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Abstract

Applied statistics for 2005 quals.



Part I

Descriptive Statistics
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Chapter 1

Probability Notation

Notation:

Probability of A =

P (A) : P (A) ≥ 0,
∑
A

P (A) = 1

Joint probability of A and B =

P (A,B)

Conditional probability of A given B =

P (A|B) =
P (A,B)
P (B)

Product rule:

P (A,B) = P (A | B)P (B) = P (B | A)P (A)

Marginal probability of A given all possible values of B =

P (A) =
∑
B

P (A,B)

Independence of A and B:

P (A,B) = P (A)P (B)

Bayes’ Rule:

P (B|A) =
P (A|B)P (B)

P (A)
Combinations: (

n
r

)
=

n!
(n− r)!r!
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Chapter 2

Statistics of Location

Statistics of location describe the position (e.g. mean). Statistics of dispersion
describe the variability (e.g. standard deviation).

In a unimodal, symmetric distribution (e.g. normal), the mean, median, and
mode are identical.

2.1 Mean

2.1.1 Arithmetic Mean

The arithmetic mean of X, or X̄ is

X̄ =
∑n
i=1Xi

n
(2.1)

2.1.2 Geometric Mean

The geometric mean of X is

GMX = n

√√√√ n∏
i=1

Xi (2.2)

= antilog
1
n

n∑
i=1

logXi

When to use the geometric mean? From Wikipedia:

The geometric mean is useful to determine ”average factors”. For example,
if a stock rose 10% in the first year, 20% in the second year and fell 15% in the
third year, then we compute the geometric mean of the factors 1.10, 1.20 and
0.85 as (1.10 ? 1.20 ? 0.85)1/3 = 1.0391... and we conclude that the stock rose
3.91 percent per year, on average.
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2.1.3 Harmonic Mean

Harmonic mean HX :

1
HX

=
1
n

n∑
i=1

1
Xi

or

HX =
n∑n

i=1
1
Xi

(2.3)

When to use the harmonic mean? From Wikipedia:

For instance, if for half the distance of a trip you travel at 40 miles per hour
and for the other half of the distance you travel at 60 miles per hour, then your
average speed for the trip is given by the harmonic mean of 40 and 60, which is
48; that is, the total amount of time for the trip is the same as if you traveled
the entire trip at 48 miles per hour.

2.2 Median

The median of a set of values is the middle value, when they are sorted high to
low. If there is an even number of values, the median is the mean of the middle
two.

The median is the 50th percentile.

2.3 Percentiles

The percentile is the fraction of points that lie below the given value.

To calculate percentile, first order the values. The 50th percentile, the me-
dian, is the value at position (n+ 1)/2.

In general, the pth percentile is

(n+ 1)
100/p

(2.4)

2.4 Mode

The mode is the value of a set that is most prevalent.
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Chapter 3

Statistics of Dispersion

3.1 Range

The range is the difference between the maximum and minimum values of the
group.

3.2 Variance

For a population:

Variance σ2 is

σ2 =
∑n
i=1(Xi − µ)2

n
(3.1)

For a sample:

Variance s2 is

s2 =
∑n
i=1(Xi −X)2

n− 1
(3.2)

3.3 Standard Deviation

Standard deviation is the square root of the variance.

For a population:

σ =
√
σ2 =

√∑n
i=1(Xi − µ)2

n
(3.3)

For a sample:

s =
√
s2 =

√∑n
i=1(Xi −X)2

n− 1
(3.4)
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3.4 Standard Error

The standard error of the mean is the standard deviation divided by square root
of the sample size.

For a population:
σX =

σ√
n

(3.5)

For a sample:

sX =
s√
n

(3.6)

3.5 Interquartile Range

The data points that lie between the 25th and 75th percentile. (I think? double
check)

3.6 Coefficient of Variation

The coefficient of variation allows variance comparison between populations with
different means. It presents the standard deviation as a percentage of the mean:

V =
σ × 100
X̄

(3.7)

3.7 Moment statistics

The rth central moment is the average of deviations of all items from the mean,
each raised to the power r:

1
n

n∑
i=1

(Yi − Ȳ )r (3.8)

The first central moment equals zero:

1
n

n∑
i=1

(Yi − Ȳ )

The second central moment is the variance:

1
n

n∑
i=1

(Yi − Ȳ )2

The third and fourth central moments are used to calculate skewness and
kurtosis.
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Chapter 4

Boxplots

Boxplots contain

• Median: center line

• Interquartile range (1st and 3rd quartiles): Box

• Extreme values: ”Whiskers” (vertical lines). If all values are within 1.5
IQR, then the whiskers only extend to the max/min values.

• Outliers (> 1.5 IQR): Points
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Chapter 5

Normalization

5.1 Z-score

5.2 Double-centering

Subtract row and column means, and add back grand mean.
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Part II

Distributions

9



Chapter 6

Discrete

6.1 Binomial

Given a choice of fruits, apple (A) or banana (B), let P (A) = p and P (B) = q.

