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Part 11
Discrete Logarithm Systems

1 Algebraic Realization of Key exchange and Si-
gnature

1.1 Key exchange and signature

The following is a repetition of facts explained in the first part of the lectures.

Take A as cyclic group of prime order p embedded into N, i.e. a group G with a
numeration.

In the sequel we shall assume that f is fixed and given and we shall identify A
with G.

The group automorphisms of G are identified with elements in {1,....p — 1} by

oi(g) = g".

One fixes a publicly known generator gy € G.

1.1.1 Key exchange

Each partner P; chooses a (random) number s; € {1,...,p — 1} as secret (and not
the group order as in RSA schemes) and publishes p; := g;'.
It is obvious but has to be emphasized that there is know leakage of security if
everyone knows everything about the group G.
If P, wants to share a secret with P; he powers p; by s;. The security considerati-
ons boil down to the complexity of the computation of the Discrete Logarithm:
How difficult is it to compute for randomly chosen ¢1,¢9> € G a number n € N
with

92 =917

1.1.2 Signature:

The person S who wants to sign a message chooses a secret © € {1,...,p—1} and
publishes y := ¢;.



In addition it is publicly known that he uses a hash function h which maps G to
{1,...,p—1}.

Recall that it has to be impossible in practice to construct a number z such that
h(z) is a given value.

S chooses a second random number k and does the (for him since he knows k
and z ) easy computation

s := h(m)z + h(gf) - k¥ modulo p.
The signed message consists of
(m, g5, ).
To check the authenticity of m V' computes
S =g, P =y"" H = (gf)").
Now the properties of exponentiation imply:
S=P&H

if the signature is authentic. Otherwise it is rejected.

Again the security depends crucially on the difficulty to compute the discrete
logarithm in G.

In fact one can change the two protocols such that under strong attack models
the security is equivalent with the hardness of the discrete logarithm.

1.2 Hardness

Since we have used the algebraic structure “group” we cannot avoid “generic” at-
tacks like Shanks’ Baby-Step-Giant-Step Method and Pollard’s p-Algorithm and
hence the complexity of computing discrete logs is bounded from above by ~ ,/p.
It can be shown that in black box groups attacks to the discrete logarithm pro-
blem cannot be better than these generic attacks.

So we have to find numerated groups of order p ~ 10 for which no (known)
attacks of smaller complexity than p'/? exist.

To be more precise we introduce a Security hierarchy.
We measure the complexity of a DL-system by the function

Lo(a, ¢) := exp(c(logz)®(loglogx)t =)

with 0 < a <1, ¢ > 0 and x closely related to p.



Best case: a = 1:Exponential complexity.
Worst case: o = 0: Polynomial complexity.

The case between: 0 < o < 1: The complexity is subexponential.

1.3 Very special examples

Example 1:
G:=ZJp.
Numeration:
fG_>{177p}
given by
fr+pZ) = [r],
where [r], is the smallest positive representative of the class of  modulo p.
The function @ is given by

7’1@7“2: [7“1+7'2]p

which is easily computed from the knowledge of r;.
Security?
For given b with b = e(n,a) = [na], solve

b=na+ kp

with k € Z.

The Fuclidean algorithm does this in O(log(p)) operations in Z/p hence o = 0!
Example 2:

G=1Z/p.

Choose a prime ¢ such that p divides ¢ — 1.

Choose ¢ # 1 in Z/q with (? =1 (i.e. { is a primitive p-th root of unity).
Numeration:For 1 <4 < p define

zi:=[¢", and for i =i + pZ € G

Addition:For
a; = f(zi +pZ) €{1,---,q— 1}

a1 ® ay = [¢1F2,

= [ala?}q



Security?
For two randomly chosen p-th roots of unity in the multiplicative group of Z/q
one has to determine the exponent needed to transform one of them to the other.
The best known method to compute this discrete logarithm is subexponential
in q.
It usually is compared with factorization (this is no accident). Hence its security
is to be compared with RSA. Example 3:
is most important. It is an Elliptic Curve.
Recall:
An elliptic curve E over a field K is a regular plane projective cubic with at least
one rational point.
For simplicity we shall assume that char(K’) is prime to 6. Then we find an
equation

E: Y*Z = X’ + AXZ? + BZ®

with A, B € K and 4A? + 27B% # 0.
A very special property of elliptic curves is that their points form an abelian

group.
This addition is easily transformed into formulas:
Given

Py = (z1,51) , Pa = (22, 12)
then

Py = (z3,43) = P @ P,

with (in general):

w3 = —(x1+x2)+ (11 — v2)/ (21 — 22))°

and y3 such that {(z1,v1), (x2,92), (x3, —y3)} is collinear.

In contrast to the first examples we have to solve a difficult diophantine oroblem
if we want to use elliptic curves E for DL-systems:

Find F, and an elliptic curve E such that the group of F,— points has (almost)
prime order of size ~ 10%.

If we succeed we have to analyze attacks using the structures introduced during
construction.

The state of the art :

For “generic” elliptic curves over “generic” finite fields the complexity of the
computation of the Discrete Logarithm in the group of rational points is expo-
nential.

But special elliptic curves are weak.

Consequence for key length:

e Additive subgroups of fields are weak for any group size.



e Multiplicative subgroups of fields have to be contained in fields with at least
1024 or better 2048 bits.

e Groups on random elliptic curves need a size of 180 bits.

