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It is in the nature of an hypothesis, when once a man
has conceived it, that it assimilates every thing to itself,
as proper nourishment; and, from the first moment of
your begetting it, it generally grows the stronger by
every thing you see, hear, read, or understand.

L. Sterne, Tristram Shandy, II, 19
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1 Apollonian circles of a triangle

Denote by {𝑎 = |𝐵𝐶|, 𝑏 = |𝐶𝐴|, 𝑐 = |𝐴𝐵|} the lengths of the sides of triangle 𝐴𝐵𝐶. The
“Apollonian circle of the triangle relative to side 𝐵𝐶” is the locus of points 𝑋 which satisfy
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Figure 1: The Apollonian circle relative to the side 𝐵𝐶

the condition |𝑋𝐵|/|𝑋𝐶| = 𝑐/𝑏. By its definition, this circle passes through the vertex 𝐴
and the traces {𝐷, 𝐷′} of the bisectors of 𝐴 on 𝐵𝐶 (see figure 1). Since the bisectors are
orthogonal, 𝐷𝐷′ is a diameter of this circle. Analogous is the definition of the Apollo‑
nian circles on sides 𝐶𝐴 and 𝐴𝐵. The following theorem ([Joh60, p.295]) gives another
characterization of these circles in terms of Pedal triangles.

http://users.math.uoc.gr/~pamfilos/eGallery/Gallery.html
http://users.math.uoc.gr/~pamfilos/
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Theorem 1. The Apollonian circle 𝛼, passing through 𝐴, is the locus of points 𝑋, such that
their pedal triangles are isosceli relative to the vertex lying on 𝐵𝐶 (see figure 2).
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Figure 2: The pedals of points 𝑋 on the Apollonian circles of the triangle are isosceli

Proof. This follows from the sine formula

|𝐸𝐷|
|𝐸𝐹| = |𝑋𝐵| sin(𝐵̂)

|𝑋𝐶| sin(𝐶)
= 𝑐 ⋅ sin(𝐵̂)

𝑏 ⋅ sin(𝐶)
= 1.
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Figure 3: Points {𝐴, 𝐺, 𝐼} are collinear

Exercise 1. If 𝛾 is the Apollonian circle through 𝐶 of the triangle 𝐴𝐵𝐶 intersecting again the
circumcircle 𝜅(𝑂) of 𝐴𝐵𝐶 in 𝐺 and 𝐼 is the diametral to 𝑂 on the circle 𝜇 = (𝐴𝑂𝐵), show that
{𝐴, 𝐺, 𝐼} are collinear (see figure 3). For 𝐹 = 𝐶𝐺 ∩ 𝐴𝐵 show that (𝐶, 𝐺) ∼ (𝐹, 𝐼) are harmonic
pairs and 𝑂𝐹 is the polar of 𝐼 relative to 𝛾.
Hint: Consider the circle 𝜒(𝐼, |𝐼𝐵|) and see first that the three circles {𝛾, 𝜅, 𝜒} are pairwise
orthogonal, which implies that 𝐼 is on the radical axis of {𝛾, 𝜅}.
Exercise 2. With the definitions of the preceding exercise, show that triangles {𝐴𝐵𝐶, 𝐴𝐺𝐽, 𝐺𝐵𝐽}
are similar, where 𝐽 = 𝐶𝐼 ∩ 𝐸𝑂 (see figure 4).

Hint: Angle chasing: 𝐴𝐽𝐺 = 𝐺𝐽𝐵 = 𝐴𝑂𝐵/2 = 𝐴𝐶𝐵, 𝐴𝐺𝐽 = 𝐴𝐵𝐶, 𝐽𝐺𝐵 = 𝐶𝐴𝐵.
Exercise 3. With the definitions of the two previous exercises, define the similarities {𝑓𝐴, 𝑓𝐵, 𝑓𝐶},
where 𝑓𝐴 has center at 𝐴, rotation angle 𝐴 and ratio 𝑘𝐴 = 𝐴𝐵/𝐴𝐶, the others being defined by
cyclic permutation of the letters {𝐴, 𝐵, 𝐶}. Show that the composition 𝑓𝐶 ∘ 𝑓𝐵 ∘ 𝑓𝐴 coincides with
the symmetry at 𝐵.
Hint: By the similarity of the triangles of the previous exercise, 𝑔 = 𝑓𝐵 ∘ 𝑓𝐴 has 𝑔(𝐺) = 𝐺.
Also 𝑔(𝐵) = 𝐴. Hence 𝑔 is the similarity with center at 𝐺, rotation angle 𝐵𝐺𝐴 and ra‑
tio 𝐺𝐵/𝐺𝐴 = (𝐺𝐵/𝐺𝐽) ⋅ (𝐺𝐽/𝐺𝐴) = (𝐴𝐵/𝐴𝐶) ⋅ (𝐵𝐶/𝐵𝐴). Its composition with 𝑓𝐶 defines
ℎ = 𝑓𝐶 ∘ 𝑔 = 𝑓𝐶 ∘ 𝑓𝐵 ∘ 𝑓𝐴 which leaves 𝐵 fixed. Since the similarities build a group, the
composition is a similarity with fixed point 𝐵. The angle is the sum of the angles of the
similarities {𝑔, 𝑓𝐶}, which is 𝜋. Finally, the ratio is the product of ratios, which turns out
to be 1, thereby proving the claim.
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Figure 4: Three similar triangles