In choosing one fruit, the sample space and corresponding probablities are

{A,B}
{p, q}

In the case of one trial, the variable is a Bernoulli random variable.

With two fruits (and AB = BA):

{AA,AB,BB}
{p2, 2pq, q2}

And three fruits:

{AAA,AAB,ABB,BBB}
{p3, 3p2q, 3pq2, q3}

... etc.

The coefficients in the probabilities are equal to the number of ways that
the outcome can be obtained.

Binomial expansion summarizes this result:

(p+ q)n (6.1)

where n is the sample size.

10



The probability mass function of a binomial distribution is

P (X = x) =
(
n
x

)
pxqn−x (6.2)

=
n!

x!(n− x)!
px(1− p)n−x

where x is the number of ”successes” (here, the number of apples).

The binomial distribution is the expected distribution of outcomes in ran-
dom samples of size n, with probability p of success.

Mean and variance of binomial distribution:

µ = np

σ =
√
npq

σ2 = npq

6.2 Poisson

The Poisson distribution can be used to approximate the Binomial distribution
when one event is rare (p < 0.1), and the sample size is large (np > 5).

A Poisson variable Y must be

1. Rare: Small mean relative to the number of possible events per sample

2. Random: Independent of previous occurrences in the sample

This distribution can model the number of times that a rare event occurs,
and test whether rare events are independent of each other.

The parameter λ is the expected number of successes. If X is binomial with
large n and small p, the number of success is approximately a Poisson random
variable with λ = np.

The probability mass function of a Poisson distribution is

P (X = x) = e−λ
λx

x!
. (6.3)

λ is the only parameter needed to describe a Poisson distribution. It is equal
to both the variance and the mean:

λ = µ = σ2. (6.4)
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Thus the expected frequency of seeing X rare events is

e−µ
µX

X!
, (6.5)

and a simple test of whether a variable is Poisson-distributed is the coefficient
of dispersion:

CD =
s2

Ȳ
, (6.6)

where s2 is the sample variance and Ȳ is the sample mean. Samples having CD
close to one are Poisson-distributed.

The Birthday Paradox

If there are n people in a room, there are
(
n
2

)
pairs of people. We define

a success as having one pair share a birthday, with probability 1/365. Thus

n =
(
n
2

)
p = 1/365

The expected number of successes is

µ = np

=
(
n
2

)
/365

= n(n− 1)/730
= λ

Thus the probability that no two people share a birthday is

P (X = 0) = e−λ
λ0

0!
= e−λ

= exp

{
−n(n− 1)

730

}
If we want to find the number of people for which the probability is less than

0.5:

exp

{
−n(n− 1)

730

}
≤ 1

2

exp

{
n(n− 1)

730

}
≥ 2

n(n− 1) ≥ 730 ln(2),

which is solved with n ≈ 23, meaning that if there are 23 people in a room,
there is a probability of 0.5 that two of them share a birthday.
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6.3 Negative binomial

The negative binomial distribution models the number of trials, n, performed
until r successes occur.

P (X = n) =
(
n− 1
r − 1

)
prqn−r (6.7)

6.4 Geometric

The geometric distribution models the number of trials, n, performed until a
success occurs. Note that this is the same as the negative binomial distribution
with r = 1.

P (X = n) = (1− p)n−1p (6.8)

The mean and variance of a geometric random variable:

µ =
1
p

(6.9)

σ2 =
1− p

p2
(6.10)

6.5 Hypergeometric

The hypergeometric distribution is equivalent to the binomial, in that it models
the number of successes in n trials, but it accounts for sampling without re-
placement.

Imagine an urn containing N balls: m are white and N −m are black. The
hypergeometric distribution is given by

P (X = i) =

(
m
i

) (
N −m
n− i

)
(
N
n

) (6.11)

where
m = possible successes = number of white balls in the urn
i = successes = number of white balls selected
n = sample size = total balls selected
N = population size = total balls in urn
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If the number of white and black balls (successes and failures) are not ex-
plicitly known, but the probabilities are, then:

P (X = i) =

(
pN
i

) (
qN
n− i

)
(
N
n

) (6.12)

where
p = probability of success
q = probability of failure
i = number of successes
n = sample size
N = population size

Thus parameters needed to describe a hypergeometric distribution are
N , the population size,
n, the sample size, and
m, the number of successes (or p, the probability of success).

6.6 Zeta / Zipf

The probability mass function of the Zipf distribution is

P (X = k) =
C

kα+1
(6.13)
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Chapter 7

Continuous

7.1 Uniform

The probability density function for a uniform random variable X on interval
(α, β) is

f(X) =


1 if α < x < β

β − α
0 otherwise

(7.1)

The mean and variance of X:

µ =
β + α

2

σ2 =
(β = α)2

12

7.2 Normal

Parameters: µ, σ2

The normal probability density function is

f(X) =
1

σ
√

2π
e−(X−µ)2/2σ2

(7.2)

The curve is symmetric about the mean.

