reference toABC is a
triple of numbers(x : y : z) such that

x : y : z = △PBC : △PCA : △PAB.

Examples

1. ThecentroidG has homogeneous barycentric coordinates(1 : 1 : 1). The areas
of the trianglesGBC,GCA, andGAB are equal.1

2. TheincenterI has homogeneous barycentric coordinates(a : b : c). If r denotes
the inradius, the areas of trianglesIBC, ICA andIAB are respectively12ra,
1
2rb, and1

2rc.
2

3. Thecircumcenter. If R denotes the circumradius, the coordinates of the circum-
centerO are3

△OBC : △OCA : △OAB
1In Kimberling’sEncyclopedia of Triangle Centers, [ETC], the centroid appears asX2.
2In ETC, the incenter appears asX1.
3In ETC, the circumcenter appears asX3.
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=
1

2
R2 sin 2A :

1

2
R2 sin 2B :

1

2
R2 sin 2C

= sinA cosA : sinB cosB : sinC cosC

= a · b
2 + c2 − a2

2bc
: b · c

2 + a2 − b2

2ca
: c · a

2 + b2 − c2

2ab

= a2(b2 + c2 − a2) : b2(c2 + a2 − b2) : c2(a2 + b2 − c2).

G

D

EF

A

B C

I

A

B CX

Y
Z

D

O

A

B C

4. Points on the lineBC have coordinates of the form(0 : y : z). Likewise, points
on CA andAB have coordinates of the forms(x : 0 : z) and (x : y : 0)
respectively.

Exercise

1. Verify that the sum of the coordinates of the circumcenter given above is4S2:

a2(b2 + c2 − a2) + b2(c2 + a2 − b2) + c2(a2 + b2 − c2) = 4S2,

whereS is twice the area of triangleABC.

2. Find the coordinates of the excenters.4

3.1.2 Absolute barycentric coordinates

LetP be a point with (homogeneous barycentric) coordinates(x : y : z). If x+y+z 6=
0, we obtain theabsolutebarycentric coordinates by scaling the coefficients to havea
unit sum:

P =
x ·A+ y ·B + z · C

x+ y + z
.

If P andQ are given in absolute barycentric coordinates, the pointX which divides

PQ in the ratioPX : XQ = p : q has absolute barycentric coordinates
q · P + p ·Q

p+ q
.

It is, however, convenient to perform calculations avoiding denominators of fractions.

4Ia = (−a : b : c), Ib = (a : −b : c), Ic = (a : b : −c).
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We therefore adapt this formula in the following way: ifP = (u : v : w) andQ =
(u′ : v′ : w′) are the homogeneous barycentric coordinates satisfyingu + v + w =
u′+v′+w′, the pointX dividingPQ in the ratioPX : XQ = p : q has homogeneous
barycentric coordinates

(qu+ pu′ : qv + pv′ : qw + pw′).

Example: Internal center of similitudes of the circumcircle and the incircle

These points,T andT ′, divide the segmentOI harmonically in the ratio of the circum-
radiusR = abc

2S and the inradiusr = S
2s . Note thatR : r = abc

2S : S
2s = sabc : S2.

Since
O = (a2(b2 + c2 − a2) : · · · : · · · )

with coordinates sum4S2 andI = (a : b : c) with coordinates sum2s, we equalize
their sums and work with

O = (sa2(b2 + c2 − a2) : · · · : · · · ),
I = (2S2a : 2S2b : 2S2c).

The internal center of similitudeT dividesOI in the ratioOT : TI = R : r, the
a-component of its homogeneous barycentric coordinates canbe taken as

S2 · sa2(b2 + c2 − a2) + sabc · 2S2a.

The simplification turns out to be easier than we would normally expect:

S2 · sa2(b2 + c2 − a2) + sabc · 2S2a
= sS2a2(b2 + c2 − a2 + 2bc)
= sS2a2((b+ c)2 − a2)
= sS2a2(b+ c+ a)(b+ c− a)
= 2s2S2 · a2(b+ c− a).

The other two components have similar expressions obtainedby cyclically permuting
a, b, c. It is clear that2s2S2 is a factor common to the three components. Thus, the
homogeneous barycentric coordinates of the internal center of similitude are5

(a2(b+ c− a) : b2(c+ a− b) : c2(a+ b− c)).

Exercises

1. The external center of similitude of(O) and(I) has homogeneous barycentric
coordinates6

(a2(a+ b− c)(c+ a− b) : b2(b+ c− a)(a+ b− c) : c2(c+ a− b)(b+ c− a)),

5In ETC, the internal center of similitude of the circumcircle and theincircle appears as the pointX55.
6In ETC, the external center of similitude of the circumcircle and theincircle appears as the pointX56.
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which can be taken as
(

a2

b+ c− a
:

b2

c+ a− b
:

c2

a+ b− c

)

.

2. The orthocenterH lies on the Euler line and divides the segmentOG externally
in the ratioOH : HG = 3 : −2. 7 Show that its homogeneous barycentric
coordinates can be written as

H = (tanA : tanB : tanC),

or equivalently,

H =

(

1

b2 + c2 − a2
:

1

c2 + a2 − b2
:

1

a2 + b2 − c2

)

.

3. Make use of the fact that the nine-point centerN divides the segmentOG in the
ratioON : NG = 3 : −1 to show that its barycentric coordinates can be written
as 8

N = (a cos(B − C) : b cos(C −A) : c cos(A−B)).

7In ETC, the orthocenter appears as the pointX4.
8In ETC, the nine-point center appears as the pointX5.
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3.2 Cevians and traces

Because of the fundamental importance of the Ceva theorem intriangle geometry, we
shall follow traditions and call the three lines joining a point P to the vertices of the
reference triangleABC the ceviansof P . The intersectionsAP , BP , CP of these
cevians with the side lines are called thetracesof P . The coordinates of the traces can
be very easily written down:

AP = (0 : y : z), BP = (x : 0 : z), CP = (x : y : 0).

3.2.1 Ceva Theorem

Three pointsX, Y , Z onBC, CA, AB respectively are the traces of a point if and
only if they have coordinates of the form

X = 0 : y : z,
Y = x : 0 : z,
Z = x : y : 0,

for somex, y, z.

P

X

Y

Z

A

B C

I

X

Y

Z

A

B C

Ge

3.2.2 Examples

The Gergonne point

The points of tangency of the incircle with the side lines are

X = 0 : s− c : s− b,
Y = s− c : 0 : s− a,
Z = s− b : s− a : 0.

These can be reorganized as

X = 0 : 1
s−b : 1

s−c ,
Y = 1

s−a : 0 : 1
s−c ,

Z = 1
s−a : 1

s−b : 0.
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It follows thatAX,BY , CZ intersect at a point with coordinates
(

1

s− a
:

1

s− b
:

1

s− c

)

.

This is called theGergonne pointGe of triangleABC. 9

s− c s− b

s− c

s− b

Ic

Ib

Na Y ′

Z′

Ia

X′

A

B

C

The Nagel point

The points of tangency of the excircles with the corresponding sides have coordinates

X ′ = (0 : s− b : s− c),
Y ′ = (s− a : 0 : s− c),
Z ′ = (s− a : s− b : 0).

These are the traces of the point with coordinates

(s− a : s− b : s− c).

This is theNagel pointNa of triangleABC. 10

Exercises

1. The Nagel pointNa lies on the line joining the incenter to the centroid; it divides
IG in the ratioINa : NaG = 3 : −2.

9The Gergonne point appears inETC as the pointX7.
10The Nagel point appears inETC as the pointX8.
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3.3 Isotomic conjugates

The Gergonne and Nagel points are examples of isotomic conjugates. Two pointsP
andQ (not on any of the side lines of the reference triangle) are said to be isotomic
conjugates if their respective traces are symmetric with respect to the midpoints of the
corresponding sides. Thus,

BAP = AQC, CBP = BQA, ACP = CQB.

We shall denote the isotomic conjugate ofP by P •. If P = (x : y : z), then

P • = (
1

x
:
1

y
:
1

z
)

.

3.3.1 Equal-parallelian point

Given triangleABC, we want to construct a pointP the three lines through which
parallel to the sides cut out equal intercepts. LetP = xA + yB + zC in absolute
barycentric coordinates. The parallel toBC cuts out an intercept of length(1−x)a. It
follows that the three intercepts parallel to the sides are equal if and only if

1− x : 1− y : 1− z =
1

a
:
1

b
:
1

c
.

The right hand side clearly gives the homogeneous barycentric coordinates ofI•, the
isotomic conjugate of the incenterI. 11 This is a point we can easily construct. Now,
translating intoabsolutebarycentric coordinates:

I• =
1

2
[(1− x)A+ (1− y)B + (1− z)C] =

1

2
(3G− P ).

we obtainP = 3G − 2I•, and can be easily constructed as the point dividing the
segmentI•G externally in the ratioI•P : PG = 3 : −2. The pointP is called the
equal-parallelian point of triangleABC. 12

CB

A

I•

P G

11The isotomic conjugate of the incenter appears inETC as the pointX75.
12It appears inETC as the pointX192.
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Exercises

1. Calculate the homogeneous barycentric coordinates of the equal-parallelian point
and the length of the equal parallelians.13

2. Let A′B′C ′ be the midway triangle of a pointP . The lineB′C ′ intersectsCA
at

Ba = B′C ′ ∩ CA, Ca = B′C ′ ∩AB,
Cb = C ′A′ ∩AB, Ab = C ′A′ ∩BC,
Ac = A′B′ ∩BC, Bc = A′B′ ∩ CA.

DetermineP for which the three segmentsBaCa, CbAb andAcBc have equal
lengths.14

3.3.2 Yff’s analogue of the Brocard points

Consider a pointP = (x : y : z) satisfyingBAP = CBP = ACP = w. This means
that

z

y + z
a =

x

z + x
b =

y

x+ y
c = w.

Elimination ofx, y, z leads to

0 =

∣

∣

∣

∣

∣

∣

0 −w a− w
b− w 0 −w
−w c− w 0

∣

∣

∣

∣

∣

∣

= (a− w)(b− w)(c− w)− w3.

Indeed,w is the unique positive root of the cubic polynomial

(a− t)(b− t)(c− t)− t3.

This gives the point

P =

(

(

c− w

b− w

)
1
3

:

(

a− w

c− w

)
1
3

:

(

b− w

a− w

)
1
3

)

.

The isotomic conjugate

P • =

(

(

b− w

c− w

)
1
3

:

(

c− w

a− w

)
1
3

:

(

a− w

b− w

)
1
3

)

satisfies
CAP = ABP = BCP = w.

These points are usually called theYff analogues of the Brocard points. 15 They
were briefly considered by A.L. Crelle.16

13(ca+ab−bc : ab+bc−ca : bc+ca−ab). The common length of the equal parallelians is2abc
ab+bc+ca

.
14A.P. Hatzipolakis, Hyacinthos, message 3190, 7/13/01.P = (3bc − ca − ab : 3ca − ab − bc :

3ab − bc − ca). This point is not in the current edition ofETC. It is the reflection of the equal-parallelian
point inI•. In this case, the common length of the segment is2abc

ab+bc+ca
, as in the equal-parallelian case.

15P. Yff, An analogue of the Brocard points,Amer. Math. Monthly, 70 (1963) 495 – 501.
16A.L. Crelle, 1815.
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3.4 Conway’s formula

3.4.1 Notation

Let S denotetwice the area of triangleABC. For a real numberθ, denoteS · cot θ by
Sθ. In particular,

SA =
b2 + c2 − a2

2
, SB =

c2 + a2 − b2

2
, SC =

a2 + b2 − c2

2
.

For arbitraryθ andϕ, we shall simply writeSθϕ for Sθ · Sϕ.
We shall mainly make use of the following relations.

Lemma

(1) SB + SC = a2, SC + SA = b2, SA + SB = c2.

(2) SAB + SBC + SCA = S2.

Proof. (1) is clear. For (2), sinceA+B +C = 180◦, cot(A+B +C) is infinite. Its
denominator

cotA · cotB + cotB · cotC + cotC · cotA− 1 = 0.

From this,SAB+SBC+SCA = S2(cotA·cotB+cotB ·cotC+cotC ·cotA) = S2.

Examples

(1) The orthocenter has coordinates
(

1

SA
:

1

SB
:

1

SC

)

= (SBC : SCA : SAB).

Note that in the last expression, the coordinate sum isSBC + SCA + SAB = S2.
(2) The circumcenter, on the other hand, is the point

O = (a2SA : b2SB : c2SC) = (SA(SB + SC) : SB(SC + SA) : SC(SA + SB)).

Note that in this form, the coordinate sum is2(SAB + SBC + SCA) = 2S2.

Exercises

1. Calculate the coordinates of the nine-point center in termsof SA, SB, SC . 17

2. Calculate the coordinates of the reflection of the orthocenter in the circumcenter,
i.e., the pointL which divides the segmentHO in the ratioHL : LO = 2 : −1.
This is called thede Longchamps pointof triangleABC. 18

17N = (S2 + SBC : S2 + SCA : S2 + SAB).
18L = (SCA + SAB − SBC : · · · : · · · ) = ( 1

SB
+ 1
SC

− 1
SA

: · · · : · · · ). It appears inETC as the
pointX20.
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3.4.2 Conway’s formula

If the swing angles of a pointP on the sideBC are∠CBP = θ and∠BCP = ϕ, the
coordinates ofP are

(−a2 : SC + Sϕ : SB + Sθ).

The swing angles are chosen in the rangle−π
2 ≤ θ, ϕ ≤ π

2 . The angleθ is pos-
itive or negative according as angles∠CBP and∠CBA have different or the same
orientation.

P

A

B Cθ ϕ

X2 X1

Y2

Y1

Z2

Z1

A

B C

X

Y

Z

3.4.3 Examples

Squares erected on the sides of a triangle

Consider the squareBCX1X2 erected externally on the sideBC of triangleABC.
The swing angles ofX1 with respect to the sideBC are

∠CBX1 =
π

4
, ∠BCX1 =

π

2
.

Sincecot π4 = 1 andcot π2 = 0,

X1 = (−a2 : SC : SB + S).

Similarly,
X2 = (−a2 : SC + S : SB).

Exercises

1. Find the midpoint ofX1X2.

2. Find the vertices of the inscribed squares with a side alongBC. 19.

19Recall that this can be obtained from applying the homothetyh(A, S
S+a2

) to the squareBCX1X2
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3.5 The Kiepert perspectors

3.5.1 The Fermat points

Consider the equilateral triangleBCX erected externally on the sideBC of triangle
ABC. The swing angles are∠CBX = ∠BCX = π

3 . Sincecot π3 = 1√
3
,

X =

(

−a2 : SC +
S√
3
: SB +

S√
3

)

,

which can be rearranged in the form

X =

(

−a2
(SB + S√

3
)(SC + S√

3
)
:

1

SB + S√
3

:
1

SC + S√
3

)

.

Similarly, we write down the coordinates of the apexesY ,Z of the equilateral triangles
CAY andABZ erected externally on the other two sides. These are

Y =

(

1

SA + S√
3

: ∗ ∗ ∗ ∗ ∗ :
1

SC + S√
3

)

and

Z =

(

1

SA + S√
3

:
1

SB + S√
3

: ∗ ∗ ∗ ∗ ∗
)

.

Here we simply write∗ ∗ ∗ ∗ ∗ in places where the exact values of the coordinates are
not important. This is a particular case of the following general situation.

3.5.2 Perspective triangles

SupposeX, Y , Z are points whose coordinates can be written in the form

X = ∗ ∗ ∗ ∗ ∗ : y : z,
Y = x : ∗ ∗ ∗ ∗ ∗ : z,
Z = x : y : ∗ ∗ ∗ ∗ ∗.

The linesAX,BY , CZ are concurrent at the pointP = (x : y : z).
Proof. The intersection ofAX andBC is the trace ofX on the sideBC. It is the
point (0 : y : z). Similarly, the intersectionsBY ∩ CA andCZ ∩ AB are the points
(x : 0 : z) and(x : y : 0). These three points are in turn the traces ofP = (x : y : z).
Q.E.D.

We say that triangleXY Z is perspectivewith ABC, and call the pointP the
perspectorof XY Z.

We conclude therefore thatthe apexes of the equilateral triangles erected externally
on the sides of a triangleABC form a triangle perspective withABC at the point

F+ =

(

1√
3SA + S

:
1√

3SB + S
:

1√
3SC + S

)

.
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This is called the (positive)Fermat pointof triangleABC. 20

Z

X

Y

A

B C

F+

Exercises

1. If the equilateral triangles are erected “internally” on the sides, the apexes again
form a triangle with perspector

F− =

(

1√
3SA − S

:
1√

3SB − S
:

1√
3SC − S

)

,

the negative Fermat point of triangleABC. 21

2. Given triangleABC, extend the sidesAC toBa andAB toCa such thatCBa =
BCa = a. Similarly defineCb,Ab,Ac, andBc.

(a) Write down the coordinates ofBa andCa, and the coordinates of the inter-
sectionA′ of BBa andCCa.

(b) Similarly defineB′ andC ′, and show thatA′B′C ′ is perspective withABC.
Calculate the coordinates of the perspector.22

3.5.3 Isosceles triangles erected on the sides and Kiepert perspec-
tors

More generally, consider an isosceles triangleY CA of base angle∠Y CA = ∠Y AC =
θ. The vertexY has coordinates

(SC + Sθ : −b2 : SA + Sθ).

20The positive Fermat point is also known as the first isogonic center. It appears inETC as the pointX13.
21The negative Fermat point is also known as the second isogoniccenter. It appears inETC as the point

X14.
22The Spieker point.
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If similar isosceles trianglesXBC andZAB are erected on the other two sides (with
the same orientation), the linesAX,BY , andCZ are concurrent at the point

K(θ) =

(

1

SA + Sθ
:

1

SB + Sθ
:

1

SC + Sθ

)

.

We callXY Z the Kiepert triangle andK(θ) theKiepert perspectorof parameterθ.

A

B C

Z

X

Yθ

θ

θ

θ θ

θ

K(θ)

A

B C

Z

X

Y

3.5.4 The Napoleon points

The famous Napoleon theorem states thatthe centers of the equilateral triangles erected
externally on the sides of a triangle form an equilateral triangle. These centers are the
apexes of similar isosceles triangles of base angle30◦ erected externally on the sides.
They give the Kiepert perspector

(

1

SA +
√
3S

:
1

SB +
√
3S

:
1

SC +
√
3S

)

.

This is called the (positive) Napoleon point of the triangle. 23 Analogous results hold
for equilateral triangles erected internally, leading to the negative Napoleon point24

(

1

SA −
√
3S

:
1

SB −
√
3S

:
1

SC −
√
3S

)

.

Exercises

1. The centers of the three squares erected externally on the sides of triangleABC
form a triangle perspective withABC. The perspector is called the (positive)

23The positive Napoleon point appears inETC as the pointX17.
24The negative Napoleon point appears inETC as the pointX18.
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Vecten point. Why is this a Kiepert perspector? Identify its Kiepert parameter,
and write down its coordinates?25

2. LetABC be a given triangle. Construct a small semicircle withB as center and
a diameter perpendicular toBC, intersecting the sideBC. Animate a pointT
on this semicircle, andhide the semicircle.

(a) Construct the rayBT and let it intersect the perpendicular bisector ofBC at
X.

(b) Reflect the rayBT in thebisector of angleB, and construct the perpendic-
ular bisector ofAB to intersect this reflection atZ.

(c) ReflectAZ in the bisector of angleA, andreflect CX in the bisector of
angleC. Label the intersection of these two reflectionsY .

(d) Construct the perspectorP of the triangleXY Z.

(e) What is thelocusof P asT traverses the semicircle?

3. Calculate the coordinates of the midpoint of the segmentF+F−. 26

4. Inside triangleABC, consider two congruent circlesIab(r1) andIac(r1) tangent
to each other (externally), both to the sideBC, and toCA andAB respectively.
Note that the centersIab and Iac, together with their pedals onBC, form a
rectangle of sides2 : 1. This rectangle can be constructed as the image under the
homothetyh(I, 2r

a
) of a similar rectangle erected externally on the sideBC.

A

B C

I
Iab Iac

(a) Make use of these to construct the two circles.

(b) Calculate the homogeneous barycentric coordinates of the point of tangency
of the two circles.27

25This isK(π
4
), the positive Vecten point. It appears inETC asX485.

26((b2 − c2)2 : (c2 − a2)2 : (a2 − b2)2). This points appears inETC asX115. It lies on the nine-point
circle.

27This dividesID (D = midpoint ofBC) in the ratio2r : a and has coordinates(a2 : ab+S : ac+S).
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(c) Similarly, there are two other pairs of congruent circles on the sidesCA and
AB. The points of tangency of the three pairs have a perspector28

(

1

bc+ S
:

1

ca+ S
:

1

ab+ S

)

.

(d) Show that the pedals of the points of tangency on the respective side lines of
ABC are the traces of29

(

1

bc+ S + SA
:

1

ca+ S + SB
:

1

ab+ S + SC

)

.

3.5.5 Nagel’s Theorem

SupposeX, Y , Z are such that

∠CAY = ∠BAZ = θ,
∠ABZ = ∠CBX = ϕ,
∠BCX = ∠ACY = ψ.

