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REMARKS ON THE REGION OF ATTRACTION OF AN

ISOLATED INVARIANT SET

BY

KONSTANTIN ATHANASSOPOULOS (Iraklion)

Abstract. We study the complexity of the flow in the region of attraction of an
isolated invariant set. More precisely, we define the instablity depth, which is an ordinal
and measures how far an isolated invariant set is from being asymptotically stable within
its region of attraction. We provide upper and lower bounds of the instability depth in
certain cases.

1. Introduction. A fundamental problem in the theory of dynamical
systems is to study the topological and dynamical structure of a compact
invariant set of a continuous flow, and in particular a compact minimal set,
and describe the behavior of the orbits near it. The simplest behavior occurs
near an asymptotically stable compact invariant set A of a continuous flow
on a separable, locally compact, metrizable space M . In this case, if W is
the region of attraction of A, then the flow in W \ A is parallelizable. If
moreover M is a finite-dimensional manifold, then A has the shape of a
compact polyhedron (see [7] and [8]).

The purpose of this note is to give a direction to study the region of at-
traction of an isolated compact invariant set A in the sense of C. C. Conley
and relate its topological properties and the dynamics in it with the struc-
ture of A. We introduce the notion of the instability depth of the region
of attraction W of an isolated invariant set A, which is a measure of the
complexity of the flow in W . More precisely, it measures how far A is from
being asymptotically stable with respect to the restricted flow in W , and is
particularly informative in case W is a locally compact subspace of M .

In Section 4 we give an example of a smooth flow on R
3 which has an

isolated invariant set, consisting of a fixed point, whose region of attraction
is a noncompact 3-manifold with (noncompact) boundary and which has
instability depth 3. This cannot happen in R

2. More precisely, we prove in
Theorem 4.3 that if x0 is a fixed point of a continuous flow on R

2 (or S2)
such that {x0} is an isolated invariant set, then the instability depth of
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its region of attraction must be at most 2. However, this is not true on
other orientable, closed 2-manifolds. We construct a smooth flow on the 2-
torus having a unique fixed point, which is an isolated invariant set, whose
region of attraction is the 2-torus and has instability depth 3. On higher-
dimensional manifolds we show in Theorem 4.5 that in a smooth flow the
region of attraction of an isolated unstable attractor of codimension at least 2
must have instability depth at least 2.

The instability depth is based on the notion of the intrinsic topology of
the region of attraction W of an isolated invariant set A, originally defined
in [9]. This topology is finer than the subspace topology of W inherited
from the phase space M , but is nevertheless locally compact, separable and
metrizable. The restricted flow on W remains continuous and A is globally
asymptotically stable in W with respect to the intrinsic topology. It follows
now from [1, Theorem 4.2] that if A is an isolated 1-dimensional compact
minimal set and its region of attraction is an ANR with respect to the
intrinsic topology, then A must be a periodic orbit. Thus it is an interesting
problem to find conditions under which the region of attraction is an ANR
with respect to the intrinsic topology. This could lead to Poincaré–Bendixson
type theorems for flows on higher-dimensional phase spaces.

2. Isolated invariant sets and attraction. Let (φt)t∈R be a contin-
uous flow on a separable, locally compact, metrizable space M . We shall
denote by φt(x) = tx the translation of the point x ∈ M along its orbit in
time t ∈ R. We shall also write IA = {tx : t ∈ I, x ∈ A} for I ⊂ R and
A ⊂ M . The orbit of x will be denoted by C(x), its positive semiorbit by
C+(x) and the negative one by C−(x). The positive limit set of the orbit of
x ∈M is the closed, invariant set

L+(x) = {y ∈M : tnx→ y for some tn → +∞}.