µ± σ contains 68.3% of the items
µ± 2σ contains 95.5% of the items
µ± 3σ contains 99.7% of the items

and
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50% of the items lie within µ± .67σ
95% of the items lie within µ± 1.96σ
99% of the items lie within µ± 2.58σ

We can fit a normal distribution to an observed frequency distribution:

Z =
ni

s
√

2π
e−(Y−ȳ)2/2s2 , (7.3)

where n is the sample size and i is the class interval of the frequency distri-
bution.

We can also calculate expected frequencies for a normal distribution having
the observed mean and standard deviation of the observed sample.

Some distributions (e.g. binomial/multinomial) can be approximated by a
normal distribution as the sample size becomes large.

7.2.1 Skewness and Kurtosis

Skewness is the amount of asymmetry in a distribution. In a skewed distribu-
tion, the mean and median are not identical.

Skewness of the population is γ1, and skewness of the sample is g1.

g1 =
1
ns3

n∑
i=1

(Yi − Ȳ )3 (7.4)

which is the third central moment divided by the cubed standard deviation.

Kurtosis describes the peakedness of a distribution. ”Leptokurtic” curves
have long tails and ”platykurtic” curves have short tails. ”Mesokurtic” distri-
butions have the same kurtosis as the normal distribution.

Kurtosis of the population is γ2 and skewness of the sample is g2.

g2 =
1
ns4

n∑
i=1

(Yi − Ȳ )4 − 3 (7.5)

which is the fourth central moment divided by the fourth power standard devi-
ation, minus 3.

In the normal distribution, γ1 and γ2 are zero. Negative g1 indicates left
skewness, and positive g1 indicates right skewness. Negative g2 indicates platykur-
tosis, and positive g2 indicates leptokurtosis.
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7.2.2 Central Limit Theorem

The Central Limit Theorem states that as sample size increases, the means of
samples drawn from a population having any distribution will approach the nor-
mal distribution.

As the number of samples increases, the Central Limit Theorem states that
the:

• distribution of sample means will approximate normal, regardless of the
original distribution

• mean value of sample means will equal the population mean

• standard deviation of the sample means (standard error of the mean)
depends on population standard deviation and sample size.

There are many central limit theorems at various levels of abstraction. (E.g.
one in Rice book assumes the existence of moment-generating functions, which
only exist if the expectation converges.) Central limit theorems are still an ac-
tive area of research in probability theory.

7.3 t-distribution

This distribution was described by W.S. Gossett, under the pseudonym ”Stu-
dent”, so it is sometimes called the Student’s distribution.

The deviates Ȳ − µ of sample means from the true means of a normal dis-
tribution are also normally distributed. These deviates divided by the true
standard deviation, (Ȳ − µ)/σ are still normally distributed, with µ = 0 and
σ = 1 (standard normal).

But the distribution of deviates of i samples, each with mean Yi and standard
error sȲ i,

(Ȳi − µ)
sȲ i

(7.6)

is not normally distributed. It is wider because the denominator is the sample
standard error instead of the population standard error. It will sometimes be
smaller, sometimes larger than expected, so the variance is greater.

The expected distribution of this ratio follows the t-distribution.

The t-distribution’s shape is dependent on the degrees of freedom, n − 1,
where n is the sample size. As the degrees of freedom increase, the t-distribution
approaches the normal distribution, and is equal to it when n = ∞ (and close
to it when n ≈ 25).
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7.4 Gamma

Parameters: n, λ

The gamma distribution models the time until a total of n events has oc-
curred.

Note that this is the continuous equivalent of the negative binomial distri-
bution.

The gamma distribution can model time-to-first-failure events. It is often
used for a system with ”standby” backups, each having exponential lifetimes
with parameter λ.

The probability distribution is

f(x) =
λe−λx(λx)(n−1)

Γ(n)
for x ≥ 0 (7.7)

where

Γ(t) =
∫ ∞

0

e−yyn−1dy (7.8)

= (n− 1)! (7.9)

for integral values of n.

7.5 Exponential

Parameters: λ

The exponential distribution models the amount of time until an event oc-
curs.

Note that this is the continuous equivalent of the geometric distribution.

The probability density function is

f(x) = λe−λx for x ≥ 0 (7.10)

Note that the exponential distribution is the same as the gamma distribu-
tion with parameters (1, λ). (I.e. time until first event, n = 1.)

The mean and variance of x:

µ =
1
λ

σ2 =
1
λ2

18



The cumulative distribution function is

F (x) = 1− e−λx (7.11)

The exponential distribution is memoryless:

P (X > t+ s | X > t) = P (X > s) for all s, t ≥ 0, (7.12)

meaning that if the instrument is alive at time t, the probability of survival
to time t + s (i.e., from time t to s) is the same as the initial probability of
surviving to time s. (I.e., the instrument doesn’t remember that it already
survived to t).

7.5.1 Laplace distribution

(a.k.a. double exponential)

A variation on the exponential distribution. It arises when a random variable
is equally likely to be positive or negative, and it has an absolute value that is
exponentially distributed.

