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Practice yourself, for heaven’s sake, in little things;
and thence proceed to greater.

Epictetus, Discourses I, 18
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1 Definition and first properties

Consider the triangle 𝐴𝐵𝐶 and a point 𝑃 on its plane. Let {𝐴′, 𝐵′, 𝐶′} be the orthogonal
projections of 𝑃 on the sides of the triangle. Triangle 𝐴′𝐵′𝐶′ is the “pedal of 𝑃 w.r.t the
triangle 𝐴𝐵𝐶 ” (see figure 1‑(I)). We say also the pedal 𝐴′𝐵′𝐶′ is inscribed in △𝐴𝐵𝐶. More
general we say 𝐴′𝐵′𝐶′ “is inscribed” in 𝐴𝐵𝐶 if the vertices of 𝐴′𝐵′𝐶′ lie on corresponding
sides of 𝐴𝐵𝐶.

A basic property of the pedal is the one suggested by figure 1‑(II), in which for the
moment and until we explicitly remove this restriction, we assume that 𝑃 is an inner point of
the triangle. If we turn the segments {𝑃𝐴′, 𝑃𝐵′, 𝑃𝐶′} by the same oriented angle 𝜑 and con‑
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Figure 1: The pedal 𝐴′𝐵′𝐶′ of 𝑃 w.r.t 𝐴𝐵𝐶

sider the new positions {𝐴″, 𝐵″, 𝐶″} on the sides, then the created right angled triangles
{𝑃𝐴′𝐴″, 𝑃𝐵′𝐵″, 𝑃𝐶′𝐶″} are similar and the triangle 𝐴″𝐵″𝐶″ is similar to the pedal 𝐴′𝐵′𝐶′.
Thus, a point 𝑃 defines the pedal triangle and also an infinitude of similar to it triangles
having their vertices on corresponding sides of the triangle of reference. Obviously the
pedal triangle is the “smallest” among all these similar triangles and there is no “biggest”,
since, for 𝜑 tending to 𝜋/2 the segment 𝑃𝐴″ tends to become parallel to 𝐵𝐶 and its length
tends to infinity. For all these triangles we say that they “pivot” about 𝑃, the pedal being
a special one. In this respect 𝑃 can be called “pivot center” or simply “pivot”.

We should notice that any one of the triangles 𝐴″𝐵″𝐶″ pivoting about 𝑃 determines
this point as intersection of the three circles:

(𝐴″𝐵″𝐶) , (𝐵″𝐶″𝐴) , (𝐶″𝐴″𝐵) .

In fact, by the well known theorem ofMiquel ([Joh60, p.131]) any three points {𝐴″, 𝐵″, 𝐶″}
on respective sides of the triangle 𝐴𝐵𝐶 define the preceding three circles passing through
a common point 𝑃 (see figure 1‑(II)). Drawing the perpendiculars {𝑃𝐴′, 𝑃𝐵′, 𝑃𝐶′} to re‑
spective sides we obtain the pedal of 𝑃 with the same angles as 𝐴″𝐵″𝐶″ (exercise).

2 The pedals of points in various regions

In figure 1 and for 𝑃 lying inside the triangle it is important to notice the division in tri‑
angles imposed by 𝑃 on the two triangles {𝐴𝐵𝐶, 𝐴′𝐵′𝐶′}. The triangles {𝑃𝐵𝐶, 𝑃𝐶𝐴, 𝑃𝐴𝐵}
and their angles are related to corresponding triangles and angles of the pedal. In fact, the
quadrangles {𝑃𝐴′𝐶𝐵′, 𝑃𝐵′𝐴𝐶′, 𝑃𝐶′𝐵𝐴′} are cyclic and consequently the following angles
are equal:

̂𝑃𝐴′𝐵′ = 𝑃𝐶𝐵′ , ̂𝑃𝐵′𝐴′ = 𝑃𝐶𝐴′ and 𝐴′𝑃𝐵′ = 𝜋 − 𝐶,
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analogous relations holding for the cyclic permutations of the letters {𝐴, 𝐵, 𝐶}. An easy
angle chasing argument shows also that the angles of the two triangles are related:

𝐵𝑃𝐶 = 𝐴 + 𝐴′ , 𝐶𝑃𝐴 = �̂� + 𝐵′ , 𝐴𝑃𝐵 = 𝐶 + 𝐶′ . (1)

Figure 2 shows the pedal of a point 𝑃′ on the angular domain of angle 𝐶 and external to
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Figure 2: The pedal 𝐴″𝐵″𝐶″ for 𝑃 external to 𝐴𝐵𝐶

the circumcircle 𝜅 of △𝐴𝐵𝐶. Here for the angles at 𝑃′ we must consider the difference of
the angles:

𝐵𝑃′𝐴 = ̂𝐵𝐴″𝐶″ + ̂𝐶″𝐵″𝐴 = �̂� − ̂𝐵𝐶″𝐴″ + 𝐴 − ̂𝐴𝐶″𝐵″ = 𝐴 + �̂� − (𝜋 − 𝐶″)
= 𝐶″ − 𝐶, and analogously 𝐵𝑃′𝐶 = 𝐴 − 𝐴″ , 𝐶𝑃′𝐴 = �̂� − 𝐵″. (2)

The triangle 𝐴𝐵𝐶 together with its circumcircle 𝜅 divides the plane in 10 different regions
and the relation of the angles {𝐵𝑃𝐶, 𝐶𝑃𝐴, …} to the angles of 𝐴𝐵𝐶 and those of the pedal
𝐴′𝐵′𝐶′ of 𝑃 depends on the region in which 𝑃 is located. Figure 3 shows the various
possibilities. In this appear 5 Points in typically different domains together with their
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Figure 3: The pedals for various positions of the pivot 𝑃

1. 𝐵1𝐶 = 𝐴 + 𝐴′ and cyclic permutations on {𝐴, 𝐵, 𝐶}.
2. 𝐴2𝐶 + 𝐵′ + �̂� = 2𝜋 but 𝐵2𝐶 = 𝐴′ + 𝐴 and 𝐴2𝐵 = 𝐶′ + 𝐶.
3. 𝐴′𝐵′𝐶′ degenerate carried on the Wallace‑Simson line of 3.
4. 𝐴4𝐶 = 𝐵′ − �̂� but 𝐵4𝐶 = 𝐴 − 𝐴′ and 𝐴4𝐵 = 𝐶 − 𝐶′.
5. 𝐵5𝐶 = 𝐴 − 𝐴′ but 𝐵5𝐴 = 𝐶′ − 𝐶 and 𝐴5𝐶 = 𝐵′ − �̂�.

Table 1: Angle relations
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corresponding pedals both labeled by the same number. The table accompanying the
figure gives the corresponding to each case angle relations. In these it is assumed that the
pedal has {𝐴′ ∈ 𝐵𝐶, 𝐵′ ∈ 𝐶𝐴, 𝐶′ ∈ 𝐴𝐵} or their extensions and the angles are positively
oriented (counterclockwise).

This distinction of cases can be eliminated using the idea of “directed angles” intro‑
duced by Johnson ([Joh60, p.13]). For two lines, the directed angle ∠(𝛼, 𝛽) is defined to
be the minimal positive angle 𝜙 by which we must rotate 𝛼 in order to identify it with
or make it parallel to 𝛽. Analogously, the directed angle ∠(𝐴𝐵𝐶) is the minimal positive
angle 𝜙 by which rotating line 𝐵𝐴 we get line 𝐵𝐶 (see figure 4). Obviously for positively

α

β

ΑΒ

C

φ

φ

Figure 4: The “directed angle” of two lines and an angle ∠𝐴𝐵𝐶

oriented angles less than 𝜋 the directed coincide with the usual angles and for negatively
oriented the directed coincide with the supplementary angle. Also the identity of directed
angles is defined by considering “equal” two directed angles differing by a multiple of 𝜋.
Thus two directed angles of 120∘ sum up to 60∘ . Using this we have the rule: “the ge‑
ometric locus of points 𝐵 viewing 𝐴𝐶 at a fixed directed angle 𝜙 = ∠(𝐴𝐵𝐶) is a circle 𝜅” (see
figure 5‑(I)). Notice that this includes the whole circle. No distinction is made between
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Figure 5: Circle: locus of point 𝐵 with constant ∠(𝐴𝐵𝐶)

the two arcs determined by the chord 𝐴𝐶. Figure 5‑(II) shows the related to the 𝜅 locus
of points viewing 𝐴𝐶 at the angle ∠(𝐴𝐵𝐶) = 𝜋 − 𝜙, coinciding with the reflection 𝜅′ of
𝜅 in 𝐴𝐶.

Using this definition of angle, Johnson shows also ([Joh60, p.133]), that all the above
cases of table 1 reduce to the simple one:

∠(𝐵𝑃𝐶) = ∠(𝐵𝐴𝐶) + ∠(𝐵′𝐴′𝐶′). (3)

Figure 6 shows the application of this rule to the first sub‑case of our case 2. The equiva‑
lence of the two formulations results from the relations

𝐴𝑃𝐶 = ∠(𝐴𝑃𝐶) , ∠(𝐴𝐵𝐶) = 𝜋 − �̂� , ∠(𝐴′𝐵′𝐶′) = 𝜋 − 𝐵′ .