A compact invariant set A ⊂ M is called isolated if it has a compact
neighbourhood V such that A is the maximal invariant set in V . Each such V
is called an isolating neighbourhood of A. It is known (see [4], [5]) that every
isolating neighbourhood of A contains a smaller isolating neighbourhood N
of A such that there are compact sets N+, N− ⊂ ∂N with the following
properties:

(i) ∂N = N+ ∪N−.
(ii) For every x ∈ N+ there exists ε > 0 such that [−ε, 0)x ⊂ M \ N

and for every y ∈ N− there exists δ > 0 such that (0, δ]y ⊂M \N .
(iii) For every x ∈ ∂N \N+ there exists ε > 0 such that [−ε, 0)x ⊂ intN

and for every y ∈ ∂N \ N− there exists δ > 0 such that (0, δ]y ⊂
intN .



REGION OF ATTRACTION 159

The triad (N,N+, N−) is called an isolating block of A. The set N+ is
the entrance set and N− is the exit set of the isolating block. The sets A± =
{x ∈ N : C±(x) ⊂ N} and α± = ∂N ∩A± are compact and A = A+ ∩A−.
Moreover, ∅ 6= L+(x) ⊂ A for every x ∈ A+, and α+ ⊂ N+ \N−.

If M is a smooth n-manifold and the flow is smooth, then every neigh-
bourhood of an isolated invariant set A contains a smooth isolating block
(N,N+, N−) of A. This means that N is a smooth compact n-manifold
with boundary ∂N = N+ ∪ N−, the sets N+ and N− being smooth com-
pact (n−1)-manifolds with common boundary N+∩N−, which is a smooth
compact (n− 2)-manifold (without boundary) and on which the flow is ex-
ternally tangent to N . Moreover, the flow is transverse to N+ \ N− when
entering into N and transverse to N− \N+ when going out of N (see [6]).

If A ⊂M is a compact invariant set, then the invariant set

W+(A) = {x ∈M : ∅ 6= L+(x) ⊂ A}

is the region of attraction (or stable manifold) of A. If W+(A) is an open
neighbourhood of A, then A is called an attractor.

A compact invariant set A ⊂M is called stable (in the sense of Lyapunov)
if every neighbourhood of A contains a positively invariant neighbourhood
of A. A stable attractor A is also called asymptotically stable. Note that
these notions make sense also in the case where the phase space M is not
locally compact.

IfA is asymptotically stable, it is an isolated invariant set and there exists
an isolating block (N,N+, N−) such that N− = ∅ and ∂N = N+ = α+.
Moreover, the restricted flow in W+(A) \A is parallelizable with a compact
global section (see [3, p. 83]). A compact invariant set is called an isolated

unstable attractor if it is an isolated invariant set, an attractor, and is not
asymptotically stable.

3. The region of attraction of an isolated invariant set. Let (φt)t∈R

be a continuous flow on a separable, locally compact, metrizable space M .
Let A ⊂ M be an isolated compact invariant set and let (N,N+, N−) be
an isolating block of A. The final entrance time function f : W+(A) →
[−∞,+∞) defined by

f(x) =

{

sup{t ∈ R : tx ∈M \N} if x ∈W+(A) \ A,

−∞ if x ∈ A,

is lower semicontinuous. This follows immediately from the definition and
the continuity of the flow. Obviously, f(x)x ∈ α+ and f(tx) = f(x) − t
for every t ∈ R and x ∈ W+(A) \ A. The final entrance time function f
is discontinuous at x ∈ W+(A) \ A if and only if there are xn → x such
that f(xn) → +∞ (see [2, Lemma 3.1]). It follows that f is continuous
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on R int∂N α+ and so the flow maps R × int∂N α+ homeomorphically onto
R int∂N α+ (see [2, Proposition 3.2]). If the flow is smooth and the isolating
bock is smooth, then f is smooth on R int∂N α+.

It is clear from the above that if A is an isolated compact invariant
set, then A is not necessarily asymptotically stable with respect to the re-
stricted flow in W+(A). However, it is possible to define a new topology in
W+(A), which is finer than the subspace topology inherited from M , with
respect to which the flow remains continuous and A becomes asymptoti-
cally stable. Roughly speaking, this new topology is obtained by cutting
W+(A) along the discontinuity set of the final entrance time function with
respect to any isolating block of A. It was first defined in [9, Section 7] (see
also [10]).