7.5.2 Hazard rate function

(a.k.a. failure rate)

The hazard rate function λ(t) is

λ(t) =
f(t)
F (t)

, (7.13)

where F (t) = 1− F .

λ(t) represents the conditional probability that an item will fail, given that
it survived until time t. If the lifetime distribution is exponential, then by the
memoryless property (the lifetime doesn’t affect the probability of failure), the
probability of failure should be constant:

λ(t) =
f(t)
F (t)

=
λe−λt

e−λt
= λ

7.6 Chi-Square

Parameters: n
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The chi-square distribution models the square of the error in n-dimensional
space, assuming the coordinate errors are independent standard normal.

If Yi are standard (mean 0, variance 1) normal independent variables, then

n∑
i=1

Y 2
i (7.14)

follows a χ2 distribution with n degrees of freedom.

The χ2 distribution is the same as the gamma function with parameters
(n2 ,

1
2 ).

7.7 Weibull

The Weibull distribution is often used as the distribution of the lifetime of an
item under the ”weakest link” model. E.g., if an item fails when one of its many
parts fails.

7.8 Beta

The beta distribution models variables whose values fall in an interval [c, d],
which can be transformed into the interval [0, 1].

The beta distribution is related to the gamma distribution.

7.9 Dirichlet

Multivariate generalization of the beta distribution.

7.10 F-distribution

Parameters: n,m

The F-distribution models whether two distributions have the same variance.

The F-statistic is defined as

Fn,m ≡ χ2
n/n

χ2
m/m

(7.15)

where χ2
m and χ2

n are independent chi-squared variables, with m and n degrees
of freedom.
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Part III

Hypothesis Testing
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Type of experiment

Scale of
measurement

Two treatment Three or more Before and Multiple Association
groups treatment after a single treatments between two

(diff indiv) (diff indiv) treatment (same indiv) variables
(same indiv)

Interval
(norm dist)

Unpaired t-test ANOVA Paired t-test Repeated- Linear
measures regression or
ANOVA Pearson corr

Nominal Chi-square Chi-square McNemar’s Cochrane Q Relative rank
or odds ratio

Ordinal Mann-Whitney Kruskal- Wilcoxon Friedman Spearman
Wallis signed-rank statistic rank corr

Survival time Log-rank or
Gehan’s test

Table 7.1: Summary of some statistical methods to test hypotheses (From
Glantz 2001)
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Chapter 8

Errors and significance

8.1 Null hypothesis

The null hypothesis (H0) is assumed true until shown otherwise. It typically
presumes that there is no difference in the data under examination (e.g. there
is no difference in the means of two populations). If a statistical test finds a
significant difference, then we reject the null hypothesis (e.g. declare a difference
between the means).

8.2 Type I / Type II errors

True state of null hypothesis
Statistical decision H0 true H0 false

Reject H0
Type I error Correct

α 1− β

Don’t reject H0
Correct Type II error
1− α β

Table 8.1: Summary of errors

Type I error occurs if the null hypothesis is rejected when it is true (false
positive).

Type II error occurs when the null hypothesis is false but not rejected
(false negative).

P(Type I error) = α (8.1)
P(Type II error) = β (8.2)
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Graphical illustration of Type I vs Type II errors:
http://www.psychstat.smsu.edu/introbook/sbk26m.htm

8.2.1 The meaning of p-value

The p-value is the probability of type I error: the probability of being wrong
when concluding that a difference exists.

8.2.2 Power

α is the probability of a Type I error: that you will wrongly reject the null
(when it is true). β is the probability of a Type II error: that you will wrongly
accept the null (when it is false).

Power is 1− β.

In intuitive terms: Assume there is a difference; will you be able to detect it?
Power is the chance of detecting a true difference (getting a significant p-value)
assuming the given parameters.

Power depends on

1. Sample size. Larger sample size means greater power.

2. Size of difference worth detecting, with respect to the variance. (This
must be specified in advance.) is harder to detect smaller differences.

3. α : more stringent cutoff means reduced power.

Relationship between β and α: [Figure of two curves: one under null, and
the true distribution, given that there is a true effect. To the right of α on the
null curve is the chance of Type I error; to the right of α on the true curve is
the power, 1− β, the chance that we will detect the true difference. To the left
is β, the chance that we will make a Type II error.]

Relationship between mean differences and standard deviation:
Define a noncentrality parameter:

φ =
δ

σ
(8.3)

where
δ = µ1 − µ2

σ = population standard deviation.

An increase in σ decreases the power, and an increase in δ increases the
power.
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If a study doesn’t find a significant difference, that does not mean that one
does not exist. It may not have had enough power to detect a true difference.

8.3 Confidence intervals

The standard deviate of a sample mean from the true mean is

(Y − µ)
σȲ

, (8.4)

where σȲ is σ/
√
n.

If the standard deviates are normally distributed, 95% of them will lie be-
tween -1.96 and 1.96. (See discussion of normal distribution in section 7.2.)

