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Part I

1 General cryptographical background

1.1 Cryptographical methods

We discussed

• The tasks and aims of cryptography

• Communication scheme (two parties)

• Symmetric systems

• Some examples (permutations)

• Randomization

• Secure channels replaced by Public Key

• Principle of Public Key

• Advantages and disadvantages

• Hybrid systems

• Packages with encrypted symmetric keys and signatures

1.2 Key exchange (abstract)

Assume that A ⊂ N is finite and that B ⊂ Endset(A).
Assume that the elements of B commute: For all a and b1, b2 ∈ B we have

b1(b2(a)) = b2(b1(a)).

1



Then we can use
A,B

for a key exchange system in an obvious way - using (publicly known) base
points in B-orbits of A.
Note:
The private keys are elements in B, the common secret is an element in A,
the parameters are B and a chosen base point in a B−orbit of A.

The security depends (not only) on the complexity to find from the knowledge
of randomly chosen a ∈ A and given a1, a2 in B ◦ {a} all elements b ∈ B
with b(a) = a1 modulo

FixB(a2) = {b ∈ B; b(a2) = a2}.

The efficiency depends on the “size” of elements in A,B and on the com-
plexity of evaluating b ∈ B.

1.3 Signature of ElGamal type (abstract)

Again we assume that B ⊂ Endset(A).
In addition we assume that there are three more structures:

1.
h : N→ B,

a hash function

2.
µ : A× A → C

a map into a set C in which equality of elements can be checked fast

3.
ν : B ×B → D ⊂ Homset(A,C)

with
ν(b1, b2)(a) = µ(b1(a), b2(a)).

Signature:
a ∈ A is given (or introduced as part as the public key).
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P chooses b and publishes b(a).
Let m be a message.
P chooses a random element k ∈ B.
P computes

φ := ν(h(m) ◦ b, h(k(a)) ◦ k)

in D.
P publishes

(φ,m, k(a)).

Verification:
V computes

µ(h(m)(b(a)), h(k(a))(k(a)))

and compares it with φ(a).

2 Factorization and the system RSA

2.1 The arithmetical domain Z/N

Let N ∈ N be a large number.
Z/N is the ring of residues of Z modulo N .
We identify it with the subset {1, ..., N} ⊂ N whenever this is convenient,
and induce the corresponding rules for addition and multiplication in this set.

By Z/N∗ we denote the set of numbers between 1 and N−1 which are prime
to N . They correspond to the group of units in Z/N .

The fundamental fact for the arithmetic in Z/N is the Euclidean algorithm
which associates (efficiently) to any integer its residue in Z/N .

It is used to make the addition, the substraction and the multiplication to a
fast procedure.
With the usual “square-and multiply”-technique we make exponentiation to
an operation with complexity O(log(N)) (hence polynomial in the number
of bits of N .
For the inversion of (and hence for the division by) elements of Z/N∗ we use
the extended Euclidean algorithm which computes

d := gcd(a, b) = λ1a + λ2b.
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So: For x ∈ Z/N∗ we get
1 = y · x + k ·N

and y = x−1.
Remark:
This algorithm solves the additive version of the discrete logarithm: For given
x, y ∈ N find k with ky = x.
Exercise: Generalize this to the additive group of finite fields!

An alternative method to compute the inverse in (Z/N)∗ would be:
Let ϕ(N) be the order of Z/N∗. Then xϕ(N)−1 = x−1 for x ∈ Z/N∗.

But to compute

ϕ(N) =
∏

pαp ||N with αp>0

pαp−1(p− 1)

one needs the factorization of N , and this is regarded as hard problem.
In fact it is the background for the RSA crypto system discussed in the next
section.

2.2 Encryption with RSA

We shall discuss only a very simple and not secure protocol. But it demon-
strates all essential features.

Let R be the person which wants to get messages (from everybody) in a
secure way.

R chooses two (large) primes p, q and computes N := pq.
He publishes N together with a (usually small) number e ∈ (Z/N)∗. He
computes the inverse d with

de ≡ 1 mod ϕ(N)

.

This is easy for him since he knows that ϕ(N) = (p− 1)(q− 1). This is his
most important secret.
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A person S wants to send a message m < N . He computes mc := me ∈ Z/N
and sends it.
R receives the residue mc and computes md

c ∈ Z/N and gets as result the
original message m.