Let (Xt, pst)s,t∈R be the following inverse system of compacta. For every
t ∈ R we let Xt = N/N+ and for s ≤ t the map pst : Xt → Xs is defined by

pst(x) =

{

(s− t)x if [s− t, 0]x ⊂ N \N+,

[N+] otherwise.

Obviously, pst([N
+]) = [N+] for every s ≤ t.

Let XN = lim←−(Xt, pst) and let ∗ denote the point of X all of whose coor-
dinates are equal to [N+]. Clearly, XN \ {∗} is a locally compact, separable,
metrizable space. If (xt)t∈R ∈ XN \ {∗} and xt0 = [N+], then xt = [N+]
for every t ≤ t0. Moreover, there exists τ ∈ R such that xτ 6= [N+] and so
xt ∈ N \N

+ and xτ = (τ − t)xt for every t ≥ τ . This implies that we have a
well defined function hN : XN \{∗} →M with hN ((xt)t∈R) = (−τ)xτ , where
τ ∈ R is any such that xτ 6= [N+]. Of course, since (t− τ)xτ = xt ∈ N \N

+

for every t ≥ τ , we have C+(xτ ) ⊂ N , and so xτ ∈W
+(A), because N is an

isolating neighbourhood of A. Thus, hN (XN \ {∗}) ⊂ W+(A). Conversely,
if x ∈W+(A), we let

xt =

{

[N+] if t ≤ f(x),

tx if t > f(x).

Then hN ((xt)t∈R) = x. This shows that hN (XN \{∗}) = W+(A). Moreover,
hN maps injectively and continuously XN \ {∗} onto W+(A). Note that

(hN )−1(A) = {(tx)t∈R : x ∈ A} = lim←−(A, pst|A),

which is homeomorphic to A, since (φs|A) ◦ (pst|A) = φt|A for every s ≤ t,
hence compact. So, hN maps (hN )−1(A) homeomorphically onto A. Simi-
larly, hN maps (hN )−1(α+) homeomorphically onto α+.

It is immediate from the above formula giving (hN )−1(x) that (hN )−1 is
discontinuous at x ∈ W+(A) if and only if the final entrance time function
f is discontinuous at x. Since f is continuous on R int∂N α+, so is (hN )−1

on that set.
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If (Λ,Λ+, Λ−) is another isolating block of A, then (hN )−1◦hΛ :XΛ\{∗}
→ XN \ {∗} is a homeomorphism (see [10, Theorem 7.3]). It follows that
there is a topology on W+(A) which is finer than the subspace topology
inherited from M , and which makes hN a homeomorphism and does not
depend on the chosen isolating block (N,N+, N−). This topology is called
the intrinsic topology of the region of attraction of A. We shall denote by
W+

i (A) the region of attraction of A equiped with the intrinsic topology.

Lemma 3.1. The final entrance time function f : W+
i (A)→ [−∞,+∞)

is continuous for any isolating block (N,N+, N−) of A.

Proof. Using the previous notation, we have to prove the continuity of
the function g = f ◦ hN : XN \ {∗} → [−∞,+∞). First observe that
g((xt)t∈R) = inf{t ∈ R : xt 6= [N+]}. Suppose that g((xt)t∈R) = t0 and
a < t0 < b for some a, b ∈ R. There exists a point x ∈ α+ such that
xt = (t−t0)x for every t > t0. Since α+ is a compact subset ofN+\N−, there
is an open neighbourhood V of x such that V ∩N− = ∅, and (−ε)V ⊂M \N
and εV ⊂ intN for some ε > 0 such that a < t0 − ε < t0 < t0 + ε < b. The
set

C =
(

(εV )×
∏

t6=t0+ε

N/N+
)

∩ (XN \ {∗})

is an open neighbourhood of (xt)t∈R in XN \ {∗}. If (yt)t∈R ∈ C, then
yt0+ε ∈ εV ⊂ intN and so g((yt)t∈R) < t0 + ε < b. On the other hand, there
exists a unique −2ε < s ≤ 0 such that syt0+ε ∈ α

+, because (−ε)V ⊂M \N ,
and so g((yt)t∈R) = t0 +ε+s > t0−ε > a. This shows the continuity in case
t0 ∈ R. If t0 = −∞, there exists some x ∈ A such that xt = tx for every
t ∈ R and we proceed similarly considering an open neighbourhood V of x
such that εV ⊂ intN for some ε > 0. In this case it suffices to take

C =
(

(εV )×
∏

t6=ε

N/N+
)

∩ (XN \ {∗}).

