
University of Crete

Master’s Thesis

Integrability of Hamiltonian
Systems by Thimm’s Method

Author:

Yiorgos Vlahakis

Supervisor:

Konstantin

Athanassopoulos

School of Science

Department of Mathematics and Applied Mathematics

September 2025





Integrability of Hamiltonian Systems by Thimm’s

Method

Yiorgos Vlahakis



4



Preface

A Hamiltonian system is called (completely) integrable if it admits a maximal num-
ber of independent first integrals in involution. By a classical theorem of Liouville,
the Hamiltonian differential equations can then be solved by quadratures and ac-
cording to Arnold’s theorem the orbits on an invariant torus, which is a regular
level of the collective momentum map, are the orbits of a constant vector field. The
integrable Hamiltonian systems are rare, a fact that had been recognised already
by H. Poincaré. The interest to find classes of integrable Hamiltonian systems had
almost vanished from his time until the 70’s, when is was found that certain PDEs,
such as for instance the Kortweg-de Vries equation, can be considered as infinite
dimensional integrable Hamiltonian systems.

This work is devoted to the detailed presentation of a method devised by A.
Thimm for proving integrability of interesting Hamiltonian systems. The first such
class are the geodesic flows of Riemannian manifolds. The method requires a suffi-
ciently large Lie group of symmetries of the system and can be described briefly as
follows. Suppose that we have a Poisson action (e.g. strongly Hamiltonian action)
of a Lie group G on a symplectic manifold M with corresponding momentum map
µ : M → g∗. If f is a G-invariant Hamiltonian, then for every smooth function h on
g∗, the function h ◦ µ is a first integral of the Hamiltonian vector field Xf (equiva-
lently Poisson commutes with f). If h1, h2 are two such functions, then h1 ◦ µ and
h2 ◦ µ Poisson commute. In this way one obtains a large class of first integrals in
involution, which however may not be independent.

Thimm’s method is based on a particular construction of first integrals by pro-
jecting the momentum map to non-degenerate subalgebras g′ of g with respect to
an AdG-invariant, non-degenerate, symmetric bilinear form B on g and composing
with Ad-invariant functions on g′ (identifying g∗ with g via B). If g1 and g2 are
two such subalgebras with [g1, g2] ⊂ g2, then the corresponding first integrals are in
involution. This holds in particular if g1 ⊂ g2 and we are thus led to consider chains

g1 ⊂ g2 ⊂ · · · gk ⊂ gk+1 = g

of subalgebras to obtain a family of first integrals in involution. Under certain
circumstances this may lead to dimM/2 independent first integrals and so to inte-
grability of Xf . This is Thimm’s method.

In the case of geodesic flows it is reasonable to consider Riemannian manifolds
with large isometry groups such as Riemannian homogeneous spaces. The difficult
part in order to prove integrability is to prove independence of the first integrals.
As an illustrating example, we present in full detail the integrability of the geodesic
flows of (real) Grassmann manifolds.



Thimm’s method has been conceptualized by V. Guillemin and S. Sternberg.
Using variations of the method G.P. Paternain and R.J. Spatzier found further
examples of manifolds with integrable geodesic flows.
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Chapter 1

Symplectic Geometry

1.1 Symplectic manifolds

In this introductory chapter we recall some basic notions and facts of Symplectic
Geometry. Details can be found in [1], [2], [4], [7], [10].

A symplectic form on a (real) vector space V of finite dimension is a non-
degenerate, skew-symmetric, bilinear form ω : V × V → R. This means that the
map ω̃ : V → V ∗ defined by ω̃(v)(w) = ω(v, w) for v, w ∈ V , is a linear isomorphism.
The pair (V, ω) is then called a symplectic vector space. By Cartan’s lemma if V is
a vector space of dimension n and ω is a skew-symmetric, bilinear form on V with
ω 6= 0, then the rank of ω̃ is even. Moreover if dimω̃(V ) = 2k, there exists a basis
l1, l2, ..., l2k of ω̃(V ) such that

k∑
j=1

l2j−1∧ l2j.

For the proof see [1] at page 21. So if (V, ω) is a sympletic vector space of dimension
2n, there exists a basis (a1, ..., an, b1, ...bn) of V ∗ such that

ω =
n∑
k=1

ak ∧ bk.

Example 1.1.1. Let W be a vector space of dimension n. On W ×W ∗ consider
the skew-symmetric, bilinear form ω defined by

ω((w, a), (w′, a′)) = a′(w)− a(w′).

If now ω̃(w, a) = 0, then 0 = ω((w, a), (w′, 0)) = −a(w′) for every w′ ∈ W . Thus
a = 0. Similarly, 0 = ω((w, a), (0, a′)) = a′(w) for every a′ ∈ W ∗. Hence w = 0.
This shows that (W ×W ∗, ω) is symplectic vector space.

Let (V, ω) be a symplectic vector space. A complex structure on V is a linear
automorphism J : V → V such that J2 = −id. It is said to be compatible with the
symplectic structure if it preserves ω and ω(v, J(v)) > 0 for all non-zero v ∈ V .
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CHAPTER 1. SYMPLECTIC GEOMETRY

Theorem 1.1.2. On every symplectic vector space (V, ω) there exists a compati-
ble complex structure J and a positive define inner product g given by the formula
g(u, v) = ω(u, J(v)) for every u, v ∈ V.

Proof. (See [1], page 25). �

A symplectic manifold is a pair (M,ω), where M is a smooth manifold and ω
is a closed 2-form on M such that (TpM,ωp) is a symplectic vector space for p ∈M .
Necessarily then M is even dimensional and if dimM = 2n, then 1

n!
ωn is a volume

2n-form on M .
A smooth map f : (M,ω) → (M ′, ω′) between symplectic manifolds is called

symplectic if f ∗ω′ = ω. If f is also a diffeomorphism, it is called symplectomorphism.

Example 1.1.3. For every positive integer n, the space R2n is a symplectic manifold,
by considering on each tangent space TpR2n ∼= R2n the canonical symplectic vector
space structure. If dx1, dx2, ..., dxn, dy1, dy2, ...dyn are the canonical basic differential
1-forms on R2n, then the canonical symplectic manifold structure is defined by the
2-form

n∑
i=1

dxi ∧ dyi.

Example 1.1.4. Another simple example is the 2-sphere with its standard area
2-form ω given by the formula ωx(u, v) = 〈x, u× v〉 for u, v ∈ TxS

2 and x ∈ S2,
where × denotes the exterior product in R3. With this area 2-form the total area
of S2 is 4π. More generally , let M ⊂ R3 be an oriented surface. The Gauss map
N : M → S2 associates to every x ∈M the outward unit normal vector N(x)⊥TxM .
Then, as in the case of S2, the formula ωx(u, v) = 〈N(x), u× v〉 for u, v ∈ TxM
defines a symplectic 2-form on M.

Example 1.1.5. The basic example of a symplectic manifold is the cotangent
bundle T ∗M of any smooth n-manifold M with the symplectic 2-form ω = −dθ,
where θ is the Liouville canonical 1-form on T ∗M which is defined by θa(v) =
a(π∗a(v)) for v ∈ Ta(T

∗M) and a ∈ T ∗M , where π∗a : Ta(T
∗M) → Tπ(a)M is the

derivative at a of the cotangent bundle projection π : T ∗M →M . Then locally θ is
given by the formula

θ|locally =
n∑
i=1

pidq
i and ω|locally =

n∑
i=1

dqi ∧ dpi.

Compare with Example 1.1.1 and 1.1.3.

Definition 1.1.6. An almost symplectic structure on a smooth manifold M of di-
mension 2n is a non-degenerate, smooth 2-form onM . An almost complex structure
on M is a smooth bundle endomorphism J : TM → TM such that J2 = −id.

There are vector bundle obstructions for a compact manifold to be symplectic.
This is due to the following.

14
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Proposition 1.1.7. A smooth manifold M of dimension 2n has an almost complex
structure if and only if it has an almost symplectic structure.

Proof. (See [1], page 35). �

Let (M,ω) be a symplectic manifold of dimension 2n. The tangent bundle of
M can be considered as a complex vector bundle of complex dimension n to which
correspond Chern classes ck ∈ H2k(M ;Z), 1 ≤ k ≤ n. The Chern classes are
related to the Pontryagin classes of the tangent bundle of M through polynomial
(quadratic) equations, which can serve as obstructions to the existence of a sym-
plectic structure on M , since not every compact, orientable, smooth 2n-manifold
has cohomology classes satisfying these equations. For instance, using these equa-
tions and Hirzebruch’s Singnature Theorem, one can show that the connected sum
CP 2#CP 2 cannot be a symplectic manifold.

Even though we have defined the symplectic structure in analogy to the Riem-
manian structure, their local behaviour differs drastically.

Theorem 1.1.8. (Darboux) Let ω0 and ω1 be two symplectic 2-forms on a smooth
2n-manifold M and p ∈ M . If ω0(p) = ω1(p), there exists an open neighbourhood
U of p in M and a diffeomorphism F : U → F (U) ⊂ M, where F (U) is an open
neighbourhood of p, such that F (p) = p and F ∗ω1 = ω0.

Proof. (See [1], page 41). �

Corollary 1.1.9. Let (M,ω) be a symplectic 2n-manifold and p ∈M. There exists
an open neighbourhood of p and a diffeomorphism F : U → F (U) ⊂ R2n such that

ω|U = F ∗(
n∑
i=1

dxi ∧ dyi).

Proof. (See [1], page 42). �

This shows that in symplectic geometry there are no local invariants, in contrast
to pseudo-Riemannian geometry, where there are highly non-trivial local invariants.
In other words, the study of symplectic manifolds is of global nature.

1.2 Hamiltonian systems

Let (M,ω) be a symplectic 2n-manifold. A smooth vector field X on M is called
Hamiltonian if there exists a smooth function H : M → R such that iXω = dH.
In other words,

ωp(Xp, vp) = vp(H)

for every vp ∈ TpM and p ∈ M . We usally write X = XH and obviously XH =
ω̃−1(dH). Since LXω = d(iXω) = 0, the flow of XH consists of symplectomorphisms.

15



CHAPTER 1. SYMPLECTIC GEOMETRY

If M = T ∗Rn ∼= R2n with the canonical symplectic 2-form

ω =
n∑
i=1

dqi ∧ dpi,

we have ω̃( ∂
∂qi

) = dpi and ω̃( ∂
∂pi

) = −dqi. Thus,

XH = ω̃−1

(
n∑
i=1

∂H

∂qi
dqi +

n∑
i=1

∂H

∂pi
dpi

)
=

n∑
i=1

(
∂H

∂pi
· ∂
∂qi
− ∂H

∂qi
· ∂
∂pi

)
.

So the integral curves of XH are the solutions of Hamilton’s differential equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, 1 ≤ i ≤ n.

According to Darboux’s theorem, this is true locally, with respect to suitable local
coordinates on every symplectic 2n-manifold.

Two elementary properties of Hamiltonian vector fields are the following.

Proposition 1.2.1. The smooth function H : M → R is a first integral of the
Hamiltonian vector field XH .

Proof. Indeed XH(H) = dH(XH) = ω(XH , XH) = 0. �

Proposition 1.2.2. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. A dif-
feomorphism f : M1 → M2 is symplectic if and only if f∗(XH◦f ) = XH for every
open set U ⊂M2 and smooth function H : U → R.

Proof. (See [1], page 46). �

If (M,ω) is a symplectic manifold and F, G ∈ C∞(M), then the smooth function

{F,G} = iXG
iXF

ω ∈ C∞(M)

is called the Poisson bracket of F and G. From Proposition 1.2.2 we obtain the
following.

Corollary 1.2.3. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. A diffeo-
morphism f : M1 →M2 is symplectic if and only if

f ∗{F,G} = {f ∗(F ), f ∗(G)}

for every open set U ⊂M2 and F, G ∈ C∞(U).

Proof. (See [1], page 47). �

Corollary 1.2.4. Let X be a complete Hamiltonian vector field with flow (φt)t∈R
on a symplectic manifold M . Then φ∗t{F,G} = {φ∗t (F ), φ∗t (G)} for every F , G ∈
C∞(M). If X is not complete, the same is true on suitable open sets. �
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Corollary 1.2.5. Let X be a complete Hamiltonian vector field with flow (φt)t∈R
on a symplectic manifold (M,ω). Then

X{F,G} = {X(F ), G}+ {F,X(G)}

for every F, G ∈ C∞(M). If X is not complete, the same is true on suitable open
sets.

Proof. (See [1], page 48). �

It is obvious that for a symplectic manifold (M,ω) the Poisson barcket

{, } : C∞(M)× C∞(M)→ C∞(M)

is bilinear and skew-symmetric. From Corollary 1.2.5 follows that it satisfies the
Jacobi identity. Indeed if F , G, H ∈ C∞(M) then

{F,G} = (iXF
ω)(XG) = dF (XG) = XG(F )

and thus {{F,G}, H} = XH({F,G}). Consequently,

{{F,G}, H} = {XH(F ), G}+ {F,XH(G)} = {{F,H}, G}+ {F, {G,H}}.

This is the Jacobi identity and so (C∞(M), {, }) is a Lie algebra.
There is a Leibniz formula for the product of two smooth functions with respect

to the Poisson bracket, because if F, G, H ∈ C∞(M), then

{F ·G,H} = XH(F ·G) = F ·XH(G) +G ·XH(F ) = F · {G,H}+G · {F,H}.

Proposition 1.2.6. Let XH be a Hamiltonian vector field with flow φt on a sym-
plectic manifold M . Then

d

dt
(F ◦ φt) = {F ◦ φt, H} = {F,H} ◦ φt

for every F ∈ C∞(M).

Proof. By the chain rule, for every p ∈M we have

d

dt
(F ◦ φt)(p) = (dF )(φt(p))XH(φt(p)) = {F,H}(φt(p))

= {F ◦ φt, H ◦ φt}(p) = {F ◦ φt, H}(p),
since H is a first integral of XH . �

Corollary 1.2.7. A smooth function F : M → R on a symplectic manifold M is
a first integral of a Hamiltonian vector field XH on M if and only if {F,H} = 0. �

Let h(M,ω) denote the linear space of the hamiltonian vector fields of the sym-
plectic manifold (M,ω).

17
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Proposition 1.2.8. If X, Y ∈ h(M,ω), then [X, Y ] = −Xω(X,Y ). In particular,
[XF , XG] = −X{F,G} for every F, G ∈ C∞(M).

Proof. Indeed, i[X,Y ] = [LX , iY ] and therefore

i[X,Y ]ω = LX(iY ω)− iY (LXω) = d(iXiY ω) + iX(d(iY ω))− 0

= d((ω(X, Y )) + 0 = −iXω(X,Y )
ω.

Since ω is non-degenerate the result follows. �

It follows that h(M,ω) is a Lie subalgebra of the Lie algebra of smooth vector
fields of M .

1.3 The geodesic flows of pseudo-Riemannian man-

ifolds as Hamiltonian systems

Newtonian mechanical systems with potential energy on pseudo-Riemannian man-
ifolds are classical examples of Hamiltonian systems. A special case is that of the
geodesic field where the potential energy is zero.

Let (M, g) be a n-dimensional pseudo-Riemannian manifold with metric g. There
is a natural bundle isomorphism L : TM → T ∗M , such that if v ∈ TxM then L(v)
is the linear form on TxM defined by L(v)(w) = gx(v, w). The inner product gx
on TxM is thus transfered to an inner product g∗x on T ∗xM . If in local coordinates
the matrix of g is G = (gij), then in the dual local coordinates the matrix of g∗ is
G−1 = (gij). If θ is the standard differential form of Liouville and ω = −dθ is the
standard symplectic 2-form on T ∗M , then L∗ω = −d(L∗θ) is a symplectic 2-form
on TM .

Definition 1.3.1. A Newtonian mechanical system on the pseudo-Riemannian
manifold (M, g) is the Hamiltonian vector field XE on TM with Hamilitonian func-
tion of the form

E(v) =
1

2
g(v, v) + V (π(v))

where V : M → R is a smooth function, called the potential energy, and π : TM →
M is the tangent bundle projection.

We shall find Hamilton’s equations of motion for a Newtonian mechanical system
on a pseudo-Riemannian manifold. First we must find local expressions for L∗θ and
L∗ω. Let (U, q1, ..., qn) be a system of local coordinates on M . Since L(x, v) =
(x, gx(v, ·)), its Jacobian is

DL(x, v) =

(
In 0

∂
∂x
gx(v, ·) gx(·, ·)

)
or explicitly

DL(x, v)

(
u
w

)
=

(
u

( ∂
∂x
gx(v, ·))u+ gx(·, w)

)
.