2 Isodynamic points, Brocard and Lemoine axes

Taking the ratios of the sides of a triangle 𝐴𝐵𝐶, in a given orientation, we can define three
constants

A

C

A'

α

B'

β

B

γ

δ

C'

O

Le
m
oi
ne

I
2

Brocard

I
1

Figure 5: Isodynamic points {𝐼1, 𝐼2} of the triangle 𝐴𝐵𝐶

𝑘𝑎 = |𝐴𝐵|/|𝐴𝐶|, 𝑘𝑏 = |𝐵𝐶|/|𝐵𝐴|, 𝑘𝑐 = |𝐶𝐴|/|𝐶𝐵|,
And three corresponding Apollonian circles {𝛼, 𝛽, 𝛾} on the sides of the triangle

𝑎 = |𝐵𝐶|, 𝑏 = |𝐶𝐴|, 𝑐 = |𝐴𝐵|, w.r. to the constants 𝑘𝑎, 𝑘𝑏, 𝑘𝑐.

Theorem 2. The three Apollonian circles {𝛼, 𝛽, 𝛾} of the triangle form an intersecting pencil of
circles passing through two points {𝐼1, 𝐼2} (see figure 5).
Proof. In fact, assume for themoment that 𝐼 is one common point of {𝛼, 𝛾}. Then, we have
|𝐼𝐵|/|𝐼𝐶| = |𝐴𝐵|/|𝐴𝐶| and |𝐼𝐴|/|𝐼𝐵| = |𝐶𝐴|/|𝐶𝐵|. Multiplying the equations side by side we
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obtain the relation∶ |𝐼𝐴|/|𝐼𝐶| = |𝐴𝐵|/|𝐶𝐵|. Thus 𝐼 belongs also to circle 𝛽. Since the circles
{𝛼, 𝛽, 𝛾} are orthogonal to the circumcircle 𝛿 of the triangle 𝐴𝐵𝐶, the inverted of 𝐼 w.r.
to the circumcircle 𝛿 of 𝐴𝐵𝐶 is also a common point of the three circles.

Assuming that |𝐴𝐵| < |𝐶𝐴| < |𝐶𝐵| , implies that the two circles 𝛼, 𝛾 intersect. In fact,
in that case 𝐴 is inside 𝛾 and 𝐵 is outside, but inside 𝛼 . Thus, the two circles 𝛼, 𝛾 must
intersect. In the case of isosceles triangle one of the three circles is the medial line of its
base and the other two are symmetric w.r. to this line and the circles intersect again.

The points {𝐼1, 𝐼2} are called “isodynamic” points of the triangle 𝐴𝐵𝐶. The line 𝐼1𝐼2
is called “Brocard axis” of the triangle. The orthogonal to it, line of centers of the circles
{𝛼, 𝛽, 𝛾} is called “Lemoine axis” of the triangle.

The Isodynamic points play an important role in the “geometry of the triangle” ([Gal13],
[Yiu13]). Here are some related properties in which participate concepts studied in this
branch of geometry. In these the concept of Inversion transformation plays a central role.

Theorem 3. The following properties hold for every triangle 𝐴𝐵𝐶 ∶

1. The centers {𝐴′, 𝐵′, 𝐶′} of the three Apollonian circles lie respectively on the side‑lines
{𝐵𝐶, 𝐶𝐴, 𝐴𝐵} of the triangle and {𝐴′𝐴, 𝐵′𝐵, 𝐶′𝐶} are respectively tangent to the circum‑
circle 𝛿 of 𝐴𝐵𝐶.

2. The Apollonian circles are orthogonal to the circumcircle of 𝐴𝐵𝐶.
3. The center 𝑂 of the circumcircle 𝛿 of 𝐴𝐵𝐶 is on the radical axis of the pencil of Apollonian

circles and the isodynamic points are inverse with respect to 𝛿.
4. Each one of the inversions {𝑓𝑎, 𝑓𝑏, 𝑓𝑐} w.r.t. {𝛼, 𝛽, 𝛾} permutes these circles, hence the three

circles intersect pairwise at an angle of measure 𝜋/3.
5. Each center of the three circles is a “similarity center” of the two others.
6. The tangency of 𝐴′𝐴 to 𝛿 at 𝐴 implies that 𝐴′𝐴 is the harmonic conjugate of the “sym‑

median” through 𝐴 of w.r. to the sides {𝐴𝐵, 𝐴𝐶}.
7. The previous property implies that the “Lemoine line”, carrying {𝐴′, 𝐵′, 𝐶′} is the “trilinear

polar” of the “symmedian point” 𝐾 of the triangle 𝐴𝐵𝐶.
8. The pedal triangles of the isodynamic points are equilateral triangles (See Figure 6).