This completes the proof.

At this point observe that for every x ∈W+(A) and s ∈ R, if (hN )−1(sx)
= (yt)t∈R, then

yt =

{

[N+] if s+ t ≤ f(x),

tx if s+ t > f(x).

Hence (hN )−1 transforms the restricted flow on W+(A) to the left shift on
XN \ {∗}, which is a continuous flow. This implies that the flow remains
continuous with respect to the intrinsic topology and A remains a compact
invariant set in W+

i (A). The following proposition with a different proof can
also be found in [10, Theorem 3].
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Proposition 3.2. A is a globally asymptotically stable compact invari-

ant set in W+
i (A).

Proof. Let F : W+
i (A)→ R

+ be the function defined by

F (x) =

{

ef(x) if x ∈W+
i (A) \ A,

0 if x ∈ A,

where f is the final entrance time function with respect to any isolating
block (N,N+, N−) of A. From Lemma 3.1 we see that F is continuous. It is
also immediate from the definition that A = F−1(0) and F (tx) = e−tF (x)
for every t ∈ R and x ∈W+

i (A)\A. Thus F is a strictly decreasing Lyapunov
function for A along the orbits in W+

i (A)\A . This shows that A is globally
asymptotically stable in W+

i (A) (see [3, Ch. V, Theorem 2.2]).

Recall that the restricted flow on W+
i (A) \ A is parallelizable and each

level set F−1(a), a > 0, is a compact global section. In particular the set
α+ = F−1(1) is a global section to the flow onW+

i (A)\A and thusW+
i (A)\A

is homeomorphic to R× α+.

Example 3.3. Consider the smooth flow on R
2 defined by the system

of differential equations (in polar coordinates)

r′ = r(1− r), θ′ = sin2(θ/2).

Then {(1, 0)} is an isolated unstable attractor with W+(1, 0) = R
2\{(0, 0)}.

The closed disc of radius 1/2 centred at (1, 0) is an isolating block N and
α+ is the southern semicircle on ∂N , hence homeomorphic to the closed
interval [0, 1]. The final entrance time function f is discontinuous at (s, 0),
or equivalently the identity id : W+(1, 0) → W+

i (1, 0) is not continuous at
(s, 0). Now W+

i (1, 0) \ {(1, 0)} is homeomorphic to R× [0, 1] and W+
i (1, 0)

is homeomorphic to R× R
+.

4. The instability depth of the region of attraction. Let (φt)t∈R

be a continuous flow on a separable, locally compact, metrizable space M
and let A ⊂M be an isolated compact invariant set. Since W+

i (A) is locally
compact, id : W+(A)→ W+

i (A) is continuous on an invariant, open subset
(in the relative topology) of W+(A) by [11, Lemma 1]. Note that W+(A)
is not always locally compact, but only an Fσ-set in M . If W+(A) is not
locally compact, then id : W+(A) → W+

i (A) may be nowhere continuous.
For example, let ξ be the infinitesimal generator of an irrational flow on the
2-torus S1 × S1. Let x0 ∈ S1 × S1 and g : S1 × S1 → [0, 1] be a smooth
function such that g−1(0) = {x0}. The flow of the smooth vector field g · ξ
on S1 × S1 has the unique fixed point x0 and {x0} is an isolated invariant
set. Obviously, there exists x ∈ S1 × S1 such that W+(x0) = {x0} ∪ C(x)
and C−(x) is dense in S1 × S1. It follows that id : W+(x0) → W+

i (x0) is
nowhere continuous.
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Proposition 4.1. If W+(A) is locally compact, then:

(a) A is asymptotically stable with respect to the restricted flow in W+(A)
if and only if id : W+(A) → W+

i (A) is continuous at every point

of A.

