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Introduction

Galois theory is an elegant interaction between field theory and group theory. It
gives a bijective correspondence between intermediate fields of a Galois extension
and subgroups of the Galois group of this extension. For the case of finite Galois
extensions, the fundamental theorem of Galois theory establishes the bijective cor-
respondence between intermediate fields and subgroups. The fundamental theorem
is useful in many situations because it allows us to find out informations about the
intermediate fields of a Galois extension from the subgroups of the Galois group of
the extension, and vice versa. For this reason we would like to extend this theorem
to the case of infinite Galois extensions. In the first chapter we study the Galois
theory for infinite extensions. Luckily, the definition of the Galois extension carries
over without change from the finite case to the case of infinite algebraic extensions.
Unfortunately, the main theorem doesn’t hold for infinite Galois extensions. This
was ascertained by R. Dedekind in 1897. But we can find out that there exists a
fundamental theorem for infinite Galois extensions which is a generalization of the
main theorem of the finite Galois theory. For its proof we are going to put a topol-
ogy on the infinite Galois groups, the so called Krull topology, which we define. So
the concept of “topological groups” will naturally arise and for this reason we study
them.

The groups which occur as Galois groups of field extensions belong to a class of
topological groups, the so-called profinite groups. This category of groups we inves-
tigate in the second chapter. These groups are fairly close relatives of finite groups.
A profinite group is a topological group that can be realized as a projective limit of
finite topological groups. For this reason we introduce the notion of projective limit.
Also, we provide some useful characterizations of profinite groups. One of them as-
serts that a profinite group is a topological group which is Hausdorff, compact and
totally disconnected. But these are actually very familiar properties. We have proved
that a Galois group equipped with Krull topology has these properties too. So we
have that Galois groups are profinite groups. In addition, we give some examples
of profinite groups. Moreover, we define the dual construction of projective limit,
which is the direct limit, and we prove some properties of projective and direct lim-
its. For their proof we need some notions of category theory, which we define.

In the last decades cohomology of groups has played a central role in various
branches of mathematics. Cohomology has a lot of applications in class field theory

vii



viii Introduction

and it has played an important role for its development. In the third chapter we in-
vestigate the cohomology of finite groups. Firstly, we define the differential groups
because they serve as an introduction to some of the basic techniques for study-
ing the cohomology groups. Also, we present some general considerations about
G-modules. In order to give the definition of cohomology group we introduce an
extensive formalism of homomorphisms, modules and sequence, the so-called stan-
dard complex. Then we analyze the concrete meaning of the cohomology group.
As seen in the definition of group cohomology, it is in general painful to find the
nth cohomology group for an arbitrary finite group GG. We remark that in algebraic
applications only the cohomology groups of low dimension appear, since for these
groups we have a concrete algebraic interpretation. For this reason we study them
completely. Moreover, we study the cohomology of cyclic groups in which we prove
some essential statements of cohomology theory and we introduce the Herbrand
Quotient. We present also a lot of important theorems of cohomology without their
proof, such as Nakayama-Tate’s theorem which is about the cohomological trivi-
ality. Another theorem is about the exactness of the cohomology sequence. For its
proof we need some special mappings which we define.

In fourth chapter we study the cohomology of profinite groups. Their cohomol-
ogy groups often contain important arithmetic information. We construct the coho-
mology group and for doing this we use the notion of discrete modules. So firstly
we define discrete G-modules and we provide a characterization of them. Also, we
calculate the cohomology groups in low dimension. Moreover, we investigate what
happens to the cohomology groups # 4(G, A) if we change the group G, where A is
a discrete module. For doing this we need the notion of compatible pairs and some
properties of them. Finally, we study some special homomorphisms of cohomol-
ogy groups, such as the restiction and inflation, which they connect the cohomology
group of a group G with the cohomology group of a subgroup of G.

All this theory played an essential role in number theory. So in the last chapter
we present the use of cohomology theory to solve problems in number theory. The
cohomology theory help us to think about the extension problem of a group, since for
an abelian group A which is a G-module there is a natural bijective correspondence
between the equivalence classes of extensions of A by G and the elements of second
cohomology group 2. This is the reason why we define the extension problem
and we prove this correspondence. Moreover by the use of the second cohomology
group 2 we can define the Brauer group. We have proved that Galois groups are
profinite groups. A reasonable question is if the converse is true. It is an important
result that any finite group is the Galois group of some field extension. This fact
we can generalize to profinite groups. More precisely we prove that every profinite
group is the Galois group of some field extension.

Heraklion, 16/5/2017



Chapter 1

Galois Theory for Infinite Extensions

Galois theory is an elegant interaction between field theory and group theory. It
gives a bijective correspondence between intermediate fields of a Galois extension
and subgroups of the Galois group of this extension. For the case of finite Galois
extensions, the fundamental theorem of Galois theory establishes the bijective cor-
respondence between intermediate fields and subgroups. Naturally, we wonder if
this correspondence still holds in the case of infinite Galois extension. It is tempting
to assume that this correspondence is true. Unfortunately, when the Galois extension
is infinite then it isn’t necessary a correspondence between the intermediate fields
and subgroups of its Galois group.

1.1 Topological Prerequisites
Definition 1.1.1. A topological space (X, T) is called T} space if for every x € X
the singleton set {x} is a closed set in (X, T).

Definition 1.1.2. A topological space (X, T) is called regular space if for each
x € X and each closed subset K of X with x ¢ K there exist open sets A, A of
X satisfying the following

KgAl? ZL‘EAZCLndAlﬁA2:@
Definition 1.1.3. A topological space (X, 1) is called normal space if for every
closed subsets K, K, of X with K, N K, = (), there exist open sets A, Ay of X
satisfying the following

Theorem 1.1.4. Every compact Hausdorff topological space (X, T) is a regular
space.

Proof. Let A be a closed subset of X and x € X \ A, then foreachy € A, = # y.
Since X is Hausdorff space, implies that there exist open sets U, , V,, satisfying

a:EUy,yEVyandeﬂVy:@
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2 Galois Theory for Infinite Extensions

We know that every closed subset of a compact space is compact, so A is a compact

set. Here A C U V.. Thatis {V, : y € A} is an open cover for the compact set
yeA

n
A. Therefore there exist n € N and yq, ... y,, € A such that A C U V.- Let
i=1

ﬂ U, and V' : U Vi, Then U,V are open sets in X satisfying z €
i=1
U, A C V and
unv = Un(, uv, Uu-uv, )
= (UnV,) )uUnV, )u--uln Vyn>
c (U, NV,))ulU, NV, yu--uU, NV, )=10

Thus, by definition, (X, 7) is a regular space. N

Theorem 1.1.5. Every compact Hausdorff topological space (X, 1) is a normal
space.

Proof. Let A, B be closed subsets of X such that A N B = (). Then for each z €
A, x ¢ B. According to theorem 1.1.4 we have that the (X, 7) is a regular space.
This implies that there exist open sets U, V, satistfying that x € U,, B C V,
and U, NV, = (). Here A C U U,. Thatis {U, : x € A} is an open cover

€A
for the compact set A. Therefore there exist n € Nand z,...2,, € A such that

ACUU Let U : ﬂU‘andV UV Then U,V are open sets in X
—1
satlsfylng ACU,BC V andU NV = 0. Indeed

Unv = (U, U-UU, )NV
(U, NV)U-U (U, NV)
(Uml N Vm1> U--u (Uml N an) = (Z)

N

]

Proposition 1.1.6. Let X a topological space, Y a Hausdorff topological space and
f, g are continuous maps from X to'Y, then the set

E={zeX]| f(z) =g(2)}
is a closed subset of X.

Proof. Let x € X such that f(z) # g(z). Since the Y is Hausdorff, then we have
that there are two open neighborhoods U, U, of Y, such that f(x) € Uy, g(x) € U,
and U; N U, = (). The map f is continuous at the point x € X and U is an open
neighborhood of f(x), there is an open neighborhood of z, V;, such that f(V;) C Uj;.
Similarly, since the map ¢ is continuous at the point x € X and since U, is an
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open neighborhood of g(x), then there is an open neighborhood of x, V;, such that
f(Vy) C Uy. We define V' := V; N'V,. The set V' is open as the intersection of open
sets, and x € V, because € V, and x € V,. Moreover, V N E = (), whereas
f(vy) c Uy, g(Vy) C Uy and U; N U, = (). But the complement of E, X \ F, in
X will be the union of these sets V. So the X \ FE is an open set. Hence, the E' is a
closed subset of X. [

Proposition 1.1.7. If f : X — Y is a continuous and bijective map where X is
compact topological space and Y is Hausdorff topological space, then f is homeo-
morphism.

Proof. Itsuffices to show that f is a closed map, since f is a continuous and bijective
map. Let A be a closed subset of the topological space X. Then it is known that A
is compact, since X is compact space. Thus the image f(A) is compact subset of
Y, since f is continuous. But Y is Hausdorff topological space, so f(A) is a closed
subset of Y. Therefore f is a closed map, and then f is homeomorphism. [

Remark 1.1.8. Ifthe set X + () is finite and X is a topological space equipped with
any topology T, then the topological space (X, T) is compact.

Proof. Let U = {A} be an open cover of X, that is X = UA. Then for every
x € X, there exists A, € U, withx € A_. If for every x € X we take only one
A, € U such that z € A_, then we construct a finite subfamily, (A, ), 4, of U that
covers X. This means that every open cover of X has a finite subcover. Therefore
(X, 7) is compact. N

Definition 1.1.9. Amap f: A — B, where A is a topological space and B is a set,
is called locally constant if for every a € A there exists an open neighborhood U of
a such that f is constant on U.

Every constant function is locally constant. Also, if f : A — B is locally con-
stant, then f is constant on any connected component of A. The converse is true for
locally connected spaces.

Proposition 1.1.10. Let f : A — B, where A is a topological space and B is a
discrete space. Then f is continuous if and only if f is locally constant.

Proof. Since B is a discrete space, then B = {{b},b € B} is a basis of B.

" = " We assume that f is continuous. Thus, f~1({b}) is open on A forevery b € B.
In particular, if f(a) = b, then a € f~1({b}) and f~1({b}) is open. That is there
exists an open neighborhood f~1({b}) of a such that f constant on f~*({b}). This
is true for every a € A. Thus, f is locally constant.

" < " Let f is locally constant. This means that for every a € A there exists an
open neighborhood U of a such that f is constant on U, that is f(z) = y € B
for every x € U. Thus, f(U) = {y}. Therefore, for every open neighborhood W
of f(a) there exists an open neighborhood of a such that f(U) C W, so then f is
continuous in a. This is true for every a € A. Consequently, f is continuous. [
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1.2 Topological Groups

In order to put a topology to infinite Galois groups we will need to define the
topological groups and look into some properties of them as well.

Definition 1.2.1. A group (G,-) is called topological group if it is a topological
space equipped with topology T, the multiplication map

§, : GxG— G, (z,y) = zy

is continuous, where G X G is equipped with product topology, and the inverse map

6y: G =G, v ot

is also continuous.

Comment 1.2.2. 1) If the group operation is addition instead of multiplication, then
xy and x~* should be regarded as x + y and —x, respectively. The identity of a
multiplicative group will be denoted by e := 1 and that for an additive group by 0.
2) A homomorphism between two topological groups is a continuous group homo-
morphism and an isomorphism between two topological groups is a homeomorphic
group isomorphism.

We will mention some examples of topological groups.

Example 1.2.3. 1) G = {e}

2) G = R equipped with Euclidean topology. Similarly, if G = R".

3) G = C equipped with Euclidean topology. Similarly, if G = C".

4) Let K = R or C and we consider G = GL,(K) = {A € M,,(K)|detA # 0}.
Since M,,(K) C R™™, the topology on GL, (K) is the subspace topology.
5)G=SL,(K)={Ae€ M,(K)|detA =1}

6) G=S0,(R)={AecSL, (R)|ATA=AATI }

7) If G is any group equipped it with the discrete topology, then it is a topological
group. We call this kind of topological groups discrete groups. For example G = 7.

Let GG a topological group and U, V' are subsets of (G, then we denote by UV :=
{zy: x €U,y V}andU ! := {x ! : x € U}. Similarly, in the additive case
we can define U +V and —U. The continuity of the maps d; and J, can be expressed
as follows: 4 is continuous in x if and only if for each neighborhood W of xy there
exists a neighborhood U of x such that Uy C W. Similarly, 9, is continuous in y
if and only if for each neighborhood W of zy there exists a neighborhood V' of y
such that V' C W. Additionally, J, is continuous in both x and y if and only if for
each neighborhood W of zy there exist a neighborhood U of = and a neighborhood
V of y such that UV C W. Similarly, d, is continuous in x if and only if for each
neighborhood W of 27! there exists a neighborhood U of  such that U1 C W.
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Theorem 1.2.4. Let G be a topological group and a € G be a fixed element of G.
Then the mappings
r,: G—=G, z— za

and
l,: G =G, 2= ax

are homeomorphisms of G. Also, the inverse map 04 and the inner automorphisms

G— G, z+azal

are homeomorphisms of G.

Proof. 1t is clear that r, [, are bijective maps. Also, we will show that r, is a con-
tinuous map. Let W be an open neighborhood of xa. Since G is a topological group,
there exists a neighborhood U of = such that Ua C W. Thus, r, is continuous in z,
where z is an arbitrary element of G and so r, is continuous. Moreover, it is easy
to see that the inverse of r, whichis the 7,;! : G — G, z + za™!, is also continu-
ous by the same argument as above. Thus, r, is homeomorphism. Similarly, we can
prove that [, is homeomorphism. For the inverse map d, it is clear that d, is an injec-
tive, surjective and continuous map. Since 85 ! (z) = 2! is also continuous, then we
have that J, is a homeomorphism. Every inner automorphism is a homeomorphism
as it is the composition of two homeomorphisms = — az and a — za . [

Corollary 1.2.5. Let F be a closed, P an open, A any subset of a topological group
G and a € G. Then aF,Fa, F~! are closed and aP, Pa,P~', AP, PA are all
open.

Proof. Since Fis closed and [, r, and the inverse map are homeomorphisms, then
aF,Fa, F~! are closed. Also, aP, Pa, P~! are open, because P is open and the
inverse map is homeomorphism. It is clear that AP = U aP and PA = U Pa

) ) acA acA
and the union of open sets is open. O

Definition 1.2.6. A subset U of a group G is said to be symmetric if U = U~L. In
case G is an additive group, U is symmetric if U = —U.

Proposition 1.2.7. In a topological group there exists a base {U} of symmetric
neighborhoods of e.

Proof. Let {V'} be a base of open neighborhoods of e. Since ¢ = e~! and we

can prove that the map f : G — G, = + 2! is an homeomorphism because
G is a topological group. So for every V' € {V}, we have that V! is an open
neighborhood of e. But U = V N V! is a symmetric neighborhood of e because
U1 =V NV~! = U. Therefore, each V contains a U. On the other hand, {V'} is a
base of open neighborhoods of e, so then each open neighborhood A of e contains a
V,thatisU C V C A. Hence {U} is a base of symmetric neighborhoods of e. [
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Proposition 1.2.8. Let G a topological group and let a € G, then for each neigh-
borhood V' of a there is a neighborhood, U, of e such that

V =aU

Proof. LetU := a1V .Sincea € V thene € U. Since G is a topological group and
a € G,thenl, : G — G, where x 5 az is a homeomorphism. Also a1 € G, so
then [, is a homeomorphism. Since V' is an open set, then [,_1 (V') is open, because
the map [, is continuous. Moreover [,—1 (V) = a='V = U. Thus we have ¢ € U
and U is open, that is U is a neighborhood of e. Hence U = ™'V = V =alU. [

Lemma 1.2.9. Let G a topological group, let F' be a closed subset and C' a compact
subset such that FNC' = (). Then there is a neighborhoodV of e such that FOCV =
0.

Proof. Letx € C suchthatx € G\ F, where G \ F is open. So G \ F'is an open
neighborhood of x. There is a neighborhood W, of e such that W2 C =} (G \ F),
that is W2 C G \ F. According to proposition 1.2.8 we have that there exist
a neighborhood W, of e such that G\ F = zW, = W, = o (G \ F), but
W2 C W,.Hence W2 C z71(G \ F). Then there is a set of points x;, and a set
of associated neighborhoods of e, W, such that x,W? C G\ F and C C U,z;WV,.
Since C' compact we have there is finitely many of points =, ¢ = 1, ..., n and a set

of associated neighborhoods of e, W, such that z,W? C G\ F and C C U x;,W,.

=1

SetV = ﬂ W,. Now forany z € C then z € ;W for some i, and 2V C x,W? C
=1

G\ F.Then zV N F = (). Thus, CV N F = (), and this complete the proof. O

Definition 1.2.10. Let G a topological space. G is homogeneous if for every pair of
points x,y € G, there exists a homeomorphism f such that f(x) = y.

Proposition 1.2.11. Every topological group is homogeneous.

Proof. Let GG be a topological group and x, y be a pair of points in the topological
group G. We define f : G — G, where g — yx~1g. Then f(x) = y. Also, fisa
left multiplication by the element yz~!, so then f is a homeomorphism, according
to theorem 1.2.4. Therefore, f is a homomorphism satisfying that f(z) = y. This is
true for every pair of points in G. Hence, GG is homogeneous. O

Homogeneity is one interesting property of topological groups, because it makes
us able to examine every open neighborhood in the topological groups just by look-
ing at the open neighborhood of the identity element e := 1.

With the use of the theorem 1.2.4 we can prove that if we know a base of neigh-
borhoods of the identity in a topological group, then we can find a base of neighbor-
hoods of any other point.
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Theorem 1.2.12. If {U} is a base of open neighborhoods of 1 := e in a topological
group G, then {xU} and {Ux}, where x runs over G and U over {U} form a basis
of the topology of G.

Proof. Let a € G and let W be an open neighborhood of a. We know that [, ! :
G — G, where x — 'z is ahomeomorphism in z, according to theorem 1.2.4 and
I;Y (W) = a~'W is an open set which contains e. So then there exists a U € {U}
such that U C a~'W. This implies that al' C W, which proves that {zU} is a base
of the topology on GG. With the use of similar arguments we can prove that Uz is
also base of the topology on G. [

Since a topological group is not only a topological space but also a group, we
wonder if a subgroup of a topological group is a topological group as well.

Proposition 1.2.13. Let G a topological group. Then every subgroup H of G is also
a topological group.

Proof. Since H < (' then the multiplication map and the inverse map on H are the
multiplication map and inverse map on G restricted to the subgroup H. So then both
the multiplication map and the inverse map on H are continuous. Consequently, H
is a topological group. [

Proposition 1.2.14. Let G be a topological group.
(i) Every open subgroup of G is closed in G.
(ii) Every closed subgroup of G of finite index is open.

(iii) If G is compact, then a subgroup of G is open if and only if it is closed and of
finite index.

Proof. (i) Let H be an open subgroup of G. Let also a € cl(H) = H. We have that
aH is open, since H is. So then aH is a neighborhood of a, since it is an open set
containing a. Also, aHH N H # (), since a € cl(H) = H. So there exists h, hy € H,
such that h, = ah; € aH N H, and then a = h,hy! € H, since H is a subgroup.
Hence, H C H,but H C H,so H = H. Consequently, H is closed. (ii) We assume
that H is a closed subgroup of GG of finite index, then

G=9gHUg,HU---Ug,H (disjoint union)

where g; = 1. We have that g, H, for every ¢ = 1,--- | n, is closed, since H is closed.

So then G is closed. Thus, H being the complement of U g;H in G, is open.

i=2
(ii1) Let H be an open subgroup of GG. Then from (i) H is closed. In addition, we
have that the cosets of H provide an open covering of G and since GG is compact,
then H can have only finitely many cosets in G. Therefore, H is closed and of finite

index. The converse is true by (i). ]
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1.3 Finite Galois Theory and Krull Topology

In this section we will remind some basics of the finite Galois theory and we will
define the Krull topology.

Definition 1.3.1. The algebraic field extension L/ K is called Galois if it is normal
and separable

Definition 1.3.2. Let L/ K be a Galois field extension. The Galois group Gal(L/K)
is the set of all automorphisms on the field L that fixes every element of the field K,
thatis o(x) = x for every x € K and o € Gal(L/K).

Definition 1.3.3. Let H be a subset of Aut(L/K), then we define the fixed field of
H which is denoted by

FH)={a€cL:7(a)=qa,VT€H}

Then F (H) is a subfield of L.
Let F be an intermediate field of L/ K, that is K < F < L, then we define the fixed
group of F which is denoted by G(F') and is defined as

G(F)={0€ Aut(L)|o(a) = a, Va € F}
and G(F) < Aut(L/K).
Let K be a field and N/ K be a Galois extension. Let also
G =Gy =1{0 € Aut(N) : o|g = idg}

the Galois group of the extension N /K. We denote by {N : K} the lattice of
intermediate fields L, such that K < L < N, and {G : 1} the lattice of subgroups
H of G.

Theorem 1.3.4 (Fundamental Theorem of Galois Theory). Let N /K be a finite,
normal and separable field extension and G = Gal(N/K). Then [N : K| =
|Gal(N/K)| and there is a 1 — 1 inclusion reversing correspondence between in-
termediate fields of N | K and subgroups of G, given by

(N K} 2 (G

¢(L) = Gal(N/L) = G(L) and Y(H) = F(H), where K < L < N and H
subgroup of G. That is the maps are inverse lattice anti-isomorphism. This means
that@b o Qb = Zd{NK} andgb o ’QD = id{G:l}'

Moreover, if L <+ H, then |G(L)| =[N : Ll and [L : K] =[G : H].

Furthermore, H is normal in G if and only if L/ K is Galois. When this occurs, then
Gal(L/K) = G/G /.
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N <idy >

L «—— Gal(N/L)=G(L)

Let us assume now that the extension N /K is not necessary finite. The maps
Y, ¢ are defined as above and it is clear that they are lattice anti-homomorphisms.
In particular we have the following

Proposition 1.3.5. We assume that N /K is not necessary finite and the maps 1, ¢
are defined as above. Then

Yoo = id{N;K}

Proof. Let K < L < N.Then ¢(¢(L)) = (G /) = {z € N|Gyjpz = x}. It
is clear that L C ¢(¢(L)), since Gz = z, forx € L. Letnow z € N such that
Gz = @ then x is the only conjugate of x. Thus x € L and then ¢(¢(L)) C L .
Therefore, L = 1)(¢p(L)). O

Corollary 1.3.6. The map ¢ is injective and 1) is surjective.
Proof. 1t is clear from proposition 1.3.5. [

However in the general case if we have infinite extension, then the maps are not
anti-isomorphism. It is possible to happen that different subgroups of G/ x have
the same fixed field, which means that v isn’t injective. This will be illustrated in
the following example.

Example 1.3.7. Let K = [, be the finite field with p € P elements. Let | # 2 be a
prime number and we consider the sequence

where K, is the unique extension field of K of order [K; : K| = I'. Let

N:szﬂ

Itis clear that K, = {x € N | ' — = 0}. The extension N /K is Galois and let
G := Gal(N/K). We consider the Frobenius K-automorphism ¢ : N — N, with
¢(x) = aP, for every x € N. Weset H := {¢™|n € Z} < G.

We shall prove that:
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i) The groups H and G have the same fixed field, that is Y(G) = Y(H),

i) H+ G.

So then 1 isn 't injective. Firstly, we will prove (i): It is obvious thaty)(G) = K. It
suffices to show that w(H) = K. Let v € Y(H), thatis x € N and Hx = x.
But ¢ € H, so then ¢(x) = x. Also, ¢(x) = xP. So P = x, which implies that
v € K. Thus, Y(H) C K. Clearly K C (H). Therefore, y)(H) = K. For (ii)
we will prove that H #+ G. We will construct a K-automorphism o of N, which is
not contained in H. We define k; := 1+ 1+ -+ 1", for eachi = 1,2, ... and we
consider the K -automorphisms ¢* of N. If x € K, then

pFin(z) = ¢1+z+~-~+zifl+li<$):¢1+z+~--+zi*1<¢li(x))

P HIT (@) = gLt (g) = g ()

Thus,
prin K, = ri K, (1.1)

Now we define o : N — N, with o(z) = ¢Fi(x), for every x € K, We have
that o is well-defined, since I | I'*!, then K; C K, 1. If v € K,, then v € K,
etc, and so o(x) = ¢Fi(z), o(x) = ¢Fi1(x). But from equation (1.1) we have
that p*i+1(z) = ¢*i(x). In addition, it is clear that o is an automorphism. Now, if
o € H, then there isn € Z such that 0 = ¢"™. Hence, for everyi = 1,2, ... we have
olg, ="k, = PFi K, and then

"k, = ¢ki|Ki < ¢n_ki|Ki = idg,
ord(dlg,) |n—k; < Iln—k
n =k, mod [’ (1.2)

since [K; « K] = 1" and Gy ;i =< ¢l;, > Then we multiply the equation (1.2)
by (I — 1) and we obtain that

(I—1)n=(—1)k, mod I’
But (1—1)k; = (1= 1)1+ 1+ +1"1) = 1" — 1. Therefore,
(I—1)n=-1 mod I’ foreveryi=1,2,...
which is impossible if | + 2.

The idea in this example is the following: we will see later that the Galois group
G = Gal(N/F,) is isomorphic with the additive group Z, of I-adic integers. The
Frobenius automorphism ¢ corresponds to 1 € Z;. So H = Z C Z,. The elements
of G which aren’t in H correspond to the [-adic integers which are not in Z, (in our
case o =1+ 1+ 1%+-).

Although the above example shows that the Fundamental theorem of Galois the-
ory (Theorem 1.3.4) does not hold for infinite Galois extensions, it suggest us a way
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of modifying the theorem so that it will be valid even in those cases. The map o
of the above example is approximated by the maps ¢*:, since it coincides with ¢

on K, which becomes larger with increasing ¢ and N = U K. This leads to the
i=1

idea of defining a topology in G such that o = lim ¢*i. Then o would belong to the

closure of H. Now one could hope that there is a bijective correspondence between

the intermediate fields of N /K and the closed subgroups of Galois group G.

Now we will define a topology in Galois group. We remind that L € {N : K}
means that K < L < N and we set

F={L/K: K< L<N, L/Kis finite Galois}
Also, we set
B, ={Gy,|L/K finite Galois extension, L € {N : K}}
Lemma 1.3.8. Let G i for some Galois extension N /K and let
F={L/K: K<L<N, L/Kis finite Galois}

Then ﬂ Gy = {1} and for all o € G we have that ﬂ oGy, = {0}
L/KeF L/KeF

Proof. Leto € ﬂ G N/, then o is an L-automorphism of NV for every L such
L/Ke&F
that K < L < N, L/K is a finite Galois extension. Let also a € N then there
exists an £ € F such thata € E. Thus 0 € Gy, because o € ﬂ Gn/L
L/KeF
and then o fixes E, so o(a) = a. Hence, for every a € N we have o(a) = a, and
therefore o = 1. So ﬂ Gy = {1}

L/KeF
Ifr e m oGy, then ro ! e ﬂ Gnp» S0 70! =1 = o = 7. Thus,
L/KeF L/KeF

L/KeF
Lemma 1.3.9. If‘GN/Ll,GN/LZ € Bl’ then GN/Ll N GN/L2 € Bl‘

Proof. Since L, /K, L,/ K are finite Galois, so is L, L, /K and then L, L, € {N :
K} However Gy p, 1, = Gal(N/LyLy) = Gy, NGyyp,,since o € Gy N
Gy, ©op, =1y ando|, =1|, < L;,L, CF(0) & L1L, C F(0) &
o€ Gyyp, 1, Therefore Gy, NGy, =Gy, 1, € By O

Lemma1.3.10. Let N /K be an infinite Galois extension with Galois group G ;. =
Gal(N/K). Then

B, ={0G N, |L/K finite normal extension, L € {N : K}}

forms a basis for a topology on G.
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Proof. Each open set is a union of cosets G ,;, hence an arbitrary union of open
sets is also a union of such cosets, so in this topology an arbitrary union of open
sets is open. Also, Gy is open, since K /K is a finite Galois extension of degree
1. In addition we will check that open sets are closed under finite intersections. It
suffices to check that for two elements of the basis. If /Gy, and 7,Gy/, are
two basis elements and let 7 € G/, N 7oG )y, , then from lemma 1.3.9 we
have that G, N Gy, € By, thus 7(Gy,,, N Gy, ) is open. Finally we
will show that ) is open. Indeed, for some Gy, € B; with G, # Gy i we
choose 71,75 € G such that 7, G/, # 75G ), (Which we can do, otherwise
Gny, = Gnyg)- Then 71G N 7oG ), = 0 and so @ is open. Therefore B, is
indeed the basis for a topology on G . [

Now we can define the following.

Definition 1.3.11. Let N /K be an infinite Galois extension and G = G . The
set

B, ={0Gn, | L/K finite normal extension, L € {N : K}}

forms a basis of open neighborhoods of o € G. The topology which is defined by
B, that is has basis B, is called the Krull topology on G.

We can show that
B, ={Gy|L/K finite normal extension, L € {N : K}}
forms a basis of open neighborhoods of 1 € G.

We have that G/, S Gy = G, since L /K is a finite Galois extension. More-
over, if Gy, 1s such that L /K is a finite Galois extension with K < L < N, then
(Gn/x + Gyyr) < oo. Thus, there are 04, ...,0,_; such that G = H U o, H U
- U o,_;H. This means that G \ oG, is a union of finite number of cosets of
G N1, which are open sets. So, oG/, is both open and closed set. Thus the Krull
topology has a basis of sets which are both closed and open.

Proposition 1.3.12. Let N /K be an infinite Galois extension and G = G y i The
Galois group G equipped with Krull topology is a topological group.