The linesAX,BY , CZ are concurrent at the point
(

1

SA + Sθ
:

1

SB + Sϕ
:

1

SC + Sψ

)

.

Z

X

Y

A

B C
ϕ

ϕ

ψ

ψ

θ
θ

Exercises

1. LetX ′, Y ′, Z ′ be respectively the pedals ofX onBC, Y onCA, andZ onAB.
Show thatX ′Y ′Z ′ is a cevian triangle.30

28This point is not in the current edition ofETC.
29This point is not in the current edition ofETC.
30Floor van Lamoen.



40 YIU: Introduction to Triangle Geometry

2. For i = 1, 2, letXiYiZi be the triangle formed with given anglesθi, ϕi andψi.
Show that the intersections

X = X1X2 ∩BC, Y = Y1Y2 ∩ CA, Z = Z1Z2 ∩AB

form a cevian triangle.31

31Floor van Lamoen.X = (0 : Sψ1
− Sψ2

: Sϕ1 − Sϕ2 ).



Chapter 4

Straight Lines

4.1 The equation of a line

4.1.1 Two-point form

The equation of the line joining two points with coordinates(x1 : y1 : z1) and(x2 :
y2 : z2) is

∣

∣

∣

∣

∣

∣

x1 y1 z1
x2 y2 z2
x y z

∣

∣

∣

∣

∣

∣

= 0,

or
(y1z2 − y2z1)x+ (z1x2 − z2x1)y + (x1y2 − x2y1)z = 0.

4.1.2 Examples

1. The equations of the side linesBC, CA, AB are respectivelyx = 0, y = 0,
z = 0.

2. The perpendicular bisector ofBC is the line joining the circumcenterO =
(a2SA : b2SB : c2SC) to the midpoint ofBC, which has coordinates(0 : 1 : 1).
By the two point form, it has equation

(b2SB − c2SC)x− a2SAy + a2SAz = 0,

Sinceb2SB − c2SC = · · · = SA(SB − SC) = −SA(b2 − c2), this equation can
be rewritten as

(b2 − c2)x+ a2(y − z) = 0.

3. The equation of the Euler line, as the line joining the centroid (1 : 1 : 1) to the
orthocenter(SBC : SCA : SAB) is

(SAB − SCA)x+ (SBC − SAB)y + (SCA − SBC)z = 0,
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or
∑

cyclic

SA(SB − SC)x = 0.

4. The equation of theOI-line joining the circumcenter(a2SA : b2SB : c2SC) to
and the incenter(a : b : c) is

0 =
∑

cyclic

(b2SBc− c2SCb)x =
∑

cyclic

bc(bSB − cSC)x.

SincebSB − cSC = · · · = −2(b − c)s(s − a) (exercise), this equation can be
rewritten as

∑

cyclic

bc(b− c)s(s− a)x = 0.

or
∑

cyclic

(b− c)(s− a)

a
x = 0.

5. The line joining the two Fermat points

F± =

(

1√
3SA ± S

:
1√

3SB ± S
:

1√
3SC ± S

)

= ((
√
3SB ± S)(

√
3SC ± S) : · · · : · · · )

has equation

0 =
∑

cyclic

(

1

(
√
3SB + S)(

√
3SC − S)

− 1

(
√
3SB − S)(

√
3SC + S)

)

x

=
∑

cyclic

(

(
√
3SB − S)(

√
3SC + S)− (

√
3SB + S)(

√
3SC − S)

(3SBB − S2)(3SCC − S2)

)

x

=
∑

cyclic

(

2
√
3(SB − SC)S

(3SBB − S2)(3SCC − S2)

)

x.

Clearing denominators, we obtain
∑

cyclic

(SB − SC)(3SAA − S2)x = 0.

4.1.3 Intercept form: tripole and tripolar

If the intersections of a lineL with the side lines are

X = (0 : v : −w), Y = (−u : 0 : w), Z = (u : −v : 0),

the equation of the lineL is
x

u
+
y

v
+
z

w
= 0.

We shall call the pointP = (u : v : w) the tripole of L, and the lineL the tripolar of
P .
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Construction of tripole

Given a lineL intersectingBC, CA,AB atX, Y , Z respectively, let

A′ = BY ∩ CZ, B′ = CZ ∩AX, C ′ = AX ∩BY.

The linesAA′,BB′ andCC ′ intersect at the tripoleP of L.

A

B C
X

Z

Y

P

AP

BP

CP

Construction of tripolar

GivenP with tracesAP ,BP , andCP on the side lines, let

X = BPCP ∩BC, Y = CPAP ∩ CA, Z = APBP ∩AB.

These pointsX, Y , Z lie on the tripolar ofP .

Exercises

1. Find the equation of the line joining the centroid to a given pointP = (u : v : w).
1

2. Find the equations of the cevians of a pointP = (u : v : w).

3. Find the equations of the angle bisectors.

1Equation:(v − w)x+ (w − u)y + (u− v)z = 0.
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4.2 Infinite points and parallel lines

4.2.1 The infinite point of a line

The infinite point of a lineL has homogeneous coordinates given by the difference of
the absolutebarycentric coordinates of two distinct points on the line.As such, the
coordinate sum of an infinite point is zero. We think of all infinite points constituting
the line at infinity,L∞, which has equationx+ y + z = 0.

Examples

1. The infinite points of the side linesBC, CA, AB are(0 : −1 : 1), (1 : 0 : −1),
(−1 : 1 : 0) respectively.

2. The infinite point of theA−altitude has homogeneous coordinates

(0 : SC : SB)− a2(1 : 0 : 0) = (−a2 : SC : SB).

3. More generally, the infinite point of the linepx+ qy + rz = 0 is

(q − r : r − p : p− q).

4. The infinite point of the Euler line is the point

3(SBC : SCA : SAB)−SS(1 : 1 : 1) ∼ (3SBC−SS : 3SCA−SS : 3SAB−SS).

5. The infinite point of theOI-line is

(ca(c− a)(s− b)− ab(a− b)(s− c) : · · · : · · · )
∼ (a(a2(b+ c)− 2abc− (b+ c)(b− c)2) : · · · : · · · ).

4.2.2 Parallel lines

Parallel lines have the same infinite point. The line throughP = (u : v : w) parallel to
L : px+ qy + rz = 0 has equation

∣

∣

∣

∣

∣

∣

q − r r − p p− q
u v w
x y z

∣

∣

∣

∣

∣

∣

= 0.
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Exercises

1. Find the equations of the lines throughP = (u : v : w) parallel to the side lines.

2. Let DEF be the medial triangle ofABC, andP a point with cevian triangle
XY Z (with respect toABC. Find P such that the linesDX, EY , FZ are
parallel to the internal bisectors of anglesA,B, C respectively.2

2The Nagel pointP = (b+ c− a : c+ a− b : a+ b− c). N. Dergiades, Hyacinthos, message 3677,
8/31/01.
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4.3 Intersection of two lines

The intersection of the two lines

p1x+ q1y + r1z = 0,
p2x+ q2y + r2z = 0

is the point
(q1r2 − q2r1 : r1p2 − r2p1 : p1q2 − p2q1).

The infinite point of a lineL can be regarded as the intersection ofL with the line at
infinity L∞ : x+ y + z = 0.

Theorem

Three linespix+ qiy + riz = 0, i = 1, 2, 3, are concurrent if and only if

∣

∣

∣

∣

∣

∣

p1 q1 r1
p2 q2 r2
p3 q3 r3

∣

∣

∣

∣

∣

∣

= 0.

4.3.1 Intersection of the Euler and Fermat lines

Recall that these lines have equations

∑

cyclic

SA(SB − SC)x = 0,

and
∑

cyclic

(SB − SC)(3SAA − S2)x = 0.

TheA-coordinate of their intersection

= SB(SC − SA)(SA − SB)(3SCC − S2)
−SC(SA − SB)(SC − SA)(3SBB − S2)

= (SC − SA)(SA − SB)(SB(3SCC − S2)− SC(3SBB − S2))
= (SC − SA)(SA − SB)(3SBC(SC − SB)− S2(SB − SC))
= −(SB − SC)(SC − SA)(SA − SB)(3SBC + S2).

This intersection is the point

(3SBC + S2 : 3SCA + S2 : 3SAB + S2).

Since(3SBC : 3SCA : 3SAB) and(S2 : S2 : S2) representH andG, with equal
coordinate sums, this point is the midpoint ofGH. 3

3This point appears inETC asX381.
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A

B C

F−

F+

N

O

H

G

Remark

Lester has discovered that there is a circle passing the two Fermat points, the circum-
center, and the nine-point center.4 The circle withGH as diameter, whose center is
the intersection of the Fermat and Euler line as we have shownabove, is orthogonal to
the Lester circle.5 It is also interesting to note that the midpoint between the Fermat
points is a point on the nine-point circle. It has coordinates ((b2 − c2)2 : (c2 − a2)2 :
(a2 − b2)2). 6

4.3.2 Triangle bounded by the outer side lines of the squareserected
externally

Consider the squareBCXcXb erected externally onBC. SinceXc = (−a2 : SC :
SB + S), and the lineXbXc, being parallel toBC, has infinite point(0 : −1 : 1), this
line has equation

(SC + SB + S)x+ a2y + a2z = 0.

SinceSB + SC = a2, this can be rewritten as

a2(x+ y + z) + Sx = 0.

Similarly, if CAYaYc andABZbZa are squares erected externally on the other two
sides, the linesYcYa andZaZb have equations

b2(x+ y + z) + Sy = 0

and
c2(x+ y + z) + Sz = 0

4J.A. Lester, Triangles, III: complex centre functions and Ceva’s theorem,Aequationes Math., 53 (1997)
4–35.

5P. Yiu, Hyacinthos, message 1258, August 21, 2000.
6This point appears asX115 in ETC.
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Xb Xc

Yc

Ya

Za

Zb

A

B C

A∗

B∗ C∗

K

respectively. These two latter lines intersect at the point

A∗ = (−(b2 + c2 + S) : b2 : c2).

Similarly, the linesZaZb andXbXc intersect at

B∗ = (a2 : −(c2 + a2 + S) : c2),

and the linesXbXc andYcYa intersect at

C∗ = (a2 : b2 : −(a2 + b2 + S)).

The triangleA∗B∗C∗ is perspective withABC at the point

K = (a2 : b2 : c2).

This is called thesymmedian pointof triangleABC. 7

Exercises

1. The symmedian point lies on the line joining the Fermat points.

2. The line joining the two Kiepert perspectorsK(±θ) has equation
∑

cyclic

(SB − SC)(SAA − S2 cot2 θ)x = 0.

Show that this line passes through a fixed point.8

3. Show that triangleAθBθCθ has the same centroid as triangleABC.

4. Construct the parallels to the side lines through the symmedian point. The 6
intersections on the side lines lie on a circle. The symmedian point is the unique
point with this property.9

7It is also known as the Grebe point, and appears inETC as the pointX6.
8The symmedian point.
9This was first discovered by Lemoine in 1883.
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5. LetDEF be the medial triangle ofABC. Find the equation of the line joining
D to the excenterIa = (−a : b : c). Similarly write down the equation of the
lines joining toE to Ib andF to Ic. Show that these three lines are concurrent
by working out the coordinates of their common point.10

6. The perpendiculars from the excenters to the correspondingsides are concur-
rent. Find the coordinates of the intersection by noting howit is related to the
circumcenter and the incenter.11

7. LetD, E, F be the midpoints of the sidesBC, CA, AB of triangleABC. For
a pointP with tracesAP , BP , CP , let X, Y , Z be the midpoints ofBPCP ,
CPAP , APBP respectively. Find the equations of the linesDX, EY , FZ, and
show that they are concurrent. What are the coordinates of their intersection?12

8. Let D, E, F be the midpoints of the sides ofBC, CA, AB of triangleABC,
andX, Y , Z the midpoints of the altitudes fromA,B,C respeectively. Find the
equations of the linesDX, EY , FZ, and show that they are concurrent. What
are the coordinates of their intersection?13

9. Given triangleABC, extend the sidesAC toBa andAB toCa such thatCBa =
BCa = a. Similarly defineCb, Ab, Ac, andBc. The linesBaCa, CbAb, and
AcBc bound a triangle perspective withABC. Calculate the coordinate of the
perspector.14

10This is the Mittenpunkt(a(s− a) : · · · : · · · ); it appears inETC asX9.
11This is the reflection ofI in O. As such, it is the point2O − I, and has coordinates

(a(a3 + a2(b+ c)− a(b+ c)2 − (b+ c)(b− c)2) : · · · : · · · ).

This point appears asX40 in ETC.
12The intersection is the point dividing the segmentPG in the ratio3 : 1.
13This intersection is the symmedian pointK = (a2 : b2 : c2).
14(

a(b+c)
b+c−a

: · · · : · · · ). This appears inETC asX65.
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4.4 Pedal triangle

The pedals of a pointP = (u : v : w) are the intersections of the side lines with the
corresponding perpendiculars throughP . TheA−altitude has infinite pointAH−A =
(0 : SC : SB)− (SB + SC : 0 : 0) = (−a2 : SC : SB). The perpendicular throughP
toBC is the line

∣

∣

∣

∣

∣

∣

−a2 SC SB
u v w
x y z

∣

∣

∣

∣

∣

∣

= 0,

or
−(SBv − SCw)x+ (SBu+ a2w)y − (SCu+ a2v)z = 0.

A[P ]

B[P ]

C[P ]

A

B C

P

This intersectsBC at the point

A[P ] = (0 : SCu+ a2v : SBu+ a2w).

Similarly the coordinates of the pedals onCA andAB can be written down. The
triangleA[P ]B[P ]C[P ] is called thepedal triangleof triangleABC:





A[P ]

B[P ]

C[P ]



 =





0 SCu+ a2v SBu+ a2w
SCv + b2u 0 SAv + b2w
SBw + c2u SAw + c2v 0





4.4.1 Examples

1. The pedal triangle of the circumcenter is clearly the medialtriangle.

2. The pedal triangle of the orthocenter is called theorthic triangle. Its vertices are
clearly the traces ofH, namely, the points(0 : SC : SB), (SC : 0 : SA), and
(SB : SA : 0).

3. LetL be the reflection of the orthocenterH in the circumcenterO. This is called
the de Longchamps point.15 Show that the pedal triangle ofL is the cevian
triangle of some pointP . What are the coordinates ofP? 16

15The de Longchamps point appears asX20 in ETC.
16P = (SA : SB : SC) is the isotomic conjugate of the orthocenter. It appears inETC as the pointX69.
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O

H•

Z′

X′

Y ′

A

B C

H

X

Y

Z

L

O

A

B C

H

L

4. LetL be the de Longchamps point again, with homogeneous barycentric coordi-
nates

(SCA + SAB − SBC : SAB + SBC − SCA : SBC + SCA − SAB).

Find the equations of the perpendiculars to the side lines atthe corresponding
traces ofL. Show that these are concurrent, and find the coordinates of the
intersection.

The perpendicular toBC atAL = (0 : SAB+SBC−SCA : SBC+SCA−SAB)
is the line

∣

∣

∣

∣

∣

∣

−(SB + SC) SC SB
0 SAB + SBC − SCA SBC + SCA − SAB
x y z

∣

∣

∣

∣

∣

∣

= 0.

This is

S2(SB − SC)x− a2(SBC + SCA − SAB)y + a2(SBC − SCA + SAB)z = 0.

Similarly, we write down the equations of the perpendiculars at the other two
traces. The three perpendiculars intersect at the point17

(a2(S2
CS

2
A + S2

AS
2
B − S2

BS
2
C) : · · · : · · · ).

Exercises

1. Let D, E, F be the midpoints of the sidesBC, CA, AB, andA′, B′, C ′ the
pedals ofA, B, C on their opposite sides. Show thatX = EC ′ ∩ FB′, Y =
FA′ ∩DC ′, andZ = DB′ ∩ EC ′ are collinear.18

2. LetX be the pedal ofA on the sideBC of triangleABC. Complete the squares
AXXbAb andAXXcAc with Xb andXc on the lineBC. 19

17This point appears inETC asX1078. Conway calls this point thelogarithm of the de Longchamps point.
18These are all on the Euler line. See G. Leversha, Problem 2358and solution,Crux Mathematicorum, 24

(1998) 303; 25 (1999) 371 –372.
19A.P. Hatzipolakis, Hyacinthos, message 3370, 8/7/01.
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(a) Calculate the coordinates ofAb andAc. 20

(b) Calculate the coordinates ofA′ = BAc ∩ CAb. 21

(c) Similarly defineB′ andC ′. TriangleA′B′C ′ is perspective withABC.
What is the perspector?22

(d) LetA′′ be the pedal ofA′ on the sideBC. Similarly defineB′′ andC ′′.
Show thatA′′B′′C ′′ is perspective withABC by calculating the coordi-
nates of the perspector.23

20Ab = (a2 : −S : S) andAc = (a2 : S : −S).
21A′ = (a2 : S : S).
22The centroid.
23( 1

SA+S
: 1
SB+S

: 1
SC+S

). This is called the first Vecten point; it appears asX485 in ETC.
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4.5 Perpendicular lines

Given a lineL : px+qy+rz = 0, we determine the infinite point of lines perpendicular
to it. 24 The lineL intersects the side linesCA andAB at the pointsY = (−r : 0 : p)
andZ = (q : −p : 0). To find the perpendicular fromA toL, we first find the equations
of the perpendiculars fromY toAB and fromZ toCA. These are

∣

∣

∣

∣

∣

∣

SB SA −c2
−r 0 p
x y z

∣

∣

∣

∣

∣

∣

= 0 and

∣

∣

∣

∣

∣

∣

SC −b2 SA
q −p 0
x y z

∣

∣

∣

∣

∣

∣

= 0

These are

SApx+ (c2r − SBp)y + SArz = 0,
SApx+ SAqy + (b2q − SCp)z = 0.

A

B C

Y

Z

X′

Y ′

Z′

These two perpendiculars intersect at the orthocenter of triangleAY Z, which is the
point

X ′ = (∗ ∗ ∗ ∗ ∗ : SAp(SAr − b2q + SCp) : SAp(SAq + SBp− c2r)
∼ (∗ ∗ ∗ ∗ ∗ : SC(p− q)− SA(q − r) : SA(q − r)− SB(r − p)).

The perpendicular fromA toL is the lineAX ′, which has equation
∣

∣

∣

∣

∣

∣

1 0 0
∗ ∗ ∗ SC(p− q)− SA(q − r) −SA(q − r) + SB(r − p)
x y z

∣

∣

∣

∣

∣

∣

= 0,

or
−(SA(q − r)− SB(r − p))y + (SC(p− q)− SA(q − r))z = 0.

This has infinite point

(SB(r − p)− SC(p− q) : SC(p− q)− SA(q − r) : SA(q − r)− SB(r − p)).

Note that the infinite point ofL is (q − r : r − p : p − q). We summarize this in the
following theorem.

24I learned of this method from Floor van Lamoen.
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Theorem

If a lineL has infinite point(f : g : h), the lines perpendicular toL have infinite points

(f ′ : g′ : h′) = (SBg − SCh : SCh− SAf : SAf − SBg).

Equivalently, two lines with infinite points(f : g : h) and(f ′ : g′ : h′) are perpendic-
ular to each other if and only if

SAff
′ + SBgg

′ + SChh
′ = 0.

4.5.1 The tangential triangle

Consider the tangents to the circumcircle at the vertices. The radiusOA has infinite
point

(a2SA : b2SB : c2SC)− (2S2 : 0 : 0) = (−(b2SB + c2SC) : b
2SB : c2SC).

The infinite point of the tangent atA is

(b2SBB − c2SCC : c2SCC + SA(b
2SB + c2SC) : −SA(b2SB + c2SC)− b2SBB).

Consider theB-coordinate:

c2SCC+SA(b
2SB+c2SC) = c2SC(SC+SA)+b

2SAB = b2(c2SC+SAB) = b2S2.

A

B C

A′

B′

C′

A

B C

O

B′

C′

A′

Similarly, theC-coordinate =−c2S2. It follows that this infinite point is(−(b2 −
c2) : b2 : −c2), and the tangent atA is the line

∣

∣

∣

∣

∣

∣

1 0 0
−(b2 − c2) b2 −c2

x y z

∣

∣

∣

∣

∣

∣

= 0,
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or simplyc2y+b2z = 0. The other two tangents arec2x+a2z = 0, andb2x+a2y = 0.
These three tangents bound a triangle with vertices

A′ = (−a2 : b2 : c2), B′ = (a2 : −b2 : c2), C ′ = (a2 : b2 : −c2).

This is called thetangential triangleof ABC. It is perspective withABC at the point
(a2 : b2 : c2), the symmedian point.

4.5.2 Line of ortho-intercepts
25

LetP = (u : v : w). We consider the line perpendicular toAP atP . Since the line
AP has equationwy− vz = 0 and infinite point(−(v+w) : v : w), the perpendicular
has infinite point(SBv − SCw : SCw + SA(v + w) : −SA(v + w) − SBv) ∼
(SBv − SCw : SAv + b2w : −SAw − c2v). It is the line

∣

∣

∣

∣

∣

∣

u v w
SBv − SCw SAv + b2w −SAw − c2v

x y z

∣

∣

∣

∣

∣

∣

= 0.