1.4 Digression:Numeration by Algebraic Groups

We generalize and systematize the examples.
We use numerations induced by embedding Z/p into the group of rational points
of algebraic groups over finite fields F , where ¢ is a power of a prime .
An algebraic group G over a field K is an algebraic reduced, non-singular, noethe-
rian scheme with an addition law, i.e. there is a morphism (in the category of
schemes)
m:GxG—g,
an inverse, i.e. a morphism
1:G—3G,
and a neutral element, i.e. a morphism
e : Spec(K) — G,
satisfying the usual group laws:
mo (idg X m) =mo (m X idg) (associativity),
mo (e X idg) = pro
where pry is the projection of Spec(K) x G to G, and
mo (i X idg) 0§ = j.
where ¢ is the diagonal map from G to G x G and j. is the map which sends G to
e(Spec(K)).
Down to earth:
For all extension fields L of K the set G(L) (see below) is a group in which the

sum and the inverse of elements are computed by evaluating ratinal functions
which are defined over K and in which the neutral element is the point

0 := e(Spec(K)) € G(K).

Example 1 corresponds to the additive group G, (see below), Example 2 to the
multiplicative group G,,, and Example 3 is an abelian variety of dimension 1.

If we restrict ourselves to connected commutative algebraic groups we have found
essentially all types: Any G is composed by factors which correspond to tori (hig-
her dimensional analogue of G,,), unipotent linear groups (analogue of G,) and
projective group schemes called abelian varieties. Elliptic curves are the one-
dimensional abelian varieties.

So for cryptography tori and abelian varieties are interesting.



2 Ideal Class Groups

The concept of algebraic groups gives a nice frame for discrete logarithms but to
work in this generality in practice would be hopeless. One has to use very special
algebraic groups which represent well known objects in commutative algebra.

2.1 The Picard group

Let O be a (commutative) ring with unit 1 without zero divisors.
Two ideals ! A, B of O can be multiplied:

AB:{Ealbl,alEA,bZEB}

Clearly - is associative. So ideals form a semi group.

In order to make this multiplication constructive we shall assume from now on
that O is noetherian, i.e. that every ideal of O has a finite generating set.

We generalize the notion of ideals of O slightly:

Let K be the quotient field of O.

Let A be a subset of K such that there exists f € K* with f- A C O an ideal of
O. Then A is a (broken) ideal of O.

Next we introduce an equivalence relation:

Definition 2.1 Let Ay, Ay be two ideals of O.
Ay ~ Ay iff there is an element f € K with

A= f - As.
A is invertible iff there is an ideal A of O such that
A-A~oO.

Pic(0) is the set of equivalence classes of invertible ideals of O, it is an abelian
group.

Try Pic(O) as groups into which Z/p is to be embedded.

There is an immediate computational problem: The equivalence classes contain
infinitely many ideals. How to describe the elements in Pic(O) for the computer?
So we have to be able

1. to find a distinguished element in each class (resp. a finite (small) subset of
such elements) by an “reduction algorithm”

LA ¢ O is an ideal of O if it is an O—module



2. or: find “coordinates” and addition formulas directly for elements of Pic(O).
For this we can hope to use the geometric background of Pic(O) which leads
to group schemes ; i.e. the Pic functor of extension algebras of O can be
represented by a group scheme.

Most interesting cases are those for which both methods can be used!

We want to embed Z/p into Pic(O) in a bit-efficient way:
For this we need

e a fast method for the computation of the order of Pic(O)

e (at least) a heuristic that with reasonable probability this order is almost
a prime.

Thirdly we have to discuss and, if possible, exclude attacks.

2.2 Index Calculus Attacks

There is a ”generic attack” for DL-systems based on Pic(O):

We have distinguished ideals, the prime ideals.

We have to have a very special arithmetic structure of O in order to be able to
do the reduction step. So we have a notion of “small” ideals.

Hence we are in a very similar situation as in the section about factorization of
numbers and we can try to develop a analogous attack.

Principle:

We work in a group G .

Find a “factor base” consisting of relatively few small elements (i.e. in our case:
classes which contain small prime ideals) and compute G as a Z—module given
by the free abelian group generated by the base elements modulo relations.
Then one has to prove that with reasonable high probability every element of G
can be written (fast and explicitly) as a sum of elements in the factor base with
small exponents.

The rest is linear algebra.

The important task is, as in the factorization algorithms, to balance the number
of elements in the factor base to make the linear algebra over Z manageable and
to “ guarantee” smoothness of enough elements with respect to this base.

If successful the expected complexity of this attack is subexponential.

2.3 Existing Systems
What is used today? There are only two types:

e O is an order or a localization of an order in a number field, i.e. O is a
subring of the ring of integers of an algebraic extension K of Q of degree n
which is a Z-module of rank n.



e O is the ring of holomorphic functions of a curve defined over a finite ex-
tension field of F, and hence O is a polynomial order over F,[X].

2.3.1 The Number field case

Orders O in number fields were proposed very early in the history of public
key cryptography (Buchmann-Williams 1988).

We restrict ourselves to maximal orders (i.e. the integral closure) Ok of Z in
number fields K.

Ok is a Dedekind domain, its class group Pic(Ok) is finite.

The size of ideals is given by their norm.

The Theorem of Minkowski states that in every ideal class there are ideals
of “small” norm. The measure is given by

gk =1/2log | Ak | .

(Here Ak is the discriminant of O /Z.)

The mathematical background is the “Geometry of numbers” (Minkowski).