In any case, concerning pedals and relations of the involved angles of the pedal and the
triangle of reference 𝐴𝐵𝐶, in order to be precise, we must either examine all the possible
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cases of table 1 separately or apply the unifying concept of directed angles, which however
needs to be learned and exercised until to become familiar and apply it correctly. In the
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Figure 6: ∠(𝐴𝑃𝐶) = ∠(𝐴𝐵𝐶) + ∠(𝐴′𝐵′𝐶′)

following we use mainly the traditional concept of angle and in situations where, for
completeness of the argument, several cases must be examined, we handle one or two
and leave the rest as exercises. Occasionally we use also the directed angle concept.

3 How to inscribe, 12 pivots

We come now to the question of how to inscribe into △𝐴𝐵𝐶 a triangle 𝐴′𝐵′𝐶′ similar to
△𝐴1𝐵1𝐶1 respecting a given “correspondence” for the relative location of the vertices.

Figure 7 illustrates an example of such a task, the “correspondence” on the vertices being
in this case: 𝐴′ to lie on 𝐴𝐵, 𝐵′ to lie on 𝐵𝐶 and 𝐶′ to lie on 𝐶𝐴. Here is the recipe:
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Figure 7: Inscribing a similar to 𝐴1𝐵1𝐶1 into 𝐴𝐵𝐶

1. Select arbitrary {𝐴0 ∈ 𝐴𝐵, 𝐵0 ∈ 𝐵𝐶}.
2. Draw on 𝐴0𝐵0 triangle 𝐴0𝐵0𝐶0 similar to 𝐴1𝐵1𝐶1.
3. Find the intersection 𝐶′ = 𝐵𝐶0 ∩ 𝐶𝐴.
4. Draw parallels {𝐶′𝐴′||𝐶0𝐴0, 𝐶′𝐵′||𝐶0𝐵0}.

The triangle 𝐴′𝐵′𝐶′ satisfies all requirements. It is similar to 𝐴1𝐵1𝐶1, is inscribed in 𝐴𝐵𝐶
and has its vertices on respective sides of 𝐴𝐵𝐶 as required. The circles (𝐴𝐴′𝐶′), (𝐵𝐵′𝐴′)
and (𝐶𝐶′𝐵′) intersect at a point 𝑃, the pivot of 𝐴′𝐵′𝐶′. The pedal 𝐴2𝐵2𝐶2 of 𝑃 is similar
to 𝐴1𝐵1𝐶1 and satisfies the requirements 𝐴2 ∈ 𝐴𝐵, 𝐵2 ∈ 𝐵𝐶, 𝐶2 ∈ 𝐶𝐴 too.

Given the triangles {𝐴1𝐵1𝐶1, 𝐴𝐵𝐶} and the correspondence, “which vertex of 𝐴1𝐵1𝐶1 lies
on each side of 𝐴𝐵𝐶”, the location of the pivot for the corresponding 𝐴2𝐵2𝐶2 ∼ 𝐴1𝐵1𝐶1
(similar triangles) inscribed in 𝐴𝐵𝐶 can be at a finite number of places determined by the
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table (1). In figure 7 for example the location of 𝑃 corresponds to the case (1) of table (1)
and 𝑃 is at the intersection of arcs viewing the sides at the angles: 𝐵𝐶 at 𝐴 + 𝐵1, 𝐶𝐴 at
�̂� + 𝐶1 and 𝐴𝐵 at 𝐶 + 𝐴1 (see figure 8).
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Figure 8: 𝑃 ∈ ⏜𝐵𝑃𝐶 viewing 𝐵𝐶 at the angle 𝐴 + 𝐵1, etc.

Thus, given the two triangles {𝐴1𝐵1𝐶1, 𝐴𝐵𝐶}, each correspondence generates actually
two cases related to the twopossible orientations of the initially inscribed triangle𝐴0𝐵0𝐶0 ∼
𝐴1𝐵1𝐶1. In the example of figure 8 the orientation of both triangles 𝐴0𝐵0𝐶0 and 𝐴𝐵𝐶 is
positive.
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Figure 9: Locating the position of the pivot 𝑃 for a certain prescription

In the example of figure 9 we use the same recipe of four steps, maintaining the same
correspondence of the preceding example, but changing the orientation of the inscribed
triangle 𝐴0𝐵0𝐶0, which now is negative, while that of 𝐴𝐵𝐶 is positive. We obtain thus
a pivot 𝑃 different from the preceding one. The location of 𝑃 shows that we have the
case (5) of table (1). According to this, 𝑃 is viewing the side 𝐵𝐶 at 𝐴 − 𝐵1, the side 𝐴𝐵 at
𝐴1 − 𝐶 and 𝐴𝐶 at 𝐶1 − �̂� and, as seen in figure 9, 𝑃 is located at the intersection of the

A

B C

A'

B'

C'

Figure 10: Twelve pivots



4 Invariance under inversions 7

circle arcs viewing the corresponding sides at these angles. In general, each correspondence
together with a definite orientation of𝐴0𝐵0𝐶0 determines precisely one pivot. Since there
are six possible correspondences and for each case two different orientationswe come at the
following result.

Theorem1. With the notation and conventions adopted so far, for given triangles {𝐴1𝐵1𝐶1, 𝐴𝐵𝐶}
there are in general twelve different pivots of inscription of △𝐴1𝐵1𝐶1 into △𝐴𝐵𝐶.

Figure 10 shows the twelve pivots of inscription of △𝐴′𝐵′𝐶′ into △𝐴𝐵𝐶 and suggests
some structure which we’ll study in the next sections. Each pivot results from a concrete
“prescription” consisting of a correspondence, dictating which vertex of △𝐴′𝐵′𝐶′ lies on a
side of △𝐴𝐵𝐶, plus an orientation of △𝐴′𝐵′𝐶′.

4 Invariance under inversions

Inversions {𝑋′ = 𝑓 (𝑋)} relative to a circle 𝜅(𝑂, 𝑟) transform the set of {lines + circles}
onto itself but do not behave in a simple manner when applied to triangles. We have
however two useful formulas for the transformation of lengths of segments (see figure
11‑(I)) and measures of angles (see figure 11‑(II)). The second, in order to be formulated
in a general form, needs the use of “directed angles” ([Joh60, p.52]).
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Figure 11: Length and Angle‑measures relations by inversions

lengths: |𝐴′𝐵′| = 𝑟2|𝐴𝐵|
|𝑂𝐴||𝑂𝐵| , angles: ∠(𝐴𝐵𝐶) + ∠(𝐴′𝐵′𝐶′) = ∠(𝐴𝑂𝐶) . (4)

The second formula used in the case of figure 11‑(II) and translating the “directed” to usual
angles of positive measure is equivalent to the angle relation: 𝐴𝐵𝐶 − ̂𝐶′𝐵′𝐴′ = 𝐴𝑂𝐶. The
interesting fact in our context is expressed by the following theorem.
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Figure 12: Inverted triangle and pedal of inverted point

Theorem 2. Let the inversion {𝑓 (𝑋) = 𝑋′} relative to the circle 𝜅(𝑂, 𝑟) map the vertices of the
triangle 𝐴𝐵𝐶 to the vertices of the triangle 𝐴′𝐵′𝐶′ and point 𝑃 to 𝑃′ . Then the pedal △𝐴2𝐵2𝐶2
of 𝑃′ w.r.t. △𝐴′𝐵′𝐶′ is similar to the pedal △𝐴1𝐵1𝐶1 of 𝑃 w.r.t. △𝐴𝐵𝐶 (see figure 12).
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Proof. Working with directed angles this is a formal computation. In fact by the angle
relations (3) and (4) we have

∠(𝐴2) = ∠(𝐵′𝑃′𝐶′) − ∠(𝐵′𝐴′𝐶′) = (∠(𝐵𝑃𝐶) − ∠(𝐵𝑂𝐶)) − (∠(𝐵𝐴𝐶) − ∠(𝐵𝑂𝐶))
= ∠(𝐵𝑃𝐶) − ∠(𝐵𝐴𝐶) = ∠(𝐴1).

Analogous reasoning shows the equality of the two other angles of the triangles.

Remark 1. Notice that the inversion 𝑓 does not map the vertices of the pedal 𝐴1𝐵1𝐶1 to
corresponding vertices of the pedal 𝐴2𝐵2𝐶2. Since, if 𝑓 were interchanging the triangles
{𝐴1𝐵1𝐶1, 𝐴2𝐵2𝐶2}, then it would map the triple {𝐴, 𝐵1, 𝐶} onto the triple {𝐴′, 𝐵2, 𝐶′}, con‑
tradicting the fact that 𝑓 maps lines to circles. Also the triangles {𝐴𝐵𝐶, 𝐴′𝐵′𝐶′} are not
similar. Since, if they were, then, since they are also perspective and oppositely oriented,
this would lead to a contradiction (exercise).