This perpendicular line intersects the side lineBC at the point

(0 : u(SAv + b2w)− v(SBv − SCw) : −u(SAw + c2v)− w(SBv − SCw))
∼ (0 : (SAu− SBv + SCw)v + b2wu : −((SAu+ SBv − SCw)w + c2uv)).

A

B C

P

Similarly, the perpendicular toBP atP intersectsCA at

(−((−SAu+ SBv + SCw)u+ a2vw) : 0 : (SAu+ SBv − SCw)w + c2uv)

25B. Gibert, Hyacinthos, message 1158, August 5, 2000.
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and the perpendicular toCP atP intersectsAB at

((−SAu+ SBv + SCw)u+ a2vw : −((SAu− SBv + SCw)v + b2wu) : 0).

These three points are collinear. The line containing them has equation
∑

cyclic

x

(−SAu+ SBv + SCw)u+ a2vw
= 0.

Exercises

1. If triangleABC is acute-angled, the symmedian point is the Gergonne point of
the tangential triangle.

2. Given a lineL, construct the two points each havingL as its line of ortho-
intercepts.26

3. The tripole of the line of ortho-intercepts of the incenter is the point( a
s−a : b

s−b :
c
s−c ).

27

4. Calculate the coordinates of the tripole of the line of ortho-intercepts of the nine-
point center.28

5. Consider a lineL : px+ qy + rz = 0.

(1) Calculate the coordinates of the pedals ofA,B,C on the lineL. Label these
pointsX, Y , Z.

(2) Find the equations of the perpendiculars fromX, Y , Z to the corresponding
side lines.

(3) Show that these three perpendiculars are concurrent, and determine the coor-
dinates of the common point.

This is called theorthopoleof L.

6. Animate a pointP on the circumcircle. Contruct the orthopole of the diameter
OP . This orthopole lies on the nine-point circle.

7. Consider triangleABC with its incircleI(r).

(a) Construct a circleXb(ρb) tangent toBC atB, and also externally to the
incircle.

(b) Show that the radius of the circle(Xb) is ρb =
(−sb)2

4r .

(c) Let Xc(ρc) be the circle tangent toBC at C, and also externally to the
incircle. Calculate the coordinates of the pedalA′ of the intersectionBXc∩
CXb on the lineBC. 29

26One of these points lies on the circumcircle, and the other on the nine-point circle.
27This is a point on theOI-line of triangleABC. It appears inETC asX57. This point dividesOI in

the ratioOX57 : OI = 2R+ r : 2R− r.
28(a2(3S2 − SAA) : · · · : · · · ). This point is not in the current edition ofETC.
29(0 : (s− c)2 : (s− b)2).
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A

B C

P

(d) DefineB′ andC ′. Show thatA′B′C ′ is perspective withABC and find
the perspector.30

30( 1
(s−a)2

: 1
(s−b)2

: 1
(s−c)2

). This point appears inETC asX279. See P. Yiu, Hyacinthos, message

3359, 8/6/01.
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4.6 Appendices

4.6.1 The excentral triangle

The vertices of the excentral triangle ofABC are the excentersIa, Ib, Ic.

Aa AbAc

M ′

O

I

X

Ia

Ib

Ic

I′

M

A

B
C

D

(1) Identify the following elements of the excentral triangle in terms of the elements
of triangleABC.

Excentral triangleIaIbIc TriangleABC
Orthocenter I
Orthic triangle TriangleABC
Nine-point circle Circumcircle
Euler line OI-line
Circumradius 2R
Circumcenter I ′ = Reflection ofI in O
Centroid dividesOI in the ratio−1 : 4.

The centroid of the excentral triangle is also the centroid of LINa. 31

(2) LetY be the intersection of the circumcircle(O) with the lineIcIa (other than
B). Note thatY is the midpoint ofIcIa. The lineY O intersectsCA at its midpointE
and the circumcircle again at its antipodeY ′. SinceE is the common midpoint of the
segmentsQcQa andQQb,

(i) Y E = 1
2 (rc + ra);

(ii) EY ′ = 1
2 (ra − r).

SinceY Y ′ = 2R, we obtain the relation

ra + rb + rc = 4R+ r.

31Problem 10763 and solution,Amer. Math. Monthly108 (2001) 671.
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4.6.2 Centroid of pedal triangle

We determine the centroid of the pedal triangle ofP by first equalizing the coordinate
sums of the pedals:

A[P ] = (0 : SCu+ a2v : SBu+ a2w) ∼ (0 : b2c2(SCu+ a2v) : b2c2(SBu+ a2w))

B[P ] = (SCv + b2u : 0 : SAv + b2w) ∼ (c2a2(SCv + b2u) : 0 : c2a2(SAv + b2w))

C[P ] = (SBw + c2u : SAw + c2v : 0) ∼ (a2b2(SBw + c2u) : a2b2(SAw + c2v) : 0).

The centroid is the point

(2a2
b
2
c
2
u+a

2
c
2
SCv+a

2
b
2
SBw : b2c2SCu+2a2

b
2
c
2
v+a

2
b
2
SAw : b2c2SBu+c

a
a
2
SAv+2a2

b
2
c
2
w).

This is the same point asP if and only if

2a2b2c2u + a2c2SCv + a2b2SBw = ku,
b2c2SCu + 2a2b2c2v + a2b2SAw = kv,
b2c2SBu + c2a2SAv + 2a2b2c2w = kw

for somek. Adding these equations, we obtain

3a2b2c2(u+ v + w) = k(u+ v + w).

If P = (u : v : w) is a finite point, we must havek = 3a2b2c2. The system of
equations becomes

−a2b2c2u + a2c2SCv + a2b2SBw = 0,
b2c2SCu − a2b2c2v + a2b2SAw = 0,
b2c2SBu + c2a2SAv − a2b2c2w = 0.

Now it it easy to see that

b2c2u : c2a2v : a2b2w =

∣

∣

∣

∣

−b2 SA
SA −c2

∣

∣

∣

∣

: −
∣

∣

∣

∣

SC SA
SB −c2

∣

∣

∣

∣

:

∣

∣

∣

∣

SC −b2
SB SA

∣

∣

∣

∣

= b2c2 − SAA : c2SC + SAB : SCA + b2SB
= S2 : S2 : S2

= 1 : 1 : 1.

It follows thatu : v : w = a2 : b2 : c2, andP is the symmedian point.

Theorem (Lemoine)

The symmedian point is the only point which is the centroid ofits own pedal triangle.

4.6.3 Perspectors associated with inscribed squares

Consider the squareAbAcA′cA
′
b inscribed in triangleABC, withAb,Ac onBC. These

have coordinates

Ab = (0 : SC + S : SB), Ac = (0 : SC : SB + S),
A′b = (a2 : S : 0), A′c = (a2 : 0 : S).
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Similarly, there are inscribed squaresBcBaB′aB
′
c andCaCbC ′bC

′
a on the other two

sides.
Here is a number of perspective triangles associated with these squares.32 In each

case, we give the definition ofAn only.

n An Perspector of AnBnCn
1 BBc ∩ CCb orthocenter
2 BA′c ∩ CA′b circumcenter
3 BC ′a ∩ CB′a symmedian point
4 B′′cB

′′
a ∩ C ′′aC ′′b symmedian point

5 B′cB
′
a ∩ C ′aC ′b X493 = ( a2

S+b2 : · · · : · · · )
6 CbAb ∩AcBc Kiepert perspectorK(arctan 2)
7 CaAc ∩AbBa Kiepert perspectorK(arctan 2)
8 CaA

′
c ∩BaA′b (SA+S

SA
: · · · : · · · )

9 C ′aA
′
b ∩B′aA′c X394 = (a2SAA : b2SBB : c2SCC)

ForA4,BCA′′cA
′′
b ,CAB′′aB

′′
c andABC ′′b C

′′
a are the squares constructed externally

on the sides of triangleABC.

32K.R. Dean, Hyacinthos, message 3247, July 18, 2001.



Chapter 5

Circles I

5.1 Isogonal conjugates

Let P be a point with homogeneous barycentric coordinates(x : y : z).
(1) The reflection of the cevianAP in the bisector of angleA intersects the line

BC at the pointX ′ = (0 : b
2

y
: c

2

z
).

Proof. Let X be theA-trace ofP , with ∠BAP = θ. This is the pointX = (0 : y :
z) = (0 : SA−Sθ : −c2) in Conway’s notation. It follows thatSA−Sθ : −c2 = y : z.
If the reflection ofAX (in the bisector of angleA) intersectsBC atX ′, we haveX ′ =
(0 : −b2 : SA − Sθ) = (0 : −b2c2 : c2(SA − Sθ)) = (0 : b2z : c2y) = (0 : b

2

y
: c

2

z
).

θ θ

A

B CX X′

A

B CX X′

P
Q

Y

Y ′

Z

Z′

(2) Similarly, the reflections of the ceviansBP andCP in the respective angle
bisectors intersectCA atY ′ = (a

2

x
: 0 : c

2

z
) andAB atZ ′ = (a

2

x
: b

2

y
: 0).

(3) These pointsX ′, Y ′, Z ′ are the traces of

P ∗ =

(

a2

x
:
b2

y
:
c2

z

)

= (a2yz : b2zx : c2xy).

The pointP ∗ is called theisogonal conjugateof P . Clearly,P is the isogonal
conjugate ofP ∗.
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5.1.1 Examples

1. The isogonal conjugate of the centroidG is the symmedian pointK = (a2 : b2 :
c2).

2. The incenter is its own isogonal conjugate; so are the excenters.

3. The isogonal conjugate of the orthocenterH = ( 1
SA

: 1
SB

: 1
SC

) is (a2SA :

b2SB : c2SC), the circumcenter.

4. The isogonal conjugate of the Gergonne pointGe = ( 1
s−a : 1

s−b : 1
s−c ) is the

point (a2(s− a) : b2(s− b) : c2(s− c)), the internal center of similitude of the
circumcircle and the incircle.

5. The isogonal conjugate of the Nagel point is the external center of similitude of
(O) and(I).

Exercises

1. Let A′, B′, C ′ be the circumcenters of the trianglesOBC, OCA, OAB. The
triangleA′B′C ′ has perspector the isogonal conjugate of the nine-point center.1

2. Let P be a given point. Construct the circumcircles of the pedal triangles ofP
and ofP ∗. What can you say about these circles and their centers?

3. The isodynamic pointsare the isogonal conjugates of the Fermat points.2

(a) Construct the positive isodynamic pointF ∗+. This is a point on the line joining
O andK. How does this point divide the segmentOK?

(b) Construct the pedal triangle ofF ∗+. What can you say about this triangle?

4. Show that the isogonal conjugate of the Kiepert perspectorK(θ) = ( 1
SA+Sθ

:
1

SB+Sθ
: 1
SC+Sθ

) is always on the lineOK. How does this point divide the
segmentOK?

5. The perpendiculars from the vertices ofABC to the corresponding sides of the
pedal triangle of a pointP concur at the isogonal conjugate ofP .

1This is also known as the Kosnita point, and appears inETC as the pointX54.
2These appear inETC as the pointsX15 andX16.
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5.2 The circumcircle as the isogonal conjugate of the
line at infinity

Let P be a point on the circumcircle.
(1) If AX andAP are symmetric with respect to the bisector of angleA, andBY ,

BP symmetric with respect to the bisector of angleB, thenAX andBY are parallel.

O

A

B C

I

P

Proof. Suppose∠PAB = θ and∠PBA = ϕ. Note thatθ+ ϕ = C. Since∠XAB =
A + θ and∠Y BA = B + ϕ, we have∠XAB + ∠Y BA = 180◦ andAX, BY are
parallel.

(2) Similarly, ifCZ andCP are symmetric with respect to the bisector of angleC,
thenCZ is parallel toAX andBY .

It follows that the isogonal conjugate of a point on the circumcircle is an infinite
point, and conversely. We may therefore regard the circumcircle as the isogonal conju-
gate of the line at infinity. As such, the circumcircle has equation

a2yz + b2zx+ c2xy = 0.

Exercises

1. Animate a pointP on the circumcircle.

(1) Construct thelocusof isogonal conjugatesof points on the lineOP .

(2) Construct the isogonal conjugateQ of the infinite point of the lineOP .

The point lies on the locus in (1).

2. Animatea pointP on the circumcircle. Find thelocusof theisotomic conjugate
P •. 3

3The linea2x+ b2y + c2z = 0.
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3. Let P andQ be antipodal points on the circumcircle. The linesPQ• andQP •

joining each of these points to theisotomic conjugateof the other intersect
orthogonally on the circumcircle.

4. Let P andQ be antipodal points on the circumcircle. What is the locus of the
intersection ofPP • andQQ•?

5. Let P = (u : v : w). The linesAP ,BP , CP intersect the circumcircle again at
the points

A(P ) =

( −a2vw
c2v + b2w

: v : w

)

,

B(P ) =

(

u :
−b2wu

a2w + c2u
: w

)

,

C(P ) =

(

u : v :
−c2uv

b2u+ a2v

)

.

These form the vertices of theCircumcevian triangleof P .

(a) The circumcevian triangle ofP is always similar to the pedal triangle.

O

A

B C

P

(b) The circumcevian triangle of the incenter is perspective with the intouch
triangle. What is the perspector?4

(c) The circumcevian triangle ofP is always perspective with the tangential tri-
angle. What is the perspector?5

4The external center of similitude of the circumcircle and the incircle.
5(a2(− a4

u2 + b4

v2
+ c4

w2 ) : · · · : · · · ).
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5.3 Simson lines

Consider the pedals of a pointP = (u : v : w):

A[P ] = (0 : SCu+ a2v : SBu+ a2w),

B[P ] = (SCv + b2u : 0 : SAv + b2w),

C[P ] = (SBw + c2u : SAw + c2v : 0).

O

A

B C

P

These pedals ofP are collinear if and only ifP lies on the circumcircle, since
∣

∣

∣

∣

∣

∣

0 SCu+ a2v SBu+ a2w
SCv + b2u 0 SAv + b2w
SBw + c2u SAw + c2v 0

∣

∣

∣

∣

∣

∣

= (u+ v + w)

∣

∣

∣

∣

∣

∣

a2 SCu+ a2v SBu+ a2w
b2 0 SAv + b2w
c2 SAw + c2v 0

∣

∣

∣

∣

∣

∣

... · · ·
= (u+ v + w)(SAB + SBC + SCA)(a

2vw + b2wu+ c2uv).

If P lies on the circumcircle, the line containing the pedals is called theSimson line
s(P ) of P . If we write the coordinates ofP in the form(a

2

f
: b2

g
: c2

h
) = (a2gh :

b2hf : c2fg) for an infinite point(f : g : h), then

A[P ] = (0 : a2SCgh+ a2b2hf : a2SBgh+ a2c2fg)
∼ (0 : h(−SC(h+ f) + (SC + SA)f) : g(−SB(f + g) + (SA + SB)f))
∼ (0 : −h(SCh− SAf) : g(SAf − SBg)).

This becomesA[P ] = (0 : −hg′ : gh′) if we write (f ′ : g′ : h′) = (SBg − SCh :
SCh− SAf : SAf − SBg) for the infinite point of lines in the direction perpendicular
to (f : g : h). Similarly,B[P ] = (hf ′ : 0 : −fh′) andC[P ] = (−gf ′ : fg′ : 0). The
equation of the Simson line is

f

f ′
x+

g

g′
y +

h

h′
z = 0.
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O

A

B C

P

H

It is easy to determine the infinite point of the Simson line:

BP ] − C[P ] = c2(SCv + b2u : 0 : SAv + b2w)− b2(SBw + c2u : SAw + c2v : 0)

= (∗ ∗ ∗ : −b2(SAw + c2v) : c2(SAv + b2w))
... · · ·
= (∗ ∗ ∗ : SCh− SAf : SAf − SBg)
= (f ′ : g′ : h′).

The Simson lines(P ) is therefore perpendicular to the line definingP . It passes
through, as we have noted, the midpoint betweenH andP , which lies on the nine-
point circle.

5.3.1 Simson lines of antipodal points

Let P andQ be antipodal points on the circumcircle. They are isogonal conjugates of
the infinite points of perpendicular lines.

O

A

B C

P

Q′

Q

P ′

O

N

A

B C

H

P

Q

Therefore, the Simson liness(P ) ands(Q) are perpendicular to each other. Since
the midpoints ofHP andHQ are antipodal on the nine-point circle, the two Simson
lines intersect on the nine-point circle.
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Exercises

1. Animate a pointP on the circumcircle of triangleABC and trace its Simson
line.

2. Let H be the orthocenter of triangleABC, andP a point on the circumcircle.
Show that the midpoint ofHP lies on the Simson lines(P ) and on the nine-point
circle of triangleABC.

3. Let L be the linex
u
+ y

v
+ z

w
= 0, intersecting the side linesBC, CA, AB of

triangleABC atU , V ,W respectively.

(a) Find the equation of the perpendiculars toBC, CA, AB atU , V , W re-
spectively.6

(b) Find the coordinates of the vertices of the triangle bounded by these three
perpendiculars.7

(c) Show that this triangle is perspective withABC at a pointP on the cir-
cumcircle.8

(d) Show that the Simson line of the pointP is parallel toL.

6(SBv + SCw)x+ a2wy + a2vz = 0, etc.
7(−S2u2+SABuv+SBCvw+SCAwu : b2(c2uv−SAuw−SBvw) : c2(b2uw−SAuv−SCvw),

etc.
8P =

(

a2

−a2vw+SBuv+SCuw
: · · · : · · ·

)

.
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5.4 Equation of the nine-point circle

To find the equation of the nine-point circle, we make use of the fact that it is obtained
from the circumcircle by applying the homothetyh(G,− 1

2 ). If P = (x : y : z) is a
point on the nine-point circle, then the point

Q = 3G−2P = (x+y+z)(1 : 1 : 1)−2(x : y : z) = (y+z−x : z+x−y : x+y−z)

is on the circumcircle. From the equation of the circumcircle, we obtain

a2(z+x− y)(x+ y− z)+ b2(x+ y− z)(y+ z−x)+ c2(y+ z−x)(z+x− y) = 0.

Simplifying this equation, we have

0 =
∑

cyclic

a2(x2 − y2 + 2yz − z2) =
∑

cyclic

(a2 − c2 − b2)x2 + 2a2yz,

or
∑

cyclic

SAx
2 − a2yz = 0.

Exercises

1. Verify that the midpoint between the Fermat points, namely,the point with coor-
dinates

((b2 − c2)2 : (c2 − a2)2 : (a2 − b2)2),

lies on the nine-point circle.
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5.5 Equation of a general circle

Every circleC is homothetic to the circumcircle by a homothety, sayh(T, k), where
T = uA+ vB +wC (in absolute barycentric coordinate) is a center of similitude ofC
and the circumcircle. This means that ifP (x : y : z) is a point on the circleC, then

h(T, k)(P ) = kP+(1−k)T ∼ (x+tu(x+y+z) : y+tv(x+y+z) : z+tw(x+y+z)),

wheret = 1−k
k

, lies on the circumcircle. In other words,

0 =
∑

cyclic

a2(ty + v(x+ y + z))(tz + w(x+ y + z))

=
∑

cyclic

a2(yz + t(wy + vz)(x+ y + z) + t2vw(x+ y + z)2)

= (a2yz + b2zx+ c2xy) + t(
∑

cyclic

a2(wy + vz))(x+ y + z)

+t2(a2vw + b2wu+ c2uv)(x+ y + z)2

Note that the last two terms factor as the product ofx+ y+ z and anotherlinear form.
It follows that every circle can be represented by an equation of the form

a2yz + b2zx+ c2xy + (x+ y + z)(px+ qy + rz) = 0.

The linepx+ qy + rz = 0 is theradical axisof C and the circumcircle.

Exercises

1. The radical axis of the circumcircle and the nine-point circle is the line

SAx+ SBy + SCz = 0.

2. The circle through the excenters has center at the reflectionof I in O, and radius
2R. Find its equation.9

9a2yz + b2zx+ c2xy + (x+ y + z)(bcx+ cay + abz) = 0.
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5.6 Appendix: Miquel Theory

5.6.1 Miquel Theorem

Let X, Y , Z be points on the linesBC, CA, andAB respectively. The three circles
AY Z,BZX, andCXY pass through a common point.

A

B CX

Y

Z

5.6.2 Miquel associate

SupposeX, Y , Z are the traces ofP = (u : v : w). We determine the equation of the
circleAY Z. 10 Writing it in the form

a2yz + b2zx+ c2xy + (x+ y + z)(px+ qy + rz) = 0

we note thatp = 0 since it passes throughA = (1 : 0 : 0). Also, with (x : y : z) =

(u : 0 : w), we obtainr = − b2u
w+u . Similarly, with (x : y : z) = (u : v : 0), we obtain

q = − c2u
u+v . The equation of the circle

CAY Z : a2yz + b2zx+ c2xy − (x+ y + z)
(

c2u
u+vy +

b2u
w+uz

)

= 0.

