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They that are ignorant of Algebra cannot imagine the wonders in this kind
are to be done by it: and what further improvements and helps advantageous
to other parts of knowledge the sagacious mind of man may yet find out, it is
not easy to determine. This at least I believe, that the ideas of quantity are not
those alone that are capable of demonstration and knowledge; and that other,
and perhaps more useful, parts of contemplation, would afford us certainty,
if vices, passions, and domineering interest did not oppose and menace such
endeavors.

J. Locke, An Essay Concerning Human Understanding, B 4, Ch. 3, sec. 18
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1 Introduction

Abridged notation is the use of the symbol of an equation in a certain coordinate system
and its manipulation respecting the rules of the geometric object it represents. For exam‑
ple, a quadratic equation, representing a conic, written in a cartesian coordinate system

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0 , (1)

is represented by 𝑓 = 0 andwe speak of the conic 𝑓 . A linear equation representing a line
and written in the same coordinate system

𝛼(𝑥, 𝑦) = 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 , (2)

is represented by 𝛼 = 0 and we speak of the line 𝛼. For a second line represented by 𝛽,
we can form the expression

𝑔𝜇,𝜈 = 𝜇 ⋅ 𝑓 + 𝜈 ⋅ 𝛼 ⋅ 𝛽 with 𝜇, 𝜈 ∈ ℝ , (3)

representing, through 𝑔𝜇,𝜈 = 0 also a conic depending on {𝑓 , 𝛼, 𝛽} and the constants {𝜇, 𝜈},
the conic being the same ifwedivide by one of the constants and consider instead the conic
𝑓 + 𝜆 ⋅ 𝛼 ⋅ 𝛽 with 𝜆 = 𝜈/𝜇 or the conic 𝜆 ⋅ 𝑓 + 𝛼 ⋅ 𝛽 with 𝜆 = 𝜇/𝜈. In the sequelwe’ll prefer
the notation 𝑓 + 𝜆 ⋅ 𝛼 ⋅ 𝛽 having in mind that 𝜆 can be written as 𝜆 = 𝜈/𝜇 which leads to
an equivalent representation of the corresponding conic in the form 𝑓𝜇,𝜈 of equation (3).

The aim is to deduce properties of 𝑔𝜆 = 𝑓 + 𝜆 ⋅ 𝛼 ⋅ 𝛽 from those of {𝑓 , 𝛼, 𝛽} possibly
without entering into calculations with coordinates. A trivial example is the fact, that if
the line 𝛼 intersects the conic 𝑓 at points {𝐴, 𝐵} and line 𝛽 intersects 𝑓 at {𝐶, 𝐷}, then all
conics {𝑔𝜆, 𝜆 ∈ ℝ}, forming a so‑called “pencil of conics”, pass through these four points
(see figure 1). A consequence of this is, that if 𝐷 tends to coincide with 𝐴 along a fixed
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Figure 1: Conics 𝑔𝜆 = 𝑓 + 𝜆 ⋅ 𝛼 ⋅ 𝛽

line 𝛾 through 𝐴, then the common chord 𝐴𝐷 of all these conics, which is part of the line
𝛾, tends to the tangent of each one, hence all these conics have the same tangent equal to
𝛾 at the point of coincidence 𝐴 = 𝐷 (see figure 2).
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Figure 2: Conics passing through {𝐴, 𝐵, 𝐶} with common tangent at 𝐴
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Applying the same reasoning for points {𝐴, 𝐵} of figure 1 and letting them tend to‑
wards {𝐴 → 𝐵 , 𝐷 → 𝐶} we see that for lines 𝛼 tangent to 𝑓 at 𝐵 and 𝛽 tangent to 𝑓 at
𝐶 the conics of the pencil {𝑔𝜆 = 𝑓 + 𝜆 ⋅ 𝛼 ⋅ 𝛽} are all tangent to lines {𝛼, 𝛽} respectively at
points {𝐵, 𝐶} (see figure 3).
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Figure 3: Conics tangent to {𝛼, 𝛽} respectively at {𝐵, 𝐶}

The preceding examples are typical for the use of abridged notation, which often in‑
volves relations between several conics. Below we’ll see more such examples.

2 Abridged notation, cartesian coordinates, homogenization

Aswe said, to symbols representing lines and conics underlie coordinates and some times,
in order to draw certain conclusions, we pass to the analytic expression of the symbol by
the corresponding coordinates. An example offer the existence proofs of lines passing
through two given points and conics passing through five points. In fact, the coefficients
of a line 𝛼 satisfying equation (2) are solutions of an homogeneous system with a 3 × 3
matrix 𝑀 determined by the given points {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2}. From elementary linear alge‑
bra we know that in order to have solutions of the homogeneous equation, the determi‑
nant of the matrix must vanish:

𝑀 = ⎛⎜⎜⎜
⎝

𝑥 𝑦 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1

⎞⎟⎟⎟
⎠

and 𝛼(𝑥, 𝑦) =
∣∣∣∣∣

𝑥 𝑦 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1

∣∣∣∣∣
= 0 . (4)

Analogous is also the case of the conics. The coefficients of a conic 𝑓 given by equation (1)
and passing through five given points {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, ..., 5} must satisfy an homogeneous
systemwith coefficients determined by these points, leading again to its equation in terms
of a vanishing determinant of a 6 × 6 matrix 𝑀.

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥2 2𝑥𝑦 𝑦2 2𝑥 2𝑦 1
𝑥2

1 2𝑥1𝑦1 𝑦2
1 2𝑥1 2𝑦1 1

𝑥2
2 2𝑥2𝑦2 𝑦2

2 2𝑥2 2𝑦2 1
𝑥2

3 2𝑥3𝑦3 𝑦2
3 2𝑥3 2𝑦3 1

𝑥2
4 2𝑥4𝑦4 𝑦2

4 2𝑥4 2𝑦4 1
𝑥2

5 2𝑥5𝑦5 𝑦2
5 2𝑥5 2𝑦5 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑓 (𝑥, 𝑦) =

∣
∣∣∣∣∣∣∣∣∣∣∣
∣

𝑥2 2𝑥𝑦 𝑦2 2𝑥 2𝑦 1
𝑥2

1 2𝑥1𝑦1 𝑦2
1 2𝑥1 2𝑦1 1

𝑥2
2 2𝑥2𝑦2 𝑦2

2 2𝑥2 2𝑦2 1
𝑥2

3 2𝑥3𝑦3 𝑦2
3 2𝑥3 2𝑦3 1

𝑥2
4 2𝑥4𝑦4 𝑦2

4 2𝑥4 2𝑦4 1
𝑥2

5 2𝑥5𝑦5 𝑦2
5 2𝑥5 2𝑦5 1

∣
∣∣∣∣∣∣∣∣∣∣∣
∣

= 0. (5)

The proof of uniqueness of the conic through five given points is more involved. It can be
done using the Chasles‑Steiner definition of conics ([Eve63, p.303], [Bak71, p.73]) or us‑
ing Bezout’s theorem ([Ber87, II, p.182], [Bix06, p.195]), both guaranteeing, that two conics
having in common more that four real intersection points are identical.
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In our discussion so far we used cartesian coordinate systems w.r.t. orthogonal axes
with units of the same length. We’ll consider also their extension to the corresponding
“homogeneous coordinates”, by which the point

(𝑥, 𝑦) corresponds to (𝑥′, 𝑦′, 𝑧′) with 𝑥 = 𝑥′/𝑧′ , 𝑦 = 𝑦′/𝑧′ .

Various triples {(𝑥′, 𝑦′, 𝑧′), (𝑥″, 𝑦″, 𝑧″), ...} such that 𝑥′/𝑥″ = 𝑦′/𝑦″ = 𝑧′/𝑧″ = 𝑘 ≠ 0 define
the same point (𝑥 = 𝑥′/𝑧′, 𝑦 = 𝑦′/𝑧′) and “homogenize” the equations of lines and conics:

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 ⇔ 𝐴𝑥′ + 𝐵𝑦′ + 𝐶𝑧′ = 0 (6)
𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0 ⇔

𝐴𝑥′2 + 2𝐵𝑥′𝑦′ + 𝐶𝑦′2 + 2𝐷𝑥′𝑧′ + 2𝐸𝑦′𝑧′ + 𝐹𝑧′2 = 0 (7)

The points {(𝑥, 𝑦, 0)} (we drop now the primes) belong to the “line at infinity”, whose
equation is 𝑧 = 0. With this convention, two non‑identical lines have always an intersec‑
tion point, which is an ordinary point, if the lines are not parallel, otherwise it is their
common point at infinity. In fact, two parallel lines whose equations are respectively
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 0 and 𝐴𝑥 + 𝐵𝑦 + 𝐶′𝑧 = 0 with 𝐶′ ≠ 𝐶, are satisfied by the point at in‑
finity (−𝐵, 𝐴, 0) representing their common “direction”. The interpretation of a point at
infinity (𝑈, 𝑉, 0) as a direction of parallel lines {𝑉𝑥 − 𝑈𝑦 + 𝐶 = 0, 𝐶 ∈ ℝ} is used through‑
out this study. This is compatible with the interpretation of (𝑈, 𝑉, 0) as common point
of the line 𝑉𝑥 − 𝑈𝑦 = 0 and the line at infinity 𝑧 = 0. Two parallel lines

𝛼 ∶ 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 0 and 𝛼′ ∶ 𝐴𝑥 + 𝐵𝑦 + 𝐶′𝑧 = 0

result each one from the other by adding a multiple of the line at infinity:

𝛼′ = 𝛼 + (𝐶 − 𝐶′)𝑧 .

3 Pencils of conics

We encountered them in section 1. A pencil of conics is a family of conics {𝑓𝜆,𝜇} depending
on two distinguished conics {𝑓1, 𝑓2} and two arbitrary real numbers {𝜆, 𝜇}. We say “the
pencil is generated by {𝑓1, 𝑓2}”:

𝑓𝜆,𝜇 = 𝜆 ⋅ 𝑓1 + 𝜇 ⋅ 𝑓2 with 𝜆, 𝜇 ∈ ℝ . (8)

Figure 4 shows two conics {𝑓1, 𝑓2} and also some conics of the pencil {𝑓𝜆,𝜇} they generate.
By the aforementioned theorem of Bezout, two conics intersect, counting the multiplicities
at their intersections, at four points. In the example we have four distinguished intersec‑
tion points {𝐴, 𝐵, 𝐶, 𝐷}. All conics of the pencil pass through these four points and their
points cover the entire plane. In fact, a point 𝑃 of the plane, different from the points
{𝐴, 𝐵, 𝐶, 𝐷}, defines a unique conic of the pencil {𝑓𝜆,𝜇} passing through it. This follows
from equation

𝑓𝜆,𝜇(𝑃) = 0 ⇔ 𝑓1(𝑃)
𝑓2(𝑃) = −𝜇

𝜆,

determining the necessary parameters {𝜆, 𝜇} up to a non‑zero multiplicative factor 𝑘,
since (𝜆, 𝜇) and (𝑘𝜆, 𝑘𝜇) define the same conic, since the same conic is represented by an
equation 𝑓 = 0 and a non‑zero multiple 𝑘𝑓 = 0. This implies, that we can express almost
all the members of the pencil, setting 𝑘 = 𝜇/𝜆 or 𝑘 = 𝜆/𝜇, by combinations of the form

𝑓1 + 𝑘 ⋅ 𝑓2 and also as combinations 𝑘𝑓1 + 𝑓2 with 𝑘 ∈ ℝ .
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An obvious property of the pencil is, that every pair of its members generates by lin‑
ear combinations the whole pencil. Also, as is noticed in figure 4, every pencil contains
as members three pairs of lines passing through the intersection points {𝐴, 𝐵, 𝐶, 𝐷} called
“singularmembers” of the pencil, since they represent degenerate conics (products of lines).
Since the pencil is generated by any two of its members we can select this “singular”mem‑
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Figure 4: A pencil of conics generated by the two conics {𝑓1, 𝑓2}

bers, for example the lines {𝛼 = 𝐴𝐵, 𝛽 = 𝐶𝐷, 𝛾 = 𝐴𝐷, 𝛿 = 𝐵𝐶} and write all the members
as combinations

𝑓 = 𝜆 ⋅ 𝛼 ⋅ 𝛽 + 𝜇 ⋅ 𝛾 ⋅ 𝛿 . (9)

Taking into account these facts, we see that the pencil of conics {𝑔𝜆 = 𝑓 + 𝜆 ⋅ 𝛼𝛽} of
figure 1 comprises all conics passing through the four points {𝐴, 𝐵, 𝐶, 𝐷}. Analogously the
pencil of conics {𝑔𝜆} of figure 2 comprises all the conics passing through {𝐵, 𝐶} and tangent
to 𝛾 at 𝐴 . Analogously also the pencil {𝑔𝜆} of figure 3 comprises all conics tangent to
lines {𝛼, 𝛽} respectively at their points {𝐵, 𝐶}.

By the way, we can ask for each one of these pencils, whether they contain a circle for
a particular value 𝜆 = 𝜆0. For the pencil of figure 1 the answer is obviously: when the four
points {𝐴, 𝐵, 𝐶, 𝐷} are on a circle. For the pencil of figure 2 the answer is: when the angle
𝐴𝐶𝐵 equals the angle between line 𝛾 and 𝛼, and in the case of figure 3 the answer is: when
points {𝐵, 𝐶} are at the same distance from the intersection of lines {𝛼, 𝛽}.

In general, two arbitrary conics corresponding to the equations {𝑓1 = 0, 𝑓2 = 0} have
four intersection points in common real or imaginary. Consequently, they have at most
six chords in common, real or imaginary, forming by pairs degenerate conics belonging
to the pencil. Since the condition of degeneration for a conic expressed through equation
(1) is the vanishing of the determinant

∣∣∣∣∣

𝐴 𝐵 𝐷
𝐵 𝐶 𝐸
𝐷 𝐸 𝐹

∣∣∣∣∣
= 0 ,

if the coefficients of the conics {𝑓1, 𝑓2} are real, then the vanishing of the corresponding
determinant for the member 𝑓 = 𝑓1 + 𝜆𝑓2 of the pencil will create a polynomial of third
degree in 𝜆. Consequently, therewill be one or three real roots. In any case, for any pencil
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we’ll have at least one real 𝜆 and at least one corresponding degenerate conic. Figure 5
shows somemembers and the unique real degenerate conic, consisting of two intersecting
lines, of a pencil generated by two ellipses without a common point. The two points

κ
1

κ
2

Figure 5: A pencil containing one only real degenerate conic

around which concentrate the ellipses contained in the pencil are the real intersections of
two pairs of complex conjugate lines representing the imaginary degenerate conics of the
pencil.