18
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It follows that

(L∗θ)(x,v)(u,w) = θL(x,v)(u, (
∂

∂x
gx(v, ·))u+ gx(·, w)) = gx(v, u).

This means that if (q1, ..., qn, v1, ..., vn) are the corresponding local coordinates of
π−1(U), then on π−1(U) we have

L∗θ =
n∑

i,j=1

gijv
jdqi

and therefore

L∗ω =
n∑

i,j=1

gijdq
i ∧ dvj +

n∑
i,j,k=1

∂gij
∂qk
· vjdqi ∧ dqk.

Note that the local coordinates on π−1(U) are not Darboux. Next we have

dE =
1

2

n∑
i,j,k=1

∂gij
∂qk

vivjdqk +
n∑

i,k=1

gikv
idvk +

n∑
k=1

∂V

∂qk
dqk,

and

iXE
L∗ω(

∂

∂qk
) = −

n∑
j=1

gkjdv
j(XE) +

n∑
i,j=1

∂gij
∂qk

vjdqi(XE)−
n∑
k=1

∂gkj
∂ql

vjdql(XE),

iXE
L∗ω(

∂

∂vk
) =

n∑
i=1

gikdq
i(XE), 1 ≤ k ≤ n.

If I is an open interval, then (q1(t), ..., qn(t), v1(t), ..., vn(t)), t ∈ I, is an integral
curve of XE if and only if it is a solution of the system of differential equations

n∑
i=1

gikq̇
i =

n∑
j=1

gikv
i

−
n∑
j=1

gkj v̇
j +

n∑
i,j=1

∂gij
∂qk

vj q̇i −
n∑

i,j=1

∂gkj
∂qi

vj q̇i =
1

2

k∑
i,j=1

∂gij
∂qk

vivj +
∂V

∂qk
, 1 ≤ k ≤ n.

It is obvious that the first n equations are equivalent to q̇i = vi, 1 ≤ i ≤ n. The rest
of them can be written

n∑
j=1

gkj v̇
j = −1

2

k∑
i,j=1

∂gij
∂qk

vivj +
n∑

i,j=1

∂gij
∂qk

vjvi −
n∑

i,j=1

∂gkj
∂qi

vjvi − ∂V

∂qk
, 1 ≤ k ≤ n.

or equivalently, since G is symmetric,

v̇k =
n∑
l=1

gkl

[
1

2

k∑
i,j=1

∂gij
∂ql

vivj −
n∑

i,j=1

∂glj
∂qi

vjvi − ∂V

∂ql

]
= −

n∑
i,j=1

Γkijv
ivj −

n∑
j=1

gkl
∂V

∂ql
,
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where Γkij are the Christofell symbols, because

Γkij =
1

2

n∑
l=1

gkl
(
∂gjl
∂qi

+
∂gli
∂qj
− ∂gij
∂ql

)
and thus

n∑
i,j=1

Γkijv
ivj =

n∑
i,j=1

n∑
l=1

gkl
(
∂gjl
∂qi
− 1

2

∂gij
∂ql

)
vivj.

So Hamilton’s differential equations can be written locally

q̇k = vk,

v̇k = −
n∑

i,j=1

Γkijv
ivj −

n∑
i=1

gki
∂V

∂qi
, 1 ≤ k ≤ n,

which are equivalent to the system of second order differential equations

q̈k +
n∑

i,j=1

Γkij q̇
iq̇j = −

n∑
i=1

gki
∂V

∂qi
, 1 ≤ k ≤ n.

These calculations prove the following.

Proposition 1.3.2. A smooth curve γ : I →M in a pseudo-Riemannian manifold
M is the projection of an integral curve in TM of the Newtonian mechanical system
with potential energy V : M → R if and only if

∇γ̇ γ̇ = −gradV.

The mechanical system with potential energy V = 0 of a pseudo-Riemannian
manifold M is the geodesic vector field of M . The metric on M is by definition
geodesically complete if the geodesic vector field is complete on TM and so defines
a flow, called geodesic flow of M . The projected curves on M of the integral curves
of the geodesic vector field are the geodesics.

1.4 Coadjoint orbits

Let G be a Lie group with Lie algebra g and identity element e. The action of
G on itself by conjugation, i.e. ψg(h) = ghg−1, g ∈ G, fixes e and induces the
adjoint linear representation Ad : G→ Aut(g) defined by

Adg(X) = (ψg)∗e(X) =
d

dt

∣∣∣∣
t=0

g(exptX)g−1.
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Example 1.4.1. The Lie group SO(3,R) is compact, connected and its Lie algebra
so(3,R) is isomorphic to the Lie algebra of skew-symmetric linear maps of R3 with
respect to the Lie bracket [A,B] = AB −BA, A, B ∈ R3×3.

On the other hand, the map ̂ : R3 → so(3,R) defined by

v̂ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0


where v = (v1, v2, v3), is a linear isomomprhism and v̂·w = v×w, for every v, w ∈ R3.
This actually characterizes ̂. So we have

(ûv̂−v̂û)w = û(v×w)−v̂(u×w) = u×(v×w)−v×(u×w) = (u×v)×w = (û× v)w.

Thus, ̂ is a Lie algebra isomorphism of the Lie algebra (R3,×) onto so(3,R). Using
this isomorphism one can describe the exponential map of SO(3,R).

Let w ∈ R3, w 6= 0 and {e1, e2, e3} be an orthonormal basis of R3 such that
e1 = w/ ‖w‖. The matrix of ŵ with respect to this basis is

ŵ = ‖w‖

 0 0 0
0 0 −1
0 1 0

 .

For t ∈ R let γ(t) be the rotation around the axis determined by w through the
angle t ‖w‖ , that is

γ(t) =

 1 0 0
0 cos t ‖w‖ −sin t ‖w‖
0 sin t ‖w‖ cos t ‖w‖

 .

Then,

γ̇(t) =

 0 0 0
0 −‖w‖ sin t ‖w‖ −‖w‖ cot t ‖w‖
0 ‖w‖ cos t ‖w‖ −‖w‖ sin t ‖w‖

 = γ(t)ŵ = (Lγ(t))∗I3(ŵ) = Xŵ(γ(t)),

where Lγ(t) denotes the left translation on SO(3,R) by γ(t) and Xŵ the left invariant
vector field on SO(3,R) corresponding to ŵ. In other words, γ is an integral curve
of Xŵ with γ(0) = I3. It follows that exp(tŵ) = γ(t) for every t ∈ R.

For every A ∈ SO(3,R) and v ∈ R3 we have now

AdA(v̂) =
d

dt

∣∣∣∣
t=0

A(exp(tv̂))A−1 =
d

dt

∣∣∣∣
t=0

Aγ(t)A−1 = Aγ(0)v̂A−1 = Av̂A−1.

Thus,
AdA(v̂)w = Av̂(A−1w) = A(v × A−1w) = Av × w

for every w ∈ R3, since detA = 1. Hence AdA(v̂) = Âv and identifying R3 with
so(3,R) via ̂ we conclude that AdA = A.

Let now ad= (Ad)∗e : g→ TeAut(g) ∼= End(g), that is

adX = (Ad)∗e(X) =
d

dt

∣∣∣∣
t=0

Adexp(tX)
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for every X ∈ g. If we denote by XL the left invariant vector field corresponding to
X and (φt)t∈R its flow, then for every Y ∈ g ∼= T0g we have

adX(Y ) =
d

dt

∣∣∣∣
t=0

Adexp(tX)(Y ) =
d

dt

∣∣∣∣
t=0

(ψexp(tX))∗e(Y )

=
d

dt

∣∣∣∣
t=0

(Rexp(−tX) ◦ Lexp(tX))∗e(Y ) =
d

dt

∣∣∣∣
t=0

(Rexp(−tX))∗ exp(tX) ◦ (Lexp(tX))∗e(Y )

=
d

dt

∣∣∣∣
t=0

(Rexp(−tX))∗ exp(tX)(YL(exp(tX)) =
d

dt

∣∣∣∣
t=0

(φ−t)∗φt(e)(YL(φt(e)) = [X, Y ],

since φt(g) = g exp(tX) = Rexp(tX) = Rexp(tX)(g) for every g ∈ G, where R denotes
right translation.

As usual, the adjoint representation induces a representation Ad∗ : G→ Aut(g∗)
on the dual of the Lie algebra defined by Ad∗g(a) = a ◦Adg−1 , a ∈ g∗, which is called
the coadjoint representation of G.

Example 1.4.2. Continuing from Example 1.4.1 we shall describe the coadjoint
representation of SO(3,R). The transpose of the linear isomorphism ̂ induces an
isomorphism from so(3,R)∗ to (R3)∗ and the latter can be identified naturally with
R3 via the euclidean inner product. The composition of these two isomorphisms gives
a way to identify so(3,R)∗ with R3 and then, for v, w ∈ R3 we have v̂∗(ŵ) = 〈v, w〉,
where v̂∗ is the dual of v̂ and 〈 , 〉 is the euclidean inner product. Now

Ad∗A(v̂∗)(ŵ) = v̂∗(AdA−1(ŵ)) =
〈
v, A−1w

〉
= 〈Av,w〉 ,

for every A ∈ SO(3,R), since the transpose of A is A−1. This shows that Ad∗A = A
via the above identification. Note that the orbit of the point v̂∗ ∈ so(3,R)∗ ∼= R3 is
the set {Av | A ∈ SO(3,R)}, which is the sphere of radius ‖v‖ centered at 0.

The orbit Oµ of µ ∈ g∗ under the coadjoint representation is an immersed sub-
manifold of g∗, since the action is smooth. If Gµ is the isotropy group of µ, then
the map Ad∗(µ) : G/Gµ → Oµ taking the coset gGµ to µ ◦ Adg−1 is a well defined,
injective, smooth immersion of the homogeneous space G/Gµ onto Oµ ⊂ g∗. If the
Lie group G is compact, then Oµ is an embedded submanifold of g∗ and the above
map an embedding. If however G is not compact, Oµ may not be embedded.

Lemma 1.4.3. If µ ∈ g∗, then the tangent space of Oµ is

TµOµ = {µ ◦ adX | X ∈ g}.

Proof. Let γ : R → G be a smooth curve with γ̇(0) = X. For instance, let γ(t) =
exp(tX), in which case γ(t)−1 = exp(−tX). Then µ(t) = µ ◦ Adγ(t)−1 is a smooth
curve with values in Oµ ⊂ g∗ and µ(0) = µ. If Y ∈ g, then µ(t)(Y ) = µ(Adγ(t)−1(Y ))
for every t ∈ R and differentiating at 0 we get

µ′(0)(Y ) = µ(ad(−X)(Y ) = −µ(adX(Y )),

taking into account the natural identification Tµg
∗ ∼= g∗. �
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Example 1.4.4. In the case of the Lie group SO(3,R), for every v, w ∈ R3 ∼=
so(3,R) and µ ∈ R3 ∼= so(3,R)∗ we have

µ(adv̂(ŵ)) = 〈µ, v × w〉 = 〈µ× v, w〉 .

It follows that TµOµ = {µ× v | v ∈ R3}, which is indeed the orthogonal plane to µ,
i.e. the tangent plane of the sphere of center 0 and radius ‖µ‖ at µ.

The proof of Lemma 1.4.3 shows that for every X ∈ g, the fundamental vector
field Xg∗ of the coadjoint action induced by X is given by the formula

Xg∗(µ) =
d

dt

∣∣∣∣
t=0

Ad∗exp(tX)(µ) = −µ ◦ adX .

Obviously, TµOµ = {Xg∗(µ) | X ∈ g}. Note that if X, X ′ ∈ g are such that
Xg∗(µ) = X ′g∗(µ), then

−µ([X, Y ]) = Xg∗(µ)(Y ) = X ′g∗(µ)(Y ) = −µ([X ′, Y ])

for every Y ∈ g. So there is a well defined 2-form ω− on the coadjoint orbit O = Oµ
such that

ω−µ (Xg∗(µ), Yg∗(µ)) = −µ([X, Y ])

for every µ ∈ O and X, Y ∈ g, which is called the Kirillov 2-form on O.

The Kirillov 2-form ω− is non-degenerate, because if ω−(Xg∗(µ), Yg∗(µ)) = 0 for
every Yg∗(µ) ∈ TµO, then Xg∗(µ)(Y ) = −µ([X, Y ]) = 0 for every Y ∈ g. This means
Xg∗(µ) = 0. In order to prove that ω− is symplectic, it remains to show that it is
closed.

We first note that Adg[X, Y ] = [Adg(X),Adg(Y )] for every X, Y ∈ g and g ∈ G.
It is also true that (Adg(X))g∗ = Ad∗g ◦Xg∗ ◦Ad∗g−1 X ∈ g and g ∈ G. Indeed, if we
let γ : R→ G be a smooth curve with γ̇(0) = X, for instance γ(t) = exp(tX), then

Adg(X) =
d

dt

∣∣∣∣
t=0

gγ(t)g−1

and therefore,

(Adg(X))g∗(µ) =
d

dt

∣∣∣∣
t=0

Adgγ(t)g−1(µ) =
d

dt

∣∣∣∣
t=0

(Ad∗g ◦ Ad∗γ(t) ◦ Ad∗g−1)(µ)

= (Ad∗g ◦Xg∗ ◦ Ad∗g−1)(µ).

Based on that we can see that the Kirillov 2-form is Ad∗-invariant, since if we
let µ ∈ g∗ and ν = Ad∗g(µ), g ∈ G, then (Adg(X))g∗(ν) = Ad∗g(Xg∗(µ)). Thus, for
every X, Y ∈ g we have

((Ad∗g)
∗ω−)µ(Xg∗(µ), Yg∗(µ)) = ω−ν ((Adg(X))g∗(ν), (Adg(Y ))g∗(ν))

= −ν([Adg(X),Adg(Y )]) = −ν(Adg[X, Y ]) = −µ([X, Y ]) = ω−µ (Xg∗(µ), Yg∗(µ)).

For every ν ∈ g∗ we have a well defined 1-form νL on G such that

(νL)g = ν ◦ (Lg−1)∗g ∈ T ∗gG.
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Moreover, νL is left invariant, because for every h ∈ G we have

(L∗h)(νL)g = (νL)Lh(g)
◦ (Lh)∗g = ν ◦ ((Lg−1h−1)∗hg ◦ (Lh)∗g)

= ν ◦ (Lg−1h−1 ◦ Lh)∗g = νL(g).

Obviously, iXL
νL is constant and equal to ν(X) for every X ∈ g.

Let ν ∈ O and φν : G → O be the submersion φν(g) = Ad∗g(ν). The 2-form
σ = φ∗νω

− on G is left invariant, beacause

L∗gσ = (φν ◦ Lg)∗ω− = (Ad∗g ◦ φν)∗ω− = φ∗ν((Ad∗g)
∗ω−) = φ∗νω

− = σ

for every g ∈ G, since ω− is Ad∗-invariant and φν ◦ Lg = Ad∗g ◦ φν .

Lemma 1.4.5. For every X, Y ∈ g we have σ(XL, YL) = −νL([XL, YL]).

Proof. First we observe that

(φ∗νω
−)e(X, Y ) = ω−ν ((φν)∗e(X), (φν)∗e(Y )) = ω−(Xg∗(ν), Yg∗(ν)) = −ν([X, Y ]).

Therefore,

σ(XL, YL)(e) = (φ∗νω
−)e(X, Y ) = −ν([X, Y ]) = −νL([XL, YL])(e).

Since the smooth functions σ(XL, YL), −ν([XL, YL]) : G→ R are left invariant and
take the same value at e, they must be identical. �

Note that

(dνL)(XL, YL) = XL(νL(YL))− YL(νL(XL))− ν([XL, YL]) = −νL([XL, YL]),

because the functions νL(YL) = iYLνL and νL(XL) = iXL
νL are constant.

Lemma 1.4.6. The 2-form σ is exact and σ = dνL.

Proof. Since σ is left invariant, for any two smooth vector fields X, Y on G we have

σ(X, Y )(g) = (L∗g−1σ)g(X(g), Y (g)) = σe((Lg−1)∗g(X(g)), (Lg−1)∗g(Y (g)))

= σ(X ′L, Y
′
L)(e) (setting X ′ = (Lg−1)∗g(X(g)) and similarly for Y ′)

= (dνL)(X ′L, Y
′
L)(e) = (dνL)g((Lg)∗e(X

′), (Lg)∗e(Y
′))

= (dνL)g(X(g), Y (g)) = (dνL)(X, Y )(g). �

Proposition 1.4.7. The Kirillov 2-form ω− on O is closed and therefore symplec-
tic.