Remark 2. Notice that theorem 2 holds also for “anti‑inversions” i.e. inversions followed
by the point symmetry w.r.t. their center.

Theorem 2 has two important in our context specializations concerning inversions
that map the set of vertices of a triangle 𝐴𝐵𝐶 to itself. There are four such inversions: the
inversions relative to the “Apollonian circles” of △𝐴𝐵𝐶 and the inversion relative to the
circumcircle of △𝐴𝐵𝐶, discussed in the following sections.

5 Invariance under Apollonian inversions

The Apollonian circles of a triangle 𝐴𝐵𝐶 are three circles {𝜅𝐴, 𝜅𝐵, 𝜅𝐶} orthogonal to the
circumcircle 𝜅 of the triangle closely relatedwith the enumeration of the pivots of inscrip‑
tion of triangle 𝐴1𝐵1𝐶1 into 𝐴𝐵𝐶. The circles intersect at two points, called Isodynamic
points of the triangle (see figure 13). Thus, they define a pencil 𝒜 of intersecting circles
called “Apollonian pencil” of the triangle and having all its members orthogonal to the cir‑
cumcircle of the triangle. Some important in our context properties are that the inversion
w.r.t. an Apollonian circle, (i) induces, by theorem 2, a permutation of the set of pivots,
(ii) interchanges the other two Apollonian circles and (iii) leaves invariant every circle of
the pencil 𝒜 ′ which is orthogonal to the Apollonian one. Latter property implies, that if
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Figure 13: The Apollonian circles {𝜅𝐴, 𝜅𝐵, 𝜅𝐶} and the isodynamic points {𝐼1, 𝐼2}

we consider the circle 𝜉 orthogonal to the Apollonian pencil 𝜉 ∈ 𝒜 ′ and passing through
a pivot 𝑃1 of inscription of △𝐴1𝐵1𝐶1 into △𝐴𝐵𝐶, then the successive application of the
inversions w.r.t. Apollonian circles {𝜅𝐴, 𝜅𝐵, 𝜅𝐶, 𝜅𝐴, ...} will generate an “orbit” of pivots
{𝑃1, 𝑃2, 𝑃3, ...} contained in 𝜉 . The nice property is that this orbit contains precisely six
points. This follows directly from the property of the Apollonian circles to intersect pair‑
wise at angles of 60∘ and the fact that inversions are conformal i.e. they preserve angles.
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Latter implies that arcs of the Apollonian pencil member circles, such as { ⏜𝐼1𝑃1, ⏜𝐼2𝑃2} of
figure 13, are inclined to the Apollonian circle 𝜅𝐴 at the same angle. By watching these
angles at 𝐼1 and taking into account the fact that Apollonian circles intersect at 60∘ we
realize that after 6 successive inversions of 𝑃1 w.r.t. the Apollonian circles we come back
to the starting point 𝑃1, creating an orbit of six points contained in the circle 𝜉 . Since the
pencil 𝒜 ′ which is orthogonal to the Apollonian pencil 𝒜 is of non intersecting type,
the remaining six pivots of inscription of △𝐴1𝐵1𝐶1 into △𝐴𝐵𝐶 will lie on another circle
𝜉 ′ ∈ 𝒜 ′ of this pencil. Thus, all of the 12 pivots are contained in two non intersecting
circles {𝜉 , 𝜉 ′} of the pencil 𝐴′, as suggested by figure 10. We formulate this as a theorem.
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Figure 14: Six pivots of inscription of 𝐴′𝐵′𝐶′ in 𝐴𝐵𝐶

Theorem 3. The twelve pivots of inscription of △𝐴1𝐵1𝐶1 into △𝐴𝐵𝐶 are contained by six in
two disjoint circles {𝜉 , 𝜉 ′} orthogonal to the Apollonian pencil of the triangle.
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Figure 15: A second configuration of pivots of inscription of 𝐴′𝐵′𝐶′ in 𝐴𝐵𝐶
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The pencil 𝒜 ′ which is orthogonal to the pencil 𝒜 of Apollonian circles is tradition‑
ally called “Schoute pencil” of the triangle ([Joh17]). The circles 𝜉 considered above, as well
as the circumcircle 𝜅, belong to this pencil. Figures 14 and 15 show two configurations of
the six pivots of inscription of △𝐴′𝐵′𝐶′ into △𝐴𝐵𝐶 contained in a Schoute circle 𝜉 and
the corresponding to these pedal triangles. The configurations depend on the shapes of
the two triangles {△𝐴′𝐵′𝐶′, △𝐴𝐵𝐶} tacitly assumed in this section to be generic. For spe‑
cial shapes of triangles we may obtain fewer pivots as for example in the case of isosceli
𝐴′𝐵′𝐶′ inscribed in a generic triangle 𝐴𝐵𝐶 , a case in which the corresponding pivots fall
on the Apollonian circles and we have a total of 6 instead of 12 pivots. In case △𝐴′𝐵′𝐶′ is
equilateral we obtain only two pivots, coinciding with the isodynamic points and in case
both {△𝐴′𝐵′𝐶′, △𝐴𝐵𝐶} are equilateral we obtain one only pivot, the center of △𝐴𝐵𝐶 (see
file Apollonian circles of the triangle).

6 Invariance under the circumcircle inversion

By the discussion in the preceding section, we know that there are 12 pivots of inscription
of a generic triangle 𝐴′𝐵′𝐶′ into a generic triangle 𝐴𝐵𝐶, grouped by 6 on two Schoute
circles {𝜉 , 𝜉 ′}. On the other side, from theorem 2we know that the inversion w.r.t. the cir‑
cumcircle 𝜅 of the triangle induces a permutation on the set of pivots andmaps the circle
𝜉 to another Schoute circle, necessarily identical with 𝜉 ′. This follows from the general
property of circle‑pencils, according to which, picking a single circle 𝜅 of the pencil, the
inversion w.r.t. 𝜅 introduces a permutation of the circles of the pencil. Combining this
with the results of the preceding section we come to the following property formulated
again as a theorem.

Theorem 4. For two generic triangles {𝐴′𝐵′𝐶′, 𝐴𝐵𝐶} the two Schoute circles {𝜉 , 𝜉 ′} carrying
by 6 the 12 pivots of inscription of △𝐴′𝐵′𝐶′ in △𝐴𝐵𝐶 are inverse to each other w.r.t. the
circumcircle 𝜅 of the triangle 𝐴𝐵𝐶 and the pivots on one of these are the 𝜅‑inverses of the pivots
on the other circle.

7 Reduction to the equilateral

Theorem 2, combined with a property of the Isodynamic points of the triangle, establish
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Figure 16: Reduction to the equilateral, the two pedals are similar

a relation of the problem of inscription of △𝐴′𝐵′𝐶′ into △𝐴𝐵𝐶 to the apparently simpler



7 Reduction to the equilateral 11

problem of inscription of △𝐴′𝐵′𝐶′ into an equilateral. In fact, it can be proved (see file
Isodynamic points) that an inversion 𝑓 w.r.t. a circle 𝜆 centered at one of the two isody‑
namic points, the outer isodynamic point 𝐼2 say, maps the triangle 𝐴𝐵𝐶 to an equilateral
𝐴′𝐵′𝐶′ and the Apollonian circles of △𝐴𝐵𝐶 to the symmetry axes of △𝐴′𝐵′𝐶′. Then,
the Schoute pencil of △𝐴𝐵𝐶 maps to the pencil of circles centered at the center of the
equilateral (see figure 16). The two circles {𝜉 , 𝜉 ′} carrying by 6 the 12 pivots of inscription
of a triangle 𝐴1𝐵1𝐶1 into △𝐴𝐵𝐶 map via 𝑓 to two concentric circles {𝜉1, 𝜉2} carrying by
6 the 12 pivots of inscription of the same triangle 𝐴1𝐵1𝐶1 into the equilateral △𝐴′𝐵′𝐶′.
Circles {𝜉 , 𝜉 ′} are inverse w.r.t. the circumcircle of △𝐴𝐵𝐶 and {𝜉1, 𝜉2} are inverse w.r.t.
the circumcircle of △𝐴′𝐵′𝐶′.
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Figure 17: A duality of isosceli

This reduction to the equilateral can be convenient in some cases, as the one concern‑
ing a certain “duality” I met in studying isosceli inscribed in a triangle. In this we start
with an arbitrary triangle 𝐴𝐵𝐶 and an isosceles △𝐴1𝐵1𝐶1 and locate its pivots of inscrip‑
tion in △𝐴𝐵𝐶. They are 6, lying by 3 on two Schoute circles {𝜉 , 𝜉 ′}, coinciding with 3 out
of the 6 intersections of these circles with the Apollonian circles of △𝐴𝐵𝐶. Figure 17‑(I)
shows a case, the pivots {𝑃1, 𝑃2, 𝑃3} on circle 𝜉 , their pedal triangles similar to △𝐴1𝐵1𝐶1
and the three other points {𝑄1, 𝑄2, 𝑄3} which together with the {𝑃𝑖} define all six inter‑
section of 𝜉 with the Apollonian circles. By our preceding discussion the pedals of 𝑄𝑖
will be also isosceli similar to another fixed isosceles. Thus, fixing △𝐴𝐵𝐶 and associat‑
ing to the pedal △𝜏 of a point on the Apollonian circle 𝑃1 ∈ 𝜅 the pedal △𝜏′ of the
other intersection point 𝑄1 ∈ 𝜅 of 𝜅 with the Schoute circle 𝜉 through 𝑃1, we define
a “douality” between similar types of isosceli, apparently depending on △𝐴𝐵𝐶. Using
the reduction to the equilateral, we can easily see that this duality is independent of the
particular △𝐴𝐵𝐶 fixed at the beginning. In fact, from the discussion in this section we
know that the same similarity type of △𝐴1𝐵1𝐶1 can be inscribed in a fixed equilateral
and set in correspondence via an inversion 𝑓 to its inscription in △𝐴𝐵𝐶. The inversion
maps the Apollonian circles to corresponding symmetry axes of the equilateral {𝑃1, 𝑄1}
map via 𝑓 to points on such an axis lying diametrically w.r.t. the center 𝑂 of the equi‑
lateral. In figure 17‑(II) we see two such dual triangles. The following relations are easily
established.