Proof. Nrs 1‑2 follow from the orthogonality of 𝛿 to the Apollonian circles.
Nr‑3 is a general property of intersecting pencils of circles and their orthogonal to it

circles.
Nr‑4 e.g. for circle 𝛼. The inversion relative to it maps the circle 𝛾 passing through

{𝐼1, 𝐼2, 𝐶} to circle 𝛽 passing through 𝐼1, 𝐼2, 𝐵 and vice versa.
Nr‑5 e.g. for circle 𝛼 follows from nr‑4, since the center of a circle whose inversion

interchanges two circles is a similarity center of the two circles.
Nr‑6 this is a well known property of the symmedians.
Nr‑7 follows from the definition of the “trilinear polar” of a point w.r. to a triangle.
Nr‑8 follows from theorem 2.

Exercise 4. The only points whose pedal triangles w.r.t △𝐴𝐵𝐶 are equilateral are the isodynamic
points {𝐼1, 𝐼2} of △𝐴𝐵𝐶.

Exercise 5. In figure 6 show that the line pairs {(𝐴′𝐵′, 𝐴″𝐵″), (𝐵′𝐶′, 𝐴″𝐶″), (𝐴′𝐶′, 𝐵″𝐶″)} form
the same angle.

Exercise 6. The only inversions permuting the vertices of the triangle 𝐴𝐵𝐶 are the ones relative
to the circumcircle 𝜅 of the triangle and the Apollonian circles.
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Figure 6: The two equilateral pedals of the isodynamic points of 𝐴𝐵𝐶

Hint: Such an inversion maps necessarily the circumcircle 𝜅 of △𝐴𝐵𝐶 to itself. If it fixes
all three vertices, then it fixes 𝜅 and is the inversion relative to 𝜅 . If it interchanges two
vertices, {𝐵, 𝐶} say, then the inversion must fix the third vertex 𝐴 and coincides with the
inversion relative to the Apollonian circle through 𝐴.
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Figure 7: Common Apollonian circle of two triangles {𝐴𝐵𝐶, 𝑃𝐴𝑃′}

Exercise 7. Show that the Apollonian circle 𝜅 of △𝐴𝐵𝐶 through 𝐴 is simultaneously the Apol‑
lonian circle through 𝐴 of the triangle 𝑃𝐴𝑃′, for every point 𝑃 and its inverse relative to 𝜅 (see
figure 7).

Remark 1. Since the isodynamic points are inverse relative to the circumcircle 𝜅 of △𝐴𝐵𝐶
one is inside, conventionally denoted by 𝐼1 and the other 𝐼2 is outside 𝜅. Next proposi‑
tions give formulate some characteristic properties of these points.

Theorem 4. The inversion relative to the circle 𝜆(𝐼2) which is orthogonal to the circumcircle 𝜅
of △𝐴𝐵𝐶 and has its center at the outer isodynamic point 𝐼2 , maps the vertices of △𝐴𝐵𝐶 to the
vertices of an equilateral 𝐴′𝐵′𝐶′ inscribed in 𝜅 (see figure 8) and the Apollonian circles to the
symmetry axes of the equilateral.

Proof. Next equalities of ratios, resulting from similar triangles in figure 8, fromproperties
of inversions and from properties of the isodynamic point 𝐼2, show that 𝐵′𝐶′ = 𝐶′𝐴′ .
Analogous equalities of ratios can be used to show also the equality of the other sides of
△𝐴′𝐵′𝐶′.

𝐵𝐶
𝐼2𝐶 = 𝐶′𝐵′

𝐼2𝐵′ , 𝐴′𝐶′

𝐼2𝐶′ = 𝐴𝐶
𝐼2𝐴 ⇒ 𝐶′𝐵′ = 𝐵𝐶

𝐼2𝐶𝐼2𝐵′ , 𝐴′𝐶′ = 𝐴𝐶
𝐼2𝐴𝐼2𝐶′ ⇒

𝐶′𝐵′

𝐴′𝐶′ = 𝐵𝐶
𝐴𝐶 ⋅ 𝐼2𝐴

𝐼2𝐶 ⋅ 𝐼2𝐵′

𝐼2𝐶′

= 𝐵𝐶
𝐴𝐶 ⋅ 𝐵𝐴

𝐵𝐶 ⋅ 𝐼2𝐵′

𝐼2𝐶′

= 𝐵𝐴
𝐶𝐴 ⋅ 𝐼2𝐵′

𝐼2𝐶′ = 𝐵𝐴
𝐶𝐴 ⋅ 𝐼2𝐶

𝐼2𝐵 = 𝐵𝐴
𝐶𝐴 ⋅ 𝐴𝐶

𝐴𝐵 = 1.

The Apollonian circles being orthogonal to line 𝐼1𝐼2 and passing through 𝐼2 map to lines
orthogonal to 𝐼1𝐼2 etc.
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Figure 8: Inversion w.r.t. 𝜆(𝐼2) mapping △𝐴𝐵𝐶 to △𝐴′𝐵′𝐶′

Exercise 8. The anti‑inversion relative to the circle 𝜇(𝐼1) with center at the inner isodynamic
point 𝐼1 and diameter the minimal chord 𝐷𝐷′ of the circumcircle 𝜅 through 𝐼1, maps the vertices
of △𝐴𝐵𝐶 to the vertices of an equilateral 𝐴′𝐵′𝐶′ inscribed in 𝜅 (see figure 9) and the Apollonian
circles to the symmetry axes of the equilateral.
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Figure 9: Antiinversion w.r.t. 𝜇(𝐼1) mapping △𝐴𝐵𝐶 to the equilateral △𝐴′𝐵′𝐶′

Hint: Same reasoning as in the preceding theorem.