P

(
−1.96 ≤ (Y − µ)

σȲ
≤ 1.96

)
= 0.95

P
(
Y − 1.96σȲ ≤ µ ≤ Y + 1.96σȲ

)
= 0.95 (8.5)

(8.6)

We define these limits as confidence limits,

L1 = Y − 1.96σȲ
L2 = Y + 1.96σȲ

These confidence limits L1 and L2 can be calculated from the normal dis-
tribution if the true parametric standard deviation is known (or if the sample
size is large). But if it is not known, it must be calculated from the sample, and
thus the confidence limits should come from the t-dstribution.

For confidence limits of probability 1− α,

L1 = Ȳ − tα[n−1]sȲ

L2 = Ȳ + tα[n−1]sȲ

where tα[n−1] is the value of the t-distribution at level α (e.g. 0.05 for 95%
confidence) with df = n− 1.

Thus,

P (L1 ≤ µ ≤ L2) = 1− α

P (Ȳ − tα[n−1]sȲ ≤ µ ≤ Ȳ + tα[n−1]sȲ ) = 1− α (8.7)
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For example, at 95% confidence (α = .05) and n = 10, (df = 9), we have

L1 = Ȳ − 2.3sȲ
L2 = Ȳ + 2.3sȲ

To reduce the width of the confidence interval, the standard error of the
mean must be reduced. This can be achieved by reducing σ or increasing n, the
sample size. (Larger degrees of freedom lead to smaller values of t.)

8.4 One-tailed vs. two-tailed tests

It is easier to reject the null with a one-tailed test than two-tailed test.

A one-tailed test is used when we predict the direction of the difference in
advance (e.g. one mean will be larger than the other). With that assumption,
the probability of incorrectly rejecting the null is only calculated from one tail
of the distribution. In standard testing, the probability is calculated from both
tails. Thus, the p-value from a two-tailed test (p2) is twice the p-value of a
one-tailed test (p1).

p2 = 2 p1

It is rarely correct to perform a one-tailed test; usually we want to test
whether any difference exists.

8.5 Parametric vs. Non-parametric

Use nonparametric methods if the data are not normally distributed or do not
meet other assumptions of a given test (e.g. equal variance in all groups).
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Chapter 9

Tests for distributions

9.1 QQ / Probability Plots

A Q-Q (quantile-quantile) plot can illustrate whether two groups have a common
distribution.

A quantile is the fraction of points below a threshold. At the .5 quantile,
half of the data points fall below the threshold and half fall above.

If two groups have a common distribution, plotting their quantiles against
each other should form an approximately straight line at a 45-degree angle.

Probability plots compare a data set to a known distribution. They are often
used to test normality assumptions.

The normal probability plot is covered here:
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm

9.2 Anderson-Darling

9.3 Shapiro-Wilk

Test for normality.

9.4 KL Divergence

(From Amit)

How similar are two probability distributions?

D(p||q) =
∑

p(x)× log((p(x)/q(x)))

Note that this is not symmetric.
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9.5 Bootstrap to estimate distributions

(From http://en.wikipedia.org/wiki/Bootstrap)
Invented by Brad Efron, further developed by Efron and Tibshirani.

It is a method for estimating the distribution by sampling with replacement.
The original sample is duplicated many times, representing a population. Sam-
ples are drawn from this population, with replacement.

Sampling with replacement is more accurate than sampling without replace-
ment.
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Chapter 10

Differences between two
groups

10.1 T-test

For continuous variables.

The t-test examines whether the means of two groups are different.

The t-statistic is

t =
difference in sample means
variability of sample means

=
X − Y

SE(X − Y )
(10.1)

where SE(X − Y ) can be calculated from individual variances,

SE(X − Y ) =

√
s2
X̄

nX
+
s2
Ȳ

nY
(10.2)

or pooled variances (here assuming same sample size n),

SE(X − Y ) =

√
s2

n
+
s2

n
(10.3)

where s2 is averaged from the two samples:

s2 =
s2
X̄

+ s2
Ȳ

2

Note that pooling variance can increase sensitivity of a test.
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The degrees of freedom for a t-test:

df = n1 + n2 − 2 (10.4)

From the t-statistic, we can compute a p-value using the t-distribution. This
p-value is the probability that we reject the null when it is true (probability that
we are wrong; type I error).

Note: It can be shown that the t-test is an ANOVA, with

F = t2 (10.5)

where F is the F-statistic from section 11.1.

The t-test should not be used to directly compare more than two groups.
FIrst ANOVA should be used to see whether any difference exists; if one does,
then t-tests can be performed to find it. However, multiple hypothesis correction
should be applied (see section 16).

10.2 Mann-Whitney U (Wilcoxon) rank sum test

For ordinal (rank) variables. Nonparametric method.

Steps:

• Combine the two samples X1 and X2, and order the values by rank.

• Sum the ranks in each group, R1 and R2 (actually only one is necessary;
see below)

• Compute test statistic U

U = n1n2 +
n1(n2 + 1)

2
−R1 (10.6)

At the extreme, R1 is equal to n1(n2 + 1)/2, and the maximum U will be
n1n2.