We should notice that the abridged notation and the relations between the symbols are
valid in both cases of underlying coordinate systems: the cartesian as well as its homoge‑
nization. Depending on the particular configuration considered, the interpretation of the
relations with one of these systems may be clearer than that with the other. By times the
problematic ingredient is the “line at infinity”, which in homogeneous coordinates has the
form 𝐶𝑧 = 0 with a constant 𝐶 ≠ 0. This line is represented in abridged notation with
the constant 𝐶. In a cartesian system though, which describes only ordinary points of the
plane, we do not have a representation of the line at infinity. In this case we admit that
the line at infinity is represented by the apparently absurd (because of 𝐶 ≠ 0 ) equality

𝐶 = 0 ∶ line at infinity represented in a cartesian system,

having in mind that the symbol represents the line 0𝑥 + 0𝑦 + 𝐶𝑧 = 0. The role of the con‑
stant, meant to represent the line at infinity, can be observed also in the standard repre‑
sentation of a line and a conic. The line, 𝛼 = 𝐴𝑥 + 𝐵𝑦 + 𝐶 is the sum of two lines, better
understood when we use the homogenization: 𝛼 = (𝐴𝑥 + 𝐵𝑦) + (𝐶𝑧) : a sum of an ordi‑
nary line, and the line at infinity. Thus, any line can be viewed as a particular member of
a pencil: the pencil of its parallel lines {𝐴𝑥 + 𝐵𝑦 + 𝑡 = 0 , 𝑡 ∈ ℝ}.

The same observation can be made for the general conic

𝑓 = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 .

It is a member of a pencil of the kind described by equation (9): 𝑓 = 𝜆 ⋅ 𝛼 ⋅ 𝛽 + 𝜇 ⋅ 𝛾 ⋅ 𝛿.
This is again better understood by interpreting 𝑓 with homogeneous coordinates:

𝑓 = (𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2) + 𝑧(2𝐷𝑥 + 2𝐸𝑦 + 𝐹𝑧) = 𝛼 ⋅ 𝛽 + 𝛾 ⋅ 𝛿 .

With (𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2) = 𝛼 ⋅ 𝛽 , since the equation 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 = 0 represents a
product of two real or complex lines {𝛼, 𝛽} (see fileQuadratic equation), 𝛾 = 1 ⋅ 𝑧 repre‑
sents the line at infinity and 𝛿 = 2𝐷𝑥 + 2𝐸𝑦 + 𝐹𝑧.

4 Interpretation of the members of a pencil

The members of a general pencil of conics, which always admits the representation of
equation (9), can be described geometrically in the “generic” case, in which the four points
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{𝐴, 𝐵, 𝐶, 𝐷} are real and distinct, as in figure 4. The description results from the property
of the line equation 𝛼 = 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 , when it is “normalized”, i.e. when its normal
𝑛 = (𝐴, 𝐵) is a unit vector. Then, for a point 𝑃 not lying on the line, the quantity 𝛼(𝑃)
is the signed distance of 𝑃 from the line, the sign being positive for 𝑃 lying on the half
plane pointed by the normal 𝑛 and negative for 𝑃 lying on the other half plane defined
by the line 𝛼. In case 𝑛 is not a unit vector 𝛼(𝑃) is a constant multiple of this distance,
since setting 𝑘 = √𝐴2 + 𝐵2 we can write

𝑎 = 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 𝑘 (𝐴
𝑘 𝑥 + 𝐵

𝑘 𝑦 + 𝐶
𝑘 ) = 𝑘(𝐴′𝑥 + 𝐵′𝑦 + 𝐶′),

and 𝑛′ = (𝐴′, 𝐵′) is a unit vector.
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Figure 6: Conics satisfying 𝛼⋅𝛽
𝛾⋅𝛿 = ±𝑘

Theorem 1. Given four lines {𝛼, 𝛽, 𝛾, 𝛿} in general position, the conic of the pencil

𝑓 = 𝜆 ⋅ 𝛼 ⋅ 𝛽 + 𝜇 ⋅ 𝛾 ⋅ 𝛿

is the locus of points 𝑋 whose signed distances from these lines, denoted by the same letters, satisfy
the condition

𝛼 ⋅ 𝛽
𝛾 ⋅ 𝛿 = 𝑘 (constant). (10)

Proof. This is trivial, since a point 𝑋 on the conic 𝑓 satisfies

0 = 𝑓 (𝑋) ⇔ 𝛼 ⋅ 𝛽
𝛾 ⋅ 𝛿 = −𝜇

𝜆,

and vice versa, thereby proving the statement. Figure 6 shows an example of two conics
defined by this method. The conic 𝜎 corresponds to a constant 𝑘 = −(𝜇/𝜆) > 0 and the
conic 𝜏 is obtained from the same formula by changing the constant to −𝑘.
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Corollary 1. For any quadrangle inscribed in a conic and having the pairs of opposite side‑lines
{(𝛼, 𝛽), (𝛾, 𝛿)} the corresponding distances {𝛼′, 𝛽′, 𝛾′, 𝛿′} of a point 𝑃 of the conic from these lines
define a constant ratio independent of the position of 𝑃 (see figure 7):

𝛼′ ⋅ 𝛽′

𝛾′ ⋅ 𝛿′ = 𝑘 (constant).

α
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D

Figure 7: Property of quadrilateral inscribed: 𝛼′⋅𝛽′

𝛾′⋅𝛿′ = 𝑘

Corollary 2. Given four points {𝐴, 𝐵, 𝐶, 𝐷} on the conic, the cross ratio 𝑘 = 𝑃(𝐴𝐵; 𝐶𝐷) of four
lines {𝑃𝐴, 𝑃𝐵, 𝑃𝐶, 𝑃𝐷} is constant for any point 𝑃 of the conic.

Proof. This is based on the formula for the altitude ℎ𝑎 = 𝑏𝑐 sin(𝐴)
𝑎 of the triangle with sides

{𝑎, 𝑏, 𝑐} and the formula for the cross ratio 𝑃(𝐴𝐵; 𝐶𝐷) of four lines through a point, ex‑
pressed through the angles between them. Regarding the altitudes, we apply the formula
and obtain (see figure 7):

𝛼′ = |𝑃𝐴||𝑃𝐵| sin(𝐴𝑃𝐵)
|𝐴𝐵| , 𝛽′ = |𝑃𝐶||𝑃𝐷| sin(𝐷𝑃𝐶)

|𝐷𝐶| ,

𝛾′ = |𝑃𝐴||𝑃𝐷| sin(𝐴𝑃𝐷)
|𝐴𝐷| , 𝛿′ = |𝑃𝐵||𝑃𝐶| sin(𝐵𝑃𝐶)

|𝐵𝐶| .

This, after the cancellation of {|𝑃𝐴|, |𝑃𝐵|, ...} gives

ε
C
A

β

B

C
B

C

α

A D
B

α*P

D
A

β*

D

Figure 8: Cross ratio (𝐴𝐵; 𝐶𝐷) in terms of angles

𝛼′ ⋅ 𝛽′

𝛾′ ⋅ 𝛿′ = sin(𝐴𝑃𝐵)
sin(𝐴𝑃𝐷)

⋅ sin(𝐷𝑃𝐶)
sin(𝐵𝑃𝐶)

⋅ |𝐴𝐷| ⋅ |𝐵𝐶|
|𝐴𝐵| ⋅ |𝐷𝐶|
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It follows that the expression containing the four sines is constant, for points 𝑃 lying
on the conic, and this is exactly the cross ratio 𝑃(𝐴𝐵; 𝐶𝐷) of the four lines, which, per
definition, is measured by the cross ratio (𝐴𝐵; 𝐶𝐷) defined on any line 𝜀 intersecting the
four lines (see figure 8). Latter expressed through the angles between these lines is given
by the following formula (see file Cross ratio) completing the proof:

(𝐴𝐵; 𝐶𝐷) = 𝐶𝐴
𝐶𝐵 ∶ 𝐷𝐴

𝐷𝐵 = sin(𝛼)
sin(𝛼∗) ∶ sin(𝛽)

sin(𝛽∗) .

5 Bitangent conics and pencils

“Bitangent conics” are called two conicswhich have two commonpoints and their tangents
at these points coinciding. We encountered “Bitangent pencils” already in the introduction
(see figure 3). They are families of conics which pass through the same two points {𝐴, 𝐵}

α

β
γ

A

B
C

Figure 9: A bitangent pencil of conics {𝑓𝜆,𝜇 = 𝜆 ⋅ 𝛼 ⋅ 𝛽 + 𝜇𝛾2}

having there the same tangent (see figure 9). These are special cases of the general pencil
𝜆 ⋅ 𝛼 ⋅ 𝛽 + 𝜇 ⋅ 𝛾 ⋅ 𝛿 for which 𝛾 = 𝛿. Thus, they comprise all conics of the form

𝑓𝜆,𝜇 = 𝜆 ⋅ 𝛼 ⋅ 𝛽 + 𝜇 ⋅ 𝛾2

where {𝛼, 𝛽, 𝛾} are given lines.
They contain two particular “singular”members, which are “degenerate” conics repre‑

sented by (i) the pair of lines 𝑓1,0 = 𝛼 ⋅ 𝛽 and (ii) the “double” line 𝑓0,1 = 𝛾2 . Every conic
tangent to the lines {𝛼, 𝛽} correspondingly at {𝐴, 𝐵} is a member of this pencil. Also, eve‑
ry conic 𝜅 can be considered as a member of such a pencil. It suffices to take two points
{𝐴, 𝐵 ∈ 𝜅} and consider their tangents {𝛼, 𝛽} there and the line joining the contact points
𝛾 = 𝐴𝐵. The conic can be written then as a combination

𝜅 = 𝜆 ⋅ 𝛼 ⋅ 𝛽 + 𝜇 ⋅ 𝛾2 .

From corollary 1 we draw also the following conclusion:

Corollary 3. For every pair of tangents {𝛼, 𝛽} of a conic and the line 𝛾 of their contact points,
the ratio of the distances {𝛼′, 𝛽′, 𝛾′} of a point 𝑃 of the conic from these lines (see figure 10):

𝑘 = 𝛼′ ⋅ 𝛽′

𝛾′2

is constant. Conversely, if for a point 𝑃 this expression of distances from three lines is constant,
then 𝑃 lies on a member‑conic of the bitangent pencil {𝜆𝛼 ⋅ 𝛽 + 𝜇𝛾2}.
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P

Figure 10: The constant ratio property 𝛼′⋅𝛽′

𝛾′2 = 𝑘

From this corollary we can deduce a fundamental property of hyperbolas. First we
should notice that every hyperbola can be represented in homogeneous coordinates as a
member of a special bitangent pencil.

ℎ = 𝜆𝛼 ⋅ 𝛽 + 𝜇𝑧2 , (11)

with 𝛾 = 1 ⋅ 𝑧 the line at infinity and {𝛼, 𝛽} arbitrary lines. The intersection points {𝐴, 𝐵}
of the lines {𝐴 = 𝛼 ∩ 𝛾, 𝐵 = 𝛽 ∩ 𝛾}, through which pass all the conics of the pencil, are at
infinity. Since, e.g. the line 𝛽 = 𝐷𝑥 + 𝐸𝑦 + 𝐹𝑧 intersects the line at infinity 𝑧 = 0 at the
point at infinity 𝐵 = (−𝐸, 𝐷, 0) . This is a point of the conic ℎ and line 𝛽 is the tangent
of the conic there, since it does not contain a second point of the conic. This shows that
𝛽 is an asymptote of the conic. Analogously 𝛼 is also an asymptote and the conic is a
hyperbola. Thus, dividing with 𝜆 and setting 𝑘 = 𝜇/𝜆 we can say that

ℎ = 𝛼 ⋅ 𝛽 + 𝑘 ⋅ 𝑧2

describes the most general hyperbola with asymptotes {𝛼, 𝛽}. Disregarding the place of
the hyperbola in the plane, we may assume that one of the asymptotes, 𝛼 say, is given by
the 𝑦−axis: 𝛼 ∶ 𝑥 = 0 , so that the general form simplifies in this case, after dividing by 𝑘,
to

ℎ = 𝑥(𝐷𝑥 + 𝐸𝑦 + 𝐹𝑧) + 𝑧2 ,
or in non‑homogeneous coordinates

ℎ = 𝑥(𝐷𝑥 + 𝐸𝑦 + 𝐹) + 1 .

Figure 11 shows an example and suggests a property resulting from corollary 3.

Corollary 4. The product of the distances |𝑃𝑃𝛼||𝑃𝑃𝛽| of a point 𝑃 of the hyperbola ℎ from the
asymptotes is constant and the area of the triangle 𝑃𝑃𝛼𝑃𝛽 is also constant. Also, if {𝑄𝛼, 𝑄𝛽}
denote the parallel along an asymptote projections of 𝑃 on the other asymptote and 𝑂 is the
center of the hyperbola, then the parallelogram 𝑃𝑄𝛼𝑂𝑄𝛽 has the same area for all positions of of
𝑃 on ℎ.

Proof. This is obvious, since the constant ratio in this case is

𝛼 ⋅ 𝛽
𝛾2 = 𝑥

𝑧 ⋅ (𝐷𝑥
𝑧 + 𝐸𝑦

𝑧 + 𝐹) a multiple of the distances from 𝛼, 𝛽.

The second claim is obviously an immediate consequence of the first one. The third results
from the relations involving the angle 𝜙 of the asymptotes:

|𝑃𝑄𝛼| = |𝑃𝑃𝛼|
sin(𝜙) , |𝑃𝑄𝛽| =

|𝑃𝑃𝛽|
sin(𝜙) .
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Dx+Ey+F=0
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Figure 11: Hyperbola with asymptotes {𝑥 = 0 , 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0}

We notice here, how easily and almost without any computation, we come to detailed
quantitative relations by simply interpreting the general relations between the symbols
established by the methods of the abridged notation. With some additional effort, we can
obtain more properties similar to those of the last corollary. The following exercises
are examples of a further elaboration of the obtained results, reflecting the spirit of the
method: First we obtain general relations between the symbols, and then we interpret the
obtained relations and work with geometric and analytic arguments.

Exercise 1. Let ℎ be a hyperbola with asymptotes {𝛼, 𝛽} intersecting at its center 𝑂 . Show, that
the tangent 𝜀 at a point 𝑃 ∈ ℎ intersects the asymptotes at the points {𝑆𝛼, 𝑆𝛽} and the triangle
𝑆𝛼𝑃𝑆𝛽 has twice the area of the parallelogram 𝑄𝛼𝑂𝑄𝛽𝑃, where {𝑄𝛼, 𝑄𝛽} denote the parallel
projections along an asymptote of 𝑃 on the other asymptote (see figure 12), which has a constant
area for 𝑃 ∈ ℎ. Also point 𝑃 is the middle of the segment 𝑆𝛼𝑆𝛽.