𝑦 = |𝑃𝐴′| , 𝑦′ = |𝑃′𝐴″| satisfy 𝑦 + 𝑦′ = 𝑎
√3

with 𝑎 = |𝐵𝐶|.

|𝐴′𝐶′| = √3𝑦 , area(𝐴′𝐵′𝐶′) = 3𝑦(𝑎 − √3𝑦)
2 .

The triangles {𝐴′𝐵′𝐶′, 𝐴″𝐵″𝐶″} have the same area. For 𝑃 varying from 𝑂 to 𝐷 the trian‑
gle 𝐴′𝐵′𝐶′ is obtuse at 𝐵′ and varies from the equilateral to the line segment 𝐴𝐶, while
its dual 𝐴″𝐵″𝐶″ varies from the equilateral to the segment 𝑂𝐵. By theway, notice that the
isosceles 𝜏 of figure 17‑(I) is the right‑angled one, and its dual 𝜏′ is the isosceles having
ratio altitude/base= 3/2, which is the ratio of edge/circumsphere‑radius of the “truncated
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octahedron” (see figure 18). Also the dual isosceles to the one with angles {30∘, 120∘, 30∘}

Figure 18: Trunkated octahe‑
dron

A

B C

Figure 19: The dual isosceles of
the one with apex angle 120∘

is the isosceles with ratio side/base= √7 (see figure 19).

8 The dual viewpoint

There is an alternative viewpoint to see our subject. This is to fix the inscribed △𝐴′𝐵′𝐶′

and consider circumscribed triangles 𝐴𝐵𝐶 similar to a fixed one 𝐴1𝐵1𝐶1 (see figure 20).
The various triangles 𝐴𝐵𝐶 have their vertices on three circles and the whole configura‑
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Figure 20: △𝐴𝐵𝐶 circumscribing △𝐴′𝐵′𝐶′

tion depends on “which side of △𝐴′𝐵′𝐶′ is viewed by an angle of △𝐴𝐵𝐶 ”. There are several
choices or “prescriptions” and for each prescription we obtain again a “pivot” 𝑃 which is
the common point of the three circles carrying the vertices of the variable circumscrib‑
ing triangle 𝐴𝐵𝐶. We say “the pivot of circumscription of △𝐴𝐵𝐶 about △𝐴′𝐵′𝐶′ ”, briefly
“circum‑pivot”. Obviously, fixing a pivoting △𝐴𝐵𝐶, such a pivot coincides with a pivot
of inscription of △𝐴′𝐵′𝐶′ into △𝐴𝐵𝐶 as those discussed in the preceding sections and
henceforth referred to as “in‑pivots”. Figure 20 shows two instances of the pivoting of
△𝐴𝐵𝐶 about △𝐴′𝐵′𝐶′. Figure 20‑(II) shows a triangle 𝐴𝐵𝐶 lying inside △𝐴′𝐵′𝐶′ , which
nevertheless circumscribes △𝐴′𝐵′𝐶′ , since the vertices of △𝐴′𝐵′𝐶′ lie on respective sides
(extensions) of △𝐴𝐵𝐶. There is no minimal circumscribed, since the vertices of △𝐴𝐵𝐶
can be arbitrary close to the pivot 𝑃 and even become all identical to it. There is though
a maximal circumscribed.

Exercise 1. Referring to figure 21 show that the pivot 𝑃 is the similarity center of the similarity
mapping △𝐴1𝐵1𝐶1 onto △𝐴𝐵𝐶 .

Exercise 2. With the notation of this section, the triangle 𝐴𝐵𝐶 with sides parallel to the triangle
𝐴0𝐵0𝐶0 of the centers of circles carrying the vertices of the pivoting triangles, is the maximal one
w.r.t. perimeter and area (see figure 21).
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Figure 21: Maximal circumscribed 𝐴𝐵𝐶 similar to 𝐴1𝐵1𝐶1

Hint: Project {𝐴0, 𝐶0} on 𝐴1𝐶1 and form the right angled triangle 𝐴0𝐶0𝐴′
1 (see figure 21).

Then 𝐶0𝐴′
1 is half the side 𝐴1𝐶1 and shorter than 𝐶0𝐴0, since latter is the hypotenuse

of the right angled triangle 𝐴0𝐶0𝐴′
1.
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Figure 22: Maximal circumscribed 𝐴𝐵𝐶 similar to 𝐴1𝐵1𝐶1

Exercise 3. With the notation of this section, the following are valid properties (see figure 22):
1. The triangles {𝐴𝑃𝐵, 𝐵𝑃𝐶, 𝐶𝑃𝐴} are of fixed similarity types and their circumcenters 𝑂𝐶,

𝑂𝐴, 𝑂𝐵 describe circles.
2. The triangles {𝐴𝐵𝑂𝐴, 𝐴𝐶𝑂𝐴, 𝐵𝐶𝑂𝐴} are also of fixed similarity types.
3. The line 𝐴𝑂𝐴 passes through a fixed point 𝐴2 of circle (𝐴𝐴′𝐶′).

9 In‑pivots and circum‑pivots

As we noticed already, fixing the circumscribed triangle 𝐴𝐵𝐶, the circum‑pivot of 𝐴𝐵𝐶
about 𝐴′𝐵′𝐶′ coincides with an in‑pivot of △𝐴′𝐵′𝐶′ in “this” △𝐴𝐵𝐶. If however we
circumscribe △𝐴𝐵𝐶 about △𝐴′𝐵′𝐶′ following another prescription, letting for example
△𝐴∗𝐵∗𝐶∗ ∼ △𝐴𝐵𝐶 circumscribe △𝐴′𝐵′𝐶′ with prescription (→ standing for “viewing”):

𝐴∗ → 𝐴′𝐵′ , 𝐵∗ → 𝐵′𝐶′ , 𝐶∗ → 𝐶′𝐴′ instead of
𝐴 → 𝐴′𝐶′ , �̂� → 𝐵′𝐴′ , 𝐶 → 𝐶′𝐵′ ,

then the pivot 𝑃 of inscription of △𝐴′𝐵′𝐶′ in △𝐴𝐵𝐶 is different from the pivot 𝑃∗ of in‑
scription of △𝐴′𝐵′𝐶′ in △𝐴∗𝐵∗𝐶∗ ∼ △𝐴𝐵𝐶 (see figure 23). The location of {𝑃, 𝑃∗} w.r.t.
to the immovable △𝐴′𝐵′𝐶′ are determined by the intersection of corresponding triples of
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Figure 23: Different circumscribing prescriptions lead to different pivots

circles defined by the angles at which the vertices of △𝐴𝐵𝐶 view the sides of △𝐴′𝐵′𝐶′,
which, of course, depend on the circumscribing prescription chosen which includes the
choice of orientation of △𝐴𝐵𝐶 . In any case the corresponding pivot 𝑃 is the same for
all triangles 𝐴𝐵𝐶 with vertices respectively on the three associated to the prescription
circles through 𝑃. Figure 24 shows two circum‑pivots {𝛼𝛽𝛾, 𝛼𝛽𝛾∗} of △𝐴1𝐵1𝐶1 about
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Figure 24: Circumscribing prescriptions differing only by the orientations

△𝐴′𝐵′𝐶′. Concerning the coordination {vertex → side} both prescriptions are the same:

𝐴 → 𝐴′𝐵′ , 𝐵 → 𝐵′𝐶′ , 𝐶 → 𝐶′𝐴′ ,

“→” meaning “vertex viewing side”, where the angle is that of the corresponding of the
similar △𝐴1𝐵1𝐶1 or its supplement. The prescriptions though differ regarding the ori‑
entation of the two circumscribing similar triangles, △𝐴𝐵𝐶 being positive orientedwhile
△𝐴∗𝐵∗𝐶∗ is negatively oriented.
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Figure 25: The 12 pivots of circumscription of △𝐴1𝐵1𝐶1 about △𝐴𝐵𝐶

Thus, each one of the 6 combinations {vertex → side}, togetherwith the corresponding
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two orientations produces 12 circum‑pivots of △𝐴1𝐵1𝐶1 about △𝐴′𝐵′𝐶′. Regarding the
orientation, notice that if we consider the three circles carrying the vertices of △𝐴𝐵𝐶
and defining the pivot 𝛼𝛽𝛾, then the other pivot 𝛼𝛽𝛾∗ is obtained as intersection of the
reflections of the preceding three circles w.r.t. corresponding sides of △𝐴′𝐵′𝐶′. Figure 25
shows a configuration of the 12 circum‑pivots of △𝐴1𝐵1𝐶1 about △𝐴𝐵𝐶. The segments
shown join pivots differing only w.r.t. the orientations. The pivots seem to be distributed
by 6 on two conics, but this is not true in general.