By lattice techniques it is possible to compute ideals of small norms in classes,
and in these ideals one finds “small” bases.

The most difficult part is the computation of the order of Pic(Ok):

One uses analytic methods (L-series) in connection with most powerful tools from
computational number theory.

There is a (probabilistic) estimate: The order of Pic(Of) behaves like exp(gx)
(but in a very erratic way).

One big disadvantage is that for given g there are not many fields, and to have
Pic(Og) large the genus of K has to be large.

The parameter “genus” can be split into two components:

The degree n := [K : Q] and the ramification locus of K/Q.

If n is large the arithmetic in O is very complicated. Key words are computation
of fundamental units, integral basis, lattice reduction ...).

So it is to be expected that the most practical examples have small degree.

We shall discuss the simplest case: K is an imaginary quadratic field of discrimi-
nant —D.

So K = Q(v/—D). The expected size of Pic(O) is ~ v/D.

By the theory of Gaufl of quadratic forms Pic(Og) corresponds to classes of
binary quadratic forms with discriminant D.

The multiplication of ideals corresponds to the composition of quadratic forms.
The reduction of ideals corresponds to the (unique) reduction of quadratic forms:



In each class we find (by using Euclid’s algorithm) a uniquely determined redu-
ced quadratic form
aX?+2bXY + cY?

with ac — 0> =D, —a/2 <b<a/2,a<cand 0 <b<a/2ifa=c.
So we can compute in Pic(Of) very efficiently.
But the great disadvantage is: The index-calculus-attack works very efficiently:
Under assumption of the GRH one gets: The complexity to compute the DL in
P’LC(OK) is

O(Lp(1/2,V2 + o(1))).

2.3.2 The geometric case

O is the ring of holomorphic functions of a curve defined over a finite extension
field F, of Iy,.

Intrinsically behind this situation is a regular projective absolutely irreducible
curve C' defined over F, whose field of meromorphic functions F(C) is given by
Quot(0).

C'is the desingularisation of the projective closure Cp of the curve corresponding
to O.

This relates Pic(O) closely with the points of the Jacobian variety Jo of C. Jo
is a projective group scheme and hence an abelian variety which represents the
functor Pic® of divisor classes of degree 0 on C' which is the projective analog
of ideal classes of coordinate rings of affine curves. Hence the important role of
abelian varieties in crypto systems used today becomes obvious.

First case:Singularities

We assume that O is not integrally closed.

The generalized Jacobian variety of Cp is an extension of J- by linear groups.
Hence additive groups and tori appear as composition factors.

Examples:

1. Pic(F,[X,Y]/(Y? — X?) corresponds to the additive group.

2. Pic(F [X,Y]/(Y?+ XY — X?)
corresponds to G,
and (for a non-square d)

3. Pic(F [X,Y]/(Y? +dXY — X?)

corresponds to a non split one-dimensional torus.



4. More generally we apply scalar restriction to G,,/F, and get higher dimen-
sional tori.
Example:
XTR uses an irreducible two-dimensional piece of the scalar restriction of
Gm / ]Fq()' to F q-
Though there is an algebraic group (torus) in the background the system
XTR seems not to use it: It uses traces of elements instead of elements in
the multiplicative group of of extension fields.

More of this and interesting mathematical problems related with tori can be
found in recent papers of Rubin-Silverberg (cf. their web site) .

From now on we restrict ourselves to the case of curves without singularities.
The corresponding curve C, is an affine part of C.

The inclusion

F[X] = O
corresponds to a morphism
CO — Al
which extends to a map
7:C — P!

where P* = A' U {oo}. The canonical map
¢ : Jo(F,) — Pic(O)

is surjective but not always injective: Its kernel is generated by formal combina-
tions of degree 0 of points in 7!(00).

More precisely: F ,—rational divisors of C are formal sums of points (over F ,)
of C' which are Galois invariant.

Two divisors are in the same class iff their difference consists of the zeroes and
poles (with multiplicity) of a function on C.

The points of Jo(F ,) are the divisor classes of F ,—rational divisors of degree 0
of C.

The theorem of Riemann-Roch implies that

(Cx...x(C)/S; (g=genus(C)

(with S, the symmetric group in g letters) is birationally isomorphic to Je:

We find a representative D’ in the divisor class ¢ of the form D' = D — g P
with D = ¥,—1 .4, P with a; > 0 and X; a; = g. The rationality of D implies
that the coefficients a; depend only on the class of the points under the Galois
operation.

Choose in any such class one point P;, and define Mp, as the ideal of functions
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in O which vanish in Pj;. Then ¢ — Ilp, Mp' induces the map ¢.

The most interesting case is that the kernel of ¢ is trivial.
Then we can use the ideal interpretation for computations and the abelian varie-
ties for the structural background:

e Addition is done by ideal multiplication

e Reduction is done by Riemann-Roch theorem (replacing Minkowski’s theo-
rem in number field) on curves

but the computation of the order of Pic(O) and the construction of suitable cur-
ves is done by using properties of abelian varieties resp. Jacobians of curves.

Example:
Assume that there is a cover

0:C — P! degyp =d,

in which one point P, is totally ramified and induces the place (X = 00) in the
function field F ,(X) of P'.

Let O be the normal closure of F ,[X] in the function field of C.

Then ¢ is an isomorphism.

Examples for curves having such covers are all curves with a rational Weier-
stral point, especially Cy,-curves and most prominently hyperelliptic curves
including elliptic curves as well as superelliptic curves.