P

O

α
β

h

Q
β

Q
α

S
β

S
α

ε

Figure 12: Hyperbola property △𝑆𝛼𝑃𝑆𝛽 has constant area

Hint: Start by defining {𝑆𝛼, 𝑆𝛽} to be the symmetrics respectively of 𝑂 w.r.t. to {𝑄𝛼, 𝑄𝛽}
and their line 𝜀 containing 𝑃. To see that 𝜀 is the tangent at 𝑃 it suffices to show that
it has no other point in common with the hyperbola ℎ, i.e. to show that for all other
points 𝑃 ≠ 𝑃′ ∈ 𝜀 the corresponding parallelogram 𝑄𝛼𝑂𝑄𝛽𝑃′ has area different from
that of 𝑄𝛼𝑂𝑄𝛽𝑃. But this is an elementary property of signed areas, formulated in the
next exercise.

Exercise 2. Let 𝑃′ be a point on the base‑line 𝜀 = 𝐵𝐶 of the triangle 𝐴𝐵𝐶 and {𝑃, 𝐸, 𝐹} be the
middles of {𝐵𝐶, 𝐴𝐶, 𝐴𝐵}. Project point 𝑃′ parallel to the sides {𝐴𝐵, 𝐴𝐶} to points on {𝐼, 𝐽} on
these sides (see figure 13). Then, the parallelogram 𝑃′𝐼𝐴𝐽 has a signed area which is different from
that of 𝑃𝐸𝐴𝐹 for all 𝑃′ ∈ 𝜀.
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Figure 13: An area property

Hint: Considering the variable 𝑥 = 𝐴𝐼, the ratio of the signed areas is:

(𝐼𝐴𝐽𝑃′)
(𝐹𝑃𝐸𝐴) = 𝑃′𝐼 ⋅ 𝐼𝐴

𝑃𝐹 ⋅ 𝐹𝐴 = 𝐼𝐵
𝐹𝐵 ⋅ 𝐴𝐼

𝐴𝐹 = 2𝑑 − 𝑥
𝑑 ⋅ 𝑥

𝑑 with 𝑑 = 𝐴𝐹 = 𝐴𝐵
2 .

This ratio is 1 if and only if (𝑥 − 𝑑)2 = 0 ⇔ 𝑥 = 𝑑.

Exercise 3. Let 𝛾 = 𝐴𝐵 be a diameter of a central conic 𝜅 and {𝛼, 𝛽} the tangents at its endpoints.
Project a point 𝑃 ∈ 𝜅 on the diameter and the tangents and consider the circle 𝜈 = (𝐴′𝐵′𝐶′)
passing through the projections. Let 𝐶″ be the other than 𝐶′ ∈ 𝛾 point of intersection of the
circle 𝜈 with line 𝑃𝐶′. Then the ratio 𝑃𝐶′/𝑃𝐶″ is constant.

α
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β'

γ'

Α

Β

C' A'
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P

C''

O

δ

κ

Figure 14: A ratio property for 𝑃 ∈ 𝜅 : 𝛾′

𝛿 = 𝑘 (constant)

Hint: Apply corollary 3 the lines {𝛼, 𝛽} being the tangents from a point at infinity and
implying (𝛼′ ⋅ 𝛽′)/𝛾′2 is a constant for 𝑃 ∈ 𝜅.

6 Abridged notation, line formularium

Every conic can be considered as a member of a bitangent pencil. It suffices to consider
two tangents {𝛼, 𝛽} and the line 𝛾 joining their contact points{𝐴, 𝐵}. Besides the pos‑
sibility to describe all conics 𝜅 passing through these two points and having there the
tangents {𝛼, 𝛽} through a simple expression involving the three lines

𝜅 = 𝛾2 + 𝛼 ⋅ 𝛽,

the system can be used to parameterize the conic 𝜅 . Before to discuss the details of this
subject we need to make some remarks on a system of coordinates based on the three
lines {𝛼, 𝛽, 𝛾}. The intersection points {𝐴 = 𝛽 ∩ 𝛾, 𝐵 = 𝛾 ∩ 𝛼, 𝐶 = 𝛼 ∩ 𝛽} together with an
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additional arbitrary point 𝐷 define a system of “homogeneous coordinates” or “projective
coordinates” (see file Projective plane), in which every point 𝑃 is represented by a formal
sum

𝑃 = 𝑢 ⋅ 𝐴 + 𝑣 ⋅ 𝐵 + 𝑤 ⋅ 𝐶, we write 𝑃(𝑢, 𝑣, 𝑤) .
𝐷 is the “unit”pointwith coordinates 𝐷(1, 1, 1). The quadruple {𝐴, 𝐵, 𝐶, 𝐷} is a “projective
base” of the plane and the lines

𝛼 = 0, 𝛽 = 0, 𝛾 = 0

are the “coordinate axes” coinciding respectively with {𝑢 = 0, 𝑣 = 0, 𝑤 = 0} (see figure 15).

P(t,t')

α=0 (u=0)

γ=0 (w=0)

α-tβ=0

β-t'γ=0

β
=

0
 (

v=
0
)

C(0,0,1)

A(1,0,0)

B(0,1,0)

D(1,1,1)

Figure 15: Projective base {𝐴, 𝐵, 𝐶, 𝐷}

Just like in the homogenized cartesian coordinate system, which is a particular case of
this general one, where every line is represented as a linear combination of the lines
{𝑥 = 0, 𝑦 = 0, 𝑧 = 0}:

𝑝𝑥 + 𝑞𝑦 + 𝑟𝑧 = 0,
so in the above general homogeneous system we can represent every line of the plane by
a linear combination of the three lines

𝑝𝛼 + 𝑞𝛽 + 𝑟𝛾 = 0,

the coefficients {𝑝, 𝑞, 𝑟} defined up to a non zero multiplicative constant. Also every point
𝑃 is defined through its homogeneous coordinates {(𝑢, 𝑣, 𝑤)} defined up to a non zero
multiplicative constant.

In the context of the abridged notation another convenientway to determine the location
of a point relative to the lines {𝛼, 𝛽, 𝛾} is the one defined in nr‑1 of the list below, the
subsequent nrs giving corresponding consequences of this method.

1. A point 𝑃 is preferably represented as intersection of two lines belonging respec‑
tively to the pencils of lines at 𝐴 and 𝐶 ∶

𝑃(𝑡, 𝑡′) ∶ intersection of lines: 𝛼 − 𝑡𝛽 = 0 and 𝛽 − 𝑡′𝛾 = 0. (12)

We speak of the point (𝑡, 𝑡′). Equation 𝛼 − 𝑡𝛽 = 0 represents a line through 𝐶 and
equation 𝛽 − 𝑡′𝛾 = 0 represents a line through point 𝐴. Eliminating 𝛽 from equa‑
tions (12) we find 𝛼 − 𝑡𝑡′𝛾 = 0 representing the line passing through 𝐵(𝛼 = 𝛾 = 0)
and the point 𝑃(𝑡, 𝑡′).

2. The condition that this point belongs to line 𝑎𝛼 + 𝑏𝛽 + 𝑐𝛾 = 0 is

𝑎𝑡𝑡′ + 𝑏𝑡′ + 𝑐 = 0. (13)

3. The coefficients {𝑎, 𝑏, 𝑐} of the line 𝑎𝛼 + 𝑏𝛽 + 𝑐𝛾 = 0 passing through the two points
{(𝑡, 𝑡′), (𝑠, 𝑠′)} satisfy the system of equations∶

𝑎𝑡𝑡′ + 𝑏𝑡′ + 𝑐 = 0, 𝑎𝑠𝑠′ + 𝑏𝑠′ + 𝑐 = 0. (14)
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4. Thus, solving for {𝑎, 𝑏, 𝑐}, we find, up to multiplicative constant∶

𝑎 = 𝑡′ − 𝑠′, 𝑏 = 𝑠𝑠′ − 𝑡𝑡′, 𝑐 = 𝑡′𝑠′(𝑡 − 𝑠). (15)

5. Replacing in nr‑2, we get the nice condition of “collinearity” of three points (𝑡, 𝑡′),
(𝑠′, 𝑠′), (𝑢, 𝑢′) ∶

(𝑡′ − 𝑠′)𝑢𝑢′ + (𝑠𝑠′ − 𝑡𝑡′)𝑢′ + 𝑡′𝑠′(𝑡 − 𝑠) = 0 ⇔
𝑢𝑢′(𝑡′ − 𝑠′) + 𝑠𝑠′(𝑢′ − 𝑡′) + 𝑡𝑡′(𝑠′ − 𝑢′) = 0. (16)

6. For two lines represented by equations {𝑎𝛼 + 𝑏𝛽 + 𝑐𝛾 = 0 , 𝑎′𝛼 + 𝑏′𝛽 + 𝑐𝛾′ = 0} their
intersection point 𝑃(𝑡, 𝑡′) satisfies 𝑎𝑡𝑡′ + 𝑏𝑡′ + 𝑐 = 0 and 𝑎′𝑡𝑡′ + 𝑏′𝑡′ + 𝑐′ = 0 ⇒

𝑡 = 𝑏𝑐′ − 𝑏′𝑐
𝑎′𝑐 − 𝑎𝑐′ , 𝑡′ = 𝑎′𝑐 − 𝑎𝑐′

𝑎𝑏′ − 𝑎′𝑏 . (17)

7. Thus, the condition of “concurrency” of three lines results by replacing this into nr‑2
for a third line, which after simplification leads to∶

𝑎‴(𝑏𝑐′ − 𝑏′𝑐) + 𝑏‴(𝑎′𝑐 − 𝑎𝑐′) + 𝑐‴(𝑎𝑏′ − 𝑎′𝑏) = 0. (18)

This is the determinant of the coefficients of the three lines.

8. The connection with the usual notation, which prefers to write a point in the coor‑
dinate base as 𝑃 = 𝑢𝐴 + 𝑣𝐵 + 𝑤𝐶, results by replacing this into the system of equa‑
tions 12, with corresponding {𝛼 = 0 ↔ 𝑢 = 0, 𝛽 = 0 ↔ 𝑣 = 0, 𝛾 = 0 ↔ 𝑤 = 0} lead‑
ing to the relations∶

𝑡 = 𝑢
𝑣 , 𝑡′ = 𝑣

𝑤 and (𝑢, 𝑣, 𝑤) = 𝑘(𝑡𝑡′, 𝑡′, 1) with arbitrary 𝑘 ≠ 0. (19)

9. The “cross ratio” of four lines {𝜎𝑖 = 𝛼 − 𝑡𝑖𝛽 = 0, 𝑖 = 1, 2, 3, 4} passing through the
point 𝐶 can be defined by the expression

(𝜎1𝜎2; 𝜎3𝜎4) = 𝑡1 − 𝑡3
𝑡2 − 𝑡3

∶ 𝑡1 − 𝑡4
𝑡2 − 𝑡4

. (20)

This is compatible with the definition of the cross ratio of four points on a line. This
means that on every line 𝜂 intersecting these four lines, the cross ratio of the four
intersection points on 𝜂 coincides with this one.

10. The equation of two “harmonic conjugate” lines w.r. to the lines 𝛼 = 0 and 𝛽 = 0
passing through 𝐶 is

𝛼 − 𝑡𝛽 = 0, 𝛼 + 𝑡𝛽 = 0. (21)

11. Eliminating 𝛽 from two line equations {𝑎𝛼 + 𝑏𝛽 + 𝑐𝛾 = 0 , 𝑎′𝛼 + 𝑏′𝛽 + 𝑐𝛾′ = 0} we
obtain the equation

(𝑎𝑏′ − 𝑎′𝑏)𝛼 − (𝑏𝑐′ − 𝑐𝑏′)𝛾 = 0 , (22)

representing the line joining the base point 𝐵(𝛼 = 𝛾 = 0) of the coordinate system
to the intersection point (see nr‑6) of the two lines.
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7 Abridged notation, conics formularium

In this section the main object is a conic 𝜅. We investigate its properties considering it
as a member of a bitangent pencil and refer it to a coordinate system consisting of its
tangents {𝛼, 𝛾} at its points {𝐶, 𝐴} and the chord of contacts 𝛽 ([Car76, p.336]) (see figure
16). Within this framework the following are valid properties∶

A

α=0

D

B

γ=0

C

β=
0

Figure 16: Bitangent conics with common chord 𝛽 = 𝐴𝐶

1. The equation of the conic obtains the “bitangent conic” form

𝛼 ⋅ 𝛾 − 𝛽2 = 0. (23)

2. More general
𝛼 ⋅ 𝛾 − 𝑘 ⋅ 𝛽2 = 0, with variable k (24)

represents all conics passing through {𝐴, 𝐶} and being tangent there to lines {𝛾, 𝛼}
correspondingly. The particular one of nr‑1 is obtained by requiring from the conic
to pass through the unit point 𝐷, which since 𝛼(𝐷) = 𝛽(𝐷) = 𝛾(𝐷) = 1, gives 𝑘 = 1.

3. In this coordinate system we can describe the conic 𝛼 ⋅ 𝛾 − 𝛽2 = 0 by a very simple
parametrization. In fact, point 𝑃 on the conic can be determined as intersection of
two lines passing through 𝐵 and 𝐴 (see figure 17).

A

α=0
B

γ=0

C

β=
0

P

β-tγ=0

α-tβ=
0

α-t2γ = 0

Figure 17: Determination of a point on the conic

{𝛼 − 𝑡 ⋅ 𝛽 = 0 , 𝛽 − 𝑡′ ⋅ 𝛾 = 0}
𝛼⋅𝛾=𝛽2

⟹ 𝛽 = 𝑡 ⋅ 𝛾 ⇒ 𝛼 = 𝑡2 ⋅ 𝛾 .