It is obvious that this protocol has flaws. For instance we have no random-
ization. But it is easy to remedy this.

In fact there is a practicable protocol which is as secure as the so called
RSA-challenge:
For randomly m ∈ Z/N and known (e,me) determine m!

It is obvious that this challenge is easy if we can factorize N . The converse
is not known and may be not true. Due to Coppersmith we know that for
too small d (< N0.3) lattice reduction methods can answer the challenge.
In the next section we shall concentrate to methods breaking RSA via fac-
torization.

2.3 Factorization algorithms

Let N be a natural number. We want to determine its prime divisors.
There are easy tests to decide (at least probabilistically) whether N is a
power of a prime. So we shall assume that at least two different primes p
and q divide N .

2.3.1 Smooth numbers

Let B be a natural number and let P be all prime numbers ≤ B.
A number a is B−smooth iff all of its prime divisors lie in P .
To describe how many numbers up to a bound x are B−smooth we use a
so-called subexponential function which will play an important role in all
complexity estimates: Define

Lx[α, c] := exp(clog(x)α · loglog(x)(1−α)

with 0 ≤ α ≤ 1.
In the extreme cases for α we get:
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Lx[0, c] is polynomial in the number of bits of x, and Lx[1, c] is exponen-
tial in the number of bits of x.

We have the following important result of Canfield, Erdös an Pomerance:

Theorem 1 Let α, β, r, s ∈ R>0 with β < α ≤ 1. Then a random positive
integer ≤ Lx[α, r] is Lx[β, s]−smooth with probability Lx[α−β,−r(α−β)/s].

For cryptographical analysis we shall assume as heuristic that this proba-
bility does not change if we replace the interval from 1 to Lx[α, r] by a (large)
interval beginning with some x0. This is not proved but in all applications
and experiments it worked very well.

2.3.2 The classical Fermat approach

We state the well known fact:
Let a be a number prime to N (if not we have found a non trivial divisor)
then for all l ∈ N we have

p | (al(p−1) − 1)

and, since p 6= N with high probability the greatest common divisor of
(al(p−1) − 1) with N is non trivial.

How to find a multiple of (p− 1)?
Assume that p− 1 is B−smooth.
Then try products of powers of elements in P (this are sparse products (few
factors, small exponents) because their size is bounded by N . For each such
product choose an (or the same) a and compute the resulting gcd.
If B is not too large this is done very quickly.
The disadvantage is that is is very unlikely that p − 1 is B−smooth with a
reasonable small B (see Theorem1), and such primes p can be easily avoided
in designing RSA.

2.3.3 A Twist

Suppose that a number d is not a square modulo p.
Of course we cannot decide this since we do not know p but the probability
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is 1/2, and if the algorithm fails we try another d.
So
√

d generates the field Fp2 = {z := x + y
√

d; x, y ∈ Z/p}.
Define Re(z) := x.
The norm homomorphism from F∗p2 to (Z/p)∗ is given by

x + y
√

d 7→ x2 − dy2.

Its kernel has order p + 1.
In this kernel are the elements z(x) = (x2 + d)/(x2 − d) + 2x/(x2 − d) ·

√
d

for all x ∈ (Z/p)∗.
Hence z(x)l·(p+1) = 1Z/p.
Hence for randomly chosen a ∈ Z/N∗ and for all multiples l of p + 1 we get:
There is a non trivial common divisor of z(x)l(p+1) and N .
Now we are in the same situation as in the last section and so, if p + 1 is
B−smooth we find a non trivial factor of N in time depending polynomially
on the bit size of B.
But again the chance of success (i.e B not too big) is very small. We have
to find a more systematical way to find factors.