Proof. Let§; : G x G — G, with (o, 7) = o7. It suffices to show that 67 1(A)
is open neighborhood of G' x G for every open neighborhood A of G. Let A be an
open neighborhood of G, then A = UoG ;1 and 6, ' (UoG 1) = U3y (oG /1)
We have that

0 (07GNyr) = {(91,92) €G X G+ g1gy € 0TGN 1}
= {(91,90) €GXxG:7 o 1gg, € Gyt
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and

oG X TGN, = {(91:92) EGXG: gy €0GN L, g2 € TGN}
= {(91,92) €GxG:0 g €Gnyp, T 192 € Gy}

Let(g1,95) € 0G /1 XTG N - Since o lg € G- thenthereis g € Gy such
that o 'g; = g. So 7 'o g9, = 7~ 'gg, and we have that g, € TGy, which
implies that there exists ¢’ such that g, = 7¢’, and then 7 *o 19,9, = 7 1g7¢’.
But 7 'grg" = g”, since G, A G and g” € Gy Thus, 7o g9, = g"g’ €
G yp»thatis (g1, g5) € 07 (017G y ). Hence, oGy, X TG y/p, € 07 (07G iy 1)
Also it is clear that oG/, X TGy, is an open neighborhood as for product topol-
ogy of G x G and (0,7) € oGy, X TG/ Therefore, for every (o,7) €
61_1(07'GN/L) there exists an open neighborhood oG 1, X 7G v, of (0, 7) such
that oGy, X TGy )1, € 67 (07G 1) This implies that 87! (07G /1, ) is an open
neighborhood of G' x G and so 51_1(0GN/L) is open for every Gy, € B,,. More-
over, we have that A = UoG y,,, is an open as a union of open sets. Thus, d; is
a continuous map. Furthermore, we will show that 6, : G — G, with o > o~}
is a continuous map. It suffices to show that 55 '(A) is open neighborhood of G
for every open neighborhood A of GG. Let A be an open neighborhood of GG, then
A =UoGy,p, and 6,1 (UoG 1) = Udy (oG 1) We have that

5271(071GN/L) = {gegte UﬁlGN/L}
= {geG:0g' € Gyt

oGny={9€G:g9=09,9 €Gn/}
Letg € oGy p.theng =0g’, g € Gyp.Soog ' =09 o' =g¢" € Gyp,
since Gy/;, < G. This means that oGy, C 52_1(0_1GN/L). Thus, oGy, is an
open neighborhood of o. This implies that for every o € ;' (07 'G ) there is
an open neighborhood oG/, of o satisfying that oG, C 52_1(0_1GN/L). So
51 (07 G y/1) is an open neighborhood of G' and then &, ' (¢G'y1,) is open for
every Gy, € B,. Hence, we have that A = UoG ,, is an open as a union of
open sets. Thus, d, is a continuous map. Therefore the Galois group G equipped
with Krull topology is a topological group. [l

Remark 1.3.13. 1) If N/K is finite Galois extension , then the Krull topology of
G Nk Is discrete, since every subgroup of G i is open but this is the definition of
discrete topology.

2)Leta, 7€ Gy . Thent € oGy < 01 € Gy & (07 o7)(x) =, for
every x € L, thatis o(x) = 7(x), for every x € L, this means that two elements of
G, “are near” if they coincide on a large field L.



14 Galois Theory for Infinite Extensions

Theorem 1.3.14. Let N /K be an infinite Galois extension and G = G y i Then
the topological group G equipped with Krull topology is

i) Hausdorff
ii) compact
iii) totally disconnected
Proof. 1) To show that GG is Hausdorff, it suffices to show that for any two distinct

elements o, 7 € G, there is a neighborhood U of o and neighborhood V' of 7 such
that U NV = (. Let

F={L/K: K<L<N, L/Kis finite Galois}

and we have that the set
By, ={Gn,|L/K finite normal extension, L € {N : K}}

forms a basis of open neighborhoods of 1 € G. So according to lemma 1.3.8
we have that m Gy, = {1}. Since o, 7 are distinct elements in G, then

L/KeF
0 # 7= o 1 # 1. Thus, there is U, € B, such that o7 ¢ U, = 7 ¢ oU,, and
then oU, N 7U, = () because U, < G. We know that U, is an open neighborhood

of 1, then according to proposition 1.2.8 we have that oU, is an open neighborhood
of ¢ and 7U, is open neighborhood of 7. Thus, G is Hausdorff.

It suffices to notice that

(| Gyuo={l}=N= |]J L

L/KeF L/Ke&F
Indeed,

N —— <idy >

L «—— Galy,

K +—— Gy/k

Weset G, = Gy,
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N < id >

G, NG,

/\ N
\/ \/

But G, NGy, = {1} and L1Ly, <= G; NGy, s0 N = L,L,. In general
case ﬂ Gy =< id >, sothen N = H L. Clearly, U LCN =

L/KeF L/KeF L/KeF
H L. Letz € N = H L. Thenz = l;ly-- € L; C U L. Therefore,

L/KeF L/KeF L/KeF
N= [] L

L/KeF
i1) We define the map

h: G —» ][] Gux=P
L/KeF
o = H ol
L/KeF

We notice that P is compact according to Tychonoff’s theorem since every G is
compact as it is a discrete finite topological group. We will show that h is a homeo-
morphism from G to h(G) and h(G) is a closed in the product space H Gk =
L/KeF

P. Then we will have that G is compact.

Firstly, we will show that b : G — h(G) is a homeomorphism. We will prove that
h is injective. Let o € G such that A(o) = 1. This means that o|; = 1, for every L
with L/ K € F. We have that o(x) = z, forevery z € N, since N = U L. So

L/Ke&F

o = 1 and then A is injective. Also, we will show that h is continuous. It suffices to
show that g; /i  h is continuous, for every gy, x, where gy, is the projection of
P at GL/K

9dL/K

G—"p » Gk
o —— h(o) —— 0|,

Indeed, if gy, /5 o h is continuous for every g, i, then for every open set A of G, ¢

we have that (h1o(g, / ) L(A) is an open set of G. From the definition of product
topology we have that

Y= {gZ}K(AL)|L/K € Fand ApisopeninGp k}
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is a subbase of product topology. This means that A~ (V) is open set in G, for every
V'€ 4. Thus, h is continuous. It remains to show that g; - o h is continuous. It
suffices to show that for every open set in G, ;- we have that (g, © h)71(A) is
an open set in G. It is clear that all singletons {0} with 0 € G are open, since
G,k 1s a topological group equipped with discrete topology, and we know that
B = {{o},0 € G| K} forms a basis of discrete topological space G, . Let A

be an open set in G, then A = UBZ-, with B; € B. So, (91, ° h)~1(A) =

(9r/x ° )~ UB = U(gyx > h)"1(B,). Clearly,

(9r/x o) H{1}) = {z€G: (g h)(z) =1}
{reG: x|, =1}
= {zr€eG:2eGy}t =Gy €5

Similarly, (g;,,xoh) " ({0}) = 0G N, € B,,s0then (g1, oh)~"(B;) is open for
every B; € B. Thus A = U, B, is open as union of open sets in G, so then g /i o h
1s continuous.

Now we will prove that h(G) is closed in the P and the map h : G — h(G) is
an open map. We consider the set

MLI/LQ ={ H ol ULI‘L2 = ULQ}
L/KeF
where K < L, < Ly < N, L;/K € F and o, = oy, fori = 1,2. The set
M L,/L, 1s closed in P, because it is a union of finite number of closed sets. Indeed,

L,/Kk = 101,09,...,0,} and S; is the set of all extensions of o, at Ly, that is
S —{7‘€GL k| T, =0;} Then

My p, = U H Gr/x X 5; X {o;}
=1 L+Lq,Lo

L/KeF

where H G % S; x {o;} is closed on P.
L#Ly,Ly
L/KeF

Now we will prove that

h(G) = ﬂ My p,, where L;/K € F

LoCLy

It is clear that h(G) € (] My, jp,.sinceifx = [ ol; € h(G) and let
LaCLy L/KeF
KQL2 ng QN,LZ/KE?,O-LL :U|Li,then0-L1|L2 :O'Lz.SOZIIE
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My p,and Ly, L, are arbitrary and then = € ﬂ My p,- Letnow H ol €
LoCLy L/KE?
ﬂ My, /r,- We can consider a K -automorphism o : N + N defined by o(z) =
Lacly

op(x),if v € L,sothat h(o) = ] ol is well-defined since [[ o, €

L/KeF L/KeF
ﬂ My, /- Therefore h(G) = ﬂ M;y, - Hence, h(G) is closed in P as an
LoCLy LoCLy

intersection of closed sets.
Finally A is open into h(G), since if L/ K € F then

h<GN/L) = h(G) ﬂ( H Gk X {1})

L' +K

L/KeF

Thus, h(G ) is open in h(G) and since Gy, is an open neighborhood of 1 then
h is open in h(G).

Hence, h is a homeomorphism from G to closed subset h(G) of compact space P.
Therefore, h(G) is compact and then G is compact.

ii1)) We only need to show that the connected component H of 1 is the one-point
set H = {1}, since G is a topological group and so G is homogeneous. For every
Ue By letUy =UNH,then Uy # (), since 1 € Uy, forevery U € B,, and Uy,
isopenin H. Let

VH = U QJ'UH
czeH\Uy

We have that U is open, so then V}; is open in H. Clearly, V; N Uy = 0 (by
definition of V) and H = U UVy. But Uy # () and H is the connected component
of 1, so then V; = (). That is U; = H, which means that U N H = H for every
U € By, Then H C ﬂUe 3, U = {1}. Therefore, G is totally disconnected. O

It worths to note that it is true the following: A compact topological group is
totally disconnected if and only if the intersection of all compact neighborhoods of
1 is equal to {1}. A proof of this can be found in [9].

1.4 The Fundamental Theorem of Infinite Galois The-
ory

In this section we will state and prove the fundamental theorem for infinite Galois
theory. In fact, the main theorem of the infinite Galois theory is a generalization of
the fundamental theorem of the finite Galois theory.

For its proof we will require just one more proposition, which we state and prove
now.
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Proposition 1.4.1. Let N/K be a Galois extension. The open subgroups of G =
G /K are just the groups G, where L/ K is a finite subextension of N /K. The
closed subgroups are precisely the intersections of open subgroups.

Proof. Let Lwith K C L C N suchthat L/ K is a finite extension. So then L / K is
finitely generated extension, thatis L = K(«q,...,a,,).Let f(x H Irr(

where L is the separable closure of K, so L/K is separable and then L/K is also
separable. Let L be the splitting field of f, which is separable. Thus L /K is Galois.
Also L/ K is finite, since L/K is. So K < L < L < N. We choose a finite normal
extension E/K such that K < L < L < N. Then GN/I: < GN/L < GN/K =G

N —— <idy >
L+— GalN/i

L «—— Galy,

K —— Gy/k

So, Gy, = U O'GN/E, and then G, is open as a union of open sets. Con-
UEGN/L
versely, let now H be open subgroup of GG. Then there is a finite Galois extension

L/K such that G NS H < G. We consider the epimorphism

G—>G/N
o = o3

which is the restriction of G in Gz ;- and G/GN/E = GE/K’ so its kernel is GN/E-

The image of H under this restriction is a subgroup of G ¢ K and since L /K is finite,
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then the image of H under this restriction is of the form G 5 /L for some field L such
that K < L < L. Thus,

Therefore we proved that the open subgroups of G = Gy are just the groups
Gy, where L/ K is a finite subextension of N /K.

Every open subgroup of G is also closed, since it is the complement of a union
of cosets of G which are open, that is

G=Gy,u( |J )
oc€G\Gy/,

So the intersections of open groups G/, are also closed subgroups. Conversely,
we assume that H is closed subgroup of GG. Clearly, H C HU, for every U € B,
and then
HC () HU
UeB,;

On the other hand, let o € ﬂUGB HU. We have that oU € B, since U € B;.
1

So there is a U, € B, such that 0 € HU,, thatis 0 = 0,04, with 0y € H and

oy € Uy, then oU = 0,0,U = oU and oy = 0, -1 € oU. Thus, cU N H # ), for

every U € B,. This means that for every open neighborhood V' of o we have that

V N H +# 0, thatis o € cl(H) = H.But H is closed, so then 0 € H = H. Hence,

H = ﬂ HU and then H is the intersection of the open subgroups HU. [
UeB,

Comment 1.4.2. In proposition 1.4.1 we assume that L] K is finite but it isn't nec-
essary L/ K are Galois like in proposition 1.3.5.

Now we are ready to state and prove the fundamental theorem for infinite Galois
extensions.

Theorem 1.4.3 (Krull’s Theorem). Let N / K be a (finite or infinite) Galois extension
and let G = Gy k. Let {N : K} be the lattice of intermediate fields K C L C N
and let {G : 1} be the lattice of closed subgroups of G. If L € {N : K} we define

¢(L)={oc€G|o|L=1d,} =Gy

Then ¢ is a lattice anti-isomorphism of {N : K} and {G : 1}. Moreover, L € {N :
K} is a Galois extension of K if and only if ¢(L) is a normal subgroup of G. If this
is the case then

Gk = G/é(L)

Proof. By assumption we have that N /K is Galois, so is the N /L. Then according
to theorem 1.3.14 we have that ¢(L) = Gy, is compact. So G, is closed in G.
This implies that ¢ is in fact a map into {G : 1}. We define
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Ve {GH1} = {N:K)

which defined by
Y(H)={reN: Hr =z}

We have already proved that o¢ = id; . i It remains to show that pot) = id;g.q).
If L/K is finite, then

o(P(Gnyr)) = ¢(b(¢(L))) = d(¥e (L))
= ¢(id(L)) = ¢(L) = Gyy1
If H € {G : 1}, then according to proposition 1.4.1 we have that

H=(\Gn/

where L is running through a collection of L such that K C L C N with L/K is
finite. Then

o((H)) = o(W(NGnyL)) = ¢(UP(Gyy 1))
N@o)(Gny) =NGny =H
Thatis ¢ o ¢ = id;g.qy-
Let now L/K be Galois extension and H = ¢(L) = G ;. We will show that

H <G, thatisoHo™! = H,forevery o € G. Since L/K is Galois theno(L) = L,
for every o € G and we know that if o € G then ¢(o(L)) = o¢p(L)o~ . Then:

b(dlo(L))) = Y(od(L)o™") =
o(L) = (oHo™)
In addition, L = ¢(H). But
L=o(L)
= oHo'=
= HJG

Y(oHo™t) = y(H)

=
H, foreveryo

Conversely, suppose H < G and )(H) = L. Then cHo ! = H, for every o € G,
that is ¢(cHo ') = v (H), for every o € G, So o(L) = L, for every o € G, and
then L/ K is normal extension and also L/ K is separable since N /K is. Thus, L/ K
1s Galois.

Finally, since every K-automorphism of N at L is a K-automorphism of L, since
L/K is Galois.
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Let7 € G- Then 7|y : L — K such that 7 = id and 7 is a homomorphism.
But 7(L) = L, so then 7|, : L — L with 7|, = id, which means that 7, is a
K -automorphism. Thus, the restriction of every K -automorphism of NV in L is a
K -automorphism of L. We consider the map

rest : G — Gpg
o = o

According to the above we have that the map rest is well-defined. Moreover, the
rest is a surjection map. If 7 € G i then T : L — L is a K-automorphism.
Since N /K is Galois then N is the splitting field of f(X) € K[X]and K C L C
N.So 7(f) = f,since 7 € G k. Thus, according to isomorphism extension
theorem there exists an isomorphism o : N — N such that o|;, = 7. The o is an
automorphism of N and 0| 7| = id. This means that for every 7 € G, there
is 0 € Gk such that o|;, = 7. Consequently, the rest is a surjection map and the
kernel of this restriction is

Ker(rest) = {0 € G: 0| =id} = Gy, = ¢(L)
Therefore, according to first isomorphism theorem of groups we have that

G/o(L) =Gk
Il

So we ascertain that it is indeed possible to extend the fundamental theorem of
finite Galois extensions to infinite algebraic extensions. This new theorem does in-
deed extend the old one. If L./ K is a finite Galois extension, then the Krull topology
on Gal(L/K) is discrete. This occurs because L/ K is a finite Galois extension, thus
Gal(L/L) = {1} is open. Hence every subgroup of Gal(L/K) is closed, so then
we obtain our original correspondence between intermediate fields and subgroups.

1.5 The use of Infinite Galois Theory

We have defined a fundamental theorem for infinite Galois extensions. An ap-
propriate question to pose is whether this new theorem is at all useful. It would be
the case that infinite Galois extensions are rarely encountered, so the study of their
Galois groups would be in many ways fruitless. But there are occasions in which we
would like to study infinite extensions. We know from elementary field theory that
every algebraic extension of either field of characteristic 0 or a finite field is separa-
ble. Thus, when our field F is in one of these categories, the field extension K /K is
separable. Clearly, K /K is normal since K contains all roots of every polynomial
f(X) € F[X], and hence is Galois. However, there are cases when K /K is not a
separable extension as we shall see in the following example, so K /K cannot be
Galois.
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Example 1.5.1. Let K = [,(t), where t is transcendental. Then \/t € K because
V't is a root of the polynomial X* — t over K. But X* —t = (X — \/t)? is not
separable. Therefore, K /K is not a separable extension, so it cannot be Galois.

Definition 1.5.2. Let L/K be a field extension. The separable closure of K in L
denoted by K*°P, is

K5P = {x € L |z is separable over K}

When K*P is written without reference to a particular extension field L of K, we
will mean the separable closure of K in K.

We can show the following proposition

Proposition 1.5.3. Let K be a field, K its algebraic closure, and K*°? its separable
closurein K. Then K*°P | K is a Galois extension, and Gal(K /| K) = Gal(K*°? | K).

The proof of this extension can be found in [10].

Definition 1.5.4. The group G = Gal(K*°?/K) is the absolute Galois group of the
field K.

Example 1.5.5. If K = Q, then Q*P = Q, then the absolute Galois group of Q is
Gal(Q/Q).

As a rule the extension K*°P /K is an infinite extension. However, it does have
the advantage of collecting all finite Galois extensions of K. So it is reasonable
to develop the Galois theory for infinite extensions. This theory would help us to
understand the Galois extension Q/Q and in turn, any understanding of the Galois
group Gal(Q/Q) would be indispensable in number theory.



Chapter 2

Profinite groups

The groups which occur as Galois groups of field extensions belong to a class of
topological groups, the so-called profinite groups. In this chapter we are going to in-
vestigate the profinite groups. These groups are fairly close relatives of finite groups.
For the precise description of profinite groups we need the notion of projective limit
which we will introduce as well.

2.1 Category Theory

Eilenberg and Mac Lane invented categories and functors in the 1940s by dis-
tilling ideas that had arisen in Algebraic Topology. Categorical notions have proven
to be important in purely algebraic contexts. Category theory will force us to think
in general case and categories are the context for discussing general properties of
systems, such as groups, rings, vector spaces, modules, sets and topological spaces.
Imagine a Set Theory whose primitive terms, instead of set and elements, are set and
function. Then with the help of category theory we can define bijection, cartesian
product, union and intersection. In this section we will study categories because they
are an essential ingredient in the definition of functor, which will be useful in next
sections.

In Set Theory there are well-known set-theoretic “paradoxes” showing that con-
tradictions arise if we are not careful about how the undefined terms set and element
are used. For example, Russell’s Paradox give a contradiction arising from regard-
ing every collection as a set. From this we conclude that some conditions are needed
to determine which collections are allowed to be sets. Such conditions are given in
Zermelo-Fraenkel axioms for Set Theory.

Definition 2.1.1. * A class is a collection whose elements are also classes.

» Every class (except from zero class) has elements but a class isn t required to
be an element of another class.

» Ifaclass A is an element of some class B then the class A is called set.

23
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For example,

» The class of all groups.

o The class of all group homomorphisms.
o The class of all sets.

% The class of all rings.

Now we will define the categories.

Definition 2.1.2. Let X be a class and obj(X) is the class of objects of X'. We assume
that X is equipped with two maps, as follows

i) The first map assigns for every ordered pair of objects (X,Y') a set of mor-
phisms Hom(X,Y) = Hom(X,Y).

ii) The second one assigns for every ordered triple of objects (X,Y , Z) a map
Hom(Y,Z) x Hom(X,Y) — Hom(X, Z)

denoted by (g, ) > g o f for every morphisms f : X - Y andg: Y — Z.
The morphism g o f is called composition of g, f.

The class X equipped with the above two maps will be called category if it also
verifies the following axioms

1) Composition is associative. If h: Z — W, ,g: Y — Z and f: X — Y are
morphisms of X, then ho (go f) = (hog)o f.

2) For each objectY in X there exists an identity morphism 1y : Y — Y such
that

iff: X—=>Ythenlyof=f
ifg: Y = Zthengoly =g

Example 2.1.3. i) X' = Sels the category of all sets. The objects in this category
are sets, Hom(X,Y) = {f : X = Y| f function} and composition g o f is the
usual composition of functions.

ii) X = CGroups the category of all groups. The objects in this category are groups,
morphisms are homomorphisms, that is Hom(X,Y) = {f : X — Y| f homo-
morphism} and composition g o f is te usual composition of homomorphisms.

iii) X = Rings the category of all rings. The objects in this category are rings, mor-
phisms are homomorphisms of rings, that is Hom(X,Y) = {f : X = Y| f homo-
morphism of rings} and composition g o f is the usual composition of homomor-
phisms.

iv) X = pMod the category of all left R-modules over a ring R. The objects in
this category are left R-modules, morphisms are R — homomorphisms, that is
Hom(X,Y)={f: X = Y| fR — homomorphism} and composition g o f is
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the usual composition.

If R = 7, then we write rpMod = Ab fto remind ourselves that 7Z-modules are just
abelian groups.

v) X' = Modg the category of all right R-modules over a ring R. The objects in
this category are right R-modules, morphisms are R — homomorphisms, that is
Hom(X,Y)={f: X = Y| fR— homomorphism} and composition g o f is
the usual composition.

The Hom sets in Modp, are also denoted by Homg(a,b).

vi) X = Top the category of all topological spaces. The objects in this category are
topological spaces, morphisms are all continuous functions, that is Hom(X,Y) =
{f: X = Y| fcontinuous} and composition g o f is the usual composition.

Now we can define functors.

Definition 2.1.4. If X and X’ are categories, then a functor & : X' — X' is a
function such that
) if X € obj(X), then F(X) = X" € obj(X")
i)if f+ X =Y isamorphismin X, then F (f) : F(X) — F(Y) is a morphism
in X'
iii) for every X € obj(X), then F (1x) = 14y,
wiff: X — X and g: X' — X” are morphisms in X, then

F(f) F(9)

F(X) = FX) = F(X)
in X" and
F(gof)=F(g)F(f)

Definition 2.1.5. Let F and G be functors from any category X to the category of
sets, Sets. The functor G will be called subfunctor of F, when

i) For every X € X the G(X) is a subset of F(X).

and

ii) For every morphism f of X the G(f) is the restriction of F (f) to Sets.

Example 2.1.6. 1) If X is a category, then the identity functor 1o + X — X is
defined by 14-(X) = X for every X € obj(X) and 1+(f) = f for every morphism
f

2) Let X be a category and A € obj(X), then the Hom functor Ty : X — Sels is
defined by T'y(B) = Hom(A, B) for every B € obj(X)
andif f : B— B in X, then

T,(f): Hom(A,B) — Hom(A,B’)
h > foh

Then the T ,(f) is called induced map and is denoted by
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We will show that f, = T 4(F) is a functor. By definition of T ,(f) = Hom(A, B)
we have that Hom(A, B) is a set and so T 4(f) € obj(Sets). We notice that the
composition f o h makes sense.

f

A" B » B’
W
Let now that g : B" — B”. Then,
BB 2 p

Hom(A, B) — Hom(A, B') —%— Hom(A, B")
and (go f),: Hom(A, B) — Hom(A, B").
Let h € Hom(A, B), then

(9o f)(h)=(geof)eoh
On the other hand,

Hom(A, B) LN Hom(A,B") —~— Hom(A, B")

h s foh s go(foh)

Clearly, go(foh) = (go f)oh, because Sets is a category. Thus, (go f), = g,°f,. Fi-
nally, 1z : B — B, then(1p), : Hom(A, B) — Hom(A, B), where h — 1goh =
h. That is (1g).(h) = h, for every h € Hom(A, B). So, (1g), = lyom(a,B)-
Therefore, the T (f) = f, is a functor.

We can easily prove that I, preserves products, that is
TA(H B;) = H Ty(B
We usually denote T y by Hom(A,O).

3) Let R be a commutative ring and A is a R-module. Then itis clear that Hom (A, B)
is a R-module as well. We will show that if f :) B — B’, then

fo: Homg(A,B) — Homp(A,B)
h > foh

is a R-homomorphism. Indeed, f, is additive map. If h,h' € Homp(A, B), then
for each a € A,
folh+h)(a) = (feo(h+h"))(a)= f(h(a)+h (a)
= [f(h(a)) + f(B'(a)) = (f.(h) + f.(R))(a)
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Also, f, preserves scalars. We remind that if r € R and h € Homp(A, B), then
rh(a) = hr(a). Then, f.(rh)(a) = (f orh)(a) = f(rh(a)) = f(h(ra)) and
rf.(h)(@) = r(f o h(a) = f(r(h(a)) = f(h(ra)). Thus f.(rh) = rf.(h)
Hence, f, is a R-homomorphism. Similarly with (2) of the example, we can prove
that Homp (A, ) is a functor.

4) Let X be a category and A € obj(X'). We defineT : X — X, with T(C) = A,
for each C € obj(X) and T(f) = 1, for every morphism [ in X. Then T is
a functor. Indeed, we have that T(C) € obj(X), for every C € obj(X). Also,
let 1o+ C — C, with C € 0bj(X), then T(1¢) = 14 = lqc). Finally, let
f:C—=Candg: C'"— C" thenT(go f) =14, =14014 =T(g) o T(f).
Therefore, T' is a functor, which is called constant functor at A.

The second type of functor reverses the direction of arrows.

Definition 2.1.7. If X and X’ are categories, then a contravariant functore : X —
X’ is a function such that

)if X € obj(X), thene(X) = X’ € obj(X”)

i) if f+ X = Y is amorphism in X, then e(f) : e(Y) — e(X) is a morphism in
X

iii) for every X € obj(X), then e(1x) = 1,x,

wiff: X —=Yandg:Y — Z are morphisms in X, then

in X" and
e(go f)=e(f)oe(g)

The functors defined earlier are often called covariant functors.

Definition 2.1.8. If F and G are functors from any category X to the category X,
then natural transformation T : & — § is a_function which for every X € obj(X)
there is morphism 7y : F(X) — G(X) of X’ such that for every morphism f :
X — Y the following diagram commutes

F(Y) - G(Y)

Example 2.1.9. 1) Let XX be a category and B € obj(XX), then the contravariant
functor TB : X — Setsis defined by TP (C') = Hom(C, B) forevery C € obj(X)
andif f: C — C"in X, then

T3(f): Hom(C’',B) — Hom(C,B)
h > hof
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Then the TB(f) is called induced map and is denoted by
fo=T5(f)

We will show that f* = TB(F) is a contravariant functor. By definition of T®(f) =
Hom(C, B) we have that Hom(C, B) is a set and so TB(f) € obj(Sels). We

notice that the composition h o f makes sense.

C f>C’ h . B

S~y
Let now that f : C — C" and g : C' — C” and (go f)* : Hom(C",B) —
Hom(C', B), where (go f)*(h) = ho(go f), for h € Hom(C”, B) On the other
hand,
Hom(C",B) —~— Hom(C', B) —— Hom(C, B)

h »hog —— (hog)o f

Clearly, ho (go f) = (h o g) o f, because Selbs is a category. Thus, (g o f)* =
g" o f*. Finally, 1o : C — C, then (1), : Hom(C,B) — Hom(C, B),
where h +— h o1y = h. That is (15),(h) = h, for every h € Hom(C, B). So,
(18)* = 1om(a,p)- Therefore, the TP (f) = f* is a contravariant functor.

We can easily prove that TP converts sums to products, that is
TB(@ A;) = HTB(Az‘)
We usually denote TP by Hom(O, B).

2) Let R be a commutative ring and B is a R-module. Then it is clear that Hom (A, B)
is a R-module as well. We will show that if f :,C — C’ is R — homomorphism,
then

fo: Hompg(C',B) — Hompgx(C,B)
h g hof

is a R —homomorphism of R —modules. Indeed, f* is an additive map. If g, h €
Hompgz(C’, B), then for each ¢’ € C’,

flg+h)a) = ((g+h)ef)(c") = (g+h)ef(c)
= g(f(¢) + h(f(c") = (f*(g9) + [ ()()

Also, f* preserves scalars. We remind that if r € R and h € Homp (A, B), then
rh(a) = hr(a). Then, f*(rh)(c) = (rho f)(c) = rh(f(c)) = h(r(f(c))) =
h(f(re)) = rf*(h)(c) Thus f*(rh) = rf*(h). Hence, f* is a R-homomorphism.
Similarly with (2) of this example, we can prove that Hom (O, B) is a contravari-
ant functor.
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2.2 Projective and Direct Limit

The notions of projective, respective direct limit, generalize the operations of
intersection, respective union, of a family of sets. If (X i)ie ; 1s a family of subsets of
a topological space X which for any two sets X, X, also contains the set X; N X,
(resp. X; U X)), then the projective (resp. direct) limit of this family simply defined
by

limX, ={ | X, (rexp. limX, =| | X,

E 7 ’Q 3 ( p E 7 g{ ’L)
Writing ¢ < j <« X; C X, (resp. X; C X;) makes the indexing set [ into
a directed set, this means that I has a partial order < such that for any 7,5 € I,
there isa k € I with¢ < k and j < k. In the case at hand, such a & is given by
X = X; NX; (resp. Xj, = X; U X,). Fori < j we denote the inclusion X; < X
(resp. X; < X )by p,; and then we obtain a system {X;, p; j} of sets and maps. The
operations of intersection and union are now generalized by replacing the inclusions
,; with arbitrary maps.