Exercise 4. Show that for an equilateral △𝐴𝐵𝐶 and an arbitrary △𝐴1𝐵1𝐶1 the 12 circum‑
pivots of △𝐴1𝐵1𝐶1 about the equilateral are by 6 on two circles concentric to the circumcircle of
the equilateral (see figure 26).
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Figure 26: The 12 pivots of circumscription of△𝐴1𝐵1𝐶1 about the equilateral △𝐴𝐵𝐶

Hint: The three circles carrying the vertices of the circumscribing triangle have the same
radii {𝑟1, 𝑟2, 𝑟3} independently of the particular prescription. This produces pivots dis‑
tributed symmetrically w.r.t. the axes of symmetry of the equilateral. Figure 27 shows
two pivots {𝐷, 𝐸} whose defining triples of circles (carrying their vertices) are symmetric
w.r.t respective sides of the equilateral producing oppositely oriented triangles {𝑑, 𝑒.} An‑
other such couple of triangles will be produced by the reflection of these pivots to an axis
of symmetry of the equilateral, such as 𝐷′𝐸′.
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Figure 27: Circumscription pivots and the symmetry of the equilateral

Remark 3. For an equilateral △𝐴𝐵𝐶, referring to figure 27 and taking into account the
discussion in section 5, we notice that the circum‑pivot 𝐷 coincides with an isodynamic
point of the triangle 𝑑 and analogously the pivot 𝐸 coincides with an isodynamic point
of triangle 𝑒.

Next two theorems recapitulate the results of this section.
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Theorem 5. Given a pair of triangles {𝐴𝐵𝐶, 𝐴1𝐵1𝐶1} there are 12 circum‑pivots of △𝐴1𝐵1𝐶1
about △𝐴𝐵𝐶. If △𝐴𝐵𝐶 is equilateral the circum‑pivots lie by six on two circles concentric to
the circumcircle of the equilateral.
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Figure 28: Relation of circum‑pivots to in‑pivots

Theorem 6. Given a pair of triangles {𝐴′𝐵′𝐶′, 𝐴𝐵𝐶} the circum‑pivots {𝑄1, 𝑄2, …} of △𝐴𝐵𝐶
about △𝐴′𝐵′𝐶′ result from the in‑pivots {𝑃1, 𝑃2, …} of △𝐴′𝐵′𝐶′ in △𝐴𝐵𝐶 as follows. For
each 𝑃𝑖 we consider its pedal △𝐴𝑖𝐵𝑖𝐶𝑖 and the similarity 𝑓𝑖 sending it onto 𝐴′𝐵′𝐶′ . Then
𝑄𝑖 = 𝑓𝑖(𝑃𝑖).

Figure 28 illustrates the result of application of {𝑓1, 𝑓2} involved in this theorem. The
triangles {𝜏1, 𝜏2} are the images {𝜏1 = 𝑓1(𝐴1𝐵1𝐶1), 𝜏2 = 𝑓2(𝐴1𝐵1𝐶1)}.
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Figure 29: The two kinds of pivots related by 12 similarities {𝑓𝑖}

Figure 29 gives a visual impression of the application of the last theorem to all pivots
of the two kinds. In part (I) we have the 12 circum‑pivots of △𝐴1𝐵1𝐶1 about △𝐴𝐵𝐶. In
part (II) we have the 12 in‑pivots of △𝐴𝐵𝐶 in △𝐴1𝐵1𝐶1.

Remark 4. There is a particular case which deserves special consideration. This is the
case for which the number 12 drops to 11. It results by considering the in‑pivot 𝑂, the
circumcenter of the triangle of reference 𝐴𝐵𝐶. The pedal of 𝑂 is similar to △𝐴𝐵𝐶 and
the inverse relative to the circumcircle of 𝑂 is at infinity, failing to define a genuine pedal
triangle. Thus, the corresponding configuration involves only 11 in‑pivots, among them
the two “Brocard points” of the triangle 𝐴𝐵𝐶 and the related 11 circum‑pivots. Figure 30
shows the corresponding configuration, the Schoute circle 𝜅 through 𝑂 called “Brocard
circle” and its inverse w.r.t. the circumcircle, which in this case is a line 𝜀 called “Lemoine
line” of the triangle. The points {𝐵1, 𝐵2} are the “Brocard points” of the triangle. The figure
on the right shows the in‑pivots. On the left stands the corresponding configuration of the
circum‑pivots. Again the segments joining two points indicate circumscribed triangles
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whose prescriptions differ only with respect to orientation. A more detailed discussion
of this configuration can be found in the file Brocard points.
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Figure 30: The Brocard configuration

10 Area of pedal

Consider the triangle of reference 𝐴𝐵𝐶, a point 𝐷 and the pedal 𝐷1𝐷2𝐷3 w.r.t. △𝐴𝐵𝐶.
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Figure 31: Area of pedal 𝐷1𝐷2𝐷3

Theorem 7. The following are valid properties (see figure 31).

1. The area (𝐷1𝐷2𝐷3) = (𝑅2 − |𝐷𝑂|2) sin(𝐴) sin(�̂�) sin(𝐶)/2 , where 𝑅 is the circumra‑
dius of △𝐴𝐵𝐶 and 𝑂 is the circumcenter. 𝑅2 − |𝐷𝑂|2 is the power of 𝐷 w.r.t. the
circumcircle.
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2. For 𝐷 moving on circles concentric to the circumcircle, the pedal triangles have constant
area and vice versa. In particular, for 𝐷 on the circumcircle the corresponding area is zero,
the three projection‑points being on the “Wallace‑Simson line of D”.

3. Denoting by (𝑥, 𝑦, 𝑧) the trilinear coordinates of 𝐷 , and considering signed (oriented) ar‑
eas:

(𝐷1𝐷2𝐷3) = 1
2(sin(𝐴)𝑦𝑧 + sin(�̂�)𝑧𝑥 + sin(𝐶)𝑥𝑦) (5)

is a quadratic form in the trilinear coordinates.

Proof. Nr‑1 The formula follows by extending 𝐷𝐴 to cut the circumcircle at 𝐷′ and ob‑
serving that ̂𝐷1𝐷2𝐷3 = 𝐷′𝐶𝐷 (see figure 31). Also 𝐷𝐷′𝐶 equals angle �̂� of the triangle
and by the sinus theorem applied to triangle 𝐷′𝐶𝐷 we have:

sin(𝐷′𝐶𝐷)/|𝐷𝐷′| = sin(�̂�)/|𝐷𝐶|. (∗)

In addition, since 𝐵𝐷1𝐷𝐷3 is a cyclic quadrangle and 𝐷𝐵 is a diameter of its circumcircle
we have {|𝐷𝐵| = |𝐷1𝐷3| sin(�̂�) (∗∗)} and analogous equations for the segments 𝐷𝐶 and
𝐷𝐴. Now using {(∗), (∗∗)} the area of the pedal triangle is:

(𝐷1𝐷2𝐷3) = |𝐷2𝐷3||𝐷2𝐷1| sin( ̂𝐷1𝐷2𝐷3/2 = |𝐷𝐴| sin(𝐴)|𝐷𝐶| sin(𝐶) sin(𝐷′𝐶𝐷/2
= |𝐷𝐴||𝐷𝐷′| sin(�̂�) sin(𝐶) sin(𝐴)/2 = (𝑅2 − |𝐷𝑂|2) sin(𝐴) sin(�̂�) sin(𝐶)/2.

Nr‑2 Follows immediately from nr‑1.
Nr‑3 Follows by dividing the area of the triangle in the sum:

(𝐷1𝐷2𝐷3) = (𝐷1𝐷𝐷2) + (𝐷2𝐷𝐷3) + (𝐷3𝐷𝐷1).

Remark 5. Equation (7) is general valid, even when point 𝐷 is outside the triangle, pro‑
vided we use oriented areas. Next figure illustrates the corresponding proof.
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Figure 32: Area of pedal 𝐷1𝐷2𝐷3 for 𝐷 external to the circumcircle

Remark 6. By equating the expressions in (7) and (9) we get:

sin(𝐴)𝑦𝑧 + sin(�̂�)𝑧𝑥 + sin(𝐶)𝑥𝑦 = (𝑅2 − |𝑃𝑂|2) sin(𝐴) sin(�̂�) sin(𝐶) ⇔

𝑎𝑦𝑧 + 𝑏𝑧𝑥 + 𝑐𝑥𝑦 = (𝑅2 − |𝑃𝑂|2)𝑎𝑏𝑐
4𝑅2 . (6)
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By taking 𝐷 on the circle we get the “equation of the circumcircle” in trilinears.