Compared with the number theory case we have won a lot of freedom. We can
choose

1. lp = characteristic of the base field
2. n = degree of the ground field of Z/I
3. gc = g = the genus of the curve C resp. the function field Quot(O).

There are (asymptotically with Iy growing) about [39" curves of genus g over Fa.
We have the result of Hasse-Weil:

| Jo(Fw | ~ 17

Using the ideal theoretic interpretation (and a rather obvious data compression)
we get a key length of size nlog(p) - g which is near to the group order.

11



3 Hyperelliptic curves

Definition 3.1 2

Assume that C' is a projective irreducible non singular curve of genus > 1 with a
generically étale morphism ¢ of degree 2 to P,

Then C' is a hyperelliptic curve.

In terms of function fields this means that the function field F'(C) of C' is a se-
parable extension of degree 2 of the rational function field F ,(X). Let w denote
the non trivial automorphism of this extension. It induces an involution w* on C'
with quotient P'. The fixed points of w* are the Weierstrafl points of C.

Assume that we have a F ,-rational Weierstra$l point P...
We choose oo on P! as ¢(Ps). Then the ring of holomorphic functions O on
C\ {Px} is equal to the integral closure of F ,[X] in F(C):

0= FQ[X7Y]/fC(X7 Y)

where fo(X,Y) is a polynomial of degree 2 in Y and of degree 2¢g + 1 in X.

Theorem 3.1 Jo(F ,) = Pic(O).

From the algebraic point of view we are in a very similar situation as in the
case of class groups of imaginary quadratic fields. In fact Artin has generalized
Gaufl’s theory of ideal classes of imaginary quadratic number fields to hyperellip-
tic function fields connecting ideal classes of O with reduced quadratic forms of
discriminant D(f) and the addition @& with the composition of such forms. This
is the basis for the Cantor algorithm which can be written down “formally”
and then leads to addition formulas.

Of course the formulas become very involved as the genus grows.

Surprisingly it turns out for curves of genus 2 and genus 3 that in certain com-
puter environments the formulas are faster than the algorithm and that scalar
multiplication (with group order fixed) is even faster than on elliptic curves.

2Elliptic curves (g = 1) are included.

12



3.1 Explicit Formulas

Here are the best known formulas for genus 2 found by Tanja Lange:

Addition, degu; = degus = 2

Input | [u,v1], [ug, vo], u; = &2 + w1 @ + w0, v; = Vi1 T + Vig
Output | [v/,v'] = [u1,v1] + [u2,vs]
Step Expression Operations
1 compute resultant r of uy, us: 1S, 3M
Z1 = U11 — U21, Z2 = U0 — U10, 23 = U1121 + 22;
T = 2923 + z%ulo;
2 compute almost inverse of us modulo u; (inv = r/us mod uy):
nvy = 21, 1NVy = 23;
3 compute s’ = rs = (v; — va)inv mod uy: 5M
wo = V19 — V20, W1 = V11 — V21, W2 = iNVeWp, W3 = INUIW1;
81 = (invg + invy) (wo + w1) — wa — ws(1 + u11), sH = w2 — urews;
if 8§ = 0 see below
4 compute s =z + so/s1 = x + s(/s} and sq1: I, 25, 5M
wy = (rs}) "= 1/r2s1), wy = rwy (= 1/s}), w3 = S’fwl(: $1);
wy = rwe(=1/51), ws = w3, 8§ = shwa;
5 compute I = s"ug = 23 + ly2? + Uz + I 2M
15 = uo1 + s, I = u218] + s, I, = u20s)
6 compute v’ = (s(l + h + 2v2) — k) /ug = 22 + ujx + uf: 3M
up = (8§ —u11)(sf — 21 + hawy) — uro + 1§ + (h1 + 2v21)wy + (2u21 + 21 — fa)ws;
u) =28 — z1 + hawy — ws;
7 compute v/ = —h — (I + v2) mod v’ = vix + v|: 4M
wy =l —uf, we = wjwy +uf — 1, v] = waws — va1 — hy + houl;
wy = upwy — ), v = waws — vag — ho + haug;
total I, 3S, 22M |
Special case s = sg
4’ compute s: I, M
inv =1/r, so = syinv;
5 compute u’ = (k — s(l + h + 2v2))/u1 = x + uy: S
ul) = fi — ug1 — u11 — S5 — Soha;
6’ compute v/ = —h — (I + v9) mod v’ = vy: 2M
wy = So(ug1 + ug) + k1 + va1 + houf, wa = o + v20 + ho;
Vo = UGWT — Wa;
’ total I, 25, 11M ‘
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Doubling, degu = 2

Input | [u,v],u = 2% + u1x + ugp,v = v1x + Vo
Output | [v/,v] = 2[u,v]
Step Expression odd even

1 compute v = (h 4 2v) mod v = U1 + Vg:

171 = hl -+ 2U1 — hgul, 1~)0 = ho + 2’[)0 — hQUo;

2 compute resultant r =res(v, u): 2S, 3M 2S, 3M
wo = v?, wy = ul, we = V7, w3 = U101, r = upws + Vo(To — w3);; (we = 4wyp) | (see below)

3 compute almost inverse inv’ = invr:
inv] = =01, inv) = Py — ws;

4 compute k' = (f — hv — v%)/u mod u = kjx + kj: IM 2M
w3 = f3 +wy, wy = 2ug, k] = 2(wy — faur) + ws — wy — v1ho; (see below)
ko = u1 2wy — w3 + faur +vihe) + fo — wo — 2fsug — vih1 — voha;