2.4 Geometrical interpretation

To do this we have to interpret the two methods from above as special cases
of a general principle.
Look at the first case: We used the properties of the multiplicative group of
Z/p to get a congruence modulo p.
This multiplicative group can be seen as the Z/p−valued points of the affine
plane curve Gm : XY = 1 by identifying x with (x, x−1). This curve has
the additional property that two points can be multiplied by multiplying the
coordinates: It is an algebraic group called the multiplicative group.
Its defining equation is universal, and hence it makes sense to speak about
the points on the curve over Z/N which are in a natural way isomorphic to
(Z/N)∗ and which can be reduced modulo each divisor of N . This reduction
and the knowledge of the order of Gm(Z/p) imply the algorithm in 2.3.2.
The method in 2.3.3 is again closely related to the multiplicative group. But
it is now the subgroup of elements of norm 1 in Fp2 . These elements are given

by z = x + y
√

d with x2 − dy2 = 1.
Hence (x, y) are Z/p−points on the curve

T : X2 − dY 2 = 1
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which is again an affine curve with a multiplication defined on the points:

(x, y) ◦ (x′, y′) := (xx′ + dyy′, xy′ + yx′).

The corresponding algebraic group is a quadratic twist of Gm, i.e. a one-
dimensional torus Td.
Again it is defined universally, and we constructed in 2.3.3 Z/N−rational
points on it and then used their reduction modulo p and the information
over group orders to get divisors of N .

Hence a generalization will be: Look for other algebraic groups A defined
over Z/N with reduction morphisms to Z/p and known orders of A(Z/p),
the group of Z/p−rational points of A.
One could go on to use tori but this leads to high dimensional varieties, and
so they are not practical.

But there are other plane curves with simple equations such that the points
form an abelian group: Elliptic curves!
One difference to Gm is that they cannot be defined in the affine plane, one
has to go to the projective plane.

The advantage is that there are many (about p) elliptic curves over Z/p and
the number of rational points are concentrated in an interval of length 2

√
p.

Using this and Theorem 1 we shall be able to show that every number
N can be factorized in subexponential time LN(1/2, 1)! This is the worst
running time, and it only occurs if the smallest prime in n has size ≈ √

N .
So the elliptic curve method is nowadays mostly used to find “small” divisors.
Before explaining this method we shall have to explain a little bit about
elliptic curves, and since this will play an important role for other crypto
systems, too, I shall postpone it till we have discussed an algorithm which is
of general purpose and which is used to detect large factors.

2.5 Sieving

We use the following fact:
The polynomial X2 − 1 has over fields at most two zeroes but over Z/N it
has 2k zeroes if k is the number of primes dividing N . So we have a good
chance (> 1/2) that if a, b ∈ N with a2 ≡ b2 mod N then gcd((a − b,N) or
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gcd(a + b,N) are non trivial.
So we look for strategies to find such pairs a, b.
The general method used is called “Index-Calculus”. It will become im-
portant later on again.
First step:
We choose a bound B and P as in 2.3.1. Recall that P has about B/log(B)
elements.
Second step:
We find s >| P | integers v with

v2 mod N B − smooth.

I.e:
v2 =

∏
p∈P

pep,v + λvN.

This step is called: looking for relations.
The set of elements v yielding relations is denoted by V .
Third step:
The vectors {(..., ep,v mod 2, ....)} ⊂ (Z/2)|P| are linearly dependent and so
we find (for instance by Gauß elimination) a non trivial subset S ⊂ V such

that for all p ∈ P we have integers sp with

∑
v∈S

ev,p = 2sp.

This step is called the Linear Algebra part.
Fourth step:
Now take a :=

∏
v∈S v mod N , b :=

∏
p∈P psp mod N and compute the

gcd’s.
To make this efficient one has to be very careful in step 2 and step 3. This
last one is solved by using techniques known in the cases of sparse matrices
(Wiedemann, Lanczos). The parallelisation is still not completely solved.
The second step is to find relations. Of course this becomes easier if B is
large. But then the third step becomes difficult. So one has to find an
optimal trade-off.
This is found nowadays by sieving methods (and many tricks).
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2.5.1 Sieves

The idea relies on the simple observation that for polynomials f(X) ∈ Z[X]
and x ∈ Z we have

f(x + ip) ≡ f(x) mod p.