3 Given Apollonian circles

Next propositions lead to a sort of inverse to theorem 3, giving the description of triangles
which have the same Apollonian circles, and consequently the same isodynamic points.
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Figure 10: Inversions w.r. to the circles {𝛼, 𝛽, 𝛾}
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Theorem 5. Given three circles {𝛼(𝑂𝛼), 𝛽(𝑂𝛽), 𝛾(𝑂𝛾)} passing through the points {𝐼1, 𝐼2} and
cutting each other pairwise under an angle of 𝜋/3, consider the three inversions {𝑓𝛼, 𝑓𝛽, 𝑓𝛾} relative
to the corresponding circles (see figure 10). Then

1. Each inversion interchanges the two other circles.
2. The compositions 𝑓𝛽 ∘ 𝑓𝛼 = 𝑓𝛾 ∘ 𝑓𝛽 are equal and the successive transforms of a point 𝑋1,

𝑋2 = 𝑓𝛼(𝑋1), 𝑋3 = 𝑓𝛽(𝑋2), 𝑋4 = 𝑓𝛾(𝑋3) form a cyclic quadrangle whose circumcircle is
orthogonal to the three given circles.

Proof. Nr‑1 is equivalent with the intersection condition of the three circles by the angle
of 𝜋/3.

Nr‑2 follows by considering the circle 𝛿 passing through {𝑋1, 𝑋2, 𝑋3}. Since {𝑋1, 𝑋2}
are inverse w.r. to 𝛼 the circle 𝛿 is orthogonal to 𝛼. Analogous argument shows that it
is orthogonal to 𝛽 and consequently to all circles of the pencil generated by {𝛼, 𝛽} hence
also to 𝛾. This implies 𝑋4 ∈ 𝛿 and that 𝑋1 is the inverse of 𝑋4 w.r. to 𝛽 thereby proving
the claim.
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Figure 11: Constructing a triangle 𝐴𝐵𝐶 with given isodynamic points {𝐼1, 𝐼2}

Corollary 1. With the definitions and notation of the preceding theorem, when point 𝑋1 is on
the circle 𝛾, then 𝑋2 = 𝑋3 ∈ 𝛽 and 𝑋4 ∈ 𝛼 and the sides of the triangle 𝑋1𝑋2𝑋4 pass through
the centers {𝑂𝛼, 𝑂𝛽, 𝑂𝛾} of the three circles (see figure 11).

Corollary 2. With the definitions and conventions of the preceding corollary, the Apollonian
circles of the triangle 𝑋1𝑋2𝑋4 are the circles {𝛼, 𝛽, 𝛾}. Conversely, if the triangle 𝑋1𝑋2𝑋4 has
{𝛼, 𝛽, 𝛾} as Apollonian circles, then it is constructible as in the preceding corollary.

Proof. Consider one of these circles, 𝛼 say, passing through 𝑋4 and having its center on
𝑋1𝑋2 latter being points inverse w.r. to 𝛼. Then 𝛼 intersects the line 𝑋1𝑋2 at diametral
points {𝑈, 𝑉}, which, by awell known property of inversion, are “harmonic conjugate”w.r.
to {𝑋1, 𝑋2}. From the orthogonality of {𝑋4𝑈, 𝑋4𝑉} follows that these are the bisectors of
the angle ̂𝑋1𝑋4𝑋2, hence the validity of the claim for the circle 𝛼. Analogous is the proof
for the other two circles. The converse is trivial.

Figure 12 displays triangles sharing the same Apollonian circles and resulting by the
procedure of corollary 3, to be proved in the next section. According to this, we take
equilaterals homothetic to 𝐴1𝐵1𝐶1 w.r.t. point 𝐼2 and applying to these (to their vertices)
the inversion w.r.t. circle 𝜀. The Apollonian circles are the inverses {𝛼, 𝛽, 𝛾} relative to 𝜀
of the lines {𝛼′, 𝛽′, 𝛾′}. Next section discusses the details of this procedure.
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Figure 12: Triangles sharing the same Apollonian circles

4 Given isodynamic points

If we are asked to construct triangles with the given isodynamic points {𝐼1, 𝐼2} but pos‑
sibly different triples of Apollonian circles, we first must notice that these triples of cir‑
cles are selected among the members of the intersecting pencil 𝒫 of all circles passing
through {𝐼1, 𝐼2}. From the intersection angle condition of 𝜋/3 for these triples it fol‑
lows that a single circle of the triple determines completely the other two. In the fol‑
lowing 𝜀(𝑋, 𝑌) will denote a circle with center 𝑋, passing through 𝑌. Applying the
inversion 𝑓𝜀 relative to 𝜀(𝐼1, 𝐼2), the pencil 𝒫 transforms to the pencil of lines through
𝐼2 and the admissible triples of Apollonian circles {𝛼, 𝛽, 𝛾} transform to triples of lines
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γ