Likewise, the equations of the other two circles are

CBZX : a2yz + b2zx+ c2xy − (x+ y + z)( c
2v
u+vx+ a2v

v+wz) = 0,

and the one throughC,X, andY has equation

CCXY : a2yz + b2zx+ c2xy − (x+ y + z)( b
2w
w+ux+ a2w

v+wy) = 0.

By Miquel’s Theorem, the three circles intersect at a pointP ′, which we call the
Miquel associateof P . The coordinates ofP ′ satisfy the equations

c2u

u+ v
y +

b2u

w + u
z =

c2v

u+ v
x+

a2v

v + w
z =

b2w

w + u
x+

a2w

v + w
y.

10For the case whenX, Y , Z are the intercepts of a line, see J.P. Ehrmann,Steiner’s theorems on the
complete quadrilateral, Forum Geometricorum, forthcoming.
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Solving these equations, we have

P ′ =

(

a2

v + w

(

− a2vw

v + w
+
b2wu

w + u
+
c2uv

u+ v

)

,

:
b2

w + u

(

a2vw

v + w
− b2wu

w + u
+
c2uv

u+ v

)

,

:
c2

u+ v

(

a2vw

v + w
+
b2wu

w + u
− c2uv

u+ v

))

.

Examples

P Miquel associate P ′

centroid circumcenter
orthocenter orthocenter

Gergonne point incenter

incenter (a
2(a3+a2(b+c)−a(b2+bc+c2)−(b+c)(b2+c2))

b+c : · · · : · · · )
Nagel Point (a(a3 + a2(b+ c)− a(b+ c)2 − (b+ c)(b− c)2) : · · · : · · · )

5.6.3 Cevian circumcircle

The cevian circumcircle ofP is the circle through its traces. This has equation

(a2yz + b2zx+ c2xy)− (x+ y + z)(px+ qy + rz) = 0,

where

vq + wr =
a2vw

v + w
, up+ wr =

b2wu

w + u
, up+ vq =

c2uv

u+ v
.

Solving these equations, we have

p =
1

2u

(

− a2vw

v + w
+
b2wu

w + u
+
c2uv

u+ v

)

,

q =
1

2v

(

a2vw

v + w
− b2wu

w + u
+
c2uv

u+ v

)

,

r =
1

2w

(

a2vw

v + w
+
b2wu

w + u
− c2uv

u+ v

)

.

5.6.4 Cyclocevian conjugate

The cevian circumcircle intersects the lineBC at the points given by

a2yz − (y + z)(qy + rz) = 0.

This can be rearranged as

qy2 + (q + r − a2)yz + rz2 = 0.
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The product of the two roots ofy : z is r
q
. Since one of the rootsy : z = v : w, the

other root isrw
qv

. The second intersection is therefore the point

X ′ = 0 : rw : qv = 0 :
1

qv
:

1

rw
.

Similarly, the “second” intersections of the circleXY Z with the other two sides can
be found. The ceviansAX ′, BY ′, andCZ ′ intersect at the point( 1

pu
: 1
qv

: 1
rw

). We
denote this byc(P ) and call it thecyclocevian conjugateof P . Explicitly,

c(P ) =

(

1

−a2vw
v+w + b2wu

w+u + c2uv
u+v

:
1

a2vw
v+w − b2wu

w+u + c2uv
u+v

:
1

a2vw
v+w + b2wu

w+u − c2uv
u+v

)

.

Examples

1. The centroid and the orthocenter are cyclocevian conjugates, their common ce-
vian circumcircle being the nine-point circle.

2. The cyclocevian conjugate of the incenter is the point
(

1

a3 + a2(b+ c)− a(b2 + bc+ c2)− (b+ c)(b2 + c2)
: · · · : · · ·

)

.

Theorem

Given a pointP , let P ′ be its Miquel associate andQ its cyclocevian conjugate, with
Miquel associateQ′.

P

A

B CX

Y

Z

Q

P ′

X′

Y ′

Z′

Q′

(a)P ′ andQ′ are isogonal conjugates.
(b) The linesPQ andP ′Q′ are parallel.
(c) The “second intersections” of the pairs of circlesAY Z,AY ′Z ′;BZX,BZ ′X ′;

andCXY , CX ′Y ′ form a triangleA′B′C ′ perspective withABC.
(d) The “Miquel perspector” in (c) is the intersection of thetrilinear polars ofP

andQ with respect to triangleABC.
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Exercises

1. For a real numbert, we consider the triad of points

Xt = (0 : 1− t : t), Yt = (t : 0 : 1− t), Zt = (1− t : t : 0)

on the sides of the reference triangle.

(a) The circlesAYtZt,BZtXt andCXtYt intersect at the point

Mt = (a2(−a2t(1− t) + b2t2 + c2(1− t)2)
: b2(a2(1− t)2 − b2t(1− t) + c2t2)
: c2(a2t2 + b2(1− t)2 − c2t(1− t))).

(b) WritingMt = (x : y : z), eliminatet to obtain the following equation inx,
y, z:

b2c2x2 + c2a2y2 + a2b2z2 − c4xy − b4zx− a4yz = 0.

(c) Show that the locus ofMt is a circle.

(d) Verify that this circle contains the circumcenter, the symmedian point, and
the twoBrocard points

Ω← =

(

1

b2
:
1

c2
:
1

a2

)

,

and

Ω→ =

(

1

c2
:
1

a2
:
1

b2

)

.
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Circles II

6.1 Equation of the incircle

Write the equation of the incircle in the form

a2yz + b2zx+ c2xy − (x+ y + z)(px+ qy + rz) = 0

for some undetermined coefficientsp, q, r. Since the incircle touches the sideBC at
the point(0 : s − c : s − b), y : z = s − c : s − b is the only root of the quadratic
equationa2yz + (y + z)(qy + rz) = 0. This means that

qy2 + (q + r − a2)yz + rz2 = k((s− b)y − (s− c)z)2

for some scalark.

Aa

Ba

Ca

A

B C

Ib

Ic

Ab

Bb

Cb

Ac

Bc

Cc

Comparison of coefficients givesk = 1 andq = (s−b)2, r = (s−c)2. Similarly, by
considering the tangency with the lineCA, we obtainp = (s− a)2 and (consistently)
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r = (s− c)2. It follows that the equation of the incircle is

a2yz + b2zx+ c2xy − (x+ y + z)((s− a)2x+ (s− b)2y + (s− c)2z) = 0.

The radical axis with the circumcircle is the line

(s− a)2x+ (s− b)2y + (s− c)2z = 0.

6.1.1 The excircles

The same method gives the equations of the excircles:

a2yz + b2zx+ c2xy − (x+ y + z)(s2x+ (s− c)2y + (s− b)2z) = 0,
a2yz + b2zx+ c2xy − (x+ y + z)((s− c)2x+ s2y + (s− a)2z) = 0,
a2yz + b2zx+ c2xy − (x+ y + z)((s− b)2x+ (s− a)2y + s2z) = 0.

Exercises

1. Show that the Nagel point of triangleABC lies on its incircle if and only if one
of its sides is equal tos2 . Make use of this to design an animation picture showing
a triangle with its Nagel point on the incircle.

2. (a) Show that the centroid of triangleABC lies on the incircle if and only if
5(a2 + b2 + c2) = 6(ab+ bc+ ca).

(b) LetABC be anequilateraltriangle with centerO, andC the circle, centerO,
radius half that of the incirle ofABC. Show that the distances from an arbitrary
pointP on C to the sidelines ofABC are the lengths of the sides of a triangle
whose centroid is on the incircle.
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6.2 Intersection of the incircle and the nine-point circle

We consider how the incircle and the nine-point circle intersect. The intersections of
the two circles can be found by solving their equations simultaneously:

a2yz + b2zx+ c2xy − (x+ y + z)((s− a)2x+ (s− b)2y + (s− c)2z) = 0,

a2yz + b2zx+ c2xy − 1

2
(x+ y + z)(SAx+ SBy + SCz) = 0.

6.2.1 Radical axis of(I) and (N)

Note that

(s−a)2−1

2
SA =

1

4
((b+c−a)2−(b2+c2−a2)) = 1

2
(a2−a(b+c)+bc) = 1

2
(a−b)(a−c).

Subtracting the two equations we obtain the equation of the radical axis of the two
circles:

L : (a− b)(a− c)x+ (b− a)(b− c)y + (c− a)(c− b)z = 0.

We rewrite this as
x

b− c
+

y

c− a
+

z

a− b
= 0.

There are two points with simple coordinates on this line:

P = ((b− c)2 : (c− a)2 : (a− b)2),

and
Q = (a(b− c)2 : b(c− a)2 : c(a− b)2).

Making use of these points we obtain a very simple parametrization of points on the
radical axisL, exceptP :

(x : y : z) = ((a+ t)(b− c)2 : (b+ t)(c− a)2 : (c+ t)(a− b)2)

for somet.

6.2.2 The line joining the incenter and the nine-point center

We find the intersection of the radical axisL and the line joining the centersI andN .
It is convenient to write the coordinates of the nine-point center in terms ofa, b, c.
Thus,

N = (a2(b2 + c2)− (b2 − c2)2 : b2(c2 + a2)− (c2 − a2)2 : c2(a2 + b2)− (a2 − b2)2)

with coordinate sum8S2.1

1Start withN = (S2 + SBC : · · · : · · · ) (with coordinate sum4S2) and rewriteS2 + SBC = · · · =
1
2
(a2(b2 + c2)− (b2 − c2)2).
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We seek a real numberk for which the point

(a2(b2 + c2)− (b2 − c2)2 + ka
: b2(c2 + a2)− (c2 − a2)2 + kb
: c2(a2 + b2)− (a2 − b2)2 + kc)

on the lineIN also lies on the radical axisL. With k = −2abc, we have

a2(b2 + c2)− (b2 − c2)2 − 2a2bc
= a2(b− c)2 − (b2 − c2)2

= (b− c)2(a2 − (b+ c)2)
= 4s(a− s)(b− c)2,

and two analogous expressions by cyclic permutations ofa, b, c. These give the coor-
dinates of a point onL with t = −s, and we conclude that the two lines intersect at the
Feuerbach point

F = ((s− a)(b− c)2 : (s− b)(c− a)2 : (s− c)(a− b)2).

We proceed to determine the ratio of divisionIF : FN . From the choice ofk, we
have

F ∼ 8S2 ·N − 2abc · 2s · I = 8S2 ·N − 4sabc · I.

This means that

NF : FI = −4sabc : 8S2 = −8sRS : 8S2 = −sR : S = R : −2r =
R

2
: −r.

The pointF is the external center of similitude of the nine-point circle and the incircle.
However, if a center of similitude of two circles lies on their radical axis, the circles

must be tangent to each other (at that center).2

N

I
T ′ F

2Proof: Consider two circles of radiip andq, centers at a distanced apart. Suppose the intersection
of the radical axis and the center line is at a distancex from the center of the circle of radiusp, then

x2 − p2 = (d − x)2 − q2. From this,x = d2+p2−q2

2d
, andd − x = d2−p2+q2

2d
. The division ratio is

x : d−x = d2+p2−q2 : d2−p2+q2. If this is equal top : −q, thenp(d2−p2+q2)+q(d2+p2−q2) = 0,
(p+ q)(d2 − (p− q)2) = 0. From thisd = |p− q|, and the circles are tangent internally.
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Feuerbach’s Theorem

The nine-point circle and the incircle are tangent internally to each other at the point
F , the common tangent being the line

x

b− c
+

y

c− a
+

z

a− b
= 0.

The nine-point circle is tangent to each of the excircles externally. The points of
tangency form a triangle perspective withABC at the point

F ′ =

(

(b+ c)2

s− a
:
(c+ a)2

s− b
:
(a+ b)2

s− c

)

.

C′

A′

N

Ia

Ib

Ic

B′

A

B C

Fc

Fa

Fb

F

Exercises

1. Show thatF andF ′ divide I andN harmonically.

2. Find the equations of the common tangent of the nine-point circle and the excir-
cles.3

3. Apart from their common tangent atFa, the nine-point circle and theA-excircle
have another pair of common tangents, intersecting at theirexternal center of

3Tangent to theA-excircle: x
b−c

+ y
c+a

− z
a+b

= 0.
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similitudeA′. Similarly defineB′ andC ′. The triangleA′B′C ′ is perspective
with ABC. What is the perspector?4

4. Let ℓ be a diameter of the circumcircle of triangleABC. Animate a pointP onℓ
and construct itspedal circle, the circle through the pedals ofP on the side lines.
The pedal circle always passes through a fixed point on the nine-point circle.

What is this fixed point if the diameter passes through the incenter?

4The Feuerbach point.
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6.3 The excircles

Consider the radical axes of the excircles with the circumcircle. These are the lines

s2x+ (s− c)2y + (s− b)2z = 0,
(s− c)2x+ s2y + (s− a)2z = 0,
(s− b)2x+ (s− a)2y + s2z = 0.

These three lines bound a triangle with vertices

A′ = (−(b+ c)(a2 + (b+ c)2) : b(a2 + b2 − c2) : c(c2 + a2 − b2)),
B′ = (a(a2 + b2 − c2) : −(c+ a)(b2 + (c+ a)2) : c(b2 + c2 − a2)),
C ′ = (a(c2 + a2 − b2) : b(b2 + c2 − a2) : −(a+ b)(c2 + (a+ b)2)).

A

B C

X

Y

Z

Cw

The triangleA′B′C ′ is perspective withABC at the Clawson point5

(

a

SA
:
b

SB
:
c

SC

)

.

Exercises

1. LetAH be the pedal ofA on the opposite sideBC of triangleABC. Construct
circleB(AH) to intersectAB atCb andC ′b (so thatC ′b in on the extension of
AB), and circleC(AH) to intersectAC at andBc andB′c (so thatB′c in on the
extension ofAC).

5This point appears inETC as the pointX19.
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A

B
C

Cb

C′b

Bc

B′c

A′

Cw

(a) LetA1 be the intersection of the linesBcC ′b andCbB′c. Similarly defineB1

andC1. Show thatA1B1C1 is perspective withABC at the Clawson point.6

(b) LetA2 = BBc∩CCb,B2 = CCa∩AAc, andC2 = AAb∩BBa. Show that
A2B2C2 is perspective withABC. Calculate the coordinates of the perspector.
7

(c) LetA3 = BB′c∩CC ′b,B3 = CC ′a∩AA′c, andC3 = AA′b∩BB′a. Show that
A3B3C3 is perspective withABC. Calculate the coordinates of the perspector.
8

2. Consider theB- andC-excircles of triangleABC. Three of their common tan-
gents are the side lines of triangleABC. The fourth common tangent is the
reflection of the lineBC in the line joining the excentersIb andIc.

(a) Find the equation of this fourth common tangent, and write down the equa-
tions of the fourth common tangents of the other two pairs of excircles.

(b) Show that the triangle bounded by these 3 fourth common tangents is homo-
thetic to the orthic triangle, and determine the homotheticcenter.9

6A.P.Hatzipolakis, Hyacinthos, message 1663, October 25, 2000.
7X278 = ( 1

(s−a)SA
: · · · : · · · )

8X281 = ( s−a
SA

: · · · : · · · )
9The Clawson point. See R. Lyness and G.R. Veldkamp, Problem 682 and solution,Crux Math.9 (1983)

23 – 24.
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6.4 The Brocard points

Consider the circle through the verticesA andB and tangent to the sideAC at the
vertexA. Since the circle passes throughA andB, its equation is of the form

a2yz + b2zx+ c2xy − rz(x+ y + z) = 0

for some constantr. Since it is tangent toAC atA, when we sety = 0, the equation
should reduce toz2 = 0. This means thatr = b2 and the circle is

CAAB : a2yz + b2zx+ c2xy − b2z(x+ y + z) = 0.

Similarly, we consider the analogous circles

CBBC : a2yz + b2zx+ c2xy − c2x(x+ y + z) = 0.

and

CCCA : a2yz + b2zx+ c2xy − a2y(x+ y + z) = 0.

These three circles intersect at theforward Brocard point

Ω→ =

(

1

c2
:
1

a2
:
1

b2

)

.

This point has the property that

∠ABΩ→ = ∠BCΩ→ = ∠CAΩ→.

A

B C

Ω→

ω

ω
ω

A

B C

Ω←

ω

ω
ω

In reverse orientations there are three circlesCABB , CBCC , andCCAA intersecting
at thebackward Brocard point

Ω← =

(

1

b2
:
1

c2
:
1

a2

)

.

satisfying
∠BAΩ← = ∠CBΩ← = ∠ACΩ←.
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Note from their coordinates that the two Brocard points are isogonal conjugates.
This means that the 6 angles listed above are all equal. We denote the common value
by ω and call this theBrocard angleof triangleABC. By writing the coordinates of
Ω→ in Conway’s notation, it is easy to see that

cotω =
1

2
(SA + SB + SC).

The linesBΩ← andCΩ→ intersect atA−ω. Similarly, we haveB−ω = CΩ← ∩
AΩ→, andC−ω = AΩ← ∩BΩ→. Clearly the triangleA−ωB−ωC−ω is perspective to
ABC at the point

K(−ω) =
(

1

SA − Sω
: · · · : · · ·

)

∼ · · · ∼
(

1

a2
: · · · : · · ·

)

,

which is the isotomic conjugate of the symmedian point.10

A

B C

Ω←

X

Y

Z

Ω→

K(−ω)

Exercises

1. The midpoint of the segmentΩ→Ω← is theBrocard midpoint11

(a2(b2 + c2) : b2(c2 + a2) : c2(a2 + b2)).

Show that this is a point on the lineOK.

2. The Brocard circle is the circle through the three pointsA−ω,B−ω, andC−ω. It
has equation

a2yz + b2zx+ c2xy − a2b2c2

a2 + b2 + c2
(x+ y + z)

( x

a2
+
y

b2
+

z

c2

)

= 0.

Show that this circle also contains the two Brocard pointΩ→ andΩ←, the cir-
cumcenter, and the symmedian point.

10This is also known as thethird Brocard point. It appears as the pointX76 in ETC.
11The Brocard midpoint appears inETC as the pointX39.
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3. LetXY Z be the pedal triangle ofΩ→ andX ′Y ′Z ′ be that ofΩ←.
A

B C

Ω←

Ω→

X

Y

Z

X′

Y ′

Z′

(a) Find the coordinates of these pedals.

(b) Show thatY ′Z is parallel toBC.

(c) The triangle bounded by the three linesY ′Z, Z ′X andX ′Y is homothetic to
triangleABC. What is the homothetic center?12

(d) The trianglesXY Z andY ′Z ′X ′ are congruent.

12The symmedian point.
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6.5 Appendix: The circle triad (A(a), B(b), C(c))

Consider the circleA(a). This circle intersects the lineAB at the two points(c + a :
−a : 0), (c− a : a : 0), andAC at (a+ b : 0 : −a) and(b− a : 0 : a). It has equation

Ca : a2yz + b2zx+ c2xy + (x+ y + z)(a2x+ (a2 − c2)y + (a2 − b2)z) = 0.

Similarly, the circlesB(b) andC(c) have equations

Cb : a2yz + b2zx+ c2xy + (x+ y + z)((b2 − c2)x+ b2y + (b2 − a2)z) = 0,

and

Cc : a2yz + b2zx+ c2xy + (x+ y + z)((c2 − b2)x+ (c2 − a2)y + c2z) = 0.

These are called the de Longchamps circles of triangleABC. The radical centerL of
the circles is the point(x : y : z) given by

a2x+(a2−c2)y+(a2−b2)z = (b2−c2)x+b2y+(b2−a2)z = (c2−b2)x+(c2−a2)y+c2z.

Forming the pairwise sums of these expressions we obtain

SA(y + z) = SB(z + x) = SC(x+ y).

From these,

y + z : z + x : x+ y =
1

SA
:

1

SB
:

1

SC
= SBC : SCA : SAB ,

and

x : y : z = SCA + SAB − SBC : SAB + SBC − SCA : SBC + SCA − SAB .

This is called thede Longchamps pointof the triangle.13 It is the reflection of the
orthocenter in the circumcenter,i.e., L = 2 ·O −H.

Exercises

1. Show that the intersections ofCb andCc are the reflections ofA

(i) in the midpoint ofBC, and

(ii) in the perpendicular bisector ofBC.

What are the coordinates of these points?14

2. The circleCa intersects the circumcircle atB′ andC ′.

3. The de Longchamps pointL is the orthocenter of the anticomplementary trian-
gle, and triangleA′B′C ′ is the orthic triangle.

13The de Longchamps point appears as the pointX20 in ETC.
14(−1 : 1 : 1) andA′ = (−a2 : b2 − c2 : c2 − b2).
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6.5.1 The Steiner point

The radical axis of the circumcircle and the circleCa is the line

a2x+ (a2 − c2)y + (a2 − b2)z = 0.

This line intersects the side lineBC at point

A′ =

(

0 :
1

c2 − a2
:

1

a2 − b2

)

.

Similarly, the radical axis ofCb hasb-intercept

B′ =

(

1

b2 − c2
: 0 :

1

a2 − b2

)

,

and that ofCc hasc-intercept

C ′ =

(

1

b2 − c2
:

1

c2 − a2
: 0

)

.