Definition 2.2.1. Let I be a partial ordered set which is a directed set, too. A pro-
Jjective system over I is a family

{(Xm%‘j) li,j€l, i<j}

of topological spaces X, and continuous maps ¢,; : X; — X, such that
i) Ifi = j, then @;; = Idx,
i) If i < j <k, then ;3 = @, o @y, that is the following diagram commutes:

Xk
X; o > X,

Definition 2.2.2. The projective limit of the projective system {(X;,;;)|i,j €
I, i < j} is defined to be the following subset of the direct product H X,

i€l

@Xi = {(%;)ier € HXz' [pi(x;) = zy, for i < j}

el i€l

Comment 2.2.3. If we consider the X, as subsets of a topological space, then the
subsets X, are topological spaces equipped with the subspace topology. Also, the
product | | X, is a topological space equipped with the product topology.

icl
Remark 2.2.4. If the topological spaces X, are Hausdorff, then so is the product.

In this case the projective limit ££1 X, is a closed subspace of H X;.
el el
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Proof. Indeed, the h;n X, can be written as

el
lim X, =[] X,
icl i<
i,jelI

where X,;; = {(z))rer € HXk | ¢;;(x;) = x;}. It suffices to show that the sets
kel
X;jwithi < j, i, j € I are close. Writing p; : H X, — X, for the i—th projection,
el
the map g = p; is continuous. Also, the map ¢ := ¢, ; o p;, with i < j is continuous
as it is a composition of continuous maps.

p; . Pij .
1% » X, > X,
kel
. p; . . Pij .
(Tg)ger 7 Ljh > Ly

Then, we can write X;; = {z € H X | g(x) = ¢(x)}. Since we have that X is

Hausdorff and the maps ¢, g are cgreliinuous, then X, ; is a closed subset, according to
Proposition 1.1.6. Thus, the gn X, = ﬂ X jis also closed as an intersection
i€l i<y
1, €1
of closed sets. ]

Theorem 2.2.5. The projective limit gn X, of nonempty compact topological spaces

el
X, is nonempty and compact.

Proof. Since for every ¢ € I we have that the spaces X, are compact, then the prod-
uct H X, 1s also compact, by Tychonoff’s theorem. Thus, the liHmXi is compact

i€l el
set, since it is a closed subset of the compact space H X,. Furthermore, lim X, =
i€l Ser
ﬂ X;; cannot be the empty set if all the X; are nonempty. In fact, as the
i<
1, €1
product H X, 1s compact, if yLnXZ- = (), that is ﬂ X;; = 0, then there is
el el 7 < ]
i,j €1

an intersection of finitely many X,;; which is empty. But this is impossible, since
all indices entering into this finite intersection satisfy that are less than or equal to a
natural number n, as the indexing set [ is directed, and then z,, € X,. If we choose
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x; = @, (x,) for i < n, and arbitrarily for all other 4, then the element (x,),.;
belongs to this intersection. %

Hence, @Xi = ﬂXij + (0 O
el <]

Let (G, gpij) be a projective system of topological groups. Then the projective
limit
H
iel
is a topological group as well. The multiplication in the projective limit is induced

by the componentwise multiplication in the product H G,. The projections
icl
D; ¢ H G; = G,
icl
induce a family of continuous homomorphisms
@, G = gn G, = G,
il

such that ¢, = ¢,; o ¢, for every ¢ < j. This family has the following universal
property.

Theorem 2.2.6. (Universal Property) If H is a topological group and (G,, goij) be
a projective system of topological groups. Let also

h;,: H—=G;Viel
a family of continuous homomorphisms such that
h; :%'j"hjfori <7

then there exists a unique continuous homomorphism

h: H—G=IlimG,
—

el

satisfying h, = p,; o h forall i € I.
Proof. Fori <j
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Leta € H and h;(a) = g;, forevery i € 1. We define h(«) = (g;),c;- We have
that h;(a) = (;; 0 ;o h)(@). Indeed, (¢;; 0 ;0 h)(a) = (p;; 0 ¢;)(h(a)) =
(@i © 03)(9:) = ©ij(0;(9:) = ¥i;(9;) = 9; = hy(a), which is the desired. Also,
this map h is unique. Indeed, if there exist a map h’ such that h, = ¢, o h’, then
w;oh’ =h; =¢;ohforeveryi € I,andso h = h'.

O]

Definition 2.2.7. Amorphism between two projective systems (G, ¢;;) and (G}, ;)
of topological groups is a family of continuous homomorphisms f; : G, — G, i €
1, such that the diagram

commutes for i < j. Such a family (f;);c; defines a mapping
icl icl
(9i)ier = (fi(9:))ier

which induces a homomorphism between of the projective limits

f: yLnGi—wiilG;
iel iel

In this way the projective limit, lim, becomes a functor. A particular important

property of this functor is its so-called “exactness”. The projective limit is not exact
in complete generality, but only for compact groups, so we have the next proposition.

Proposition 2.2.8. Let o : (G, ¢;;) — (G;,0,5) and B = (G, 0,5) — (G, ¢5;)
be morphisms between projective systems of compact topological groups such that
the sequence

B;

’ i R N ”
is exact for every i € 1. Then the sequence
yLnG; — @Gi . yLnG;/
i€l iel i€l

is again an exact sequence of compact topological groups.

Proof. Letx = (z;),c1 € li;nGi such that z € Kerf, so that 5(z) = 1 which
iel

means that 5,(z;) = 1, Vi € I. Thus,z, € Kerf,;, Vi € I.But Ima; = Kerf, for

everyi € I.Soz; € Ima, foralli € I. We consider the sets Y, := a; 1(x;) C G,
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foreveryi € I. We have thatx;, € Imo,; = Y, # (), Vi € I. The set {z,} is closed

in G,. The maps «; are continuous for every i € I. So we have that Y, is closed in

El G}, and then Y} is compact for every i € I. The (Y}, ¢;;|y.) form a projective

iel

system of nonempty closed, and hence compact subsets of the G;. According to

theorem 2.2.5, this means that the projective limit lim Y, C lim G} is nonempty.
— —

iel icl
For every y = (y;);e1 € h£1 Y, we have that a(y) = z. Since o, (y;) = z; then we
i€l
have that Ima = Ker[5. Hence the sequence is exact. [

2.3 Profinite Groups

Definition 2.3.1. A profinite group is a topological group that can be realized as a
projective limit of finite topological groups.

Example 2.3.2. Let p a prime number and for every natural number n we define
G,, = Z/p"Z. If n > m, then p™|p" and so we can define the maps:

Omn @ LD — Z/p™Z
a mod p” +— a mod p™

Then the family {(G,,, ©,,,)|m < n} form a projective system and the projective
limit is defined as gn Z/p"Z = 7, that is the ring of p-adic integers.
neN

Example 2.3.3. The rings Z/nZ, n € N, form a projective system with respect to
the projections ¢,,,, : Z/mZ — 7 /nZ, with n|m, where the ordering on N is given
by divisibility, that is n < m < n|m, with n,m € N. Then the projective limit

7 =limZ/nZ
<_

neN
was originally called Priifer ring.

Let G := gn G,,, where GG, are finite groups with discrete topology. Then,

neN
every group G, is Hausdorff, so the G is Hausdorft, as well. Also, every group GG,,

is compact, then so is (G, according to theorem 2.2.5. In addition, every group G,,
is totally disconnected, so the group G is totally disconnected, too. Thus, in other
words, we have proved the following theorem:

Theorem 2.3.4. Every profinite group is a Hausdorff, compact and totally discon-
nected topological group.

Thereafter we will see that the vice versa of the above theorem is also true.

The following result gives a criterion for a group to be profinite.
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Theorem. If G is a profinite group and if N varies over the open normal subgroups
of G. Then
G =1limG/N
~

algebraically and topologically.
For the proof of above theorem we will need the following lemmata.

Lemma 2.3.5. Let X be a compact and Hausdorff topological space. Let x € X
and {U, q\ q € Q} be the family of all compact open subsets of X which contain x.

Then
A:= T,
qeQ

is connected.

Proof. We assumethat A =U UV, UNV = (), where U, V are non-empty closed
sets. Clearly U, V are also open sets. Since X is compact and Hausdorff space, then

from theorem 1.1.5 we have that X is a normal space. So, there exist open sets
U',V'suchthat U CU’, V C V" and U’ NV’ = (). Thus,

(X\N(U'UV)NA=0=

{X\NUuVn((U)=0=
qeqQ

XN @ uV)InU,) =0
q€Q

The set X \ (U’ U V") is compact because it is a closed subset of the compact space
X, so then the sets {X \ (U" U V’)} N U, are compact and then they are closed
subsets of compact space X. We know that in a compact space, for every family of
closed sets with empty intersection there exist at least a finite subfamily with empty
intersection. Thus, there exist finite subfamily Q)" C @) satisfying

M EXN@uV)InU,)=0=

qeQ’

(XN @ uV)IN((U,)=0
qeQ’

Let B := ﬂqu/
and compact because it is closed subset of compact space X. Let x € B and B =
BN U'UV")=(BNnU")U(BNV’).So,eitherz € BNU  orx € BNV’. Say
x € BNU’. Since B, U’ are compact and open then B N U’ is open and compact
containing . So A C BNU’ C U’ andthen ANV C ANV’ = (), because
ACU andU' NV’ =0.But ANV = (UUV)NV =V.Thus, V = (). But this
is impossible since V' = (). Similarly if z € B N V’. Hence A is connected. ]

U,- Then B is open, as intersection of finite number of open sets,
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Lemma 2.3.6. Let G be compact, Hausdorff and totally disconnected topological
group. Then every neighborhood of 1 := e contains an open normal subgroup.
Moreover this subgroup has finite index in G.

Proof. Let {U,|q € Q} be the family of all compact open sets containing 1. Then
from lemma 2.3.5 we have that 1 € A = ﬂqe 0 U, is connected. But G is totally

disconnected, so then A = {1}. Let now U be an open neighborhood of 1. We intend
to show that there exist H < G and H is open such that H C U. As U is open then
G\ U is closed subset of compact space Gz, so then G \ U is compact and

G\NU)N((U)=0= (G \U)NU, =0
qeqQ qeQ

Since G is compact and (G\U) N U, is a family of closed sets with empty intersec-
tion, then there exists a finite subfamily of them with finite intersection. So, there
exists a finite subset Q” C () such that

G\u)nU, =0 =

q€Q’
(G\NU)N ([ U,) =0 (2.1)
q€Q’
Let A" := ﬂ U, Then A’ is open as intersection of finite number of open sets, and

qeQ’
compact because it is closed subset of compact space G. So then A’ is a compact

open neighborhood of 1. Also, A C U according to equation (2.1). Let F' :=
(GNA")N A% Since A’ is compact, so is A’? hence Fis closed. We have F closed,
A’ compact and F N A" = (), so then from lemma 1.2.9 we have that there exists a
neighborhood U’ of 1 satisfying F'N A’U’ = (). But according to proposition 1.2.8,
we have that there exists a symmetric neighborhood V; of 1 such that V; C U’,
and then ' N A’V, = (. In addition A" is an open neighborhood of 1, so from
proposition 1.2.8 there exists a symmetric neighborhood V;, of 1 such that V, C A’.
SetV.=V,NV,, ThenV C U,V C AAFNAYV = () and V is symmetric
because V), V, are symmetric. Thus, there exists a symmetric open neighborhood
Voflsuchthat AVNE =0andV C A’.Since A’V C A’A’ = A’Q, it implies
that
AVAF=0sAVA(G\NA)NA? =)<

)
AVN(GNA) =1

That is
AV C A

Inductively we can prove that

A'Vr C A’ Vn eN
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Hence, K := U V™ C A’ is an open subgroup' of G contained in A’. Since G

T
is compact, then K has only finite number of cosets in G, say G = U z; K. The
i=1
subgroup K may not be a normal subgroup, for this reason we set

H = ﬂ rKa ! = ﬁl‘iKiL’;l
i=1

zeG

The subgroup H is a normal subgroup of G, because gHg ! = g(ﬂ v, Koy bg™!
i=1

= ﬂ gr;Kz;1g7! = H, as gr; € G. Thus, H is an open normal subgroup of G

=1
with finite index, as GG is compact, then H has only finite number of cosets in G.
Also, H C K C A’ C U. Itis clear that H is the desired open normal subgroup of
finite index.
O

Proposition 2.3.7. Let G compact, Hausdorff and totally disconnected topological
group. Then the family of all open normal subgroups of G form a basis of open
neighborhood of 1.

Proof. Let{N; < G : N; < G and N;isopen}.1Itsuffices to show that (i) V; is an
open neighborhood of 1, and (ii) For every open neighborhood A of 1, there exist [V,
such that NV, C A. Indeed NV, is an open neighborhood of 1, because [V, is open and
1 € N;. Also, since GG is compact, Hausdorff and totally disconnected topological
group, then according to lemma 2.3.6 we have that for every open neighborhood A
of 1, there exist V; < G where N; < G and N, is open such that N; C A. Thus the
family of all open normal subgroups of G formed a basis of open neighborhood of
1. O

Remark 2.3.8. Let G compact, Hausdorff and totally disconnected topological group.

Then
m N, = {1}

iel
where {N,} is the family of all open normal subgroups of G.

Proof. From proposition 2.3.7 we have that { N, < G : N, < G and N;isopen}
forms a basis of open neighborhood of 1. Let there exist z # 1. Since G is Hausdorff,
then there exist open set A C G \ {z} where 1 € Aand x ¢ A. Also, A is an
open neighborhood of 1 because 1 € A and A is open. But {NV, < G : N, <
G and N;isopen} forms a basis of open neighborhood of 1, so then there exist an
open normal subgroup, N; , of G such that N; C A. Since x ¢ A, thenx ¢ N, .
Thus, = ¢ ﬂ N,. Hence ﬂNi = {1}. O

el el

"We need V be symmetric in order to be K a subgroup.
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Now we are able to prove the following theorem.

Theorem 2.3.9. If G is a profinite group and if N varies over the open normal sub-
groups of G. Then
G =1limG/N
H
N
algebraically and topologically.

Proof. G is a profinite group, so then G is a Hausdorff, compact and totally discon-
nected topological group. We consider the family

N :={N, <G|N, <G, N,isopen}

Wedefinei < j < N 5 C N;. In this way the set I is directed set. Indeed, N, NN ; C
N;and N; N N; C N, for arbitrary ¢, j € I. But N; N N; < G and V; N N, is open.
So there exist k& € I such that N}, = N; N N,. Then N, C N, and N;, C N, which
implies that + < k and j < k forevery ¢,j € I.
We will prove that {(G; = G/N;, ;;),4,j € I,i < j}, where ;; : G/N; —
G/ N, is the natural map, forms a projective system of finite topological groups.
Indeed, if N; open normal subgroup of GG, then gV, is open, since G is topological
group. Also, G = U gNN;, that is an open cover of GG. But GG is compact, so then
eq
G contains a finite gopen subcover, which means that there exist a finite number of
cosets that cover G. So, |G : N;] = |G/N,| < oo and then G/ N, are topological
spaces equipped them with discrete topology.
Thereafter we will define the maps ¢,; : G/N; — G/N;. Letw, : G — G/N,,
where g + gN; be the natural projection. Clearly, Kerm, = N;, and so N, C
Kerm,;, because N; C N,. Thus, 7; induces a homomorphism

©ij: G/Nj — G/N;

More precisely, ,; is surjection as m; is surjection. Also ¢, are continuous from
their construction. In addition, ¢;, : G/N; — G/N;, gN, — gN,, that is ;; =
Idgy, and if i < j < K then (0. (9N ) = 945(9N;) = ©ir(9N},). Hence we
have that {(G; = G/N,, ¢;;),1,j € I,i < j} is a projective system. Since G is
profinite group, which means that G is Hausdorff, compact and totally disconnected
topological group, then according to proposition 2.3.7 we have that the family

N :={N, <G|N, <G, N,isopen}

forms a basis of open neighborhood of 1 € G. The family of continuous homomor-
phisms
m,: G—=G/N;, iel

satisfies that ¢,; o m; = 7. Then according to theorem 2.2.6 there exists a unique

continuous homomorphism

o Gagnc;/zvi c[[&/n

ZEI ’le[
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G =1limG/N; < d
F
el

G/N,

We will show that ¢ is isomorphism of groups and homeomorphism of topolog-
ical spaces. Firstly, we will show that ¢ is injective. Indeed, Kerp = {g € G :
pg)=(1)}={9eG:ge N, Viel} = ﬂNi = {1}, the last equality aris-

i€l
ing from remark 2.3.8. Thus ¢ is injective. Then, we will show that ¢ is continuous.
It suffices to show that P, o ¢ is continuous for every N; < G, N, = open where
P; is the projection.

© 5 P;
G — (LnG/Ni c [[G/N;, — G/N,

el icl

For the proof of the above statement it suffices to show that for every open set A in
G/ N, we have that (P, o) 1(A) is an open set in G. Since the group G/ N; is finite
topological group with discrete topology then all her subsets are open. In addition
the B = {{gN,}, gN; € G/N,} forms a basis of topological space G/N;. So then
it suffices to investigate if the inverse image of the elements of B is open set in G
under P; o ¢. Indeed,

(Pop) M ({N;}) = {z€G: (Pop)(x)=N}={zecG: |y, = N;}
= {z€G:x€N,} =N, =open

Similarly,

(Piow) '({gN;}) = {2z e€G: (Pop)(z)=gN;} ={zeCG:z|ly =gN;}
= {z€G:g'z|y =N}={recG:xecgN}
= gN,; = open

Thus, for every {gN,} € B we have that the (P, o )" 1({gN,}) is open in G.
If A is open set in G/N,, then A = U{gN,}, so then (P, o ) 1(A) = (P, o
©) H(U{gN,}) = U((P; o ©)"t({gN,})) which is open set in G as it is union of
open sets. Consequently, the map P; o ¢ is continuous for every P;, and then ¢ is

continuous. Moreover, we will show that ¢ is surjective. We have that GG is compact,
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then G is closed since G is Hausdorff. Also, the map ¢ is continuous, so then ¢(G)
is closed, that is p(G) = ¢(G). We will show that ¢(G) is dense in @G/Ni,
el
because then p(G) = %in G/N,. Thus, p(G) = El G/ N, and then ¢ is surjective.
il iel
Now we have to show that p(G) is dense in gn G/ N;. It suffices to show that for

icl
every x € gn G/ N, then z € ¢(G), that is for every open neighborhood of x then
el
VNp(G) #0.Lete = (x;);cr € yLnG/Ni andletUg = HG/NZ- X H{lG/Ni}’
el ¢S €S
where S C I and S is finite. The Ug are normal subgroups of H G/N, and then
iel
Ug form a basis of open neighborhood of 1 in H G/ N,. Also the normal subgroups
icl
Ugn @ G/ N, form a basis of open neighborhood of 1 in gn G/N;. We have that
iel icl
z(Ug N gn G/ N;) is open neighborhood of x, since Ug open. In addition, S is a
el
finite directed set. We consider N, = ﬂ N;,then N, C N, < i < Vi€ S. Let
ies
y € G such that 7, : G — G/N,, m.(y) = x;. Also we have that ¢, (x,) = z;
forevery i € S with¢ < k. Fori € S we have y mod N; = z,, because

™ Pi
G — G/N, = G/N,
y = Ty, > x;

(3

Thus, p(y) € x(UgN h;n G/N;). We have that the (Ug N %ln G/N;) form a basis
il iel
of open neighborhood of x in H G/ N, since the normal subgroups Ug N hén G/N;

el el

form a basis of open neighborhood of 1 in El G/N, and El G/ N, is a topological
el el

group. Hence, for every open neighborhood V' of z there exist a y € G such that
v(y) € V, which means that for every open neighborhood V' of = we have that
V N (G) # (. Consequently, ¢(G) is dense in h;n G/N;,.
el
Furthermore, we will show that ¢ is closed map. Let A a closed set in GG, and then
A is compact since G is compact. But ¢ is continuous, so then ¢(A) is compact
subset of h;n G/N,. We have that gn G/ N, is a Hausdorff space. Indeed, firstly,
iel iel
we have that G/ N, is Hausdorff, since if g; V;, g, N, € G/N, with g, N; # g5N,.
But {g, N, }, {92V, } are open neighborhoods of G/ N; with {g; N, } N {g,N,} = 0.
So then the product H G/ N; is Hausdorff, and so is lim G/N; C H G/N;. Thus,
el ?E; el

from the above we have that p(A) is closed. Consequently, ¢ is closed map. Finally,
 is homomorphism from her construction. Hence, the map ¢ is isomorphism of
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groups and homeomorphism of topological spaces. [

Now we will provide some useful characterizations of profinite groups.

Theorem 2.3.10. Let G a topological group. Then the following conditions are
equivalent:

i) G is a profinite group

ii) G is a Hausdorff, compact group which has a basis of open neighborhood of 1
consisting of normal subgroups.

iii) G is a Hausdorff, compact and totally disconnected group.

Proof. (i) = iii)) Let G be a profinite group. Then according to theorem 2.3.4 we
have that G is a Hausdorff, compact and totally disconnected group, which is the
desired.
(7ii) = 1)) Let G be a Hausdorff, compact and totally disconnected group. Also
from proposition 2.3.7 we have that the family of all open normal subgroups of G
forms a basis of open neighborhood of 1.
(7i) = 1)) Let G be a Hausdorff, compact group which has a basis of open neigh-
borhood of 1 consisting of normal subgroups. We will show that G is a profinite
group. It suffices to show that G is the projective limit of finite topological groups.
Since G is a Hausdorff, compact group which has a basis of open neighborhood of
1 consisting of normal subgroups, then according to proof of theorem 2.3.9 we can
prove that
G = limG/N;

—

el
algebraically and topologically. Thus G is a profinite group.
Consequently, we proved the theorem. ]

Now we will refer some examples of profinite groups.
Examples of profinite groups
Example2.3.11. If K is a field and K is a separable closure of K. Then the absolute
Galois group K /K is a profinite group.

Let Gy = Gal(K[K). When LK run through the finite normal subextensions
of K/ K, then Gal(K /L) run through the open, normal subgroups of G, accord-
ing to definition of Krull topology.

K+—— <id>

L +—— Gal(K/L)

K +— Gy = Gal(K/K)
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Thus, according to theorem 2.3.9 we have that

Gy = y%nGK/Gaz(fc/L)

where L satisfying that K < L < K and L/ K be a finite Galois extension.
Since Gal(K /L) < G i then the extension L/ K is a finite Galois extension and so

Gal(L/K) = Gy /Gal(K /L)

Therefore, B
Gi =Ga(K/K) = @Gal(L/K)
L

where L satisfying that K < L < K and L/K be a finite Galois extension.

In particular

Gal(Q/Q) = yLnGal(K/Q)
K

where K such that Q < K < Q and K /Q be a finite Galois extension.

Example 2.3.12. We have seen in example 2.3.3 that

~

Z=1imZ/nZ
H

neN

The Priifer ring 7 is important in number theory. If n = Hp”p where v, > 0
peP
with almost all of them are O and P is the set of all prime numbers. Then from
Chinese theorem we have that 7 /nZ = H Z/p*»Z. We know that the projective
peP
limit preserves the direct product. Therefore,

limZ/nZ = @(HZ/p vZ)

neN vy, peP

[[imz/p2)
=7 H Zp

Remark 2.3.13. Ifthe family (R;, ;;),1,j € I,i < jis a projective system of rings
R; with identity elements 1, and p, ; are ring homomorphisms

P

IR

1

then the projective limit
R:=1

1€

R.

(2

RTE
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is a ring with identity as well.

Moreover,
R* =1lim R}
el

Example 2.3.14. We consider that G,, := (Z/nZ)*, then

~

Z* =1im (Z/nZ)

neN
Similarly,
7% = li n *
L=l (2/p"2)
neN
We know that (Z/p"Z)* = Z/(p — 1)Z x Z/p"™'Z, since (Z/p"Z)* is abelian
group of order (p™) = p™ (p — 1). Therefore,
z, = Im(Z/(p-1Zx Z/p"7)
neN
~ 1 _ 1 n—1 ~ _
o~ %Z/(p 1)Z x %Z/p 2=7/(p—1)Zx1Z,

Example 2.3.15. Let a finite field b, with q elements. We know that for every n. € N
the extension I . [T is cyclic Galois extension of degree n and cyclic Galois group
with generator the Frobenius automorphism

p: b — Fpn

T 2

So then we get isomorphisms
Gal(F . /F,) = Z/nZ
by mapping the Frobenius automorphism to 1 mod nZ. Therefore,
Gal(F,/F,) = lim Gal(F ;» /F,)

neN
= limZ/nZ=1

%

neN
and this isomorphism Gal(ﬂ:q / [Fq) > 7 sends the Frobenius automorphism ¢ €
Gal(F,/F,) to1 € Z and the subgroup < ¢ >= {¢"|n € Z} = Z < Z onto the
dense but not closed subgroup 7 ofi. In the beginning of the chapter 1 we were able
to construct an element 1) € Gal(F /T ) such that 1) ¢< ¢ >. This isomorphism

Gal([fq/Fq) =~ 7 explain us that

0,...,0,1,,0,...,0)e [[2, =2

peP

which does not belongs to 7.
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Example 2.3.16. We consider the extension Q*° /Q. According to Kronecker-Weber
Theorem, we have that

R =Q({¢, IneN})

Clearly Q({¢,, | n € N}) is the splitting field of the collection of separable polyno-
mials {X™ — 1 |n € N} over Q. Thus, the extension Q®°/Q is Galois. For every
o € G = Gal(Q®/Q) if the value of 7((,,) is known for every n € N, then o will
be completely determined on all of Q®°. For fixed n € N, we know from classical
Galois theory that

Gal(Q(¢,)/Q) = (Z/nZ)*
where (Z/nZ)* is the multiplicative group of units of Z /nZ. So we have that

G = Gal(@"/Q) =1im Gal(Q((,)/Q)
(Z/nZ)* = 7*

~

lim
H
2.4 Limits and Functors

So far we have referred in projective systems of topological spaces. We can speak
of projective systems of groups, modules or commutative rings as well.

The next result says that the functor Hom (A, O) preserves projective limits.

Proposition 2.4.1. Let M, be left R-modules and {(M,, ¢;;),1,j € 1,7 < j} bea
projective system. Then

i A, lim M) = lim H A, M,
om p( , lim i) tim omp(A, M;)

el el

for every left R-module A.

Proof. Firstly we will show that the {(Hompg(A, M;), (¢;;).), 4,5 € 1,1 < j}
forms a projective system, where (¢, ;). is the induced map, that is

(%’j)* : Hompg(4, Mj) —  Hompg(A, M,;)
h > ©;j° h
This is valid since the functor Hom (A, O) is covariant. We know that Hom (A, M,)
is a left R-module, because M, are left R-modules. Also the maps (y,;), are ho-
momorphisms. Moreover, (¢;;),(h) = ¢;; o h = Idy, oh = h, thatis (¢,;), =
Idgom, (s, Fori <j <k '

Hompg(A, M) (#iy).

» Homp(A, M;)
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Then (9%‘)* ° (%k)*(h) = (‘Pzﬂ*(@jk oh) = Yij ° Pk ° h =@y 0oh=(py)(h),
since (M;, p,;) is a projective system. Thus the {(Hom (A, M;), (¢;;).), i,J €
I, i < j}isaprojective system, so that l(£1 Homp (A, M;) makes sense.

iel
This statement follows from the fact that the projective limit has the universal map-
ping property. Indeed we consider the diagram,

li R : ,
£H0mR(A, M) < HomR<Aa££an>
el el
\ (#;)
H A, M.
omp(A, M;) (@)).
)I\(Qoij)*
Homp (A, M)

iel

every ¢ < J.

We intend to show that there exist such a map 6 which is an isomorphism. We know
that Hom (A, gn M) is a module. Also, (M, p,;) is a projective system, so then

iel
there exists a family of homomorphisms ¢; : h;n M; — M; suchthat o, = ¢, o0,
iel
for each ¢ < j. Then the induced homomorphism is the following

(901)* : HOTTLR(A,II;HMD - HomR(A7 Mz)
el

such that (¢;;), © (¢;). = (¢;).. So, according to universal property of projective
limit (Theorem 2.2.6) there exists a unique homomorphism

0 : HomR(A,yLnMi) — Homp(A, M,)

el

such that (p,), = 3, © 0.

Thereafter, we will show that 6 is injective. Suppose that f : A — ££an and
iel

O(f) =0.Then 5, 0 0(f) =0 = (v;,).(f) =0 =, o f =0, for every i. So we

have the following diagram
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The above diagram commutes, since ¢, o f = 0 for every i, then ¢, 0 h; = ¢;; ©
@;of =0=¢,;of = h, Thus, according to universal property of projective limits
(Theorem 2.2.6) the map f is unique. But if we take the zero map in place of f, then
the above diagram commutes as well. So the uniqueness of such a map gives that
f =0, that is @ is injective.

It remains to show that 6 is a surjective map. Let g € Ein Hompg(A, M,). For every

el

i there is a map 3,(g) € Hompg(A, M;) with ¢,; o 8,(g) = B;(g) fori < j.
Indeed, we know that 3; = (;;), °3;, Vi < jand 8;(g) € Homp(A, M,;), so then
Pij ° 5]'(9) = (%ﬂ* ° Bj(g> = B,;(9)-

Therefore, according to universal mapping property of projective limit there exists
a unique homomorphism

g+ A—limM,
F
iel
satisfying that ¢ o ¢’ = f,(g) for every i. So then (y;).(¢") = B;(g9), Vi =
B;0(9")) = B;(g9), Vi = 0(g") = g. Thus, 0 is surjective.
Hence, the map 6 is isomorphism, that is

Homp(A, h;an) = gnHomR(A, M,)

el el
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We now consider the dual construction of projective limit, which is the direct
limit. Firstly, we will define the direct system, then we will define the direct limit
and finally we will investigate the dual of the proposition 2.4.1.