ε

Ι
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Figure 13: Admissible triples of Apollonian circles and their inverses relative to 𝜀

{𝛼′ = 𝑓𝜀(𝛼), 𝛽′ = 𝑓𝜀(𝛽), 𝛾′ = 𝑓𝜀(𝛾)} through 𝐼2 intersecting at angles of measure 𝜋/3
(see figure 13). Next propositions show that the triangles having the triple {𝛼, 𝛽, 𝛾} for
Apollonian circles correspond under the inversion 𝑓𝜀 to equilateral triangles with sym‑
metry axes the lines 𝛼′, 𝛽′, 𝛾′ . To see this we use the well known property of inversions
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Figure 14: Inverseness is invariant under inversion

([Joh60, p.55], [Ped90, p.96]) according to which “The property of inverseness is invariant un‑
der inversion”. This property guarantees that, if points {𝑋, 𝑌} are inverse w.r. to a circle 𝛼
and the whole figure is invertedw.r. to a circle 𝜅, then the 𝜅−inverses {𝑋′, 𝑌′} are inverse
w.r. to the 𝜅−inverse circle 𝛼′ (see figure 13). This has an interesting corollary which I
formulate as a lemma. The following arguments use elementary properties of “inversions”
and pencils of circles (coaxal circles), an account of which can be found in Johnson [Joh60,
p.28], Pedoe [Ped90, p.106] and also in the file Inversion of this gallery.
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Figure 15: Inversion w.r. to a circle is conjugate to reflection w.r. to a line

Lemma 1. For an inversion 𝑓𝛼 w.r. to a circle 𝛼 there is an inversion 𝑓𝜀 w.r. to a circle 𝜀 such
that the conjugate transformation 𝑓𝜀 ∘ 𝑓𝛼 ∘ 𝑓𝜀 is a reflection 𝑟𝛼′ on the line 𝛼′ = 𝑓𝜀(𝛼).

Proof. For the proof select two points {𝐼1, 𝐼2} on the circle 𝛼(𝑂𝛼) and consider the non‑
intersecting pencil 𝒫 of (coaxal) circles {𝛾} with limits these two points, all of them be‑
ing then orthogonal to 𝛼 (see figure 15). Consider also the inversion 𝑓𝜀 w.r. to the circle
𝜀(𝐼1, 𝐼2) and define the line 𝛼′ = 𝑓𝜀(𝛼) passing through 𝐼2. Since inversions leave invari‑
ant the circles orthogonal to the circle of inversion, a point 𝑋 of the plane 𝑋 ≠ 𝑂𝛼 de‑
fines a unique member 𝛾 ∋ 𝑋 of the pencil 𝒫 and 𝑋′ = 𝑓𝛼(𝑋) ∈ 𝛾 too. Then, the circle
𝜒 = (𝑋𝑋′𝐼1) maps under 𝑓𝜀 to a line 𝜒′ = 𝑌𝑌′ which is orthogonal to 𝛼′, since 𝜒 pass‑
ing through two 𝛼−inverse points is orthogonal to 𝛼. The points {𝑌 = 𝑓𝜀(𝑋), 𝑌′ = 𝑓𝜀(𝑋′)}
then, are reflections of each other on 𝛼′, as claimed.

Theorem6. Let {𝐼1, 𝐼2} be the isodynamic points of the triangle 𝐴𝐵𝐶 and 𝑓𝜀 the inversion relative
to the circle 𝜀(𝐼1, 𝐼2). The images {𝐴1 = 𝑓𝜀(𝐴), 𝐵1 = 𝑓𝜀(𝐵), 𝐶1 = 𝑓𝜀(𝐶)} of the vertices of 𝐴𝐵𝐶
form an equilateral triangle 𝐴1𝐵1𝐶1 and the images {𝛼′ = 𝑓𝜀(𝛼), 𝛽′ = 𝑓𝜀(𝛽), 𝛾′ = 𝑓𝜀(𝛾)} of the
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Apollonian circles {𝛼, 𝛽, 𝛾} of the triangle 𝐴𝐵𝐶 are the symmetry axes of 𝐴1𝐵1𝐶1 meeting in the
center 𝐼2 of the triangle (see figure 16).
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Figure 16: Inversion of vertices of △𝐴𝐵𝐶 to vertices of equilateral 𝐴1𝐵1𝐶1

Proof. The proof results from the general properties of inversions and the previous dis‑
cussion (see figure 16). The Apollonian circles {𝛼, 𝛽, 𝛾} transform respectively to lines
{𝛼′, 𝛽′, 𝛾′} through 𝐼2, intersecting pairwise at 𝜋/3. Since {𝐵, 𝐶} are inverse w.r. to 𝛼,
their images {𝐵1 = 𝑓𝜀(𝐵), 𝐶1 = 𝑓𝜀(𝐶)}, by lemma 1, are inverse w.r. to 𝛼′ = 𝑓𝜀(𝛼), hence
are points reflected in 𝛼′. It follows that 𝐵1𝐶1 is orthogonal to 𝛼′ and analogously the
other sides of 𝐴1𝐵1𝐶1 have the lines {𝛼′, 𝛽′, 𝛾′} as perpendicular bisectors.
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Figure 17: Generation of all triangles with the same isodynamic points

The theorem implies immediately next corollary giving a way to generate all possible
triangles with given isodynamic points {𝐼1, 𝐼2} (see figure 17).