(b) id : W+(A) → W+
i (A) is continuous on an invariant, dense, open

subset (in the relative topology) of W+(A) \ A.

Proof. (a) Suppose that id : W+(A) → W+
i (A) is continuous at every

point of A. This is equivalent to saying that the final entrance time function
f : W+(A)→ [−∞,+∞), with respect to any isolating block of A, is contin-
uous at every point of A. If A is not stable in W+(A), then, since W+(A) is
locally compact, there exist points x ∈ A, y ∈W+(A)\A, xn ∈W

+(A)\A,
n ∈ N, and times tn → +∞ such that xn → x and tnxn → y. Since f is
continuous at x, we have f(xn)→ −∞, and so f(tnxn) = f(xn)−tn → −∞.
This however contradicts the fact that f is lower semicontinuous, because
we get

−∞ < f(y) ≤ lim inf
n→∞

f(tnxn) = −∞.

The converse is trivial.

(b) The identity from W+(A) to W+
i (A) is discontinuous at a point x ∈

W+(A)\A if and only if the final entrance time function f : W+(A)\A→ R

is discontinuous at x. Since f is lower semicontinuous the set of points of
W+(A)\A at which f is continuous, is a countable intersection of open sets
dense in W+(A)\A. If W+(A) is locally compact, so is W+(A)\A, and from
the Baire Category Theorem the continuity set of f is dense in W+(A) \A.

If (N,N+, N−) is an isolating block of A, then the invariant, open, dense
subset of W+(A)\A provided by Proposition 4.1(b) contains R int∂N α+. It
is precisely R int∂N α+ in case A is an isolated unstable attractor.

Let now A ⊂M be an isolated compact invariant set which is not asymp-
totically stable with respect to the restricted flow in W+(A). The identity
from W+(A) to W+

i (A) is continuous on an open, invariant subset G0 of
W+(A) \ A. If W+(A) is locally compact, G0 is also dense in W+(A) \ A,
and the invariant set W+

1 (A) = W+(A)\G0 is locally compact. Inductively,
if α is an ordinal, and W+

α (A) ⊂W+(A) has been defined, then the identity
from W+

α (A) to W+
αi(A), which is the same set with the intrinsic topology,

is continuous on an open, invariant subset Gα of W+
α (A) \ A, and Gα is

dense in W+
α (A) \ A, in case W+

α (A) is locally compact. We then define
W+

α+1(A) = W+
α (A) \Gα. If α is a limit ordinal, we put

W+
α (A) =

⋂

β<α

W+
β (A).
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Since M has a countable basis, there exists an ordinal δ smaller than
the first uncountable ordinal such that W+

α (A) = W+
δ (A) for all α > δ. We

call the least such δ the instability depth of W+(A). It is a measure of the
complexity of the flow in W+(A), and measures how far A is from being
asymptotically stable with respect to the restricted flow in W+(A). Note
that if W+(A) is locally compact, then at every step W+

α (A) is locally com-
pact, and Gα 6= ∅, since it is dense in W+

α (A). So in this case the instability
depth is δ if and only if δ is the least ordinal such that W+

δ (A) = A.

Examples 4.2. (a) Let g : S1 → [0, 1] be a smooth function such that
g−1(0) = {1}. Then {1} is an isolated invariant set with respect to the flow
of the smooth vector field g · ∂

∂t
on S1 and W+(1) = S1. Any closed interval

in S1 which contains 1 in its interior is an isolating block of {1}. Here we
have W+

i (1) = (−∞, 1] and the identity id : W+(1) \ {1} →W+
i (1) \ {1} is

continuous. Therefore, W+
1 (1) = {1} and the instability depth is 1.