Any pair out of the three lines

𝛼 = 𝑡 ⋅ 𝛽 , 𝛽 = 𝑡 ⋅ 𝛾 , 𝛼 = 𝑡2 ⋅ 𝛾 (25)

can be used to determine through their intersection the position of 𝑃 in terms of
the position of the lines. This defines a parametrization, identifying points 𝑃 on
the conic with the corresponding parameter 𝑡, and we can speak of “the point t on
the conic”.
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4. For an arbitrary line 𝑝𝛼 + 𝑞𝛽 + 𝑟𝛾 = 0, the intersection points with the conic are the
“points t” found through the solution of the system∶

𝑝𝛼 + 𝑞𝛽 + 𝑟𝛾 = 0, 𝛼 − 𝑡2𝛾 = 0, 𝛽 − 𝑡𝛾 = 0,

which leads to the quadratic equation∶

𝑝𝑡2 + 𝑞𝑡 + 𝑟 = 0. (26)

5. The equation of the line (chord) through points 𝑃(𝑡) and 𝑃′(𝑡′) is

(𝑡𝑡′)𝛾 − (𝑡 + 𝑡′)𝛽 + 𝛼 = 0. (27)

This, because it is satisfied by the points

𝑃(𝑡) ∶ {𝛼 − 𝑡2𝛾 = 0, 𝛽 − 𝑡𝛾 = 0} and 𝑃′(𝑡′) ∶ {𝛼 − 𝑡′2𝛾 = 0, 𝛽 − 𝑡′𝛾 = 0}.

6. If all these chords are to pass through a fixed point 𝑄(𝑝, 𝑞, 𝑟), then, replacing into
equation (27) the coordinates of the point, we see that an equation of the form

(𝑡𝑡′)𝑟 − (𝑡 + 𝑡′)𝑞 + 𝑝 = 0 (28)

must be satisfiedwith constants {𝑝, 𝑞, 𝑟}. This represents the necessary and sufficient
condition for “chords 𝑡𝑡′ ” to pass through a fixed point.

7. Allowing complex numbers for {𝑡, 𝑡′}, the preceding equation can represent any line
of the plane, since every line in this case has two real or complex intersection points
with the conic. For real conics {𝑡, 𝑡′} are complex conjugate, hence 𝑡𝑡′ and 𝑡 + 𝑡′ are
real.

8. The equation of the “tangent at 𝑃(𝑡) ” is

𝑡2𝛾 − 2𝑡𝛽 + 𝛼 = 0, (29)

since it represents the limit position of the chord‑line of nr‑5, when 𝑡′ tends to co‑
incide with 𝑡. The converse is also true, since one can reverse the arguments and
show the following theorem.

Theorem 2. Any one‑parameter line‑equation, which can be put into the form of equation
(29), with parameter 𝑡, represents a tangent to the conic 𝛼 ⋅ 𝛾 − 𝛽2 = 0.

The theorem has many applications in finding a conic enveloping a one parameter
family of lines.

9. Requiring that the tangent of nr‑8 passes through a point

𝑃(𝑠, 𝑠′) ∶ {𝛼 = 𝑠𝛽, 𝛽 = 𝑠′𝛾} ⇒ 𝛼 = 𝑠𝑠′𝛾 implies 𝑡2 − 2𝑡𝑠′ + 𝑠𝑠′ = 0.

Point 𝑡 being on the conic implies {𝑡 = 𝛽/𝛾, 𝑡2 = 𝛼/𝛾} hence the equation

𝛼 − 2𝑠′𝛽 + 𝑠𝑠′𝛾 = 0,

which represents the “polar” of 𝑃(𝑠, 𝑠′).
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10. A line through 𝐵(𝛼 = 𝛾 = 0) is of the form 𝛼 − 𝑘𝛾 = 0 and intersects the conic at the
points ±√𝑘. It is trivially seen that 𝛼 − 𝑡2𝛾 = 0 represents a line passing through
the points {𝑡, −𝑡} of the conic 𝛼𝛾 − 𝛽2 = 0.

Theorem3. If the coefficients of a variable line 𝐿𝑡 ∶ 𝐴𝑡𝑥 + 𝐵𝑡𝑦 + 𝐶𝑡𝑧 = 0 are given by the quadra‑
tic equations w.r.t. to the parameter 𝑡 ∶

𝐴𝑡 = 𝑎11𝑡2 + 𝑎12𝑡 + 𝑎13,
𝐵𝑡 = 𝑎21𝑡2 + 𝑎22𝑡 + 𝑎23,
𝐶𝑡 = 𝑎31𝑡2 + 𝑎32𝑡 + 𝑎33,

then the line 𝐿𝑡 envelopes a conic with equation 𝛼 ⋅ 𝛾 − 𝛽2 = 0. In this the lines are given by
coefficients corresponding to the columns of the preceding matrix:

𝛼 ∶ 𝑎13𝑥 + 𝑎23𝑦 + 𝑎33𝑧 = 0,

𝛽 ∶ −1
2(𝑎12𝑥 + 𝑎22𝑦 + 𝑎32𝑧) = 0,

𝛾 ∶ 𝑎11𝑥 + 𝑎21𝑦 + 𝑎31𝑧 = 0.

Proof. Apply theorem 2, writing the equation of the line 𝐿𝑡 in the equivalent form

𝐿𝑡 ∶ 𝑡2𝛾 − 2𝑡𝛽 + 𝛼 = 0 .

Exercise 4. With the notation of this section, show that for the conic 𝑓𝑘 = 𝛼𝛾 − 𝑘𝛽2 = 0 ∶
1. The point 𝑃 ∶ 𝛼 − 𝑡𝛽 = 𝛽 − 𝑡′𝛾 = 0 is on 𝑓𝑘 if and only if 𝑡 = 𝑘𝑡′.
2. The chord of 𝑓𝑘 through the points {(𝑘𝑡, 𝑡), (𝑘𝑡′, 𝑡′)} is 𝛼 − 𝑘(𝑡 + 𝑡′)𝛽 + 𝑘(𝑡𝑡′)𝛾 = 0.
3. The tangent of 𝑓𝑘 through the point (𝑘𝑡, 𝑡) is 𝛼 − 2𝑘𝑡𝛽 + 𝑘𝑡2𝛾 = 0.
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Figure 18: The bitangent pencil members {𝑓𝑘, 𝑓1/𝑘}

Theorem 4. With the notation of this section, consider a member‑conic 𝑓𝑘 = 𝛼𝛾 − 𝑘𝛽2 of the
bitangent pencil. For each point 𝑃 ∈ 𝑓𝑘 let 𝑃′ be the pol of the tangent to 𝑓𝑘 at 𝑃 w.r.t. the
member‑conic 𝑓 = 𝛼𝛾 − 𝛽2. Then, the following are valid properties (see figure 18):

1. The point 𝑃(𝑘𝑡, 𝑡) has corresponding 𝑃′(𝑡, 𝑘𝑡). Thus, the correspondence 𝑃 ↦ 𝑃′ sends
the member‑conic 𝑓𝑘 to the member‑conic 𝑓1/𝑘.

2. The line through 𝑃, 𝑃′ passes also through 𝐵 ∶ (𝛼 = 𝛾 = 0).
3. The pol 𝑆′ of 𝑃𝑃′ w.r.t. to every member‑conic of the pencil is the harmonic conjugate of

the intersection 𝑆 = 𝑃𝑃′ ∩ 𝐴𝐶 w.r.t. {𝐴, 𝐶}.
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Proof. nr‑1. We need exercise 4, which shows that the points of 𝑓𝑘 are of the form 𝑃(𝑘𝑡, 𝑡)
and the tangent at such a point is 𝛼 − 2𝑘𝑡𝛽 + 𝑘𝑡2𝛾 = 0. If this is the polar of a point 𝑃(𝑠, 𝑠′)
w.r.t. the conic 𝑓 , then it should be equal to 𝛼 − 2𝑠′𝛽 + 𝑠𝑠′𝛾 = 0 ⇒ 𝑠′ = 𝑡𝑘, from
which follows that (𝑠, 𝑠′) = (𝑡, 𝑘𝑡), which is a point of 𝑓1/𝑘.

nr‑2. The line 𝑎𝛼 + 𝑏𝛽 + 𝑐𝛾 = 0 through {𝑃(𝑘𝑡, 𝑡), 𝑃′(𝑡, 𝑘𝑡)} has according to nr‑4 of
section 6 𝑏 = 0 hence is of the form 𝑎𝛼 + 𝑐𝛾 = 0 which is a line through 𝐵.

nr‑3 is a consequence of the general pol‑polar reciprocity, according to which if : the
pol 𝐴 of a line 𝛼 is on a line 𝛽 then the pol 𝐵 of 𝛽 is also on line 𝛼.

Remark 1. This is a particular case of the “polarity transformation” w.r.t. to a given conic
𝑓 . This transformation corresponds to every point 𝑃 of the plane the polar line 𝛼𝑃 w.r.t.
𝑓 , and to every line 𝛼 of the plane its pol 𝑃𝛼 w.r.t. 𝑓 . If in a cartesian coordinate system
the conic 𝑓 is represented by a symmetric matrix {𝑀 ∶ 𝑓 (𝑋) = 𝑋𝑡𝑀𝑋 = 0, 𝑋 ∈ ℝ3}, then
the polarity (points ↦ lines) is described by the linear transformation 𝑌𝑡 = 𝑋𝑡𝑀 , the line
vector 𝑌𝑡 representing the coefficients of the polar line of the column vector 𝑋 repre‑
senting a point of the plane. The inverse transformation (lines ↦ points) is represented
by the inverse matrix 𝑋𝑡 = 𝑌𝑡𝑀−1.

It can be proved in general that the polarity w.r.t. some conic 𝑓 , maps in the sense
used above, every conic 𝑔 to another conic 𝑔′. As we used it above, 𝑔′ consists of the
pols of tangents of 𝑔 w.r.t. 𝑓 . In general applying such a polarity to the members of a
pencil we do not obtain again members of the same pencil. In the particular case though
of a bitangent pencil, as we saw, this happens indeed and the polarity w.r.t. a member 𝑓
applied to another member 𝑓𝑡 of the pencil gives again a member 𝑓𝑡′ of the same pencil.

Theorem 5. Every genuine conic can be represented in a homogeneous coordinate system in para‑
metric form with quadratic polynomials, whose coefficients build an invertible matrix 𝐴 in the
form:

𝑢 = 𝑎11𝑡2 + 𝑎12𝑡 + 𝑎13,
𝑣 = 𝑎21𝑡2 + 𝑎22𝑡 + 𝑎23,
𝑤 = 𝑎31𝑡2 + 𝑎32𝑡 + 𝑎33.

⎫}}
⎬}}⎭

with determinant |𝐴| =
∣∣∣∣∣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

∣∣∣∣∣
≠ 0 . (30)

Conversely, every such parametrization in an arbitrary coordinate system defines a genuine conic.

Proof. In fact, from equations (25) and (19) we know that every conic can be represented
in a system of two tangents and the chord of contact of the conic by a parametrization of
the form:

𝑢 = 𝑡2 , 𝑣 = 𝑡 , 𝑤 = 1,
which corresponds to the simplest case of 𝐴 coinciding with the unit matrix 𝐴 = 𝐼3. For
the converse, given the above relations in the coordinate system (𝑢, 𝑣, 𝑤), it suffices to
change the coordinate system by the inverse matrix 𝐵 = 𝐴−1 and pass to the system

⎛⎜⎜⎜
⎝

𝑢′

𝑣′

𝑤′

⎞⎟⎟⎟
⎠

= 𝐵 ⎛⎜⎜⎜
⎝

𝑢
𝑣
𝑤

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝑡2

𝑡
1

⎞⎟⎟⎟
⎠

⇒ 𝑢′ ⋅ 𝑤′ − 𝑣′2 = 0 ,

showing that the curve is a conic, having {𝑢′ = 0, 𝑤′ = 0} as tangents and 𝑣′ = 0 is the
line of contacts.

Remark 2. Using vector notation equation (30) could bewritten 𝑈 = 𝑡2𝐾 + 𝑡𝐿 + 𝑀, where
{𝐾, 𝐿, 𝑀} denote the columns of the matrix 𝐴. Referring to barycentric coordinates, the
vectors {𝐾, 𝐿, 𝑀} could represent “absolute barycentrics”, i.e. the sum of the coordinates
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Figure 19: Conic 𝑈 = 𝑡2𝐾 + 𝑡𝐿 + 𝑀 for {𝐾, 𝐿, 𝑀} in absolute barycentrics

of each vector be 1. Then, the conic generated by 𝑈 is the one seen in figure 19. This is
a special conic. Namely, an ellipse tangent, as expected to the lines {𝐿𝐾, 𝐿𝑀} at {𝐾, 𝑀}
and passing through the centroid 𝐺′ = 𝐾 + 𝐿 + 𝑀 of the triangle 𝐾𝐿𝑀, obtained for the
value of 𝑡 = 1. The conic passes also through the symmetric 𝐾 − 𝐿 + 𝑀 of 𝐿 w.r.t the
middle 𝐾 + 𝑀 of the side 𝐾𝑀, obtained for the value of 𝑡 = −1 and which is the har‑
monic conjugate of 𝐺′ w.r.t the couple of points 𝐿 and 𝐾 + 𝑀. The triangle 𝐴𝐵𝐶 and
its centroid 𝐺 are used to define the barycentric coordinates.

Notice that, since the shapes involved in this figure are geometrically defined through
the location of the points {𝐾, 𝐿, 𝑀}, their appearance and geometric properties do not
depend on the form and the location of the triangle of reference 𝐴𝐵𝐶.
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Figure 20: Conic 𝑈 = 𝑡2𝐾 + 𝑡𝐿 + 𝑀 for {𝐾, 𝐿, 𝑀} in general barycentrics

Figure 20 uses the same points {𝐾, 𝐿, 𝑀} with the preceding one, but now the co‑
ordinates of the vectors are not “absolute”, i.e. their sums are not 1 but some distinct
constants {𝑠1, 𝑠2, 𝑠3}. The conic has the same formal characteristics, passing through the
points {𝐾, 𝑀, 𝐾 + 𝐿 + 𝑀, 𝐾 − 𝐿 + 𝑀} but now 𝐾 + 𝑀 is essentially an arbitrary point on
line 𝐾𝑀 and 𝐾 + 𝐿 + 𝑀 does not coincide with the centroid 𝐺′ of the triangle 𝐾𝐿𝑀.
Points {𝐾 + 𝐿 + 𝑀, 𝐾 − 𝐿 + 𝑀} however are again harmonic conjugate w.r.t. the couple
of points {𝐿, 𝐾 + 𝑀}.

Maintaining the same location of the points {𝐾, 𝐿, 𝑀} but multiplying their absolute
barycentric coordinates with varying factors {𝑠1𝐾, 𝑠2𝐿, 𝑠3𝑀} we obtain all possible mem‑
bers of the bitangent pencil of conics tangent to lines {𝐿𝐾, 𝐿𝑀} at {𝐾, 𝑀}. Again the shapes
and properties of these conics do not depend on the location and shape of the triangle of
reference 𝐴𝐵𝐶.