Corollary 3. All triangles 𝐴𝐵𝐶, with given isodynamic points {𝐼1, 𝐼2}, result by applying the
inversion 𝑓𝜀 relative to the circle 𝜀(𝐼1, 𝐼2) to the vertices {𝐴1, 𝐵1, 𝐶1} of equilateral triangles
𝐴1𝐵1𝐶1 centered in 𝐼2 ∶ {𝐴 = 𝑓𝜀(𝐴1), 𝐵 = 𝑓𝜀(𝐵1), 𝐶 = 𝑓𝜀(𝐶1)}.

Corollary 4. Given three points in general position {𝐼1, 𝐼2} and 𝐴, there is precisely one triangle
𝐴𝐵𝐶 having 𝐴 as vertex and {𝐼1, 𝐼2} as isodynamic points (see figure 18).
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Figure 18: Triangle from the isodynamics {𝐼1, 𝐼2} and vertex 𝐴

Proof. To see this notice first that the circumcircle 𝜅 of the requested triangle is uniquely
defined. This, because it is the uniquemember of the pencil 𝒫 of circles of non‑intersecting
type with limit points the given {𝐼1, 𝐼2}, passing through 𝐴. By theorem 6 the inverse
𝜅′ = 𝑓𝜀(𝜅) relative to the circle 𝜀(𝐼1, 𝐼2) carries 𝐴1 = 𝑓𝜀(𝐴), which is a vertex of a unique
equilateral 𝐴1𝐵1𝐶1 inscribed in 𝜅′, whose centroid 𝐼2 coincides with the center of 𝜅′.
The requested triangle 𝐴𝐵𝐶 has vertices the inverses via 𝑓𝜀 of the vertices of this equilat‑
eral.
Remark 2. The pencil 𝒫 consisting of the circles orthogonal to the Apollonian circles is
called “Schoute pencil” of the triangle 𝐴𝐵𝐶. As noticed above, the isodynamic points are
its “limit points”1

Exercise 9. Show that the equilateral of theorem 6 and that of theorem 4 are homothetic. Show
that, more general, any inversion w.r.t. a circle centered at 𝐼2 maps the vertices of △𝐴𝐵𝐶 to the
vertices of an equilateral and all these equilaterals are homothetic.

5 Trilinear coordinates of the isodynamic points

The appearance of the equilateral here offers the means to calculate easily these kind of
coordinates for {𝐼1, 𝐼2}. The result is

(𝑥1 ∶ 𝑥2 ∶ 𝑥3) = (sin(𝐴 + 𝜋
3 ) , sin(𝐵̂) + 𝜋

3 ) , sin(𝐶 + 𝜋
3 ))

(𝑥′
1 ∶ 𝑥′

2 ∶ 𝑥′
3) = (sin(𝐴 − 𝜋

3 ) , sin(𝐵̂ − 𝜋
3 ) , sin(𝐶 − 𝜋

3 )) .

The formulas result from a calculation of the ratios (𝑥1 ∶ 𝑥2 ∶ 𝑥3) of the distances of 𝐼1
from the sides of 𝐴𝐵𝐶. For this we notice

𝐵𝐼1𝐶 = 𝐴 + 𝜋
3 since

𝐵𝐼1𝐶 = 2𝜋 − 𝐵𝐼1𝐴 − 𝐴𝐼1𝐶
= 2𝜋 − (𝜋 − 𝐵𝐴𝐼1 − 𝐴𝐵𝐼1) − (𝜋 − 𝐶𝐴𝐼1 − ̂𝐼1𝐶𝐴)

= 𝐴 + (𝐷𝐸𝐼1 + 𝐹𝐸𝐼1) = 𝐴 + 𝜋
3 .

1Thanks to Dan Reznik for the suggestion to refer here to the Schoute pencil and its limit points.
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Figure 19: Trilienear coordinates 𝑥1 ∶ 𝑥2 ∶ 𝑥3 of 𝐼1

Last equality resulting from the cyclic quadrangles 𝐷𝐵𝐸𝐼1 and 𝐹𝐼1𝐸𝐶. Calculating the
double of the area of triangles {𝐼1𝐵𝐶, 𝐼1𝐶𝐴} and dividing gives:

2(𝐼1𝐵𝐶) = 𝑥1 ⋅ 𝐵𝐶 = 𝑡2 ⋅ 𝑡3 ⋅ sin(𝐴 + 𝜋/3),
2(𝐼1𝐶𝐴) = 𝑥2 ⋅ 𝐶𝐴 = 𝑡3 ⋅ 𝑡1 ⋅ sin(𝐵̂ + 𝜋/3) ⇒
𝑥1 ⋅ 𝐵𝐶
𝑥2 ⋅ 𝐶𝐴 = 𝑡2 ⋅ sin(𝐴 + 𝜋/3)

𝑡1 ⋅ sin(𝐵̂ + 𝜋/3)
⇒

𝑥1
𝑥2

= sin(𝐴 + 𝜋/3)
sin(𝐵̂ + 𝜋/3)

,

where the last simplification is due to the property of the isodynamic point 𝑡2/𝑡3 = 𝐴𝐵/𝐴𝐶,
etc. The formulas for 𝐼2 result by analogous reasoning.