Proof. By Lemma 1.4.6. d(φ∗νω
−) = dσ = d(dνL)) = 0. Hence φ∗ν(dω

−) = 0. But φ∗ν
is injective, since φν is a submersion. It follows that dω− = 0. �
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In particular every orbit of the coadjoint action of a Lie group G on its dual Lie
algebra g∗ has even dimension.

We shall end this section with an illustrating example.

Example 1.4.8. As we saw in Example 1.4.2. if µ ∈ so(3,R)∗ ∼= R3, then Oµ
is the sphere centered at 0 with radius ‖µ‖. Let v, w ∈ so(3,R) ∼= R3. Then
vR3 = µ× v ∈ TµOµ and wR3 = µ× w ∈ TµOµ. Hence the Kirillov 2-form on Oµ is
given by the formula

ω−µ (vR3 , wR3) = −〈µ, v × w〉 .
Since Oµ is a sphere, its area element is given by the formula

dA(v, w) = 〈N, v × w〉 ,

where N is the outer unit normal vector. It follows that

dA(µ×v, µ×w) =

〈
1

‖µ‖
µ, (µ× v)× (µ× w)

〉
=

〈
1

‖µ‖
µ, 〈µ, µ× w〉 v − 〈µ× w〉µ

〉
= −‖µ‖ 〈v, µ× w〉 = −‖µ‖ 〈µ, v × w〉 .

This shows that

ω− = − 1

‖µ‖
dA.

1.5 Poisson manifolds

In this section we shall describe a generalization of the symplectic structure in order
to include the dual Lie algebras. A Poisson algebra is a triple (A, {, }, ·) where the
pair (A, {, }) is a Lie algebra, while at the same time A is a commutative ring with
a unit element and multiplication ·, such that we have a Leibniz formula

{f, g · h} = h · {f, g}+ g · {f, h}

for every f, g, h ∈ A. If (M,ω) is a symplectic manifold, then (C∞(M), {, }, ·)
is a Poisson algebra, where {, } is the Poisson bracket with respect to ω and · is
the usual multiplication of functions. A map φ : A → B of Poisson algebras is
called a homomorphism if it is a Lie algebra homomorphism and a homomorphism
of commutative rings with unit element.

The Leibniz formula says that for every f ∈ A the linear map adf : A → A with
adf (g) = {g, f} is a derivation. It is called the Hamiltonian derivation defined
by f . The element f ∈ A is called a Casimir if {f, g} = 0 for every g ∈ A. For
example, the unit 1∈ A is a Casimir element, since

{f, 1} = {f, 1 · 1} = 1 · {f, 1}+ 1 · {f, 1} = 2{f, 1} = 0

for every f ∈ A. A Poisson algebra A is called non-degenerate if every Casimir
element of A is of the form t · 1, t ∈ R.

25



CHAPTER 1. SYMPLECTIC GEOMETRY

A Poisson manifold is a smooth manifold M together with a Poisson structure
on the ring of smooth functions C∞(M). So the Poisson structure onM is completely
determined by the Lie-Poisson bracket {, } on C∞(M). If (U, x1, ..., xn) is a chart
on M , since adf is a derivation of C∞(M), it is a smooth vector field on M . So,

adf |U =
n∑
k=1

{xk, f} ∂

∂xk
.

For every f, g ∈ C∞(M) we have

{g, f}|U =
n∑
k=1

{xk, f} ∂g
∂xk

= −
n∑
k=1

{f, xk} ∂g
∂xk

=
n∑

j,k=1

{xk, xj} ∂f
∂xj
· ∂g
∂xk

.

It follows that the Poisson structure onM is determined by a contravariant, skew-
symmetric 2-tensor W , which is called the structural tensor of the Poisson structure.
For every p ∈M , the skew-symmetric, bilinear form Wp : T ∗pM × T ∗Mp → R is de-
termined by the structural matrix ({xj, xk})1≤j,k≤n. Its rank is called the rank of the
Poisson structure at p.

Proposition 1.5.1. The Poisson structure of a Poisson manifold M is defined by a
symplectic structure on M if and only if the structural matrix is invertible at every
point of M.

Proof. (See [1], pages 78-79). �

Example 1.5.2. Let (g, [, ]) be a (real) Lie algebra of finite dimension n and g∗ be
its dual. Since g has finite dimension, the double dual g∗∗ is naturally isomorphic
to g and so their elements can be identified. For f, g ∈ C∞(g∗) let {f, g} ∈ C∞(g∗)
be defined by

{f, g}(µ) = µ[df(µ), dg(µ)]

for µ ∈ g∗. It is obvious that the {, } is bilinear and skew-symmetric. Moreover, the
Leibniz formula holds, since it holds for d. In order to have a Poisson manifold, it
remains to verify the Jacobi identity. If {x1, ..., xn} is a basis of g, then x1, ..., xn
can be considered as (global) coordinate functions on g∗. If f, g ∈ C∞(g∗), then

{f, g} =
n∑

i,j=1

{xi, xj}
∂f

∂xi
· ∂g
∂xj

.

Since {xi, xj}(µ) = µ[dxi(µ), dxj(µ)] = µ[xi, xj] for every µ ∈ g∗, it follows from the
Jacobi identity on g, that is also holds for {, } on the set {x1, ..., xn}. In general, if
f, g, h ∈ C∞(g∗) we have that

n∑
k=1

{xk, xi}{
∂f

∂xk
, xj} =

n∑
k,l=1

{xk, xi}{xl, xj}
∂2f

∂xl∂xk

=
n∑

k,l=1

{xl, xj}{xk, xi}
∂2f

∂xk∂xl
=

n∑
k=1

{xk, xj}{
∂f

∂xk
, xi}
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and so

{{f, g}, h} =
n∑

i,j,k=1

{{xi, xj}, xk}
∂f

∂xi
· ∂g
∂xj
· ∂h
∂xk

+
n∑

i,j,k=1

{xi, xj}{
∂f

∂xi
, xk}

∂h

∂xk
· ∂g
∂xj

+
n∑

i,j,k=1

{xi, xj}{
∂g

∂xj
, xk}

∂h

∂xk
· ∂f
∂xi

.

Cyclically,

{{g, h}, f} =
n∑

i,j,k=1

{{xj, xk}, xi}
∂f

∂xi
· ∂g
∂xj
· ∂h
∂xk

+
n∑

i,j,k=1

{xj, xk}{
∂g

∂xj
, xi}

∂h

∂xk
· ∂f
∂xi

+
n∑

i,j,k=1

{xj, xk}{
∂h

∂xk
, xi}

∂g

∂xj
· ∂f
∂xi

and

{{h, f}, g} =
n∑

i,j,k=1

{{xk, xi}, xj}
∂f

∂xi
· ∂g
∂xj
· ∂h
∂xk

+
n∑

i,j,k=1

{xk, xi}{
∂h

∂xk
, xj}

∂g

∂xj
· ∂f
∂xi

+
n∑

i,j,k=1

{xk, xi}{
∂f

∂xi
, xj}

∂h

∂xk
· ∂g
∂xj

.

Summing up we get

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} =

n∑
i,j,k=1

({{xi, xj}, xk}+ {{xj, xk}, xi}+ {{xk, xi}, xj})
∂f

∂xi
· ∂g
∂xj
· ∂h
∂xk

= 0.

In this way g∗ becomes a Poisson manifold.

If M1 and M2 are two Poisson manifolds, a smooth map h : M1 → M2 is called
Poisson if h∗ : C∞(M2)→ C∞(M1) is a homomorphism of Poisson algebras.

Let M be a Poisson manifold. For every f ∈ C∞(M), the smooth vector field Xf

corresponding to the Hamiltonian derivation adf = {·, f} is called the Hamiltonian
vector field of f . This definition agrees with the definition of section 1.2 in case M
is symplectic.

Proposition 1.5.3. Let M be a Poisson manifold and Xf be a Hamiltonian vector
field on M with Hamiltonian function f ∈ C∞(M). Let φ : D → M be the flow of
Xf , where D ⊂ R×M is a open neighbourhood of {0} ×M.

(i) If g ∈ C∞(M), then

d

dt
(g ◦ φt) = {g, f} ◦ φt = {g ◦ φt, f}.

(ii) f ◦ φt = f
(iii) The flow of the Hamiltonian vector field Xf consists of Poisson maps.

Proof. (See [1], page 80). �
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If h : M1 → M2 is a Poisson map of Poisson manifolds and f ∈ C∞(M2), then
h∗p(Xh∗(f)(p)) = Xf (h(p)) for every p ∈M1. Therefore, h transforms integral curves
of Xh∗(f) in M1 to integral curves of Xf in M2.

If M is a Poisson manifold and N ⊂ M is an immersed submanifold, then N is
called a Poisson submanifold if the inclusion i : N ↪→ M is a Poisson map. On
every Poisson manifold M one can define an equivalence relation ∼ by setting p ∼ q
if and only if there is a piecewise smooth curve from p to q whose smooth parts
are pieces of integral curves of Hamiltonian vector fields of M . The equivalence
classes are called symplectic leaves of the Poisson structure of M . It can be proved
that the symplectic leaves are immersed submanifolds and carry a unique symplectic
structure so they become Poisson submanifolds of M (see [1], page 81).

Theorem 1.5.4. (Symplectic Stratification) In a Poisson manifold M every sym-
plectic leaf S ⊂ M is an immersed submanifold and TpS = ImW̃p for every p ∈ S.
Moreover, S has a unique symplectic structure such that S is a Poisson submanifold
of M.

Proof. (See [1], page 82). �

Example 1.5.5. Let (g, [, ]) be the Lie algebra of a Lie group G and g∗ be its dual.
If f ∈ C∞(g∗), the Hamiltonian vector field Xf with respect to the Poisson structure
on g∗ defined in Example 1.5.2 satisfies

Xf (µ)(g) = {g, f}(µ) = µ([dg(µ), df(µ)]) = −(µ ◦ addf(µ))(dg(µ))

for every g ∈ C∞(g∗) and µ ∈ g∗, where we have identified g∗∗ with g. Thus,
Xf (µ) = −(addf(µ))

∗ for every µ ∈ g∗ and Xf is a fundamental vector field of the
coadjoint representation of G. It follows that the symplectic leaves in g∗ are the
coadjoint orbits. Moreover, the restricted Poisson structure on each coadjoint orbit
is given by the Kirillov symplectic structure.
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Chapter 2

Symmetries and Integrability

2.1 Hamiltonian Lie group actions

Let M be a smooth manifold, G a Lie group with Lie algebra g and φ : G×M →M
be a smooth group action. If X ∈ g, the fundamental vector field φ∗(X) ∈ X (M) of
the action which corresponds to X is the infinitesimal generator of the flow φX : R×
M → M defined by φX(t, p) = φ(exp(tX), p). Note that for g ∈ G the transformed
vector field (φg)∗(φ∗(X)) is the fundamental vector field φ∗(Adg(X)), that is

(φg)∗p(φ∗(X)(p)) = (φ∗)(Adg(X))(φg(p))

for every p ∈M . Indeed,

φ∗(Adg(X))(φg(p)) =
d

dt

∣∣∣∣
t=0

φφg(p)(exp(tAdg(X)))

= (φφg(p))(
d

dt

∣∣∣∣
t=0

(exp(tAdg(X))) = (φφg(p))∗e(Adg(X))

=
d

dt

∣∣∣∣
t=0

φ(g exp(tX)g−1, φ(g, p)) =
d

dt

∣∣∣∣
t=0

φ(g exp(tX), p)

=
d

dt

∣∣∣∣
t=0

(φp ◦ Lg)(exp(tX)) =
d

dt

∣∣∣∣
t=0

(φg ◦ φp)(exp(tX))

= (φg)∗p((φ
p)∗e(X)) = (φg)∗p(φ∗(X)(p)).

Lemma 2.1.1. The linear map φ∗ : g → X (M) is an anti-homomorphism of Lie
algebras, meaning that φ∗([X, Y ]) = −[φ∗(X), φ∗(Y )] for every X, Y ∈ g.

Proof. If p ∈M , then we compute

[φ∗(X), φ∗(Y )](p) =
d

dt

∣∣∣∣
t=0

(φexp(−tX))∗φexp(tX)(p)(φ∗(Y ))(φexp(tX)(p)))

=
d

dt

∣∣∣∣
t=0

φ∗(Adexp(−tX)(Y ))(p) = φ∗(−adX(Y ))(p) = −φ∗([X, Y ]). �
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It follows that φ∗(g) is a Lie subalgebra of X (M) of finite dimension.

Definition 2.1.2. Let (M,ω) be a symplectic manifold and G a Lie group. A
smooth group action φ : G×M →M is called symplectic if φg = φ(g, ·) : M →M
is a symplectomorphism for every g ∈ G. The symplectic action is called Hamilto-
nian if each fundamental vector field φ∗(X), X ∈ g, is Hamiltonian.

There is no canonical way to choose a Hamiltonian for φ∗(X). If there exists a
linear map ρ : g → C∞(M) which to each X ∈ g assigns a Hamiltonian ρ(X) for
φ∗(X), there is also a smooth map µ : M → g∗ defined by µ(p)(X) = ρ(X)(p).

Examples 2.1.3. (a) Let M be a smooth manifold, G a Lie group with Lie algebra
g and φ : G×M →M a smooth group action. Then, φ is covered by a group action
φ̃ of G on T ∗M defined by φ̃(g, a) = a ◦ (φg−1)∗φg(π(a)), where π : T ∗M → M is the

cotangent bundle projection. Since π ◦ φ̃g = φg ◦ π, differentiating we get

π∗φ̃g(a) ◦ (φ̃g)∗a = (φg)∗π(a) ◦ π∗a

for every a ∈ T ∗M and g ∈ G. The Liouville 1-form θ on T ∗M remains invariant
under the action of G, because

((φ̃g)
∗θ)a = θφ̃g(a) ◦ (φ̃g)∗a = a ◦ (φ−1g )∗φg(π(a)) ◦ (φg)∗π(a) ◦ π∗a = a ◦ π∗a = θa.

Consequently, the action of G on T ∗M is symplectic with respect to the canonical
symplectic structure ω = −dθ. In addition to that it is Hamiltonian, because

0 = Lφ̃∗(X)θ = iφ̃∗(X)(dθ) + d(iφ̃∗(X)θ)

and hence iφ̃∗(X)ω = d(iφ̃∗(X)θ). Here we have a linear map ρ : g → C∞(T ∗M)
defined by ρ(X) = iφ̃∗(X)θ and µ : T ∗M → g∗ is given by the formula

µ(a)(X) = θa(φ̃∗(X)).

(b) Let G be a Lie group with Lie algebra g and O be a coadjoint orbit. The
symplectic Kirillov 2-form ω− is Ad∗-invariant as we saw in section 1.4 and so the
natural action of G on O is symplectic. Recall that

ω−ν (Xg∗(ν), Yg∗(ν)) = −ν([X, Y ]) = (ν ◦ adY )(X) = −Yg∗(ν)(X) = −X(Yg∗(ν))

for every X, Y ∈ g and ν ∈ O, having identified g∗∗ with g. If now ρX ∈ C∞(g∗)
is the linear function defined by ρX(ν) = −ν(X), then dρX(ν) = −X (we identify
again g∗∗ with g). It follows that iXg∗ω

− = dρX , which shows that the action of G
on O is Hamiltonian.

Definition 2.1.4. Let M be a symplectic manifold and G be a Lie group with
Lie algebra g. A Hamiltonian group action φ : G ×M → M is called Poisson (or
strongly Hamiltonian) if there is a lift ρ : g → C∞(M) which is a Lie algebra
homomorphism.
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Let (M,ω) be a symplectic manifold and G be a Lie group acting smoothly and
symplectically on M . If G is compact (or more generally the action is proper), there
exists a G-invariant Riemannian metric on M . Starting with such a Riemannian
metric, one can construct a G-invariant almost complex structure J on M which is
compatible with ω. The corresponding compatible Riemannian metric g on M given
by the formula gx(u, v) = −ω(J(u), v), for u, v ∈ TxM , x ∈M, is also G-invariant.