(b) The instability depth of the region of attraction of the isolated in-
variant set {(1, 0)} in Example 3.3 is 2, since W+

1 (1, 0) = (0,+∞)×{0} and
W+

2 (1, 0) = {(1, 0)}. More generally, let x0 be a fixed point of a flow on a
connected 2-manifold M (without boundary) such that {x0} is an isolated
invariant set. According to [2, Lemma 4.1], every neighbourhood of x0 con-
tains an isolating block (N,N+, N−) such that N is a compact 2-manifold
with boundary of genus zero. Moreover, the set ∂∂Nα

+ is finite, by [2, Propo-
sition 4.2]. Since W+

1 (x0) ⊂ {x0} ∪ R∂∂Nα
+, it follows that the instability

depth of W+(x0) is finite.
(c) The smooth flow on R

3 defined by the system of differential equations
(in cylindrical coordinates)

r′ = r(1− r), θ′ = sin2(θ/2), z′ = z2

has the two fixed points (0, 0, 0) and (1, 0, 0). Let A = {(1, 0, 0)}. The flow
has the following features:

(i) The cylinder r = 1, the vertical halfplane θ = 0 and the horizontal
plane z = 0 are invariant. The vertical line r = 0 is also invariant
and consists of three orbits.

(ii) If r > 0 and z ≤ 0, then L+(r, θ, z) = A, and if z > 0, then
L+(r, θ, z) = ∅.

(iii) A is an isolated invariant set and

W+(A) = {(r, θ, z) : r > 0, 0 ≤ θ < 2π and z ≤ 0}.

Note that W+(A) is a locally compact subspace of R
3. The closed ball

N = {(r, θ, z) : r2 − 2r cos θ + 1 + z2 ≤ 1/4}

of radius 1/2 centred at (1, 0, 0) is an isolating block of A and

α+ = {(r, θ, z) : r2 − 2r cos θ + 1 + z2 = 1/4, sin θ ≤ 0, z ≤ 0}.
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So ∂∂Nα
+ = {(r, θ, z) ∈ α+ : θ = 0 or z = 0}. Here we have

W+
1 (A) = A ∪ R∂∂Nα

+

= {(r, 0, z) : r > 0 and z ≤ 0} ∪ {(r, θ, 0) : r > 0 and 0 ≤ θ < 2π},

W+
2 (A) = {(r, 0, 0) : r > 0} and W+

3 (A) = A. Hence the instability depth
of W+(A) is 3.

The last example shows that assertion (ii) in [2, Proposition 3.2] is not
correct, as in the present terminology it states that the instability depth
is always at most 2. Of course it is correct if we consider on R∂∂Nα

+ the
intrinsic topology. This mistake does not affect the rest of the content of [2].
One case where the instability depth is always at most 2 is given by the
following.

Theorem 4.3. Let x0 be a fixed point of a continuous flow on R
2 or

S2 such that {x0} is an isolated invariant set. Then the instability depth of

W+(x0) is at most 2.

Proof. Let (N,N+, N−) be an isolating block of {x0} such that N is a
compact 2-manifold with boundary (see [2, Lemma 4.1]). There are finitely
many x1, . . . , xm ∈ ∂N such that ∂∂Nα

+ = {x1, . . . , xm} (see [2, Proposi-
tion 4.2]). We shall prove by contradiction that W+

2 (x0) = {x0}. If this is
not true, the restriction of the final entrance time function to

W+{x0} ⊂ {x0} ∪ C(x1) ∪ · · · ∪ C(xm)

is discontinuous at xk for some 1 ≤ k ≤ m. This implies that there is some
1 ≤ l ≤ m such that xk ∈ L

−(xl). Since xk ∈ α
+ and N is an isolating block,

there exists an open interval I ⊂ N+ \N− such that I is a local section to
the flow of some extent ε > 0 and xk ∈ I. There are tn → −∞ such that
tnxl ∈ I and if [xk, tnxl] denotes the subinterval of I with endpoints xk and
tnxl, then [xk, tn+1xl] ⊂ [xk, tnxl] for every n ∈ N. Obviously, tn+1−tn < 2ε.
The set

Cn = {x0} ∪ C
+(xk) ∪ [xk, tnxl] ∪ C

+(tnxl)

is a simple closed curve, which bounds a topological closed disc Dn by the
Jordan–Schönflies Theorem. Since I is a local section, Dn is positively in-
variant and (−ε, 0)[xk, tnxl] ∩ Dn = ∅, while [0, ε)[xk, tnxl] ⊂ Dn. Since
tn+1xl ∈ [xk, tnxl], it follows that C+(tn+1xl) ⊂ Dn, which contradicts the
fact that (tn − ε, tn)xl ∩Dn = ∅.