5 compute s’ = k'inv’ mod u: 5M 5M
wo = kinv, wy = kjinvl;
sy = (invg + invy) (ko + ky) — wo — wi (1 +w), sy = wo — uowr;

If s1 = 0 see below

6 compute s =z + sg/s1 and s1: I, 2S, 5M I, 2S, 5M
wy = 1/(rsy) (= 1/r%s1), we = rwi (= 1/s}), ws = s’?wl(: $1);
wy = rwe(= 1/51), ws = w3, 8§ = shwa;

7 compute I = s"u = 23 + ly2% + [z + 1: 2M 2M
Uy =wuy + sy, I5 =uisy + o, I = upsy;

8 compute v’ = sZ + (h + 2v)s/u + (v? + hv — f) /u®: S, 2M S, M
up = 36’2 + wa(ha(sy —u1) +2v1 + hy) + ws(2u1 — fa);

u) = 2s( + waho — ws;

9 compute v/ = —h — (I + v) mod v’ = vix + v|: 4M 4M
wy =l —uf, wy = vwjwy +uf — i, v] = waws — vy — hy + haul;
wy = uywy — lj, v = waws — vo — ho + haug;

total | | 1,5S,22M [ L, 58,22 M |
Special case s = sg

6 compute s and precomputations: I,2M I,2M
wy = 1/r, 8o = shw, wa = upSe + vo + ho;

7 compute v’ = (f —hv — v?)/u® — (h + 2v)s/u — s*: S S
ul) = fi — 8% — soha — 2us;

& compute v/ = —h — (su + v) mod u': 2M 2M
w1 = so(u1 — uh) — h3uf + vy + hi, v = ujwy — wa;

[ total | [ 1,35, 13M | 1,35, 14M |

3.2 Index-Calculus

As in the analogous situation in number theory there exists a subexponential
attack based on the index-calculus principle.
As in the number field case the subexponential function is a function in the order
of the class group and so in ¢9.
But in all known index-calculus algorithms one cannot look at ¢ and ¢ as indepen-
dent variables. For instance if g = 1 is fixed then we do not get a subexponential
attack for ¢ — ool.
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This is obvious if one takes a closer look at the attack. In general the ideal classes
of S can be represented by two polynomials in X of degrees g resp. g — 1. One
chooses as factor base for the index-calculus attack the ideal classes which can
be represented by polynomials of smaller degrees.

So it was no surprise that the attack is most efficient if the genus is large com-
pared with q.

The best result in this direction is due to Enge-Stein:

For g/log(q) > t the discrete logarithm in the divisor class group of a hyperellip-
tic curve of genus ¢ defined over F , can be computed with complexity bounded

by Lijoge[ = ((1+ 312 4 (3)1/2)].

However it came as a surprise when Gaudry presented an exponential attack for
relatively small genus (in practice: g < 9) based on the same principle. He chooses
as factor base the classes which correspond to rational points on the curve. Their
number is about ¢. Due to linear algebra his algorithm has complexity

O(q*(log(q))")

with “reasonable small” constants.

If the genus of the curve is at most 3 the group order is bounded by O(¢?) and
hence the attack is weaker than a generic one.

The break even point is g = 4 and in fact Gaudry can show that in this case the
complexity of computing the discrete logarithm is bounded by O(¢®/®!

So the present state of the art is: We have only three types of rings O which avoid
serious index-calculus attacks and for which Pic(O) in manageable: maximal
orders belonging to curves of genus 1,2,3.

4 Counting Points

4.1 The Local L-series

In this section we use the structural properties of Jacobians being abelian varieties
A of dimension g. We have to determine the order of the Mordell-Weil group
A(F,). Since the desired size of |A(F ,)| is at least 10% we cannot count directly.
Instead we shall use the Galois group of F , and the known properties of its
action on torsion points of abelian varieties.

The absolute Galois group G, = Aut(F,/F ,) is topologically generated by the
Frobenius automorphism 7, =: I which maps elements of F, to their g—th
power.

For all natural numbers n IT acts on the points A(F,)[n], the group of elements
of A(F,) whose order divides n. Hence it induces a linear map on A(F,)[n] which
is, if n is prime to char(K), as Z/n-module isomorphic to (Z/n)%.
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Theorem 4.1 (Weil)
The characteristic polynomial of I1 w.r.t. this action is the reduction modulo n of

a polynomial with integer coefficients of degree 2g. This polynomial is independent
of n and is called the L-series L(T) of A over F .

Since A(F ,) is the kernel of the map II —id we get by elementary linear algebra:
Proposition 4.1 |A(F ,)| =| La(1) |.

A trivial but crucial consequence is:

Corollary 4.1 Z/p is embeddable into A(F ,) iff La(1) = 0modp.

Hence we are looking for abelian varieties for which we can

1. compute L4 (1) rapidly, and

2. prove that with a not too small probability a prime of size ~ ¢9 divides
La(1).

The second item can be discussed by global Galois theory using analytic and
algebraic number theory. These theories provide tools like effective versions of
Chebotarev’s density theorem and conjectures about the distribution of traces
of Frobenius elements (Lang-Trotter) and about the distribution of class groups
generalizing heuristics of Cohen-Lenstra.

We shall present some methods to solve the first item. They all use more or less
sophisticated properties of L-series and Frobenius automorphisms.

