
Optimization Techniques
with Applications in Machine Learning
Konstantina Maria Argyropoulou
Department of Mathematics and Applied Mathematics
University of Crete
E-mail: temp62@math.uoc.gr

Introduction
Due to the widespread (and increasing) use of optimization algorithms in science, engineering, economics, and
industry this subject has found renewed interest. This paper aims to present a description of the most powerful
techniques for solving optimization problems. In practice, optimization does not depend only on efficient ones
and powerful algorithms, but also from good modeling techniques and careful interpretation of results. In this
paper we also try to highlight the aspects, namely, modeling, optimality conditions, the implementation of
algorithms and the interpretation of results.

The method of steepest descent
The steep descent method is an iterative first-order optimization algorithm used to find a local minimum of a
differentiable function. Given a differentiable function f : Rn → R, the direction of steepest descent is the
vector −∇f (x0), where x0 is the starting point. To see this, consider the function φ(t) = f (x0 + tu) where
u is a unit vector in Rn. Then, by the Chain Rule we have

φ′(0) = ∇f (x0) · u = ||∇f (x0)|| cos(θ),

where θ is the angle between ∇f (x0) and u. It follows that ϕ′(0) is minimized when θ = π, which yields

u = − ∇f (x0)
∥∇f (x0)∥

, φ′(0) = −∥∇f (x0)∥.

We can therefore reduce the problem of minimizing a function of several variables to a singlevariable min-
imization problem, by finding the minimum of ϕ(t) for this choice of u. That is, we find the value of t, for
t > 0, that minimizes

φ0(t) = f (x0 − t∇f (x0)).

After finding the minimizer t0, we can set x1 = x0− t0∇f (x0), and continue the process, by searching from x1
in the direction of −∇f (x1) to obtain x2 by minimizing ϕ1(t) = f (x1−t∇f (x1), and so on. Thus, the steepest
descent method, starting at x0, computes a sequence of iterations (xk), where for k ≥ 0, xk+1 = xk−tk∇f (xk)
and tk > 0 minimizes the function

φk(t) = f (xk − tk∇f (xk)). (1)

Line search with backtracking
It is often only possible, and computationally more efficient, to use approximations of the minimum of tk of
the (1) function than to compute exactly at every iteration, especially when the computations of the function
we are minimizing and its first derivative are computationally expensive. Thus, various methods have been
created that use at each iteration an approximation of the minimum tk. One of these methods is the method
of liine search with backtracking . Given a function f : Rn → R which is differentiable, we know that the
steep descent direction in the k step of the algorithm, is the pk = −∇f (xk), where xk is the k-in approxima-
tion of an iterative minimization process, such as the steep descent method. We will say that step tk in the
relation (1) is accepted if the following, so-called Wolfe conditions are satisfied:

for α ∈ (0, 1) f (xk + t · pk) ≤ f (xk) + αt∇f (xk)T · pk, (2)
for β ∈ (α, 1) β · ∇f (xk)T ≤ ∇f (xk + tpk)

T · pk. (3)

We initially choose t = 1 and then, as long as the relation (2) is not satisfied, we backtrack, that is, we reduce
the step t by a constant ρ ∈ (0, 1). When (2) is satisfied, we calculate the next term of the sequence of
approximations as xk+1 = xk + tkpk. In the first backtracking we construct an approximation of φ using a
polynomial q ∈ P2 such that

q(0) = φ(0), q(1) = φ(1), q′(0) = φ′(0).

If f (xk + pk) is not admissible (ie, the first Wolfe condition is not satisfied), then φ(1) > φ(0) + αφ′(0). We
easily see that

q(t) = [φ(1)− φ(0)− φ′(0)]t2 + φ′(0) · t + φ(0),

and the previous relation shows that the polynomial q is indeed quadratic. Setting the first derivative to zero,
we arrive at the choice of t

t∗ =
φ′(0)

2[φ(1)− φ(0)− φ′(0)]
. (4)

The fact that q′′(t∗) = φ(1)− φ(0)− φ′(0) > 0 shows that q does have a minimum at t∗.

The Nelder-Mead method
The Nelder–Mead method is a direct search method often applied to nonlinear optimization problems for which
derivatives of the objective funtion may not be known or are expensive to compute. The idea of the method is
to calculate the objective function at the vertices of a simplex and replace the vertex with the largest value by

another point, usually the symmetric to the side with vertices the points where the function takes the smallest
values.
Of particular interest to the Nelder-Mead method are functions with many local minima, as there is a possibility
that the method will get trapped in any of them. One such example is the Ackley function

f (x, y) = −20e0.2
√

1
2(x

2+y2) − e
1
2(cos(2πx)+(cos 2πy)) + e + 20,

which has a global minimum at (0, 0) and many local The Nelder Mead method transforms an initial simplex
with vertices the points (2, 3), (4, 3) and (3, 3) in a simplex in which the Ackley function has a minimum at
the vertex with coordinates x = (−0.96851623,−0.96850533).

Neural networks
Suppose we have a network with L layers and nl is the number of neurons in layer l, l = 1, . . . , N . Thus the
network maps from Rn1 to RnL. We can succintly summarize the action of the network by letting a

[l]
j denote

the output fron neuron j at level l, so that

a[1] = x ∈ Rn1,

a[l] = σ
(
W [l]a[l−1] + b[l]

)
∈ Rnl for l = 2, 3, . . . , L.

Suppose we have N training points in Rn1, {x(i)}Ni=1 and given target outputs {y(x(i))}Ni=1. We wish to
minimize a const function depending on all of the weights and biases, such as the quadratic cost function

Cost = 1

N

N∑
i=1

1

2

∥∥∥y(x(i))− a[l](x(i))
∥∥∥2
2
. (5)

If p is the current estimate of the minimum of the objective function (5) we use the steepest descent method
to produce an improvement p← p− η∇Cost(p), with η a small stepsize, known as the learning rate. When
a have a large number of parameters and a large number of training points the computation of the gradient
at every iteration of the steepest descent method may be prohibitively expensive. A cheaper alternative may
be the stochastic gradient method. N steps of this method, the so-called epoch, may be:

1. Shuffle the integers {1, 2, . . . , N} into a new order {k1, k2, . . . , kN}
2. for i = 1, . . . , N, update p← p− η∇Costx(ki)(p)

As an example, the set of points in the figure below left are in either category A (circles) or category B (crosses).
Training a neural network as the one shown below right to classify points in R2, say according to the largest
component of a[L]

w
[3]
43

Layer 1
(input layer)

Layer 2 Layer 3 Layer 4 Layer 5
(output layer)

results in the classification of the points of [0, 1]2 as shown below left. Adding an additional training point and
re-training the neural network results in the categorization shown below right.

The master thesis on which this poster presentation is based
was presented and approved on October 20 2022. The commit-
tee members were Michael Plexousakis (plex@uoc.gr), Theodoros Kat-
saounis (thodoros.katsaounis@uoc.gr), and Panagiotis Chatzipantelides
(p.chatzipa@uoc.gr).

temp62@math.uoc.gr
plex@uoc.gr
thodoros.katsaounis@uoc.gr
p.chatzipa@uoc.gr