Definition 2.4.2. Let I be a partially ordered set which is also directed. A direct
system over I is a family

{(M;, 05 13,5 € 1,1 < j}
of left R-modules M, and homomorphisms
@i My — M;, i< j

satisfying that:
DIfi=j then p;; = Idy Vi
2 Ifi < j< kthen g o=@y

Pik N
M, s M,
M

We can also speak for direct system of groups or topological spaces.

Definition 2.4.3. Let I be a partially ordered set which is also directed. Let also
(M;, cpij) a direct system of left R-modules over 1. The direct limit h;n M, is a left
el

R-module and a family of R-homomorphisms p; : M; — li_r>n, 1 € I, such that:
iel

l)%:@jo‘%’ija 1< ]

it) For every module X having maps f; : M; — X such that f; = f;o,; for every

t < j, then there exists a unique homomorphism

0 :lim M, —» X
—

el

such that the following diagram commutes:

lim M,
el
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thatis f; = 0 o @,

From the definition of the direct limit we understand that it has the universal
mapping property. So the direct limit of a direct system is unique (up to isomor-
phism) if it exists. We can prove that the direct limit of any direct system (M;, ¢, ;)
of left R-modules over a partially ordered index set I, which is also directed, exists.

Proposition 2.4.4. Let (A;, ¢,;;) be a direct system of abelian groups, where I is
directed and A = h_r>n A,. Let also the family of Z-homomorphisms p; : A; — A.
il

Then
A= U vi(4;)

el

Proof. (A;,p;;) is a direct system, so ¢,; = A; — A such that v, = ¢, 0 ;.
and ; : A; — Asuchthat p; o, = ¢, Itis clear that U v;(A;) C A. Let now

iel

a € A. From construction of direct limit there exists a ¢ € [ such thata = ¢,(x)

with x € A;. This means that a € U 0;(4;). O
iel

Proposition 2.4.5. If (M, cpij) be a direct system of left R-modules, then:

HOmR(%Mi7B) =) %HomR(Mi,B)

for every left R-module B.

Proof. Firstly, we will show that {(Homp(M;, B), (¢;;).), i,j € I, i < j} forma
projective system. We know that the functor Hom (O, B) is a contravariant functor.
So the induced map is

(%’j)* : HomR<Mj7 B) — Hompg(M,, B)
We know that the Hom (M, B) are left R-modules, since M, are left R-modules.

Also, (¢, ;). are homomorphisms, as ¢, ;, h are homomorphisms. In addition, (¢;;)..(h)

HomR(Mj, B) (Pij)e

» Homp(M;, B)

(@) (Pir)s

Homp(M,, B)

(%‘j)* ° (@jk)*<h> = (%’j)*(h ° Spjk) =he Pik © Pij = howi = (ir)(h).
Thus, the {(Homz(M;, B), (¢;;).), i,J € I, i < j} is a projective system, so that
lim Homp(M,;, B) makes sense.

Ser
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This statement follows from the fact that the direct limit has the universal mapping
property. Indeed, we consider the diagram,

lim Hom (M;, B) ¢ mees Homp(lim M;, B)
el el
\ (®3).
H M., B
0mR< 17 ) (903‘)*
,I\(%j)*
Homp(M;, B)

where f3; : @HomR(Mi, B) — Hompg(M;, B) such that 8; = (¢;,), o 3;, for
iel

every ¢ < 7.

We intend to show that there exists such a map 6 which is an isomorphism. We

know that Hom g (lim M;, B) is an R-module. We have that (M;, ¢,;) is a direct
—
iel

system, so then there exists a family of homomorphisms ¢, : M, — h_r>n M; such

iel
that o; = ¢; o ;; with @ < j. Then the induced homomorphism is the following

(p). « Homp(lim M, B) — Homp(M, B)
el

h — h o,

such that (¢;;), © (¢;). = (#;).- So, according to universal property of direct limit
there exists a unique homomorphism

6: Homp (hmMi,B) — lim Homg(M;, B)
— —
iel iel
such that (p,), = 3, © 0.
Thereafter, we will show that the map 6 is injective. Let f € Hom R(li_r>n M;, B)
il
such that O(f) = 0. Then 3, o 0(f) =0 = (;).(f) =0 = fogp, =0, Vi. So we
have the following diagram
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Since fop; =0, Vithen h;op;; = fow;op;; =0 = fop, =h,; Sothen
the diagram commutes and f is unique according to universal mapping property
of direct limit. But if we take the zero map in place of f, then the above diagram
commutes as well. So the uniqueness of such a map gives that f = 0, that is 4 is
injective.

It remains to show that 6 is a surjective map. Let g € 1(31 Hompg(M,;, B). For every

iel

i there exists 3,(g) € Homp(M,;, B) with 8;(g) o ;; = B;(g), for i < j. Indeed,
we know that 3; = (¢, ;). 3, forevery i < j. We have that 3;(g9) € Homp(M;, B)
and 53;(9)p; = (9iz). © Bi(9) = Bi(9)

Thus, according to universal mapping property of h_n>1 M, there is a unique homo-
icl
morphism ¢’ : h_rr>1 M, — Bsuchthat g’ o, = 3,(g) for every i. So then ¢’ o p, =
iel
Big), Vi = (¢,).(g") = Bi(g), Vi = Bi(0(g")) = Bilg), Vi = 0(¢') = g.
Hence, 0 is surjective.
Therefore, 6 is isomorphism. That is

Homp, (g}nMi,B) = li;nHomR(Mi,B)

el el
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Now we will prove that the functor A ® O preserves direct limits. For this proof
we will need another proposition which we will prove first.

Proposition 2.4.6. Let a commutative diagram with exact rows of R-modules. We
assume also that the map f is surjective and the map g is isomorphism

A AL A —— 0
fl lg lh
B —?

B 1.pB 0

then there exists a unique isomorphism h : A” — B” such that qo g = h o p.

Proof. If a” € A”, then there is a € A with p(a) = a”, since p is surjective. We
define h(a”) = q o g(a). Firstly, we will show that h is well-defined. If u € A such
that p(u) = a”, then h(p(u)) = h(a”) = qg(u) = h(a") = qo°g(u) = q° g(a).

p is homomorphism

Thenp(a) = p(u) = pla—u) =0 = a—u € Kerp.But Kerp = I'mi,
since rows are exact, so then a —u € I'mi, thatisa—u = i(a’), witha’ € A’. Thus,
gogla—u) =qegei(a’) =qojo f(a’) =q(j(f(a"))) =0, because the diagram
commutes then we have that go ¢ = jo f and j(f(a’)) € Imj = Kerq. Hence,
geg(a—u) = 0= gog(a)—qog(u) = 0= h(p(a)) = h(p(u)). So then h is a well-
defined map. From the definition of & we have that the second square commutes, that
is hop = qog. Thereafter, we will show that A is unique. We assume that there exist
h': A” — B” satisfying that h’op = gog.Ifa” € A” we choose a € A withp(a) =
a”. Then h'(a”) = h'(p(a)) = q(g(a)) = h(a”). Thus, h is unique. In addition,
we will show that A is injective. Let a” € A” such that h(a”) = 0, with «” = p(a),
since p is surjective. Then, h(a”) = 0 = q(g(a)) = 0 = g(a) € Kerq = Imj.
So there exists b € B’ such that j(b”)=g(a). Because of f is surjective, there is
a’ € A’ such that f(a’) = b". Thus j(f(a")) = g(a) = ¢(i(a’)) = g(a), but
g is injective, so then i(a’) = a = poi(a’) = pla) = peoi(a’) = a”. But
poi(a’) = 0,since i(a’) € Kerp = Imi, so then a” = 0. Hence, h is injective.
Moreover, we will prove that A is surjective. Let b” € B”. There is a b € B such
that ¢(b) = b”, because q is surjective. Also, there exist a € A such that g(a) = b.
So, g0 g(a) = b” = h(p(a)) = b”. Consequently, h is surjective. Hence, h is
isomorphism. [

Theorem 2.4.7. If A is a right R-module and {(B,;, ,;), i,j € I, i < j} is a direct
system of left R-modules, then

el el

Proof. Firstly we will prove that {(A ®p B;,1 ® ¢;;), i,j € I, i < j} forms a
direct system. We know that A ® B, is Z-module and ¢, ;, 1 are homomorphisms.
So then there exists a unique homomorphism of Z-modules
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such that (1 ® ¢;;)(a ® b;) = a ® b; and we extend it linearly. Also if i = j
then (1 ® ¢;;)(a,b;) = a®@b;, thatis 1 ® ¢;; = Idyg p . Fori < j < k then
(1®9i)o(10¢;;) = 1®(¢ rop;;) = 1®py,. Therefore, {(A® R B;, 1®¢;;), i,j €
I, i < j} is a direct system, and then (h_n>1 A ®p B;) makes sense. For the proof of

el
this statement we will construct lim B, as the cokernel® of a special map. For every
—
i€l
pair i, j € I with i < j, where [ is a partially ordered set which is also directed, we
define a module B, ; satisfying that the following map

At B, — Bij
b, +— b,

% 1]

is a module isomorphism. Let \; be the injection of B, into the sum @, B; for each
v € I. We define

D= (®,B;)/5
where S be the submodule of @, B; generated by all elements A; o ¢, :(b;) — A, (b;)
with b, € B;, i« < j. Now we define

o, ¢

B, — D
b, = N(b)+S

(2

Then avjoip;:(b;) = Ajow,;(b;)+S fori < jand a;(b;) = A;(b;) +S. Butitis plain
that A; o ;5(b;) — Ai(b;) € S < Ajop(b;) + 8 = Ai(b;) + .5 < a0 p;(b;) =
a;(b;). Thatis a; o ;; = a; forevery i < j. Let X be amodule and f; : B; — X
such that f; o p;; = f, for every i < j. Then we define

0 : D — X
Ai(0;)+S = filby)

and the following diagram commutes.
d > X
B,

R fj

l%‘ J

B;

D

Indeed, 6(c;(b;)) = 6(N;0)b;) +S) = f;(b;). Moreover, the map 6 is the unique
map D — X such that the above diagram is commutative for every ¢ < j. If there
is another one map ¢ : D — X satisfying that the above diagram is commutative,

2Let M, N modules and let amap f : M — N, then cokernel of f is coker(f) = WNf
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thatis ¢ o a;; = f;. But we have that f; = 6 o ;. Therefore, p o a; = 0 o v;, V7 and
then o = 6. Thus, the properties of direct limit are satisfied, and so

D =~ 1lim B,
—
el
Furthermore, we define
o: G}ijBij — ®,B;

b; = )‘jSDz‘ja)i) — Ai(b;)
We notice that Imo = S. Hence, cokero = &,B;/Imo = (,B,)/5 = li_r>nBi

el
and then there exists the below exact sequence
®;,B;;, = ®B; = lim B; — 0 (2.2)
—

el

Indeed, we have that Kerr = I'mo = S as lim B; = (@,B;)/S and it is plain that
—
iel
T is a surjection map. Now we act in the sequence 2.3 with the functor A ® , [J and
then the sequence

1®o 1T
AQ®p (®ijBij) — A®pR (&,B;) = A®pg (h_n; Bi) — 0 (2.3)
el

is also exact, since A ® [ is a right exact functor. Moreover, we have that the map

T AQR(®;B) — ®;(AQRB;)
a® (b;) = (a®b;)
is an isomorphism of Z—modules. Indeed, 7(a®(b;) +a®(b;)) = 7(a®(b;+b;)) =
(a®(b;+b))) = (a®b;+a®b;) = (a®b;)+ (a®b;) = T(a®(b;)) +T(a® (b))
and T(Aa ® (b)) = 1(a® (A\b;)) = (a® (A\b;)) = AMa®b;) = Ar(a ® (b;)) with
A € Z. So 7 is a homomorphism. Also, 7 is an injective, since 7(a ® (b;)) = (0) <
(a®b;) =(0) < a®b, =0, Vi, and then a ® (b;) = 0. In addition, we will show
that 7 is a surjective map. Let (a®b;) € ®,(A®y B;). Then7(a®(b;)) = (a®b;),
and so 7 is surjective. Thus, 7 is an isomorphism of Z—modules. Then,

A®p (®;;B;;) 2, AQp (®;B;) — A®pg (h_f>nBz> —0

y I |

B(A®p By) —"— &A@ B;) — lim(A®y B;) —— 0

el

where
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o: ®AQgrB;;) — D(A® B,)
(a®b;;) = (1N (a®p;(b;) —(1®A)(a®b,;)
and 7’ is an isomorphism (which can be proved like 7). We will prove that G o 7" =
7o(1®0). Indeed, 7((1®0)(a®b;)) = T(a®0(b;)) = T(a®(A;00;;(b;)—=A(b;))) =
(a®(Ajo;;(b;)=Ai(b;))) and o7 (a®(by;)) = 7 (s@b;;) = 1®A, ) (a®p;;(b;))—
(1®X)(@®b;) = (a®Ajop;;(b;) — (a®A(b;) = (a® (X 09%( i) = Ai(b:)).
So we have the desired. In addition, it is plain that the sequence

B(A®y By) > &(A®g B) — lim(A ® B;) = 0 (2.4)

el

is an exact sequence. Similarly we can prove that
(B(A® B;))/Imo = h_r)n(A ® B;)
el

Thus, the rows are exact sequences and the diagram commutes. Therefore, there
exists a unique isomorphism

h: A®lim B, — lim(A ® B;)
making the augmented diagram commute, according to proposition 2.4.6. Hence,

AQ®p h_H}Bz' = h_H}(A ®r B;)

i€l el

]

In general it is not true that the tensor product L] ®, B commutes with the pro-
jective limit. This will be illustrated in the following example. We know that

Z,= El Z/p"Z
neN
Also we have that
Zp ®Z Q = Qp

Then

QLE Z/p"7)®, Q=12,3;Q=Q,

nec
On the other hand, we have that

Z/p"7 @, Q =0, foreveryn

and so
li " =
lim Z/p"Z ®; R =0
neN

Therefore,

(Lim Z/p"Z) @z Q # lim Z/p"Z @; Q
neN neN
Hence, the tensor product doesn’t commute with the projective limit.
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Chapter 3

Cohomology of Finite Groups

3.1 Differential Groups

Differential groups serve as a convenient starting point for studying the coho-
mology of groups, since they serve as an introduction to some of the basic techniques
and as a tool for arriving at the infinite cohomology sequence.

Definition 3.1.1. A differential group is a pair (A, d) where A is an abelian group
(which we shall usually write additively) and d : A — A is an endomorphism of A
such that d*> = d o d = 0 (The d is called differential operator).

This means that Imd C Kerd. Then we may form the group

B Kerd
-~ Imd

H(A)

which called derived group of (A, d).
Let (Ay,d,) and (A,,d,) are differential groups and f : A; — A, is a homomor-
phism of groups. Then f is said to be admissible when the following diagram

dll ldz

is commutative, i.e fod; =d,o f
In this section all differential operators will be denoted by d.

Proposition 3.1.2. Every admissible homomorphism [ : (A,d) — (B, d) of differ-
ential groups induces a homomorphism of groups

. H(A) — H(B)

given by
fola+dA) = f(a) + dB, where da =0

55
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Iff,g: (A,d) — (B,d) are admissible homomorphisms, then f + g is also admis-
sible and

(f£9).=[f. 9.
Iff: (Ad) - (B,d)and g : (B,d) — (C,d) are admissible homomorphisms,

then g o f is also admissible homomorphism and

(go fle=9g.°f.

Proof. Firstly we will show that f, is well defined. Let a + da; another representa-
tive of the class a + d A, with a; € A, then

fla+day) = fla)+ f(day) = f(a) + (f o d)(a,)
= f(a)+ (do f)(ay), since fisadmissible

= fla) +d(f(ay)) € f(a) +dB

Then f,(a + day + dA) = f(a) + d(f(ay)) + dB = f(a) + dB. Thus f, is
well-defined. Also, f, is a homomorphism, since

fila+b+dA) = fla+b)+dB= f(a)+ f(b)+dB
f(a)+dB+ f(b) +dB = f.(a+dA) + f.(b+ dB)

Similarly we can prove the remaining assertions. [
Corollary 3.1.3. We have that

0,=0and1, =1
In more details if 0 is the trivial map (A,d) — (B,d) then 0, is the trivial map
H(A) — H(B), and if1 : A — As the identity map, then 1, : H(A) — H(A) is
the identity.

Theorem 3.1.4. Suppose that

0—>A—i>BiC’—>O

is a short exact sequence of differential groups and i, j are admissible homomor-
phisms.

1) Then there exists a homomorphism d, : H(C) — H(A) such that the following
triangle is exact
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11) Moreover, if

I

0 s A i B’ J C/

)

N2

N2

is a commutative diagram of differential groups with exact rows and all maps are
admissible homomorphisms, then the following prism has exact triangles and com-

mutative faces
) a. > H
h, H(B)

H( (4)

f*
g*
H(C") Y HA)

Proof. 1)~ Definition of d_:
Lety € H(C) thatis v = ¢ + dC, with d(¢) = 0. Then there exists b € B such

that j(b) = ¢, since j is surjective. We have that
j(db) = d(j(b)) =d(c) =0=d(b) € Kerj = d(b) € Imi
which means that there exists a € A such that i(a) = d(b). So then
d(i(a)) = d*(b) = 0 = d(i(a)) = 0 = i(d(a)) =0

since 7 is admissible, and this implies that d(a) = 0, because i is injective, which
means that a € Kerd. Thus a determines an element o = a + d(A) € H(A). We
define d, () = «. In other words

d,(v) = a+ dA, where j(b) = candi(a) = d(b)

~> d, is well-defined:
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Firstly, we will show thatif vy = 0 € H(C), then a = 0. That is if ¢ = d(c¢; ), with
¢, € C,then we will show thata = d(a;). Nowifc = d(c; ) then there exists b, € B
such that j(b;) = ¢, since j is surjective. So j(b — d(b;)) = j(b) — j(d(by)) =
j(b) —d(j(by)) = j(b) — d(c;) = 0 which means that b — d(b,) € Kerj = Imi.
Hence there exists a; € A such that i(a;) = b — d(b;) and so b = i(ay) + d(by).
Then i(a) = d(b) = d(i(ay) +d(b,)) = d(i(a,)) +d2(b,) = d(i(ay)) = i(d(a,))
Therefore i(a) = i(d(a;)) and since i is injective then a = d(a, ). In addition it is
clear from its definition that d,, is additive. So then it follows that d, is a well-defined
homomorphism H(C) — H(A).

In order to show that the exactness of the triangle it remains to prove the six kernel-
image relations.

~ Imi, C Kerj,:

We have that j, oi, = (joi), =0, =0.

~ Imj, C Kerd,:
If b+ dB € H(B), with db = 0. Then

d,(j.(b+dB)) = d,(jb+dC)=d,(c+dC)
= d,(y)=a=a+dA

where ia = db = 0, which implies that a = 0, since ¢ is an injective map. Thus,
a+dA=0¢€ H(A) and therefore d, o j, = 0.

~ Imd, C Keri,:

i,(d(c+dC)) = i(a+dA)=1i(a)+dB
= d(b)+dB=0+dB=0¢ H(B)

Thus, 7, o d, = 0 which means that I'md, C Keri,.

~ Kerj, C Imi,:

Letb+dB € Kerj,, thatis d(b) = 0 and j, (b + dB) = j(b) + dC =0 € H(C).
Then there exists ¢ € C such that j(b) = d(c). We choose b; € B such that
j(by) = ¢, since j is surjective, and

(b —d(by)) = §(b) — §(d(by)) = j(b) — d(j(by)) = d(c) = d(c) = 0
b—d(by) € Kerj=1Imi

Jda € A such that i(a) =b—d(by)

d(i(a)) = d(b) — d*(by) = i(d(a)) =0

d(a) =0, since i is injective

R

and
i.(a+dA)=i(a)+dB=b—d(b;)+dB=0b+dB
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Thus, b+ dB € Ima,

~ Kerd, C Imj,:

Suppose that ¢ + dC € Kerd,, thatisd(c) =0and d,(c +dC) =a+dA =0 ¢
H(A).Sothata € dA,thatisa = d(a,), witha; € A. Weputb, = b—i(a,), where
¢ = j(b) andi(a) = d(b). Then j(b,) = j(b—i(a,)) = j(b) —j(i(a,)) = j(b) = ¢
andd(b;) = d(b)—d(i(ay)) = i(a)—i(a) = 0. Thus, j,(by +dB) = j(b;)+dC =
¢+ dC, thatis ¢ + d) € I'mj,. Therefore, Kerd, C Imj,.

~ Keri, CImd,:

Leta + dA € Keri,, thatis d(a) = 0and i,(a + dA) = i(a) + dB =0 € H(B).
Soi(a) = d(b), with b € B. We set ¢ = j(b). Thus, we have that d(c) = d(j(b)) =
j(d(b)) = j(i(a)) = 0. Therefore, d,(c + dC) = a + dA which means that
a+dA e Imd,

Therefore we proved that Kerj, = Imi,, Kerd, = Imj,, Keri, = Imd, and
then the triangle is exact.

IT) From the above we have that

geoi, =t foandh, oj, =j.og,
Since goi =i’ o f then

(goi)y=(i"ef). = gioi,=ilo [,

Similarly, hoj = j'og = (hoj), = (' °g), = h,oj, = ji.°g,. [t remains to show
thatd,oh, = f,od,.Indeed, (f.od,)(c+dC) = f.(a+dA) = f(a)+dA’, where
d(c) =0, j(b) = c and i(a)=d(b). On the other hand (d o h,)(c+dC) = d(h,(c+
dC)) = d.(h(c) + dC’. We have that h(c) = h(j(b)) = (5 o g)(b) = 5 (g(b))
and d'(g(b)) = g(d'(b)) = g(i(a)) = #'(f(a)). So then (d, o h,)(c + dC) =
d;(h(c)+dC’) = f(a)+dA’. Therefore the faces are commutative. This complete
the proof. ]

We assume that (A, d) is a differential group. Let also {A,,} be an infinite se-
quence of abelian groups and homomorphisms d,, = d[, : A, — A, , such that

d,,,od, =0,where r = +1, for every n € Z. So we get an infinite sequence

dnfr dn+r

d,
= A, = A, ALL o A= (%)

+o00

In this case we will denote by (A, d, ), where A = Z ®A,, and it will be called

differential graded group. The case » = 1, that is (Ajd, 1), is called cohomology,
while the case r = —1, that is (A4, d, —1), is called homology. This distinction is
highly artificial in that if (A, d, 1) is a differential graded group of cohomology type,
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then we may put A), = A_, and d;, = d_,, and then (A’,d’, —1) is a differential
graded group of homological type. That is

d_p d_y 0 dy
o= A g2 A Ay A = Ay —

5 1 d ’y
---—>A”2—>A’1—>A6—O>A’_1 — Ay —
Now we consider the differential graded group (A, d, 1). For each n € Z, the
group A,, is called the group of n-cochains. The operator d determines for each

n € Z the groups
C, =A,NKerd,

which is called the group of n-cocycles and
Bn = An N dn—l(An—l)
which is called the group of n-coboundaries. Let the chain

d o d dy d,

Imd,, so then B, C C,, since I'md, C Kerd,. In general we have that B,, C C,,,
because d,, _{(A,,_;) C Kerd,,.

n—1

Definition 3.1.5. The group

(A) = oo

n

H

will be called the nth cohomology group of A.

Definition 3.1.6. Let (A,d, 1) and (B,d, 1) are differential graded groups and f :
A — B is a homomorphism of groups. Then f is said to be an admissible map for
the (A,d,1) and (B,d,1) when fod = do f and f maps A,, into B,, for every

+00
n € Z. Itis clear that for the induced map f, - H(A) := Z @®H,(A) — H(B) :=
Z ®H, (B) we have that

f.: H,(A) — H,(B), foreverynecZ
and f,, = fla A, — B, suchthat f, . od = do f, foreveryn € Z. This means
that
d_ d_,

d
—> A_2 2 7 A_]_ 0
[T
d d
—> B_2 -2 > B—l —

d
y A :
Js

d
By

> Ay
B
0 y Bl dl

> A,
|1
By
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where d,, are differential operators, f,, : A, — B, suchthat f, od =do f, for
everyn € /.

Proposition 3.1.7. We consider the following commutative diagram of differential
graded groups, all of cohomological type, with exact rows and all maps admissible

0 C > 0

s At sp_t,
ol ]

\
7
/
j
0 y A\ —~ 5 B s O y 0

Then the following diagram is commutative with exact rows.

o H, (C) 55 H,(A) =5 H(B) 25 H,(C) 2 H,, (A) — -

[

lh* lf*
o H, (C) B H(A) 55 H(B)) 5 Hy(C') S H, (A) — -

* N

Proof. According to theorem 3.1.4 we have that the diagram is commutative with
exact rows. Also we notice that d, raises dimension by 1, since it is of cohomological
type. [l

3.2 G- modules

Definition 3.2.1. Let M + () and R be a ring (not necessary commutative with
identity). The M will be called left R-module, when M is an additive abelian group
equipped with a scalar multiplication

RxM — M
(r,m) +— rm

such that
* (ry +1r9)m =rym+rym, foreverym € M andry,r, € R
s r(my + my) = rmy + rm, for every r € R and my{,my, € M
* ri(rom) = (ryr9)m, for everyry,ro € Rand m € M

If also R be a ring with identity element 1, such that 1 - m = m, for every m € M,
then M is called unitary left R-module.

Similarly, we can define the right R-module (In general left R-modules and right
R-modules are different). We denote the left R-module M by r M and the right R-
module M by Mp.
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Let G be a finite group.

Definition 3.2.2. A G-module A is an additive abelian group equipped with a scalar
multiplication

GxA — A
(g,a) = ga

such that the following axioms holds for every o, 7 € G and a,b € M
*l-a=a,foreveryac M
* o(a+b)=0c(a)+o(b)
* o(ta) = (o7)(a)

We can interpret G-modules as modules over rings by introducing the integer
group ring of GG. For every finite group GG we construct the integer group ring of G,

Z[G) ={) _n,o|n, €7}

oeG

that is Z[G] is a free abelian group with base G. The operations of ring Z[G] are
defined as follow: the addition is defined by

Z n,o + Z m,o = Z(ng +m,)o

oeG ceG ceG

and the multiplication is defined by

(ana)(ZmUJ) = Z(Z m,n,)o

oeG ceG ceG zp=0o

= Z(Z myn, 1,)0

ceG zeG

We may identify the elements of G, say o, with the elements 1 - o of Z|G] ,
and then we may view GG as embedded in Z[G]. Now the G-module A becomes
Z|G]-module with the operation which defined by

(> n,0)(a) =) n,(oa)

ceG ceG

In addition, if A is a left Z[G]-module, then G is embedded in Z[G], so then A be-
comes G-module.

For example, let GG be a finite group and we define the action of G on A to be the
trivial, that is G x Z — Z, where (o, n) - o-n = n. Then Z becomes a G-module.
Similarly, Q and Q/Z are also G-modules with the trivial action. Moreover, the ad-
ditive group Z[G] is a G-module.
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Now we will define two useful ideals of the ring Z[G]. The first ideal

Ig={> n,o€Z[G]| Y n, =0}

ceG oeG

which is called augmentation ideal of Z|G]. We have that I, is an ideal of Z[G]
because it is the kernel of the homomorphism

e: ZG] — Z

The homomorphism ¢ is called augmentation map. Also, we denote by

NG:ZU

oeG

the norm (or trace) of Z[G]. For every 7 € G we have that TN, = 7 Z o=
ceG

Z TO = Z 0 = Ng. Therefore, ZN, is an ideal of Z[G] as well, where
oeG ceG

ZNg={n) o|nez}
ceG

The map

pw: Z — Z[G]
n = nhNg

is called coaugmentation of Z|G|. Finally, we set
Jg = 2IG)/ZN¢

So then we have constructed two short exact sequences of rings with homomorphism
of rings as follow

05 1,52[G) 5250 (la)

0-z52716) 5 0, =0 (1)

Indeed, the sequence (1a) is exact, since € is surjective, i is injective and Kere =
I'mi. In the same way we have that the sequence (1b) is exact as well. If now we
consider the rings as additive groups, then we have the following theorem:

Theorem 3.2.3. i) The ideal I, is a free abelian group with Z-base {c — 1 | 0 €
G\ {1}}.
ii) Jg is a free abelian group that is generated by {oc mod ZNg, o # 1}
Finally, we have that a) Z|G] = 1o ® 7 -1 = I ® Z and
bZGl=( Y Zo)®INg;=J;®Z
oeG\{1}
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Proof. i) If Y " n,0 € I, then Y " n,, = 0. Additionally,

oeG ceG

anaz Z n,(c—1)

ce@G ceG\{1}

This means that the Z-module I, is generated by {oc—1 | 0 € G\{1}}. It remains to
show that I is a free group. If Z n,(c—1)=0= Z n,o — Z n,-1=20

ceG\{1} oceG ceG
€Z|G|
Then n, = 0, for every o # 1 and Z n, = 0, since Z|G] is a free abelian group.
ceG

Hence, I is a free abelian group which is generated by {c —1 | 0 € G \ {1}}.
Every element Z n,o € Z[0] can be written uniquely in the form

ocG
ana: an(a—l)—i—(ZnU) -1

ceG ceG ceG

Thus, Z[G] = I ®Z - 1= 1, ® Z.

i1) Let Z n,o mod ZNg € Js. This can be written as

oeG
ana = Z (ng—n1)0+n120

ceG ceG\{1} oeG
= Z (n, —nqy)o mod ZN
oceG\{1}

This implies that the J; as a Z-module is generated by {¢ mod ZN, o #+ 1}.

Moreover,
Z n,o € /Ny = Znaa:nZU
oceG\{1} o#1 ceG

and then Z v,o € Z|G],sov, = 0, forevery o € G, thatisn, = 0, forevery o #
ceG
1. Therefore, J; is a free abelian group which is generated by {o¢ mod ZN, o #

1}. Finally, every element Z n,o € Z|C] can be written uniquely in the form

oeG
ana: Z (TLU—TL1>O'+TI1NG
oceG oceG\{1}
Hence, Z[G] = ( Y Zo)®ZNg = J®Z. O

oceG\{1}
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Definition 3.2.4. Let R be a ring and 1 is an ideal of R, then the annihilator of I is

defined by
Ann(I) ={a € R| al =0}

The ideals I, and ZN, of Z[G] are dual to each other in the following sense.