We want to find smooth numbers as values of f taken on an interval L :=
[0, ..., l − 1].
We begin with p1 ∈ P and assume that x1 is the first element in L such that
f(x1) is divisible by p.
Then we sieve and find L1 := {x1 + λ · p1} ⊂ L with the same property.
Now go to p2 ∈ P and do the same procedure applying f2 := f(X)/p1 to L1

with respect to p2 and so on till the value of fi on the resulting subinterval
is equal to 1.
The surviving elements in this sieving are B−smooth.
Now go to the list L \ L1 and proceed till the list L is exhausted.
In the procedure there are a lot of divisions necessary. So one replaces this
by going to logarithms and sieving with respect to them. A suspect for a
smooth number then is an element for which the logarithm during sieving
becomes nearly 0.

The question is: Which polynomials should one use, and which intervals are
best in order to get relations?

2.5.2 The quadratic sieve

Pomerance had the idea to use polynomials and he proposed

f(X) := (X + bNc)2 −N = X2 + 2b
√

NcX − (N − b
√

Nc).
The values for small x are near to 2x

√
N and so they have a better chance

to be smooth than numbers near N .
Take x with f(x) smooth. Then v = x + bNc gives a relation.

This quadratic sieve has numerous variants like using more quadratic poly-
nomials simultaneously. In any case the running time for optimal choice of
B (w.r.t. the steps 2 and 3) is

LN(1/2, 1) = exp(log(N)1/2loglog(x)1/2).
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Theorem 2 The complexity of the factorization of numbers is bounded by a
subexponential function.

Though this is the basic and best result we have we shall introduce two more
methods (one of them announced already) with the same type of complexity
but with better performance for medium sized resp. very large factors.

2.5.3 The number field sieve

The idea is again to produce non trivial relations modulo N of the form
x2 − y2 ≡ 0 modulo N .
But now one uses elements x, y in different number fields Ki (i.e. finite
algebraic extensions of Q) given by polynomials f1(x) and f2(x).
In order to relate the elements of the different fields one has to assume that
f1 and f2 have a common zero z modulo N . Hence one gets morphisms
ϕ1 : Q[X]/f1(X) → Z/N by mapping X to z.

One introduces smoothness in number fields by using prime ideals of bounded
norm instead of prime numbers and one has to overcome class number prob-
lems and problems with units (resulting in a higher number of needed rela-
tions) in order to find by sieving elements wi in Ki which are squares in Ki

with ϕ1(w1) = ϕ2(w2).
By known technics one finds a square root zi of wi and then one gets:

ϕ1(z1)
2 = ϕ2(z2)

2

and is done.

2.6 The elliptic curve method

The theory of elliptic curves began over the complex numbers (mostly in
the 19th century), in the first half of the 20th century it was seen how to
use them over any field, and in the second half of last century the notion
of elliptic schemes (i.e. elliptic curves over any ground ring) became a key
notion of arithmetical geometry.
We shall need elliptic curves over finite fields and over Z/N . They are the
simplest examples for abelian varieties and at the same time, the most im-
portant ones in theory and applications today.
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Let R be a commutative ring with unity. For the sake of simplicity we shall
assume here that 6 is invertible in R

2.6.1 The projective plane

We take P2
R as projective plane over R. Note that this space is, for arbitrary

ring R, defined as projective scheme.
Example 1: Let R = Z. Then the Z−valued points of P2

Z are the triples
(x, y, z) ∈ Z3 which are relatively prime and which are determined up to a
common sign.
So every rational point extends in a unique way to a Z−point and conversely.
Example 2:R = Z/N with N = pq.
The Z/N−rational points are given by triples (x, y, z) which are classes mod-
ulo N of relatively prime integers, and the equivalence relation is scalar mul-
tiplication with elements in (Z/N)∗.
There are the usual “lines at infinity” given by lX : X = 0, lY : Y = 0, lZ :
Z = 0, and their complements UX , UY , UZ given by the condition that the
variable in the index is not equal to zero.
But note that in general we cannot describe e.g. UZ as affine plane VZ by
replacing Z by 1: If R is not a field then there are non-zero elements which
are not invertible.
Take the second example: Triples (x, y, z) with x or y prime to q and z = λq,
λ prime to p, represent points in P2

Z/N , lie in UZ but not in VZ .