4.2 Constant Field Extensions

This approach is the simplest method: We begin with a small field F,, and A
defined over this field such that we can count the F,,—rational points of A 3. We
use this to compute the zeroes w; of the L-series of A over I, .

For m € N and ¢ = ¢i* the Frobenius automorphism II is the m-th power of 7.
Hence the zeroes of the L-series of A x IF , are the m—th powers of w; and so the
order of A(F ,) can be computed easily.

There is one obvious disadvantage: The group A(F,,) is embedded into A(F ,)
and so the maximal prime p dividing |A(F ,)| and useful for DL-systems divides
|A(F ,)|/|A(Fy,)|. We summarize:

Proposition 4.2 Let the notation be as above.
Let p be a prime larger than | A(F,,) |. Then Z/p is embeddable into A(F ,) iff p
divides

Hi:1,~~~,Qg (1 - wlm)(l - wi)_l

and so the size of p is at most ~ qg(m_l).

3to give a rough idea: small means that ¢9 < 10'°
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This means that the size of the DL-system compared with the key length and the
time needed for an addition (roughly proportional to log(g)) is not optimal.
Moreover one has to be careful with the degree of the extension since there is an
attack related to scalar restriction (“Weil descent”).

So mostly the method of constant field extensions is used only for very small
qo and large prime m which is not a Mersenne prime. The typical examples are
Koblitz curves defined over fields with 2-power order.

4.3 Schoof’s Algorithm:Etale Cohomology

Remember: L4(T)) is a polynomial with integral coefficients which simultaneously
for all natural numbers n is the characteristic polynomial of II acting on torsion
points of order n of A. Since it has integral coefficients (of size depending on ¢
and dim(A) only) it is determined by this action for small n.

This is the starting point of Schoof’s algorithm for computing the number of
points of elliptic curves over IF ;. It is made effective by another ingredient: It is
well known that there is a linear recurrency between the n-division polynomials
of elliptic curves.

Theorem 4.2 (Schoof)
For elliptic curves E the complexity to compute Lg(T) is bounded by a polynomial
function in log(q).

One can try to generalize this idea to arbitrary abelian varieties. One main task is
to find a way of computing division polynomials. Kampké&tter has done this in the
case of Jacobians of hyperelliptic curves proving that for fixed g the computation
of the L-series has polynomial complexity (similar results are due to Pila).

But Schoof’s algorithm is too slow for practical applications, and the same is true
in a much worse way for Kampkotter’s algorithm.

For elliptic curves things have become much better by observations and refine-
ments due to Atkin and Elkies. Instead of using the kernel of the multiplication
by small n on elliptic curves E one can use the kernel of endomorphisms of small
norm and determine Lg(7) modulo ideals in the endomorphism ring of £ (which
is an order Rg in an imaginary quadratic field or in a quaternion algebra).
This explains why the determination of Lg(7") modulo [ is easier if the prime [
splits in Rg.

For the actual computation one has to find convenient methods to describe iso-
genies of elliptic curves. Here enter the modular curves Xo(l). These curves
parametrize pairs of elliptic curves with cyclic isogenies of degree [. Their rich
theory is the key to many of the important new results in arithmetic geometry.

Remark:

We are interested in (hyper-)elliptic curves over finite fields. To handle them we
are led in a natural way to global objects in number theory: Orders in number
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fields, modular curves and corresponding Galois representations!

Based on these considerations Schoof’s algorithm for elliptic curves E has been
refined.

Proposition 4.3 Let € be a positive real number.
Let E be an elliptic curve over F , and | a prime which is split in Rg.
Then Lg(T) modulo | can be computed with probabilistic complexity

O((log(1)* - log(q))'*°).

To determine Lg(T') one uses the information modulo different primes [ and app-
lies the Chinese remainder theorem. The estimates due to Hasse-Weil imply that
O(log(q)) different primes [ are sufficient.

To use Proposition 4.3 we want to use split primes only and so we need bounds
which ensure that we have found enough of them.

An easy check decides whether F is supersingular (and then Lg(7) is known).
So assume that F is not supersingular. We observe that ¢ is a non-trivial norm
with respect to Rg/Z and so the size of the discriminant of Rg is bounded by
ol 1)

This implies conjecturally (and in practice) that it is enough to use primes [ up
to a bound of size O(log(q)). Under the assumption of (GRH) it can be proved
that the bound O(log(q))?) (with explicitly computable constants) is big enough.

Theorem 4.3 Assume that (GRH) is true. Let € be a positive real number. Let
E be an elliptic curve defined over F .

The order of E(F ) can be computed with (probabilistic) complexity O((log(q))°)
with 6 <54 € and conjecturally 6 < 4 + €.

By these results (and their practical implementation) we are able to count points
on elliptic curves in all cryptographically interesting situations quite efficiently.
The situation is completely different for hyperelliptic curves of genus 2 and 3
though by a new paper of Gaudry and Schost at least for random curves of genus
2 there is remarkable progress.

Nevertheless one has to look for and to rely on different technics.

4.4 Lifting strategies

Strictly spoken we have used in the last remark already a global argument: The
theory of complex multiplication and points on modular curves.

Of course it would be much more efficient to lift the whole situation to characte-
ristic 0 and determine a lifting of the Frobenius automorphism explicitly.

Note: II acts in two manners: As Galois automorphism and as endomorphism!
It is not difficult to lift II as Galois group element but quite difficult to do this as
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endomorphism.In general such liftings of A do even not exist. We need canonical
liftings.