Theorem 3.2.5. We have that: 1) I, = Ann(ZN,)

Proof. 1) Leta = Z n,o € Z|G] such that a € Ann(ZN,). That is

oeG
(D nyo)(ZNg) =0= () n,0)Ng=0= > n,(oNg) =0
ceG ceG oeG
=Y nNg=0= (> n,)Ng=0=> n,=0
oceG oeG oceG

so then a € I;. Clearly, the converse is also true. Thus, I; = Ann(ZNg).
2)Leta = Z n,T € Z|G] such that a € Ann(I). That is

TeG
Z n.7 € Ann(lg) < (Z n.7)(c—1)=0, Vo e G
TEG TEG
<:>ZnTTo: ZTLTT, VoeGen, =n, VTG

TelG TelG
ZRTTZTllzTZTLlNG € ZNG
TG TeG
Hence, ZN, = Ann(Ig). O

For every G-module A we can construct the following subgroups
A% ={a€ Alo(a) =a,Vo € G}
which is called the group of fixed elements of A.

NgA={Nga=> oalac A}
ceG

N A={a€A|Nga=0}
IGA = {Z na<0aa - aa) | Qs € A}
oeG

That is I, A is generated by the elements of the form oa — a, with o € G and
a€ A Also, I =,<0—1|0€G\ {1} >andthen AY = {a € A|I5a = 0}
According to theorem 3.2.5 we have that NoA < A% and [ A < NgA-
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s NgA < AC
Leta € Asuchthat Noa € N A, so Nga = Z oa, with a € A then 7(Nga) =
oeG
Z ToOa = Z oa = Nga, forevery 7 € G and Na € A, since A is a G-module.

oG ocG
v A <y A
Let 8 = Z n,(ca, —a,) € IoA. We will show that N3 = 0. Then

ceG

INgB =Ann(I5)p=0= N;8=0

Thus we are able to construct the quotient groups AY/N; A and ny_,A/I;A. We
will see that they are the cohomology group of order —1 and 0, respectively.

Let A be a G-module and H < G. It is clear that A is a H-module. If H < G,
then the module of fixed elements A7 = {a € A|ha = a,Vh € H} becomes a
G/ H-module. Indeed, A* is an additive group, since A is, and G/H acts on A as
follow

G/H x AH - AH
(gH,a) = (9H)a=gHa=ga

Now if A, B are G-modules, then
Hom(A,B)={f|f: A— B, fishomomorphismof groups}
Definition 3.2.6. We define the set of G-homomorphism

Homg(A,B) = { flf: A— B, fishomomorphismof groups }

suchthat f(oca) =of(a), Vo € G

Proposition 3.2.7. 1) The additive group Hom(A, B) becomes a G-module when
the action of G is defined by

fo=o0(f)=0co0foo !, where f € Hom(A,B), c € G
2) Homg(A, B) is a subgroup of Hom(A, B). In fact,

Homg(A,B)={f € Hom(A,B)| f = f Vo € G}

Proof. 1) It is clear that (f, + f5)° = o(f, + f3) = oo (fy+ fo) oot =
oo fio b4+ 0o faot = f7 4 f9. Also, f°7 = o1(f) = oTo forloTl =
got(f)oot = 0o fToot = o(f7) = (f7)° and f! = 1f = f. Thus,
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Hom(A, B) is a G-module.

2)
Homg(A,B) = {f€ Hom(A,B) : f(ca) =0f(a)}
= {f€eHom(A,B): foo=0cof, VoeG}
= {feHom(A,B) : 0o foot=f VYoeG}
= {fe€Hom(A,B) : f7=f VoeG}

—~

Moreover, it is plain that Hom (A, B) is a subgroup of Hom(A, B), since 1 €
Homg(A,B), f +9 € Homg(A, B) for every f,g € Homa(A,B) and —f €
Homg (A, B). O

Proposition 3.2.8. Let A, A, A,, B, By, By be G-modules. Then:

1. If o € Hom(A,, A) and ) € Hom(B, By), then we may define a homomor-
phism of additive groups

(p,9): Hom(A,B) — Hom(A,, By)
by putting for f € Hom(A, B)
(o, V)(f) =t fod
2. Ifin addition ¢, € Hom(A,, A,) and{; € Hom(By, B,), then

(@1, 81) 0 (¢ 00) = (o ¢y, 0y 0)

3. (¢,) is additive in each variable
(¢,0) and (0,1)) are 0-maps
(1,1) is the identity map.

4. If ¢ and 1 are both G-homomorphisms, then (¢, ) is a G-homomorphism,
symbolically

(¢p,¢) € Homg(Hom(A, B), Hom(A,, B;)

5. If ¢ and v are both G-homomorphisms, then (p, ) maps Homq(A, B) —
Homg (A, By), symbolically

(¢,v) € Hom(Homg(A, B), Homg (A4, By)

Proof. Straightforward verification. [

Proposition 3.2.9. Let A, B, C and 7 be G-modules, where, as usual, the action of
G on Z is the trivial, and we define A = Hom(A, Z). Then
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(i) A is a G-module
(ii) If A is a G-free with finite base, then so is A.

(iii) If f € Hom(A, B) and f = (f,1), then fe Hom(B, fi) If moreover f €
Homg (A, B), then f € Homg(B, A).

(iv) II_Lfl,Jﬁz = AHom(fl,B) and g € Hom(B,(C), then fl + fz = f1/+\f2,
gof=fog 1=10=0.

v) If f € Hom(A, B) is an epimorphism, then fis a monomorphism.

Proof. (i) It follows from proposition 3.2.7

(if) A is a G-module, and then A is a Z[G]-module with the action (Z n,o)a =

oceG
Z n,(ca).So A = Z ®ZGa;,thus A = Z ®,ccZ(oa;). This means that A is
oeG i=1 =1
a free Z-module with base {ca,;|i =1,...,n, 0 € G}. Fori = 1, ..., n we define

f, € A= Hom(A,Z) as follows

1, ifo=11=j
0, otherwise

and we extend linearly from Z-basis to all of A. The set
{fflTeG,i=1,..,n}
is a Z-basis of /i, because

- 1, ifo=7,i=j
T J— o . 0 10 . ’ ’
Ji (Uaj) =To fioT oa; { 0, otherwise

n

g(oa;) = Z mef;(aai) = m, ;. Therefore, {f7 |7 € G,i=1,...,n}isa

=1 7eG

Z|G]-base of /i, since
A= @eclff =) ®occfl” = Z@fiZ[G} = ez[G)f,
=1 i=1 i=1 =1

Thus, A is a free Z|G]-module with base {f;,i = 1,...,n}

(iii) We have that f € Hom(A, B)and1: Z — Z.Thenf: (f,1): Hom(B,Z) —
Hom(A,Z).1f f € Homg(A, B), then according to proposition 3.2.8(4) we have
that (f,1) € Homg(B, A).
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(iv) It follows from the properties of symbol (¢, 1)).

(v) We have that f(A) = B, since f is epimorphism. We suppose that f (1) =0 for
some 7 € B= Hom(B,Z). That is

(f,)(1)=0=>1leoTof=0=>70f=0
and since f(A) = B this implies that
(ro /)(4)=0=7(B) =0
hence 7 = 0. Therefore, f is monomorphism. [

Proposition 3.2.10. Let A be a G-module. Then we have the following isomor-
phisms:

1. Homg(Z|G], A) = A, as additive groups
2. Hom(Z,A) = A, as G-modules

3. 7~ Z, as G-modules

Proof. 1. Let f € Homy(Z[G], A), then we have that (> n o) = > n, f(o -
1) => nyo(f(1)) = (O.n,o0)f(1). Soany f € Homq(Z|G], A) is determined
by f(1). Thus, for every a € A there exists f € Hom(Z[|G], A) such that f(1) =
a. We define

¢: Homg(Z[G],A) — A
f = f(1)
which is an isomorphism of groups. Indeed, ¢ is surjective, since for every a € A

there exists f € Homg(Z[G], A)such that f(1) = a. In addition, ¢ is injective,
since if f(1) = g(1), then

(f—9)(1)=0=f—-g=0=f=g

and it is plain that ¢ is homomorphism.
2. In the same way with (1) we have that the map

v: Homg(Z,A) — A
f = f(1)

is an isomorphism of groups. Also, (f°) = f°(1) = (co0o™1)(1) = oo f(1), since
Z is a G-module with the trivial action. So then ¢(f7) = (o(f)) = (oo f)(1) =
o)(f), this means that ) is a G-homomorphism.

3. From (2) we have that Hom(Z, A) = Hom(Z, A) O
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3.3 Definition of Cohomology Groups

Definition 3.3.1. Let G be a finite group. A complete free resolution of group G (or
of G-module Z with the trivial action) is defined to be the complex

d_ d_ d d d
..<_X_3<_2X_2<_1X_1<—0X0<_1X1<_2X2<_...

NS
0/ \0

where

(i) X, are free G-modules, q € Z

(ii) €, u,d, are G-homomorphisms
(iii) The triangle is commutative, that is dy = jL o €
(iv) The sequence is exact at every term.

So then a complete free resolution of G (or G-complex) can be broken up into two
exact sequences of G-modules and G-homomorphisms, namely

dy

0 < 7 +—— X, « X < Xy —— -

which is called the positive part. From this arose the cohomology.

0 s 7 L X

which is called negative part and from this arose the homology. Conversely, if we
are given a positive part and negative part, then they can be combined (by putting
dy = p o €) to form a G-complex.

The positive and negative part combined by Tate and this combination is very
important because it leads to comprehensive study of them. For every group G we
can construct at least one complete free resolution of G. We construct one complete
free resolution as follow which is called standard complete free resolution or stan-
dard complex of G:

For every ¢ > 1 we define symbols [0y, ..., 0, ] consisting of ordered n-tuples of
elements o, € G, and we call them g-cells. The g-cells will be used as free genera-
tors of G-modules, that is we put

X,=X ,,= Y @&LGoy,....0,

T1,0,0,€G
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Forq = Oweput X, = X_; = Z|[G][1], so that X, is a finite free Z[G]-module with
a basis consisting of a single element 1 € Z[G] and the [1] is called empty cell. So
from the definition we have that ..., X 5, X_;, X, X;, X, ... are free G-modules

and the maps
€: Xg— Z, with e(z n,o) = Z Ny

ceG oeG

which is called augmentation map and

w: Z— X_q, where u(n) =nNg
which is called co-augmentation, are G-homomorphisms. Thereafter we will define
the homomorphisms d,,. It suffices to give the values of d, on the free generators
[0y, ..., 0,]. Now we define:
2 dy([o]) = o[1] — [1], for g = 1
A dq([al, ,Uq]) = 04]0,, .. ,aq]
1

+ Z<_1>i[gla 901,030,141, 042; - 7Uq]

+ (=1)%oq,.s0,4]), forg>1
o d (1)) =3 (07 ol —lo]), forq=—1

wd_, 4([o),.0)]) = Zail[a,al,...,aq]—i—

oceG
q .
+ ZZ<_1)Z[017---,‘71'71701070_170“17---7Uq]
oce@G =1
+ Z(—l)q+1[01,...,aq,a], for —qg—1<—1
oe@G

According to the above definition we have construct the complex

d_ d_ d d d
= X a2 X o X e X X Xy e

y 7
z
0 0
which is called standard complex of G. We can prove that (X, d, ¢, 1) forms a

complete free resolution of G. By construct of standard complex of G we have that
X, are free G-modules, the maps ¢, , d, are G-homomorphisms and dy = p o e,
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since o €(1) = p(l) = Ng = dy([1]). It remains to show that the sequence is
exact. For its proof we use algebraic topology. Its proof is complicated so we skip
it. Thus if we have a group GG, we can construct at least one G-complex which is the
standard G-complex and from this we define the cohomology groups.

Cohomology group of G-module A

Let G be a finite group and A be a G-module. Let also (X, d, ¢, 1) be a G-
complex. We define
A, = Homg(X,,A), ¢€Z

The elements of A are G-homomorphisms from X, to A and they are called g-
cochains of A. From the exact sequence

d d d
e X g X e X

is defined the sequence

0 09

2. 071 \ \ \
7 A72 —> A*l 7 AO 7 Al 7 A2

> A 5

~

whered : X — X,1: A — A are G-homomorphisms and ? = (d, 1). According
to proposition 3.2.8 we have that 0 = (d, 1) is an endomorphism of Hom (X, A).
Since d, o d,, ; = 0, then we have thatd 1 00 () = 0,,1(0,(¢)) =0, 1(1opo
d,) = 041(pod,) =1logpod,od, ;= po0=0.Thatisd, 4 ©d, = 0and
then Imd, C Kerd,, . Also from the above we have that (Hom (X, 4),0,+1)
is a differential graded group of cohomological type.

Definition 3.3.2. We define
C,=CUG,A) = Kerd, 4
the group of q-cocycles of G in A and
B, =BG, A) =Imd,
the group of q-coboundaries of G in A.

Now we can define the cohomology group of GG in A.

Definition 3.3.3. The qth derived group
HUG,A)=C,/B,

is known as qth cohomology group of G in A.
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Strictly speaking, the cohomology groups should be denoted in such a way as to
indicate their dependence on the G-complex. It can be shown that the cohomology
groups are independent (up to isomorphism) of the choice of G-complex.

Now we try to analyze the sense of cohomology group. The group of g-cochains

A, = Homg(X,, A) is the set of all G-homomorphisms f : X9 — A. Since the -

cells [0y, ..., o ] are free generators of X, then the G-homomorphism f : X, — A

is determined by the values of f in g-cells [0y, ..., 0,]. Thus, we can consider every

cochain as a function f : G x ... x G — A. According to proposition 3.2.10 we
SRS RN S

g—times
have that
Ay = Homga(Xy, A) = Homg(Z[G], A)

112

A

as additive groups. Similarly,
A =Homg(X_,A)=A

since X_; = Z|G]. From the definition of d, we have that the maps 9, in the se-
quence

> A5 A, — Ay > A, > Ay > Agy >

verify the following:

w3 0y(f) = fody=Ngf, fEA = A

w» (0f)lo] = (fedy)o] = flofl] —[1])

= of—f, VfeAy=AVoeG
(D f)([o-b q]) = Jlf([0-27"'70-q])
g+1 ‘
+ Z(_l)zf([o-la 0903-1,03034150425 - 70q]>

i=1

+ (Df(lor, s 040]), forg>1,f €A,

o () =D o (o)) — f([o]), for fe A,

oceG

e (aqulfx[al? 7O.q71]) = Z Oﬁlf([o'a 015 - ,Gq,1]> +

ceG

~1
+E g ([o1, 504 0,000,004, ,0,1])

ceCG i=

+ Z D f([oy,...,04 1,0]), forq>0,fe A,
oceG
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3.4 Low Dimensional Cohomology Group

As seen in the definition of group cohomology, it is in general painful to find the
nth cohomology group for an arbitrary finite group G. In general the low dimension
cohomology groups are useful in algebraic applications.

~ The group K 1(G, A)

We know that 71 (G, A) = €_,/B_, where

C, = Kerdg={acA_;=A:09,(a) =0}
= {CLEANGCL:O}:NGA

and
B, = Imd ={acA  =A:a=0_(f), feA,}
facA: a=Y [0 o]~ flo]l, f € Ay} = IA
oeG
Thus,

HYG,A) = NGA/IGA
Corollary 3.4.1. If G is a finite group with order n, then
HYG,Z) =< 0>
Proof. ltis clear that (G, Z) = y_7/I;AZ and

NeZ = {a€Z|Nga=0}={a€Z|) oa=0}
oeG
= {a€Z|) a=0}
oeG

since the action of G in Z is the trivial, and then y.Z = {a € Z |na = 0}, where n
is the order of GG, so n,Z =< 0 > and

IG’Z = {ZTLU(O‘CLU - a’a)? a, € Z} = {Zna<aa - aa)’ a, € Z}

oeG ceG

since the action of GG in Z is the trivial, and then /,Z =< 0 >. Therefore,

HYG,Z) =< 0>

Corollary 3.4.2. If G is a finite group with order n, then

HNG,Q/2) = (7))
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Proof. We have that 7(~'(G, A) = y_A/I;A, where A = Q/Z. Then

NeA = {a€A: Noa=0}={a€Q/Z: Nga €7}
= {a€Q/Z: ) ocacZ}={acQ/Z:) acZ}

ceG oeG

- {aeQ/Z:naEZ}Z{GEQ/Z:GE%Z}

= f0eQ/Z:a=7+7)=(2/2)

and
ILA = {Z n,(ca, —a,),a, € Q/7} = {Z n,(a, —a,),a, € A} =<0 >
ceG ceG
Hence,
HG,A) = NGA/IGA = (lZ)/Z =7Z/nZ
n

~ The group #°(G, A)

We have that
‘7{0<Ga A) = GO/BO

where

Cy = Kerd,={acA;=A4: 0,(a) =0}
= {ac€A: 0a—a=0,VocG}={a€A: ca=a,VocG}=A“

and

BO - ImDO:{(IEAO:Aazao(f),fGAfle}

Therefore,
HO(G,A) = A9 /N, A

which is called norm residue group and it is very important in class field theory.

Corollary 3.4.3. Let G be a finite group of order n and A be a G-module where the
action of G on A is the trivial, then

HO(G, A) = A/nA

In particular H°(G,7) = 7 /nZ and H°(G,Q/Z) = (Q/Z)/n(Q/Z) =< 0 >
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Proof. We have that
HO(G,A) = A9 /N A

where A¢ = A and

NgA = {Ngala€ A} ={) oa|ac A}
oeG

= {) alac A} ={nalac A} =nA

ceG

Hence,
}KO(G, A)=A/nA

and therefore, #H°(G,7) = 7 /nAZ and H°(G,Q/7) = (Q/7)/n(Q/Z) =< 0 >

[

We note that #°(G,Q/7) = HY(G,Z) and H°(G,7) = HG,Q/2).
In general, it can be proved that H"(G,Q/Z) = H™ Y (G,Z) and H"(G,Z) =
HHG,Q/2).

We assume that L/ K is a finite extension of order n and ¢ is a K-automorphism
of L. If L/ K is a Galois extension then G = Gal(L/K) and the fixed field of G
F(G) =Fiz(G) = K.

Corollary 3.4.4. Let K, L be fields and L/K be a Galois extension with Galois
group G = Gal(L/K) then

FHOG, L) = K* /Ny e (L)

where Ny g (L*) = {H o(a) | a € L*} and L* becomes G-module with the nat-

ceG
ural action.

Proof. We know that
HO(G,A) = A9 /N, A

So
HO(G,L*) = L*“ /N, L*

But L*¢ = K*, since L/K is Galois and we have that NoL* = {Nga |a € L*} =
{(JIo)ala € L*} = {J] o(a) |a € L*}. Thus, NoL* = Ny (L*) and
ocG ocG

therefore

FHOG, L) = K* /Ny (L)
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~ The group #1(G, A)
We know that
HY G, A) =C/B,
where
C, = Kerd, ={f: G— A|o,(f)=0}
= {f: G—= Al 0.f)]o, 7] =0of([r]) — f([o7]) + f([o]) = 0}
= {f: G—=A|of(r)— f(or)+ f(o) =0}

Definition 3.4.5. Let A be a G-module. The map f : G — A will be called crossed
homomorphism if f(o1) = f(0) + o f(7), foreveryo, 7 € G

Thus, €, = {crossed homomorphisms}.
and

B, = Imdy={f: G— A| Ja € A such that ?,(a) = f}
= {f: G— A|Ja € A such that (0,a)([c]) = f([o])}
{f: G— A|3a€ A such that ca —a = f(o), Vo € G}

Definition 3.4.6. Let A be a G-module. Themap f : G — A will be called principal
crossed homomorphism if f(0) = ca — a, for every o € G and a € A.

Hence, B, = {principal crossed homomorphisms} and therefore

HUG, A) = {f: G— Al fcrossed homomorphism}
T {f: G— A| fprincipal crossed homomorphism}

Remark 3.4.7. 1) If G acts trivially on A, then
HY(G,A) = Hom(G, A)

2)If A =Q/Z then
HUG,Q/Z) = x(G)

where x(G) is the character group of G.
Proof. 1) B, =< 0 > and

¢, = {f:G—=A| f(or)=0f(1)+ f(o), Vo,T € G}
{f: G—= A| flor) = f(1)+ f(o), Yo,7 € G} = Hom(G, A)

2) G acts trivially on A, so then we have that

HU G, A) = Hom(G,Q/Z) = x(G)
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Theorem 3.4.8. Let L /K Galois extension and G = Gal(L/K), then
HY G, L*) =<1 >

This means that every crossed homomorphism is a principal crossed homomor-
phism.

Proof. A proof of this can be found in my diploma thesis [21], Chapter 2. [

Corollary 3.4.9. (Hilbert's theorem 90) Let L/ K is a cyclic extension of degree n
with Galois group G = Gal(L/K) =< o >.Ifa € L, then N i (a) = 1 if and
only if there exists [ € L* such that a = %ﬁ) where Np /i = H o(a).

oeG

Proof. A proof of this can be found in my diploma thesis [21], Chapter 2. [

Corollary 3.4.10. Let L/ K is a Galois extension with Galois group G = Gal(L/K),

then .
~f{aeL*[Npg(a) =1}

HUG, L) =
1) {I] a5l a, € L7}
ceG

If L/K is a cyclic extension then 7{ (G, L*) = 0.

Proof. We know that
HYG, L) = L/ 1L

We have that
NeL* = {a€l”: Nga=1}={a€ L": Hg(a)zl}
oeG

= {a€lL*: Ny k(a) = 1}

since (L*,-) is a G-module, and

tor = ([[ s oy € £y = {]] 2 o, € 1)

oceG oeG g

according to corollary 3.4.9

If now L/K is cyclic extension, then

{fa€ L : Npjgla)=1} = {aEL*[az%,BEL*}
¢ ([ 2%) 0, e 1)

oeG o

Thus, X~ Y(G, L*) =0 O
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~ The group #?(G, A)

We know that
‘7{2<G7 A) = 62/32

where

Cy = Kervg={f: GxG|o5(f) =0}
= {f: GxG|of(r,p)+ f(o,7p) = floT,p) + f(0,7), Vo, T,p € G}

Definition 3.4.11. Let A be a G-module. The map f : G x G — A such that
of(r,p) + f(o,mp) = flor,p) + f(o,T), for every o,7,p € G, will be called
factor sets.

Thus,
Co={f: GXxG|f factor sets}

In addition, f € B, = Imd, if and only if there exists g : G — A such that
05(g) = fif and only if there exists g : G — A such that og(7) — g(o7) + g(0) =

flo,7).

Definition 3.4.12. Let A be a G-module. The map f : G x G — A satisfying that
there exists g : G — A such that cg(1) — g(o7) + g(0) = f(o, ) will be called
splitting factor sets.

Therefore,
{factor sets}

H2(G,A) =
(G, 4) {splitting factor sets}

If we denote f(o,7) as a,, , and we consider the G-module A multiplicative, then
we have that

and
i _J {ay.} | thereexists amap
{splitting factor sets} = { (b} such that b7b,b, = a,.

The 3rd cohomology group H3(G, A) was calculated (for the first time) by
Teichmiiller (1940). Moreover it has been proved that

H2G,2) = G/[G,G]

where |G, G] is the commutator subgroup of G.
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3.5 Cyclic Cohomology

So far we have defined the basic cohomological maps and have studied some
properties of them. Now we will prove some central theorems of cohomology theory.
In this section we assume that G is a finite cyclic group.

Proposition 3.5.1. Let G is a cyclic group of order n with generator g. If

O—>A—i>BiC—>O

is an exact sequence of G-modules and G-homomorphisms, then we have an exact
hexagon

(G, A) — s 39(G, B)

T — 7

KNG, B) <2 701G, A)

Proof. Wehave proved that 7°(G, A) = AY/NgAand H (G, A) = y_A/IGA.
We must show that f; is well-defined homomorphisms for every z = 1,...,6 and
Kerf,,, =Imf;,withi =1,...,5, Kerf, = Imfs. The maps f; withi =1,...,6
are defined as follows:
~ f 0 HOG,A) = A /NgA — HO(G,B) =~ BY/N,B
a+ NgsA > i(a) + NoB

f1 is well-defined, since if a; + No A = ay+ N A, thena := a; —ay, € NoA. We
would like to show that f,(a; + NoA) = fi(ay + N A), thatis i(ay;) + NoB =
i(as) + N B and then i(a) = i(ay — ay) € NgB. So it suffices to show that if
a € NnA, theni(a) € NoB, witha € A% Leta € A%, which means that ga = a.
Then, i(a) = i(ga) = gi(a), thatis i(a) € B®.Ifa € NgA, then a = Z o(t),

oeG
witht € A. So

fila+ NgA) = i(a)+ NgB=> i(o(t))+ NgB
ceG

= Y o(i(t) + NgB = N¢B

ceG
since i(t) € B. Also, f; is homomorphism, since
fa+NgA+b+ NgA) = fi(a+b+ NgA)=i(a+b)+ NgB

= i(a) + NgB +i(b) + N,B
= fila+NgA) + f1(b+ NgA)



3.5 Cyclic Cohomology 81

/\’)f2 : ‘7{0<G7B) — ‘7{0<G70)
b+ NsB +— i(b)+ N;C
Similar to f; we can show that f, is a well-defined homomorphism.

/\’)f4 : ‘7{71((;7*’4) - ‘7{71(G7B>
We will show that f, is well-defined. It suffices to show that if a € I, A, then
i(a) € Igb, witha € y_A

a€n A= NgA=0=> 0a=0

oeG

Then Ngi(a) = Y o(i(a)) = Y i(a(a)) = i() _ o(a)) = i(0) = 0, which

ceG oceG oceG
means thati(a) € a € y_B.1fa € I A, thena = Z(ot —t), witht € A. So
ceG

fala+1gA) = i(a)+I1gB=i() (ot —t))+ ;B

ceG
= Y li(at) —i(t)] + 1B
ceG
= > [oi(t) —i(t)] + IcB =I4B
ceG

since i(t) € B
In addition, f, is homomorphism, since
fala+IcA+b+1,A) = fila+b+1zA)=i(a+b)+ B

= i(a) +IoB+i(b)+ I,B
fala+ 16 A) + fy(b+ IgA)

/\’)f5 : ‘7{_1(GJB) — %_1<G,C)
b+I1.B +— jb)+I1C
Similar to f,, we can prove that f; is a well defined homomorphism.

~ fyr HOYG,C)=CY/N,C — H G, A) =~ N A/ GA
C + NGC — a + IGA
is defined as follows: Let ¢ € C“. Then there exists b € B such that j(b) = c, since
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j is surjective. Also, j(gb — b) = gj(b) — j(b) = gc —c = 0 and

Nglgb—b) = Y glgb—b)=> g'(gh)— > g'b

g eG g eG g eqG
= > (Ggb— > gb

g’ eG g’ eG
S S Sy

g’ eG g’ eG

since G is a finite group. We have that j(gb — b) = 0, which means that gb — b €
Kerj = I'mi, so then there exists a € A such thati(a) = gb — b. Now we define

fale+NgC) = a+IA

with j(b) = ¢,b € B, j(gb —b) = 0 and i(a) = gb — b. We will show that fs is
well-defined. It suffices to show thatif c € NoC,thena € I5A. Then, N (i(a)) =
Ng(gb — b) = 0 and this implies that i(N;a) = 0, so then Nsa = 0, since i is
injective. Thus, a € y_A.Ifc € NgC, then ¢ = Ngt = Y _ot, witht € C. So

oceG
there exists b € B such that j(b) = ¢, since j is surjective, and fs(c + NGC)

a + I~ A, where i(a)=gb-b, by constructlon of f5.Since t € C, then t=j ) for

some v € B, which implies that j(b) = ¢ = Z ot = Z = j( Z ou), so
oeG ocG oeG
then
:j(Zau) :j(Zau—b) =0
ceG oceG
This means that Z ou — b € Kerj = I'mi, which implies that there exists z € A
oceG
such that i(x Zau—b =v+gu+--+g» tv—b. Theni(gz) = gv+ g*v +
oceG

«+v—gb. So, i(x) —i(gx) = gb — b = i(a) and then x — gz = a, since 7 is
injective, which means that a € I A. Thus, f5(c + NoC) = a + IoA = IA. Tt
remains to show that f; is homomorphism. Let ¢, d € C©.

fslc+ NgC+d+ NgC) = fs(c+d+ NgC) =a+ 1A

Since, ¢ + d € C% we have that there exists b € B such that j(b) = ¢ + d and
j(gb—b) = 0,i(a) = gb—b (I). Also, since c,d € CC there exist b_,b; € B
such that j(b,) = ¢ and j(b,;) = d. We know that j is homomorphism, so then

J(be +b4) = j(be) + j(bg) = ¢+ d = j(b)
= j(b,—b;—b)=0=0b,—b; —be Kerj=1Imi

This means that there exists a’ € A such that

i(a’) =b,—by—b (II)
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In addition, j(gb. — b,.) = j(gby; — b;) = 0, which implies that there exists a; € A
such that i(a;) = gb; — by, and then i(a, + a;) = g(b. — b. + gb; — by) =
g(b. +b;) — (b. + b;). We multiply the equation (1) by g and then

gb. — gby — gb = gi(a’) = g(b. — by) — gb = gi(a’)
= Z'(ac + ad) + bc + bd - gb = g’L(CLl)

(IT)
= i(a,+ay) +i(a")+b—gb=gi(a)

) ) , .
= i(a, +ay) +i(a") +b—i(a) — b= gi(a’)

= i(a. + ag) —i(a) = i(ga’) —i(a’)

=i(a, +a;—a)=1i(ga" —a’)
This implies that a, +a; —a = ga’ —a’, since ¢ is injective, and then a, +a; —a €
I A, which implies that a, +a,; + ;A = a+ 15 A. Hence, f5(c+ NoC)+ f3(d+
NiC) = fs(c+ NoC+d+ N;C).