2.6.2 Elliptic curves

Definition:
An elliptic curve over R is a curve in the projective plane given by one cubic
equation

E : Y 2Z − X3 − AXZ2 −BZ3 = 0

with A,B ∈ R such that 4A3 + 27B2 ∈ R∗.
An important property is that E has a zero section 0 := (0R, 1R, 0R) ∈ lZ .
In fact E is a group scheme, i.e. for any R−algebra S the set E(S) of S-
points of E is abelian group with neutral element O, and the addition law ⊕
is given by homogenous polynomials with coefficients in R.
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This implies that if we restrict to affine parts of the plane we get a partial
addition law on the points in this part which works only for additions which
do not leave this part.

So go to VZ .
Taking Z = 1 and (ab-)using X, Y as affine coordinates we get the affine
equation

Y 2 = X3 + AX + B

for E| VZ
.

The birational version of the addition ⊕ is given by the well known addition
formulas for elliptic curves: For

P1 = (x1, y1) , P2 = (x2, y2).

we get
P3 = (x3, y3) := P1 ⊕ P2

with (in general):

x3 = −(x1 + x2) + ((y1 − y2)/(x1 − x2))
2

and y3 such that (P1, P2, (x3,−y3)) are collinear.
There is a special cases:
If P1 = P2 we get
P3 = 2P1 = −2x1 + ((3x2

1 + A)/2y1)
2.

One sees immediately that addition formula is valid only if x1 − x2 resp. y1

are units in R.
If R is a field this means: The partial addition is defined iff P1 6= −P2, and
in this case the sum is equal to O.

2.6.3 Factor finding with one elliptic curves

Now we are ready to apply these observations to factorization. Let be
N = p · N ′ and take E as elliptic curve over Z/N . The reduction map
modulo p is the transition from residue classes modulo N to residue class
modulo p. This extends in a natural way to reduction of points in the pro-
jective plane and in the affine part VZ , to the equation of E resulting to
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a cubic Ep and to points on E on VZ . By the very definition the partial
addition reduces, too.
After reduction we are dealing with elliptic curves over the field Z/p and
with the usual properties of addition.

Let kp be the order of the group of Z/p−rational points on Ep. Hence for
any l and any Z/N−rational point P ∈ VZ of E we get:
The reduction of lkp ◦ P modulo p is equal to 0.
As usually we do the scalar multiplication by doubling and adding using the
2-adic expansion of lkp.
In the end we have left VZ since we got 0 modulo p. So during the scalar
multiplication we have to leave VZ at some stage t after scalar multiplication
by kt.
There are two possibilities:
At the step t we have: ktP = 0. Then kt is a multiple of the order of the
reduction of P modulo all divisors of N and this is highly improbable (cf.
trivial congruences in 2.3.2).
Or we have left VZ but stayed in UZ . But this means that we have found two
points P1, P2 on E with gcd((x1−x2), N) = p or one point P1 with gcd(y1, N)
= p.
Hence we can proceed as in 2.3.2 and 2.3.3 if kp is B−smooth.

2.6.4 Varying the elliptic curve

We needed in the last section that the order of the group of Z/p−rational
points of Ep was B−smooth. Now we vary E and get different orders. So the
chance of success for given N depends on the probability that elliptic curves
over finite fields have B−smooth orders.
Using results from arithmetical geometry (like Hasse bound for orders and
Deuring‘s lifting theorem) one gets

Theorem 3 There exist effectively computable constants c1, c2 such that for
all p and for all subsets S ⊂ [p + 1−√p, p + 1 +

√
p] the probability rS that

a random pair (A,B) ∈ Z/p× Z/p determines an elliptic curve

E : Y 2Z −X3 − AXZ2 −BZ3 = 0
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with | E(Z/p) |∈ S is bounded as follows:

c1
|S| − 2

2
√

p + 1
log(p)−1 ≤ rS ≤ c2

|S|
2
√

p + 1
log(p)loglog(p)2.

Combining this with Theorem1 and estimating the cost (there are refine-
ments!) of the check for one curve we get:

Result:
Using elliptic curves we can factorize any number N with complexity bounded
by LN [1/2, 1].
This forces us to take for N numbers with at least 1024 bits (now), 2048
bits (for the next five years) and 4048 bits (for mid term purposes), and so
RSA becomes quite clumsy. Hence there is a strong need for more efficient
systems.