6 Same isodynamic points and same circumcircle

Figure 20 shows somemembers of the family 𝒯 of triangles {𝐴𝐵𝐶} sharing the same iso‑
dynamic points {𝐼1, 𝐼2} and the same circumcircle 𝜅 but not the same Apollonian circles.
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Figure 20: The same isodynamic points {𝐼1, 𝐼2} and same circumcircle
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It is created by rotating the equilateral 𝐴1𝐵1𝐶1 in its circumcircle about 𝐼2 and taking
from the resulting triangles {𝐴′𝐵′𝐶′} the inverses (of their vertices) relative to the circle 𝜀
(corollary 4).

On the occasion of this figure I would like to mention some facts pertaining to the
“Geometry of the triangle” and whose proofs can be found in [Pam04].

1. As noticed in the figure the triangles of the family 𝒯 have their sides enveloping
an ellipse. This is the “Brocard ellipse” of the triangle 𝐴𝐵𝐶, inscribed in 𝐴𝐵𝐶 and
all other members of the family 𝒯 .

2. The reason of this enveloping property is simple to explain, provided one has some
knowledge of elementary projective geometry. There is namely a “projectivity” 𝑓
mapping the circle 𝜅′ onto 𝜅 and also mapping {𝐴1

𝑓↦ 𝐴, 𝐵1
𝑓↦ 𝐵, 𝐶1

𝑓↦ 𝐶}. This
𝑓 maps all the equilaterals inscribed in 𝜅′ to the triangles of the family 𝒯 . The
common inscribed circle of the equilaterals maps then to this “Brocard ellipse” also
inscribed to all members of 𝒯 .
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Figure 21: Projectivity 𝑓 coinciding with the inversion 𝑓𝜀 on the points of 𝜅′

3. The map 𝑓 can be simply described as the “homology” with center 𝐼1 , fixed axis
coinciding with the radical axis 𝜂 of the circles {𝜅, 𝜅′} and a constant “cross ratio”
𝑘 = (𝑋𝑓 (𝑋)𝑆𝐼1), where 𝑆 = 𝜂 ∩ 𝑋𝑓 (𝑋), proved also to coincide with the inversion
𝑓𝜀 on the points of the circle 𝜅′ but not on the points of 𝜅. Figure 21 shows the
property of 𝑓 to have the line 𝑋𝑓 (𝑋) pass through 𝐼1 and shows also the “Brocard”
ellipse as image 𝑓 (𝜆) of the incircle of the equilateral.

4. The equilaterals are “orbital” triples of points resulting by repeated application of the
rotation 𝜌 by 120∘ about 𝐼2 ∶ {𝐴1, 𝐵1 = 𝜌(𝐴1), 𝐶1 = 𝜌(𝐵1), 𝐴1 = 𝜌(𝐶1)}. This
behavior is transferred by conjugation by 𝑓 to all the triangles of the family 𝒯 .
Latter are then orbitalw.r. to the projectivity 𝜎 = 𝑓 ∘ 𝜌 ∘ 𝑓 −1, mapping 𝜅 onto itself
and recycling the vertices of the triangles: {𝐴, 𝐵 = 𝜎(𝐴), 𝐶 = 𝜎(𝐵), 𝐴 = 𝜎(𝐶)}.

5. All these triangles𝐴𝐵𝐶 ∈ 𝒯 have the same “symmedian point” 𝐾 = 𝑓 (𝐼2), which is a
fixed point of the periodic projectivity 𝜎. The “homography axis” of 𝜎 coincideswith
the “Lemoine axis” of the triangle, which is also the same for all triangles 𝐴𝐵𝐶 ∈ 𝒯 .
Figure 22 shows two triangles {𝐴𝐵𝐶, 𝐴′𝐵′𝐶′} of the family 𝒯 , their common sym‑
median point 𝐾 and also illustrates the characteristic property of the “homography
axis” of 𝜎 which guarantees that, for two arbitrary points {𝐴, 𝐵} of 𝜅 and their im‑
ages {𝐴′ = 𝜎(𝐴), 𝐵′ = 𝜎(𝐵)}, the intersections 𝑃 = 𝐴𝐵′ ∩ 𝐴′𝐵 lie on the homogra‑
phy axis of 𝜎.
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Figure 22: Intersections {𝑃 = 𝐴𝐵′ ∩ 𝐴′𝐵} are on the homography axis

6. By the way, and because was mentioned in nr‑3, every pair of circles {𝜅′, 𝜅} defines
a circle 𝜀 interchanging them through the corresponding inversion 𝑓𝜀 ∶ 𝑓𝜀(𝜅′) = 𝜅,
satisfying, of course also 𝑓𝜀(𝜅) = 𝜅′. The two circles define also a projectivity 𝑓 leav‑
ing fixed the center 𝐼1 of 𝜀 and the radical axis 𝜂 of the circles {𝜅′, 𝜅} and coinciding
with 𝑓 on the points of 𝜅′. Figure 23 shows the image 𝑓 (𝜅) of 𝜅 under 𝑓 , which
is a conic and never coincides with 𝜅′ , except in the case the two circles are equal
and 𝑓𝜀 is a reflection. Thus, while 𝑓𝜀 is always an involution satisfying 𝑓 2