~ for HYG,O) = N, C/cC — HO(G,A) =~ A9 /N A

Firstly we will define the fg. Let ¢ € y_C, then there exists b € B such that
j(b) = c. We have that j(Ngb) = Ng(j(b)) = Ng(c) = 0, which means that
Ngb € Kerj = Imi. So there exists a € A such that i(a) = Nb. Hence, we
define fs(c + IoC) = a+ N A, where j(b) = ¢,b € Band i(a) = N;b. We will
prove that f4 is well-defined. It suffices to show that if ¢ € I;C, then a € N A.
We have that a € A and

i(ga) = gi(a) = g(Ngb) =g ob
ceG

= Y gob=> ob=Ngb=i(a)

ceG ceG

This implies that i(ga) = i(a) and then ga = a, since i is injective, thatis a € AC.
Ifc € IoC, then c = Z(at —t) for some ¢t € C, so there exists v € B such that

oeG
j(v) =t, since j is surjective. Thus,

jb)y=c=) (ot —=t)= (oj(v) = j(v)) = j(}_(ov—w))

ceG ceG ceG
éj(Z(Uv—v)—b) :0:>—Z(av—v)+b € Kerj =1Imi
oeG ceG
This means that there exists z € A such that
i(r)=0b— Z(av —v) (%)
oceG

We apply N on both sides of equation (x), so

Ngi(z) = Ng(b— Y (ov—1v)) =

oeG

i(Ngz) = Ng(b) — Z[NG(UU) — Ng(v)]
oeG
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But Nov = Zov = v+ gv+ -+ g, Ng(gv) = gv+ ¢?v + - + v
oeG

and i(a) = Ngb. Thus, i(Ngx) = i(a), which implies that N,z = a, since i is

injective, so then a € N A. Therefore, if c € 1,C, then

It remains to show that f; is homomorphism. Let ¢, d € y_C'. Then
fele+ n,C+d+ §,C) = folc+d+ y,C)=a+ NgA

where i(a) = Ngb, j(b) = ¢ + d.
Since ¢,d € y_C, then there exists b, € B and b; € B such that j(b,) = c,
j(bg) = dand fs(c + N .C) = a. + NgA, where Ngb, = i(a,), (j(b.) = ¢),
feld+n,C) = ag+NgA, where Ngb, = i(a,). Weclaimthata,+ay;—a € NgA.
Indeed,

i(a) =Ngb=Y ob=b+gb+..+g" b (II)

ceG

Then

J(be) +3(ba) = j(be +bg) = ¢+ d = j(b)
= j(b.+by) =j(b) =b.+b;—be Kerj=1Imi

This implies that there exists a’ € A such that
i(a")=b.4+b;—b (IV)
Additionally,
i(a.) = Ngb, = b, + gb, + ... + g b, (V)

i(aq) = Ngbg = by + gbg + ... + 9" 'y (V)
From the equations (/11), (V)(VI) we have that
i<ac+ad_a'> :bc+bd_b+g<bc+bd_b>++gn_1(bc+bd_b>
(V)
= i(a, +ay;—a)=1i(a") +gi(a’) + ...+ g" ti(a’) = Ngi(a’) = i(Nga')
=i(a, +a;—a) =i(Nga')

Thus, a,. + a; — a = Nga/, since i is injective, thatis a, + a; —a € NgA =
a.t+ag+NgA = a+NgA. Hence, fo(c+y, C)+ fo(d+n,C) = fo(ct+d+y_C)

Therefore all homomorphisms are well-defined. It remains to show the exactness.
~ Kerf, =Imf;

Let a € A% such that f;(a + NgA) = 0 = i(a) + NgB = NgB = i(a) €
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N&B = i(a) = gb, b € B.Let j(b) = ¢, then fs(c + [,C) = a+ N A, by
G 6 G G
oeG

the definition of f4. Thus, Kerf, C Imfs. Let now a + NgA € Im fg, then there
exists ¢ € y_C such that fg(c + I5C) = a + NgA, where j(b) = ¢,b € B and
i(a) = Ngb. So

= a+ NgA € Kerf;

thatis Imfg C Kerf;
~ Kerf, =1Imf;

Letb+ N B € Kerf, so then

fo(b+ NgB) = NoC = j(b) + N;C = N;C

= j(b) € NgC = j(b) = Y _oc
oeG

Since j is surjective there exists b € B such that ¢ = j(b’). So then j(b) =

n—1 n—1

j(z g'b"), which implies that b—z g'b’ € Kerj = Imi. Thus there exists a € A
i=1 i—1
n—1 n—1

such thati(a) =b— Y g'b’. Then f,(a+ NgA) =i(a) + NoB=b—Y g'b' +

i=1 =1
NoB =b+ N B, thatisb + NoB € Imf,. Consequently, Kerf, C Imf,. Let
now b+ N B € I'mf,. This means that f;(a + NgA) = b+ N B, witha € AC.
Then f,(b+ NgB) = fo(fi(a+ NgA)) = fo(ila) + NeB) = j(i(a)) + NgC =
0+ N;C = NgC,thatisb+ N B € Kerf,. Hence, Imf, C Kerf,.

~ Kerfs =1Imf,

Let c + NgC € Ker f3. Thatis

where j(b) = ¢,b € B, j(gb—b) = 0 and i(a) = gb — b. We have that f,(b +
NgB) = j(b) + NoC = ¢ + NgC, thatis ¢ + NoC € Imf,. So then Ker f; C
Imf,. Conversely, let c+ N,C € Imf,,thatis f,(b+N5B) = ¢+ NC, for some
b € BY, where j(b) = c. Then f5(c + NoC) = a+ I5A, where j(b) = ¢,b € BE,
j(gb —b) = 0andi(a) = gh—b = 0, since b € BY, so then a = 0, since 7 is
injective. Thus,

falc+ NC) =15A= c+ N;C € Kerf,

Thatis Imf, C Kerfs.
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~ Kerf, =1Imfs

Leta + IoA € Kerfy, thatis f,(a + J;A) = IoB. Let j(b) = c then f5(c +
NoC) = a' + I5A, where i(a’) = gb — b, j(gb —b) = 0. So fy(a" + I[5A) =
i(a") 4+ IoB = gb— b+ IB = I B. This implies that
fila+JgA) = fu(a' +1gA) = fyla—a’ +1gA) = 1B
=a—d +IA=1A=a+I;A=a + 1A
Thus, f3(c + NgC) = a + I5A, thatis a + I A € I'mfs and then Kerf, C
I'mfs. For the converse, let a + I A € Imfs, this means that fs(c + NoC) =
a + 1A, where j(b) = ¢,b € B, i(a) = gb —band j(gb —b) = 0. Then,
fala+I5A) =i(a)+ 1B = gb—b+ 1B = IB, which means thata + [ A €
Kerf,.Hence, Imf; C Kerf,.

~ Kerfs =1Imf,

Letb+ IoB € Kerfs, that is
fs(b+JgB) =IoC = j(b) + IoC = 15C = j(b) € 15C

We have that y,B C NgB C B%.So, b € B¢, which means that gb = b, and then

j(gb) = j(b). Since, j(b) € I5C then j(b) = Y (oc—c) = > aj(b’) — j(b'),
ceG ceG
with " € B. Thus,

i) =3 ot —b) = i3 ot —b —b) =0

ceG ceG

We multiply the last expression with g and then

gi> ot =V —b) =0=j()_ gob’ —gb' —gb) =0

ceG ceG
= j(>_0gb’ —gb') — gb) = 0= j(gh) = 0 = j(b) = 0
oeG
Hence, we have that j(b) = Z[aj(b’) — ()] = Z[aj(i(a/)) —j(i(a’))] = 0,
oeG oeG

which means that b € Kerj = I'mi. This means that there exists a € A such
that i(a) = b. Then fy(a + [oA) = i(a) + ;B =b+ I;B,thatisb + IB €
Imf,. So Kerfs; C Imf,. Conversely, let b + IoB € Imf,, this means that
fala+15A) =i(a)+ 1B = b+ I;B, where b = i(a) for some a € y_A. Then,
fs(b+15B) =j(b) + 1,C = j(i(a)) + [oC = 1,C, thatisb+ I B € Kerf;.
Consequently, Imf, C Kerfs.

~ Kerfs=1Imfs
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Letc+1,C € Ker fg, which means that fs(c+15C) = NgA.But fg(c+1sB) =
a+ NgA, where j(b) = ¢, b € B,i(a) = Ngb, then

So fs(b+ IzB) = j(b) + IoC = ¢+ 1;C, thatis ¢ + Io,C € Imf; and then
Kerfs C Imfs. For the converse, let ¢ + IC € I'mf, that is there exist b € B
such that j(b) = c. Thus, f5(b + [oB) = j(b) + IoC = ¢ + I,C and then
felc+15C) = a+ NgA, where j(b) = c,i(a) = Ngb, for some b € y_B, thatis

Ngb=0=i(a)=0=0a=0

Therefore, f5(c+1;C) = a+NgA = Ng A, which implies that c+1,C € Ker fg,
thatis Imfs C Kerfg. [

Definition 3.5.2. (Herbrand Quotient) Let G be a finite cyclic group and A is a
G-module. Then Herbrand Quotient of A is

(G, A)]
MG A = 157G, )

provided that both orders |H°(G, A)|, |H (G, A)| are finite.

Example 3.5.3. 1)Let L = Q(i) and G = {1,0} =< o >, where o sends any
element to its complex conjugate. The extension L/Q is Galois and G = Gal(L/Q).
Then (L*,-) is a G-module.
We have that
(L") = Q, since L/Q is Galois.
NoL* ={Ng(a+bi) |a+bie L*} ={a+bi+a—bi|a+bi € L*} =2Q
NI = {a+bieL*| No(a+bi) =0} ={a+bi e L*|2a =0}
= {ibeL*|becQ} =iQ=Q

IgL* ={} _,no(ca—a), a€ L'} ={-2n,ib, no € Z,b € Q} = 2Q
Thus,
190G L)E /NG|

[HHG L) v L gL
2) K = F3(i), K/F4 Galois with G = Gal(K /F3) = {1,0}, where o sends any
element to its complex conjugate modulo 3. Then K* is a G-module. We have
(K*)G SE
NoK* ={Ng(a+bi)|a+bi € K*} ={a+bi+a—bi=2a|a+bi e L*} = [,
N K* = {a+bic K*|Ng(a+bi) =0} = {a+bi € K*|2a =0}

h(G, L)

IG}()k = {deG nU(O'CL - CL), a < K*} = {_2naib7 no < Z7b = [F3} = [F3
Thus,

WG Ky — LG IK)C/NGE"|
TG R T [ Ko1K
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A reasonable question has been arisen is if the Herbrand quotient exists, is it
always an integer?

Lemma 3.5.4. (Herbrand Lemma) Let 0 — A — B — C — 0 be a short exact
sequence of G-modules where at least two of h(G, A), h(G, B) and h(G,C) are
defined then
h(G,A)h(G,C)
h(G, B)
Proof. From proposition 3.5.1 we have that the hexagon is exact. Let n; := [Imf;|.
Then H°(G,A)/Kerf, = Imf,, so

|%O(G7A)| = |Kerfi[[Imf,| = |Imf6|n1 = Ngny

Similarly, |H°(G, B)| = nyn,, |HO(G,C)| = ngng, [HHG, A)| = ngny,

=1

NyNgNaNaN My = NqNoNgNNsNg =
|G, (G, ONHHG, B)| = |H(G,B)|[|HHG, A)|FHHG, O
If two Herbrand quotients of h(G, A), h(G, B) and h(G, C') are defined, then
HO(G, A)| |H7HG, B)| |H°(G,C)]

7@ A) 7090, B)] |7 G.0)]

]

Herbrand Lemma and the exact hexagon in proposition 3.5.1 can be extended to
n number of groups.

Proposition 3.5.5. If A is a finite G-module, then
h(G,A) =1
Proof. The sequence ‘
049545 1,450
where f(a = ga— a), is exact sequence, since i : A — A, a -+ a is injective with
Imi = A% and fis surjective with Ker f = I'mi. In addition, the sequence
0y AD AL NGA =0

where h(a) = Nga, is exact sequence, since j : y A — A is injective, h is
surjective and Imj = Kerh. Thus, we have that

A/Kerf=I,A and A/Kerh = N;A
This implies that |A| = |I;A||Kerf| = |IA|[Imi| = |I5A||A%| and |A| =
INcgA|[Kerh| = |[NgAl[Imj| = [NgA|| Al Hence,
HO(G, A AC /N A

= = =1
HUG,A) v A/GA]
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Since we use ! only in cyclic cohomology, it has a cohomlogical meaning
only when G is finite cyclic group. In this case we have the following:

Proposition 3.5.6. We have that

HUG, A) = H(G, A)

Proof. We assume that G =< g > of order n. We have proved that

{f: G— Al fcrossed homomorphism}
{f: G— A| fprincipal crossed homomorphism}

HYG, A) =

We define

p: C(G,A) — nN,A
f = f(9)

Firstly, we will show that ¢ is well-defined. Let f € C,(G, A), that is f is a crossed
homomorphism. We will show that f(g) € y_A, thatis N f(g) = 0. We have
proved that if f is a crossed homomorphism, then

and if G =< g > of order n, then
n—1 '
> g flg)=0= f(g")=0= f(1)=0
i=0

Thus,

Nof(g) = gf(g) = 0= flg) = 0= f(g) € A
=0

Also, it is clear that ¢ is a homomorphism. In addition, we will show that ¢ is
surjective. Let a € y_A, then Nga = 0. Let also & such that h(g) = a and

m—1 m—1
h(g™) = Z g'h(g) = Z g‘a. So h is a crossed homomorphism and therefore h
=0 =0

is surjective. Clearly, ¢ is injective, since f € Keryp, then we have that p(f) = 0
which is equivalently with f(g) = 0 and then f = 0. Therefore, ¢ is an isomor-
phism. Furthermore, if f € B,(G,A), then f(g) = ga — a, for some a € A,
that is f(g) € I5A. Then ¢ is an isomorphism between C, (G, A)/B,(G, A) and
NgA/IA. This means that € (G, A)/B,(G, A) = y_A/IA. This complete the
proof. [
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Proposition 3.5.77. Let G =< g > is a finite cyclic group. Then
HYG,A) = AY/NoA = HO°(G, A), foreveryevenq> —1
and
HUG,A) =y AJIA = HYG,A), foreveryoddq>—1

Proof. According to proposition 3.5.6 we have that 7 ~1(G, A) =~ H(G, A). We
assume that |G| = mand N := Ng = 1+ g+ g*> + -+ + g™ !, then N can be
thought as a map Z[G] — Z[G]. Also, N(g—1) = (9 —1)N = g™ — 1 = 0 where
the multiplication by g — 1 is another map from Z[G] — Z[G]. Since G is a finite
cyclic group we can construct a free resolution of G-module Z

N -1 N -1 €
S e e I e BN AN S
That is
\ Z
\ 0
N, 1i=even
wheredi—{ g—1, i=odd

d is G-homomorphism with d? = 0 and X, = Z[G] are free G-modules. We will
show the exactness of the above sequence (X, d,—1). Let G = {1,g,...,g™ '},

m—1 m—1
N = g and v € Z[G], thatis v = Z c;g', ¢; € Z. We have that Imd C
n=0 n=0

Kerd, since d? = 0. It remains to show the converse. If n is odd, then

v € Ker(g;) ©gy=7v

m—1 m—1
= E 9" = g ;g™ =c;=c,Vi=0,..,m—1
=0 =0

so v = Ne¢, which means that v € ImN. If n is even, then

m—1
'yEKerN:>N7:O:>N(Zcigi):0
=0
m—1 m—1
= ( CZ)N:0:>ZCZ:O
i=0 1=0
m—1 m—1
SOy = Z ci9; = Z ¢;(g; — 1), which means that v € Im(g — 1). Thus,

i=0 i=0
Im(g—1) = KerN. For the augmentation map

¢: Z|G] — Z, where Z n,o > Z n,
oeG oeG
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we have that 1 o €(1) = d(1). Hence, (X,d,—1) is a free resolution. In the se-
quence () we apply Hom (X, A). We have proved that Homq (Z[G], A) = A,
Homg(Z,A) = A. So,

(671) <d171>
0— Homg(Z,A) — Homga(X,,A) —

That is

(671) (dlvl)
0—A - A —

Then
(dlvl) (d271)
0—-A4 - A — -

We setd, = (d,, 1). We have that
HIUG,A)=C,/B, = Kerd, ,/Imd,
For ¢ > 1:1f g is even then
Kerd, ,={acA: (d1,1)a=0} ={acA: (9—1,1)a=0} = A®

and
Imd, = Im(d,, 1) = Im(N,1) = (N,1)A= NgA

Thus, H (G, A) = A% /N,A.
If ¢ is odd then

Kerv,,, = Ker(N,1)={a€A: (N,1)a=0}
= {a€A: Na=0}=,_A

and
Imd, = Im(d, 1) =Im(g—1,1)= (g —1,1)A = I5A

Thus, 79(G, A) = y_A/IA. This complete the proof. O

In particular we have that 7 4(G, A) =~ H972(G, A), for every ¢ > —1.

3.6 Cohomology Theorems

Now we will mention some theorems of cohomology without their proofs. For
their proofs see [19].

Theorem 3.6.1. (Dimension Shifting) Let A be a G-module. Then there exists G-
modules A™ and A~ such that for every subgroup H of G

HV(H, A7) = H(H, A) = FH(H, AT)

foreveryn € /7.
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Theorem 3.6.2. Let A
0— A-B i> C—0

be an exact sequence of G-modules and G-homomorphisms. Then the induced infi-
nite sequence

s HY(G, A) — HUG, B) — HUG,C) s
HITHG, A) — HIYG, B) — HI(G,C) — -

where 0 is the connecting homomorphism, is also exact. It is called the exact coho-
mology sequence.

Definition 3.6.3. Let G be a finite group and M be a G-module. The G-module M
is called cohomologically trivial if and only if H" (S, M) = {0} for every r € 7
and S < G.

Theorem 3.6.4. (Nakayama-Tate) Let G be a finite group and M is a G-module.
Then H" (S, M) = H"™1(S, M) = {0} ifand only if M is cohomologically trivial.

Theorem 3.6.5. Let M be a G-module such that for every subgroup S of G we
have that H*(S, M) = {0} and H*(S, M) is cyclic of order |G|. Then for every
subgroup S of G and for every r we have that

HT(S, M) =H"2(S,27)
In particular, if r = 0 and S = G, then
HO(G,M) =H2(G,7)

That is
MC/NoM =~ G/[G,G]

The last equality is very important in number theory. If L/ K is Galois extension
of algebraic number fields and G = Gal(L/K) then this equality give us the Artin
reciprocity law.

Theorem 3.6.6. Let G be a finite group and G, is a p-Sylow subgroup of G, for every
prime number p. If M is a G-module and J(" (G, M) = {0}, for every p | |G
then H" (G, M) = {0}

’

Then we will mention some functions whose properties are important for the
proof of theorems that we have mentioned above.
Also we will study the behavior of cohomology group if we change the group G.

Let A be a G-module and H is a subgroup of GG. Clearly, A is a H-module. If H is
a normal subgroup of G, then it is clear that A is a G/ H-module.
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We wonder which is the relation between the cohomology groups
H"(G/H, AR, H" (G, A), H"(H,A)
We have defined the homomorphism of pairs (definition 5.1.11)
A f): (G A) = (G A)

In addition we have thatif (A, f) : (G, A) — (G’, A”) is a homomorphism of pairs,
then for every n there exists a homomorphism

N f)y: HM(G,A) - H™(G' A
For f=1,and A =i : H < G, we take the homomorphism of pairs
(1,1): (G,A) = (H, A)
which induce the map
(i,1), : H"(G,A) — H™(H,A)

The map (i,1), will be called restriction of G in H and it denoted by rest :=
restq_, ;. We can prove that the restriction is transitive, that is if H' < H < G,
then

restg_ g = resty_,grorestg_ g

We assume now that H is a normal subgroup of G, then A is a G/ H-module. Let
7+ G — G/H be the natural projection and i : A < A be an injection. Then
A becomes a G-module under 7. So,

(m,4) : (GJA, AH) — (G, A)
is @ homomorphism of pairs and then we have
(m,4), : H(G/A, AT — H"(G,A), n>1
The map (7, 1), is called inflation of G/ H in G and is denoted by inf := infq, ge,q-

Also, we can prove that the inflation is transitive, that is if H, < H; < G and
H,, H, are normal subgroups of G then the following diagram is commutative

}[n(G/HDAHl) ’ }[TL(G/H%AHz)

\ /

HMG, A)
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Theorem 3.6.7. If
0>A—-B—-C—=0

is an exact sequence of G-modules and G-homomorphisms and if H is a normal
subgroup of G such that

0— A7 - BH 5 CH 0
is an exact sequence, then the following diagram is commutative
HG/H,CH) —— H" Y G/H, AT)
lmf lmf
H(G,C) ———— H"TYG, A)

There exists a respective statement for the restrictions as well.
Now we will mention a basic theorem of cohomology.

Theorem 3.6.8. If A is a G-module and H is a normal subgroup of G, then the

sequence
0— HYG/H,A®) = (G, A) — H1(H,A)

is exact sequence.
If A = 7, then the map
rest: H2(G,Z2) — H2(H,Z)

induce the map
G/|G,Gl — H/[H, H]

which is called transfer (Verlagerung).
If H is a subgroup of G and [G : H| < oo, then we can define a map

e (H, A) — FH(G, A)

which is called corestriction and is denoted by coresty_, . In addition, we have
the following

Theorem 3.6.9. If [G : H] = n, then
coresty_,qorestg g =nld

Let G be a group and Z[G] is the integer group ring. If A, B are G-modules then
we can construct a Z-module, the so called tensor product of A, B, which is denoted
by A ®, B. This can be G-module.

Theorem 3.6.10. (Shapiro’s Lemma) Let H be a subgroup of G and M is a H-
module, then Z|G] ®z ) M is a left G-module and

H(G, IndGM) = H"(H, M)
where IndGM = 7[G] Q7 M.



Chapter 4

Cohomology of Profinite Groups

In second chapter of this thesis we defined the profinite groups and in third chap-
ter we investigated the cohomology group of finite groups. We wonder what happen
if the group is profinite. For this reason in this chapter we will define the cohomol-
ogy group of a profinite group and we will study some useful statements.

Let K be a perfect field and K be the algebraic closure of K. We know that the
extension K /K is an infinite extension. In particular, it is Galois and Gal(K /K)
is a profinite group.

K < {id}

| |
K < Ga(K/K)

We know that

= K)/K = li N = li L/K
G =Gal(K)/ lim G/ lim Gal(L/K)

N K<L<K,

N <G, L/K is finite

N = open
It’s worth noting that K = lim L
H
L/K is finite
and Galois

4.1 Discrete Modules

Let G be a group and R be a ring (not necessarily commutative ring). We have
defined that a left G module A is an additive abelian group equipped with a scalar
multiplication

GxA — A
(0,a) +— oa

95
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such that the following axioms holds for every a,b € Aand o, 7 € G:
i)o(a+0b) =0(a)+ o(b)
i) (c+7T)a=0a+Ta

iii) (07)(a) = o(7(a))
If also 1a = a for every a € A, then A is called unitary.

We assume that G is a profinite group and M is a unitary G-module. Then G is
a topological group and M, as an abelian group, can be considered as a topological
group equipped with the discrete topology.

Definition 4.1.1. Let G a profinite group and M a unitary G-module. We will call
M discrete G-module if the group action G x M — M is continuous.

It suffices to remark that if G is a finite group, then the above definition of dis-
crete G-module is the same with the common definition of a G-module.

Theorem 4.1.2. Let G be a profinite group and M is a unitary G-module. Then the
following are equivalent:

i) M is a discrete G-module,

ii) For every m € M, the stabilizer

G,,={g€eG: gm=m}

is an open subgroup of G,
iii) If B(1) is a basis of open neighborhoods of 1 consisting of open normal sub-
groups of G. Then
M= [] Mm"
HeB(1)

where M = {m € M : hm =m, Vh € H}.

Proof. "i) = ii)" We assume that M is a discrete G-module. Let m € M. We take
the singleton {m} which is open because M is a topological group with discrete
topology. Also, we know that the map f : G x M — M is continuous, so then
the preimage of {m} under f, f~1({m}), is open. Moreover, the preimage of {m}
under the restriction of G x M — M to G x {m} is G,,, x {m}. Consequently,
G,, x {m} is open, so then G,, is open as well. Therefore, GG,,, is open for each
m € M.

"i1) = ii1)" We assume that for every m € M, the stabilizer

G, ={9€G: gm=m}

is an open subgroup of G. Let B(1) be a basis of open neighborhood of 1 consisting

of open normal subgroups of G. It is clear that U MH" C M. Letnowm € M.
HeB(1)

Then G,,, = {g € G : gm = m} is an open neighborhood of 1, because 1 € G, as

G,, actson M,so 1 € GG, because 1 - m = m. This implies that there exists H €
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B(1) satisfying that H C G,,,. But M¢» = {m’ € M : gm’ = m’,VYg € G,,},
sothenm € MSm C MH thatism € U M* Hence, M = U MH,
HeB(1) HeB(1)
"ii1) = )" Let B(1) be a basis of open neighborhood of 1 consisting of open
normal subgroups of G. Then M = U M* . We will prove that G is a discrete
HeB(1)
G-module. It suffices to show that f : G x M — M with (g,m) — gm is a
continuous map. For this it suffices to show that for every open set A in M, the
preimage of A under f, f~1(A), is an open setin G x M.Leta,b € M andg € G
such that ga = b. Since b € M we have thatb € U M*  This implies that there
HeB(1)

exists H € B(1) such that b € M, which means that hb = b for each h € H.
Thus, Hg x {a} is an open neighborhood of (g, a) and f(Hg x {a}) = {b}, since
f(hg,a) = hga = hb = b. Hence, Hg x {a C f~'({b})}. That is for every
(g,a) € f1({b}) there exists U = Hg x {a} which is an open neighborhood
of (g,a) such that U = Hg x {a} C f~({b}). Consequently, f~1({b}) is open.
Moreover, we have that M is a unitary G—module and it is a topological group
equipped with the discrete topology. So B = {{b}, b € M} form a basis of M. For
this reason it suffices to check that f~1({b}) is open. Therefore, it is easy to see that
f~Y(A) is openin G x M for every open subset A of M, since A will be a union of

sets that belong in base B, thatis A = U {b}. But then f~! U (b))
beM be M

and f~1({b}) is open. Consequently, f~*(A) is open as a union of open sets. Hence,

f is continuous. [

Theorem 4.1.2 implies immediately that submodules and quotients of discrete
GG-modules are again discrete G-modules.

Comment 4.1.3. We say that G acts trivially on A if ca = a for all a € A. Thus

A% = Aif and only if the action is trivial. When Z,Q, Q/Z are considered as G-
modules, this is with the trivial action, unless stated otherwwise.

Example 4.1.4. Let M be an abelian group and G is a profinite group that acts

trivially on M. Then M is a discrete G-module. Indeed, MG = M. Let B(1) is a

basis of open neighborhood of 1 consisting of open normal subgroups of G. If H €

B(1), then MH = M, because M® = M and H < G. Thus, M = U M*H . So
HeB(1)

then according to theorem 4.1.2 we have that M is a discrete G-module

Example 4.1.5. Let Q, be the field of rational p-adic numbers. Then
alb+72,) =ab+2,, fora € Z,,beQ,
defines a discrete 7, structure on Q,, /7.,

Example 4.1.6. In the following examples K denotes the separable closure of K.

1) Let M := K an additive abelian group, K | K Galois extension
Ga(K/K)x K - K
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The action of Gal(K /K) on (K, +) defines the M := K as a discrete Gal(K | K)-

module.

It is clear that the (K, +) is a unitary Gal(K | K)-module and discrete as well. In-

deed, we notice that K = UL where K < L < K and L/K is finite. Clearly,
L

UL C K, where K < L < K and L/K is finite. Also, let a € K then o is al-
L

gebraic over K, and then K («) /K is algebraic and finite. That is o € L such that

L/K is finite. Thus, K = UL = UKGGZ(K/L) where K < L < K and L/K is
L L

finite, so then from theorem 4.1.2 we have that (K, +) is a discrete G-module

2) The (K*,-) is a discrete G-module, where G = Gal(K /K). Clearly, the (K*,-)
is a unitary G-module and we can prove that (K*, ) is a discrete G-module in like
way with the previous.

3) The roots of unity of K, u(K), is a discrete G-module, where G = Gal(K /K).

4) Let E an elliptic curve over K, where K is an algebraic number field. Then E(K)

is an additive abelian group. Also, it is a discrete Gal(K | K)-module. Indeed, since
E(K)= UE(L), where K < L < K and L/ K is finite.
L

4.2 Construction of the Cohomology Groups

Throughout this section GG will denote a profinite group and M a discrete G-
module.

For g > 1, let CY(G, M) denote the set of all continuous map from G to M, that is
C1UG,M)={x: GI— M |zxiscontinuous}
For ¢ > 1 we define the homomorphisms of groups
0,1 CUG, M) — crti (G, M)
with

<Oq+1f>(gl7 7gq+1) = 91f(92; - 79q+1>

+ Z<_1)if(g1; 2 9i-159i9i+15 Yi+2> - 79q+1)
i=1

+ (_1)q+lf(gla 7gq>

where f € CY(G, M)
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For ¢ = 0: we define 0, : C°(G, M) — CYG, M) with 0,f(9) = gf — f,
fec’G, M).