2.2 Momentum maps and reduction

Let (M,ω) be a connected, symplectic manifold, G be a Lie group with Lie algebra
g and φ : G×M →M be a Poisson action.

Definition 2.2.1. A momentum map for φ is a smooth map µ : M → g∗ such that
ρ : g→ C∞(M) defined by ρ(X)(p) = µ(p)(X) for X ∈ g and p ∈M satisfies

(i) φ∗(X) = Xρ(X),
(ii){ρ(X), ρ(Y )} = ρ([X, Y ]) for every X, Y ∈ g.

From the standpoint of dynamical systems, one important feature of momentum
maps is the following. If H : M → R is a G-invariant, smooth function, then µ is
constant along the integral curves of the Hamiltonian vector field XH , because, for
every X ∈ g we have

LXH
ρ(X) = {ρ(X), H} = −{H, ρ(X)} = −Lφ∗(X)H = 0.

Theorem 2.2.2. If G is a connected Lie group, then a momentum map µ : M → g∗

is G-equivariant with respect to the coadjoint action on g∗.

Proof. (See [1], page 89). �

Examples 2.2.3. (a) Let φ : G ×M → M be a smooth action of the Lie group
G with Lie algebra g on the smooth manifold M and φ̃ : G× T ∗M → T ∗M be the
lifted action on the cotangent bundle. As we saw in Example 2.1.1(a) the action of
G on T ∗M is Poisson and in fact the Liouville 1-form θ on T ∗M is G-invariant. The
momentum map µ : T ∗M → g∗ is given by the formula

µ(a)(X) = θa(φ̃∗(X)(a))

for X ∈ g and a ∈ T ∗M , and is G-equivariant, because θ is G-invariant. Indeed,

µ(φ̃g(a))(X) = θφ̃(a)(φ̃∗(X)(φ̃g(a))) = ((φ̃g−1)∗θ)φ̃(a)(φ̃∗(X)(φ̃g(a)))

= θa((φ̃g−1)∗φ̃g(a)(φ̃∗(X)(φ̃g(a)))) = θa(φ̃∗(Adg−1(X))(a)) = µ(a)(Adg−1(X)),

for every g ∈ G.
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In the case of the 3-dimensional euclidean space R3 we have T ∗R3 ∼= R3 × R3,
where the isomorphism is defined by the euclidean inner product 〈 , 〉, identifying
thus T ∗R3 with TR3. The Liouville 1-form is given by the formula

θ(q,p)(v, w) = 〈v, p〉 .

The natural action of SO(3,R) on R3 is covered by the action φ̃ such that

φ̃A(q, p)(v) =
〈
p,A−1v

〉
= 〈Ap, v〉

for every v ∈ TqR3 and A ∈ SO(3,R). Hence, φ̃A(q, p) = (Aq,Ap) for every (q, p) ∈
T ∗R3 and A ∈ SO(3,R). If now v ∈ R3 ∼= so(3,R), the corresponding fundamental
vector field of the action satisfies

φ̃∗(v)(q, p) = (v̂q, v̂p) = (v × q, v × p).

It follows that the momentum map satisfies

µ(q, p)(v) = 〈v × q, p〉 = 〈q × p, v〉

for every v ∈ R3. Consequently, the momentum map is the angular momentum

µ(q, p) = q × p.

Suppose now that we have a system of n particles in R3. The configuration space
is R3n. The additive group R3 acts on R3n by translations, that is

φx(q
1, q2, ..., qn) = (q1 + x, q2 + x, ..., qn + x)

foe every x ∈ R3. The lifted action on T ∗R3n ∼= R3n × R3n is

φ̃x(q
1, q2, ..., qn, p1, p2, ..., pn) = (q1 − x, q2 − x, ..., qn − x, p1, p2, ..., pn).

If now X ∈ R3, the corresponding fundamental vector field of the action is

φ̃∗(X)(q1, q2, ..., qn, p1, p2, ...pn) = (−X,−X, ...,−X, 0, 0, ..., 0).

Therefore, the momentum map µ : T ∗R3n → R3 satisfies

µ(q1, q2, ..., qn, p1, p2, ..., pn)(X) =
n∑
j=1

〈−X, pj〉 =

〈
X,−

n∑
j=1

pj

〉
.

That is, the momentum map in this case is the total linear momentum

µ(q1, q2, ..., qn, p1p2, ...., pn) = −
n∑
j=1

pj.

This example justifies the use of the term momentum map.

(b) Let G be a Lie group with Lie algebra g and O ⊂ g∗ be a coadjoint orbit.
As we saw in Example 2.1.3(b), the transitive action of G on O is Poisson with
momentum map µ : O → g∗ given by the formula µ(ν) = −ν for every ν ∈ O. So,
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the momentum map is minus the inclusion of O in g∗, which is G-equivariant.

The significance of the momentum maps is made clear in the process of symplectic
reduction.

Let (M,ω) be a connected, symplectic manifold, G a Lie group with Lie algebra
g and φ : G ×M → M a symplectic action. The orbit space G\M of the action
may not in general be a smooth manifold, not even a Hausdorff space. Even in the
case it is, it may not admit any symplectic structure, as for instance it may be odd
dimensional. If the action is Poisson and there is a G-equivariant momentum map
µ : M → g∗, there exists a well defined continuous map µ̃ : G\M → G\g∗ in the or-
bit spaces. In particular cases, the level sets µ̃−1(Oa), a ∈ g∗, can be given a natural
symplectic structure. The inclusion j : µ−1(a) ↪→ µ−1(Oa) induces a continuous bi-
jection j# : Ga\µ−1(a)→ G\µ−1(Oa). In specific instances, j# is a homeomorphism
or even a diffeomorphism of smooth manifolds. For example, if the action of G on
M is free and proper and a is a regular value of µ, then µ−1(Oa) is a smooth sub-
manifold of M and so are G\µ−1(Oa) and Ga\µ−1(a). Additionally, in this case j#
is a diffeomorphism. Specifically, these are true if G is compact and the action is free.

Definition 2.2.4. Let P , Q be two smooth manifolds and f : P → Q be a smooth
map. A point q ∈ Q is called a clean (or weakly regular) value of f if f−1(q) is an
embedded smooth submanifold of M and Tpf

−1(q) = Kerf∗p for every p ∈ f−1(q).

A regular value is always clean, while the converse is not true. For instance,
(0, 0) ∈ R2 is clean, but not regular, value of the smooth function f : R3 → R2 with
f(x, y, z) = (z2, z).

Theorem 2.2.5. Let (M,ω) be a symplectic manifold, G a Lie group with Lie
algebra g and φ : G × M → M be a Poisoon action with G-equivariant momen-
tum map µ : M → g∗. Let a ∈ g∗ be a clean value of µ such that the orbit space
Ma = Ga\µ−1(a) is a smooth manifold and the quotient map πa : µ−1(a)→Ma is a
smooth submersion, where Ga is the isotropy group of a with respect to the coadjoint
orbit. There exists a unique symplectic 2-form ωa on Ma such that π∗aωa = ω|µ−1(a).

Proof. (See [1], page 95). �

Examples 2.2.6. (a) Let M be a symplectic manifold and H ∈ C∞(M) be such
that the Hamiltonian vector field XH is complete. Its flow is a Poisson group action
of R on M with momentum map H itself. Since R is abelian, the coadjoint action
is trivial. If now a ∈ R is a clean value of H, then according to the Theorem 2.3.2
the orbit space R\H−1(a) has a natural symplectic structure.

(b) Let SO(3,R) acts on T ∗R3 ∼= R3 × R3 as in example 2.2.3(a). As we saw,
the momentum map µ : R3 × R3 → R3 is the angular momentum

µ(q, p) = q × p.

The Jacobian matrix of µ at (q, p) is (−p̂, q̂), and so every non-zero v ∈ R3 is a
regular value of µ. The isotropy group of v is the group of rotations of R3 around
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the axis generated by v, therefore isomorphic to S1. Thus, the orbit space S1\µ−1(v)
has a symplectic structure.

2.3 Completely integrable Hamiltonian systems

Let (M,ω) be a connected, symplectic 2n-manifold and H1 ∈ C∞(M). The Hamil-
tonian vector field XH1 is called completely integrable if there are H2, ..., Hn ∈
C∞(M) such that {Hi, Hj} = 0 for every 1 ≤ i, j ≤ n and the differential 1-
forms dH1, dH2, ..., dHn are linearly independent on a dense open set D ⊂ M. In
this section we shall assume that we have such a system.

If f = (H1, H2, ..., Hn) : M → Rn, then f |D is a smooth submersion and so the
connected components of the fibers f−1(y) ∩ D, y ∈ Rn, are the leaves of a foliation
of D and f∗p(XHi

(p)) = 0 for every 1 ≤ i ≤ n.
Suppose that the Hamiltonian vector fieldsXH1 , XH2 , ..., XHn are complete. Since

their flows commute, they define a Poisson group action φ : Rn ×M → M with
fundamental vector fields XH1 , XH2 , ..., XHn and momentum map f . Let y ∈ Rn

be a regular value of f . Then f−1(y) ⊂ D is a Rn-invariant, regular n-dimensional
submanifold of M . The vector fields XH1 , XH2 , ..., XHn are tangent to f−1(y), and
since they are linearly independent at every point of f−1(y), every orbit in f−1(y) is
an open subset of f−1(y). This implies that every connected component N of f−1(y)
is an orbit of the action. Therefore, N is diffeomorphic to the homogeneous space
Rn/Γp, where Γp is the isotropy group of p. We notice that Γp does not depend on
p, but only on N , since Rn is abelian. What is more, Γp is a 0-dimensional closed
subgroup of Rn and therefore is discrete. The discrete subgroups of Rn are described
as follows. Let Γ ≤ Rn be a non-trivial discrete subgroup. Then Γ is a lattice, that
is there exist 1 ≤ k ≤ n and linearly independent vectors v1, ..., vk such that

Γ = Zv1 + ...+ Zvk.

Consequently, there exists 1 ≤ k ≤ n such that the homogeneous space Rn/Γ
is diffeomorphic to T k × Rn−k. If Rn/Γ is compact, then k = n and Rn/Γ is
diffeomorphic to the n-torus T n. We refer to [1], page 97 for details.

Observe that if N is compact then the restrictions of the Hamiltonian vector
fields XH1 , XH2 , ..., XHn to N are automatically complete. So, we have arrived at
the following famous theorem.

Theorem 2.3.1. (Arnold-Liouville) Let y ∈ Rn be a regular value of f and N be a
connected component of f−1(y).

(i) If N is compact, then it is diffeomorphic to the n-torus T n.
(ii) If N is not compact and XH1 , XH2 , ..., XHn are complete, then N is diffeo-

morphic to T k × Rn−k for some 1 ≤ k ≤ n. �

The flow of the Hamiltonian vector field XH1 on N can be characterized as
follows. Let p ∈ N and φ̃p : Rn/Γ→ N be the diffeomorphism which is induced by
φp = φ(·, p) : Rn → N . Let (ψt)t∈R be the flow of XH1 on N and ψ̃t = (φ̃p)−1◦ψt◦ φ̃p,
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t ∈ R, be the conjugate flow on Rn/Γ. Then

ψ̃t([t1, ..., tn]) = (φ̃p)−1(ψt(φ(t1, ..., tn), p)))

= (φ̃p)−1(φ((t+ t1, t2, ..., tn), p)) = [t+ t1, t2, ..., tn].

That is to say, ψt([v]) = [v+ te1] for every v ∈ Rn and t ∈ R. Let T (e1) = (ν1, ..., νn)
and let χt = T̃ ◦ ψ̃t ◦ T̃−1, t ∈ R, be the conjugate flow on T k × Rn−k. Then,

χt(e
2πit1 , ..., e2πitk , tk+1, ..., tn) = T̃ (ψ̃t([t1v1+ ....+tnvn])) = T̃ ([te1+t1v1+ ...+tnvn]).

Since

T (te1 + t1v1 + ...+ tnvn) = tT (e1) + t1e1 + ...+ tnen = (t1 + tν1, ..., tn + tνn)

it follows that

χt(e
2πit1 , ..., e2πitk , tk+1, ..., tn) = (e2πi(t1+tν1), ..., e2πi(tk+tνk), tk+1 + tνk+1, ..., tn + tνn).

This shows that the flow of XH1 on N is smoothly conjugate to a linear flow on
T k × Rn−k. If N is compact, then k = n and the real numbers, ν1, ..., νn are called
the frequences of the flow on N . If they are linearly independent over Q, then the
flow on N is uniquely ergodic and every orbit is dense in N .
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Chapter 3

Pseudo-Riemannian Homogeneous
Spaces

3.1 Pseudo-Riemannian metrics on homogeneous

spaces

In this paragraph we present some general facts about metrics on homogeneous
spaces and we consider a special class of those spaces characterized by the property
that they admit a G-invariant metric which is induced by a bi-invariant, possibly
indefinite, metric on G.

Let K be a closed subgroup of a connected Lie group G and the set {σK | σ ∈
K} of left cosets be the homogeneous space M := G/K. Let also π : G → G/K
denote the natural projection π(σ) = σK. There is a natural left action G×M →M
of G on M given by Lg(xK) = (gx)K for every g, x ∈ G. Since xK = (xy−1)(yK)
for every x, y ∈ G, the action is transitive so the terminology homogeneous space.
Recall that the action of G on M is called effective if the identity e is the only
element of G for which Lg is the identity map on M i.e. (Lg) = idM implies that
g = e ∈ G.

Let now K0 denote the largest subgroup of K which is normal in G, G∗ = G/K0

and K∗ = K/K0. It is evident that K0 is closed. Then G∗/K∗ is diffeomorphic to
M . In addition, G∗ acts effectively on G∗/K∗. Indeed, if g∗ = gK0, x

∗ = xK0 and
g∗(x∗K∗) = x∗K∗ then (x−1gx)K0 ∈ K/K0 and so g ∈ xKx−1. But g ∈ xKx−1 for
every x ∈ G implies that g ∈

⋂
x∈G

xKx−1 ≤ K0 and so g∗ = e∗ ∈ G∗.

We are interested in metrics on M which are invariant, that is G acts on M
by isometries. If G acts effectively on M by isometries of some metric, then G
may be identified with a Lie subgroup of the group of isometries of M (not always
embedded).

We shall consider homogeneous spaces that possess a specific property:

Property A. On the Lie algebra g of G there exists an AdG-invariant, symmetric,
non-degenerate billinear form B such that the restriction of B to the Lie algebra k
of K is non-degenerate.

This property leads us to formulate an equation for the standard symplectic
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structure of T ∗M . By the use of some propositions from the theory of metrics on
homogeneous spaces we shall see some consequences of that property. Firstly we
prove that our assumptions implies the existence of a B-orthogonal complement of
k in g. This is a standard result of linear algebra.

Let U be a linear subspace of the linear space V . We assume that V is equiped
with a symmetric, billinear, non-degenerate form 〈 , 〉 : V × V → R.

The linear subspace U∗ = {A ∈ V | 〈A,B〉 = 0, ∀B ∈ U} of V is called the
orthogonal complement of U in V .

Proposition 3.1.1. dimU + dimU∗ = dimV .

Proof. Let n=dimV and {A1, ....., An} be a coordinate system for V . Let F be
the matrix of 〈·, ·〉 relative to this coordinate system. We assume that dimU = m
and choose a coordinate system B1, ....., Bm for U . If Bi = bi1A1 + ..... + binAn for
i = 1, ...,m we know from linear algebra that the m× n matrix

B =

 b11 . . . b1n
...

. . .
...

bm1 · · · bmn


has rank m. Since 〈·, ·〉 is non-degenerate we know that detF 6= 0 and hence the
m× n matrix BF also has rank m. A vector X = x1A1 + .....+ xnAn belongs to U∗

if and only if

(bi1...bin)F

 x1
...
xn

 = 0

for i = 1, ...,m. In other words, U∗ is the solution space of the system of m homo-
geneous equations in n-variables

BF

 x1
...
xn

 = 0.

Since the matrix BF has rank m, this solution space has dimension n−m. �

If now the restriction of 〈·, ·〉 on U ×U is also non-degenerate then U ∩U∗ = {0}
and so V = U ⊕U∗. In particular there is a well defined orthogonal projection from
V to U with respect to 〈·, ·〉.

IfB satisfies property (A) and m is theB-orthogonal complement of k in g, then m
can be naturally identified with Tπ(e)M by means of π∗e and B|m×m is non-degenerate.
There is a general description of G-invariant metrics on general homogeneous spaces
M which do not necessarily satisfy property (A). We have the following useful fact.