𝑎𝑦𝑧 + 𝑏𝑧𝑥 + 𝑐𝑥𝑦 = 0.

Equation (6) shows that the quadratic form 𝑓 (𝑥, 𝑦, 𝑧) = 𝑎𝑦𝑧 + 𝑏𝑧𝑥 + 𝑐𝑥𝑦 , where {𝑎, 𝑏, 𝑐} de‑
note the lengths of the sides of the triangle, is positive inside the circumcircle, zero on the
circumcircle and negative outside. Notice that (𝑥, 𝑦, 𝑧) are not independent, but satisfy
the equation 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 2(𝐴𝐵𝐶) . Points at infinity satisfy 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 and fall
far out of the circumcircle of △𝐴𝐵𝐶 where f is negative.

Exercise 5. Show that for points 𝐷 satisfying |𝑂𝐷| = √5𝑅 the area of the pedal 𝐷1𝐷2𝐷3 equals
the area of the triangle and for 𝐷 satisfying |𝑂𝐷| = 3𝑅 the area of the pedal is the double of the
area of the triangle 𝐴𝐵𝐶.

11 Formularium

Here are some formulas relating elements of the pedal △𝐷1𝐷2𝐷3 of a point 𝐷 relative
to the △𝐴𝐵𝐶 . The symbols used are explained through figure 33, in which (𝑥, 𝑦, 𝑧) are
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Figure 33: Trilinear relations of the pedal 𝐷1𝐷2𝐷3 of 𝐷 relative to △𝐴𝐵𝐶

the “trilinear coordinates”, short trilinears of point 𝐷.

2(𝐴𝐵𝐶) = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 where (… ) denotes area, (7)

𝑎′ = sin(𝐴)𝑥′ = 𝑎𝑥′

2𝑅 where 𝑅 the circumradius of 𝐴𝐵𝐶, (8)

𝑎′ = √𝑦2 + 𝑧2 + 2𝑦𝑧 cos(𝐴), (9)

𝑥′ = 𝑎′

sin(𝐴)
=

√𝑦2 + 𝑧2 + 2𝑦𝑧 cos(𝐴)
sin(𝐴)

, (10)

𝑥 =
√(𝑧′2 − (𝑎 − 𝑦′)2)((𝑎 + 𝑦′)2 − 𝑧′2)

2𝑎 , (11)

𝑥′2 sin(2𝐴)
4 = (𝐴𝐷3𝐷𝐷2) − 2(𝐷3𝐷𝐷2), (12)

(𝐴𝐵𝐶) − 2(𝐷1𝐷2𝐷3) = 𝑥′2 sin(2𝐴) + 𝑦′2 sin(2�̂�) + 𝑧′2 sin(2𝐶)
4 , (13)

(𝐷1𝐷2𝐷3) = sin(𝐴)𝑦𝑧 + sin(�̂�)𝑧𝑥 + sin(𝐶)𝑥𝑦
2 . (14)
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Equation (7) results by calculating the area of ABC in terms of (x,y,z).
Equations (8), (9) result from sine and cosine rules.
Equation (10) is a consequence of the preceding ones.
Equation (11) is a calculation of the altitude of a triangle. Equations (12), (13) were shown
by Steiner as follows: Because the quadrangle 𝐴𝐷3𝐷𝐷2 is cyclic sin( ̂𝐷2𝐷𝐷3) = sin(𝐴)
and the right side of equation (12) is:

1
2(𝐴𝐷3𝐴𝐷2 sin(𝐴) + 𝐷𝐷3𝐷𝐷2 sin(𝐴)) − 𝐷𝐷3𝐷𝐷2 sin(𝐴) =

1
2(𝐴𝐷3𝐴𝐷2 sin(𝐴) − 𝐷𝐷3𝐷𝐷2 sin(𝐴)) =

(sin(𝐴)𝑥′2/2)(cos(𝜙) cos(𝐴 − 𝜙) − sin(𝜙) sin(𝐴 − 𝜙)) = (sin(𝐴)𝑥′2/2) cos(𝐴).

Equation (13) is a consequence of equation (12) and equation (14) is proved in the preced‑
ing section.

12 The third pedal

Theorem 8. The third pedal 𝜏3 of a triangle 𝜏 = 𝐴𝐵𝐶 relative to a point 𝑃 is similar to 𝜏.
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Figure 34: Third pedal 𝜏3 of 𝜏 = 𝐴𝐵𝐶 relative to 𝑃

Proof. The proof is an easy angle chasing based on the cyclic quadrangles created by the
projections of 𝑃 on the sides of the {𝜏, 𝜏1, …} as indicated in figure 34 in the case of an
inner point of the triangle. Analogous is the proof for other positions of 𝑃 relative to
the triangle. The pedal 𝜏1 = 𝐷𝐸𝐹 is created by projecting point 𝑃 on the sides of triangle
𝜏 = 𝐴𝐵𝐶. The pedal 𝜏2 = 𝐺𝐻𝐼 of 𝜏1 relative to 𝑃 is created by projecting 𝑃 on the sides
of 𝜏1 and 𝜏3 by projecting 𝑃 on the sides of 𝜏2.

Remark 7. The argument of the proofwith the angles indicated in figure 34 shows that the
triangles defined by 𝑃 and composing △𝐴𝐵𝐶 {𝐴𝑃𝐵, 𝐵𝑃𝐶, 𝐶𝑃𝐴} are respectively similar
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with the corresponding triangles composing the third pedal {𝐽𝑃𝐾, 𝐾𝑃𝐿, 𝐿𝑃𝐽}. This implies
that 𝑃 is the similarity center of the similarity mapping triangle 𝜏 onto 𝜏3.

13 Pedal, cevian and circumcevian triangles

The trilinears of the projections {𝐷1, 𝐷2, 𝐷3} of point 𝐷 on the sides of the triangle of
reference 𝐴𝐵𝐶 can be expressed bymeans of the trilinears (𝑥, 𝑦, 𝑧) of 𝐷 and the altitudes
of the triangle {ℎ𝐴, ℎ𝐵, ℎ𝐶}:

𝐷1𝑥 = 0 , 𝐷1𝑦 = 𝑦 + 𝑥 cos(𝐶) , 𝐷1𝑧 = 𝑧 + 𝑥 cos(�̂�),
𝐷2𝑥 = 𝑥 + 𝑦 cos(𝐶) , 𝐷2𝑦 = 0 , 𝐷2𝑧 = 𝑧 + 𝑦 cos(𝐴),
𝐷3𝑥 = 𝑥 + 𝑧 cos(�̂�) , 𝐷3𝑦 = 𝑦 + 𝑧 cos(𝐴) , 𝐷3𝑧 = 0.

The “cevian” triangle of a point 𝑃 relative to the triangle 𝐴𝐵𝐶 has vertices the “traces”
{𝐸1, 𝐸2, 𝐸3} of lines {𝐴𝑃, 𝐵𝑃, 𝐶𝑃} respectively on the opposite sides (see figure 35). Their
trilinears are:
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Figure 35: The cevian △𝐸1𝐸2𝐸3

D

D'

E

B

F

C

A

E'

F'

κ

P

Figure 36: The circumcevian of 𝑃

𝐸1𝑥 = 0 , 𝐸1𝑦 = 𝑦 ℎ𝐴
ℎ𝐴 − 𝑥 , 𝐸1𝑧 = 𝑧 ℎ𝐴

ℎ𝐴 − 𝑥,

𝐸2𝑥 = 𝑥 ℎ𝐵
ℎ𝐵 − 𝑦 , 𝐸2𝑦 = 0 , 𝐸2𝑧 = 𝑧 ℎ𝐵

ℎ𝐵 − 𝑦,

𝐸3𝑥 = 𝑥 ℎ𝐶
ℎ𝐶 − 𝑧 , 𝐸3𝑦 = 𝑦 ℎ𝐶

ℎ𝐶 − 𝑧 , 𝐸3𝑧 = 0.

The “circumcevian” triangle 𝐷′𝐸′𝐹′ of a point 𝑃 relative to the triangle 𝐴𝐵𝐶 is the triangle
of second intersections of the lines {𝑃𝐴, 𝑃𝐵, 𝑃𝐶} with the circumcircle 𝜅 of △𝐴𝐵𝐶 seen
in figure 36, which suggest also the proof of the next theorem.

Theorem 9. The pedal △𝐷𝐸𝐹 of a triangle 𝜏 = 𝐴𝐵𝐶 relative to a point 𝑃 is similar to the
circumcevian triangle 𝐷′𝐸′𝐹′ of 𝑃.