The theorem is:

Assume that A is a simple abelian variety with a commutative ring of endomor-
phisms End(A). Then there is a lift of A to an abelian variety A defined over a
number field K which has the same ring of endomorphisms. L.e. there is a prime
p of K such that A modulo p equals A and Endg (A modulo p) is canonically
isomorphic to Endg, (A).

Take for instance A = E an elliptic curve. It may happen that the IT induces the
multiplication with an integer. Then E is supersingular and the center of its ring
of endomorphisms is isomorphic to Z over all extension fields.

In this case E together with its ring of endomorphisms is either not liftable or
the lifting does not give non-trivial information.

(Fortunately it is very easy to determine the L-series of E for supersingular el-
liptic curves.)

But assume that £ is not supersingular and so End(E) is an order O in an imagi-
nary quadratic field. Then (theorem of Deuring) there is a uniquely determined
elliptic curve defined over the ring class field of O.

In practice this does not help for randomly chosen elliptic curves for the order O
will have a discriminant of a size ~ 10%° and so E is defined over a number field
of degree ~ 103!

4.5 p—adic Methods

Since a lifting to a number field is hopeless in general we replace number fields
by their [j—adic completions. Note that at least nowadays it seems to be not
avoidable that the prime number [y (characteristic of the residue field) occurs
exponentially in the complexity but the degree n contributes as a small power
factor: so this idea works (surprisingly good) for small [, (and so for large n).
Change of notation: To coincide with the usual language we call the prime
number [y now p (and do not confuse it with group orders!).

4.5.1 Elliptic Curves: Work of Satoh

We shall give a very short sketch. Take p small, let E be an elliptic curve over Fp..
We can assume that E is not supersingular. A consequence of class field theory
is that the minimal polynomial of the j-invariant of the canonical lifting £ has
(all) zeroes in the extension W (F,») =: K, of degree n of Q, which is unramified
with residue field Fyn.

In the first step one determines the j-invariant of £ (in a sufficiently good p—adic
approximation) and so £.

Then we know that II has a lifting to Endg, ().

19



Now comes the trick: We have to compute how II operates on torsion points
(or another nice representation space). And so we can use the p-power torsion
points of £ which are in the kernel of the reduction map, i.e. which are in the
formal group of £. In this formal group we can use p-adic power series to do this
(Newton-type iteration).

The only problem is that the Frobenius automorphisms is not acting in a non-
trivial way on this group. But there is the dual map called Verschiebung which
acts nicely (separably) and which has the same trace as IT (and this is all we
need).

Practical remarks:

e By the theorem of Hasse we know the order of E(F,.) up to an error term
of size 2 - p™? and so it is enough to compute everything with (easy to
estimate) p-adic precision.

e In fact one does not use II but the action of the Frobenius automorphism
of F, on the Weil restriction of £, and since p is small one uses explicit
formulas for isogenies.

e The complexity of this algorithm is (for p fixed) of size O(n?) (needed space)
and (O(n°") (needed time).

For p = 2 Satoh’s method was re interpreted by Mestre and led to the so
called AGM-method. It can be generalized to hyperelliptic curves of genus
2 and 3. It gives the most efficient way to count points on hyperelliptic
curves in fields of characteristic 2.

4.5.2 Monsky-Washnitzer Cohomology

There is a theoretically more involved method which is surprisingly easy to be
implemented. It was first found by Kedlaya. Related methods (relying on Dwork’s
theory) are published by Lauder-Wan.

A general frame can be found in the thesis of Gerkmann (2003, Essen)

The method avoids to lift abelian varieties canonically but uses a p—adic version
of de Rham cohomolgy to find a representation space for II. The background
is the work of Monsky-Washnitzer on Lefschetz fixed points formulas on these
spaces. Till now we have only discussed the case that we want to count points on
abelian varieties. Now we shall count on an affine curve, from this it is easy to
get the number of points of corresponding projective curves and then by using
properties of Zeta-functions of curves and their relations to class group numbers
on gets the result for the Jacobian of the projective curve.
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Note: To do this for curves of genus g one has to count the points on the curve
over [Fpon.

We assume that C' is an affine curve defined over a field K of characteristic 0
with ring of coordinate ring A (e.g. A = K[X,Y]). If we remove finitely many
points from C' we get again an affine curve C with coordinate ring A;.

Let € be the the A;—module of holomorphic differentials on Cy. Inside of
there is the module of exact differentials, i.e. the image of A; under “differentia-
tion”, denoted by Bj.

H'(CY) = Q /B

is the first de Rham cohomology of C;.One knows that it is a finite dimensional
K —vectorspace.
The relevant example
Let C’ be a projective hyperelliptic curve of genus g with a rational Weierstraf3
point which we choose as point at infinity. Let C' be given as the affine part, an
equation is

v? = f(X)

where f is a polynomial of degree 2g + 1.
Let ' be the subcurve obtained by removing the zeroes of Y.
Then

A= KX, VY (Y? = f(X))

and we can give an explicit base of H'(C}):

HY(C)) =< X'dX/Y;i=0,---,2g— 1>
O < X'dX/Y?*i=0,---,2g—1>

(we get a decomposition under the action of the hyperelliptic involution). Now
assume that K = K, (for simplicity p odd), change notation C' — C and assume
that C' is the reduction modulo p of C.
If IT would act on H'(C;) as endomorphism we would have a good chance to use
fixed point formulas of Lefschetz type to count the number of points on Cy(Fn).
This will be not possible in general but we always have an obvious action if we
replace Ay by its formal p-adic completion A.,.
Reason: The map

X — X7

extends to
Y —

YL+ (FXO) = FXO)P)/F(X)P)Y2
as series converging in the p-adic topology very rapidly.
This induces an action (explicitly given) on the de Rham cohomology of A.
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S. Kedlaya proved that this formal cohomology is finitely generated with the same
set of generators as H'(Cy).