Lemma 3.1.2. If π : G → M is the quotient fibration, then (Lk)∗π(e)π∗e(X) =
π∗e(Adk(X)) for every X ∈ TeG = g, k ∈ K.

38



CHAPTER 3. PSEUDO-RIEMANNIAN HOMOGENEOUS SPACES

Proof. Differentiating the equation k exp(tX)K = k exp(tX)k−1K =
π(k exp(tX)k−1) with respect to t at t = 0, from the chain rule we get that

(Lk)∗π(e)π∗e(X) =
d

dt

∣∣∣∣
t=0

π(k exp(tX)K) = π∗e(Adk(X)). �

Note that the tangent space Tπ(e)M at π(e) = K can be naturally identi-
fied with g/k, since π∗e : g → Tπ(e)M induces an isomorphism of vector spaces
π∗e : g/k→ Tπ(e)M .

Proposition 3.1.3. The set of G-invariant metrics on M is naturally identified
with the set of symmetric, bilinear, non-degenerate forms 〈·, ·〉 on g/k which are in-
variant under the action AdK on g/k.

Proof. The restriction of a G-invariant metric of M to Tπ(e)M gives a form 〈·, ·〉 as
required by the preceding lemma. Conversely, if 〈·, ·〉 is an AdK-invariant symmetric
bilinear and non-degenerate form on g/k we define a G-invariant metric on M as
follows: for X, Y ∈ Tπ(g)M, g ∈ G, we set

� X, Y�gK =
〈

(Lg−1)∗gK(X), (Lg−1)∗gK(Y )
〉
.

Indeed, if k ∈ K, then 〈
(L(gk)−1)∗gK(X), (L(gk)−1)∗gK(Y )

〉
=
〈

(Lk−1)∗K ◦ (Lg−1)∗gK(X), (Lk−1)∗K ◦ (Lg−1)∗gK(Y )
〉

=
〈

(Lg−1)∗gK(X), (Lg−1)∗gK(Y )
〉

by Lemma 3.1.2, since 〈·, ·〉 is assumed to be AdK-invariant. Obviously this metric
on M is G-invariant. �

Proposition 3.1.4. If a symmetric, bilinear, non-degenerate form 〈·, ·〉 on g/k is
AdK-invariant, then adk is skew-symmetric with respect to 〈·, ·〉. If K is connected,
the converse is also true.

Proof. If 〈·, ·〉 is AdK-invariant, then for Z ∈ k and X, Y ∈ g/k we compute

〈adZ(X), Y 〉 =

〈
d

dt

∣∣∣∣
t=0

Adexp(tZ)(X), Y

〉
=

d

dt

∣∣∣∣
t=0

〈
Adexp(tZ)(X), Y

〉
=

d

dt

∣∣∣∣
t=0

〈
X,Adexp(−t)Z(Y )

〉
= −〈X, adZ(Y )〉 .

For the converse, we note that the set of all k ∈ K such that 〈Adk(X),Adk(Y )〉 =
〈X, Y 〉 for every X, Y ∈ g/k forms a closed subset K ′ of K. On the other hand,
assuming that adZ is skew-symmetric for all Z ∈ k we have:〈

Adexp(tZ)(X),Adexp(tZ)(Y )
〉

=
〈
eadtZ (X), eadtZ (Y )

〉
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=
∞∑
j=0

tj

j!

〈
eadtZ (X), (adZ)j(Y )

〉
=
∞∑
j=0

tj

j!
(−1)j

〈
(adZ)jeadtZ (X), Y

〉
= 〈X, Y 〉 .

In the first equality we have used the well known commutativity of the diagram:

End(V ) End(End(V ))

Aut(V ) Aut(End(V ))

ad

exp exp

Ad

(see [17], page 114). Since every element of some open neighbourhood of the identity
in K is of the form exp tZ, it follows that K ′ is also open in K. By connectedness
K = K ′. �

As the proof shows if 〈·, ·〉 is AdG-invariant then adg is skew-symmetric. That is
adZ is skew-symmetric for all Z ∈ g.

If now we have g = k ⊕ m with AdK(m) ⊂ m, it follows from proposition 3.1.3.
that the G-invariant metrics on M are in 1-1 correspondence with the AdK-invariant
symmetric, bilinear, non-degenerate forms on m . The condition AdK(m) ⊂ m
implies that [k,m] ⊂ m, because for Z ∈ k and X ∈ k we have [Z,X] = adZ(X) =
d
dt
|t=0Adexp(tZ)(X).

If K is connected, the converse is also true and can be proved with a similar
argument as that in proof of proposition 3.1.4.

So having an orthogonal decomposition g = k ⊕ m, in the Lie algebra we have
that [k, k] ⊂ k and [k,m] ⊂ m.

Recall that a homogeneous space M is called reductive if g = m ⊕ k for some
AdK-invariant linear subspace m of g. Then m is an ideal in g.

A homogeneous space M with a G-invariant metric 〈·, ·〉 is called naturally
reductive if g = m ⊕ k for some AdK-invariant linear subspace m of g and adk|m
is skew-symmetric with respect to the restriction of the corresponding symmetric,
bilinear, non-degenerate form B to m, that is B(X, [Z, Y ]m)+B([Z,X]m, Y ) = 0, for
Z ∈ K, where the subscript m denotes m-component.

So the homogeneous spaces satisfying property (A) are naturally reductive as
we can easily see: Let B be a non-degenerate, symmetric, bilinear form on the
Lie algebra g of G which we assume that is AdG-invariant. We assume further
that B|k×k is also non-degenerate. Let m = {X ∈ g | B(X, Y ) = 0, ∀Y ∈ k}.
Then AdK(m) ⊂ m and the restriction of B to m is also non-degenerate and AdK-
invariant. The homogeneous space M = G/K is naturally reductive with respect
to the decomposition g = m ⊕ k and the G-invariant metric corresponding to the
restriction of B to m. Indeed, since B is AdG-invariant, for X, Y ∈ m and Z ∈ k we
have:

0 = B([Z,X], Y ) +B(X, [Z, Y ])

= B([Z,X]k + [Z,X]m, Y ) +B(X, [Z, Y ]k + [Z, Y ]m)

= B([Z,X]m, Y ) +B(X, [Z, Y ]m).
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The existence of G-invariant Riemannian metrics can be characterized also by
the following propositions that we state without proof (see [5], pages 61-63), since
they will not be used essentialy in the sequel.

Proposition 3.1.5. If G acts effectively on M = G/K, then M admits a G-
invariant Riemannian metric if and only if the closure of AdK in GL(g) is compact.
�

A (possibly indefinite) metric on G is called bi-invariant if it is invariant by left
and right translations of G.

Proposition 3.1.6. If G is a connected compact Lie group, then G admits a bi-
invariant Riemannian metric. �

Summing up, we have seen so far the existence of m, the B-complement of k in g,
which we identified naturally with Tπ(e)M by means of π∗e. We also saw that Bk×k,
being non-degenerate and AdK-invariant, defines a (possibly indefinite) G-invariant
metric on M . We derived also that [k, k] ⊂ k and [k,m] ⊂ m.

Next we shall investigate geodesics of invariant metrics on homogeneous spaces.
Using now the fact that the homogeneous spaces satisfying property (A) are natu-
rally reductive we shall derive the equation:

Expπ(e) = π ◦ exp |m
where Exp denotes the exponential map of M . Thus we will conclude that geodesics
on M are images of one-parameter subgroups of G.

To see that we first derive a formula for the Levi-Civita connection of a left
invariant metric on G.

Proposition 3.1.7. Let 〈·, ·〉 be a left invariant metric on G and X,Y be left in-
variant vector fields on G. Then

∇XY =
1

2
([X, Y ]− ad∗X(Y )− ad∗Y (X)).

Proof. By left invariance of the metric, for every left invariant vector field Z we
have: X 〈Y, Z〉 = Y 〈Z,X〉 = Z 〈X, Y 〉 = 0. Therefore,

〈∇XY, Z〉 =
1

2
(〈[X, Y ], Z〉 − 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉)

=
1

2
(〈[X, Y ], Z〉 − 〈Y, adX(Z)〉 − 〈X, adY (Z)〉)

=
1

2
(〈[X, Y ], Z〉 − 〈ad∗X(Y ), Z〉 − 〈ad∗Y (X), Z〉). �

If now we have a form B on G satisfying property (A) then B([Z,X], Y ) +
B(X, [Z, Y ]) = 0 for all X, Y, Z ∈ g and the above proposition 3.1.7. implies that
the Levi-Civita connection of the left invariant metric on G defined by B is given
by
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∇XY =
1

2
[X, Y ]

for X, Y ∈ g. This implies that the geodesics in G are the images of the one-
parameter subgroups of G. It follows that the geodesics in M are images of one-
parameter subgroups of G generated by elements of m. This means that

Expπ(e) = π ◦ exp |m
where Exp denotes the exponential map of M and exp that of G.

3.2 The momentum map on the tangent bundle

of a homogeneous space

Before the study of the symplectic structure of the tangent bundle TM of homoge-
neous spaces we derive a formula for the momentum map P on TM of a homogeneous
space assuming it satisfies property (A) defined in the previous paragraph.

To begin with let (M, 〈·, ·〉) be a pseudo-Riemannian manifold and G a Lie group
acting on M by diffeomorphisms which preserve the pseudo-Riemannian metric 〈·, ·〉.
Let also ϕ : G × M → M denote the smooth group action. It can be lifted to
smooth group actions ϕ̂ : G×TM → TM and ϕ̃ : G×T ∗M → T ∗M which cover ϕ,
defining ϕ̂(g, v) = (ϕg)∗π(v)(v) for v ∈ TM , g ∈ G and ϕ̃(g, a) = a ◦ (ϕg−1)∗ϕg(π∗(a))

for a ∈ T ∗M , g ∈ G where π : TM → M and π̃ : T ∗M → M are the bundle maps.
The pseudo-Riemannian metric gives a natural bundle isomorphism TM ∼= T ∗M
defined for p ∈ M , v ∈ TpM by v 7→ 〈·, v〉 ∈ T ∗pM , which identifies TM with T ∗M .
This natural isomorphism transfers the action ϕ̂ to the action ϕ̃.

TM TM

T ∗M T ∗M

ϕ̂g

∼= ∼=
ϕ̃g

Indeed, for g ∈ G and v ∈ TpM , p ∈M we have ϕ̃g(〈·, v〉) =
〈
v, (ϕg−1)∗ϕg(p)

(·)
〉

=〈
(ϕg)∗p(v), ·

〉
, since ϕg preserves 〈·, ·〉.

Let now µ : T ∗M → g∗ be the G-momentum map. By Example 2.1.3(a) it is
given by the formula µ(a)(X) = a(π̃∗a(ϕ∗(X)), a ∈ T ∗M , X ∈ g. If a = 〈·, v〉,
v ∈ TM , then µ(〈v, ·〉)(X) = 〈v, π̃∗a(ϕ̃∗(X))〉 and

π̃∗a(ϕ̃∗(X)) = π̃∗a(
d

dt

∣∣∣∣
t=0

ϕ̃(exp(tX), a))

=
d

dt

∣∣∣∣
t=0

(π̃ ◦ ϕ̃)(exp(tX), a) =
d

dt

∣∣∣∣
t=0

ϕ(exp(tX), π̃(a)) = ϕ∗(X)(π̃(a)).
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Substituting we obtain the formula

P (v)(X) = µ(〈v, ·〉)(X) = 〈v, ϕ∗(X)(π(v))〉

for the transfered momentum map P : TM → g∗ on TM .
We now consider the case of a pseudo-Riemannian homogeneous space satisfying

property (A) and we shall conclude a more specific formula for P . We shall use the
notation of the previous section. As we have seen a homogeneous space M = G/K
which satisfies property (A) gives a B-orthogonal complement m of k in g, g = k⊕m
and the derivative π∗e : g→ Tπ(e)M identifies Tπ(e)M with m, where π : G→ G/K =
M is the quotient map. The tangent space Tπ(g)M = TgkM consists of the tangent
vectors (Lg)∗π(e) ◦ π∗e(ξ), where ξ ∈ m and Lg : M → M , g ∈ G is the natural left
action of G on M . We denote gξ = (Lg)∗π(e) ◦ π∗e(ξ), ξ ∈ m, g ∈ G. The restriction
B|m×m induces the pseudo-Riemannian metric on M which is G-invariant.

Identifying g∗ with g using the non-degenerate, symmetric, bilinear form B we
arrive at the following conclusion.

Lemma 3.2.1. Let M=G/K be a homogeneous space satisfying property (A). Then
the momentum map P : TM → g is given by P (gξ) = Adgξ, where g ∈ G,
gξ ∈ Tπ(g)M and ξ ∈ m.

Proof. From the above we need to compute the fundamental vector field Φ∗(X) of
the natural left action of G on M . We have

Φ∗(X)(gK) =
d

dt

∣∣∣∣
t=0

exp(tX)(gK) =
d

dt

∣∣∣∣
t=0

g(g−1 exp(tX)g)K

=
d

dt

∣∣∣∣
t=0

(Lg ◦ π(g−1 exp(tX)g)) = (Lg)∗π(e) ◦ π∗e(Ad(g−1)(X)).

So if ξ ∈ m and v = gξ = (Lg)∗π(e) ◦ π∗e(ξ) the G-momentum map P : TM → g∗ is
given by

P (v)(X) =
〈
v, (Lg)∗π(e) ◦ π∗e(Ad(g−1)(X))

〉
= B(ξ,Ad(g−1)(X)) = B(Adg(ξ), X)

for every X ∈ g. If we identify g with g∗ by B, it follows (using the same symbol)
that P (gξ) = Adg(ξ). �

3.3 The symplectic structure of the tangent bun-

dle of homogeneous spaces

In order to construct first integrals in involution for G-invariant Hamiltonian systems
on TM = T (G/K) we need to use explicit expressions for the Hamiltonian vector
fields in order to be able to prove that these intergrals are functionally independent
on an open dense set of full measure, for the specific cases we shall investigate. In
order to derive a formula for the symplectic structure of TM we shall need a classical
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formula from the theory of Lie groups which gives the derivative of the exponential
map in terms of the derivative of the adjoint representation.

Let U be an open neighbourhood of 0 ∈ g such that exp|U : U → exp(U) is
a diffeomorphism and so that there exists an open neighbourhood V ⊂ U ∩ m of
0 ∈ m which is mapped by π ◦ exp diffeomorphically onto an open neighbourhood
W of K = π(e) ∈ M = G/K, where π : G→ G/K = M is the quotient map. This
is possible by the existence of local smooth sections (see [17], theorem 3.58). Then
(π ◦ exp)∗ : TV → TW is a parametrization of TW . Since TG = G × g we have
TTG = G× g× g× g using left translation of G for the identifications. If ξ ∈ m =
Tπ(e)M then TξTM can be considered as a linear subspace of {e} × {ξ} × g× g.

We shall identify this subspace as follows. Let (v, w) ∈ T(0,ξ)(V ×m) and γ(t) =
(tv, ξ+ tw), so that γ(0) = (0, ξ) and γ̇(0) = (v, w). Then (v, w) is mapped in {e}×
{ξ}×g×g to the velocity for t = 0 of the curve (exp(tv), (L−1exp(tv) ◦ exp)∗tv(ξ+ tw)).

In order to calculate this derivative we shall need the following formula.

Lemma 3.3.1. If G is a Lie group with Lie algebra g, then

(L−1expX)∗ expX ◦ exp∗X =
I − e−adX

adX

for every X ∈ g.

Proof. Let X0 ∈ g and X : I → g be a smooth curve, where I ⊂ R is an open
interval, such that X(0) = X0. We also consider a(s) = exp(sX0), s ∈ R and
B : R→ g be the smooth curve defined by

B(s) = (L−1a(s))∗a(s)(
d

dt

∣∣∣∣
t=0

exp(sX(t))) =
d

dt

∣∣∣∣
t=0

exp(−sX0) exp(sX(t)).

We shall compute the derivative B′. We have

B(s+ h)−B(s)

=
d

dt

∣∣∣∣
t=0

exp(−sX0 − hX0) exp(hX(t)) exp(sX(t)) exp (sX(t))−1 exp(sX0)

=
d

dt

∣∣∣∣
t=0

exp(−(s+ t)X0) exp(hX(t)) exp(sX0)

= (L(a(s+h)−1))∗(Ra(s))∗(
d

dt

∣∣∣∣
t=0

exp(hX(t)))

and so

B′(s) = lim
h→0

1

h
(B(s+ h)−B(s)) = Ada(s)−1(lim

h→0

1

h

d

dt

∣∣∣∣
t=0

exp(hX(t))).