Corollary 1. The pedal △𝐴″𝐵″𝐶″ of 𝑃 relative to the circumcevian △𝐴′𝐵′𝐶′ is similar to the
original triangle of reference 𝐴𝐵𝐶 (see figure 37).
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Figure 37: Pedal △𝐴″𝐵″𝐶″ of 𝑃 relative to circumcevian similar to △𝐴𝐵𝐶

Proof. Use the relations (1) and see that 𝐴′𝑃𝐶′ = 𝐵″ + 𝐵′. But 𝐵′ = 𝐴𝑃𝐶 − �̂�. Hence we
obtain: 𝐵″ − �̂� = 𝐴′𝑃𝐶′ − 𝐴𝑃𝐶 = 0.

Remark 8. Notice in figure 37 the circle 𝜆(𝑃, 𝑟) with 𝑟2 = 𝑃𝐴 ⋅ 𝑃𝐴′ which anti‑inverts
the vertices of △𝐴𝐵𝐶 to those of △𝐴′𝐵′𝐶′ and leaves invariant 𝜅 so that the two circles
intersect at diametral points of 𝜆.

14 Darboux cubic

The “Darboux cubic” ([Gib21]) is the geometric locus of points 𝐷 for which the pedal
△𝐷1𝐷2𝐷3 is “cevian” i.e. the lines {𝐴𝐷1, 𝐵𝐷2, 𝐶𝐷3} intersect at a point 𝑃 (see figure 38).
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Figure 38: The Darboux cubic of △𝐴𝐵𝐶
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Theorem 10. The Darboux cubic expressed in trilinears w.r.t. △𝐴𝐵𝐶 is represented by the
equation:

[ cos(𝐴) cos(�̂�) − cos(𝐶)][𝑧(𝑥2 − 𝑦2)] +
[cos(�̂�) cos(𝐶) − cos(𝐴)][𝑥(𝑦2 − 𝑧2)] +

[cos(𝐶) cos(𝐴) − cos(�̂�)][𝑦(𝑧2 − 𝑥2)] = 0 .

Proof. We calculate the condition ofCeva’s theorem for the cevians {𝐴𝐷1, 𝐴𝐷2, 𝐴𝐷3}. For
this we need the signed ratio 𝐷1𝐵/𝐷1𝐶 (see figure 39). In the following {ℎ𝐴, ℎ𝐵, ℎ𝐶} de‑
note the altitudes and {𝑎, 𝑏, 𝑐} the side‑lengths of the triangle.

ℎ𝐵
𝐷1𝑦

= 𝑎
𝐷1𝐶 , ℎ𝐶

𝐷1𝑧
= 𝑎

𝐷1𝐵 ⇒ 𝐷1𝐵
𝐷1𝐶 = −ℎ𝐵

ℎ𝐶
∶

𝐷1𝑦
𝐷1𝑧

,

and analogous formulas for the ratios {𝐷2𝐶/𝐷2𝐴, 𝐷3𝐴/𝐷3𝐵}. Replacing these into the
Ceva condition

𝐷1𝐵
𝐷1𝐶 ⋅ 𝐷2𝐶

𝐷2𝐴 ⋅ 𝐷3𝐴
𝐷3𝐵 = −1,

and taking into account the equations of section 13 we obtain:

𝑧 + 𝑥 cos(�̂�)
𝑦 + 𝑥 cos(𝐶)

⋅ 𝑥 + 𝑦 cos(𝐶)
𝑧 + 𝑦 cos(𝐴)

⋅ 𝑦 + 𝑧 cos(𝐴)
𝑥 + 𝑧 cos(�̂�)

= 1 ,

which is equivalent to the requested equation.
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Figure 39: The signed ratio 𝐷1𝐵/𝐷1𝐶 in terms of the trilinears of 𝐷1

Remark 9. TheDarboux cubic passes through the vertices of the triangle, the circumcenter
𝑂(cos(𝐴), cos(�̂�), cos(𝐶)) of △𝐴𝐵𝐶 and several other “triangle centers” ([Kim18]), such
as the “incenter” 𝐼(1, 1, 1), the “orthocenter” 𝐻(cos(𝐴) − sin(�̂�) sin(𝐶) ∶ … ) and the “de
Longchamps” point 𝐿(cos(𝐴) − cos(�̂�) cos(𝐶) ∶ … ) in parenthesis standing the trilinears
of the respective points and the dots denoting the other two coordinates resulting by cyclic
permutations of the letters. The cubic is symmetric w.r.t. the circumcenter 𝑂 as is easily
verified using the rerpresentation of the 𝑂−symmetry w.r.t. to trilinears, which has in
normalized trilinears the same typical form as the point symmetry expressed in cartesian
coordinates:

⎛⎜⎜⎜
⎝

𝑥′

𝑦′

𝑧′

⎞⎟⎟⎟
⎠

= − ⎛⎜⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟⎟
⎠

+ 2
⎛⎜⎜⎜
⎝

𝑂𝑥
𝑂𝑦
𝑂𝑧

⎞⎟⎟⎟
⎠

.

We recall that “normalized”means that the trilinears measure exact signed distances of the
point 𝐷(𝑥, 𝑦, 𝑧) from the sides of the triangle, so that 𝑥𝑎 + 𝑦𝑏 + 𝑧𝑐 = 2(𝐴𝐵𝐶).
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15 Pedals of isogonal points

If we draw the circumcircle 𝜅(𝑂) of the pedal △𝐷1𝐷2𝐷3 of the point 𝐷 relative to
the triangle of reference 𝐴𝐵𝐶, the circle intersects triangle’s sides a second time at the
points {𝐸1, 𝐸2, 𝐸3} and it is easy to see that these points are the projections of a single
point 𝐸 (see figure 40). This follows by observing that the perpendiculars to the sides at
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Figure 40: The pedal △𝐸1𝐸2𝐸3 of the isogonal 𝐸 of 𝐷

{𝐸1, 𝐸2, 𝐸3} pass through the symmetric 𝐸 of 𝐷 w.r.t. 𝑂. The points {𝐷, 𝐸} are “isogonal
conjugate” w.r.t. △𝐴𝐵𝐶 in the sense that the angles 𝐷𝐴𝐷3 = 𝐸𝐴𝐸3, analogous relations
holding w.r.t. the other two vertices of △𝐴𝐵𝐶. This follows by observing that triangles
{𝐴𝐷2𝐷3, 𝐴𝐸3𝐸2} are similar and consequently also the triangles {𝐷3𝐴𝐷, 𝐸𝐴𝐸2} are simi‑
lar. The argument can be reversed and we arive at the following theorem.

Theorem 11. The points {𝐸, 𝐷} are isogonal w.r.t. to the triangle 𝐴𝐵𝐶, if and only if their pedals
have the same circumcircle 𝜅.

The theorem establishes amap 𝑓 in the set of all pedals of △𝐴𝐵𝐶 which is “involutive”
in the sense that it coincides with its inverse 𝑓 2 = 𝑖𝑑. It has also a “fixed point” in this
set, coinciding with the pedal of the incenter of △𝐴𝐵𝐶. Next exercises formulate some
additional properties of the two pedals of isogonal points.
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Figure 41: The rectangle defined by isogonals and a side

Exercise 6. Let {𝐷, 𝐷′} be the projections on 𝐵𝐶 of the isogonal points {𝑃, 𝑃′} and {𝐸, 𝐸′} the
second intersections with the circle 𝜅 of the projections of {𝑃, 𝑃′} on the sides of the triangle
respectively with the lines {𝑃𝐷, 𝑃′𝐷′}. Show that 𝐷𝐷′𝐸′𝐸 is a rectangle.

Remark 10. Notice that in figure 41 the product 𝑃𝐸 = 𝑃′𝐷′ and 𝑃𝐷 ⋅ 𝑃′𝐷′ = 𝑃𝐷 ⋅ 𝑃𝐸 = 𝑘
is the power of 𝑃 w.r.t. 𝜅 which is the same also for the other projections of the isogonal
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points {𝑃, 𝑃′} on the sides of △𝐴𝐵𝐶. This leads to the simple relation of the trilinear
coordinates of {𝑃, 𝑃′}: 𝑥𝑥′ = 𝑦𝑦′ = 𝑧𝑧′ = 𝑘.

Exercise 7. With the notation and conventions of this section show the following properties (see
figure 42).