3 Discrete Logarithm Systems

3.1 Key exchange and signature in DL-systems

In section 1 we have discussed the tasks of cryptography and given an abstract
setting for key exchange and signature. We have avoided to give a similar
abstract setting for encryption (which could be done easily) but given an
encryption scheme by using RSA.
Now we come back to our abstract setting and give (the only known) real-
ization. (It is not difficult to find an encryption protocol with the method
discussed below, too.)
We take the notions of subsections 1.2 and 1.3.
For A we take a cyclic group of prime order p embedded into N, i.e. a group
G with a numeration.
Take B = AutZ(A) ∼= (Z/p)∗ identified with {1, ..., p− 1} by b(a) := ab.
Take C = A and µ = as addition in A. ν = is addition of automorphisms.

One fixes a publicly known generator g0 ∈ A.
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3.1.1 Key exchange

Each partner Pi chooses a (random) number si ∈ {1, ..., p− 1} as secret (and
not the group order as in RSA schemes) and publishes pi := gsi

0 .
It is obvious but has to be emphasized that there is know leakage of security
if one knows everything about the group A.
If P1 wants to share a secret with Pi he powers pi by s1. The security con-
siderations boil down to the complexity of the computation of the
Discrete Logarithm: How difficult is it to compute for randomly chosen
a1, a2 ∈ A a number n ∈ N with

a2 = an
1?

3.1.2 Signature:

The person S who wants to sign a message chooses a secret x ∈ {1, ..., p− 1}
and publishes y := gx

0 .
In addition it is publicly known that he uses a hash function h which maps
N to A. Recall that it has to be impossible in practice to construct a number
z such that h(z) is a given value.

S chooses a second random number k and does the (for him since he knows
k and x ) easy computation

s := h(m)x + h(gk
0) · k modulo

¯
p.

The signed message consists of

(m, gk
0 , s).

To check the authenticity of m V computes

S = gs
0, P = yh(m), H = (gk

0)
h(gk

0 ).

Now the properties of exponentiation imply:

S = P ⊕H

if the signature is authentic. Otherwise it is rejected.
Again the security depends crucially on the difficulty to compute the discrete
logarithm in A.
In fact one can change the two protocols such that under strong attack models
the security is equivalent with the hardness of the discrete logarithm.
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3.2 Generic attacks

We use the algebraic structure “group”.
This allows “generic” attacks.

3.2.1 Shanks’ Baby-Step-Giant-Step Method

Task: Take P,Q ∈ G and find n with Q = k · P .
The key fact is that looking up an element in an ordered set is inexpensive.
Do the baby step: For i = 0, ..., S ≤ √

p compute

(i · P, i).

Combine it with the giant step: Compute

Q− i · S · P

.
Now compare the two lists. If

i0 · P = Q− i1 · S · P

then
k = i0 + i1 · S.

The complexity is O(
√

p).
The disadvantage is that the algorithm needs O(

√
p) as space.

3.2.2 Pollard’s ρ-Algorithm

It is probabilistic. Its principle is the birthday paradoxon applied to random
walks in G. They have loops with high probability after

≈ 1.03
√

p

steps.
One cannot control a random walk but in practice the following works very
good:
Define the walk by induction. The result xi of the i−th step should depend
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only on xi−1.
So partite G “randomly” into three sets Tj of size ≈ p/3 and take

xi = P + xi−1 if xi−1 ∈ T1,

xi = Q + xi−1 if xi−1 ∈ T2,

xi = 2xi−1 if xi−1 ∈ T3.

There are efficient methods to detect collisions and having one it is easy to
compute discrete logarithms.
This algorithm needs only very small space and has expected running time

≈ 1.03
√

p.

3.2.3 Mathematical task and outlook

It can be shown that in black box groups attacks to the discrete logarithm
problem cannot be better as these generic attacks.
So we have to find numerated groups of order p ≈ 10180 for which no (known)
attacks of smaller complexity than p1/2 exist.
So we want to find groups of large prime order p such that the size of elements
and the time needed to evaluate a group operation are linear in log(p) but
the time (or the space) needed to solve the discrete logarithm (for random
elements) is exponential in log(p).
The methods for solving the task are found in arithmetical and algebraic
geometry and will be discussed during the next part of the lecture.
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