We know that C°(G, M) = M. The maps 0 are called coboundary maps. Moreover
we have proved that 0 ¢+1°0,=0, Vq > 1. Thus, the chain

0 — CO(G, M) — CHG, M) s -
is a cochain complex. We define the g-cocycles group of GG as follows
ZIUG, M) = Kerd, 4
and the ¢g-coboundaries group of G by
BYG, M) =Imd,, forqg>1

and
BY(G, M) := {0}

In this case the cocycles and the coboundaries are continuous maps in contrast with
the case of finite groups. Thus we define the g-cohomology group of G by

o) = UG

We denote the elements of H'9(G, M) by [f] = f + BIG, M).

We can calculate the cohomology groups of low dimension.

Proposition 4.2.1. Let G a profinite group and M discrete G-module. Then
HO(G, M) =MC

Proof. By definition we have that H°(G, M) = %. Also, it is clear that
BYG,M) = {0} and 2°(G, M) = Kerd, = {m € M : gm —m = 0, Vg €

G} = MC. O

Proposition 4.2.2. Let G a profinite group and M discrete G-module. Then the first
cohomology group of M is defined as

{f: G — M, fiscontinuous, fiscrossed homomorphism}

HY G, M) =
(G, M) {f: G — M, f continuous, f principle crossed homomorpism}

Proof. By definition we have that 71 (G, M) = Zzgigg%% Also,

ZHG, M) = Kerdy={f: G — M, fiscontinuous : 0,f = 0}

= {f: G — M, fiscontinuous, fis crossed homomorphism}

]
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Proposition 4.2.3. Let G a profinite group and M discrete G-module. Then the
second cohomology group of M is defined as

{continuous factor sets}

H2(G,M) =
(G, M) {continuous splitting factor sets}

Remark 4.2.4. 1) If the profinite group G acts trivially on the discrete G-module
M. Then H°(G, M) = M (This is true for finite groups as well) and H* (G, M) =
Homcont<G7 M)

2) If G is a profinite group and the sequence

0—A—B—C—0
is a short exact sequence of discrete G-modules, then the sequence
é
0 — HYG,A) — H°G,B)— H°(G,C)—
HY G, A) — HYG,B) — HYG,C) —

is also exact.

4.3 Compatible Pairs

In this section we will define the compatible pairs and we will study some useful
propositions.

Definition 4.3.1. Let v : G — H be a continuous homomorphism of profinite
groups. Let also A be a discrete G-module and B a discrete H-module. We assume
that p : B — A is a continuous homomorphism of topological groups. We say that
the pair (1, ¢) is compatible if

p(¥(g9)b) = gp(b)
forallge Gandb e B

Proposition 4.3.2. Let: G — H, p: B — A be a compatible pair.
i) For every q > O there exists an induced homomorphism of ¢ — cochains

(v, ) = CUH,B) — C(G, A)
where (Y, )3 (f) =@ o for.

ii) For every q > 0 the following diagram is commutative

C(H,B) —X C9*1(H, B)

/ l Iz

C9(G, A) 5— CT(G, A)
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where f, = (1, ).

iii) For every q > 0 there exists an induced homomorphism

HIH,B) — HUG,A)
[f] = [, 9)5(f)]

which we also denote by (1, <p)*.

Proof. 1) 1t is clear that (1), ) is a homomorphism of groups and also for every
f € CU(H, B) the (¢, p);(f) is continuous as a composition of continuous maps.
i1) It’s proof is a straightforward computation that follows from the definitions of
the coboundary map and compatible pairs. It suffices to show that

<¢7 90)2—&-1 ° Dq—i—l = Dq-i—l © (¢» 90)2

<0q+1 ° W, 90>2(f>>(glv agq—O—l) =
= g1((¥,0)5(f)(9103941)) + Z(—l)i((% )5 () (G152951,9:911:95025:9411)

DT ) (g s 6)

In addition,

(¥, )q+1< q+1(f(glﬂ'“7gq+1)) =
= (po(0 q+1°fo¢>(91,---,gq+1) = 001 (f(W(91)); s ¥(gg41)))

= So[glf( P(g2),-¥( 9q+1 +Z »(g1)sesP(gs— 1)w(gigiﬂ)7¢(9i+2)a-~a¢(gq+1))
+ (=DTHf(W(gr), - ,w(gq)ﬂ
q

= G0 lg2) o lGge)) D (1P (01) (05 1) 80(9:511)84(912), (1)
=1

7

+ (=) o(f(v(g1), - 1(g,)))

Thus, (1/}7 90)2—}-1 © Dq-&-l q+1 (% )
iii) Firstly we note that if f € Z29(H, B) then 9,1 (f) = 0. So then from (ii) we

have that 0, 1 (4, 9)3(£)) = (1, )s1(211(f)) = 0. This means that if f €
Z9(H, B), then (v, o), (f) € Kerd,,; = Z29(G, A). So the restriction of (¢, )7 :
CiH,B) — CYG,A) to 29(H, B) is the map 29(H, B) — 29(G, A). Let 7, :
Z29(G,A) — H1G, A) be the canonical projection. Then we have the following
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*

2B T 206 A) D a(G,A) = SUGA
f = (We)y(f)=9 & g+ BYG, A)
Hence by composing (v, )7 with 7, we obtain a homomorphism
@, RI(H,B) — J9(G, A)

where ¢, = 7, o (1, )7 It suffices to show that BI(H, B) C Keryp,. Indeed,
if BI(H, B) C Kery, then we know that there exists a unique homomorphism of
groups

24(G, A) ,
B1(G,A) — HUG,A)

That is

HYH,B) — H1G,A)
with [f] = [(¢, )y (f)]. It remains to show that BY(H, B) C Kery,. Let f €
BYH,B) = Imd,. That is there exists g € C*'(H,B) such that f = d_(g).
Then (¢, 9)5(f) = (,9)5(0,(9)) = 0,((¥, )3 1(9)) € BUG, A). Som, o

(1, 0)5(f) = 7 (0,((, w>q 1(9) =2 ((</5 w>q () + B9(G, A) = BIC, A),
which 1mphes that f e K er(goq) =. herefore for every ¢ > 0 induced a homo-

morphism
HUYH,B) — HIYG,A)
/] =
]

The maps (1, ¢);, that we have just constructed, behave functorially in the fol-
lowing sense.

(4 P ¢ ¢
Proposition 4.3.3. We assume that G = Gy = G5 and A, = Ay = A, are

such that (1, ¢,) and (15, ¢5) are both compatible pairs. Then (14 o 1y, ¢y o ¢5)
is compatible and for each q > 0 we have that (g © V1,01 0 ¢o)y = (1, 01)y ©

(1/}2’ ¢2>2

Proof. Firstly we will show that (¢, o 1)1, ¢, o ¢,) is compatible. Since (), ¢;)
is compatible, then ¢, (¢1(g;)as) = g1, (ay) for every g, € G, and a, € A,.
Similarly, ¢, (15(g5)as) = gops(as) for every g, € G5 and a3 € A, because

(12, ¢7) is compatible. Then, ©; 00y (hg0th1(91)as) = @1 (¥1(91)P2(ag)) = g1d°
®5(as), forevery g, € Gy, a3 € As. Thus, (15011, 100, ) is compatible. It remains

to show that (g © 9y, ¢y © ¢2)Z = (¥4, ¢1)2 o (g, ¢2>Z- Indeed,

(¥y, ¢1>Z o (g, ¢2)2<f(917 ey Gn)) =
p1 © (¥y, ¢2)2 o f(1(g1s-+59n)) =

©1 ° (Y, ¢2)Z o f(¥h1(g1)s s ¥1(9p)) =
Propa0 fothyoi(grsesgn) =

(g 0 thy, ¢y 0 ¢2>:}(f(917 )
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Remark 4.3.4. If 1), ¢ are identity maps, then the (1, (b)j; is identity map as well.
Proof. ltis clear that if ¢, ¢ are identity maps, then (1, ¢); (f) = ¢o forp = f. O

4.4 Change of the group GG

In this section we will study what happens to the cohomology group H 1(G, A) if
we change the group G. If ¢ : G — H is a continuous homomorphism of profinite
groups and ¢ : B — A is a group homomorphism, where A is a discrete G-module
and B is a discrete H-module, then we have defined when v, ¢ are compatible pair.
For such a compatible pair of homomorphisms we obtain a homomorphism of the
groups of g-cochains

(¥, )5+ CUH,B) — CYG, A), forg >0

given by (¥, p)7(f) = po f o1). We have proved that (1, ¢); commutes with d for
every q > 0. Therefore, (1, ¢); induces homomorphisms

(Y, )y : HUH,B) — HYG, A), forg>0

of the cohomology groups. Also, we have proved that (¢, go); behave functorially.
In particular, for every ¢ > 0 F9(A,-) is a functor from the category of discrete
G-module to the category of abelian groups.

Remark 4.4.1. Let I be a directed index set. Let also (G, m;;); be a projective

1) Nag

system of profinite groups and (A;, \; ;) be a direct system of abelian groups, where

1) 7\ig

each A, is a discrete G ;-module, such that for each pair i < jin I, the maps
Tt Gy = Grand A2 A — A
are compatible. Then for each q > 0, we obtain in a natural way that the family

{(HUG;, Ay, (i Nig)g)y i < 3§y 155 € 1}

ij> \ij
is a direct system.

Proof. Since the maps
Tt Gy = Grand A2 A — A

are compatible, then according to proposition 4.3.2 there exists an induced homo-
morphism
(7555 Ni ) HUG,;, A;) — ﬂq(Gj,Aj)

ij> \ij
Additionally, if © = 7, then



104 Cohomology of Profinite Groups

(7‘—217)‘11) : %q(GwAz) — %q(GzJAz>
[f] = (Ao fom]

But m;; and \,; are identity maps, so then (7;;, A;;)y = Idgeo(c,, a,)- Moreover, if
1 < j<kwithi,j, k € I then

(TiksNik )y

HUG;, Ay) » HUGp Ay)
(mm AR)Z
IJUG, Ay)

(ﬂ-jka)‘jk> (7%7/\”) ([f]) = (= ka ) ([A z‘j°f°7rij]) = [)‘]k")\ o form, °7Tgk;]
[Nk o f o] = (Tips zk>2([f]) as Wzk T © ik and A;, = >‘]k ° /\
Consequently, {(H (G, A;), (75, Nij)e) 4 < J, 4,7 € I} is a direct system. O

Let
G =1lim G, and A =lim A,
— —
I I
and let that 7, : G — G, and )\, : A, — A are the homomorphisms which defined
by the definition of projective and direct limit, respectively. Then A can be consid-
ered as a discrete G-module in the following manner. Given a € A and ¢ € G, then
for some i € I and a; € A; one has \;(a;) = a, then we define

o(a) = N\[m(0)a,]

This is a well defined continuous action of G on A. It is clear that o(a)
Ailmi(o)a;] + Aglmi(0)b;] = Ag[mi(o)(a; + b;)]o(a + b), with A (a; + b;
as A;(a;) = aand A (b;) = b. Also, (o7)(a) = A[m;(07)a;l, Ai(a;) =
o(7(a)) = o(\[m(7)a;)), where A, (a;) = a, then o(7(a)) = o(\,[m,(r)a;]) =
\;[m;(0)b,]. where \;(b;) = \;[m;(7)a;] = X;(b; — m;(T)a;) = 0 and then b, —
mi(T)a; = 0. S0 o(7(a)) = A[m(0)b] = Aj[mi(o)my(T)a;] = Aj[mi(oT)a,]
with \;(a;) = a. Thus, o(7(a)) = (o7)(a). In addition, la = \;[m;(1)a;], where
A (a;) = a,soten la = A\;(a;) = a. Moreover, it is clear that \; is continuous
homomorphism, because A; is a discrete space and every function from a discrete
topological space to another topological space is continuous. Additionally, the ac-
tion G; x A, — A, is continuous, as A, is a discrete GG,-module. Thus the action
G x A — A is continuous as composition of continuous maps. Therefore A is a
discrete G-module.

Now we are able to study the following general statement.

+o(b) =
;) =a-+b
= ¢ and

Proposition 4.4.2. Let I be a directed index set. Let also (G, ;) be a projective
system of profinite groups and (A;, ;) be a direct system of abelian groups, where

1) Mg
each A; is a discrete G;-module, such that for each pair i < jin I, the maps

T Gj — G, and )\ij A — Aj
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are compatible. If G = lim G; and A = lim A,, then for each ¢ > 0
T i

HUG, A) = lim H9(G,, A,)
T

Proof. According to remark 4.4.1 we have that the family

{(HUG;, Ay), (35 Xig)g)yt < Gy i € 1}

is a direct system. So then h_r)n?( 1(G,, A;) makes sense. From the definition of

I
cohomology we have that

HIUG, A) = FU(CIUG, A))

and
ﬂq(Gz‘a Ai) = j{q(cq(Gia Az))

Since h;n is an exact functor in the category of abelian group, then we have that

el
lim HYG,, 4;) = limHYCUG,, A,))
— —
el el
— a1 . .
el
where

{(Cq(Gqu)? (ﬂ-ija Azg)Z)fl < j7 Z?j € I}
is a direct system, and 7, \;; are defined like the remark 4.4.1. That is (G, 7;;)
is a projective system of profinite groups and (A4;, \; j) is a direct system of abelian

79

groups, where A; are GG;-modules, such that for each pair ¢ < j in I, the maps
Tt Gy = Grand A2 A — A

are compatible. Then according to proposition 4.3.2 we have that for every ¢ > 0
there exists an induced homomorphism

(Wij»)\z‘ﬂz 2 CUG,LA) = Cq(ijAj)
f B Ao fomy

In addition, if ¢ = j then
(7045 )‘ii)z : CU(Gy, A;) — CUG,, Ay)

and ;;, A;; are identity maps. Thus, (7;;, A;; )5 = Idcag, a)- i < j <k, 0,5,k €

119 7ML 189 M

I, then
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(Wikr)‘ik:)z
CUG;, Ay) » CUGy, Ay)
(”zw\k (75 Ak ) g
Cq(ij Ag)

<7Tjk:7>‘jk:> (Trzg?/\w) (f)=(m jk7)‘jk>*< ij °f°7Tz'j) = )‘jko )‘ij °f°7Tz'j ° T =

Aikz °© f ° Tk = ( Tiks /\zk)*(f) as M, = 7T1] k and >‘zk: - A]k ° /\
Therefore {(C9(G,, 4,), (7%, Nij)q)st < 4, 1,5 € I} form a direct system So then
lién(Cq(Gi, A;)) makes sense. In order to show that

el

HUG, A) = lim HU(G,, A,)
T

it suffices to show that there exist isomorphisms
i q i ) o q
LIIC (G;,A;) 2CIUG,A), ¢>0
iel
which commute with the maps 9. Then from equation 4.1 we have that
i q . . o~ q(13 q . .
lim J9(Gy, A,) = FH(lim(C9(G,, A,)))

icl icl

HIUCUG, A)) = HI(G, A)

[

For every 7 € I we define
fi+ CUG;, A;) = CUG, A)

[ARAY

lim C4(G,, A,) —------m- A —
_>
el
X
CUG;, A;)
Jjﬁij
CUG, Ay)

where ¢;; := (7,5, A;;)- By definition of direct limit we have that ¢, = ¢, © ¢,

Also,it is easy to see that f, = f~ © Q- Indeed, for 7+ < j then f o cpm( x;) =

f((ﬂ' A )( ):fj(/\woxmr )—/\ ON;jOT; O, 07T—/\ox07r—f( i)

ijr Mg ij
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asm; = m;;om;jand A; = A; 0 A, So then according to universal property of direct
limit there exists a unique homomorphism

0: lim C4(G,, A;) — CU(G, A)
el

satisfying that f; = 6 o ,. Thereafter we will show that § commutes with ? in the
following sense: for every ¢ € I the diagram

CI(G,, Ay) —L5 CoH(G,, Ay)

(ﬂ-i,Ai)t]l l(ﬂ-m)‘i)tfrl

C9(G, A) —— CT(G, A)

commutes. But the above diagram is commutative according to proposition 4.3.2. It
remains to show that 6 is injective and surjective.
For the injectivity, let x € h_rr>1 CG,;, A;) with 6(z) = 0. From proposition 2.4.4

el
we have that
llmcq G7A7, — 1Cq GZ7AZ
hny (G, 4y) ieulw( ( )

Thus there is k& € I such that p,(z,) = = with x, € CY(G},, A;,). Fori > k

let 2; = @p;(x;,). Then 0 = O(z) = O(py(xy) = 00 op(xy) = fr(zy) = fio
Ori(x) = fi(m;) = (7, \)y(z;) = Aoy omy, thatis fori > k \; o, om, = 0.
For ¢ > k we define

X ={o,= (0, anq) € G}|x;(0;) # 0}

We will show that for some i > k, X, = {), this implies that z:;(c) = 0, for every
o € X, and since z; is continuous then z; = 0. Then z; = 0 = ¢,;(z;) = 0 =
©; ° ¢pi(Tr) = 0 = p(z,) = 0 = x = 0. This implies that € is injective. It
remains to show that for some ¢ > k, X, = (). We have that G is compact from
Tychonoff’s theorem since G, is compact. So then, x,(GY) is compact, because z; is
continuous. In addition, the abelian groups A, are topological groups equipped with
discrete topology, as it is a discrete G;-modules. So then z;(G}) C A, is a topo-
logical space equipped with discrete topology. We assume that x,(GY) is infinite.
Then z,(GY) is covered of infinite number of singleton sets. But then there isn’t a
finite subcover. This means that z;(GY) isn’t compact. But this is impossible, since
z;(GY) is compact. Thus, z;(GY) is finite set and then z, takes only finite number of
values. Hence X is finite and therefore it is compact. On the other hand ¢ > 7 > k
implies that

Wij(Xi> C Xj
Indeed, if 0; € X, then x,(0;) # 0. In our case j < i, so ¢ ;(x;) = ;. Thus,
a homomorphism then z; o 7;;(0;) # 0. This means that 7,;,(0;) € X;, that is

Ji\Yq
ﬂ-ji(Xz') C Xj'
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T .
X, »y X
DN /,j
Xi

and T4 °7sz'<‘7¢) = ij(" )=o), = (o).

Therefore,
{(X]77sz> P> J > ka Za] 2 k}
form a projective system of compact spaces. If 0 = (04, ...,0,) € liénXi C GY,
i>k

(0(x))(o) # 0. Indeed,
(2))(0) = (0(py(24))) (@) = (fi(2}))(0) =
( (f; =

then it is clear that

(6

(fe(zp)) (o) = ((fi o ppi)(zp)(0) = (fi(;))(0) =
((m; A)g(2:)) (@) = (Ao a; om;)(0) =

(A o) ()

Butz,(0;) # 0and A, isahomomorphism, then (\;ox;)(0;) # 0.So (6(z))(o) # 0.
But from our hypothesis we have that #(z) = 0. Hence, li_H>1Xi = (). Therefore,
i>k
according to theorem 2.2.5 there exists ¢ > k such that X; = (). It remains to show
that 6 is surjective. Let x € C'4(G, A), thatis x : G9 — A is continuous. We will
prove that there exists y € h_r)n C1(G,, A;) such that 8(y) = . We have known
iel
from proposition 2.4.4

lim C4(G;, 4,) = @:(CU(G;, A)))

=34 el

Thus there is & € I such that p,(z),) = y with z;, € C4(Gy, A,). Fori > k let

T, = pri(zg), then 0(y) = O(pi(ry)) = fr(zy) = fi o ppilry) = filz;) =

(7rl, Ai)g(x;) = Aoz, om,. So it suffices to show that there exists a continuous
map z; € CU(G;, Az) such that = — A; o x; om,; for some i € I. We have that G¢
is compact from Tychonoff’s theorem since G is compact. Also, x(G7) is compact,
because z is continuous. Thus, x(GY) is finite set, since A is a discrete G-module,

and then x; takes only finite number of values, say
z(G?) ={ay,...,a,} CTA

Then there exists j € I such that A\;(A;) = x(G?). Moreover, we have that = :
G? — A is continuous and A is a discrete G-module, then z is locally constant
according to proposition 1.1.10. This means that for each 0 € G there is an open
neighborhood U of ¢ such that x is constant on U. This implies that for each g € G
there exists an open neighborhood U’ of g in G such that x is constant on U’? of
G1. So for g = 1 there exists an open neighborhood U’ of 1 in GG such that z is
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constant on U’? of G7. But G is a profinite group and from lemma 2.3.6 there exists
an open normal subgroup U; of G with U; C U’ such that « is constant on U}’ of
(GG4. Additionally, z is constant on the cosets of U, lq in G4. Also, the set

{7 }(U,), whereU, < Gy, U, = open, Vk € I}

form a basis of open neighborhood of 1 in G. Hence, there exists U; < G, U, is open
with r; 1(U,) = U C U, for some i. So we can define G/U and (G/U )4 as well.
We may assume that ¢ > j. Then z = T o p, where p : G¢ — G4/U1? is the nat-
ural projection and x : G7/U9 — A is defined by z(cU?) = z(0). Clearly, z is
well defined. Indeed, let cUY = 7U? = o7~ ' € U?. But U4 C Ulq C U’4, since
UCU CU.Sox(g") =z(1) forevery ¢’ € U'? and then z(g) = z(1) for every
g € U4, Thus,

rlor™) =2(1) & z(o)z(t) =1 &

z(o) =x(1) < 2(cU?) = z(7U9)
The homomorphism 7; induce the homomorphism w] : G9 — G{/U{! where
w?(gl, 7gq) = (m;(g1) - 77Ti(gq)Uiq- Then,

Kerw{ = {(g1,....9,) € G+ (m;(g1), ..., m;(g,)) € U/}
= {<gla 7gq) € Gq : (gh 7gq) € (ﬂ-z_l(Uz))q = Uq} = U1

So then induced a homomorphism
m,: G1)UT — Gl /U

where 7((gy, .-, 9,)U9) = (m(g1), ..., m;(g,))U{. In particular, 7; is injective,
since

Kerm; = {(g1,-,9,)U € GI/U : (m;(91), - mi(9,)) € Ui}
= {(91,.-,9)UT € GI/U" : (gy,...,9,) € (m; }(U;))? = U1} = U1

Letz, : (G,;/U;)% — A, such that \, o T, o 7t} = T.

u , As
GI)UT— GI/UI — A, — A

€T

We define z; = & o m;, where 7, : G — G7/U/ is the natural projection.

ar U quue I 4,

Z;

Clearly, x; is continuous, since x;, p; are continuous. Moreover, t = T op = \; o
.fZOT(';Opal’ld)\ZOIL'ZOTFZ :)\Zojloploﬂ-l'

¢t 6t D Gut and g s ¢ L g
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and it is clear that 7} o p = p, o 7,, since

T ((g15 5 99)) = T (g1, > 9)UY) = (m;(91); - s 13 (9 U}
pi(m;(g15 - 79q)> = pi(m;(91); --- 77Ti(gq>) = (m;(91), ""ﬂ—i(gq»Uiq

Therefore z = A\, oz, o 7,. ]

Corollary 4.4.3. Let G be a profinite group and A be a discrete G-module. Then

(G, A) = lim F9(G/U, AV)
Uel

where U is the set of all open normal subgroups of G and AV = {b € A|ob =
b, Vo € U}.

Proof. We have proved in theorem 2.3.9 that
G =lim G/U
H
Uell
Since A is a discrete G-module then
A= | AY = lim AY
Ueu Ueit
Also, the AV is a G /U — module with the action
G/U x AV — AY
(U, a) = (gU)a=ga, g€ G,ac AV
Clearly, (AY, +) is an abelian group and also (gU)(a +b) = g(a+b) = ga+gb =
(gU)a + (gU)b, (9;UgoU)a = (9195U)a = g1g20 = g1(920) = 91((gaU)a) =
(9:U)((goU)a) and (U)a = a. Thus, AY is a unitary G /U—module. In addition,
the action is continuous by construction. So then AV is a discrete G /U-module.
Finally, it is plain that if U < V with U, V' are open normal subgroups of G and A
a discrete G-module, then there exists a normal inclusion of abelian groups

inCU,V : AV — AU

Moreover, the py; 1 : G/U — G/V, where gU +— gV, and the inclusion incy;
are compatible maps. Indeed, let gU € G/U and a € AV then

incy v (py v (gU)a) = incy ((gV)a) = (gV)a =
ga = (gU)a = <9U)mCU,V(a>
Therefore, according to proposition 4.4.2 we have that for each ¢ > 0

HUG, A) = lim H(G/U, AY)
Ueir
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4.5 Special Mappings

In this section we will study some special homomorphisms of cohomology groups,
which they connect the cohomology group of a group G with the cohomology group
of a subgroup of G.

~> The Inflation

Let N be a closed normal subgroup of a profinite group G, and let also A be a
discrete G-module. We have proved that the action of G/N in AV

G/N x AN — AN
(oN,a)  oN=oca, o0¢€G,ac AN

is continuous. Thus, AY is a discrete G/N-module. It is plain that the projection
py ¢ G — G/N, g — gN and the inclusion iy; AN — A are compatible
maps. Indeed, A is a discrete G-module, AV is a discrete G/N-module, iy is a
continuous homomorphism and i 5 (py(g)a) = giy(a) for g € G,a € AY, since

in(py(9)a) =in((gN)a) = iyn(ga) = ga = giy(a). So then according to propo-
sition 4.3.2 we have that for each ¢ > 0 induced a homomorphism

(pN7 2N)Z : ﬂq(G/Nv AN) - %q(Gv A)
that is called Inflation and is denoted by
Inf = Infa/™N

That is,
Inf =Info™N . 39(G/N, AN) = 39(G, A)

In particular for ¢ = 0:
— G/N . 7.0 N 0
Inf = InfS™N : 3°(G/N, AN) = #(G, A)
is the identity map, because #°(G, A) = AY and HO(G/N, AN) = AC,

We assume that ¢ > Oandx € T € H9(G/N, AYN), this means thatz : (G/N)? —
AN continuous g— cocycle. Then the In f(Z) has as one of its representatives a con-

tinuous q — cocycle y : GY — A satisfying that y(o, ..., 0,) = (0N, ..., 0,N).

Proposition 45.1. If f : G — G, and g : G; — G5 are surjective continuous
homomorphisms, then

Infg' o Infg? = Infg?

Proof.

f
GG, a,
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where G, = G/N and G, = G/H, N C H.
InfSt: HYG/N,AN) = H9(G, A)
Infg? : HUG/H,A") — HU(G/N,AN)
InfS? « HYG/H, A") = H(G, A)

TH,N %
Also, AT <5 AN &5 A Thus, from proposition 4.3.3 we have that
(go frinoig Ny = (frin)go (9 ig N)e =

Infg' o Infg? = Infg?

]

Proposition 4.5.2. Let N be a closed normal subgroup of a profinite group G. Let
also f : A — B be a G-homomorphism. Then f induces a G/ N-homomorphism

thAN—>BN

and the following diagram

id, fNY);
TGN, AN N 00N, BY)
Inf llnf

%Q(G, A) W) }[q(G, B)

commutes. That is In f is amorphism of the functors 7 1(G /N, ™) and H1(G /N, *)
on the functor of discrete G-modules, for every q € Z.

Proof: We have that f¥ : AN — BY, fN(a) = f(a), for a € A and then
fY((gN)a) = f¥(ga) = f(ga) = gf(a) = gf"(a) = (gN)f"(a). Thus, f¥ is
a G/ N-homomorphism. It remains to show that Inf o (id, ) = (id, f) o Inf.
Indeed, let g € C%(G/N, AN), then Inf o (id, fV)i([g]) = Inf([fN o goid]) =
I”f([fNog]) = [iNofN"gOPN]aSinCC Inf = (pNaiN)Za withpy : G — G/N,
g gNandiy: BY < B,b b. Also, Inf = (py,i7y);, where py : G —
G/N, iy + AN = A, sothen (id, f); o Inf([g]) = (id, f)i([iy o g o py]) =
[foiNogopNoid] = [foiévogopN],

AN m N
— B

i P

Butiyo N (a) = fN(a) = f(a) = ily(a) foreverya € A™.So Info(id, fV)i([g])
= (id, f)g o Inf(lg)). [
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Proposition 4.5.3. Let)0 — A B —> C — 0 be a short exact sequence of
N

discrete G-modules and we assume that 0 — A™ —> BN —> CN — 0is also
exact. Then the following diagram

HIG/N,CN) —s HTHHG/N, AN)

Infl llnf

.7{(1 G C) f) }[q+1(G A)

commutes of every q > 0, where 0 is the connecting homomorphism.

~» The Restriction

Let S be a closed subgroup of a profinite group G. For each discrete G-module
A we have that A© C AS. This inclusion defines a homomorphism

HO(G,A) — HO(S, A)
and this extends to a sequence of homomorphisms
Res := Res$ : H4(G,A) — H(S,A), ,¥Yqg>0
that are called restrictions'.

We can describe these homomorphisms in terms of cochains as follows. Let = :

GY — A be a continuous g-cocycle, then a representative continuous ¢ — cocycle
y:, 87— Aof Rex(x) € H9(S, A) given by

y(01,09,...,0,) = 2(01,09,...,0,) €A, 0y,...,0,€ 8

We notice that if 0 — A — B — C' — 0 is an exact sequence of discrete
G — modules, then it is still exact when it considered as a sequence of discrete
S — modules. Thus, by definition of restriction Res we obtain that the following
diagram

v HYGA) =S HUG,A) — HIUG,B) — HIUG,C) —>

RES\L lRes lRes lRes

s HYS,C) =% H(S, A) — HY(S,B) — HS,C) —

1s commutative with exact rows.

'Res = (incl, id)}, where incl : S < Gandid: A — A.
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Proposition 4.5.4. Let'T' C S C G be profinite groups. Then
Resﬁ? ° Resg = Res%
and T C S closed subgroups of G.