These three pointsA′,B′, C ′ are the traces of the point with coordinates
(

1

b2 − c2
:

1

c2 − a2
:

1

a2 − b2

)

.

This is a point on the circumcircle, called theSteiner point. 15

Exercises

1. The antipode of the Steiner point on the circumcircle is called theTarry point.
Calculate its coordinates.16

2. Reflect the verticesA, B, C in the centroidG to form the pointsA′, B′, C ′

respectively. Use thefive-point conic command to construct the conic through
A, B, C, A′, B′,C”. This is theSteiner circum-ellipse. Apart from the vertices,
it intersects the circumcircle at the Steiner point.

3. Use thefive-point conic command to construct the conic through the vertices
of triangleABC, its centroid, and orthocenter. This is a rectangular hyperbola
called theKiepert hyperbolawhich intersect the circumcircle, apart from the
vertices, at the Tarry point.

15This point appears asX99 in ETC.
16( 1

a2(b2+c2)−(b4+c4)
: · · · : · · · ). The Tarry point appears the pointX98 in ETC.
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Circles III

7.1 The distance formula

LetP = uA+ vB +wC andQ = u′A+ v′B +w′C be given in absolute barycentric
coordinates. The distance between them is given by

PQ2 = SA(u− u′)2 + SB(v − v′)2 + SC(w − w′)2

A

B C

P

Q

R

Proof. ThroughP andQ draw lines parallel toAB andAC respectively, intersecting
atR. The barycentric coordinates ofR can be determined in two ways.R = P+h(B−
C) = Q+k(A−C) for someh andk. It follows thatR = uA+(v+h)B+(w−h)C =
(u′ + k)A+ v′B + (w′ − k)C, from whichh = −(v − v′) andk = u− u′. Applying
the law of cosines to trianglePQR, we have

PQ2 = (ha)2 + (kb)2 − 2(ha)(kb) cosC
= h2a2 + k2b2 − 2hkSC
= (SB + SC)(v − v′)2 + (SC + SA)(u− u′)2 + 2(u− u′)(v − v′)SC
= SA(u− u′)2 + SB(v − v′)2

+SC [(u− u′)2 + 2(u− u′)(v − v′) + (v − v′)2].

The result follows since

(u− u′) + (v − v′) = (u+ v)− (u′ + v′) = (1− w)− (1− w′) = −(w − w′).
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The distance formula in homogeneous coordinates

If P = (x : y : z) andQ = (u : v : w), the distance betweenP andQ is given by

|PQ|2 =
1

(u+ v + w)2(x+ y + z)2

∑

cyclic

SA((v + w)x− u(y + z))2.

Exercises

1. The distance fromP = (x : y : z) to the vertices of triangleABC are given by

AP 2 =
c2y2 + 2SAyz + b2z2

(x+ y + z)2
,

BP 2 =
a2z2 + 2SBzx+ c2x2

(x+ y + z)2
,

CP 2 =
b2x2 + 2SCxy + a2y2

(x+ y + z)2
.

2. The distance betweenP = (x : y : z) andQ = (u : v : w) can be written as

|PQ|2 =
1

x+ y + z
·





∑

cyclic

c2v2 + 2SAvw + b2w2

(u+ v + w)2
x



−a
2yz + b2zx+ c2xy

(x+ y + z)2
.

3. Compute the distance between the incenter and the nine-point centerN = (S2+
SA : S2 + SB : S2 + SC). Deduce Feuerbach’s theorem by showing that this is
R
2 − r. Find the coordinates of the Feuerbach pointF as the point dividingNI
externally in the ratioR : −2r.
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7.2 Circle equations

7.2.1 Equation of circle with center(u : v : w) and radius ρ:

a2yz + b2zx+ c2xy − (x+ y + z)
∑

cyclic

(

c2v2 + 2SAvw + b2w2

(u+ v + w)2
− ρ2

)

x = 0.

7.2.2 The power of a point with respect to a circle

Consider a circleC := O(ρ) and a pointP . By the theorem on intersecting chords, for
any line throughP intersectingC at two pointsX andY , the product|PX||PY | of
signedlengths is constant. We call this product thepowerof P with respect toC. By
considering the diameter throughP , we obtain|OP |2 − ρ2 for the power of a pointP
with respect toO(ρ).

7.2.3 Proposition

Let p, q, r be the powers ofA,B, C with respect to a circleC.
(1) The equation of the circle is

a2yz + b2zx+ c2xy − (x+ y + z)(px+ qy + rz) = 0.

(2) The center of the circle is the point

(a2SA+SB(r−p)−SC(p−q) : b2SB+SC(p−q)−SA(r−p) : c2SC+SA(q−r)−SB(r−p).

(3) The radiusρ of the circle is given by

ρ2 =
a2b2c2 − 2(a2SAp+ b2SBq + c2SCr) + SA(q − r)2 + SB(r − p)2 + SC(p− q)2

4S2
.

Exercises

1. LetX, Y , Z be the pedals ofA, B, C on their opposite sides. The pedals ofX
onCA andAB, Y onAB, BC, andZ onCA, BC are on a circle. Show that
the equation of the circle is1

a2yz + b2zx+ c2xy − 1

4R2
(x+ y + z)(SAAx+ SBBy + SCCz) = 0.

2. Let P = (u : v : w) with cevian triangleXY Z.

(a) Find the equations of the circlesABY andACZ, and the coordinates of
their second intersectionA′.

1This is called theTaylor circleof triangleABC. Its center is the pointX389 in ETC. This point is also
the intersection of the three lines through the midpoint of each side of theorthic triangleperpendicular to
the corresponding side ofABC.
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A

B C

H

(b) Similarly defineB′ andC ′. Show that triangleA′B′C ′ is perspective with
ABC. Identify the perspector.2

2( a2

v+w
: · · · : · · · ). See Tatiana Emelyanov, Hyacinthos, message 3309, 7/27/01.
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7.3 Radical circle of a triad of circles

Consider three circles with equations

a2yz + b2zx+ c2xy − (x+ y + z)(pix+ qiy + riz) = 0, i = 1, 2, 3.

7.3.1 Radical center

The radical centerP is the point with equal powers with respect to the three circles.
Its coordinates are given by the solutions of the system of equations.

p1x+ q1y + r1z = p2x+ q2y + r2z = p3x+ q3y + r3z.

Explicitly, if we write

M =





p1 q1 r1
p2 q2 r2
p3 q3 r3



 ,

then,P = (u : v : w) with 3

u =

∣

∣

∣

∣

∣

∣

1 q1 r1
1 q2 r2
1 q3 r3

∣

∣

∣

∣

∣

∣

, v =

∣

∣

∣

∣

∣

∣

p1 1 r1
p2 1 r2
p3 1 r3

∣

∣

∣

∣

∣

∣

, w =

∣

∣

∣

∣

∣

∣

p1 q1 1
p2 q2 1
p3 q3 1

∣

∣

∣

∣

∣

∣

.

7.3.2 Radical circle

There is a circle orthogonal to each of the circlesCi, i = 1, 2, 3. The center is the
radical centerP above, and its square radius is thenegativeof the common power of
P with respect to the circles,i.e.,

a2vw + b2wu+ c2uv

(u+ v + w)2
− detM

u+ v + w
.

This circle, which we call theradical circleof the given triad, has equation
∑

cyclic

(c2v + b2w)x2 + 2SAuyz − det(M)(x+ y + z)2 = 0.

In standard form, it is

a2yz + b2zx+ c2xy − 1

u+ v + w
· (x+ y + z)(

∑

cyclic

(c2v + b2w − det(M))x) = 0.

The radical circle is real if and only if

(u+ v + w)(piu+ qiv + riw)− (a2vw + b2wu+ c2uv) ≥ 0

for anyi = 1, 2, 3.

3Proof:p1u+ q1v + r1w = p2u+ q2v + r2w = p3u+ q3v + r3w = detM .
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7.3.3 The excircles

The radical center of the excircles is the pointP = (u : v : w) given by

u =





1 (s− c)2 (s− b)2

1 s2 (s− a)2

1 (s− a)2 s2



 =





1 (s− c)2 (s− a)2

0 c(a+ b) −c(a− b)
0 b(c− a) b(c+ a)





= bc(a+ b)(c+ a) + bc(a− b)(c− a) = 2abc(b+ c),

and, likewise,v = 2abc(c+ a) andw = 2abc(a+ b). This is the point(b+ c : c+ a :
a+ b), called theSpieker center. It is the incenter of the medial triangle.

Ia

Ib

Ic

Ma

MbMc

A

B C

Sp

Since, with(u, v, w) = (b+ c, c+ a, a+ b),

(u+ v + w)(s2u+ (s− c)2v + (s− b)2w)− (a2vw + b2wu+ c2uv)

= (a+ b+ c)(2abc+
∑

a3 +
∑

a2(b+ c))− (a+ b+ c)(abc+
∑

a3)

= (a+ b+ c)(abc+
∑

a2(b+ c)),

the square radius of the orthogonal circle is

abc+
∑

a2(b+ c)

a+ b+ c
= · · · = 1

4
(r2 + s2).

The equation of the radical circle can be written as
∑

cyclic

(s− b)(s− c)x2 + asyz = 0.
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7.3.4 The de Longchamps circle

The radical centerL of the circle triad(A(a), B(b), C(c)) is the point(x : y : z) given
by

a2x+(a2−c2)y+(a2−b2)z = (b2−c2)x+b2y+(b2−a2)z = (c2−b2)x+(c2−a2)y+c2z.

Forming the pairwise sums of these expressions we obtain

SA(y + z) = SB(z + x) = SC(x+ y).

From these,

y + z : z + x : x+ y =
1

SA
:

1

SB
:

1

SC
= SBC : SCA : SAB ,

and

x : y : z = SCA + SAB − SBC : SAB + SBC − SCA : SBC + SCA − SAB .

This is called thede Longchamps pointof the triangle.4 It is the reflection of the
orthocenter in the circumcenter,i.e., L = 2 ·O −H. The de Longchamps circle is the
radical circle of the triadA(a),B(b) andC(c). It has equation

a2yz + b2zx+ c2xy − (x+ y + z)(a2x+ b2y + c2z) = 0.

This circle is real if and only if triangleABC is obtuse - angled.
It is also orthogonal to the triad of circles(D(A), E(B), F (C)). 5

Exercises

1. The radical center of the triad of circlesA(Ra),B(Rb), andC(Rc) is the point

2S2 ·O − a2R2
a(A−AH)− b2R2

b(B −BH)− c2R2
c(C − CH).

4The de Longchamps point appears as the pointX20 in ETC.
5G. de Longchamps, Sur un nouveau cercle remarquable du plan d’un triangle, Journal de Math.

Sṕeciales, 1886, pp. 57 – 60, 85 – 87, 100 – 104, 126 – 134.
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7.4 The Lucas circles
6

Consider the squareAbAcA′cA
′
b inscribed in triangleABC, with Ab, Ac onBC.

Since this square can be obtained from the square erected externally onBC via the
homothetyh(A, S

a2+S ), the equation of the circleCA throughA, A′b andA′c can be
easily written down:

CA : a2yz + b2zx+ c2xy − a2

a2 + S
· (x+ y + z)(c2y + b2z) = 0.

Likewise if we construct inscribed squaresBcBaB′aB
′
c andCaCbC ′bC

′
a on the other

two sides, the corresponding Lucas circles are

CB : a2yz + b2zx+ c2xy − b2

b2 + S
· (x+ y + z)(c2x+ a2z) = 0,

and

CC : a2yz + b2zx+ c2xy − c2

c2 + S
· (x+ y + z)(b2x+ a2y) = 0.

The coordinates of the radical center satisfy the equations

a2(c2y + b2z)

a2 + S
=
b2(a2z + c2x)

b2 + S
=
c2(b2x+ a2y)

c2 + S
.

Since this can be rewritten as
y

b2
+

z

c2
:
z

c2
+

x

a2
:
x

a2
+
y

b2
= a2 + S : b2 + S : c2 + S,

it follows that
x

a2
:
y

b2
:
z

c2
= b2 + c2 − a2 + S : c2 + a2 − b2 + S : a2 + b2 − c2 + S,

and the radical center is the point

(a2(2SA + S) : b2(2SB + S) : c2(2SC + S)).

The three Lucas circles are mutually tangent to each other, the points of tangency
being

A′ = (a2SA : b2(SB + S) : c2(SC + S)),
B′ = (a2(SA + S) : b2SB : c2(SC + S)),
C ′ = (a2(SA + S) : b2(SB + S) : c2SC).

Exercises

1. These point of tangency form a triangle perspective withABC. Calculate the
coordinates of the perspector.7

6A.P. Hatzipolakis and P. Yiu, The Lucas circles,Amer. Math. Monthly, 108 (2001) 444 – 446.
7(a2(SA + S) : b2(SB + S) : c2(SC + S)). This point appears inETC asX371, and is called the

Kenmotu point. It is the isogonal conjugate of the Vecten point ( 1
SA+S

: 1
SB+S

: 1
SC+S

).
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7.5 Appendix: More triads of circles

1. (a) Construct the circle tangent to the circumcircleinternally atA and also to
the sideBC.

(b) Find the coordinates of the point of tangency with the sideBC.

(c) Find the equation of the circle.8

(d) Similarly, construct the two other circles, each tangent internally to the
circumcircle at a vertex and also to the opposite side.

(e) Find the coordinates of the radical center of the three circles.9

2. Construct the three circles each tangent to the circumcircleexternallyat a vertex
and also to the opposite side. Identify the radical center, which is a point on the
circumcircle.10

3. LetX, Y ,Z be the traces of a pointP on the side linesBC,CA,AB of triangle
ABC.

(a) Construct the three circles, each passing through a vertex of ABC and
tangent to opposite side at the trace ofP .

(b) Find the equations of these three circles.

(c) The radical center of these three circles is a point independent ofP . What
is this point?

4. Find the equations of the three circles each through a vertexand the traces of the
incenter and the Gergonne point on the opposite side. What is the radical center
of the triad of circles?11

5. Let P = (u : v : w). Find the equations of the three circles with the cevian
segmentsAAP ,BBP ,CCP as diameters. What is the radical center of the triad
? 12

6. Given a pointP . The perpendicular fromP to BC intersectsCA at Ya and
AB atZa. Similarly defineZb, Xb, andXc, Yc. Show that the circlesAYaZA,
BZbXb andCXcYc intersect at a point on the circumcircle ofABC. 13

8a2yz + b2zx+ c2xy − a2

(b+c)2
(x+ y + z)(c2y + b2z) = 0.

9(a2(a2 + a(b+ c)− bc) : · · · : · · · ). This point appears asX595 in ETC.
10
(

a2

b−c
: b2

c−a
: c2

a−b

)

. This point appears asX110 in ETC.
11The external center of similitude of the circumcircle and incircle.
12Floor van Lamoen, Hyacinthos, message 214, 1/24/00.
13If P = (u : v : w), this intersection is( a2

vSB−wSC
: b2

wSC−uSA
: c2

uSA−vSB
); it is the infinite point

of the line perpendicular toHP . A.P. Hatzipolakis and P. Yiu, Hyacinthos, messages 1213, 1214, 1215,
8/17/00.
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Exercises

Consider triangleABC with three circlesA(Ra), B(Rb), andC(Rc). The circle
B(Rb) intersectsAB atZa+ = (Rb : c−Rb : 0) andZa− = (−Rb : c+Rb : 0). Sim-
ilarly, C(Rc) intersectsAC atYa+ = (Rc : 0 : b−Rc) andYa− = (−Rc : 0 : b+Rc).
14

1. Show that the centers of the circlesAYa+Za+ andAYa−Za− are symmetric with
respect to the circumcenterO.

2. Find the equations of the circlesAYa+Za+ andAYa−Za−. 15

3. Show that these two circles intersect at

Q =

( −a2
bRb − cRc

:
b

Rb
:
−c
Rc

)

on the circumcircle.

4. Find the equations of the circlesAYa+Za− andAYa−Za+ and show that they
intersect at

Q′ =

( −a2
bRb + cRc

:
b

Rb
:
c

Rc

)

on the circumcircle.16

5. Show that the lineQQ′ passes through the points(−a2 : b2 : c2) and 17

P = (a2(−a2R2
a + b2R2

b + c2R2
c) : · · · : · · · ).

6. If W is the radical center of the three circlesA(Ra), B(Rb), andC(Rc), then
P = (1− t)O + t ·W for

t =
2a2b2c2

R2
aa

2SA +R2
bb

2SB +R2
cc

2SC
.

7. FindP if Ra = a,Rb = b, andRc = c. 18

8. FindP if Ra = s− a,Rb = s− b, andRc = s− c. 19

9. If the three circlesA(Ra),B(Rb), andC(Rc) intersect atW = (u : v : w), then

P = (a2(b2c2u2 − a2SAvw + b2SBwu+ c2SCuv) : · · · : · · · ).

10. FindP if W is the incenter.20

11. If W = (u : v : w) is on the circumcircle, thenP = Q = Q′ =W .

14A.P. Hatzipolakis, Hyacinthos, message 3408, 8/10/01.
15a2yz + b2zx+ c2xy − ǫ(x+ y + z)(c ·Rby + b ·Rcz) = 0 for ǫ = ±1.
16a2yz + b2zx+ c2xy − ǫ(x+ y + z)(c ·Rby − b ·Rcz) = 0 for ǫ = ±1.
17QQ′ : (b2R2

b − c2R2
c)x+ a2(R2

by −R2
cz) = 0.

18(a2(b4 + c4 − a4) : b2(c4 + a4 − b4) : c2(a4 + b4 − c4)). This point appears asX22 in ETC.
19(

a2(a2−2a(b+c)+(b2+c2))
s−a

: · · · : · · · ). This point does not appear in the current edition ofETC.
20( a2

s−a
: b2

s−b
: c2

s−c
).
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Some Basic Constructions

8.1 Barycentric product

LetX1,X2 be two points on the lineBC, distinct from the verticesB,C, with homoge-
neous coordinates(0 : y1 : z1) and(0 : y2 : z2). Fori = 1, 2, complete parallelograms
AKiXiHi with Ki onAB andHi onAC. The coordinates of the pointsHi,Ki are

A

B CX1 X2

K1

H1

K2

H2

X

H1 = (y1 : 0 : z1), K1 = (z1 : y1 : 0);
H2 = (y2 : 0 : z2), K2 = (z2 : y2 : 0).

From these,

BH1 ∩ CK2 = (y1z2 : y1y2 : z1z2),
BH2 ∩ CK1 = (y2z1 : y1y2 : z1z2).

Both of these points haveA-trace(0 : y1y2 : z1z2). This means that the line joining
these intersections passes throughA.

Given two pointsP = (x : y : z) andQ = (u : v : w), the above construction
(applied to the traces on each side line) gives the traces of the point with coordinates
(xu : yv : zw). We shall call this point thebarycentric productof P andQ, and denote
it by P ·Q.
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In particular, thebarycentric squareof a pointP = (u : v : w), with coordinates
(u2 : v2 : w2) can be constructed as follows:

(1) Complete a parallelogramABaAPCa with Ba onCA andCa onAB.
(2) ConstructBBa ∩ CCa, and join it toA to intersectBC atX.
(3) Repeat the same constructions using the traces onCA andAB respectively to

obtainY onCA andZ onAB.
Then,X, Y , Z are the traces of the barycentric square ofP .

8.1.1 Examples

(1) The Clawson point( a
SA

: b
SB

: c
SC

) can be constructed as the barycentric product
of the incenter and the orthocenter.

(2) The symmedian point can be constructed as the barycentric square of the incen-
ter.

(3) If P = (u + v + w) is an infinite point, its barycentric square can also be
constructed as the barycentric product ofP and its inferior(v + w : w + u : u+ v):

P 2 = (u2 : v2 : w2)
= (−u(v + w) : −v(w + u) : −w(u+ v))
= (u : v : w) · (v + w : w + u : u+ v).

8.1.2 Barycentric square root

Let P = (u : v : w) be a point in the interior of triangleABC, the barycentric square
root

√
P is the pointQ in the interior such thatQ2 = P . This can be constructed as

follows.

A

B C

P

AP

BP

CP

X

X′

Y

Y ′
Z Z′

√
P

A

B C

H

H[A]

H[B]

H[C] √
H

X

(1) Construct the circle withBC as diameter.
(2) Construct the perpendicular toBC at the traceAP to intersect the circle atX. 1

Bisect angleBXC to intersectBC atX ′.
(3) Similarly obtainY ′ onCA andZ ′ onAB.
The pointsX ′, Y ′, Z ′ are the traces of the barycentric square root ofP .

1It does not matter which of the two intersections is chosen.
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The square root of the orthocenter

LetABC be an acute angled triangle so that the orthocenterH is an interior point. Let
X be theA-trace of

√
H. The circle through the pedalsB[H], C[H] andX is tangent

to the sideBC.

8.1.3 Exercises

1. Construct a point whose distances from the side lines are proportional to the radii
of the excircles.2

2. Find the equation of the circle throughB andC, tangent (internally) to incircle.
Show that the point of tangency has coordinates

(

a2

s− a
:
(s− c)2

s− b
:
(s− b)2

s− c

)

.