On the other hand,

lim
h→0

1

h

d

dt

∣∣∣∣
t=0

exp(hX(t)) = lim
h→0

1

h
exp∗hX0

(hX ′(0))

= lim
h→0

exp∗hX0
(X ′(0)) = X ′(0).
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Hence B′(s) = Ada(s)−1(X ′(0)). Integrating,

1∫
0

Ada(s)−1ds =

1∫
0

e−s(adX0
)ds

= − 1

adX0

1∫
0

e−s(adX0
)d(−s(adX0)) = − 1

adX0

(e−adX0 − I) =
I − e−adX0

adX0

.

Since B(0) = 0, it follows that

B(1) =
I − e−adX0

adX0

X ′(0).

But B(1) = (L−1expX0
)∗ expX0(

d
dt
|t=0 exp(X(t))) and so

d

dt

∣∣∣∣
t=0

exp(−X0) exp(X(t)) =
I − e−adX0

adX0

X ′(0).

Taking the particular curve X(t) = X + tY for X, Y ∈ g we get

(L−1expX)∗ expX ◦ exp∗X(Y ) =
I − e−adX

adX
Y

or

(L−1expX)∗ expX ◦ exp∗X =
I − e−adX

adX

for every X ∈ g. �

Applying Lemma 3.3.1 in our case,

(L−1exp(tv))∗ exp(tv) ◦ exp∗tv =
I − e−adtv

adtv
.

Since
1− e−s

s
=

1

s
(1−

∞∑
n=0

(−s)n

n!
) = 1− 1

2
s+O(s2)

it follows that

(L−1exp(tv))∗ exp(tv) ◦ exp∗tv = I − 1

2
tadv +O(s2)

and therefore
d

dt

∣∣∣∣
t=0

(L−1exp(tv) ◦ exp∗)tv(ξ + tw)

=
d

dt

∣∣∣∣
t=0

(ξ + tw)− 1

2

d

dt

∣∣∣∣
t=0

tadv(ξ + tw) = w − 1

2
adv(ξ) = w − 1

2
[v, ξ].

We conclude that TξTM is identified with the linear subspace

{(e, ξ, v,−1

2
[v, ξ] + w), (v, w) ∈ T(e,ξ)(V ×m)}
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of {e} × {ξ} × g× g.
Since M satisfies property (A), the (pseudo-Riemannian) exponential map of M

is Exp = π ◦ exp |v and defines normal coordinates centerd at π(e). If we take a

basis ξ1, ...ξn ∈ m and define normal local coordinates by (x1, ....xn) 7→ Exp
n∑
i=1

xiξi,

then the coefficients (gij) of the metric 〈·, ·〉 satisfy
∂gij
∂xr

(0) = 0 , i, j, r = 1, ..., n.
From the above follows that the symplectic 2-form on TξTM becomes the stan-

dard symplectic structure defined by B so that it is given by the formula

ωξ((e, ξ, v1,−
1

2
[v1, ξ] + w1), (e, ξ, v2,−

1

2
[v2, ξ] + w2)) = B(v1, w2)−B(v2, w1).

Using the action of G on TM , which is symplectic, the symmetric 2-form at an
arbitary point gξ ∈ TM , ξ ∈ m, g ∈ G given by the formula, that we state as a
proposition.

Proposition 3.3.2. Let M=G/K be a homogeneous space satisfying property (A).
Identifying TξTM , ξ ∈ m, by means of the exponential map with the subspace

{(v1 −
1

2
[v1, ξ] + w)(e,ξ) | v, w ∈ m}

of G× g× g× g, then the symplectic structure of TM ∈ gξ is given by

ωgξ(g∗ξ(v1,−
1

2
[v1, ξ] + w1), g∗ξ(v2,−

1

2
[v2, ξ] + w2)) = B(v1, w2)−B(v2, w1). �

Remark. The horizontal subspace of TgξM is {g∗ξ(v,−1
2
[v, ξ]) | v ∈ m} and the

vertical subspace is {g∗ξ(0, w) | w ∈ m}.

3.4 Hamiltonian systems on the tangent bundle

of homogeneous spaces

As an application of the above, we shall compute the Hamiltonian vector field of
a G-invariant function. If f : TM → R is a G-invariant smooth function, then
the smooth function h : m → R with h(ξ) = f(π∗e(ξ)) is AdK-invariant, because
h(Adk(ξ)) = f(π∗e(Adk(ξ))) = f((Lk)∗π(e)π∗e(ξ)) = f(π∗e(ξ)) = h(ξ) for all k ∈ K.
Conversely, if h : m → R is an AdK-invariant smooth function then we can define
the smooth function f : TM → R with f(gξ) = h(ξ) for g ∈ G, ξ ∈ m, where as
usual gξ = (Lg)∗π(e)◦π∗e(ξ) which is obviously G-invariant. So G-invariant functions
f on TM are in 1-1 correspondence with AdK-invariant functions h : m → R. For
h : m→ R we consider gradh(ξ), ξ ∈ m with respect to B|m×m.

Proposition 3.4.1. Let h : m → R be AdK-invariant and f : TM → R the G-
invariant Hamiltonian defined by h. The Hamiltonian vector field Xf of f is given
by the formula

Xf (gξ) = g∗ξ(v1,−
1

2
[v1, ξ] + w1)
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where v1 = gradh(ξ) and w1 = −1
2
[gradh(ξ), ξ]m.

If f1, f2 : TM → R are two invariant Hamiltonians defined by h1, h2 : m → R
respectively, then their Poisson bracket is

{f1, f2}(gξ) = −B([gradh1(ξ), gradh2(ξ)], ξ).

Proof. From the calculations of the previous section, for all v, w ∈ m we have that

df(gξ)(g∗(v,−
1

2
[v, ξ] + w)) =

d

dt

∣∣∣∣
t=0

(f ◦ (Lg)∗ ◦ π∗ ◦ exp∗tv)(ξ + tw)

=
d

dt

∣∣∣∣
t=0

f ◦ (Lg exp(tv))∗ ◦ (L−1exp(tv))∗ exp(tv) ◦ π∗ ◦ exp∗tv(ξ + tw)

=
d

dt

∣∣∣∣
t=0

h(ξ + tw − 1

2
t[v, ξ]m +O(t2)) = B(gradh(ξ), w)−B(−1

2
[gradh(ξ), ξ], v).

The gradient is considered with respect to B. The formula for the Poisson bracket
follows by setting v = gradh2(ξ), w = −1

2
[gradh2(ξ), ξ]m. �

As an example we can take h(ξ) = 1
2
B(ξ, ξ) and obtain the equation of the

geodesic vector field on TM : Xf (gξ) = g∗ξ(ξ, 0).

G-invariant Hamiltonian systems on TM have many first integrals such as all
functions f = h ◦ P for some smooth function h : g → R and P : TM → g the
momentum map which as we know is given by the formula P (gξ) =Adg(ξ) (See
Corollary 4.1.3 below).

We compute the Hamiltonian vector field of f = h ◦ P .

Proposition 3.4.2. Let M=G/K be a homogeneous space satisfying property (A)
and h : g → R. Then the Hamiltonian vector field Xf of f = h ◦ P is given by the
formula

Xf (gξ) = g∗ξ(v,−
1

2
[v, ξ] + w)

where v = Adg−1(ζ)m, w = [Adg−1(ζ), ξ]m− 1
2
[Adg−1(ζ)m, ξ]m and ζ = gradh(Adg(ξ)).

Proof. For all v, w ∈ m we compute

df(gξ)(g∗ ◦ (π∗)∗ξ(v,−
1

2
[v, ξ] + w)) =

d

dt

∣∣∣∣
t=0

h ◦ Adg exp(tv)(ξ + tw − 1

2
t[v, ξ] + O(t2))

= dh(Adg(ξ))
d

dt

∣∣∣∣
t=0

Adg exp(tv)(ξ + tw − 1

2
t[v, ξ]m + O(t2))

= dh(Adg(ξ))Adg(adv(ξ) + w − 1

2
[v, ξ]) (by Leibniz Rule)

= B(gradh(Adg(ξ)),Adg([v, ξ] + w − 1

2
[v, ξ]m))

= B(Adg−1(gradh(Adg(ξ))), w) +B(Adg−1(gradh(Adg(ξ))), [v, ξ]−
1

2
[v, ξ]m)
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= B(Adg−1(gradh(Adg(ξ)), w) +B(Adg−1(gradh(Adg(ξ)))

−1

2
Adg−1(gradh(Adg(ξ)))m, [v, ξ]) = B(Adg−1(gradh(Adg(ξ)))m, w)

−B([Adg−1(gradh(Adg(ξ)))−
1

2
Adg−1(gradhAdg(ξ)))m, ξ], v).

It follows that

Xf (gξ) = g∗ξ(v,−
1

2
[v, ξ] + w),

where v = Adg−1(ζ)m, w = [Adg−1(ζ), ξ]m−1
2
[Adg−1(ζ)m, ξ]m and ζ = gradh(Adg(ξ)).�

Note that

−1

2
[v, ξ] + w = −1

2
[Adg−1(ζ)m, ξ] + [Adg−1(ζ), ξ]m −

1

2
[Adg−1(ζ)m, ξ]

= −[Adg−1(ζ)m, ξ] + [Adg−1(ζ), ξ] = [Adg−1(ζ)k, ξ].

From the description of TgξTM and the above formula, it follows that Xf (gξ) is
equal to the value at gξ of the fundamental vector field of the action of G on TM
which corresponds to ζ = gradh(Adg(ξ)) ∈ g.

Proposition 3.4.3. If g(t) is the solution of the ordinary differential equation

ġ(t) = (Rg(t))∗e(gradh(P (g(t)gξ))

on G with g(0) = e, then the integral curve of the Hamiltonian vector field Xf pass-
ing through gξ is locally g(t)gξ.

Proof. Putting ζ = gradh(P (g(t)gξ)) we compute

d

dt
(g(t)gξ) = (Rg(t))∗e(ζ)gξ =

d

ds

∣∣∣∣
s=0

exp(sζ)g(t)gξ

= φ̃∗(ζ)(g(t)gξ) = Xf (g(t)gξ). �

If h is AdG-invariant, then h ◦ Adg = h for every g ∈ G and differentiating
gradh(Adg(ξ)) = Adg(gradh(ξ)), since B is AdG-invariant. So in this case the above
differential equation reduces to

ġ(t) = (Rg(t))∗e(gradh(Adg(t)(Adg(ξ)))) = (Rg(t))∗eAdg(t)(gradh(Adg(ξ)))

= (Rg(t))∗e(R
−1
g(t))∗g(t)(Lg(t))∗e(gradh(Adg(ξ))) = (Lg(t))∗e(gradh(Adg(ξ))).

The solution of this equation with g(0) = e is

g(t) = exp(t(gradh(Adg(ξ)))), t ∈ R

and so the integral curve of Xf through gξ becomes

g(t)gξ = gexpt(gradh(ξ))ξ,
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because g(t) = gexp(tgradh(ξ))g−1 and so g(t)g = gexp(tgradh(ξ)). (See [17], page
114)

We remark that in case gradh(ξ) ∈ m, then the projection of this integral curve
to M is the geodesic emenating from π(g) with initial velocity ggradh(ξ) ∈ Tπ(g)M.

Example 3.4.4. Let g′ be a non-degenerate Lie subalgebra of g which is integrated
to a connected Lie subgroup G′ of G with corresponding B-orthogonal projection
π′ : g → g′. Let h′ : g′ → R be a smooth AdG′-invariant function. Since π′ is
AdG′-equivariant, h

′ ◦π′ : g→ R is AdG′-invariant. Also grad(h′ ◦π′)(ξ) = gradh′(ξ)
is tangent to g′ for ξ ∈ g′. For f = h′ ◦ π′ ◦ P : TM → R, it follows from the above
that the integral curve of Xf through gξ, for g ∈ G′, ξ ∈ g′, is the image of the
one-parameter subgroup {exptζ | t ∈ R} in G′ with ζ = gradh′(π′(Adg)(ξ))).

49



CHAPTER 3. PSEUDO-RIEMANNIAN HOMOGENEOUS SPACES

50



Chapter 4

Lie subalgebras and Integrability

4.1 First integrals in involution from non-degenerate

Lie subalgebras

Let G be a Lie group and B : g × g → R be an AdG-invariant, non-degenerate,
symmetric, bilinear form on the Lie algebra g on G. We identify g and g∗ using B
so that ξ ∈ g corresponds to B(ξ, ·) ∈ g∗. Recall that the Poisson bracket on the
Poisson manifold g∗ is given by

{f, g}(µ) = µ([df(µ), dg(µ)])

for f, g ∈ C∞(g∗) using the natural identification g∗∗ ∼= g defined by evaluation.
The Poisson bracket in g∗ transforms to the Poisson bracket in g defined by

{h1, h2}(ξ) = B(ξ, [gradh1(ξ), gradh2(ξ)])

for ξ ∈ g and h1, h2 ∈ C∞(g), where the gradients are considered with respect to B.
A smooth function h : g→ R is AdG-invariant by definition if h(Adg(ξ)) = h(ξ)

for every ξ ∈ g and g ∈ G. Equivalently

d

dt
|t=0h(Adexp(tX)(ξ)) = 0,

for every X, ξ ∈ g. By the chain rule and the skew symmetry of adg (with respect
to B), since B is AdG-invariant, we have

d

dt

∣∣∣∣
t=0

h(Adexp(tX)(ξ)) = dh(ξ)(
d

dt

∣∣∣∣
t=0

Adexp(tX)(ξ)) = dh(ξ)(adX)(ξ))

= dh(ξ)([X, ξ]) = B(X, ξ], gradh(ξ)) = B(X, [ξ, gradh(ξ)]).

So h is AdG-invariant if and only if [ξ, gradh(ξ)] = 0 for all ξ ∈ g, since B is
non-degenerate.

Suppose now that g′ ⊂ g is a subalgebra of g so that B|g′×g′ is non-degenerate.
Then g′ is a direct summand of g and so there is a B-orthogonal projection π′ : g→
g′. Let G′ ≤ G be the connected Lie subgroup of G to which g′ integrates. Let also
g′′ be another non-degenerate with respect to B subalgebra of g and let π′′ : g→ g′′

be the corresponding B-orthogonal projection. If h′ : g′ → R is an AdG′-invariant
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smooth function and h′′ : g′′ → R is an AdG′′-invariant smooth function, the Poisson
bracket of h′ ◦ π′ and h′′ ◦ π′′ is

{h′ ◦ π′, h′′ ◦ π′′}(ξ) = B(ξ, [grad(h′ ◦ π′)(ξ), grad(h′′ ◦ π′′)(ξ)])

= B(ξ, [gradh′(π′(ξ)), gradh′′(π′′(ξ)]) = −B([gradh′(π′(ξ)), ξ], gradh′′(π′′(ξ)))

= B([ξ, gradh′(π′(ξ))], gradh′′(π′′(ξ))) = B([ξg′⊥ , gradh′(π′(ξ))], gradh′′(π′′(ξ)))

(since h′ is AdG′-invariant)

= B(ξg′⊥ , [gradh′(π′(ξ)), gradh′′(π′′(ξ)])

So if [g′, g′′] ⊂ g′, then {h′ ◦ π′, h′′ ◦ π′′} = 0. This holds in particular if g′′ ⊂ g′.
The above prove the following.

Proposition 4.1.1. If g1 ⊂ g2 ⊂ .... ⊂ gk ⊂ gk+1 = g is a chain of non-degenerate
(with respect to B) Lie subalgebras of g and hi ∈ C∞(gi), 1 ≤ i ≤ k + 1 are
invariant functions with respect to the corresponding adjoint representations then
hi ◦ πi ∈ C∞(g), 1 ≤ i ≤ k + 1 are all in involution, where πi : g → gi is the
B-orthogonal projection for every 1 ≤ i ≤ k + 1. �

Lemma 4.1.2. Let (M,ω) be a symplectic manifold with a Poisson action of the
Lie group G on M . Let µ : M → g∗ be the corresponding momentum map. If
h1, h2 : g∗ → R are smooth functions, then

{h1 ◦ µ, h2 ◦ µ} = {h1, h2} ◦ µ.