The question now arises whether Theorem 4.3 is true on any orientable,
closed 2-manifold. The answer to this question is negative even on the 2-
torus.

Example 4.4. Let ψ : R → [0, 1] be a smooth function such that
ψ−1(0) = (−∞, 3/2] and ψ−1(1) = [7/4,+∞), and let g : R

2 → R
+ be
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the smooth function defined in polar coordinates by

g(r, θ) = sin2(θ/2) + ψ(r) cos2(θ/2).

Let also h : R
2 → [0, 1] be a smooth function such that h−1(0) = {(2, 0)}

and h−1(1) = {(r, θ) : 1 ≤ r ≤ 3/2, 0 ≤ θ < 2π}. The closed annulus

[1, 2]× S1 = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ < 2π}

is invariant under the flow of the system of differential equations (in polar
coordinates)

r′ = (r − 1)(r − 2), θ′ = h(r, θ)g(r, θ).

The flow in [1, 2] × S1 has only the two fixed points (1, 0) and (2, 0). For
1 < r < 2 we have L+(r, θ) = {(1, 0)} and L−(r, θ) = {2} × S1, while
L+(1, θ) = L−(1, θ) = {(1, 0)} and L+(2, θ) = L−(2, θ) = {(2, 0)}.

We can identify {1} × S1 with {2} × S1 suitably and get a smooth flow
on the 2-torus S1 × S1 having only one fixed point x0 = p(1, 0) = p(2, 0),
such that {x0} is an isolated invariant set and W+(x0) = S1 × S1, where
p : [1, 2]×S1 → S1×S1 is the identification map. If Y = {(r, θ) ∈ [1, 2]×S1 :
r2 − 2r cos θ + 1 < 1/25 or r2 − 4r cos θ + 4 < 1/25}, then N = p(Y ) is an
isolating block of {x0} such that

α+ = p({(r, θ) ∈ [1, 2]× S1 : r2 − 2r cos θ + 1 = 1/25

and 49/50 ≤ cos θ ≤ 1, sin θ ≤ 0})

and therefore W+
i (x0) is homeomorphic to R× R

+.
If x1 = p(6/5, 0) and x1 = p(1, θ0), where cos θ0 = 49/50 and sin θ0 < 0,

then ∂∂Nα
+ = {x1, x2}. By the properties of the flow in [1, 2] × S1 we

have L+(x2) = L−(x2) = {x0} and L−(x1) = C(x2) ∪ {x0}. It follows that
W+

1 (x0) = C(x1) ∪ C(x2) ∪ {x0}, W
+
2 (x0) = C(x2) ∪ {x0} and W+

3 (x0) =
{x0}. So the instability depth is 3.

In higher dimensions we have the following lower bound.

Theorem 4.5. Let ξ be a smooth vector field on a connected, smooth

n-manifold M and A ⊂M be an invariant continuum of dimension at most

n − 2. If A is an isolated unstable attractor, then the instability depth of

W+(A) is at least 2.

Proof. Suppose that the instability depth of W+(A) is 1. This means
that the identity maps W+

i (A) \ A homeomorphically onto W+(A) \ A. If
(N,N+, N−) is a smooth isolating block of A, then the flow on W+(A) \A
is parallelizable with section α+. It follows that α+ is a union of connected
components of ∂N , thus being a compact, (n−1)-dimensional, smooth sub-
manifold of M without boundary. Since the dimension of A is at most n− 2
and W+(A) is connected and open, W+(A) \A is connected. It now follows
from [2, Theorem 3.4] that M is compact and M = W+(A). Moreover, A is
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an isolated unstable attractor with respect to −ξ whose region of attraction
(with respect to −ξ) has instability depth 1. This implies that ∂N = α+∪α−

and N \ A = R
+α+ ∪ R

−α−, where these two sets are nonempty, disjoint
and open in N \ A. This contradicts our assumption that A has dimension
at most n− 2, since A ⊂ intN .
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