Remark 3. Continuing the preceding remark, we could consider a slight generalization
and instead of the conic described by the parameterization 𝑈 = 𝑡2𝐾 + 𝑡𝐿 + 𝑀, equivalent
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to 𝑈 = 𝑡(𝑡𝐾 + 𝐿) + 𝑀, replace in one place 𝑡 with a homographicaly related variable
𝑠(𝑡) = (𝑎𝑡 + 𝑏)/(𝑐𝑡 + 𝑑), i.e. consider the parameterization 𝑈 = 𝑡(𝑠(𝑡)𝐾 + 𝐿) + 𝑀. Using
the fact that vectors of coordinates representing the points of the plane are defined up to
a non‑zero multiplicative constant, we see that this reduces to a parameterization like the
one of the preceding remark, involving only some other coordinate vectors depending on
{𝐾, 𝐿, 𝑀} and the homographic relation:

𝑈 = 𝑡(𝑠(𝑡)𝐾 + 𝐿) + 𝑀 = 𝑡 (𝑎𝑡 + 𝑏
𝑐𝑡 + 𝑑𝐾 + 𝐿) + 𝑀

= 𝑡 ((𝑎𝑡 + 𝑏)𝐾 + (𝑐𝑡 + 𝑑)𝐿) + (𝑐𝑡 + 𝑑)𝑀
= 𝑡2[𝑎𝐾 + 𝑐𝐿] + 𝑡[𝑏𝐾 + 𝑑𝐿 + 𝑐𝑀] + 𝑑𝑀 .

The same remark holds also if we use a second homographic relation 𝑠′(𝑡) and consider
the parameterization

𝑈 = 𝑠′(𝑡)[𝑠(𝑡)𝐾 + 𝐿] + 𝑀 .

8 Cross ratio on the conic

We re‑examine here the “cross ratio” of four points {𝑃(𝑡𝑖), 𝑖 = 1, 2, 3, 4} on the conic defined
by the cross ratio of the four lines joining these points with an arbitrary point 𝑃 of the
conic, seen in corollary 2 to be independent of the particular choice of 𝑃.

Theorem 6. The cross ratio of four points {𝑃𝑖 = 𝑃(𝑡𝑖), 𝑖 = 1, 2, 3, 4} on the conic can be ex‑
pressed using the values of {𝑡𝑖} through

(𝑃1𝑃2; 𝑃3𝑃4) = (𝑡1𝑡2; 𝑡3𝑡4) = 𝑡1 − 𝑡3
𝑡2 − 𝑡3

∶ 𝑡1 − 𝑡4
𝑡2 − 𝑡4

.

Proof. Since this cross ratio is computed using any line 𝜀 and its intersections {𝑄𝑖} with
lines {𝑃0𝑃𝑖, 𝑖 = 1, 2, 3, 4} (see figure 21), for any point 𝑃0 of the conic, we can use the
(coordinate) line 𝜀 = 𝛼 = 0. The chords through the points (𝑡𝑖, 𝑡0) of the conic are given
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Figure 21: Cross ratio of 4 points on the conic (𝑃1𝑃2; 𝑃3𝑃4) = (𝑄1𝑄2; 𝑄3𝑄4)

by equation (27):
𝑡𝑖𝑡0𝛾 − (𝑡𝑖 + 𝑡0)𝛽 + 𝛼 = 0 .

Their intersection points {(𝑠𝑖, 𝑠′
𝑖)} with 𝛼 = 0 satisfy the preceding equation and, by defi‑

nition also the equations

𝛼 − 𝑠𝑖𝛽 = 0 and 𝛽 − 𝑠′
𝑖𝛾 = 0 ⇒ 𝑠𝑖 = 0 ⇒

𝑡𝑖𝑡0𝛾 − (𝑡𝑖 + 𝑡0)𝛽 = 0 and 𝛾 = 𝛽
𝑠′
𝑖

⇒ 𝑠′
𝑖 = 𝑡𝑖𝑡0

𝑡𝑖 + 𝑡0
.
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Thus, the cross ratio expressed through the four lines {𝛽 − 𝑠′
𝑖𝛾 = 0, 𝑖 = 1, 2, 3, 4} is (see file

Cross ratio) (𝑠′
1𝑠′

2; 𝑠′
3𝑠′

4) and since, by the last equation, the pairs {(𝑠𝑖, 𝑡𝑖)} are connected
by a “homographic relation” the corresponding cross ratios are equal.

Theorem 7. Given four points {𝑃𝑖, 𝑖 = 1, 2, 3, 4} in general position and a number 𝑐 there is a
unique conic 𝜅 whose points {𝑃} joined with the four given points define quadruples of lines with
constant cross ratio 𝑃(𝑃1𝑃2; 𝑃3𝑃4) = 𝑐.

Proof. This follows from the existence and uniqueness of a conic passing through four
points {𝑃𝑖, 𝑖 = 1, 2, 3, 4} and having at 𝑃1 a given tangent 𝜀 ([Pam14, 8.1]). In fact, if there
is such a conic, then the cross ratio of the four lines is independent from the position of
𝑃 on the conic and for 𝑃 tending to 𝑃1 the chord 𝑃𝑃1 tends to the tangent 𝜀 at 𝑃1 (see
figure 22). Thus, the ratio is equal to that of the quadruple consisting of 𝜀 and the other
three lines {𝑃1𝑃2, 𝑃1𝑃3, 𝑃1𝑃4}. Since the three last lines are fixed, the line 𝜀 is uniquely
determined by the given value 𝑐 of the cross ratio and by the aforementioned theorem
there is a unique conic passing through the four points and tangent to 𝑃1 at 𝜀.

Also the existence of such a conic for a given value 𝑐 of the cross ratio can be proved
using a similar figure. In fact, given the four points, consider an arbitrary fifth 𝑃5 and the
conic 𝜅′ through the five points. All points 𝑃 of this conic joined to the 𝑃′

𝑖 𝑠 define four
lines having constant cross ratio, 𝑐′ say. As in the preceding part of the proof, this cross
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Figure 22: The cross ratio 𝑃(𝑃1𝑃2; 𝑃3𝑃4) computed for 𝑃 = 𝑃1

ratio is the same with that of the quadruple of lines consisting of the tangent 𝜀′ to 𝜅′ at
𝑃1 and the the three other lines {𝑃1𝑃2, 𝑃1𝑃3, 𝑃1𝑃4}. Thus, in order to show the existence of
the desired conic it suffices to show, that as 𝜀 rotates about 𝑃1 the corresponding cross
ratio of the four lines {𝜀, 𝑃1𝑃2, 𝑃1𝑃3, 𝑃1𝑃4} takes all possible values, thus also the given
value 𝑐. This though is easily seen by measuring the cross ratio using the intersections of
the four lines with the 𝑥 axis. These points, identified with their coordinates: {𝑥, 𝑝, 𝑞, 𝑟},
𝑥 being variable and the other numbers being constant, leading to the expression of the
cross ratio:

𝑐′ = 𝑥 − 𝑞
𝑝 − 𝑞 ∶ 𝑥 − 𝑟

𝑝 − 𝑟 = 𝑝 − 𝑟
𝑝 − 𝑞 ⋅ 𝑥 − 𝑞

𝑥 − 𝑟 ,

so that 𝑐′ is a function of 𝑥 obtaining all possible values, as claimed.

By the way, the preceding argument suggests another aspect of the pencil of conics
passing through four points in general position {𝐴, 𝐵, 𝐶, 𝐷}. Themembers of the pencil are
all conics passing through these points and having at one of the points, 𝐴 say, tangents
in all possible directions (see figure 23).

Theorem 8. The cross ratio of four points {𝑃𝑖 = 𝑃(𝑡𝑖), 𝑖 = 1, 2, 3, 4} on the conic is equal to the
cross ratio of the four intersection points {𝑄𝑖, 𝑖 = 1, 2, 3, 4} of their tangents with the tangent at
any fifth point 𝑃0 of the conic (see figure 24).
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Figure 23: Members of the pencil through {𝐴, 𝐵, 𝐶, 𝐷}
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Figure 24: The equality of cross ratios: (𝑃1𝑃2; 𝑃3𝑃4) = (𝑄1𝑄2; 𝑄3𝑄4)

Proof. By equation (29), the tangents at {𝑃(𝑡𝑖), 𝑃(𝑡0)} are given by:

𝑡2
𝑖 𝛾 − 2𝑡𝑖𝛽 + 𝛼 = 0 , 𝑡2

0𝛾 − 2𝑡0𝛽 + 𝛼 = 0 .

Solving this homogeneous system for the values of {𝛼, 𝛽, 𝛾}, we find that

(𝛼, 𝛽, 𝛾) = 𝑘(−2𝑡0𝑡𝑖, 𝑡0 + 𝑡𝑖, 2) with a constant 𝑘 ≠ 0 ⇒ 𝛼
𝛾 = −𝑡0𝑡𝑖 .

Hence the points {𝑄𝑖} are on the lines {𝛼 + 𝑡0𝑡𝑖𝛾} whose cross ratio is

(𝑄1𝑄2; 𝑄3𝑄4) = ((𝑡0𝑡1)(𝑡0𝑡2); (𝑡0𝑡3)(𝑡0𝑡4)) = (𝑡1𝑡2; 𝑡3𝑡4) .

Corollary 5. Four fixed tangents of a conic intersected by a variable fifth tangent define on it
quadruples of points having constant cross ratio.

Remark 4. This property of the conics is so important, that Chasles in his monumental
work [Cha65] deduces from this the whole theory of conics discussed in the book.

Corollary 6. Consider three arbitrary but fixed points {𝐴, 𝐵, 𝐶} on a parabola and a variable point
𝑃 on it. Then the tangents at these three points intercept on the tangent at 𝑃 segments having
constant ratio as 𝑃 varies on the parabola (see figure 25).

Proof. This is a consequence of theorem 8 and the fact that the parabola is tangent to
the line at infinity. This implies that the cross ratio formed on arbitrary tangents by the
four fixed tangents at {𝐴, 𝐵, 𝐶} and the line at infinity is constant. But the cross ratio of
four points one of which is at infinity becomes the usual ratio of the segments defined by
the three other points. In figure 25 the tangent at the variable 𝑃 defines segments with
constant ratio: 𝐴′𝐵′

𝐵′𝐶′ = 𝑘.
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Figure 25: Segments of constant ratio 𝐴′𝐵′

𝐵′𝐶′ on the tangent of a variable 𝑃

In the same figure, holding the points {𝑃, 𝐵, 𝐴} fixed and varying the tangent at 𝑃, we
see that the ratio 𝐹𝐸

𝐸𝐶′ is constant. When point 𝐶 tends to coincide with 𝑃 the segments
{𝐹𝐸, 𝐸𝐶′} having all the time the same constant ratio tend to coincide with {𝐴′𝐵′, 𝐵′𝑃}.
When point 𝐶 tends to coincide with 𝐵 the segments tend to coincide with {𝐷𝐵, 𝐵𝐵′} and
when 𝐶 tends to coincidewith 𝐴 the segments {𝐹𝐸, 𝐸𝐶′} tend to coincidewith {𝐴𝐷, 𝐷𝐴′}.
We conclude that 𝐴′𝐵′

𝐵′𝑃 = 𝐷𝐵
𝐵𝐵′ = 𝐴𝐷

𝐷𝐴′ and the proof of the following corollary:

Corollary 7. Two tangents {𝑆𝑃, 𝑆𝑄} of a parabola intersected at the points {𝑃′, 𝑄′} by the tangent
at 𝑋, define segments having the same ratio 𝑆𝑃′

𝑃′𝑃 = 𝑄𝑋
𝑋𝑃′ = 𝑄𝑄′

𝑄′𝑆 (see figure 26‑(I)).
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Figure 26: Same ratio 𝑆𝑃′

𝑃′𝑃 = 𝑄′𝑋
𝑋𝑃′ = 𝑄𝑄′

𝑄′𝑆 Characteristic of parabola

This implies also a characteristic property of the parabola:

Corollary 8. The line 𝑃′𝑄′ joining the middles of the tangents {𝑆𝑃, 𝑆𝑄} of a parabola is tangent
to it at its middle 𝑋 and line 𝑆𝑋 is parallel to the axis of the parabola (see figure 26‑(II)).

Corollary 7 is behind the popular visualization of parabolas by dividing the sides of an
angle 𝐴𝐵𝐶 in equal parts: {𝐴𝐴1 = 𝐴1𝐴2 = ... = 𝑎; 𝐵𝐵1 = 𝐵1𝐵2 = ... = 𝑏} and joining the
points with lines {𝛼𝑖 = 𝐴𝑖𝐵𝑖}, which are tangents to a parabola and suggest its existence
as the “envelope” of these lines (see figure 27).

9 The Chasles‑Steiner definition of a conic

This is a definition using the concept of “homographic relation” or “homography” between
points of two lines or/and relations between lines of two pencils (see file Homographic
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Figure 27: Tangents {𝛼𝑖 = 𝐴𝑖𝐵𝑖, 𝑖 = 1, 2, ...} to a parabola

relation). Using coordinates on two lines {𝛼, 𝛽} the homographic relation is described by
an invertible transformation of the form

𝑦 = 𝑎𝑥 + 𝑏
𝑐𝑥 + 𝑑 with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ and 𝑎𝑑 − 𝑏𝑐 ≠ 0 . (31)

The basic properties of this transformation are:
1. Theymaintain the same formwhen changing to other coordinate systems of the two

lines in the form {𝑥′ = 𝑝𝑥 + 𝑞 , 𝑦′ = 𝑟𝑥 + 𝑠}.
2. They preserve the cross ratio of related points: (𝑦1𝑦2; 𝑦3𝑦4) = (𝑥1𝑥2; 𝑥3𝑥4).
3. They maintain the same form when composing with a relation to the points of a

third line. More general, the concatenation of any number of homographies is also
a homography.

A homographic relation between two pencils {𝐴∗, 𝐵∗} of lines through the points, respec‑
tively, {𝐴, 𝐵} can be defined by reducing it to a homographic relation between the points
of a line 𝜀 (see figure 28). To the line 𝜆 ∈ 𝐴∗ we correspond the line 𝜇 ∈ 𝐵∗ via the
coordinates {𝑥, 𝑦} of their intersections {𝐴′, 𝐵′} with line 𝜀 using a relation of the form
(31). A detailed discussion of the concept and several examples can be found in the afore‑
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Figure 28: Homography between lines {𝜆, 𝜇} of the pencils {𝐴∗, 𝐵∗}

mentioned referenceHomographic relation. The Chasles‑Steiner definition relays on the
following theorem.