Proof. For every smooth function h : g∗ → R and p ∈ M we denote by Xh(p) ∈ g
the dual of dh(µ(p)) under the natural pairing of g∗∗ and g by evaluation which
induces the natural isomorphism g∗∗ ∼= g. For v ∈ TpM we have

d(h ◦ µ)(p)(v) = dh(µ(p)) · µ∗p(v) = µ∗p(v)(Xh(p))

and on the other hand

dρ(Xh(p))(q) · v = µ∗q(v)(Xh(p))

for every q ∈M and so

dρ(Xh(p))(p) · v = µ∗p(v)(Xh(p)),

where ρ : g→ C∞(M) is the linear lift of the action. Therefore,

{h1 ◦ µ, h2 ◦ µ}(p) = {ρ(Xh1(p)), ρ(Xh2(p))}(p) = ρ([Xh1(p), Xh2(p)])(p)

= µ(p)([Xh1(p), Xh2(p)]) = {h1, h2} ◦ µ(p). �

Corollary 4.1.3. Let (M,ω) be a symplectic manifold with a Poisson action of the
Lie group G on M . Let µ : M → g∗ be the momentum map. If F : M → R is
G-invariant smooth function, then for every h ∈ C∞(g∗)
(i) h ◦ µ is a first integral of the Hamiltonian vector field XF and
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(ii) for every h1, h2 ∈ C∞(g∗) such that {h1, h2} = 0 we also have {h1 ◦ µ, h2 ◦ µ} =
0. �

Combining the above we arrive at the following.

Corollary 4.1.4. Let (M,ω) be a symplectic manifold with a Poisson action of the
Lie group G on M with momentum map µ : M → g∗. Suppose that there exists an
AdG-invariant, non-degenerate, symmetric bilinear form B : g × g → R on the Lie
algebra g of G. If

g1 ⊂ g2 ⊂ ... ⊂ gk ⊂ gk+1 = g

is a chain of non-degenerate (with respect to B) Lie subalgebras of g and hi ∈ C∞(gi),
1 ≤ i ≤ k + 1 and Ad-invariant functions, then hi ◦ πi ◦ µ, 1 ≤ i ≤ k + 1 are first
integrals in involution of XF for every G-invariant Hamiltonian F : M → R, where
πi : g → gi is the B-orthogonal projection, 1 ≤ i ≤ k + 1 and with respect to the
identification of g and g∗ defined by B. �

Let now (M,ω) be a symplectic manifold with a Poisson action φ : G×M →M
of the Lie group G on M . Let µ : M → g∗ be the momentum map which we
assume to be equivariant. That holds automatically, if G is connected. We also
assume that there exists an AdG-invariant, non-degenerate, symplectic bilinear firm
B : g × g → R. Then, B induces a G-equivariant natural isomorphism B̃ : g ∼= g∗

as usual by B̃(ξ) = B(ξ, ·), ξ ∈ g. Indeed,

(Ad∗g ◦ B̃(X))Y = B̃(X)(Adg−1(Y )) = B(X,Adg−1(Y ))

= B(Adg(X), Y ) = (B̃ ◦ Adg(X))Y

for every X, Y ∈ g and g ∈ G. Let g′ ⊂ g be a non-degenerate (with respect to
B) Lie subalgebra with orthogonal projection π : g → g′, which is integrated to a
Lie subgroup G′. If h : g′ → R is a smooth function which is AdG′-invariant then
obviously the composition

F : M g∗ g g′ Rµ B̃−1 π h

is a G′-invariant smooth function.

4.2 Integrability of the geodesic flow of the real

Grassmann manifolds

The real Grassmann manifold of p-planes in Rn+1 is the homogeneous symmetric
space

Gp,q(R) = SO(n+ 1,R)/S(O(p,R)×O(q,R))

= O(n+ 1,R)/(O(p,R)×O(q,R))
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where p + q = n + 1, normalized by p ≤ q. Recall (See the Appendix 5.2) that the
Killing form on the Lie algebra g = so(n+ 1,R) is given by the formula

〈ξ, η〉 = (n− 1) · Tr(ξ · η)

and is Ad-invariant, non-degenerate, symmetric and bilinear. We denote G =
SO(n + 1,R) for brevity. The orthogonal map S : Rn+1 → Rn+1 with S(u, v) =
(u,−v) for u ∈ Rp, v ∈ Rq induces the involution σ : G → G by conjugation, i.e.
σ(A) = SAS−1 with fixed point set S(O(p, q)×O(q,R)). Therefore

B(ξ, η) = −1

2
Tr(ξ · η) =

1

2
Tr(ξηt)

is an AdG-invariant non-degenerate (in particular positive definite), symmetric, bi-
linear form on g. Let K = S(O(p)× O(p)) with corresponding Lie algebra k. Note
that B|k×k is also non-degenerate and so k has a B-orthogonal complement m in g,
which is also non-degenerate with regard to B and is computed as follows. If

η =

(
H1 H2

H3 H4

)
and ξ =

(
A 0
0 B

)
∈ k,

then Tr(ξ · η) = Tr(AH1) + Tr(BH4). So B(ξ, η) = 0 for all ξ ∈ so(q,R), which
implies that H1 = 0 and H2 = 0. Hence

m =

{(
0 X
−X t 0

)
| X ∈ Rp×q

}
.

The adjoint representation of S(O(p,R)×O(q,R)) on m is

Adh

(
0 X
−X t 0

)
=

(
0 UXV −1

−V X tU−1 0

)

for h =

(
U 0
0 V

)
∈ S(O(p,R)×O(q,R)) = K.

On g we consider the polynomial functions fk : g→ R, k = 1, 2, ..., p defined by

fk(ξ) = − 1

4k
Tr(ξ2k)

which are AdG-invariant. In particular their restriction on m are AdK-invariant and
induce G-invariant smooth (actually real analytic) functions on TGp,q(R). We shall
give a formula for their gradients using the following lemmas.

Lemma 4.2.1. Let p, q ∈ N and A ∈ Rp×q.The positive semidefinite symmetric
matrices AtA ∈ Rq×q and AAt ∈ Rp×p have the same non-zero (e.g. positive) eigen-
values.

Proof. Let λ ≥ 0 be an eigenvalue of AtA. There exists v ∈ Rq, v 6= 0 such that
AtAv = λv. Then AAt(Av) = λAv. If λ > 0, necessarily Av 6= 0 and therefore λ
is an eigenvalue of AAt. Symmetrically, if µ > 0 is an eigenvalue of AAt, there
exists u ∈ Rp, u 6= 0 such that AAtu = µu and therefore AtA(Atu) = µAtu. Again
Atu 6= 0, since µ 6= 0 and so µ is an eigenvalue of AtA. �
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Lemma 4.2.2. Let p, q ∈ N and A ∈ Rp×q. Let

ξ =

(
0 A
−At 0

)
∈ R(p+q)×(p+q).

If λ ∈ C \ {0} is an eigenvalue of ξ, then λ is purely imaginary and −λ2 is an
eigenvalue of AAt.

Proof. There are u ∈ Cp and v ∈ Cq, not both zero, such that(
0 A
−At 0

)(
u
v

)
= λ

(
u
v

)
⇔ Av = λu, − Atu = λv.

If v 6= 0, then AtAv = λAtu = −λ2v and −λ2 is an eigenvalue of AtA. If u 6= 0,
then AAtu = −λAv = −λ2u and −λ2 is an eigenvalue of AAt. Since AAt and AtA
are positive semidefinite, symmetric, they have real non-negative eigenvalues and by
Lemma 4.1.1 they have the same non-zero positive eigenvalues. Since −λ2 ∈ R and
−λ2 > 0, it follows that λ is purely imaginary. �

Lemma 4.2.3. Let A ∈ Cn×n and adA : Cn×n → Cn×n be the adjoint to A linear
map defined by adA(X) = [A,X] = AX −XA. If λ1, ...λn ∈ C are the eigenvalues
of A then the eigenvalues of adA are

λi − λj, i, j = 1, 2, ..., n.

Proof. We recall that A and At have the same eigenvalues. Let u1, ...un ∈ C
be distinct eigenvectors of A and v1, ...vn ∈ C of At coresponding to λ1, ..., λn,
respectively. For any u ∈ Cn and v ∈ (Cn)∗ we denote by u⊗ v the element of Cn×n

defined by
(u⊗ v)(z) = v(z)u

for every z ∈ Cn. Let Xij = ui ⊗ vj. Now we have Xij 6= 0 and

AXij(z) = A((ui ⊗ vj)(z)) = A(vj(z)ui) = vj(z)A(ui) = (A(ui)⊗ vj)(z) = λiXij(z)

and

XijA(z) = (ui ⊗ vj)(A(z)) = vj(A(z))ui = (Atvj)(z)ui = λjvj(z)ui = λj(Xij(z)).

So adA(Xij) = λiXij−λjXij = (λi−λj)Xij for all i, j = 1, 2, ..., n. Therefore λi−λj,
i, j = 1, 2, ..., n are the eigenvalues of adA. �

Recall (See [13], [12]) that the nullity of a linear map A : Cn → Cn, i.e. an
element A ∈ Cn×n, is the multiplicity of 0 as an eigenvalue of A. If g is a complex
Lie algebra and A ∈ g, the rank of g is by definition

rk(g) = min{nullity of adA | A ∈ g}.

The element A ∈ g is called regular if adA has minimum nullity i.e. rk(g).
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Example 4.2.4. If A ∈ gl(n,C) = Cn×n, the nullity of adA is at least n from
the previous Lemma 4.2.3 and A is regular if and only if it is exactly n. This is
equivalent to saying that A has n distinct eigenvalues. This is obviously an open
and dense subset of Cn×n.

Example 4.2.5. Let p, q ∈ N with p ≥ q, A ∈ Rp×q and

ξ =

(
0 A
−At 0

)
∈ so(p+ q,R).

Then ξ has at most 2q non zero (actually ±i
√
positive eigenvalues of AtA) eigen-

values. So adξ has at most 4q2 − 2q non-zero eigenvalues and the nullity of adξ is
greater or equal than (p+ q)2−4q2 +2q. Hence ξ is a regular element of so(p+ q,R)
if and only if AtA has q non-zero (⇔ positive) and distinct eigenvalues.

Proposition 4.2.6. The polynomial functions hk : so(p+ q,R)→ R with

hk(ξ) = Trξ2k, k = 1, 2, ..., p,

where p, q ∈ N, p ≤ q, are SO(p+ q,R)-invariant with gradients

gradhk(ξ) = −2kξ2k−1,

with respect to the metric 〈X, Y 〉 = Tr(XY t). Moreover at any ξ in a maximal
abelian subspace a ⊂ m, their gradients are tangent to a and are linearly independent
if ξ is a regular element of so(p+ q,R). So

Dhk(ξ)X = Tr(−2kξ2k−1X t) = Tr(2kξ2k−1X), X ∈ so(p+ q,R).

Proof. We observe first that if A,B are square matrices of the same size, then

TrAk − TrBk = Tr((A−B)(Ak−1 + Ak−2B + ...+Bk−1)).

Indeed,
(A−B)(Ak−1 + Ak−2B + ...+Bk−1) =

= Ak + Ak−1B + ...+ ABk−1 −BAk−1 −BAk−2B − ...−Bk

and
Tr(Ak−1B) = Tr(BAk−1), Tr(Ak−2B) = Tr(BAk−2B),

e.t.c. Hence the observation.
Applying the above to ξ,H ∈ so(p+ q,R) we have

Tr(ξ +H)k − Trξk − kTr(Hξk−1)

= Tr(H((ξ +H)k−1 − ξk−1)) + Tr((H(ξ +H)k−2ξ − ξk−1)) + ...+ 0.

For every l = 0, 1, ..., n− 1 from the Cauchy-Schwarz inequality we have∣∣∣Tr(H((ξ +H)k−l−1ξl − ξk−1)
∣∣∣

(Tr(HH t))1/2
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≤ (Tr((ξ +H)k−l−1ξl − ξk−1)((ξt +H t)k−l−1(ξt)l − (ξt)k−1)))
1
2

and for H → 0 the right hand side tends to

(Tr(ξk−l−1ξl − ξk−1)((ξt)k−l−1(ξt)l − (ξt)k−1))
1
2 = 0.

In particular the above calculation shows that

Dhk(ξ)X = 2kTr(Xξ2k−1) = −2kTr(X tξ2k−1)

= −2kTr(ξ2k−1X t) =
〈
−2kξ2k−1, X

〉
and hence gradhk(ξ) = −2kξ2k−1.

In the particular case where

ξ =

(
0 X
−X t 0

)
∈ m, X ∈ Rp×q

we have

ξ2 =

(
−XX t 0

0 X tX

)
and ξ2k = (−1)k

(
(XX t)

k
0

0 (X tX)
k

)
.

So

ξ2k−1 = (−1)k

(
0 (XX t)

k−1
X

−((XX t)
k−1

X)
t

0

)
∈ m,

because

(X tX...X tX)X t = X t(XX t...XX t) = X t(XX t)k−1 = ((XX t)k−1X)t.

Actually, if ξ ∈ a, where a is a maximal abelian subspace of m, then [ξ, ζ] = 0,
i.e. ξζ = ζξ and since [ξ2k−1, ζ] = ξ2k−1ζ − ζξ2k−1 = 0 for every ζ ∈ a we must
necessarily have ξ2k−1 ∈ a, because a is maximal. In other words gradhk(ξ) ∈ a for
all ξ ∈ a.

Now let λ1, .., λp be such that
p∑

k=1

λkξ
2k−1 = 0. Then

p∑
k=1

λkξ
2k = 0 and so

p∑
k=1

(−1)kλk(X
tX)k = 0. If a1, ...ap ≥ 0 are the eigenvalues of X tX, there exists

R ∈ SO(p,R) such that

R−1(X tX)R =

 a1 . . . 0
...

. . .
...

0 · · · ap



and hence R−1(X tX)kR =

 ak1 . . . 0
...

. . .
...

0 · · · akp

 . Substituting,

p∑
k=1

(−1)kλk

 ak1 . . . 0
...

. . .
...

0 · · · akp

 = 0
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or equivalently
p∑

k=1

(−1)kakjλk = 0, j = 1, 2, ...p.

It follows that λ1 = ... = λp = 0, if

0 6=

∣∣∣∣∣∣∣∣∣
a1 a21 · · · ap1
a2 a22 · · · ap2
...

...
. . .

...
ap a2p · · · app

∣∣∣∣∣∣∣∣∣ = a1a2...ap

∣∣∣∣∣∣∣∣∣
1 a1 · · · ap−11

1 a2 · · · ap−12
...

...
. . .

...
1 ap · · · ap−1p

∣∣∣∣∣∣∣∣∣ = a1a2...ap
∏
i<j

(aj − ai)

and ξ1, ξ2, ..., ξ2p−1 are linearly independent. This means that if ξ is regular then
Dhk(ξ), equivalently gradhk(ξ), k = 1, 2, ..., p are linearly independent. �

Remark. If on so(p + q,R) we consider the metric B(X, Y ) = 1
2
Tr(XY t) and the

functions fk(ξ) = − 1
4k

Trξ2k, k = 1, 2, ...q, then

Dfk(ξ)X =
1

4k
(−2k)Tr(ξ2k−1X t) =

1

2
Tr(ξ2k−1X t) = B(ξ2k−1, X)

and so gradfk(ξ) = ξ2k−1, where the gradient now is taken with respect to B. If
ξ is regular, then from the above the gradients gradfk(ξ) = ξ2k−1, k = 1, ..., p are
linearly independent.

Since f1, ..., fp are polynomials, hence real analytic functions, it follows from the
identity principle for real analytic functions that their gradients gradf1, ..., gradfp
are linearly idependent on an open dense subset of so(p + q,R) of full Lebesgue
measure.

Now we consider the following chain

R1×R1 ⊂ R1×R2 ⊂ R2×R2 ⊂ ... ⊂ Rp−1×Rp ⊂ Rp×Rp+1 ⊂ Rp×Rq−1 ⊂ Rp×Rq

of subspaces of Rn+1 = Rp × Rq. As usual we view Rk ⊂ Rp as the vectors in Rp

whose last p−k coordinates vanish and similarly Rl ⊂ Rq. From this chain of vector
subspaces we obtain the chain of σ- invariant Lie subgroups

O(1 + 1,R) ⊂ O(1 + 2,R) ⊂ O(2 + 2,R) ⊂ ... ⊂ O(p− 1 + p,R) ⊂ O(p+ p,R)

⊂ O(p+ p+ 1,R) ⊂ ... ⊂ O(p+ q − 1,R) ⊂ O(n+ 1,R).