1. Quadrangles 𝐷𝐷3𝐴𝐷2 and 𝐸𝐸2𝐴𝐸3 are cyclic and similar.
2. Line 𝐴𝐻, 𝐻 being the intersection of lines {𝐷2𝐷3, 𝐸2𝐸3} is orthogonal to 𝐷𝐸.
3. Line 𝐷3𝐸2 passes through the pole 𝐹 of 𝐴𝐻 with respect to 𝜅 the common circumcircle

of the pedals {𝐷1𝐷2𝐷3, 𝐸1𝐸2𝐸3}.
4. Quadrangles 𝐷𝐷3𝐴𝐷2 and 𝐸𝐸2𝐴𝐸3 are perspective with respect to 𝐹.
5. The perspectivity axis of point‑perspective triangles {𝐷𝐷2𝐷3, 𝐸𝐸3𝐸2}, line 𝐻𝐼𝐾, passes

through the center 𝑂 of 𝜅 and is orthogonal to 𝐴𝐹.
Analogous statements hold for similar constructs with respect to the other vertices {𝐵, 𝐶} of trian‑
gle 𝐴𝐵𝐶.
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Figure 42: Pedal properties of isogonal points {𝐷, 𝐸}

Hint: Nr‑1 Follows by angel chasing argument in figure 40 showing the similarity of the
corresponding triangles.
Nr‑2 𝐻 is on the radical axis of the circumcircles of the similar quadrangles (actually it
is the radical center of the three circles drawn). Since {𝐴𝐷, 𝐴𝐸} are diameters of these
circles, their radical axis is orthogonal to line 𝐷𝐸.
Nr‑3 Considering 𝐹 to be the intersection point of {𝐷2𝐸3, 𝐷3𝐸2} we have a complete
quadrilateral and 𝐹 is the pole of 𝐴𝐻 with respect to the circle, thus the orthogonal 𝑂𝐺
to 𝐴𝐽 passes through 𝐹.
Nr‑4 Follows from nr‑3.
Nr‑5 The perspectivity axis is also diagonal of parallelogram 𝐷𝐾𝐸𝐼, hence passes through
the middle 𝑂 of 𝐷𝐸. By an argument like that of nr‑3 we deduce that 𝐻 is the pole of
line 𝐴𝐹, hence 𝑂𝐻 is orthogonal to 𝐴𝐹.

Exercise 8. Show that the pedal 𝐸1𝐸2𝐸3 of the isogonal point 𝐸 of a point 𝐷 w.r.t the isosceles
△𝐴𝐵𝐶 is similar to the pedal 𝐷1𝐷2𝐷3 when 𝐷 is on the circle (𝐵𝐼𝐶) passing through the
incenter 𝐼 of △𝐴𝐵𝐶 (see figure 43).

Figure 44 shows an other property of the triangle related to isogonal points {𝐷, 𝐸}
and their pedals. This is a theorem going back to Steiner ([Ste71, I, pp. 191‑120]) and
stating, that “an ellipse tangent to the sides of the triangle has isogonal conjugate focal points



15 Pedals of isogonal points 26

B C

A

I

D

D
3

D
2

E

D
1

E
1

E
1

E
2

Figure 43: Isogonal points {𝐷, 𝐸} on (𝐵𝐼𝐶)

{𝐷, 𝐸}”. The proof of this results easily from the “isogonal property” of conics discussed
in the book ([AZ12, p.11]), and according to which, “the tangents to the ellipse from an ex‑
ternal point form with the focals equal angles” as e.g. in figure 44 the angles 𝐵𝐴𝐷 = 𝐶𝐴𝐸 .
The ellipse has the common circumcircle 𝜅 of the two pedals {𝐷1𝐷2𝐷3, 𝐸1𝐸2𝐸3} as aux‑
iliary circle. Further the points of contact with the sides are the harmonic conjugates
{𝐴′(𝐷1𝐸1), 𝐵′(𝐷2𝐸2), 𝐶′(𝐷3𝐸3)} of the corresponding intersections {𝐴′, 𝐵′, 𝐶′} of the tri‑
angle sides with line 𝐷𝐸.
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Figure 44: Isogonal points {𝐷, 𝐸} as focals of an inscribed ellipse

Remark 11. The preceding property suggests an easy method to construct the ellipse
inscribed in the triangle with focal points two given isogonal conjugate points {𝐷, 𝐸}.
Having these points we can construct the circle 𝜅 and its diameter points along line 𝐸𝐹
which are two points of the conic. Then by the aforementioned conjugates {𝐴′(𝐷1𝐸1), …}
we obtain three more points on the conic and construct it as a conic through 5 points.

Having gone this far, we should recall the nice related property of two special isogonal
points, namely the focal points of the “Steiner in‑ellipse” i.e. the inscribed in the triangle
ellipse contacting the sides at their middle. The theorem, has been given an elementary
proof that can be found in the paper “Carlson’s proof of Marden’s theorem” anonymously
circulating in the internet. The titleMarden’s theorem is erroneous, since the theorem was
actually discovered 80 years earlier by Siebeck ([Sie64], [Bog17]). It can be formulated as
follows in terms of complex polynomials:

Theorem 12. Let 𝑓 (𝑧) be the complex polynomial whose roots are the three vertices of the triangle
𝐴𝐵𝐶. Then the roots of the derivative 𝑓 ′(𝑧) are the two focals {𝐷, 𝐸} of the Steiner ellipse which
is inscribed in the triangle (see figure 45).
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Figure 45: The Steiner in‑ellipse of △𝐴𝐵𝐶

16 More on pedals of isogonal points

In this section we deal with some additional properties of the pedals of isogonal points.

Theorem 13. Let the triangles {𝐴1𝐵1𝐶1, 𝐴2𝐵2𝐶2} be the pedals of isogonal points respectively
{𝑃, 𝑃′}. Let also {𝐴′𝐵′𝐶′, 𝐴″𝐵″𝐶″} be corresponding pivoting triangles about {𝑃, 𝑃′} rotated with
respect to the pedals by the angles {+𝜙, −𝜙}. Then {𝐴′𝐵′𝐶′, 𝐴″𝐵″𝐶″} have the same circumcircle,
whose center 𝑆 lies on the medial line of 𝑃𝑃′ (see figure 46).
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Figure 46: The positions of the circumcenters of pivoting triangles about 𝑃

Proof. The proof uses the similarities 𝑓1 mapping {𝐴1𝐵1𝐶1} to 𝐴′𝐵′𝐶′ and 𝑓2 mapping
{𝐴″𝐵″𝐶″} to 𝐴2𝐵2𝐶2. These two similarities have their centers respectively at {𝑃, 𝑃′}, their
angles are equal and opposite in measure and their stretching ratios are the inverse num‑
bers {𝑃𝐴′/𝑃𝐴1, 𝑃′𝐴2/𝑃′𝐴″}. It is easily seen that their composition 𝑓 = 𝑓2 ∘ 𝑓1 is the ro‑
tation with center the middle 𝑂 of 𝑃𝑃′ and angle of measure 2𝜙. This rotation leaves
invariant the common circumcircle 𝜅(𝑂) of the twopedals. Hence, since 𝑓1 maps 𝜅 to the
circumcircle 𝜅′ of 𝐴′𝐵′𝐶′, the similarity 𝑓2 maps 𝜅′ to 𝜅, showing that the circumcircle
of 𝐴″𝐵″𝐶″ = 𝑓 −1

2 (𝐴2𝐵2𝐶2) is 𝑓 −1
2 (𝜅) = 𝑓 −1

2 ((𝑓2 ∘ 𝑓1)(𝜅)) = 𝑓1(𝜅) = 𝜅′ as claimed.
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Corollary 2. The circumcenters 𝑆 of the pivoting triangles {𝐴1𝐵1𝐶1} about the point 𝑃 lie on
the medial line of the segment 𝑃𝑃′, where 𝑃′ is the isogonal conjugate of 𝑃.
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Figure 47: Triangles pivoting about the incenter 𝐼 of △𝐴𝐵𝐶

Figure 47 shows the case of the pedal △𝐴′𝐵′𝐶′ of the incenter 𝐼, the “intouch triangle”
and the triangles pivoting about 𝐼. Their circumcircles 𝜆 are concentric to the incircle 𝜅 of
△𝐴𝐵𝐶 and intersect the sides in two triples of points defining triangles {𝐴1𝐵1𝐶1, 𝐴2𝐵2𝐶2}
equal to each other and similar to the intouch triangle.

The following exercise grew out of an attempt to find, for a generic triangle, all the
points 𝑃 different from the incenter 𝐼 and the Brocard points, such that the pedals of 𝑃
and of its isogonal 𝑃′ are similar, hence equal, since they have the same circumcircle.
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Figure 48: Positions of maximization/minimization of |𝐴𝐶|

Exercise 9. Consider an angle of constant measure 0 < 𝜙 < 𝜋 rotating about a point 𝑃 ≠ 𝑂
inside the circle 𝜅(𝑂). Show that the minimal / maximal lengths of the segment 𝐴𝐶 defined by
the intersection of the circle with the sides of the angle are obtained when the diameter 𝑂𝑃 becomes
a bisector of the angle 𝜙 (see figure 48).

Hint: With the notation in figure 48, 𝑏 = |𝐷𝐶|, 𝑡 = |𝑃𝐶|, 𝑠 = |𝐷𝐴|, 𝑘 = sin(𝜙/2), apply the
theorem of Ptolemy ([Cou80, p.238]) to the equilateral trapezium and see that 𝑥 = |𝐴𝐶|
satisfies

𝑥2 = 4𝑡2𝑘2 + 4𝑡𝑠𝑘2 + 𝑠2 ⇒ 𝑥2

𝑡2 = 4𝑘2 + 4𝑘2 𝑠
𝑡 + 𝑠2

𝑡2 .

The requested positions occur when 𝑠 = 0. Alternatively, show that the centers of the
segments {𝐴𝐵, 𝐶𝐷} describe respectively two equal circles intersecting at points of 𝑂𝑃.
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