Compare the U-statistic to a U-distribution, which can be approximated by
the normal distribution with sample sizes greater than about 20.

10.3 Nominal / categorical variables

10.3.1 z-statistic

Parametric method of analyzing independent Bernoulli trials. If we examine
whether there difference in sample proportions (fractions).
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Disease No disease Row totals
Treatment O11 O12 R1

Control O21 O22 R2

Column totals C1 C2 N

Table 10.1: Example 2 x 2 contingency table

z =
difference in sample proportions
variability of sample proportions

=
p̂1 − p̂2

SE(p̂1 − p̂2)
(10.7)

where
(**********finish)

Assumptions (which make the method parametric):

• Each trial has two mutually exclusive outcomes

• Probability p of given outcome remains constant

• All trials are independent

(From Glantz 2001)

10.3.2 Chi-square

Nonparametric method. (Assumes nothing about parameters of population.)

Compare observed contingency table to expected contingency table.

Test statistic χ2 is defined as

χ2 =
∑
cells

(O − E)2

E

where O = observed individuals in a cell (see Table 10.2 )
and E = expected number of individuals in a cell (see Table 10.3 )

The expected value of a cell (i,j), E(Oi,j), is the probability of each column
multiplied by the row total. The probability of each column is simply the column
total over the grand total.
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Disease No disease Row totals
Treatment O11 O12 R1

Control O21 O22 R2

Column totals C1 C2 N

Column probabilities C1/N C2/N

Table 10.2: Observed contingency table

E(Oij) = P (column i)×Ri

=
Ci
N
×Ri (10.8)

(Or, equivalently, the probability of each row multiplied by the column total.)

Disease No disease Row totals
Treatment (C1/N)×R1 (C2/N)×R1 R1

Control (C1/N)×R2 (C2/N)×R2 R2

Column totals C1 C2 N

Table 10.3: Expected contingency table

The degrees of freedom are

df = (r − 1)(c− 1) (10.9)

where r = number of rows, and c = number of columns.

10.3.3 Fisher’s exact test

Alternative to chi-square test. It computes exact probabilities based on the
hypergeometric distribution.

It should be used when the sample size is small.

The probability of observing a given contingency table can be computed as

P =
R1!R2!C1!C2!

N !

O11!O11!O11!O11!
(10.10)

To calculate the probability of a table that at least that extreme, compute
the probabilities for all tables with the same row/column totals, but that have
more extreme values. Sum these probabilities.
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10.3.4 Relative Risk / Odds Ratios

Odds is defined as
odds =

p

1− p
(10.11)

E.g. if 9/10 people in a room are male, the odds of being male is .9 / .1 =
9, or 9 to 1. The odds of being female are .1/.9 = .11, or 1 to 9.

Note:
In discussing relative risk and odds ratio, be careful with the term ”control”.
For relative risk, ”control” generally means no treatment, and for odds ratio,
”control” generally means no disease.

Disease (cases) No disease (control) Row totals
Exposure (treatment) a b a + b

No-exposure (no-treatment) c d c + d
Column totals a + c b + d

Table 10.4: RR / OR table

The relative risk quantifies the relationship between exposure and outcome:

RR =
probability of disease in exposure group

probability of disease in no-exposure group
(10.12)

Referring to table 10.4, this becomes

RR =
exposed and diseased / all exposed

no-exposure and diseased / all no-exposure

=
a/a+ b

c/c+ d
(10.13)

Analogously, the odds ratio compares the risk of exposure in cases (disease)
to controls (no-disease):

OR =
odds of exposure in cases (disease)

odds of exposure in controls (no-disease)

The odds of exposure in cases (disease) is:

=
treatment and diseased / all diseased

no-treatment and diseased / all diseased

=
treatment and diseased

no-treatment and diseased
=

a

c
(10.14)
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The odds of exposure in controls (no-disease) is:

=
treatment and no-disease / all no-disease

no-treatment and no-disease / all no-disease

=
treatment and no-disease

no-treatment and no-disease

=
b

d
(10.15)

So the OR is:

OR =
a/c

b/d

=
ad

bc

10.4 QQ / Probability Plots

Covered in section 9.1.
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Chapter 11

Differences between three
or more groups

11.1 ANOVA

Intuitive ANOVA:

When examining multiple groups, the F-statistic compares the variance be-
tween the groups (sbet) to the variance within the groups (swit).

F =
sbet
swit

(11.1)

If the groups come from the same population (as stated by the null hypoth-
esis), these two variances should be approximately equal, and their ratio should
be near one. If the groups are very different, coming from different populations,
then the between-group variance will be larger than the within-group variance,
and the ratio will be greater than one.

At large F , we reject the null hypothesis and conclude that a difference ex-
ists between groups.

One-way (single factor) ANOVA assumes one underlying factor causing the
difference.

There are two degrees-of-freedom parameters in ANOVA: νn and νd. νn is
the between-groups dof (numerator), and νd is the within-groups dof (denomi-
nator).