By the Theorem of Monsky-Washnitzer we get: The fixed point theorem for II
holds on this formal cohomology group, and we are done.

4.6 Real and Complex Multiplication

We have still a gap in our counting methods. We cannot handle Jacobians of
hyperelliptic curves of genus 2 and 3 over fields with “large” (i.e. p at least 11)
characteristic.

The following is a global construction, i.e. one constructs an abelian variety A
over a number field such that one can compute the number of points of the re-
duction of A modulo primes of this field.

We use the arithmetic theory of the Galois groups of special number fields K
(called CM-fields) which are totally imaginary quadratic extensions of totally
real number fields.

The simplest and well known case deals with elliptic curves with complex
multiplication whose endomorphism ring is an order in a field K = Q(v/d)
with d < 0.

More generally: Class field theory relates endomorphisms of special abelian
varieties A to elements in orders O in CM-fields K (Shimura - Taniyama).
We can determine (in principle explicitly, see example) an abelian variety Ay
defined over a known finite field extension L of Q such that the reduction of
Ak modulo (suitably chosen) prime ideals q in the ring of integers of L leads
to abelian varieties defined over the residue field of q with known L-series. The
necessary computations can be done (after a precalculation) in K'!

So the calculation of Ax modulo q and of L, mod q(7) is very fast and one
variety Ag gives rise to many abelian varieties over finite fields for which we
know the number of points. Even after Morain’s results this method remains in-
teresting for elliptic curves (for instance for statistical studies about the behavior
of class groups), and for higher dimensions and not very small characteristic it is
the most effective method known till now.

One can object that this method produces very special abelian varieties with an
explicitly known lifting to a C'M —variety over a number field. So it may be wise
to make Ax complicated enough, e.g. by using only fields K whose class number
is between 200 and 1000.

Examples:

1.) g = 1 : Class field theory of imaginary fields applied to elliptic curves and
especially to the j-invariant was implemented by A. M. Spallek 1992 (diploma
thesis) and is used in practice till today. It works very efficiently, the hardest
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computational problem is the factorization of polynomials of degree < 1000 over
F,.

2.) g = 2 : This is implemented by A.M. Spallek in her thesis, Essen 1994 | and
much more efficiently, by Annegret Weng (Thesis 2001), and uses

1. class field theory of fields of degree 2 over real quadratic fields (non-Galois
over QQ), 4

2. Invariant theory which is explicit and “easy” and

3. either elimination theory to solve a system of three polynomial equations
in 6 variables of degree > 1 over the ring of integers of a number field or

4. much better: Mestre’s method intersecting invariant forms (with one of them
a conic).

The implementation of the algorithm is relatively easy, it works efficiently. We
give one example:

As CM field take Q(m The resulting curve is
C:Y?=X"—140X3 + 240X? + 3810X — 6928.
Reduce modulo
p = 153946287550700989943 =~ 1.5 - 10%°,
The point
(7550700989929, 49, 31694823907497262594, 86028807748921141745)

on (Jo)(F,) has order
[ = 64570868647934186550539174412679.

For g = 3 things become more complicated.

First the invariant theory is not so well understood and the determination of the
equation of the curve from the knowledge of the invariants is too complicated.
The way out is to use the period matrix of the Jacobian from the beginning and
Mestre’s method.

The given CM-field can be used to compute the period matrix of an abelian
variety. It can be tested whether it is principally polarized and hence is the
Jacobian of a curve. But the chance of finding a hyperelliptic curve becomes
dramatically smaller if the genus increases.

One can enforce this by taking K as composite field of Q(v/—1) with a totally
real cubic field. This is done in the thesis of Weng.

4to avoid non-necessary automorphisms
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In future it would be nice to go away from hyperelliptic curves and to handle
more general curves of genus 3.

Let us end with an an outlook which is in the moment only of theoretical interest.
As explained above the main task in the construction of curves is to find the
period matrix of an abelian variety which is a candidate to be the Jacobian of a
hyperelliptic curve. As first source we used CM-Theory.

A second source uses Real multiplication (i.e. the ring of endomorphisms of
A contains an order of a totally real field K with [K : Q] = dim(A)) and its
relation with modular forms: Over Q the conjecture of Taniyama (proved for
elliptic curves) says that we should work with abelian varieties A which are factors
of the Jacobian of modular curves Xo(N). For these factors we know by work of
Shimura how their period matrices are related to cusp forms.

To use the Jacobians of the constructed curves for cryptography one needs their L-
series over residue fields. In other words one needs the local factors of the global
L-series. Again the theory of cusp forms and their relation to representations of
the Galois group of Q becomes crucial:

For all prime numbers [ not dividing N there are special endomorphisms, Hecke
operators T;, of A, and knowing 77 is as good as knowing the Frobenius 7; because
of the Eichler-Shimura relation:

7+ Tym +1=0.

So the fast computation of 7; is crucial both for the computation of the period
matrix and for the local L-series of A. In fact the computation of the period matrix
is not difficult for N < 10000 but the complexity to compute 7; is O(l-log(l) and
so one does not reach cryptographically interesting regions directly.
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