Construct this circle by making use of the barycentric “third power” of the Ger-
gonne point.

3. Construct the square of an infinite point.

4. A circle is tangent to the sideBC of triangleABC at theA−trace of a point
P = (u : v : w) and internally to the circumcircle atA′. Show that the lineAA′

passes through the point(au : bv : vw).

Make use of this to construct the three circles each tangent internally to the cir-
cumcircle and to the side lines at the traces ofP .

5. Two circles each passing through the incenterI are tangent toBC atB andC
respectively. A circle(Ja) is tangent externally to each of these, and toBC at
X. Similarly defineY andZ. Show thatXY Z is perspective withABC, and
find the perspector.3

6. Let P1 = (f1 : g1 : h1) andP2 = (f2 : g2 : h2) be two given points. Denote by
Xi, Yi, Zi the traces of these points on the sides of the reference triangleABC.

(a) Find the coordinates of the intersectionsX+ = BY1 ∩ CZ2 andX− =
BY2 ∩ CZ1. 4

(b) Find the equation of the lineX+X−. 5

(c) Similarly define pointsY+, Y−, Z+ andZ−. Show that the three lines
X+X−, Y+Y−, andZ+Z− intersect at the point

(f1f2(g1h2 + h1g2) : g1g2(h1f2 + f1h2) : h1h2(f1g2 + g1f2)).

2This has coordindates( a
s−a

: · · · : · · · ) and can be constructed as the barycentric product of the
incenter and the Gergonne point.

3The barycentric square root of( a
s−a

: b
s−b

: c
s−c

). See Hyacinthos, message 3394, 8/9/01.
4X+ = f1f2 : f1g2 : h1f2; X− = f1f2 : g1f2 : f1h2.
5(f2

1 g2h2 − f2
2 g1h1)x− f1f2(f1h2 − h1f2)y + f1f2(g1f2 − f1g2)z = 0..
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8.2 Harmonic associates

Theharmonic associatesof a pointP = (u : v : w) are the points

AP = (−u : v : w), BP = (u : −v : w), CP = (u : v : −w).

The pointAP is the harmonic conjugate ofP with respect to the cevian segmentAAP ,
i.e.,

AP : PAP = −AAP : APAP ;

similarly for BP andCP . The triangleAPCPCP is called theprecevian triangle
of P . This terminology is justified by the fact thatABC is the cevian triangleP in
APBPCP . It is also convenient to regardP ,AP ,BP ,CP as a harmonic quadruple in
the sense that any three of the points constitute the harmonic associates of the remaining
point.

AP

BP

CP

A

B C

P

Examples

(1) The harmonic associates of the centroid, can be constructed as the intersection of
the parallels to the side lines through their opposite vertices. They form thesuperior
triangleof ABC.

(2) The harmonic associates of the incenter are the excenters.
(3) If P is an interior point with square rootQ. The harmonic associates ofQ can

also be regarded as square roots of the same point.

8.2.1 Superior and inferior triangles

The precevian triangle of the centroid is called thesuperiortriangle ofABC. If P =
(u : v : w), the point(−u+ v+w : u− v+w : u+ v−w), which dividesPG in the
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ratio 3 : −2, has coordinates(u : v : w) relative to the superior triangle, and is called
thesuperiorof P .

Along with the superior triangle, we also consider the cevian triangle ofG as the
inferior triangle. The point(v + w : w + u : u + v), which dividesPG in the ratio
3 : −1, has coordinates(u : v : w) relative to the inferior triangle, and is called the
inferior of P .

Exercises

1. If P is the centroid of its precevian triangle, show thatP is the centroid of trian-
gleABC.

2. The incenter and the excenters form the only harmonic quadruple which is also
orthocentric,i.e., each one of them is the orthocenter of the triangle formed by
the remaining three points.
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8.3 Cevian quotient

Theorem

For any two pointsP andQ not on the side lines ofABC, the cevian triangle ofP and
precevian triangleQ are perspective. IfP = (u : v : w) andQ = (x : y : z), the
perspector is the point

P/Q =
(

x
(

−x
u
+
y

v
+
z

w

)

: y
(x

u
− y

v
+
z

w

)

: z
(x

u
+
y

v
− z

w

))

.

A

B C

Q

Y ′

Z′

X′

P

X

Y

Z

M

Proposition

P/(P/Q) = Q.

Proof. Direct verification.

This means that ifP/Q = Q′, thenP/Q′ = Q.

Exercises

1. Show thatP/(P · P ) = P · (G/P ).

2. Identify the following cevian quotients.
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P Q P/Q
incenter centroid
incenter symmedian point
incenter Feuerbach point
centroid circumcenter
centroid symmedian point
centroid Feuerbach point
orthocenter symmedian point
orthocenter (a(b− c) : · · · : · · · )
Gergonne point incenter

3. Let P = (u : v : w) andQ = (u′ : v′ : w′) be two given points. If

X = BPCP ∩AAQ, Y = CPAP ∩BBQ, Z = APBP ∩ CCQ,

show thatAPX, BPY andCPZ are concurrent. Calculate the coordinates of
the intersection.6

6(uu′(vw′ + wv′) : · · · : · · · ); see J. H. Tummers, Points remarquables, associésà un triangle,Nieuw
Archief voor WiskundeIV 4 (1956) 132 – 139. O. Bottema, Une construction par rapportà un triangle,
ibid., IV 5 (1957) 68 – 70, has subsequently shown that this isthe pole of the linePQ with respect to the
circumconic throughP andQ.
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8.4 The Brocardians

The Brocardians of a pointP = (u : v : w) are the points

P→ =

(

1

w
:
1

u
:
1

v

)

and P← =

(

1

v
:
1

w
:
1

u

)

.

Construction of Brocardian points

A

B C

P

Pa

Pb
Pc

P→

Pcb

Pac

Pba

A

B C

P

Pa

Pb
Pc

P←

Pbc

Pca

Pab

Examples

(1) The Brocard pointsΩ→ andΩ← are the Brocardians of the symmedian pointK.

A

B C

I→

X

Y

Z

A

B C

I←

X′

Y ′

Z′
I

A

B C

F+

F+
→

F+
←

Z

X

Y

Z′

X′

Y ′

(2) The Brocardians of the incenter are called theJerabek points:

I→ =

(

1

c
:
1

a
:
1

b

)

and I← =

(

1

b
:
1

c
:
1

a

)

.

Theorientedparallels throughI→ toBC,CA,AB intersect the sidesCA,AB,BC at
Y , Z, X such thatI→Y = I→Z = I→X. Likewise, the parallels throughI← toBC,
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CA,AB intersect the sidesAB,BC,CA atZ,X, Y such thatI←Z = I←X = I←Y .
These 6 segments have lengthℓ satisfying1

ℓ
= 1

a
+ 1

b
+ 1

c
, one half of the length of the

equal parallelians drawn through(− 1
a
+ 1

b
+ 1

c
: · · · : · · · ).

(3) If oriented parallels are drawn through the forward Brocardian point of the (pos-
itive) Fermat pointF+, and intersect the sidesCA, AB, BC atX, Y , Z respectively,
then the triangleXY Z is equilateral.7

7S. Bier, Equilateral triangles formed by oriented parallelians,Forum Geometricorum, 1 (2001) 25 – 32.
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Circumconics

9.1 Circumconics as isogonal transforms of lines

A circumconic is one that passes through the vertices of the reference triangle. As such
it is represented by an equation of the form

C : pyz + qzx+ rxy = 0,

and can be regarded as the isogonal transform of the line

L :
p

a2
x+

q

b2
y +

r

c2
z = 0.

The circumcircle is the isogonal transform of the line at infinity. Therefore, a cir-
cumconic is an ellipse, a parabola, or a hyperbola accordingas its isogonal transform
intersects the circumcircle at 0, 1, or 2 real points.

Apart from the three vertices, the circumconic intersects the circumcircle at the
isogonal conjugate of the infinite point of the lineL:

(

1

b2r − c2q
:

1

c2p− a2r
:

1

a2q − b2p

)

.

We call this the fourth intersection of the circumconic withthe circumcircle.

Examples

(1) The Lemoine axis is the tripolar of the Lemoine (symmedian) point, the line with
equation

x

a2
+
y

b2
+

z

c2
= 0.

Its isogonal transform is the Steiner circum-ellipse

yz + zx+ xy = 0.
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The fourth intersection with the circumcircle at the Steiner point 1

(

1

b2 − c2
:

1

c2 − a2
:

1

a2 − b2

)

.

O

A

B C

G

S

T

(2) The Euler line
∑

cyclic(b
2− c2)SAx = 0 transforms into theJerabek hyperbola

∑

cyclic

a2(b2 − c2)SAyz = 0.

Since the Euler infinity point= (SS − 3SBC : SS − 3SCA : SS − 3SAB) = (SCA +
SAB − 2SBC : · · · : · · · ), the fourth intersection with the circumcircle is the point2

(

a2

SCA + SAB − 2SBC
: · · · : · · ·

)

.

O

A

B C

1The Steiner point appears asX99 in ETC.
2This is the pointX74 in ETC.
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(3) The Brocard axisOK has equation

b2c2(b2 − c2)x+ c2a2(c2 − a2)y + a2b2(a2 − b2)z = 0.

Its isogonal transform is theKiepert hyperbola

(b2 − c2)yz + (c2 − a2)zx+ (a2 − b2)xy = 0.

The fourth intersection with the circumcircle is theTarry point 3

(

1

SBC − SAA
:

1

SCA − SBB
:

1

SAB − SCC

)

.

This is antipodal to the Steiner point, since the Euler line and the Lemoine axis are
perpendicular to each other.4

(4) Recall that the tangent to the nine-point circle at the Feuerbach pointF =
((b− c)2(b+ c− a) : (c− a)2(c+ a− b) : (a− b)2(a+ b− c)) is the line

x

b− c
+

y

c− a
+

z

a− b
= 0.

Applying the homothetyh(G,−2), we obtain the line

(b− c)2x+ (c− a)2y + (a− b)2z = 0

tangent to the point( a
b−c :

b
c−a : c

a−b ) at the circumcircle.5

The isogonal transform of this line is the parabola

a2(b− c)2yz + b2(c− a)2zx+ c2(a− b)2xy = 0.

Exercises

1. Let P be a point. The first trisection point of the cevianAP is the pointA′

dividing AAP in the ratio1 : 2, i.e., AA′ : A′AP = 1 : 2. Find the locus of
P for which the first trisection points of the three cevians arecollinear. For each
suchP , the line containing the first trisection points always passes through the
centroid.

2. Show that the Tarry point as a Kiepert perspector isK(−(π2 − ω)).

3. Show that the circumconicpyz + qzx+ rxy = 0 is a parabola if and only if

p2 + q2 + r2 − 2qr − 2rp− 2pq = 0.

3The Tarry point appears as the pointX98 in ETC.
4The Lemoine axis is the radical axis of the circumcircle and thenine-point; it is perpendicular to the

Euler line joining the centers of the two circles.
5This point appears asX100 in ETC.



112 YIU: Introduction to Triangle Geometry

4. Animate a pointP on the circumcircle of triangleABC and draw the lineOP .

(a) Construct the pointQ on the circumcircle which is the isogonal conjugate
of the infinite point ofOP .

(b) Construct the tangent atQ.

(c) Choosea pointX on the tangent line atQ, and construct theisogonal
conjugateX∗ of X.

(d) Find thelocusof X∗.
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9.2 The infinite points of a circum-hyperbola

Consider a lineL intersecting the circumcircle at two pointsP andQ. The isogonal
transform ofL is a circum-hyperbolaC. The directions of the asymptotes of the hyper-
bola are given by its two infinite points, which are the isogonal conjugates ofP andQ.
The angle between them is one half of that of the arcPQ.

O

A

B C

P

Q

I

These asymptotes are perpendicular to each other if and onlyif P andQ are an-
tipodal. In other words, the circum-hyperbola is rectangular, if and only if its isogonal
transform is a diameter of the circumcircle. This is also equivalent to saying that the
circum-hyperbola is rectangular if and only if it contains the orthocenter of triangle
ABC.

Theorem

LetP andQ be antipodal points on the circumcircle. The asymptotes of the rectangular
circum-hyperbola which is the isogonal transform ofPQ are the Simson lines ofP and
Q.

It follows that the center of the circum-hyperbola is the intersection of these Simson
lines, and is a point on the nine-point circle.

Exercises

1. Let P = (u : v : w) be a point other than the orthocenter and the vertices of
triangleABC. The rectangular circum-hyperbola throughP has equation

∑

cyclic

u(SBv − SCw)yz = 0.
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9.3 The perspector and center of a circumconic

The tangents at the vertices of the circumconic

pyz + qzx+ rxy = 0

are the lines
ry + qz = 0, rx+ pz = 0, qx+ py = 0.

These bound the triangle with vertices

(−p : q : r), (p : −q : r), (p : q : −r).
This is perspective withABC at the pointP = (p : q : r), which we shall call the
perspector of the circumconic.

We shall show in a later section that the center of the circumconic is the cevian
quotient

Q = G/P = (u(v + w − u) : v(w + u− v) : w(u+ v − w)).

Here we consider some interesting examples based on the factthatP = G/Q if Q =
G/P . This means that the circumconics with centersP andQ have perspectors at the
other point. The two circumconics intersect at

(

u

v − w
:

v

w − u
:

w

u− v

)

.

9.3.1 Examples

Circumconic with center K

Since the circumcircle (with centerO) has perspector at the symmedian pointK, the
circumconic with centerK hasO as perspector. This intersects the circumcircle at the
point 6

(

a2

b2 − c2
:

b2

c2 − a2
:

c2

a2 − b2

)

.

This point can be constructed as the antipode of the isogonalconjugate of the Euler
infinity point.

Circumconic with incenter as perspector

The circumconic with incenter as perspector has equation

ayz + bzx+ cxy = 0.

This has centerG/I = (a(b+ c− a) : b(c+ a− b) : c(a+ b− c)), the Mittenpunkt.
The circumconic with the incenter as center has equation

a(s− a)yz + b(s− b)zx+ c(s− c)xy = 0.

The two intersect at the point
(

a
b−c :

b
c−a : c

a−b

)

which is a point on the circumcircle.7

6This point appears asX110 in ETC.
7This point appears asX100 in ETC.
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O

A

B C

K

O

A

B C

I Mi

Exercises

1. Let P be the Spieker center, with coordinates(b+ c : c+ a : a+ b).

(a) Show that the circumconic with perspectorP is an ellipse.

(b) Find the centerQ of the conic.8

(c) Show that the circumconic with centerP (and perspectorQ) is also an
ellipse.

(d) Find the intersection of the two conics.9

2. If P is the midpoint of the Brocard pointsΩ→ andΩ←, what is the pointQ =
G/P? What is the common point of the two circumconics with centersand
perspectors atP andQ? 10

3. Let P andQ be the center and perspector of the Kiepert hyperbola. Why is the
circumconic with centerQ and perspectorP a parabola? What is the intersection
of the two conics?11

4. Animate a pointP on the circumcircle and construct thecircumconic with P
as center. What can you say about the type of the conic asP varies on the
circumcircle?

5. Animate a pointP on the circumcircle and construct thecircumconic with P
as perspector. What can you say about the type of the conic asP varies on the
circumcircle?

8Q = (a(b+ c) : b(c+ a) : c(a+ b)). This point appears inETC asX37.
9( b−c
b+c

: c−a
c+a

: a−b
a+b

). This point does not appear in the current edition ofETC.
10Q = symmedian point of medial triangle; common point =( b

2
−c2

b2+c2
: · · · : · · · ). This point does not

appear in the current edition ofETC.
11( b2−c2

b2+c2−2a2
: · · · : · · · ). This point does not appear in the current edition ofETC.
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9.4 Appendix: Ruler construction of tangent atA

(1) P = AC ∩BD;
(2)Q = AD ∩ CE;
(3)R = PQ ∩BE.
ThenAR is the tangent atA.

A

B

C

D

E

P

Q

R
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General Conics

10.1 Equation of conics

10.1.1 Carnot’s Theorem

Suppose a conicC intersect the side linesBC atX, X ′, CA at Y , Y ′, andAB atZ,
Z ′, then

BX

XC
· BX

′

X ′C
· CY
Y A

· CY
′

Y ′A
· AZ
ZB

· AZ
′

Z ′B
= 1.

Proof. Write the equation of the conic as

fx2 + gy2 + hz2 + 2pyz + 2qzx+ 2rxy = 0.

The intersections with the lineBC are the two points(0 : y1 : z1) and(0 : y2 : z2)
satisfying

gy2 + hz2 + 2pyz = 0.

From this,
BX

XC
· BX

′

X ′C
=
z1z2
y1y2

=
g

h
.

Similarly, for the other two pairs of intersections, we have

CY

Y A
· CY

′

Y ′A
=
h

f
,

AZ

ZB
· AZ

′

Z ′B
=
f

g
.

The product of these division ratios is clearly 1.
The converse of Carnot’s theorem is also true: ifX,X ′, Y , Y ′, Z, Z ′ are points on

the side lines such that

BX

XC
· BX

′

X ′C
· CY
Y A

· CY
′

Y ′A
· AZ
ZB

· AZ
′

Z ′B
= 1,

then the 6 points are on a conic.
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Corollary

If X, Y , Z are the traces of a pointP , thenX ′, Y ′, Z ′ are the traces of another point
Q.

10.1.2 Conic through the traces ofP andQ

Let P = (u : v : w) andQ = (u′ : v′ : w′). By Carnot’s theorem, there is a conic
through the 6 points. The equation of the conic is

∑

cyclic

x2

uu′
−
(

1

vw′
+

1

v′w

)

yz = 0.

A

B C

Q

P

Exercises

1. Show that the points of tangency of theA-excircle withAB,AC, theB-excircle
withBC,AB, and theC-excircle withCA,CB lie on a conic. Find the equation
of the conic.1

2. Let P = (u : v : w) be a point not on the side lines of triangleABC.

(a) Find the equation of the conic through the traces ofP and the midpoints of
the three sides.2

(b) Show that this conic passes through the midpoints ofAP ,BP andCP .

(c) For which points is the conic an ellipse, a hyperbola?

3. Given a pointP = (u : v : w) and a lineL : x
u′

+ y
v′
+ z

w′
= 0, find the locus of

the pole ofL with respect to the circumconics throughP . 3

1∑

cyclic x
2 +

s2+(s−a)2

s(s−a)
yz = 0.

2∑

cyclic −vwx2 + u(v + w)yz = 0.
3The conic through the traces ofP andQ = (u′ : v′ : w′); Jean-Pierre Ehrmann, Hyacinthos, message

1326, 9/1/00.
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10.2 Inscribed conics

An inscribedconic is one tangent to the three side lines of triangleABC. By Carnot’s
theorem, the points of tangency must either be the traces of apointP (Ceva Theorem)
or the intercepts of a line (Menelaus Theorem). Indeed, if the conic is non-degenerate,
the former is always the case. If the conic is tangent toBC at (0 : q : r) and toCA at
(p : 0 : r), then its equation must be

x2

p2
+
y2

q2
+
z2

r2
− 2yz

qr
− 2zx

rp
− ǫ

2xy

pq
= 0

for ǫ = ±1. If ǫ = −1, then the equation becomes
(

−x
p
+
y

q
+
z

r

)2

= 0,

and the conic is degenerate. The inscribed conic therefore has equation

x2

p2
+
y2

q2
+
z2

r2
− 2yz

qr
− 2zx

rp
− 2xy

pq
= 0

and touchesBC at (0 : q : r). The points of tangency form a triangle perspective with
ABC at (p : q : r), which we call the perspector of the inscribed conic.

A

B C

P

A

B C

G

10.2.1 The Steiner in-ellipse

The Steiner in-ellipse is the inscribed conic with perspectorG. It has equation

x2 + y2 + z2 − 2yz − 2zx− 2xy = 0.

Exercises

1. The locus of the squares of infinite points is the Steiner in-ellipse

x2 + y2 + z2 − 2yz − 2zx− 2xy = 0.
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2. Let C be the inscribed conic

∑

cyclic

x2

p2
− 2yz

qr
= 0,

tangent to the side lines atX = (0 : q : r), Y = (p : 0 : r), andZ = (p : q : 0)
respectively. Consider an arbitrary pointQ = (u : v : w).

(a) Find the coordinates of the second intersectionA′ of C with XQ. 4

(b) Similarly defineB′ andC ′. Show that triangleA′B′C ′ is perspective with
ABC, and find the perspector.5

4( 4u
2

p
: q(u

p
+ v

q
− w

r
)2 : r(u

p
− v

q
+ w

r
)2).

5( p

(−u
p
+ v
q
+w
r
)2

: · · · : · · · ).
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10.3 The adjoint of a matrix

Theadjoint of a matrix (not necessarily symmetric)

M =





a11 a12 a13
a21 a22 a23
a31 a32 a33





is thetransposeof the matrix formed by the cofactors ofM :

M# =





a22a33 − a23a32 −a12a33 + a13a32 a12a23 − a22a13
−a21a33 + a23a31 a11a33 − a13a31 −a11a23 + a21a13
a21a32 − a31a22 −a11a32 + a31a12 a11a22 − a12a21





Proposition

(1)MM# =M#M = det(M)I.
(2)M## = (detM)M .