Theorem 9. The intersection points 𝑋 = 𝜆 ∩ 𝜇 of two lines through {𝐴, 𝐵} corresponding under
a homographic relation 𝜇 = 𝑓 (𝜆) between the pencils of lines {𝑓 ∶ 𝐴∗ → 𝐵∗} is a conic passing
through {𝐴, 𝐵}. Conversely, selecting two arbitrary points {𝐴, 𝐵} on a conic and considering a
variable point 𝑋 on it, the correspondence 𝑓 ∶ 𝐴𝑋 → 𝐵𝑋 defines a homographic relation between
the pencils of lines {𝐴∗, 𝐵∗}.
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Proof. The converse is a direct consequence of the property nr‑3 of section 7 visualized in
figure 17. Selecting two points {𝐴, 𝐵} on the conic defines the coordinate system consist‑
ing of the tangents {𝛼, 𝛽} at these points and the line of contacts 𝛾, as in the aforemen‑
tioned reference. In this system the homographic relation between the pencils {𝐴∗, 𝐵∗}
is described by the correspondence 𝐴∗ ∋ (𝛼 − 𝑡𝛾) ↦ (𝛾 − 𝑡𝛽) ∈ 𝐵∗ represented by the
identity transformation 𝑡 ↦ 𝑡.

For the direct part of the theorem, consider two points {𝐴, 𝐵} and a homographic rela‑
tion between the pencils of lines {𝐴∗, 𝐵∗} represented on an auxiliary line 𝜀 by a transfor‑
mation 𝑥′ = 𝑓 (𝑥) (see figure 29). Consider also four particular points {𝐶, 𝐷, 𝐸, 𝐹} created
by such intersections and the conic 𝜅 passing through these points and 𝐵. Because the
corresponding line coordinates {𝑥, ..., 𝑥′, ...} of the four points are pairwise related homo‑
graphically, the cross ratios of the pencils {𝐴(𝐶𝐷; 𝐸𝐹), 𝐵(𝐶𝐷; 𝐸𝐹)} are equal. By theorem
7 point 𝐴 will be also on the conic. Consider now one of the points, 𝐸 say, varying on the
conic 𝜅. By the proved converse part of the theorem, the corresponding lines {𝐴𝐸, 𝐵𝐸},
as 𝐸 varies on the conic, define on 𝜀 a homographic relation 𝑓 ′. But this relation coin‑
cides with 𝑓 at three points, corresponding to {𝐶, 𝐷, 𝐹}. By the fundamental property of
homographic relations, to be identical if they coincide at three points, we get 𝑓 ′ = 𝑓 , thereby
proving the claim.
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Figure 29: Chasles‑Steiner definition of the conic 𝜅

Remark 5. The conic 𝜅 is genuine if 𝐸 does not obtain the position of the intersection
of lines 𝐸0 = 𝜀 ∩ 𝐴𝐵. Expressed independently from the auxiliary line 𝜀 and in terms of
the homography 𝑓 ∶ 𝐴∗ → 𝐵∗ this happens when 𝑓 (𝐴𝐵) = 𝐵𝐴. In this case the conic is
degenerate consisting of the line 𝐴𝐵 and a second line 𝜁 .

The following corollaries present some example applications of the theorem.

Corollary 9. Consider three fixed points {𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝐵𝐶} and a fixed line 𝐴𝐷 . On line 𝐴𝐷
choose points {𝐵′, 𝐶′} such that 𝐵′𝐴/𝐵′𝐶′ = 𝑘 is a fixed constant. The intersection points 𝑃 of
the variable lines {𝐵𝐵′, 𝐶𝐶′} generate in general a hyperbola and in one case a parabola.

Proof. That this is a conic follows immediately by taking the origin of coordinates on 𝐴𝐷
to be at 𝐴 and setting {𝐴𝐵′ = 𝑥, 𝐴𝐶′ = 𝑦} (see figure 30). This implies the relation

𝑥
𝑥 − 𝑦 = 𝑘 ⇒ 𝑦 = 𝑘 − 1

𝑘 𝑥,

which is a very simple homography between the pencils of lines {𝐵∗, 𝐶∗} as required by
the Chasles‑Steiner method and defines a conic passing through {𝐵, 𝐶} and also through
𝐴 for 𝑥 = 𝑦 = 0.
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Figure 30: Hyperbola defined by a triangle a point and a number

To see that this is a hyperbola it suffices to notice that it intersects the line at infinity
at two distinct points. The first is determined by the direction of the line 𝐴𝐷, since 𝐵′

going to infinity implies that 𝐶′ does the same and lines {𝐵𝐵′, 𝐶𝐶′} become parallel to
𝐴𝐷. The other point at infinity lying on the conic is found as follows. Note first that since
𝐵′𝐴/𝐵′𝐶′ is constant the parallel to 𝐵𝐵′ from 𝐶′ intersects 𝐴𝐵 at a fixed point 𝐶0. Line
𝐶0𝐶 intersects 𝐴𝐷 at a point 𝐶1 and the parallel to 𝐶0𝐶 from 𝐵 defines on 𝐴𝐷 a point
𝐵1 and obviously 𝐵1𝐴/𝐵1𝐶1 = 𝑘. Thus, the other point at infinity on the conic is the point
determined by the parallels {𝐶0𝐶1, 𝐵𝐵1}.
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Figure 31: Special case: parabola when 𝑘 is such that 𝐶𝐶0 ∥ 𝐴𝐷

The special case of a parabola (see figure 31) arises when the value of the ratio 𝑘 is
such that 𝐵𝐴/𝐵𝐶0 = 𝑘 defines a line 𝐶𝐶0 parallel to 𝐶𝐷.
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Figure 32: Special case: the geometric locus is line 𝐴𝐸

A special case occurs also when line 𝐴𝐷 is parallel to 𝐵𝐶. Then line 𝐴𝑃 intersects
𝐵𝐶 at a point 𝐸 such that 𝐵𝐸/𝐵𝐶 = 𝑘, hence 𝐸 is fixed and 𝑃 moves on line 𝐴𝐸 (see
figure 32).

Corollary 10. Let {𝐴, 𝐵, 𝐶} be three points on a hyperbola (resp. parabola) 𝜅 and consider the
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parallel to an asymptote (resp. axis of the parabola) through 𝐴 line 𝐴𝐷 (see figure 30). Then, for
any point 𝑃 on the hyperbola (resp. parabola) lines {𝑃𝐵, 𝑃𝐶} intersect line 𝐴𝐷 at points {𝐵′, 𝐶′}
such that 𝐵′𝐴/𝐵′𝐶′ is constant.

Proof. The proof for the hyperbola (and analogously for the parabola) can be based on
corollary 9. After it, forgetting for the moment the given hyperbola 𝜅, we determine
another hyperbola 𝜅′ describing the locus of a point 𝑃 as in this corollary. For this take
an arbitrary point 𝑃0 on 𝜅 and determine the ratio 𝑘 = 𝐵′𝐴/𝐵′𝐶. Construct then 𝜅′ by
the data {𝐴, 𝐵, 𝐶, 𝐷, 𝑘} as in corollary 9. The two hyperbolas {𝜅, 𝜅′} coincide then on the
four points {𝐴, 𝐵, 𝐶, 𝑃0} and the point at infinity determined by line 𝐴𝐷. Hence they are
identical.

Corollary 11. The line 𝜁 revolves about the point 𝐴 intersecting the conic 𝜅 at the points {𝐵, 𝐶}.
The middle 𝐷 of 𝐵𝐶 describes then a conic 𝜅′ homothetic to 𝜅 passing through 𝐴 and through
its center 𝐾, if the conic 𝜅 is central (see figure 33).

Proof. I sketch the proof for an ellipse and a point 𝐴 in its interior. The case of a point
outside, of a hyperbola and a parabola, can be handled similarlywithminormodifications
and are left as exercises. Under this hypothesis, consider the polar 𝜀 of 𝐴 w.r.t. 𝜅 and
the intersections {𝑋 = 𝜀 ∩ 𝜁 , 𝑌 = 𝜀 ∩ 𝐷𝐾}. The line 𝜁 is the polar of 𝑌 and {𝑋, 𝑌} are
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Figure 33: The geometric locus of middles 𝐷 of chords 𝐵𝐶

homographically related. This is a basic example of homographic relation, associating to
the point 𝑋 on the polar of 𝐴 the pol 𝑌 of 𝜁 = 𝑋𝐴. A simple proof of that can be given
for the circle (see fileHomographic relation) and the general case can be reduced to that
using a projectivity mapping the circle onto the conic 𝜅.

From this it follows that the map between the pencils of lines 𝑓 ∶ 𝐴∗ → 𝐾∗ sending
line 𝜁 = 𝐴𝑋 to 𝐾𝑌 is a homography, hence the intersection points {𝐷 = 𝐴𝑋 ∩ 𝐾𝑌} of
lines corresponding via 𝑓 is a conic.

That the two conics are homothetic follows from the fact that they have all their con‑
jugate diameters parallel. This follows by first observing that 𝐴𝐾 is a common diameter
for both conics. This, because sending 𝑋 on 𝜀 to infinity, point 𝑌 obtains the position
𝑌 = 𝐴𝐾 ∩ 𝜀 and 𝜁 becomes tangent to 𝜅′ at 𝐴 parallel to 𝜀. Similarly sending 𝑌 on 𝜀
to infinity, 𝑋 obtains the position 𝑋 = 𝐴𝐾 ∩ 𝜀 and 𝜁 becomes tangent to 𝜅′ at 𝐾. This
shows that the two conics have the directions of 𝜀 and 𝐴𝐾 as common conjugate direc‑
tions, hence the center 𝐹 of 𝜅′ is the middle of 𝐴𝐾. For an arbitrary point 𝐷 ∈ 𝜅′ the
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direction of the line 𝐴𝐷 is conjugate to that of 𝐾𝐷 w.r.t. 𝜅 but also w.r.t. 𝜅′, since the
line 𝐹𝐻 joining the middles of {𝐴𝐾, 𝐷𝐾} is parallel to 𝐴𝐷.

10 Some applications, Pascal’s theorem

If {𝑓 , 𝛼, 𝛽} represent respectively a circle (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 − 𝑟2 = 0 and two lines, the
points 𝑃 of the conic {𝑓 + 𝜆𝛼𝛽 = 0, 𝜆 ∈ ℝ} have the property 𝑓 (𝑃)

𝛼(𝑃)𝛽(𝑃) = −𝜆 a constant.
Since 𝑓 (𝑃) represents the “power” of 𝑃 w.r.t. the circle 𝑓 , we have:
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Figure 34: For 𝑃 ∈ 𝜅 the ratio 𝑓 (𝑃)
𝛼(𝑃)𝛽(𝑃) , resp. 𝑓 (𝑃)

𝛼2

Corollary 12. If 𝑓 is a circle and {𝛼, 𝛽} two lines, the points 𝑃 of the conic 𝑓 + 𝜆𝛼𝛽 have the
ratio of the power of 𝑃 w.r.t. 𝑓 to the product of distances from {𝛼, 𝛽} constant (see figure 34‑(I))
and vice versa. If for a given circle and two lines this ratio is constant, then the point is on a
member conic of the pencil {𝑓 + 𝜆𝛼𝛽}. If the two lines coincide 𝛼 = 𝛽, then the members of the
pencil {𝑓 + 𝜆𝛼2} are characterized by the analogous property to have the ratio 𝑓

𝛼2 of the power to
the square of distance constant (see figure 34‑(II)).

In the limit case, in which the circle becomes smaller and smaller ending to a point 𝑄
the preceding property becomes one of the traditional definitions of conics:

Corollary 13. A conic is the geometric locus of points 𝑃 for which the ratio of distances 𝑓
𝛼 from

a point 𝑄 and a line 𝛼 is constant (see figure 35).
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Figure 35: A traditional definition of a conic: 𝑓
𝛼 = 𝑘 constant

Corollary 14. Two conics {𝑓1, 𝑓2} bitangent to a third 𝑓3 with lines joining the contact points re‑
spectively {𝛼, 𝛽} intersecting at the point 𝐼 (see figure 36), have a pair of common chords (𝐸𝐺, 𝐹𝐻)
intersecting at 𝐼 and being harmonic conjugate to the pair (𝛼, 𝛽).

Proof. This seemingly complicated property admits, using the abridged notation, a re‑
markable simple formal proof. In fact, 𝑓1 being bitangent to 𝑓3 can be expressed in the
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Figure 36: Conics {𝑓1, 𝑓2} bitangent to 𝑓3

form 𝑓1 = 𝑓3 + 𝜆1𝛼2. Analogously, the bitangent property with 𝑓2 leads to the expression
𝑓2 = 𝑓3 + 𝜆2𝛽2. Thus the conic 𝑓1 − 𝑓2 = 𝜆1𝛼2 − 𝜆2𝛽2 = 0 is a product of lines

𝛼 = ±𝛽√𝜆2
𝜆1

.

This is a line equation representing two lines harmonic conjugate to the pair (𝛼, 𝛽).

Corollary 15. The two diagonals of an inscribed in a conic 𝑓 quadrangle 𝐴𝐵𝐶𝐷 and the two
diagonals of the corresponding tangential at the vertices of the former quadrangle 𝐸𝐹𝐺𝐻 intersect
at a point 𝐼 and form harmonic conjugate pairs of lines 𝐼(𝐴𝐵; 𝐸𝐹) = −1 (see figure 37).
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Figure 37: Conics with a common chord 𝛿

Proof. This is a special case of the corollary 14: { 𝑓1 = 𝛼𝛽 , 𝑓2 = 𝛾𝛿 , 𝑓3 = 𝑓 }.
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Figure 38: Conics with a common chord 𝛿
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Corollary 16. If the conics {𝑓1, 𝑓2, 𝑓3} have a common chord 𝛿, then the other chords of intersec‑
tions {𝛼, 𝛽, 𝛾} of the pairs of conics pass through the same point (see figure 38).

Proof. It suffices to write the conics {𝑓2, 𝑓3} as members of pencils:

𝑓2 = 𝑓1 + 𝜆1𝛾 ⋅ 𝛿 and 𝑓3 = 𝑓1 + 𝜆2𝛽 ⋅ 𝛿 .

Then, the other than 𝛿 common chord of {𝑓2, 𝑓3} satisfies the equation

0 = 𝑓2 − 𝑓3 = (𝜆1𝛾 − 𝜆2𝛽) ⋅ 𝛿 ⇒ 𝜆1𝛾 − 𝜆2𝛽 = 0 .