𝜀 = 𝑒,
the projectivity 𝑓 for non equal circles is never an involution 𝑓 2 ≠ 𝑒. Maps such as
𝑓 , having an axis 𝜂 of fixed points, an isolated fixed point 𝐼1 and having images
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Figure 23: Projectivity 𝑓 coinciding with the inversion 𝑓𝜀 on the points of 𝜅′

𝑌 = 𝑓 (𝑋) such that the lines 𝑋𝑌 ∋ 𝐼1 and the cross ratio (𝑋𝑌𝑆𝐼1) = 𝑘 is constant,
where 𝑆 = 𝑋𝑌 ∩ 𝜂, are called “homologies” and play a fundamental role in projec‑
tive geometry ([VY10, I,p.72]).

7 A matter of uniqueness

A matter of uniqueness, concerning the reduction to equilaterals, arises from the possi‑
bility to interchange the roles of {𝐼1, 𝐼2}. In fact, the same procedure can be applied using
the circle 𝜀′(𝐼2, 𝐼1) instead of 𝜀(𝐼1, 𝐼2) and defining the equilateral 𝐴″𝐵″𝐶″ inscribed in
𝜅″, which this time is the inverse of 𝜅 relative to 𝜀′ (see figure 24). It is though easy to
see that the two equilaterals produce the same triangle 𝐴𝐵𝐶 ∶

𝐴 = 𝑓𝜀(𝐴′) = 𝑓𝜀′(𝐴″), 𝐵 = 𝑓𝜀(𝐵′) = 𝑓𝜀′(𝐵″), 𝐶 = 𝑓𝜀(𝐶′) = 𝑓𝜀′(𝐶″).

This is provedby the following lemma,whichuses the definitions and conventions adopted
so far.
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Lemma 2. The points {𝐴′ ∈ 𝜅′, 𝐴″ ∈ 𝜅″} are respectively the inverses {𝐴′ = 𝑓𝜀(𝐴), 𝐴 = 𝑓𝜀′(𝐴)}
of the same point 𝐴 ∈ 𝜅, if and only if, the lines {𝐼1𝐴″, 𝐼2𝐴′} intersect at a point 𝐷 on the
perpendicular bisector of the segment 𝐼1𝐼2.
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Figure 24: 𝐴 = 𝑓𝜀(𝐴′) = 𝑓𝜀′(𝐴″) ...

Ifwe trust this lemma, the claim follows at once, since starting from the isosceles 𝐼1𝐷𝐼2
resulting from the lines {𝐼1𝐴″, 𝐼2𝐴′} we obtain the other vertices of the equilaterals by
rotating these lines in opposite orientation and by the same angle of 120∘, respectively
240∘, implying that they intersect again in a point of the perpendicular bisector.
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Figure 25: 𝑓𝜀(𝐴′) = 𝑓𝜀′(𝐴″) = 𝐴

The lemma in turn, is a corollary of the more general following one (see figure 25).

Lemma 3. Given the equal circles {𝜀, 𝜀′} centered respectively in {𝐼1, 𝐼2} with radius |𝐼1𝐼2|, the
inversions {𝑓𝜀, 𝑓𝜀′} relative to these circles, map the points {𝐴′, 𝐴″} respectively to the same point
𝐴, if and only if, the lines {𝐼1𝐴″, 𝐼2𝐴′} intersect in a point 𝐷 on the perpendicular bisector of the
segment 𝐼1𝐼2.

Proof. The lemma follows by applying lemma 1. By it inverting {𝐴, 𝐴″ = 𝑓𝜀′(𝐴)} relative
to 𝜀 we obtain two points {𝐴′, 𝐴‴}, which are inverse w.r. to the inverse of 𝜀′ relative
to 𝜀. But this inverse 𝑓𝜀(𝜀′) is the perpendicular bisector of 𝐼1𝐼2 and {𝐴′, 𝐴‴} are then
reflected w.r. to this line. The argument can be reversed to show also the converse.



BIBLIOGRAPHY 16

Bibliography

[Gal13] WilliamGallatly. The modern geometry of the triangle. Francis Hodgsonn, London,
1913.

[Joh60] Roger Johnson. Advanced Euclidean Geometry. Dover Publications, New York,
1960.

[Pam04] P. Pamfilos. On Some Actions of 𝐷3 on a Triangle. Forum Geometricorum, 4:157–
186, 2004.

[Ped90] D Pedoe. A course of Geometry. Dover, New York, 1990.

[VY10] OswaldVeblen and JohnYoung. ProjectiveGeometry vol. I, II. Ginn andCompany,
New York, 1910.

[Yiu13] Paul Yiu. Introduction to the Geometry of the Triangle. http://math.fau.edu/Yiu/
Geometry.html, 2013.

Related material
1. Barycentric coordinates
2. Cross Ratio
3. Inversion transformation
4. Pedal triangles
5. Projectivities
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