Proposition

Let (i, j, k) be a permutation of the indices 1, 2, 3.
(1) If the rows of a matrixM are the coordinates of three points, the line joiningPi

andPj has coordinates given by thek-th column ofM#.
(2) If the columns of a matrixM are the coordinates of three lines, the intersection

of Li andLj is given by thek-row ofM#.
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10.4 Conics parametrized by quadratic functions

Suppose

x : y : z = a0 + a1t+ a2t
2 : b0 + b1t+ b2t

2 : c0 + c1t+ c2t
2

Elimination oft gives

(p1x+ q1y + r1z)
2 − (p0x+ q0y + r0z)(p2x+ q2y + r2z) = 0,

where the coefficients are given by the entries of the adjointof the matrix

M =





a0 a1 a2
b0 b1 b2
c0 c1 c2



 ,

namely,

M# =





p0 q0 r0
p1 q1 r1
p2 q2 r2



 .

This conic is nondegenerate provideddet(M) 6= 0.

10.4.1 Locus of Kiepert perspectors

Recall that the apexes of similar isosceles triangles of base anglesθ constructed on the
sides of triangleABC form a triangleAθBθCθ with perspector

K(θ) =

(

1

SA + Sθ
:

1

SB + Sθ
:

1

SC + Sθ

)

.

Writing t = Sθ, and clearing denominators, we may take

(x : y : z) = (SBC + a2t+ t2 : SCA + b2t+ t2 : SAB + c2t+ t2).

With

M =





SBC a2 1
SCA b2 1
SAB c2 1



 ,

we have

M# =





b2 − c2 c2 − a2 a2 − b2

−SA(b2 − c2) −SB(c2 − a2) −SC(a2 − b2)
SAA(b

2 − c2) SBB(c
2 − a2) SCC(a

2 − b2)





Writing u = (b2 − c2)x, v = (c2 − a2)y, andw = (a2 − b2)z, we have

(SAu+ SBv + SCw)
2 − (u+ v + w)(SAAu+ SBBv + SCCw) = 0,
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which simplifies into

0 =
∑

cyclic

(2SBC − SBB − SCC)vw = −
∑

cyclic

(b2 − c2)2vw.

In terms ofx, y, z, we have, after deleting a common factor−(a2 − b2)(b2 − c2)(c2 −
a2),

∑

cyclic

(b2 − c2)yz = 0.

This is the circum-hyperbola which is the isogonal transform of the line

∑

cyclic

b2c2(b2 − c2)x = 0.
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10.5 The matrix of a conic

10.5.1 Line coordinates

In working with conics, we shall find it convenient to use matrix notations. We shall
identify the homogeneous coordinates of a pointP = (x : y : z) with the row matrix
( x y z ), and denote it by the sameP . A line L with equationpx+ qy + rz = 0
is represented by thecolumn matrix

L =







p
q
r







(so thatPL = 0). We shall callL the line coordinatesof L.

10.5.2 The matrix of a conic

A conic given by a quadratic equation

fx2 + gy2 + hz2 + 2pyz + 2qzx+ 2rxy = 0

can be represented by in matrix formPMP t = 0, with

M =





f r q
r g p
q p h



 .

We shall denote the conic byC(M).

10.5.3 Tangent at a point

Let P be a point on the conicC. ThetangentatP is the lineMP t.
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10.6 The dual conic

10.6.1 Pole and polar

Thepolar of a pointP (with respect to the conicC(M)) is the lineMP t, and thepole
of a lineL is the pointLtM#. Conversely, ifL intersects a conicC at two pointsP
andQ, thepoleof L with respect toC is the intersection of the tangents atP andQ.

Exercises

1. A conic is self-polar if each vertex is the pole of its opposite side. Show that the
matrix of a self-polar conic is a diagonal matrix.

2. If P lies on the polar ofQ, thenQ lies on the polar ofP .

10.6.2 Condition for a line to be tangent to a conic

A line L : px+ qy + rz = 0 is tangent to the conicC(M) if and only ifLtM#L = 0.
If this condition is satisfied, the point of tangency isLtM#.

10.6.3 The dual conic

LetM be the symmetric matrix





f r q
r g p
q p h



 .

Thedual conicof C = C(M) is the conic represented by the adjoint matrix

M# =





gh− p2 pq − rh rp− gq
pq − hr hf − q2 qr − fp
rp− gq qr − fp fg − r2



 .

Therefore, a lineL : px + qy + rz = 0 is tangent toC(M) if and only if the point
Lt = (p : q : r) is on the dual conicC(M#).

10.6.4 The dual conic of a circumconic

The dual conic of the circumconicpyz+ qzx+ rxy = 0 (with perspectorP = (p : q :
r)) is the inscribed conic

∑

cyclic

−p2x2 + 2qryz = 0

with perspectorP • = ( 1
p
: 1
q
: 1
r
). The center is the point(q + r : r + p : p+ q).
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A

B C

P

Exercises

1. The polar of(u : v : w) with respect to the circumconicpyz + qzx + rxy = 0
is the line

p(wy + vz) + q(uz + wx) + r(vx+ uy) = 0.

2. Find the equation of the dual conic of the incircle. Deduce Feuerbach’s theorem
by showing that the radical axis of the nine-point circle andthe incircle, namely,
the line

x

b− c
+

y

c− a
+

z

a− b
= 0

is tangent to the incircle.6

3. Show that the common tangent to the incircle and the nine-point circle is also
tangent to the Steiner in-ellipse. Find the coordinates of the point of tangency.7

4. Let P = (u : v : w) andQ = (u′ : v′ : w′) be two given points. If

X = BPCP ∩AAQ, Y = CPAP ∩BBQ, Z = APBP ∩ CCQ,

show thatAPX, BPY andCPZ are concurrent at the pole ofPQ with respect
to the circumconic throughP andQ. 8

5. The tangents at the vertices to the circumcircle of triangleABC intersect the
side linesBC, CA,AB atA′,B′, C ′ respectively. Thesecondtagents fromA′,
B′, C ′ to the circumcircle have points of tangencyX, Y , Z respectively. Show
thatXY Z is perspective withABC and find the perspector.9

6∑

cyclic(s− a)yz = 0.
7((b− c)2 : (c− a)2 : (a− b)2). This point appears asX1086 in ETC.
8O. Bottema, Une construction par rapportà un triangle,Nieuw Archief voor Wiskunde, IV 5 (1957)

68–70.
9(a2(b4 + c4 − a4) : · · · : · · · ). This is a point on the Euler line. It appears asX22 in ETC. See

D.J. Smeenk and C.J. Bradley, Problem 2096 and solution,Crux Mathematicorum, 21 (1995) 344; 22(1996)
374 – 375.
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10.7 The type, center and perspector of a conic

10.7.1 The type of a conic

The conicC(M) is an ellipse, a parabola, or a hyperbola according as thecharacteristic
GM#G is positive, zero, or negative.
Proof. Settingz = −(x+ y), we reduce the equation of the conic into

(h+ f − 2q)x2 + 2(h− p− q + r)xy + (g + h− 2p)y2 = 0.

This has discriminant

(h− p− q + r)2 − (g + h− 2p)(h+ f − 2q)
= h2 − (g + h)(h+ f)− 2h(p+ q − r)

+2(h+ f)p+ 2(g + h)q + (p+ q − r)2 + 4pq
= −(fg + gh+ hf) + 2(fp+ gq + hr) + (p2 + q2 + r2 − 2pq − 2qr − 2rp)

which is the negative of the sum of the entries ofM#. From this the result follows.

10.7.2 The center of a conic

The center of a conic is the pole of the line at infinity. As such, the center ofC(M) has
coordinatesGM#, formed by the column sums ofM#:

(p(q+r−p)−(qg+rh)+gh : q(r+p−q)−(rh+pf)+hf : r(p+q−r)−(pf+qg)+fg).

10.7.3 The perspector of a conic

Theorem (Conway)

Let C = C(M) be a nondegenerate, non-self-polar conic. The triangle formed by the
poles of the sidelines is perspective withABC, and has perspector

(

1

qr − pf
:

1

rp− qg
:

1

pq − rh

)

.

Proof. The coordinates of these poles are given by the columns of theadjoint matrix
M#. These are the points

A′ =

(

∗ ∗ ∗ ∗ ∗ :
1

rp− qg
:

1

pq − rh

)

,

B′ =

(

1

qr − pf
: ∗ ∗ ∗ ∗ ∗ :

1

pq − rh

)

,

C ′ =

(

1

qr − pf
:

1

rp− qg
: ∗ ∗ ∗ ∗ ∗

)

.

From these it is clear thatA′B′C ′ is perspective withABC at the point given above.

The point
(

1
qr−pf : 1

rp−qg : 1
pq−rh

)

is called theperspectorof the conicC(M).
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Proposition

The center of the inscribed conic with perspectorP is the inferior ofP •.

A

B C

G PP•

Proof. The inscribed conic with perspectorP has equation

∑

cyclic

x2

p2
− 2yz

qr
= 0.

Exercises

1. Let (f : g : h) be an infinite point. What type of conic does the equation

a2x2

f
+
b2y2

g
+
c2z2

h
= 0

represent?10

2. Find the perspector of the conic through the traces ofP andQ.

3. Find the perspector of the conic through the 6 points of tangency of the excircles
with the side lines.11

4. A circumconic is an ellipse, a parabola or a hyperbola according as the perspector
is inside, on, or outside the Steiner in-ellipse.

5. Let C be a conic tangent to the side linesAB andAC atB andC respectively.

(a) Show that the equation ofC is of the formx2 − kyz = 0 for somek.

(b) Show that the center of the conic lies on theA-median.

(c) Construct the parabola in this family as a five-point conic. 12

(d) Design an animation of the conic as its center traverses theA-median.13

6. Prove that the locus of the centers of circumconics throughP is the conic through
the traces ofP and the midpoints of the sides.14

10Parabola.
11(

a2+(b+c)2

b+c−a
: · · · : · · · ). This points appears inETC asX388.

12The parabola has equationx2 − 4yz = 0.
13If the center is(t : 1 : 1), then the conic contains(t : −2 : t).
14Floor van Lamoen and Paul Yiu, Conics loci associated with conics,Forum Geometricorum, forthcom-

ing.
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Some Special Conics

11.1 Inscribed conic with prescribed foci

11.1.1 Theorem

The foci of an inscribed central conic are isogonal conjugates.
Proof. Let F1 andF2 be the foci of a conic, andT1, T2 the points of tangency from a
point P . Then∠F1PT1 = ∠F2PT2. Indeed, ifQ1, Q2 are the pedals ofF1, F2 on
the tangents, the product of the distancesF1Q1 andF2Q2 to the tangents is constant,
being the square of the semi-minor axis.

b
F2

b
F1

b
P

b

T2

b
T1

F2 F1

b

b

B C

A

Given a pair of isogonal conjugates, there is an inscribed conic with foci at the two
points. The center of the conic is the midpoint of the segment.

11.1.2 The Brocard ellipse

∑

cyclic

b4c4x2 − 2a4b2c2yz = 0
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The Brocard ellipse is the inscribed ellipse with foci at theBrocard points

Ω→ = (a2b2 : b2c2 : c2a2),
Ω← = (c2a2 : a2b2 : b2c2).

Its center is the Brocard midpoint

(a2(b2 + c2) : b2(c2 + a2) : c2(a2 + b2)),

which is the inferior of(b2c2 : c2a2 : a2b2), the isotomic conjugate of the symmedian
point. It follows that the perspector is the symmedian point.

Exercises

1. Show that the equation of the Brocard ellipse is as given above.

2. The minor auxiliary circle is tangent to the nine-point circle. 1 What is the point
of tangency?2

11.1.3 The de Longchamps ellipse
3

∑

cyclic

b2c2(b+ c− a)x2 − 2a3bcyz = 0,

The de Longchamps ellipse is the conic through the traces of the incenterI, and
has center atI.

Exercises

1. Given that the equation of the conic is show that it is always an ellipse.

2. By Carnot’s theorem, the “second” intersections of the ellipse with the side lines
are the traces of a pointP . What is this point?4

3. The minor axis is the ellipse is along the lineOI. What are the lengths of the
semi-major and semi-minor axes of the ellipse?5

11.1.4 The Lemoine ellipse

Construct the inscribed conic with fociG andK.
Find the coordinates of the center and the perspector.
The points of tangency with the side lines are the traces of theG-symmedians of

trianglesGBC,GCA, andGAB.

1V. Thébault, Problem 3857,American Mathematical Monthly, APH,205.
2Jean-Pierre Ehrmann, Hyacinthos, message 209, 1/22/00.
3E. Catalan, Note sur l’ellipse de Longchamps,Journal Math. Sṕeciales, IV 2 (1893) 28–30.
4( a
s−a

: b
s−b

: c
s−c

).
5R
2

andr
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A

B C

GK

A

B C

O

H

N

11.1.5 The inscribed conic with centerN

This has fociO andH. The perspector is the isotomic conjugate of the circumcenter.
It is the envelope of the perpendicular bisectors of the segments joiningH to a point
on the circumcircle. The major auxiliary circle is the nine-point circle.

Exercises

1. Show that the equation of the Lemoine ellipse is

∑

cyclic

m4
ax

2 − 2m2
bm

2
cyz = 0

wherema,mb,mc are the lengths of the medians of triangleABC.
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11.2 Inscribed parabola

Consider the inscribed parabola tangent to a given line, which we regard as the tripolar
of a pointP = (u : v : w). Thus,ℓ : x

u
+ y
v
+ z
w
= 0. The dual conic is the circumconic

passes through the centroid(1 : 1 : 1) andP • = ( 1
u
: 1
v
: 1
w
). It is the circumconic

C
# v − w

x
+
w − u

y
+
u− v

z
= 0.

The inscribed parabola, being the dual ofC
#, is

∑

cyclic

−(v − w)2x2 + 2(w − u)(u− v)yz = 0.

The perspector is the isotomic conjugate of that of its dual.This is the point
(

1

v − w
:

1

w − u
:

1

u− v

)

on the Steiner circum-ellipse.
The center of the parabola is the infinite point(v − w : w − u : u− v). This gives

the direction of the axis of the parabola. It can also be regarded the infinite focus of the
parabola. The other focus is the isogonal conjugate

a2

v − w
:

b2

w − u
:

c2

u− v

on the circumcircle.
The axis is the line through this point parallel toux+vy+wz = 0. The intersection

of the axis with the parabola is the vertex
(

(SB(w − u)− SC(u− v))2

v − w
: · · · : · · ·

)

.

The directrix, being the polar of the focus, is the line

SA(v − w)x+ SB(w − u)y + SC(u− v)z = 0.

This passes through the orthocenter, and is perpendicular to the line

ux+ vy + wz = 0.

It is in fact the line of reflections of the focus. The tangent at the vertex is the Simson
line of the focus.

Where does the parabola touch the given line?

(u2(v − w) : v2(w − u) : w2(u− v)),

the barycentric product ofP and the infinite point of its tripolar, the given tangent, or
equivalently the barycentric product of the infinite point of the tangent and its tripole.

Exercises

1. Animate a pointP on the Steiner circum-ellipse and construct the inscribed
parabola with perspectorP .



Chapter 11: Some Special Conics 133

11.3 Some special conics

11.3.1 The Steiner circum-ellipsexy + yz + zx = 0

Construct the Steiner circum-ellipse which has center at the centroidG.
The fourth intersection with the circumcircle is the Steiner point, which has coor-

dinates
(

1

b2 − c2
:

1

c2 − a2
:

1

a2 − b2

)

.

Construct this point as the isotomic conjugate of an infinitepoint.
The axes of the ellipse are the bisectors of the angleKGS. 6 Construct these axes,

and the vertices of the ellipse.
Construct the foci of the ellipse.7

These foci are called the Bickart points. Each of them has theproperty that three
cevian segments are equal in length.8

11.3.2 The Steiner in-ellipse
∑

cyclic x
2 − 2yz = 0

Exercises

1. LetC be a circumconic through the centroidG. The tangents atA,B,C intersect
the sidelinesBC,CA,AB atA′,B′,C ′ respectively. Show that the lineA′B′C ′

is tangent to the Steiner in-ellipse at the center ofC. 9

11.3.3 The Kiepert hyperbola
∑

cyclic(b
2 − c2)yz = 0

The asymptotes are the Simson lines of the intersections of the Brocard axisOK with
the circumcircle.10 These intersect at the center which is on the nine-point circle. An
easy way to construct the center as the intersection of the nine-point circle with the
pedal circle of the centroid,nearer to the orthocenter. 11

Exercises

1. Find the fourth intersection of the Kiepert hyperbola with the circumcircle, and
show that it is antipodal to the Steiner point.12

6J.H. Conway, Hyacinthos, message 1237, 8/18/00.
7The principal axis of the Steiner circum-ellipse containingthe foci is theleast square linefor the three

vertices of the triangle. See F. Gremmen, Hyacinthos, message 260, 2/1/00.
8O. Bottema, On some remarkable points of a triangle,Nieuw Archief voor Wiskunde, 19 (1971) 46 – 57;

J.R. Pounder, Equal cevians,Crux Mathematicorum, 6 (1980) 98 – 104; postscript,ibid. 239 – 240.
9J.H. Tummers, Problem 32,Wiskundige Opgaven met de Oplossingen, 20-1 (1955) 31–32.

10These asymptotes are also parallel to the axes of the Steiner ellipses. See, J.H. Conway, Hyacinthos,
message 1237, 8/18/00.

11The other intersection is the center of the Jerabek hyperbola. This is based on the following theorem:
Let P be a point on a rectangular circum-hyperbolaC. The pedal circle ofP intersects the nine-point circle
at the centers ofC and of (the rectangular circum- hyperbola which is) the isogonal conjugate of the line
OP . See A.P. Hatzipolakis and P. Yiu, Hyacinthos, messages 1243and 1249, 8/19/00.

12The Tarry point.
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2. Show that the Kiepert hyperbola is the locus of points whose tripolars are per-
pendicular to the Euler line.13

3. LetA′B′C ′ be the orthic triangle. The Brocard axes (the line joining the circum-
center and the symmedian point) of the trianglesAB′C ′, A′BC ′, andA′B′C
intersect at the Kiepert center.14

11.3.4 The superior Kiepert hyperbola
∑

cyclic(b
2 − c2)x2 = 0

Consider the locus of pointsP for which the three pointsP , P • (isotomic conjugate)
andP ∗ (isogonal conjugate) are collinear. IfP = (x : y : z), then we require

0 =

∣

∣

∣

∣

∣

∣

x y z
yz zx xy
a2yz b2zx c2xy

∣

∣

∣

∣

∣

∣

= a2xyz(y2 − z2) + b2zxy(z2 − x2) + c2xyz(x2 − y2)
= −xyz((b2 − c2)x2 + (c2 − a2)y2 + (a2 − b2)z2).

Excluding points on the side lines, the locus ofP is the conic

(b2 − c2)x2 + (c2 − a2)y2 + (a2 − b2)z2 = 0.

We note some interesting properties of this conic:

• It passes through the centroid and the vertices of the superior triangle, namely,
the four points(±1 : ±1 : ±1).

• It passes through the four incenters, namely, the four points (±a : ±b : ±c).
Since these four points form an orthocentric quadruple, theconic is a rectangular
hyperbola.

• Since the matrix representing the conic is diagonal, the center of the conic has
coordinates( 1

b2−c2 : 1
c2−a2 : 1

a2−b2 ), which is the Steiner point.

Exercises

1. All conics passing through the four incenters are tangent tofour fixed straight
lines. What are these lines?15

2. LetP be a given point other than the incenters. Show that the center of the conic
throughP and the four incenters is the fourth intersection of the circumcircle
and the circumconic with perspectorP · P (barycentric square ofP ). 16

13O. Bottema and M.C. van Hoorn, Problem 664,Nieuw Archief voor Wiskunde, IV 1 (1983) 79. See also
R.H. Eddy and R. Fritsch, On a problem of Bottema and van Hoorn,ibid., IV 13 (1995) 165 – 172.

14Floor van Lamoen, Hyacinthos, message 1251, 8/19/00.
15The conicC is self-polar. Its dual conic passes through the four incenters. This means that the conicC

are tangent to the 4 lines±ax+±by +±cz = 0.
16Floor van Lamoen, Hyacinthos, message 1401, 9/11/00.
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3. LetX be the pedal ofA on the sideBC of triangleABC. For a real numbert,
letAt be the point on the altitude throughA such thatXAt = t ·XA. Complete
the squaresAtXXbAb andAtXXcAc with Xb andXc on the lineBC. 17 Let
A′t = BAc ∩ CAb, andA′′t be the pedal ofA′t on the sideBC. Similarly define
B′′t andC ′′t . Show that ast varies, triangleA′′tB

′′
t C
′′
t is perspective withABC,

and the perspector traverses the Kiepert hyperbola.18

11.3.5 The Feuerbach hyperbola

∑

cyclic

a(b− c)(s− a)yz = 0

This is the isogonal transform of theOI-line. The rectangular hyperbola through
the incenter. Its center is the Feuerbach point.