This being identical with 𝛼, shows that later is a combination of {𝛽, 𝛾} hence passes
through their intersection point.
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Figure 39: Conics with a common chord 𝛿

Corollary 17. If {𝐴, 𝐵} are common points of the conics {𝑓1, 𝑓2} and the lines {𝛼, 𝛽} through
them intersect the conics in points {𝐴1, 𝐵1 ∈ 𝑓1} and {𝐴2, 𝐵2 ∈ 𝑓2}, then the intersection point
𝑃 = 𝐴1𝐵1 ∩ 𝐴2𝐵2 is on a common chord 𝛿 of the two conics (see figure 39).

Proof. This is a special case of the preceding corollary for which the third conic is the
(degenerate) product of the two lines 𝑓3 = 𝛼 ⋅ 𝛽.
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Figure 40: Pascal’s mystic hexagram theorem
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Theorem10 (Pascal’s theorem). Consider an hexagon 𝐴𝐵𝐶𝐷𝐸𝐹 inscribed in the conic 𝑓 . Then,
the pairs of opposite sides intersect on three collinear points {𝐼, 𝐽, 𝐾} (see figure 40). Conversely, if
the opposite sides of a hexagon intersect in three collinear points, then the hexagon can be inscribed
in a conic.

Proof. Start with a chord 𝐶𝐹 of the conic 𝑓 joining opposite vertices of the hexagon and
define the side‑lines adjacent to {𝐶, 𝐹}:

𝛼 = 𝐴𝐹 , 𝛽 = 𝐵𝐶 and 𝛾 = 𝐹𝐸 , 𝛿 = 𝐶𝐷 .

The three conics { 𝑓 , 𝛼 ⋅ 𝛽 , 𝛾 ⋅ 𝛿 } have the chord 𝐶𝐹 in common and by corollary 16 their
other common chords {𝐼𝐽, 𝐴𝐵, 𝐷𝐸} pass through a common point 𝐾.

The converse follows from the direct part of the theorem. In fact, if the condition of
collinearity is valid, then consider the conic 𝜅′ definedby the first five points {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}
and its intersection 𝐸′ with the line 𝐹𝐸. By the direct part of Pascal’s theorem the inter‑
sections of the line pairs {𝐼 = 𝐴𝐶 ∩ 𝐶𝐷 , 𝐽 = 𝐴𝐹 ∩ 𝐵𝐶 , 𝐾′ = 𝐴𝐵 ∩ 𝐷𝐸′} will be collinear.
But 𝐴𝐵 ∩ 𝐼𝐽 = 𝐾 hence 𝐾′ = 𝐾 and consequently 𝐸′ = 𝐸 as claimed.
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Figure 41: A condition of perspectivity for two triangles

Corollary 18 (Perspective triangles). The triangles {𝐴𝐶𝐼, 𝐸𝐹𝐽} formed on two opposite sides
of a hexagon by the extensions of the other sides are perspective (see figure 41), if and only if the
hexagon can be inscribed in a conic.

Proof. Follows from Pascal’s theorem 10. If there is a conic 𝜅 as claimed, then the sides of
the two triangles are pairwise opposite of an inscribed hexagon, hence the pairs of oppo‑
site sides intersect at three collinear points and the triangles are perspective. Conversely,
if they are perspective, then the three corresponding sides define a hexagon satisfying the
condition of Pascal’s theorem, hence there is a conic 𝜅 through the six vertices as shown
in figure 41.

Remark 6. Corollary 18 can be used to test if six points lie on a conic. If the triangles of
one pair of this kind are perspective, then the triangles of the other two pairs constructed
similarly on opposite sides will be also perspective.

Remark 7. Notice that Pascal’s theorem is valid also in the case of degenerate hexagons,
i.e. when some consecutive vertices coincide, a case where the line joining two points,
must be replaced with the tangent at the (double) point. This is the case with figure 42,
where at 𝐴 we take the tangent to the conic.

The figure suggests also a recipe for the geometric construction of the tangent at a
point A of the conic, using points on the conic, their lines and their intersections.
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Figure 42: Pascal’s theorem for pentagons, constructing the tangent at 𝐴

To draw the tangent at 𝐴 we take four other points on the conic {𝐵, 𝐶, 𝐷, 𝐸} and join
them as shown. All dotted lines are known, and points {𝑀, 𝑁} are immediately con‑
structed. Then 𝑂 is determined as intersection point of the lines 𝑀𝑁 and 𝐶𝐷, the tan‑
gent being line 𝐴𝑂.
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Figure 43: Pascal’s theorem for quadrangles

Letting 𝐶 coincide with 𝐷 we obtain a quadrangle 𝐴𝐵𝐷𝐸 inscribed in the conic (see
figure 43) and Pascal’s theorem for quadrangles coincides with corollary 21, according
to which the intersections {𝑀, 𝑁} of opposite sides and the intersections of tangents at
opposite vertices {𝑂, 𝑃} are collinear and build a harmonic quadruple (𝑃𝑂; 𝑀𝑁) = −1.
Corollary 19. All the conics of the pencil through the four points {𝐴, 𝐵, 𝐷, 𝐸} have the intersec‑
tions {𝑂, 𝑃} of their tangents at opposite vertices on the same line 𝜀 = 𝑀𝑁, where {𝑀, 𝑁} the
intersections of pairs of opposite sides of the quadrangle (see figure 43). Further, points {𝑂, 𝑃} are
harmonic conjugate w.r.t. {𝑀, 𝑁}.
Remark 8. On the occasion of figure 43 we should notice the “autopolar triangle” w.r.t.
to the conic defined by the quadrangle 𝐴𝐵𝐷𝐸. It consists of the “diagonal triangle” of the
quadrangle, which has vertices the intersection points {𝑀, 𝑁, 𝐹} of pairs of opposite sides
(see figure 44). By its definition, the polar of each vertex of this triangle w.r.t. any conic
{𝜅, 𝜅′, …} of the pencil through the points {𝐴, 𝐵, 𝐷, 𝐸} is the opposite side‑line of the trian‑
gle.

Remark 9. In the preceding figure, letting 𝐷 converge to 𝐸 we obtain a triangle inscribed
in the conic 𝜅 and Pascal’s theorem relates the tangents at the vertices with the sides of
the triangle (see figure 45). According to this, the tangents at the vertices and the opposite
to them side‑lines intersect at three collinear points {𝐴″, 𝐵″, 𝐶″}. The figure shows also
the pol 𝐷 w.r.t. 𝜅 of the line 𝜀 carrying these points, which is simultaneously the “tri‑
linear polar” of 𝜀. The figure is a basic one in the theory of “triangle conics” i.e. the conics
circumscribing a triangle. In this context point 𝐷 is called the “perspector ” of the conic
𝜅. It is then proved, that 𝜅 is generated by the “tripols” of the lines through 𝐷 ([Yiu13,
p.114]).
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Figure 45: Pascal’s theorem for triangles

11 Maclaurin’s conic generation method

This recipe producing conics, despite its historical precedence over the Steiner‑Chasles
method, can be given a simple explanation using this method and the basic example of
homography between lines. The basic example is the “perspectivity” between two lines
from a point not lying on any of them. By this we have two fixed lines {𝛼, 𝛽} and a fixed

α β

Α
Ο

Β

Figure 46: Perspectivity from 𝑂 between lines 𝛼 and 𝛽

point 𝑂 “the perspector”. Every point 𝐴 ∈ 𝛼, joined to 𝑂, defines a line intersecting 𝛽 at
a point 𝐵. The perspectivity 𝑓𝑂 from 𝑂 maps 𝐴 ↦ 𝐵. It is easily proved that this defines
a homography between the two lines {𝛼, 𝛽} (see file Homographic relation). The proof
given below uses also the basic property of homographies to produce by their concatena‑
tion a homography too.

Theorem11 (Maclaurin). The variable triangle 𝐴𝐵𝐶 has all its sides passing all the time through
three fixed points {𝐴𝐵 ∋ 𝐶0 , 𝐵𝐶 ∋ 𝐴0 , 𝐶𝐴 ∋ 𝐵0}. Also two of its vertices {𝐵, 𝐶} glide on two
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Figure 47: Maclaurin’s theorem for the variable triangle 𝐴𝐵𝐶

fixed lines {𝛽, 𝛾}. Then the third vertex 𝐴 describes a conic 𝜅 passing through {𝐵0, 𝐶0} and the
intersection of lines 𝐴1 = 𝛽 ∩ 𝛾 (see figure 47).

Proof. Point 𝐴 = 𝐵0𝐶 ∩ 𝐶0𝐵 satisfies the hypothesis of the Chasles‑Steiner theorem 9.
In fact, the perspectivity from 𝐵0 ∶ 𝑓 ∶ 𝛽 → 𝛾 maps a point 𝑋 ∈ 𝛽 to 𝐶 ∈ 𝛾. The per‑
spectivity from 𝐴0 ∶ 𝑔 ∶ 𝛾 → 𝛽 maps point 𝐶 to 𝐵 ∈ 𝛽. Finally the perspectivity from
𝐶0 ∶ ℎ ∶ 𝛽 → 𝛾 maps point 𝐵 to 𝑌. Thus, the correspondence 𝑓 ′ ∶ 𝑋 ↦ 𝑌, being the com‑
position of three perspectivities 𝑓 ′ = ℎ ∘ 𝑔 ∘ 𝑓 , defines a homographic relation between
the pencils {𝐵∗

0, 𝐶∗
0} and theorem 9 applies, proving that 𝐴 describes a conic passing

through {𝐵0, 𝐶0}. That the conic passes through 𝐴1 is seen by letting 𝐵 converge to‑
wards 𝐴1. Then all the points {𝐴, 𝐵, 𝐶, 𝑋, 𝑌} tend to coincide with 𝐴1 , showing that 𝜅
passes through 𝐴1.
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Figure 48: The conic passes through {𝐵1, 𝐶1}

Remark 10. The conic 𝜅 of the preceding theorem passes also through the intersection
points of the lines {𝐵1 = 𝛽 ∩ 𝐴0𝐵0 , 𝐶1 = 𝛾 ∩ 𝐴0𝐶0} (see figure 48). This is seen by letting
𝐵 converge towards 𝐵1 and seeing that 𝐴 converges also to this point. Analogously
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is seen that 𝐶1 belongs to 𝜅. This implies that 𝜅 can be constructed as a conic passing
through five known points: {𝐴1, 𝐵1, 𝐶1, 𝐴0, 𝐵0}.

Remark 11. Given five points like {𝐴1, 𝐵0, 𝐵1, 𝐶1, 𝐶0}, Maclaurin’s construction gives a
means to construct arbitrary many additional points of the conic passing through those
five points. The additional points result as vertices 𝐴 of triangles ABC pivoting around
𝐴0, which is determined by the five given points.
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Figure 49: Construction of the tangent at 𝐴

Also the tangent at 𝐴 can be easily located by means of the theorem of Pascal ap‑
plied to pentagon 𝐵0𝐵1𝐴𝐶1𝐶0. By this theorem the intersection point 𝑇 of the tangent
and line 𝐵0𝐶0 and the intersections of the line‑pairs {𝑅 = 𝐵1𝐴 ∩ 𝐶1𝐶0 , 𝑆 = 𝐶1𝐴 ∩ 𝐵1𝐵0}
will lie on a line 𝜀. Thus, the tangent 𝐴𝑇 can be constructed by first finding {𝑅, 𝑆}, then
constructing 𝑇 = 𝑆𝑅 ∩ 𝐵0𝐶0 and joining it to 𝐴.

Maclaurin’s theorem admits an inverse, whose proof is trivial:

Theorem 12 (Maclaurin’s inverse). Given a conic 𝜅 and three points {𝐴1, 𝐵0, 𝐶0} on it, con‑
sider two fixed lines {𝛽, 𝛾} through 𝐴1. For every point 𝐴 of the conic define the intersection
points {𝐵, 𝐶} of line‑pairs {𝐵 = 𝐴𝐶0 ∩ 𝛽, 𝐶 = 𝐴𝐵0 ∩ 𝛾}. Then line 𝐵𝐶, as 𝐴 varies on the conic,
pivots around a fixed point 𝐴0, which is the intersection point of the lines 𝐴0 = 𝐵0𝐵1 ∩ 𝐶0𝐶1,
where {𝐵1, 𝐶1} are the second intersection points of the conic with lines {𝛽, 𝛾}.

Proof. Use Maclaurin’s construction to define a conic 𝜅′ with the given data. This conic
then will have with 𝜅 the common points {𝐴1, 𝐵1, 𝐶1, 𝐵0, 𝐶0}, thus the two conics will
coincide.

In the case in which the fixed points {𝐵0, 𝐶0} are respectively on the lines {𝛽, 𝛾}, the
conic 𝜅 becomes tangent to lines {𝐴0𝐵0, 𝐴0𝐶0} at corresponding points {𝐵0, 𝐶0} and 𝐴0
is the pole of line 𝐵0𝐶0 (see figure 50). The inverse of Maclaurin’s construction becomes
Pascal’s theorem for quadrilaterals: For quadrilateral {𝐴1𝐵0𝐴𝐶0}, the intersection points
{𝐵, 𝐶} of pairs of opposite sides and the tangents at pairs of opposite vertices meet on a
line 𝐵𝐶.

Corollary 20. With the notation and conventions of this section, the tangents at the other two
vertices {𝐴, 𝐴1} intersect at a point 𝐴2 lying also on line 𝐵𝐶. In addition, 𝐴2 is harmonic
conjugate to 𝐴0 w.r.t. {𝐵, 𝐶}.
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Figure 50: Special case of Maclaurin’s theorem

Proof. In fact, if the variable point 𝐴 ∈ 𝜅 is on the line 𝐴1𝐴0, , then 𝐴2 becomes the pol
of 𝐴1𝐴0 (see figure 51). Then, since 𝐴0 is on the polar of 𝐴2, point 𝐴2 is also on the
polar of 𝐴0 i.e. 𝐴2 is on 𝐵0𝐶0 and the lines {𝐴1𝐴2, 𝐴1𝐴0} are harmonic conjugate w.r.t.
{𝐴1𝐵0, 𝐴1𝐶0}, thereby proving the claim.
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Figure 51: The harmonic quadruple (𝐴0𝐴2; 𝐵𝐶) = −1

Corollary 21. For every quadrangle inscribed in a conic, the intersection points {𝐵, 𝐶} of opposite
sides and the intersection points {𝐴0, 𝐴2} of the tangents at opposite vertices are on a line and form
a harmonic quadruple (𝐴0𝐴2; 𝐵𝐶) = −1.

12 Double tangency of two conics

We say that two conics are “doubly tangent”when they are “bitangent”, i.e. when they are
different but have two common points and the same tangent at each of these points. As
an application of the abridged notation we prove the following theorem.