νn = m− 1
νd = m(n− 1)
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Mathematical explanation of ANOVA:

Organize data into a table of subjects, s1 to sn, by treatments, t1 to tm.

Within-group variance

Let SSt be the sum of squares for treatment t, over all subjects s who
received t:

SSt =
∑
s

(Xts −Xt)2 (11.2)

The variance within one treatment group t is thus

s2t =
SSt
n− 1

The within-group sum of squares over all treatment groups t is

SSwit =
∑
t

SSt

And the estimated within-group variance of the population is the average
within-group variance of each treatment:

s2wit =
s2t
m

=
∑
t SSt

m(n− 1)

=
SSwit
DFwit

= MSwit

where MSwit is the within-groups mean-square.

Between-group variance

Let SSbet be the between-groups sum of squares.

SSbet = n
∑
t

(Xt −X)2

where
X = mean over all samples
Xt = mean within treatment group t
n = number of samples per treatment.
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So

s2bet =
SSbet
m− 1

=
SSbet
DFbet

= MSbet

F-statistic

The F-statistic is computed as

F =
MSbet
MSwit

(11.3)

Total variance

The total sum of squares is

SStot = SSbet + SSwit (11.4)

=
∑
t

∑
s

(Xts −X)2

The total degrees of freedom is

DFtot = DFbet +DFwit (11.5)
= (m− 1) +m(n− 1)
= mn− 1

And the total variance is
s2 =

SStot
DFtot

(11.6)

11.2 Kruskal-Wallis statistic

Ordinal (rank) variables. Nonparametric method.

A generalization of the Mann-Whitney rank sum test.

Steps:

• Rank all variables regardless of group

• Compute the rank sum for each group

• Compute test statistic H

H =
12

N(N + 1)

∑
t

nt(Rt −R)2 (11.7)
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Chapter 12

Before and after treatment
per subject

12.1 Paired t-test

For continuous variables.

Measurements before and after a single treatment.

The t-statistic is

t =
d− δ

sd
(12.1)

where
δ is the true mean change before and after treatment
d is the estimated mean change before and after treatment
sd is the standard error of the mean

To test the null hypothesis that δ = 0,

t =
d

sd
(12.2)

12.2 Wilcoxon signed rank test

Ordinal (rank) variables.

Nonparametric version of paired t-test. Measurements before and after a
single treatment.

Steps:
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• Compute before/after treatment differences in each subject

• Rank differences according to magnitude (ignoring sign)

• Attach sign of difference to each rank

• W = sum of signed ranks

Compare W to known distribution to get p-value.

12.3 McNemar’s test for changes

For nominal (binary) variables.

Analogous to paired t-test (two treatments per subject, or before/after).

Treatment 2
Treatment 1 + −

+ a b
− c d

Table 12.1: McNemar table

We cannot use chi-square because it tests the hypothesis that the rows and
columns are independent. Here, they are not independent because the same
individual is being represented.

The subjects who respond positive to both treatments (cell a) and those
who respond negative to both treatments (cell d) are not informative. We are
interested in the subjects who respond differently to the two treatments (cells
b and c).

We compute the chi-square statistic for these two cells

χ2 =
∑

cells b,c

(O − E)2

E
(12.3)

with one degree of freedom.
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Chapter 13

Multiple treatments per
subject

13.1 Repeated measures ANOVA

Used when one subject receives multiple treatments.

Construct a table similar to that of standard ANOVA: subjects (s1 to sn)
by treatments (t1 to tn).

Again, we need to find within-group (here, within-subject) variance and
between-group (between-treatment) variance.

The SS within-subjects is due to variability caused by (a) treatment and (b)
individual random variation (termed residual variation).

SSwit subjs = SStreat + SSres

and

SSres = SSwit subjs − SStreat

We calculate the sum of squares within-subjects

SSwit subjs =
∑
s

∑
t

(Xts − Ss)2

and for the treatment

SStreat = n
∑
t

(T t −X)2
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Degrees of freedom:

DFtreat = m− 1
DFres = DFwit subjs −DFtreat

= n(m− 1)− (m− 1)
= (n− 1)(m− 1)

Mean squares:

MStreat =
SStreat
DFtreat

MSres =
SSres
DFres

And finally the F-statistic:

F =
MStreat
MSres

(13.1)

13.2 Friedman test

Ordinal (rank) variables. Nonparametric method.

Steps:

• Rank each subject’s responses to the treatments, regardless of other sub-
jects

• Sum the ranks for each treatment

• Compute Friedman’s statistic, χ2
r

13.3 Cochrane Q
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Chapter 14

Testing for trends

14.1 Regression

See Machine Learning file.

14.2 Correlation

For more detail, see the Machine Learning file.

Covariance:

Cov(X,Y ) = E[(X − µX)(Y − µY )]
= E(XY )− E(X)E(Y )

Correlation:

ρ =
Cov(X,Y )√
V ar(X)V ar(Y )

=
σXY
σXσY

14.2.1 Significance tests

14.3 Relationship between correlation and lin-
ear regression

Regression is used to explain a change in Y with respect to X, and it implies
causation of X. Correlation only measures association, stating nothing about
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causation.