Proof.
Res$ : (S, A) — HYT, A)

Res§ : HIU(G,A) — H1(S, A)
Res$ : H1(G,A) — HIUT, A)

SHG AN A
TSG AN A,

i id
T3S, AS A
The maps (i, id), (i5, id) are compatible maps. Thus according to proposition 4.3.3
we have that
<i1 ° i37 id o 'Ld)g = (iSa Zd)z ° (ilu Zd)z

Res% o Resg = Resg



Chapter 5

Some Applications of Cohomology

5.1 Group Extensions

The extension problem in group theory is the classification of all extension groups
of a given group A by a given group G. In this section we study the extension prob-
lem for the case of abelian groups and their connection with cohomology.

Let A be an abelian multiplicative group and GG be an arbitrary multiplicative group.
Every exact sequence

154505651 (5.1)

will be called group extension of A by G. Since i is an inclusion map then i(A) =
A< U,buti(A) = Kerj <U,sothen A < U and U/A = G. We would like to
determine the possible solutions of this problem, that is, we want to find all group
extensions U of A such that U/A =~ G.

Now we consider the map p : G — U satisfying that for every g € G we choose
a representative u, € U so that j(u,) = g, thatis j o p = 1. The set

{u, | g € G}

will be called a complete system of representatives for G in U (or section for G
in U). (Of course, it is really the map p : G — U, where g - u,, which should be
called section). We have that

Juguy) = jug)j(ur) = g7 = jlug,) = jlugu,) = j(ug,)

= jlugu uyt) =1=uu ut € Kerj= Imi

Thus there exists unique’ a g+ € Asuch that u u u t = which implies that

gUrltgr = Qg 1

U, U Vg, 7€ G (5.2)

gUr =@

g,TugT7

ISince i is injective.

115
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Clearly, {a, , | g, € G} is a standard 2-cochain of G’ in A.

For purposes of simplicity we assume that A is an abelian group, because it suf-
fices for our needs. Now, U acts on A by inner automorphisms, that is U x A —
A, (u,a) = a* = uau~!. Since A is abelian then A acts trivially on 4, so there is
induced a “natural” action of G on A. In more details we define the action

GxA — A

_ -1
(g,a) = af =uyau, (%)

Proposition 5.1.1. The abelian group A equipped with the above action becomes a
G-module.

Proof. (A,+) is an abelian group. Also, let a,b € A and o € G, then (ab)? =
ugyabuyl = ujauzlu, bu;l = a”b. In addition, let @ € A and 0,7 € G, then

Vo —1yo _ —1,—1 _ -1 92 —1,-1 _
(a”)? = (urau;™)? = uuaus u, = usu,a(tu, ) = Gy Uy QU Ay =
oT,,—1 oT ; 1 -1 : :

Uy ,a°Ta, = a". Finally, a* = wyau;” = a, since u; € A. Therefore, A is a

G-module. O]

Proposition 5.1.2. This action of G on A is independent of the choice of represen-
tatives {u,}.

Proof. Let {u,, g € G} be a section of G in U. Let also {v,, | o € G} be another
section of G in U. If g € G, then j(u,) = g = j(v,) = j(u,) = j(v,) =
i(vguy') =1 = w,u," € Kerj = I'mi.So then there exists a unique a,, € A such
that i(a,) = v,uy", buti(A) = Aand so i(a,) = c, € A. Thus, ¢, = v,u;" =

Lt !, since

_ : g __ -1 _ -1 -1 __ —
Vg = Cylg, with ¢, € A. Then, a9 = VAU, = CoU AUy Cpm = U AUy,
Cys ugau;1 € A and A is abelian group. Therefore, the action is independent of the

section. u

Thus, we can fix a section, say {u, | g € G}. Then, every u € U has a unique
expression of the form
u=au, witha€A, geG

g 1 Also the action can be written as

which is given by j(u) = g and a = uu

adu, = ugza (5.3)

It follows that the multiplication in U can be described in terms of the multiplications
in Aand in G, the action of G on A and the 2-cochain {a,, , }. Hence, if u, v € U then
there exists a € A such that u = au,, for some g € G and there exists 5 € A such
that u = Bu,, forsome 7 € G. Then uv = au fu, = afuyu, = af that
is

g,7%gr>

w = afla, ;u,,
Moreover, associativity in U, since U is a group, leads to the below equality for

every g, 7,p € G

(uguT)up = (ag,’TugT)up = ag,’T(ug’Tu ) = ag,TagT,pung
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and

— — 49 — 9
ug(uTup) - ug(awum)ugaﬂpum = A7 plglrp = A7,p0g 7pUgrp

Therefore, for every g, 7,p € G

— 9
Ag,rlgr,p = Ar,p@

g,7p (5 4)
This formula is the multiplicative form of the factor sets. Thus, {a, .} is a standard
2-cocycle of G in A.

If now {v, | g € G} is another section of G in U, then v, = c,u,, with ¢, € A.
Additionally, v,v. = B, v, where {3,  } is also a standard 2-cocycle of G in
A. One may wonder which is the connection between {a,, .} and {3, . }. From the
equation

— —c 9 —c o9
vu, = (cqug)(cu,) = c,cduju, = cycda, ug,
— g -1 — g,.—1
= CgCrlgrCerVgr = CgCrlyr Ag,rVgr
.. . - g -1
This implies that 8, ;v = c,clc a, cu,, and then

-1 _ g,.—1
ﬁg,fag,f = CgCrCqr

Thus, {3, ,a,*} is a 2-coboundary of G in A, that is

{Bg,Ta;,%’} € By = {B, 1By =a, . B,

This means that the cocycles {a, .} and {3, ,} belong to the same cohomology
class in H?(G, A). It should be noted that the action of G in A which used for co-
homology is derived from the short exact sequence (5.1) and is expressed by the
formula (x).

We now suppose that GG is a multiplicative group, finite or infinite, and A is a G-
module with the action

GxA — A
(g,a) = af

By a solution of the extension problem for the pair (G,A) we mean an exact
sequence of the form (5.1), that is a triple (U, 7, j) such that the action of G on A
determined by short exact sequence (5.1) and expressed by the formula (x) coincides
with the given action of G on A. Then we say that the (U, i, j) is an extension of A by
G. Therefore, we have proved that every extension, (U, i, j), of A by G determines
an element of #(2(G, A).

Our next step is to show that, conversely, an element o € #?(G, A) determines a
solution (U, 4, j) of the extension problem and such that the associated cohomology
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class in (*(G, A) is precisely a € (G, A). Letnow {a,, . } be a 2-cocycle of G
in A which belongs to the class o € #%(G, A). In particular, the equation

a, a4, ,=al a

97 %7 foreveryg,7,p € G

g9,7p’

holds. For g = 7 = 1 we have the following formula

a;,=ay, foreveryp e G (5.5)

p

For 7 = p = 1 we have that
a,1 = a‘f’l (5.6)

For 7 = g~! = p~! we have that

a —10/1’1 =a

9.9 gfl,gag,l (5'7)

g

Now, for every g € GG we choose a formal symbol u, and let
U:={(a,u,)|a€AgeG} (5.8)
and we define the multiplication in U according to the rule
(a,uy)(B,u,) = (B9, ,,u, ), witha,B € A, g,7 €G (5.9)
Proposition 5.1.3. The (U, ) is a multiplicative group.

Proof. Itis clear that U is closed under multiplication, since if (a,u,), (8,u,) € U
then (a,u,)(B,u,) = (af%y, ,,u, ;) € U. Also, the multiplication in U is associa-
tive, since

((a,ug) (B, u,)) (v, u,) = (aB9ay 9 g, o tgry)

and

In addition, let (z,u,) € U be a left identity in U, then for everya € Aand g € G

we have that (z,u,)(a,u,) = (a,u,) = (zala, ,u,,) = (a,u,), which implies
P . . . 1 . 5.5 B
that za”a, , = aand u,, = u,. Sothen p = land za'a, , = a = zaa; ; = a =

x = ay}. Thus, (a1}, u,) is a left identity. Similarly,we can prove that (ay }, u,) is
a right identity. Thus, (a1}, u,) is identity of U. Finally, given (z,u,) € U then

1 -1y _
(ariagh 4(a? )7 uga)(a,ug) = (a3, uy)

g(agfl)’l, u,-1) is a left inverse of (a, u,). Similarly, this is and
. . —1 .« . .
right inverse. Thus, (a7 ja,h (a )7, u ) is inverse. Therefore, (U, ) is a mul-

tiplicative group. [

so then (ayja

Now we define the maps
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i: A — U
a (aaill, uy)
and
J U - G
(a,uy) = g
Proposition 5.1.4. The sequence
154505651 (5.10)

is a short exact sequence.

Proof. Firstly, ¢ is an monomorphism. It is clear that ¢ is a homomorphism. Also,
i(a) = 1, < (aay},uy) = (a7}, uy) < a = 1, which means Keri = {1}.So
is injective. In addition, j is epimorphism. It is clear that j is homomorphism, since

j((a,uy )(B,uy ) = 9192 = j(a,u, )j(B,u,, ) and j is surjective by construction,
since j(a, ug) = g. Finally, it remams to show that Kerj = I'mi. Indeed, Kerj =

{(auy) € U+ jlaruy) = 1} = {(aru,) : 9= 1} = {(a,u,) € Uya € A} —
{(aa, ya7}) € U,a € A} = I'mi. Therefore the sequence 5.10 is exact. O

Proposition 5.1.5. The action of G on A determined by the short exact sequence
5.10 coincides with the original action, that is

i(a?) = (1, uy)(aay 1, up)(1,uy) "

Proof. We consider {(1,u,),| g € G} be a section of G in U. We must also verify
that the 2-cocycle of G in A determined by this exact sequence coincides with the
one from which the construction started. We must check that

(L ug) (L uy) = i(ay,) (1, 1,)

ndeed, (1,10, (1.11) = (0 1) and ()1 1) = (0 i} 1) 1. t) =
(0,07 101 g7y Uy,) = (a gTal 1a1 1,ugT) = (ag,r,y, ). Finally, it remains to show
ug)

that i(a9) = (1,u,)(aay}, u)(1,u,)” .Wehavethatz(ag) (a%ay},uy) and

(17ug)(a’a1 17“1)(1 u ) =
ad(a 1)*1ag71,ug)(ai11ag*}1’g,ugfl)

i
£17,1)_1ag,1 (ail)_l (a‘ifl’g)_lag,g—l ) ul)

afay 117 U1) = i(ag>
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The foregoing discussion shows that a 2-cocycle {a, .} belonging to the cohomol-
ogy class a € H%(G, A) leads to an extension (U, i, ) of A by G. If we take any
other 2-cocycle {b,, , } belonging to the cohomology class o € FH 2(G, A) then it
also leads to a solution to extension problem. So it is desirable to compare solu-
tions of the same extension problem and for this reason we are led to the following
definition.

Definition 5.1.6. Let (U,i,j) and (U’,i’,j") be extensions of A by G. We say that
the extensions (U,i,7) and (U’,i’,j") are equivalent if there exists a homomor-
phism ¢ : U — U’ such that the following triangles are commutative, this means
that j' oo = jand poi =1’.

U

P

1— A

N

~

U

Remark 5.1.7. If there exists a homomorphism ¢ : U — U’ as it was described in
the above definition, then ¢ is automatically an isomorphism.

Proof. Firstly, it is clear that ¢ is an injective, since

u€ Kerp < o(u) =1 j'(p(u) =j5(1) =1
= ju) =1=u e Kerj=Imi

Thus, there exists a € A such that i(a) = wu, so then p(u) = 1 = ¢(i(a)) =
1 = i’(a) = 1 and since ¢’ is injective then ¢ = 1. It remains to show that ¢ is
surjective. Let u” € U’, then j'(u') = g, g € G. Since j is surjective then there
exists u € U such that j(u) = g = j'(p(u)) = 7 () = j(pluw)u't) = 1.
This means that p(u)u’~! € Kerj’ = Imi’, that is there exists a € A such that
i'(a) = p(u)u"t = p(u(i(a))™!) = ', where u(i(a))™! € U. So then ¢ is
surjective. Therefore, ¢ is isomorphism. ]

Comment 5.1.8. ¢ is called equivalence of (U, 1i,j) and (U’,i’, 7).

Proposition 5.1.9. Equivalent extensions of A by G determine the same cohomology
class o € H%(G, A) (in particular they determine the same cocycle).

Proof. Let (U, i,j)and (U7, j) be equivalent extensions of Aby Gand p : U —
U’ is isomorphism. Let also {u,, g € G} be asection of G in U. Then {a, . }, which
is defined by the formula

Ul = Qg Ugy
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is a 2-cocycle which belonging to o € H?(G, A). We set now uy = ¢(u,). Then

i’ (ug) = 3" (p(uy)) = 3" o p(u,) = j(u,) = g and so {u; = ¢(u,) |g € G}isa

section of G in U”’. We have that uju, = ¢(u,)p(u,) = p(u,u,) = ¢(a, u,,) =

plag - )p(ug,) = plag - )ug,.

1 v AU 5@ > 1
lzd l‘P lzd
1 N QLN /O Ne > 1

Thus, ¢| 4 = id, since ¢ is injective. Hence, uju; = ¢(a, . )uy .. This means that
{a, .} is a 2-cocycle belonging to v € J*(G, A). Therefore equivalent extensions
of A by G determine the same cohomology class o € H2(G, A). ]

Itis also true that cocycles belonging to the same cohomology class o € H (G, A)
determine equivalent extensions of A by G. Its proof will follow.

We suppose that (U, i, j) is an extension of A by G and (U’,i’,5’) is an exten-
sion of A’ by G’. Letalso f : A — A’ and A\ : G — G’ be homomorphisms, that
is

1 sy At U j>G s 1
[ E
1 >A’fi/>U’ j>G’ s 1

We would like to decide if there exists a homomorphism ¢ : U — U’ such
that the squares of the above diagram are commutative. For this reason we choose
{ug[ g € G} be a section of U and {uy, | g" € G’} be a section of U’ and let
{ag -}, {a}, .} be the corresponding 2-cocycles. We suppose that there exists such
a homomorphism of groups ¢ : U — U’ such that the squares are commutative.
Then for any u = au, € U we have p(u) = ¢(a)p(u,) = f(a)p(u,), since

¢|a = [, so that ¢ determined completely as soon as the values ¢(u,) are pre-
seribed. But j'(o(ug)) = A(j(u,)) = Ag) = j'(u},) = 5 (elug)uyy,) =
1 = go(ug)u:\_(gl> € Kerj’ = Imi’. So then there exists ¢, € A’ such that

p(ugy) = cqu) ), forevery g € G.

In the usual way we define the action of G on A’ as follows

GxA — A

(9.a') = (a)9=(a")
Thus we view A’ as a G’-module. Then {c,, g € G} is a standard 1-cochain of G in
A" which, in virtue of p(u) = f(a)p(u,) and (u,) = cgu) , , serves to describe
©.
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Proposition 5.1.10. The map f : A — A’ is a G-homomorphism, that is
fla%) = f(a)?

Proof.

fla?) = @la?) = p(ugaug") = o(ug)pla)p(uy) ™ = cyul ) fla)us g cg

Let us introduce the symbol (G, A), which is called pair, to signify that A is a
G-module. Similarly, (G, A”)-pair signify that A" is a G’-module.

Definition 5.1.11. Let (G, A) and (G', A") be pairs. If we have a homomorphism X :
G’ — G (so that A becomes a G'-module) and a G'-homomorphism f : A — A’
then the composite object (\, f) is called homomorphism of pairs and symbolically
we write

A )= (G A) = (G A)

Note that if G, G’ are finite groups, A is a G-module and \ : G — G’ is a ho-
momorphism. Then A becomes a G’-module with the action ¢g’a = (Ag")a, where
g € G’ anda € A.

Moreover according to the above definition and proposition we have that (1, f) :
(G,A) - (G,A")and (\,1) : (G",A") — (G, A”) are homomorphisms of pairs.

Proposition 5.1.12. If {a, } belongs to cohomology class o € F*(G,A) and
{a;, .} belongs to cohomology class o € FH*(G', A"), then

(1, (@) = (A, 1), ()
(In particular, the last equality says that the 2-cocycles { f(a, )} and {a} ) -}
of G in A’ differ by the coboundary of the 1-cochain {c;}.)

Proof. Indeed, we have that

‘P(UguT) = 90(ag,T“9T> :tp(ag’T)QO( QT)
= f(ag,T)Qp@’Lg‘r) = f(agn')C u)\( T)
and
7 A ’ ;A / /
plug)p(u,) = cyer e, TUx(r) = CgCr (g>“A( YUN(7)
= GO @A YA = €9 U g)A(r) Yaigr)
But ¢ is a homomorphism, so then f(a, ,)c; u)\( o =c c’ga/\( ))\(T)u/)\(m), which

implies that

flag,) = a’)\(g))\( )Cgclrgc_f;rl
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Theorem 5.1.13. Let (U,i,j) be an extension of A by G which determines o €
H2(G,A) and let (U’,i’,5") be an extension of A’ by G’ which determines o’ €
H2(G', A"). We suppose that f : A — A’ and \ : G — G’ are homomorphisms
and that A’ viewed as a G-module by putting (a’)9 = (a’)M9). Then there exists a
homomorphism @ : U — U’ such that the following diagram

1 s A RN 5 j>G s 1
[ R
1 A’ Z'/>U’ j/>G’ s 1

is commutative diagram if and only if
(i) fis a G-homomorphism

(i) f.(a)=(1,9).(a) = (A1).(). That is the 2-cocycles { f(a, )} and
{a;(g)’A(T)} of G in A’ differ by a coboundary.

Proof. “ = 7 We have proved according to propositions 5.1.10 and 5.1.12.

“ < 7 We suppose that (i) and (i) hold. We choose {u,|g € G} C U and
uy | g" € G" C U’ be sections of U and U’, respectively. If we write

— / /7 / /.7
Uglhy = Qg Ugry Uy U = A_g T Uy

then the cocycle {a,, . } belong to cohomology class a € #?(G, A) and the cocycle
{a;, .+ } belong to cohomology class o’ € F?(G’, A”). According to the condition
(1) we have that

fa?) = f(a)? (5.11)
and from condition (i7) we have that there exists a 1-cochain {c, € A’} such that
fla, ) = ag\(gM(T)c;c;gc;;l (5.12)

We define o : U — U’, by p(au,) = f(a)cqu)
Then ¢ is a homomorphism, since

- f(abgagm)CL;Tui\(gT) - f<a)f<bg)f(ag77'>c;7'u;\(97')

and

plaug)p(buy) = f
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It remains to show that the above diagram is commutative. It suffices to show that
XNoj = jopand poi=1'of. Sinceu; € A, wehavethatl = ¢(1) = p(u;tu;) =
f(ufl)ciu;(l) = f(uy)~tcju) and therefore f(u;) = cjuj. Also, Ao j = j o,
since ¢(i(a)) = p(a) = @laur )y = flaur e = flaurt) fluy) = fla) =
i'(f(a)). In addition, p o i = i’ o f, since A o j(au,) = A(j(au,)) = A(g) and
i ewlau,) = j'(plau,)) = j’(f(a)c;uf\@) = A(g). This complete the proof. [

Definition 5.1.14. By £(G, A) = Ext(G, A) will be denoted the set of equivalence
classes of extensions of A by G.

Theorem 5.1.15. We suppose that the abelian group A is a G-module, where G is
finite or infinite. Then there is a natural 1-1 correspondence between the elements
of £(G, A) and the elements of F*(G, A).

Proof. It remains only to show thatif {a, , } and {b, .} are 2-cocycles belonging to
a € H?(G,A)and (U,i,5), (U’ i, ) are the extensions they determine according

to our construction, then these extensions are equivalent. To do this we simply apply
the theorem 5.1.13 with A’ = A,G' =G, = f=1land o’ = «

1 v At U j>G s 1
lfq ‘99 l)\:l
1 S| y U’ s G s 1

Since f = 1 then f is a G-homomorphism and also the 2-cocycles {f(a, )} =
{ay .} and {a} -} = {ag,} of G in A’ differ by a coboundary. So then ac-
cording to 5.1.13 there exists a homomorphism ¢ : U — U’ such that the above
diagram is commutative. This means that there exists a homomorphism ¢ : U — U’
such that the following diagram is commutative,

U

1—>A/ \4(}—>1
N

and then we have proved that ¢ is isomorphism. This complete the proof. [l

5.2 The Brauer Group

Definition 5.2.1. Let K be a field. The ring A is called K — algebra when A is
also a K-vector space and for every A € K and a,b € A holds that

(Aa)b = a(Ab) = A(ab)



5.2 The Brauer Group 125

(The addition in A as a vector space is the addition as a ring.)

The dimension of K-algebra A, dimg A, is the dimension of A as a K-vector
space.

Definition 5.2.2. The center of the K-algebra A is defined as follows
Z(A)={a€ A|ab=ba,Vbe A}

Definition 5.2.3. The K-algebra A will be called simple when the only two-sided
ideals are the < 0 > and A.

Proposition 5.2.4. Let K be a field and A be a finite dimensional simple K -algebra.
Then the center of A, Z(A), is a field.

Proof. For its proof see ([6], proposition 5.3, p.12). [

Definition 5.2.5. The K-algebra A is called division algebra over the field K if
for any element o € A with o # 0, there exists its multiplicative inverse in A.

Proposition 5.2.6. For every division K-algebra D it is hold that

Z(D) = 2(M, (D)), ¥n >0

Proof. For its proof see ([6], proposition 5.3, p.12). O

Let K be a field and A be a K -algebra. Without loss of generality we can assume
that X' C A. Then, in general K C Z(A).

Definition 5.2.7. The K-algebra A will be called central K — algebra when
K =2(A)

Definition 5.2.8. An Azumaya — algebra over that field K is a finite dimen-
sional, central, simple K-algebra.

Definition 5.2.9. Two Azumaya algebras A and B are equivalent, and it is denoted
by A~B, if there exist r,s € N such that

A®y M, (K) = B@y M,(K)
This relation is an equivalence relation.

Definition 5.2.10. The Brauer group, Br(K), is defined as the set of all similarity
classes

[A] = {B | B is Azumaya — algebra over the field K and B~A}
endowed with the multiplication

[AllB] = [A®k B]



126 Some Applications of Cohomology

If now L/K is an extension of fields, then the map
rox i Br(K) —  Br(L)
4] = [A®k L]
is a group homomorphism.

Definition 5.2.11. Let A be an Azumaya-algebra over the field K and L/K is a
field extension. The field L is a splitting field for the algebra A when

[A] € Ker(rp k)
The group
Br(L/K) := Ker(rL/K)
is called relative Brauer subgroup of K over L.

Finally, if the extension L/ K is Galois extension, then we have that
H?*(Gal(L/K), L*) = Br(L/K)
For its proof see ([6], Theorem 14.3, p.15).

5.3 The Inverse Problem of Galois Theory

Let N /K be a finite or infinite Galois extension. We have proved that the Galois
group Gal(N /K) equipped with Krull topology is a topological group. Moreover,
we have proved that Gal(N /K) is compact, Hausdorff and totally disconnected.
Therefore, according to theorem 2.3.10 we have that the Galois group Gal(N/K)
equipped with Krull topology is a profinite group. In particular we can describe the
Galois group of even an infinite Galois extension as a projective limit of finite Galois
groups. More precisely if N/K is a Galois extension, then

Gal(N/K) = hTm Gal(L/K)

where L/ K is a finite Galois extension with K C L C N.

An easy result in Galois Theory is the following:

Proposition 5.3.1. Every finite group is isomorphic to the Galois group of some field
extension.

Proof. The Ideas of the proof :

Let G be the finite group of order n. Then according to Cayley’s theorem we have
that G < S,. We consider K = K(tq,...,t,) and F = K(sq,...,s,) where
ty,...,t, are the roots of general polynomial of degree n

g(X)= X" — 5, X" L4 s X2 4 (=1)"s,, € K(51,89,...,5,)[X]

ren

and s, ..., s,, are the elementary symmetric functions of ¢, ...,%,,. Then we have
that L/ F' is Galois extension and Gal(L/K) = S,,.
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L+ <idy >

E=75G) +— G

F «——— Gal(L/F) =S,

According to fundamental theorem of Galois theory we have that L/E is a Galois
extension and

G = Gal(L/E)

This means that G is realizable as Galois group of some extension. O

We now generalize this fact to profinite groups. More precisely we will prove
that every profinite group is the Galois group of some field extension. For doing this
we will require just one more lemma, which we state and prove now.

Lemma 5.3.2. Let F be a field and G be a profinite group of automorphisms of F
such that for every x € F, the stabilizer

Sxz)={0ceG|o(z)=ux}
is an open subgroup of G. Then
G = Gal(F/F®)

where F¢ = {x € F | o(x) =z, Yo € G}.

n
Proof. Letxy,...,x, € F. Then the group H = ﬂ S(z;) is open in G, by hypoth-
i=1
esis. Also GG is compact, since G is profinite, and H is open, so then according to
proposition 1.2.14, (iii) we have that H is closed of finite index. We consider the
group N := ﬂ gHg™ 1. Since H is closed, so is gHg ™!, and then N is closed as
geG
well. It is clear that IV is a normal subgroup. Thus, NV is closed of finite index, which

implies that IV is open according to proposition 1.2.14, (zi7). This means that G/ N
is finite. Let L := F“(Gxy,...,Gx,), where Gz, = {o(x;) | 0 € G}. We have
that

FCCLCF
The action of G/N on L is the following

G/N xL — L
(gN,l) = (gN)(1)
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and then it is clear that (¢N)(F¢) = F¢ and (¢N)(Gz,) = Gx,. In addition, this
action is faithful, since if (g, V)(Gzx;) = (9,N)(Gx;), forevery i = 1,2,...,n,
then we have that

(1 N)(oz;) = (9 N)(02;), Vo € G

= goHo Y (ox,) = gopoHo Y(ox;), since N = ﬂ gHg™1

geG

= glo'H-iL'Z - QQO'H:L’Z

= (910)(x;) = (920)(2;), Vo €G, Vi=1,....n

= (52" g1)(0(x;)) = o(z;)

= (o7 lgytg,0)(z;) =2, Vo €G, Vi=1,...n

This means that
o tgylgio0 € S(x,), Vo €G, Vi=1,....,n

which implies that

o gy g0 € ﬂ S(z;) =H

i=1
= g,lg, €cHo !, Vo e G
Thus g5 19, € ﬂ gHg' = N = g, N = g,N. Hence, the finite group G/N can
geG
be regarded as an automorphism group of the field L and the fixed field of G/N is
FG. A result of Artin in classical Galois theory asserts that if K be a field and G
be a finite group of automorphisms of K, then K /K¢ is a finite Galois extension,
G = Gal(K/K%) and |G| = [K : K€]. In our case we have that G/N is a finite
group of automorphisms of L, so then according to Artin’s result we have that L/ F¢
is a finite Galois extension, G/N = Gal(L/F%) and |G/N| = [L : F€]. The field
F is the union of the above L and { N'} are open normal subgroups of G. So then
=B N =1i L/FC) = F/FC
G %HG/ <%nGal( JF“)=Gal(F/F%)

We are now able to prove the following result.

Theorem 5.3.3. (Waterhouse, 1974) Every profinite group is the Galois group of
some field extension.

Proof. Let GG be a profinite group and let

S = UG/N, where N < G, N is open (disjoint union)
N

Let K be any field. We can take the elements of S as indeterminates and form the
purely transcendetal extension L = K (.S). The natural action of G on S
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GxS — S
(0,7TN) + o(tN)=o0o1TN

is well defined, since S is the disjoint union. Also the action of G on S is faithful,
since if 01 (TN) = 05(7N), then

o,TN = 0y7N = 7 loyloT €N

= oyloy €eTNT =N

Thus o510, € N, for every open normal subgroup N of G, which implies that
oyloy € ﬂN = {1} and so 0; = 0,. In addition let 7NV € S, then

S(rN) = {g€G|g(tN)=7N}={g9€ G |grN =7N}
= {geG |17 ¢gtN=N}={ge G| gt € N}
= {geGlgeTNT1}={geG|lgeG}=N

The action of G on S as a group of permutations induces a homomorphism 6 from
G to the group of field K-automorphisms of L, that is

0: G— Auty (L), o 0(0)

where 0(0)(s) = o(s), for every s € S. Furthermore, 6 is injective, since the action
of G on S is faithful and therefore G < Auty(L). It remains to show that the
stabilizer S(u), for every u € L is an open subgroup of G. Let u € L then we have
that u € K(sq, ..., s,.), for some r, where s, = 7, N, fori = 1, ..., r. We have that

S(mNy)N...nNS(r,.N,) < S(u) = N, N--NN, <S(u)

So S(u) is open for every u € L, since Ny N---N N, < S(u)and NyN---NN,. is
open. Hence, according to lemma 5.3.2 we have that the extension L/L¢ is a Galois
extension and

G =~ Gal(L/L%)
This means that G is realizable as Galois group of some extension. 0

Although this proof'let us choose any field K we like, we have no way to control
LC.

One of the most famous conjecture in group theory is the so called

Inverse Problem of Galois Theory. Given a finite group G, does there exist a
finite Galois extension K of Q such that Gal(K /Q) = G?

An important result about Inverse Problem of Galois Theory is due to Shafare-
vich. We wish to mention here the following result of Shafarevich about solvable
groups.
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Theorem 5.3.4. Every finite solvable group is realizable over Q as a Galois group
of some extension.

Its proof is very difficult. It uses Algebraic Number Theory and Cohomology
of Profinite Groups (see [13], Chapter IX, §6). In the special case where the given
finite group G is of odd order the same result has been proven by J. Neukirch (see
[12], p. 135-164).

More can be read about the Inverse Galois Problem in [17].

~ Finally, we will mention a conjecture about the Galois group of the extension
Q/Q? and this conjecture is due to Shafarevich.

Shafarevich Conjecture: ~
The absolute Galois group of Q*°, Gal(Q/Q%) is a free profinite group of countable
rank. Here Q% is the maximal abelian extension over Q.

If the conjecture has a positive answer, then the Inverse Problem of Galois The-
ory over Q% has an affirmative answer.
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