Theorem 13. Given three fixed chords {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′} of a conic 𝜅, a fourth chord 𝐷𝐷′, for
which the cross ratios are equal (𝐴𝐵; 𝐶𝐷) = (𝐴′𝐵′; 𝐶′𝐷′), is always tangent to a conic 𝜅′ having
double tangency with 𝜅.

Proof. Figure 52 displays such an example. The chords {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′} are fixed and point
𝐷 is free to move on the conic 𝜅. Then, point 𝐷′ is calculated so that the cross ratios are
equal (𝐴𝐵; 𝐶𝐷) = (𝐴′𝐵′; 𝐶′𝐷′). These cross ratios are calculated using the line coordi‑
nates of the perspective projections of the points from an arbitrary point 𝐸 ∈ 𝜅 . In the
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Figure 52: Condition for two conics to be “bitangent”

figure the points of the conic are projected on two lines {𝜀, 𝜀′} but the arguments below
could use also one line only. The proof (after Salmon p. 253) is easy.

We adopt a coordinate system like the one of section 6 (figure 15 consisting of the three
lines {𝛼, 𝛾, 𝛽}, the two first being tangent to 𝜅 and the third joining the contact points of
the two first. Assuming that 𝐴 is given by a number 𝑎 i.e. it is the intersection of lines

𝐴(𝑎) ∶ 𝛼 − 𝑎𝛽 = 0, 𝛽 − 𝑎𝛾 = 0,

and using analogously small letters to represent the other points, the equality of the cross
ratios translates, after theorem 6, to∶

𝑎 − 𝑐
𝑏 − 𝑐 ∶ 𝑎 − 𝑑

𝑏 − 𝑑 = 𝑎′ − 𝑐′

𝑏′ − 𝑐′ ∶ 𝑎′ − 𝑑′

𝑏′ − 𝑑′ .

This, considering {𝑑, 𝑑′} as variables, obtains the form of a “homographic relation” (see file
Homographic relation).

𝑝𝑑𝑑′ + 𝑞𝑑 + 𝑟𝑑′ + 𝑠 = 0, for constants (𝑝, 𝑞, 𝑟, 𝑠) depending on 𝑎, 𝑏, 𝑐, … (32)

Solving for 𝑑′ and substituting into equation (27) of the chord 𝐷𝐷′, gives the expression

𝛾𝑑(𝑞𝑑 + 𝑠) + 𝛽(𝑑(𝑝𝑑 + 𝑟) − (𝑞𝑑 + 𝑠)) − 𝛼(𝑝𝑑 + 𝑟) = 0. (33)

As expected, this is a one‑parameter family of lines w.r. to the parameter 𝑑, which can
be written in the form

𝑑2(𝑞𝛾 + 𝑝𝛽) + 𝑑(𝑠𝛾 + (𝑟 − 𝑞)𝛽 − 𝑝𝛼) − (𝑠𝛽 + 𝑟𝛼) = 0. (34)

From theorem 2 follows that these lines, depending on the parameter 𝑑, envelope the
conic 𝜅′ with equation∶

(𝑠𝛾 + (𝑟 − 𝑞)𝛽 − 𝑝𝛼)2 + 4(𝑞𝛾 + 𝑝𝛽)(𝑟𝛼 + 𝑠𝛽) = 0. (35)

The nice thing is that the equation of this conic can be put in the form∶

4(𝑞𝑟 − 𝑝𝑠)(𝛼𝛾 − 𝛽2) + (𝑠𝛾 + (𝑞 + 𝑟)𝛽 + 𝑝𝛼)2 = 0. (36)

Since 𝛼𝛾 − 𝛽2 = 0 is our conic 𝜅 and 𝑠𝛾 + (𝑞 + 𝑟)𝛽 + 𝑝𝛼 = 0 is a line, the conic 36 belongs
to the family generated by the conic 𝜅 and this (double) line. This is a “bitangent” family
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of conics , all members of which are tangent to the conic 𝜅 ∶ 𝛼𝛾 − 𝛽2 = 0 at the points
where the line 𝑠𝛾 + (𝑞 + 𝑟)𝛽 + 𝑝𝛼 = 0 intersects 𝜅. Note that the intersection points can
be imaginary as, for example, is the case with a family of concentric circles, which is also
a “bitangent” family all members of which are tangent at the same two imaginary points
at the same two imaginary lines.

Remark‑1 The homographic relation becomes involutive (see fileHomographic relation)
when 𝑞 = 𝑟 and equation 32 takes the form

𝑝𝑑𝑑′ + 𝑞(𝑑 + 𝑑′) + 𝑠 = 0,

showing that all chords {𝐷𝐷′} pass through a common point (see equation 28). Thus, we
should exclude this case from the beginning, since it shows a totally different behaviour.

Remark‑2 Theorem 13 is equivalent to the well known fact, that a “homography” on a
conic 𝑓 ∶ 𝜅 → 𝜅 is completely determined by prescribing the images {𝐴′, 𝐵′, 𝐶′} at three
arbitrary points {𝐴, 𝐵, 𝐶} of it. Then, the chords {𝐷𝐷′, 𝐷′ = 𝑓 (𝐷), 𝐷 ∈ 𝜅} envelope a conic
𝜅′ bitangent to 𝜅.

From this point of view, remark 1 is equivalentwith the condition that the three chords
{𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′} have no common point. In the contrary case, we have still a homography
but not a genuine enveloping conic 𝜅′. All chords {𝐷𝐷′} pass, in that case, through the
common point of {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′} and the homography becomes an “involution” of the
conic 𝜅, characterized by the functional condition 𝑓 2 = 𝑒, where 𝑒 the identity transfor‑
mation of the conic.

Theorem 14. A variable triangle 𝐴𝐵𝐶 circumscribes a conic 𝑓 and has its two vertices {𝐴, 𝐵}
gliding respectively on two fixed lines {𝛿, 𝜀}. Then the third vertex 𝐶 describes a conic 𝜅 bitangent
to 𝑓 (see figure 53).

Proof. Consider the coordinate system with lines {𝛼, 𝛾} the tangents to 𝑓 from the inter‑
section point of the given fixed lines 𝑂 = 𝛿 ∩ 𝜀 and the line of contacts 𝛽 and assume the
equation of the conic in the form 𝑓 = 𝛼𝛾 − 𝛽2.

The tangents at two points {𝑡, 𝑡′} of the conic 𝑓 are given by equation 29:

𝑡2𝛾 − 2𝑡𝛽 + 𝛼 = 0 and 𝑡′2𝛾 − 2𝑡′𝛽 + 𝛼 = 0 .

The line joining their intersection with the base point 𝑂(𝛼 = 𝛾 = 0) is found by elimi‑
nating 𝛽 (see section 7 nr‑11): 𝛼 − 𝑡𝑡′𝛾 = 0. If we consider these tangents to be the lines
{𝐴𝐵, 𝐵𝐶}, then last line is by assumption a fixed one 𝜀 through 𝑂 ∶ 𝛼 − 𝑘𝛾 = 0, implying
that 𝑡𝑡′ = 𝑘 is constant. Analogously the line 𝛿 = 𝛼 − 𝑘′𝛾 = 0 satisfies 𝑘′ = 𝑡𝑡″ where 𝑡″

is the point of contact of 𝐴𝐶 with 𝑓 . Consequently the point 𝐶 is the intersection point
of the tangents at the points of 𝑓 ∶

𝑡′ = 𝑘
𝑡 and 𝑡″ = 𝑘′

𝑡 .

Thus, these tangents satisfy

𝑘2𝛾 − 2𝑘𝛽𝑡 + 𝑡2𝛼 = 0
𝑘′2𝛾 − 2𝑘′𝛽𝑡 + 𝑡2𝛼 = 0

⎫}
⎬}⎭

⇒ 𝛼 ⋅ 𝛾 − 4𝑘𝑘′

(𝑘 + 𝑘′)2 𝛽2 = 0 ,

latter equation resulting by eliminating 𝑡 and representing a conic bitangent to the conic
𝑓 = 𝛼𝛾 − 𝛽2 = 0.
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Figure 53: Variable triangle 𝐴𝐵𝐶 circumscribing the conic 𝑓

Next theorem could be considered as a definition of a conic analogous to the one of
the Chasles‑Steiner method of section 9, now considering the conic in its “dual” aspect as
envelope of its tangents.

Theorem 15 (Chasles‑Steiner dual). Given a homographic relation 𝑌 = 𝑓 (𝑋) between the
points of two lines {𝛼, 𝛽}, the lines {𝑋𝑌} joining corresponding points envelope a conic tangent
to the two lines. Conversely, fixing two tangents {𝛼, 𝛽} of a conic 𝜅, then any other tangent 𝛾
of the conic intersects these two in points respectively {𝑋, 𝑌} related homographically (see figure
54).

Proof. This can be reduced to theorem 13 by considering the two lines {𝛼, 𝛽} as a degen‑
erate conic. Then, taking three arbitrary pairwise different points {𝑋1, 𝑋2, 𝑋3 ∈ 𝛼} and
their images {𝑌1, 𝑌2, 𝑌3 ∈ 𝛽}, the hypothesis and the basic property of homographies, to
preserve the cross ratio, implies, that for a fourth point 𝑋 ∈ 𝛼 and its image 𝑌 ∈ 𝛽 the
cross ratios are equal: (𝑋1𝑋2; 𝑋3𝑋) = (𝑌1𝑌2; 𝑌3𝑌). By theorem 13 this implies that 𝑋𝑌
envelopes a conic as stated.

Conversely, considering three fixed tangents of the conic 𝜅 and a variable fourth tan‑
gent, we know by corollary 5, that the cross ratios defined by the intersections of the four
lines with the two tangents {𝛼, 𝛽} are equal:

(𝑋1𝑋2; 𝑋3𝑋) = (𝑌1𝑌2; 𝑌3𝑌) with 𝑋1, 𝑋2, 𝑋3, 𝑋 ∈ 𝛼 and 𝑌1, 𝑌2, 𝑌3, 𝑌 ∈ 𝛽.

But this equation defines a homographic relation 𝑌 = 𝑓 (𝑋) between the lines {𝛼, 𝛽} as
claimed.

X

Y

α

β

κ

Figure 54: Conic defined by a homography 𝑌 = 𝑓 (𝑋) between two lines {𝛼, 𝛽}
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13 Polygons inscribed and circumscribed about conics

Here we discuss another application of the abridged method concerning polygons in‑
scribed in a fixed conic and having their sides pass through fixed points.

Theorem 16. If a polygon of 𝑛 sides is inscribed in a conic 𝜅 and its (𝑛 − 1) sides pass through
corresponding pairwise different fixed points, then its 𝑛−th side envelopes another conic 𝜅′ bitan‑
gent to 𝜅.
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Figure 55: Triangles inscribed in 𝜅 with sides {𝐴𝐵, 𝐴𝐶} passing through {𝐼, 𝐽}

Proof. Figure 55 displays such an example for triangles. Triangle 𝐴𝐵𝐶 moves having all
the time its vertices on the conic 𝜅 and two of its sides passing through two corresponding
fixed points {𝐼, 𝐽}. Then the third side 𝐵𝐶 envelopes another conic 𝜅′ which is bitangent
to 𝜅. The proof reduces to the theorem13 by taking three different positions of the triangle
and defining the corresponding chords {𝐵′𝐶′, 𝐵″𝐶″, 𝐵‴𝐶‴}. Then, for the moving fourth
triangle 𝐴𝐵𝐶 we have the preservation of cross ratio (𝐵′𝐵″; 𝐵‴𝐵) = (𝐶′𝐶″; 𝐶‴𝐶).

This, because the central correspondence (involution at) from 𝐼, 𝑓𝐼 ∶ 𝐵 → 𝐴 preserves
the cross ratio. This is due to the “homographic relation” (see equation 27)

𝑝𝑡𝑡′ + (𝑡 + 𝑡′)𝑞 + 𝑠 = 0 with constants 𝑝, 𝑞, 𝑠

and the simple fact that such relations preserve the cross ratio. The same is true for the cor‑
respondence from 𝐽, 𝑓𝐽 ∶ 𝐴 → 𝐶. Thus, composing the two correspondences we have the
map 𝑓 = 𝑓𝐽 ∘ 𝑓𝐼 ∶ 𝐵 → 𝐶 preserving the cross ratio. Hence, theorem 13 applies for themov‑
ing side 𝐵𝐶. The proof is easily generalized for any 𝑛 by considering the analogous com‑
position 𝑓 = 𝑓𝐼𝑛−1

∘ … ∘ 𝑓𝐼1
of involutions defined by the given points {𝐼𝑘, 𝑘 = 1 … 𝑛 − 1}.

Next proposition generalizes theorem 14, its proof suggesting also another aspect of
the subject.

Theorem 17. A polygon 𝐴𝐵𝐶𝐷... is circumscribed about a conic 𝜅 and has its 𝑛 − 1 vertices
gliding respectively on 𝑛 − 1 lines {𝛼, 𝛽, 𝛾, …}. Then its 𝑛‑th vertex describes a conic 𝜅′ bitangent
to 𝜅.

Proof. Figure 56 shows the case of a quadrangle (n=4). The theorem can be deduced from
theorem 16. We discuss this case, the general one being easily proved using analogous
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Figure 56: Quadrangle 𝐴𝐵𝐶𝐷 circumscribed to conic 𝜅

arguments. Since the points {𝐴, 𝐵, 𝐶} move on fixed lines {𝛼, 𝛽, 𝛾} their tangents define
the corresponding polars {𝐴′𝐵′, 𝐵′𝐶′, 𝐶′𝐷′}, which pass through respective fixed points
{𝐴″, 𝐵″, 𝐶″}. Thus, for every position of the quadrangle 𝐴𝐵𝐶𝐷 we have a corresponding
(dual) inscribed in 𝜅 quadrangle 𝐴′𝐵′𝐶′𝐷′ whose three sides pass respectively through
the fixed points {𝐴″, 𝐵″, 𝐶″}. From theorem 16 we know that its fourth side 𝐷′𝐴′ is tan‑
gent to a conic 𝜅″ bitangent to 𝜅.

This implies that the fourth point 𝐷 of the quadrangle is the pol of a variable tan‑
gent 𝐷′𝐴′ of the conic 𝜅″. By theorem 4 point 𝐷 describes a conic 𝜅′ belonging to the
bitangent pencil gnerated by 𝜅 and 𝜅″.
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Related material
1. Cross ratio
2. Homographic relation
3. Projective line
4. Projective plane
5. Quadratic equation

Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome
and could be send by e‑mail to: pamfilos@uoc.gr
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