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1 Computation of the Green kernel

Let © be a connex bounded domain in R?, and we are interested about studying
the wave equation
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Let us denote G the Green’s kernel, solution in sense of distribution of the
equation, for a given y €
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Then, from (2), one can recompose solution of (1) by using the formula

u(t, x) = /Q / Gt — 5,5 y)n(s, y)dsdy 3)

Now we focus on computation of Green’s kernel. Let us denote G the Fourier
transform of G with respect to time, defined by

G’(w7x,y):AG(t7X,y)exp(—zwt)dt (4)

Equation (2) becomes, in Fourier domain,
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Now, assume that we know the eigenvalues and the eigenfunctions of the Lapla-
cien, i.e. that we know the sequence (A, ®,,),>0 with A, sorted in ascend order
such that

—AD,(x) =\, P, (x), forxe
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Moreover, we assume that the functions ®,, are orthogonal in L?(f2). We can
decompose then G by using

A _ <G<w?'7Y)’cI)n>
oy = 32 e )
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<AG(w7 K Y)a (I)n> = <G(w7 K Y), A‘I)n> =\ <G(w7 K Y)a (I)n> (8)
and
<6( - Y)’ q>n> = q)n(Y) (9)

Now, taking the scalar product in (5) with respect to ®,, and using both (8, 9)
leads to
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We replace (10) in (7), and we get

Gw,x,y) = Z (/\n - w2) (@, ) (11)

n>0

2 Computation of eigenvalues / eigenfunctions

2.1 General case

We consider problem (6) in H'(Q), and we multiply by a function test V €
H'(Q). Using Neumann condition, we can write variational formulation of this
problem as follow:

/vq>n-vvan/ ®,V (12)
Q Q

We assume that we’ve build matrices K and M corresponding to rigidity and
mass matrix, then we compute N first eigenvalues and eigenvectors as

{[V,D]=eigs(K,M,N,’SM’); J

Disa NxN diagonal matrix containing smallest eigenvalues, and V is a Ngqi x N
matrix containing eigenvectors.

KV=MVD

mesh = meshcircle(1,0.001);

[,ddl,”,1blddl ,Diag,Phi,PhiX ,PhiY]=mef (mesh,1,2);
Rigidity = PhiX’*Diag*PhiX+PhiY’*Diag*PhiY;

Mass = Phi’*Diag#*Phi;

[V,D]=eigs (Rigidity, Mass, 7, ’SM’);
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(a) Az = 3.3915 (b) Az = 3.3915 (c) As =9.3380
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(d) As = 9.3381 (e) Ag = 14.7107 (f) A7 = 17.6828

Figure 1: Computation of six first nonconstant eigenvectors when Q = B(0,1)

2.2 Rectangular domain

We consider domain Q = (0,L,) x (0, L, ), and we consider problem (6). Since
variables are separable in this domain, one can look at eigenproblem of Laplacian
in (0, L) with Neumann condition: function is given by

épla, L) = cos (B5), p=0 (13)

Then, one define, for a couple of integers (p, q), one defines @, ,(x,y) as

O, (2, y) = ¢p(x, La)dg(y, Ly) = cos (pgrx) cos (q;r_y> (14)
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and computation of Lapacian gives

Ay () = ((ﬁ—”) ¥ (i—”)) By (2,) (15)

so that we can define eigenvalues )\, ; as

b (5) 4 (8)