11.3.6 The Jerabek hyperbola

The Jerabek hyperbola
∑

cyclic

a2(b2 − c2)SA
x

= 0

is the isogonal transform of the Euler line. Its center is thepoint

((b2 − c2)2SA : (c2 − a2)2SB : (a2 − b2)2SC)

on the nine-point circle.19

Exercises

1. Find the coordinates of the fourth intersection of the Feuerbach hyperbola with
the circumcircle.20

2. Animate a pointP on the Feuerbach hyperbola, and construct its pedal circle.
This pedal circle always passes through the Feuerbach point.

3. Three particles are moving at equal speeds along the perpendiculars fromI to
the side lines. They form a triangle perspective withABC. The locus of the
perspector is the Feuerbach hyperbola.

4. The Feuerbach hyperbola is the locus of pointP for which the cevian quotient
I/P lies on theOI-line. 21

17A.P. Hatzipolakis, Hyacinthos, message 3370, 8/7/01.
18A.P. Hatzipolakis, Hyacinthos, message 3370, 8/7/01.
19The Jerabek center appears asX125 in ETC.
20( a

a2(b+c)−2abc−(b+c)(b−c)2
: · · · : · · · ). This point appears asX104 in ETC.

21P. Yiu, Hyacinthos, message 1013, 6/13/00.
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5. Find the fourth intersection of the Jerabek hyperbola with the circumcircle.22

6. Let ℓ be a line throughO. The tangent atH to the rectangular hyperbola which
is the isogonal conjugate ofℓ intersectsℓ at a point on the Jerabek hyperbola.23

22( a2

2a4−a2(b2+c2)−(b2−c2)2
: · · · : · · · ). This point appears asX74 in ETC.

23B. Gibert, Hyacinthos, message 4247, 10/30/01.
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11.4 Envelopes

The envelope of the parametrized family of lines

(a0 + a1t+ a2t
2)x+ (b0 + b1t+ b2t

2)y + (c0 + c1t+ c2t
2)z = 0

is the conic24

(a1x+ b1y + c1z)
2 − 4(a0x+ b0y + c0z)(a2x+ b2y + c2z) = 0,

provided that the determinant
∣

∣

∣

∣

∣

∣

a0 a1 a2
b0 b1 b2
c0 c1 c2

∣

∣

∣

∣

∣

∣

6= 0.

Proof. This is the dual conic of the conic parametrized by

x : y : z = a0 + a1t+ a2t
2 : b0 + b1t+ b2t

2 : c0 + c1t+ c2t
2.

11.4.1 The Artzt parabolas

Consider similar isosceles trianglesAθBC,ABθC andABCθ constructed on the sides
of triangleABC. The equation of the lineBθCθ is

(S2 − 2SAt− t2)x+ (S2 + 2(SA + SB)t+ t2)y + (S2 + 2(SC + SA)t+ t2)z = 0,

wheret = Sθ = S · cot θ. As θ varies, this envelopes the conic

(−SAx+ c2y + b2z)2 − S2(x+ y + z)(−x+ y + z) = 0

11.4.2 Envelope of area-bisecting lines

Let Y be a point on the lineAC. There is a unique pointZ on AB such that the
signed area ofAZY is half of triangleABC. We callY Z an area-bisecting line. If
Y = (1 − t : 0 : t), thenZ = (1 − 1

2t : 1
2t : 0) = (2t − 1 : 1 : 0. The lineY Z has

equation

0 =

∣

∣

∣

∣

∣

∣

1− t 0 t
2t− 1 1 0
x y z

∣

∣

∣

∣

∣

∣

= −tx+ (−t+ 2t2)y + (1− t)z.

This envelopes the conic
(x+ y + z)2 − 8yz = 0.

This conic has representing matrix

M =





1 1 1
1 1 −3
1 −3 1





24This can be rewritten as
∑

(4a0a2 − a21)x
2 + 2(2(b0c2 + b2c0)− b1c1)yz = 0.
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with adjoint matrix

M# = −4





2 1 1
1 0 −1
1 −1 0



 .

This is ahyperbolawith center at the vertexA.
To construct this as a 5-point conic, we need only find 3 pointson the hyperbola.

Here are three obvious points: the centroidG, (1 : −1 : 0) and(1 : 0 : −1). Unfor-
tunately the latter two are infinite point: they give the linesAB andAC as asymptotes
of the hyperbola. This means that the axes of the hyperbola are the bisectors of angle
A. Thus images ofG in these axes give three more points on the hyperbola. To find a
fifth point, we setx = 0 and obtain(y + z)2 − 8yz = 0, . . . ,y − 3z : z = ±2

√
2 : 1,

y : z = 3± 2
√
2 : 1 = (

√
2± 1)2 : 1 =

√
2± 1 :

√
2∓ 1.

11.4.3 Envelope of perimeter-bisecting lines

Let Y be a point on the lineAC. There is a unique pointZ on AB such that the
(signed) lengths of the segmentsAY andAZ add up to the semiperimeter of triangle
ABC. We callY Z a perimeter-bisecting line. IfAY = t, thenAZ = s − t. The
coordinates of the points areY = (b − t : 0 : t) andZ = (c − s + t : s − t : 0). The
line Y Z has equation

(t2 − st)x+ (t2 − (s− c)t)y + (t2 − (s+ b)t+ bs)z = 0.

These lines envelopes the conic

(sx+ (s− c)y + (s+ b)z)2 − 4bsz(x+ y + z) = 0

with representing matrix





s2 s(s− c) s(s− b)
s(s− c) (s− c)2 (s− b)(s− c)
s(s− b) (s− b)(s− c) (s− b)2





with adjoint matrix

M# = −8bcs





2(s− a) s− b s− c
s− b 0 −s
s− c −s 0



 .

This conic is a parabola tangent to the linesCA andAB at the points(−(s − b) :
0 : s) and(−(s− c) : s : 0). 25

25These are the points of tangency of theA-excircle with the side lines.
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11.4.4 The tripolars of points on the Euler line

A typical point on the Euler line
∑

cyclic

SA(SB − SC)x = 0

has coordinates(SBC + t : SCA + t : SAB + t), with tripolar

∑

cyclic

1

SBC + t
x = 0,

or
0 =

∑

cyclic

(v + t)(w + t)x =
∑

cyclic

(SBC + a2SAt+ t2)x.

The envelope is the conic

(a2SAx+ b2SBy + c2SCz)
2 − 4SABC(x+ y + z)(SAx+ SBy + SCz) = 0.

This can be rewritten as
∑

cyclic

SAA(SB − SC)
2x2 − 2SBC(SC − SA)(SA − SB)yz = 0.

This can be rewritten as
∑

cyclic

SAA(SB − SC)
2x2 − 2SBC(SC − SA)(SA − SB)yz = 0.

It is represented by the matrix

M =





SAA(SB − SC)
2 −SAB(SB − SC)(SC − SA) −SCA(SA − SB)(SB − SC)

−SAB(SB − SC)(SC − SA) SBB(SC − SA) −SBC(SC − SA)(SA − SB)
SCA(SA − SB)(SB − SC) −SBC(SC − SA)(SA − SB) SCC(SA − SB)



 .

This is clearly an inscribed conic, tangent to the side linesat the points(0 :
SC(SA − SB) : SB(SC − SA)), (SC(SA − SB) : 0 : SA(SB − SC)), and(SB(SC −
SA) : SA(SB − SC) : 0). The perspector is the point26

(

1

SA(SB − SC)
:

1

SB(SC − SA)
:

1

SC(SA − SB)

)

.

The isotomic conjugate of this perspector being an infinite point, the conic is a parabola.27

26This point appears asX648 in ETC.
27The focus is the pointX112 in ETC:

(

a2

SA(SB − SC)
:

b2

SB(SC − SA)
:

c2

SC(SA − SB)

)

.

Its directrix is the line of reflection of the focus,i.e.,
∑

cyclic

SAA(SB − SC)x = 0.
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Exercises

1. Animate a pointP on the circumcircle, and construct a circleC(P ), centerP ,
and radius half of the inradius. Find the envelope of the radical axis ofC(P ) and
the incircle.

2. Animate a pointP on the circumcircle. Construct the isotomic conjugate of its
isogonal conjugate,i.e., the pointQ = (P ∗)•. What is the envelope of the line
joining PQ? 28

28The Steiner point.



Chapter 12

Some More Conics

12.1 Conics associated with parallel intercepts

12.1.1 Lemoine’s thorem

Let P = (u : v : w) be a given point. Construct parallels throughP to the side lines,
intersecting the side lines at the points

Ya = (u : 0 : v + w), Za = (u : v + w : 0);
Zb = (w + u : v : 0), Xb = (0 : v : w + u);
Xc = (0 : u+ v : w), Yc = (u+ v : 0 : w).

A

B C

P

Xc Xb

Yc

Zb

YaZa

These6 points lie on a conicCP , with equation
∑

cyclic

vw(v + w)x2 − u(vw + (w + u)(u+ v))yz = 0.

This equation can be rewritten as

− (u+ v + w)2(uyz + vzx+ wxy)
+ (x+ y + z)(vw(v + w)x+ wu(w + u)y + uv(u+ v)z) = 0.

From this we obtain
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Theorem (Lemoine)

The conic through the 6 parallel intercepts ofP is a circle if and only ifP is the
symmedian point.

Exercises

1. Show that the conicCP through the 6 parallel intercepts throughP is an ellipse,
a parabola, or a hyperbola according asP is inside, on, or outside the Steiner
in-ellipse, and that its center is the midpoint of theP and the cevian quotient
G/P . 1

2. Show that the Lemoine circle is concentric with the Brocard circle. 2

12.1.2 A conic inscribed in the hexagonW (P )

While CP is a conic circumscribing the hexagonW (P ) = YaYcZbZaXcXb, there is
another conic inscribed in the same hexagon. The sides of thehexagon have equations

YaYc : y = 0; YcZb : −vwx+ w(w + u)y + v(u+ v)z = 0;
ZbZa : z = 0; ZaXc : w(v + w)x− wuy + u(u+ v)z = 0;
XcXb : x = 0; XbYa : v(v + w)x+ u(w + u)y − uvz = 0.

These correspond to the following points on the dual conic: the vertices and

(

−1 :
w + u

v
:
u+ v

w

)

,

(

v + w

u
: −1 :

u+ v

w

)

,

(

v + w

u
:
w + u

v
: −1

)

.

It is easy to note that these six points lie on the circumconic

v + w

x
+
w + u

y
+
u+ v

z
= 0.

It follows that the 6 lines are tangent to the incribed conic

∑

cyclic

(v + w)2x2 − 2(w + u)(u+ v)yz = 0,

with center(2u+ v + w : u+ 2v + w : u+ v + 2w) and perspector

(

1

v + w
:

1

w + u
:

1

u+ v

)

.

1The center has coordinates(u(2vw+u(v+w−u)) : v(2wu+v(w+u−v)) : w(2uv+w(u+v−w)).
2The center of the Lemoine circle is the midpoint betweenK andG/K = O.
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A

B C

P

Xc Xb

Yc

Zb

YaZa

Exercises

1. Find the coordinates of the points of tangency of this inscribed conic with the
YcZb, ZaXc andXbYa, and show that they form a triangle perspective with
ABC at 3

(

u2

v + w
:

v2

w + u
:
w2

u+ v

)

.

12.1.3 Centers of inscribed rectangles

LetP = (x : y : z) be a given point. Construct the inscribed rectangle whose top edge
is the parallel toBC throughP . The vertices of the rectangle on the sidesAC andAB
are the points(x : y + z : 0) and(x : 0 : y + z).

The center of the rectangle is the point

A′ = (a2x : a2(x+ y + z)− SBx : a2(x+ y + z)− SCx).

Similarly, consider the two other rectangles with top edgesthroughP parallel to
CA andAB respectively, with centersB′ andC ′. The triangleA′B′C ′ is perspective
with ABC if and only if

(a2(x+ y + z)− SBx)(b
2(x+ y + z)− SCy)(c

2(x+ y + z)− SAz)
= (a2(x+ y + z)− SCx)(b

2(x+ y + z)− SAy)(c
2(x+ y + z)− SBz).

The first terms of these expressions cancel one another, so dothe last terms. Further
cancelling a common factorx+ y + z, we obtain the quadratic equation

∑

a2SA(SB − SC)yz + (x+ y + z)
∑

cyclic

b2c2(SB − SC)x = 0.

3(v + w : v2

w+u
: w2

u+v
), ( u2

v+w
: w + u : w2

u+v
), and( u2

v+w
: v2

w+u
: u+ v).
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This means that the locus ofP for which the centers of the inscribed rectangles
form a perspective triangle is a hyperbola in the pencil generated by the Jerabek hyper-
bola

∑

a2SA(SB − SC)yz = 0

and the Brocard axisOK
∑

cyclic

b2c2(SB − SC)x = 0.

Since the Jerabek hyperbola is the isogonal transform of theEuler line, it contains the
pointH∗ = O andG∗ = K. The conic therefore passes throughO andK. It also
contains the de Longchamps pointL = (−SBC + SCA + SAB : · · · : · · · ) and the
point (SB + SC − SA : SC + SA − SB : SA + SB − SC). 4

P Perspector
circumcenter ( 1

2S2−SBC : 1
2S2−SCA : 1

2S2−SAB )
symmedian point (3a2 + b2 + c2 : a2 + 3b2 + c2 : a2 + b2 + 3c2)
de Longchamps point (SBC(S

2 + 2SAA) : · · · : · · · )
(3a2 − b2 − c2 : · · · : · · · ) ( 1

S2+SAA+SBC
: · · · : · · · )

Exercises

1. Show that the three inscribed rectangles are similar if and only if P is the point

(

a2

t+ a2
:

b2

t+ b2
:

c2

t+ c2

)

,

wheret is the unique positive root of the cubic equation5

t3 − (a2b2 + b2c2 + c2a2)t2 − 2a2b2c2 = 0.

4None of these perspectors appears in the current edition ofETC.
5Corrected by Peter Moses, 11/10/04.
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12.2 Lines simultaneously bisecting perimeter and area

Recall from§11.4.2 that theA-area-bisecting lines envelope the conic whose dual is
represented by the matrix

M1 =





2 1 1
1 0 −1
1 −1 0



 .

On the other hand, theA-perimeter-bisecting lines envelope another conic whose dual
is represented by

M2 =





2(s− a) s− b s− c
s− b 0 −s
s− c −s 0



 .

To find a line simultaneously bisecting the area and perimeter, we seek an intersection
of of the two dual conics represented byM1 andM2. In the pencil of conics generated
by these two, namely, the conics represented by matrices of the formtM1 +M2, there
is at least one member which degenerates into a union of two lines. The intersections
of the conics are the same as those of these lines with any one of them. Now, for any
real parametert,

det(tM1 +M2) =

∣

∣

∣

∣

∣

∣

2(t+ s− a) t+ s− b t+ s− c
t+ s− b 0 −(t+ s)
t+ s− c −(t+ s) 0

∣

∣

∣

∣

∣

∣

= −2(t+ s)(t+ s− b)(t+ s− c)− 2(t+ s)2(t+ s− a)
= −2(t+ s)[(t+ s− b)(t+ s− c) + (t+ s)(t+ s− a)]
= −2(t+ s)[2(t+ s)2 − 2s(t+ s) + bc]

By choosingt = −s, we obtain

−sM1 +M2 =





−2a −b −c
−b 0 0
−c 0 0





which represents the degenerate conic

2ax2 + 2bxy + 2cxy = 2x(ax+ by + cz) = 0.

In other words, the intersections of the two dual conics are the same as those

x2 + xy + xz − yz = 0

(represented byM1) and the linesx = 0 andax+ by + cz = 0.
With x = 0 we obtainyz = 0, and hence the points(0 : 0 : 1) and(0 : 1 : 0) on

the dual conic. These correspond to the linesCA andAB. These clearly are not area
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bisecting lines. This means that such a line must pass through the incenterI, and with
correspondingt satisfying

2bt2 − (a+ b+ c)t+ c = 0.

From this,

t =
(a+ b+ c)±

√

(a+ b+ c)2 − 8bc

4b
=
s±

√
s2 − 2bc

2b
.

The division points onAC are

(1− t : 0 : t) =
(

2b− s∓
√

s2 − 2bc : 0 : s±
√

s2 − 2bc
)

.
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12.3 Parabolas with vertices of a triangle as foci
and sides as directrices

Given triangleABC, consider the three parabolas each with one vertex as focus and the
opposite side as directrix, and call these thea−, b−, andc−parabolas respectively. The
vertices are clearly the midpoints of the altitudes. No two of these parabolas intersect.
Each pair of them, however, has a unique common tangent, which is the perpendicular
bisector of a side of the triangle. The three common tangentstherefore intersect at the
circumcenter.

The points of tangency of the perpendicular bisectorBC with theb− andc−parabolas
are inverse with respect to the circumcircle, for they are atdistancesbR

c
and cR

b
from

the circumcenterO. These points of tangency can be easily constructed as follows.
LetH be the orthocenter of triangleABC, Ha its reflection in the sideBC. It is well
known thatHa lies on the circumcircle. The intersections ofBHa andCHa with the
perpendicular bisector ofBC are the points of tangency with theb− andc−parabolas
respectively.

O

A

B C

Exercises

1. Find the equation of thea-parabola.6

6−S2x2 + a2(c2y2 + 2SAyz + b2z2) = 0.
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12.4 The Soddy hyperbolas and Soddy circles

12.4.1 The Soddy hyperbolas

Given triangleABC, consider the hyperbola passing throughA, and with foci atB
andC. We shall call this thea-Soddy hyperbola of the triangle, since this and related
hyperbolas lead to the construction of the famous Soddy circle. The reflections ofA in
the sideBC and its perpendicular bisector are clearly points on the same hyperbola, so
is the symmetric ofAwith respect to the midpoint ofBC. The vertices of the hyperbola
on the transverse axisBC are the points(0 : s− b : s− c), and(0 : s− c : s− b), the
points of tangency of the sideBC with the incircle and theA-excircle.

I

A

B C

Likewise, we speak of theB- andC-Soddy hyperbolas of the same triangle, and
locate obvious points on these hyperbolas.

12.4.2 The Soddy circles

Given triangleABC, there are three circles centered at the vertices and mutually tan-
gent to each other externally. These are the circlesA(s− a), B(s− b), andC(s− c).
TheSoddy circlesof triangleABC are the two circles each tangent to these three cir-
cles, all externally or all internally. The centers of the Soddy circles clearly are the
intersections of the three Soddy hyperbolas.
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O

A

B C

Exercises

1. Show that the equation ofA-Soddy hyperbola is

Fa = (c+ a− b)(a+ b− c)(y2 + z2)
−2(a2 + (b− c)2)yz − 4b(b− c)zx+ 4(b− c)cxy = 0.
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12.5 Appendix: Constructions with conics

Given 5 pointsA, B, C, D, E, no three of which are collinear, and no four concyclic,
the conicC. Through these 5 points is either an ellipse, a parabola, or ahyperbola.

12.5.1 The tangent at a point onC

(1) P := AC ∩BD;
(2)Q := AD ∩ CE;
(3)R := PQ ∩BE.
AR is the tangent atA.

12.5.2 The second intersection ofC and a line ℓ through A

(1) P := AC ∩BE;
(2)Q := ℓ ∩BD;
(3)R := PQ ∩ CD;
(4)A′ := ℓ ∩ ER.
A′ is the second intersection ofC andℓ.

12.5.3 The center ofC

(1)B′ := the second intersection ofC with the parallel throughB toAC;
(2) ℓb := the line joining the midpoints ofBB′ andAC;
(3)C ′ := the second intersection ofC with the parallel throughC toAB;
(4) ℓc := the line joining the midpoints ofCC ′ andAB;
(5)O := ℓb ∩ ℓc is the center of the conicC.

12.5.4 Principal axes ofC

(1)K(O) := any circle through the centerO of the conicC.
(2) LetM be the midpoint ofAB. Construct (i)OM and (ii) the parallel through

O toAB each to intersect the circle at a point. Join these two pointsto form a lineℓ.
(3) Repeat (2) for another chordAC, to form a lineℓ′.
(4) P := ℓ ∩ ℓ′.
(5) LetKP intersect the circleK(O) atX andY .
Then the linesOX andOY are the principal axes of the conicC.

12.5.5 Vertices ofC

(1) Construct the tangent atA to intersect to the axesOX andOY atP andQ respec-
tively.

(2) Construct the perpendicular feetP ′ andQ′ of A on the axesOX andOY .
(3) Construct a tangentOT to the circle with diameterPP ′. The intersections of

the lineOX with the circleO(T ) are the vertices on this axis.
(4) Repeat (3) for the circle with diameterQQ′.
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12.5.6 Intersection ofC with a line L

Let F be a focus,ℓ a directrix, ande = the eccentricity.
(1) LetH = L ∩ ℓ.
(2) Take an arbitrary pointP with pedalQ on the directrix.
(3) Construct a circle, centerP , radiuse · PQ.
(4) ThroughP construct the parallel toL, intersecting the directrix atO.
(5) ThroughO construct the parallel toFH, intersecting the circle above inX and

Y .
(6) The parallels throughF toPX andPY intersect the given lineL at two points

on the conic.