Correlation:

ρ =
cov(x, y)
sxsy

Regression:

β =
cov(x, y)

s2x

So
ρ = β

sx
sy

and
β = ρ

sy
sx

The square of the correlation coefficient, r2 is the coefficient of deter-
mination, which measures the degree to which a straight line measures the
relationship.

r2 = 1− SSres
SStot

It is said that r2 is the fraction of total variance ”explained” by the regression
equation.
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Chapter 15

Frequencies and Goodness
of Fit

A goodness-of-fit test is one which tests a hypothesis without an alternative.

Common goodness-of-fit tests are

• Chi-square test

• Kolmogorov test

• Cramer-Smirnov-Von-Mises test

• runs

15.1 Likelihood ratio test
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Chapter 16

Multiple Hypothesis
Testing

If we perform multiple tests, each with a p-value cutoff of, e.g. 0.05, then 1/20
tests will be falsely positive on average.

16.1 Bonferroni correction

A new p-value cutoff is obtained by dividing the original cutoff by the number
of hypotheses.

The Bonferroni inequality:

αT < kα

αT
k

< α (16.1)

where αT is the true probability of incorrectly rejecting the null at least once
(usually the original cutoff).

Notes:

• Extremely conservative. Works well with just a few groups, but as the
number of hypotheses becomes large, it becomes more stringent than nec-
essary.

• Assumes independent hypotheses
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16.2 Holm test

The Holm test orders the unadjusted p-values and accepts/rejects the tests with
decreasing stringency, based on the number of tests already done.

16.3 Tukey

The Tukey statistic q is similar to the t-statistic, but the sampling distribution
used for critical value calculation includes a mathematical model of the multiple
hypothesis testing problem.

16.4 Student-Newman-Keuls (SNK)

Nonparametric method.

SNK is derived from Tukey, but it is less conservative (finds more differences).

Tukey controls the error for all m comparisons, where SNK only controls for
p comparisons under consideration.

(A.k.a. Dunnett’s for a single group)

16.5 False Discovery Rate
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Chapter 17

Survival Analysis

17.1 Censored Data

Some subjects are not followed to the endpoint (e.g. death). These subjects are
”censored”.

17.2 Survival curves

Kaplan-Meier survival estimate:

Ŝ(tj) =
∏
i

ni − di
ni

(17.1)

where
ni = num of individuals alive at time ti
di = num of deaths at time ti

The median survival time is the survival time for which the estimated
survival function Ŝ is 0.5.

17.3 Comparing Survival Curves

Note: could use Mann-Whitney or Kruskal-Wallis if data are not censored.

Hazard ratio

The hazard ratio (HR) is equal to the odds = P/(1-P).
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For two curves S1(t) and S2(t), the hazard ratio ψ is a constant that describes
their relationship:

S2(t) = [S1(t)]ψ (17.2)

The hazard function is the probability that a person who survived until time
t dies at time t, and is

h(t) =
1− S(t)
S(t)

(17.3)

17.3.1 Log-rank test

Find the expected number of deaths in group 1 at time ti:

e1,i =
n1 × dtotal
ntotal

where
n1 is the number of subjects in group 1
dtotal is the number of deaths in group 1 and 2
ntotal is the number of subjects in group 1 and 2

The log-rank test statistic is

UL =
∑
i

(d1,i − e1,i)

which can be normalized and compared to the normal distribution.

17.3.2 Gehan’s test

Generalization of Wilcoxan signed rank test

17.3.3 Cox proportional hazards regression

Log-rank and K-M don’t work as well for continuous values (e.g. time or gene
expression). Cox proportional hazards regression is used for continuous vari-
ables. [Although note that it can also be used for categorical data by using
dummy 0,1 variables.]

Deals with censored data.

Two survival curves are proportional if the hazard rate h1 for group 1 is a
constant multiple of the hazard rate h2 for group 2.

Hazard

h(t,X) = h0(t)exp{
p∑
i=1

βiXi}
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Hazard ratio: ratio of two hazards

h1(t)
h2(t)

Use ML to estimate parameters (coefficients).

17.3.4 Probability of Hazard

Allows time-dependent covariance, whereas logistic regression requires discretized
time.

Non-parametric – important because survival times are often not normally
distributed.

(– MW)

17.3.5 Papers

Mike’s NEJM paper
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Part IV

Parameter Estimation
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See Machine Learning file.
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Part V

Bayesian Methods
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Chapter 18

Bayesian vs Frequentist

Frequentist

• Unknown but fixed parameters

• Estimate parameters with some confidence

• Predict using estimated parameter

Bayesian

• Uncertainty about known parameter

• Use probability to quantify uncertainty: unknown parameters are random
variables.

• Predict by rules of probability: Expectation over unknown parameters.
Prediction is inference in a Bayes net.
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