The fixed point set of σ restricted to each O(k + l,R) is O(k,R)×O(l,R) and so

Gk,l(R) = O(k + l,R)/O(k,R)×O(l,R) ⊂ Gp,q(R)

is a totally geodesic embedded smooth submanifold of Gp,q, since the corresponding
second fundamental form must vanish at each point of Gk,l(R) (see [6], Theorem 8
on page 19). The elements of so(k+ l,R) viewed as elements so(n+ 1,R) have rows
and columns with respective numbers n + 1, ..., p and p + l + 1, ..., p + q = n + 1
which vanish.

In the above chain of inclusions there are two types, namely Rk−1×Rk ⊂ Rk×Rk

and Rk × Rl ⊂ Rk × Rl+1 for k ≤ l with corresponding inclusion

O(k − 1 + k,R) ⊂ O(k + k,R) and O(k + l,R) ⊂ O(k + l + 1,R).
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We shall consider the first case, the second being analogous. We simplify our nota-
tion setting G1 = O(k−1+k,R), G2 = O(k+k,R) and K1 = O(k−1,R)×O(k,R),
K2 = O(k,R) × O(k,R). Since the fixed point set of σ restricted to G1 is K1 and
to G2 is K2, we obtain orthogonal direct sum decompositions g1 = k1 ⊕ m1 and
g2 = k2 ⊕ m2, where kj is the Lie algebra Kj, which is identical with the eigenspace
of the eigenvalue 1 and mj is the eigenspace of the eigenvalue −1, j = 1, 2. The
difference dimm2 − dimm1 is the rank of the symmetric space G2/K2. Using these
notations we have the following.

Lemma 4.2.7. For every regular vector ξ1 ∈ m1 there exists a regular vector ξ2 ∈ m2

with π1(ξ2) = ξ1, where π1 : so(n + 1,R) → g1 denotes the orthogonal projec-
tion, and such that the maximal abelian subalgebra a2 of m2 containing ξ2 satisfies
m1 ⊕ a2 = m2.

Proof. The Lie algebra m2 consists of matrices of the form

(X, a) =

 0 0 −X t

0 0 −at
X a 0


with X ∈ Rk×(k−1) and a ∈ Rk×1 = Rk. In the Lie subalgebra m1 of m2 we have
a = 0. We have deleted the vanishing rows and columns arising from the inclusion
of m2 in so(n + 1,R). There exists h ∈ K1 such that Adh(ξ1) is contained in the
maximal abelian subalgebra a of m1 which consists of matrices (X, 0) and xij = 0
for i 6= j, 1 ≤ i ≤ k, 1 ≤ j < k, where X = (xij), 1 ≤ i ≤ k, 1 ≤ j < k (See [6],
Theorem 9). So we may assume without loss of generality that ξ1 = (X, 0) ∈ a and
it suffices to take ξ2 = (X, a) selecting a suitably in order to achieve the direct sum
decomposition. The commutator of ξ2 with any u = (Y, 0) ∈ m1, for Y = (yij) ∈
Rk×(k−1), 1 ≤ i ≤ k, 1 ≤ j < k, is

[ξ2, v] =

 Y tX −X tY Y ta 0
−atY 0 0

0 0 Y X t −XY t


while

[ξ1, v] =

 Y tX −X tY 0 0
0 0 0
0 0 Y X t −XY t

 .

If [ξ1, v] = 0, then v ∈ a and atY = (a1y11, ..., ak−1yk−1,k−1), where at = (a1, ..., ak−1, ak).
Thus, if we choose a ∈ Rk such that ai 6= 0 for 1 ≤ i < k, then [ξ2, v] 6= 0 for
v 6= 0.This implies that the maximal abelian subalgebra a2 in m2 which contains ξ2
satisfies a2 ∩m1 = {0}. �

Enumerating the groups O(k+l,R) and O(k,R)×O(l,R) consequtively as in the
chain of inclusions above by Gi and Ki we have corresponding Lie algebras gi and ki
respectively, 1 ≤ i ≤ 2(p− 1) + (q − p+ 1) = p+ q − 1, with orthogonal direct sum
decomposition gi = ki⊕mi. Starting with a non-zero vector ξi ∈ a1 = m1

∼= R, hence
regular, and applying the above Lemma 4.2.7 repeatelly we obtain a finite sequence
of regular vectors ξi ∈ mi such that πi(ξj) = ξi for i < j where πi : so(n+ 1,R)→ gi
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is the orthogonal projection and such that the maximal abelian subalgebra ai of
mi which contains ξ satisfies mi = ai ⊕ mi−1. In this way we obtain a direct sum
decomposition

mn = mp+q−1 = a1 ⊕ ...⊕ an.

If now P : TGp,q(R) → so(n + 1,R) denotes the representation of the momentum
map induced by the metric, we have a total number of

2
(p− 1)p

2
+ p(q − p+ 1) = pq

first inegrals Fij = fj◦πi◦P : TGp,q(R)→ R which are in involution by the results of
the previous section. By Proposition 4.2.4, their gradients are linearly independent
at ξn = ξp+q−1 and so are their corresponding Hamiltonian vector fields. Since P is
real analytic by the formula in Lemma 3.2.1 and fj ◦πi are polynomial functions, all
the Fji are real analytic functions. By the identity principle for real analytic func-
tions, their gradients are linearly independent on an open dense subset of TGp,q(R)
whose complement is a set of measure zero and so are their corresponding Hamilto-
nian vector fields. Thus we have proved the following.

Theorem 4.2.8. The geodesic flow of the real Grassmanian Gp,q(R) is completely
integrable with pq real analytic functions on TGp,q(R) as a complete family of first
integrals in involution. �

Actually, the above considerations show that the conclusion of the Theorem 4.2.8
holds for the Hamiltonian vector field of any SO(n+ 1,R) invariant smooth funtion
on TGp,q(R).
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5.1 The identity principle for real analytic func-

tions

Theorem 5.1.1. Let I ⊂ R be an open interval and let f : I → R be a real analytic
function. If the set of zeros {x ∈ I | f(x) = 0} of f has an accumulation point in I,
then f = 0 on I.

Proof. Let x0 ∈ I be such that f(x0) = 0. There exists δ > 0 such that (x0 −
δ, x0 + δ) ⊂ I and f(x) =

∞∑
n=0

an(x− x0)n for x ∈ (x0− δ, x0 + δ) where an = f (n)(x0)
n!

,

n ≥ 0. Since f(x0) = 0, either an = 0 for all n ≥ 0 and so f |(x0−δ,x0+δ) = 0 or there
exists some m ∈ N such that f(x) = (x − x0)mg(x), x ∈ (x0 − δ, x0 + δ) for some
real analytic function g : (x0 − δ, x0 + δ) → R, with g(x0) 6= 0. By continuity of g
taking a smaller δ > 0 we may assume that g(x) 6= 0 for all x ∈ (x0 − δ, x0 + δ).
Consequently f(x) 6= 0 for all x ∈ (x0 − δ, x0 + δ) \ {x0}. So x0 is an isolated point
of {x ∈ I | f(x) = 0}. Thus if x0 ∈ I is an accumulation point of {x ∈ I | f(x) = 0}
then necessarily an = 0 and f |(x0−δ,x0+δ) = 0. This argument implies that the set of
the accumulation points of {x ∈ I | f(x) = 0} in I is open and trivially closed in I.
Hence if it is non-empty it must be all of I. �

Theorem 5.1.2. Let f : Rn → R be a real analytic function such that f(x) = 0 for
all x ∈ E. If E has positve Lebesgue measure, then f = 0 everywhere on Rn.

Proof. We proceed by induction on the dimension. For n = 1, there exists some
ρ > 0 such that λ1(E ∩ [−ρ, ρ]) > 0, where λ1 denotes the Lebesgue measure on R.
In particular, E ∩ [−ρ, ρ] is an infinite set and by the Bolzano-Weierstrass theorem,
it has an accumulation point in [−ρ, ρ]. Hence f = 0 for every open interval larger
than [−ρ, ρ]. This means that f = 0 everywhere on R.

Suppose now that the conclusion is true for n and let f : Rn+1 → R be a real
analytic function such that f(x) = 0 for x ∈ E ⊂ Rn+1 a set of (n+ 1)-dimensional
Lebesgue measure λn+1(E) > 0. By Fubini’s theorem we have∫

R

∫
Rn

χE(x, t)dλn(x)dλ1(t) > 0.
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This implies that there exists a measurable set A ⊂ R such that∫
Rn

χE(x, t)dλn(x) > 0 and λ1(A) > 0

for every t ∈ A. The function gt(x) = f(x, t) is real analytic on Rn and gt(x) = 0
for x ∈ Et, where

Et = {x ∈ Rn | (x, t) ∈ E}.
Obviously, Et is measurable and

λn(Et) =

∫
Rn

χEt(x)dλn(x) =

∫
Rn

χEt(x, t)dλn(x) > 0.

By the inductive hypothesis, gt(x) = 0 for every x ∈ Rn and so f(x, t) = 0 for all
(x, t) ∈ A. Now for all x ∈ Rn the function hx(t) = f(x, t) is real analytical on R
and hx(t) = 0 for all t ∈ A. Since λ1(A) > 0 and the conclusion holds in dimension
n = 1 we conclude that hx(t) = 0 for all t ∈ R, that is

f(x, t) = hx(t) = 0 for all t ∈ R and x ∈ Rn. �

Corrolary 5.1.3. Let m ≤ n and f1, ..., fm : Rn → R be real analytic functions. If
there exists some point p ∈ Rn such that {∇f1(p), ...,∇fm(p)} is linearly indepen-
dent, then the vector fields ∇f1, ...,∇fm are linearly independent on an open dense
subset of Rn whose complement has Lebesgue measure zero.

Proof. Let f : Rn → Rm denote the map f = (f1, ..., fm). Then {∇f1(q), ...,∇fm(q)}
are linearly independent if and only if Df(q) has rank m. Obviously, this holds in
an open subset of Rn. Recall that Df(q) has rank m if and only if the determinant
of some m × m submatrix of Df(q) is non-zero. By our assumption, there exists
such a determinant D with D(p) 6= 0. The function D : Rn → R is real analytic, as a
polynomial of the real analytic functions ∂fi

∂xj
, 1 ≤ i, j ≤ n. By the identity principle

for real analytic functions, the set

E = {q ∈ Rn | D(q) = 0}

has Lebesgue measure zero and in particular it does not contain any open subset
of Rn, that is it is nowhere dense. In other words {∇f1(q), ...,∇fm(q)} is linearly
independent for q ∈ Rn \ E and Rn \ E is dense in Rn. �

5.2 Killing forms

Let G be a Lie group with Lie algebra g. Let B : g × g → R be the symmetric,
bilinear form defined by

B(X, Y ) = Tr(adX ◦ adY ).
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If σ is a Lie algebra automorphism of g, we have

adσ(X)(Z) = [σ(X), Z] = σ[X, σ−1(Z)]

for everyX, Y ∈ g and therefore adσ(X) = σ◦adX◦σ−1. It follows thatB(σ(X), σ(Y ))
= B(X, Y ) for every X, Y ∈ g. In particular, B(Adg(X),Adg(Y )) = B(X, Y ) for
every X, Y ∈ g and g ∈ G. In other words, B is Ad-invariant. The Ad-invariant,
symmetric, bilinear form B is called the Killing form of G (and g). If B is non-
degenerate, then G (and g) is called semi-simple Lie group.

Example 5.2.1. If G is abelian, then Ad is trivial and ad= 0. Hence B = 0. So
G cannot be semi-simple. As special cases we get that Rn and S1 are not semi-simple.

Example 5.2.2. We shall find the Killing form of the general linear group GL(n,R),
n > 1. Recall that gl(n,R) ∼= Rn×n and the adjoint representation in this case is
just conjugation, that is AdA(X) = AXA−1 for X ∈ Rn×n and A ∈ GL(n,R). Also
[X, Y ] = adX(Y ) = XY − Y X for every X, Y ∈ Rn×n, because

(In +X)Y (In +X)−1 − Y − (XY − Y X)

‖X‖

=
(In +X)Y − Y (In +X)− (XY − Y X)(In +X)

‖X‖
(In +X)−1

= (Y X −XY )
X

‖X‖
(X + In)−1,

whose norm is ≤ ‖Y X − XY ‖ · ‖(In + X)−1‖ → 0, when X → 0. Since adIn = 0
it follows that the Killing form of GL(n,R) is degenerate, and so GL(n,R) is not
semi-simple.

Note that if G is any Lie group with Lie algebra g, it follows from the Jacobi
identity that

ad[X,Y ] = adX ◦ adY − adY ◦ adX = [adX , adY ]

for every X, Y ∈ g, which means that ad: g→ End(g, g) is a Lie algebra homomor-
phism.

In order to calculate the Killing form of GL(n,R), we consider the cannonical

basis {Eij | 1 ≤ i, j ≤ n} of Rn×n. If X = (xij)1≤i,j≤n =
n∑

i,j=1

xijEij, then

adX(Eij) = [X,Eij] =
n∑
k=1

xkiEkj −
n∑
k=1

xjkEik.

If Y = (yij)1≤i,j≤n, then

(adX ◦ adY )(Eij) =
n∑
k=1

ykiadX(Ekj)−
n∑
k=1

yjkadX(Eik)

=
n∑
k=1

yki(
n∑
l=1

xlkElj −
n∑
l=1

xjlEkl)−
n∑
k=1

yjk(
n∑
l=1

xliElk −
n∑
l=1

xklEil)
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=
n∑

k,l=1

xlkykiElj −
n∑

k,l=1

xjlykiEkl −
n∑

k,l=1

xliyjkElk +
n∑

k,l=1

xklyjkEil

=
n∑

k,l=1

xlkykiElj −
n∑

k,l=1

(xjlyki + xklyjl)Ekl +
n∑

k,l=1

xklyjkEil.

The coefficient of Eij is

n∑
k=1

xikyki − xjjyii − xiiyjj +
n∑
k=1

xkjyjk

and so

B(X, Y ) = Tr(adX ◦ adY ) =
n∑

i,j,k=1

xikyki −
n∑

i,j=1

(xjjyii + xiiyjj) +
n∑

i,j,k=1

xkjyjk

= nTr(XY )− 2TrX · TrY + nTr(XY ) = 2nTr(XY )− 2TrX · TrY.

Example 5.2.3. We shall compute the Killing form of the special orthogonal group
SO(n,R) for n > 2. We recall that so(n,R) = {H ∈ Rn×n | H + H t = 0} is the
space of skew-symmetric elements of Rn×n. We consider the basis {Eij − Eji | 1 ≤
i < j ≤ n} of so(n,R). If X = (xij)1≤i,j≤n and Y = (yij)1≤i,j≤n are two elements of
so(n,R), then xij = −xji and yij = −yji and

adY (Eij − Eji) =
n∑
k=1

yki(Ekj − Ejk)−
n∑
k=1

yjk(Eik − Eki).

Therefore,

(adX ◦ adY )(Eij − Eji) =
n∑
k=1

ykiadX(Ekj − Ejk)−
n∑
k=1

yjkadX(Eik − Eki)

=
n∑
k=1

yki

n∑
l=1

xlk(Elj − Ejl)−
n∑
k=1

yki

n∑
l=1

xjl(Ekl − Elk)

−
n∑
k=1

yjk

n∑
l=1

xli(Elk − Ekl) +
n∑
k=1

yjk

n∑
l=1

xkl(Eil − Eli).

The coefficient of Eij − Eji is

n∑
k=1

xikyki − 2xijyji +
n∑
k=1

xkjyjk and so

B(X, Y ) = Tr(adX ◦ adY ) =
∑

1≤i<j≤n

n∑
k=1

xikyki +
∑

1≤i<j≤n

n∑
k=1

xkjyjk − 2
∑

1≤i<j≤n

xkjyji

=
∑

1≤i<j≤n

n∑
k=1

xikyki +
∑

1≤i<j≤n

n∑
k=1

xjkykj −
∑

1≤i<j≤n

xijyji −
∑

1≤i<j≤n

xjiyij
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=
∑

1≤i<j≤n

(XY )ii +
∑

1≤i<j≤n

(XY )jj −
n∑

i,j=1

xijyji

= (n− 1)Tr(XY )− Tr(XY ) = (n− 2)Tr(XY ).

This formula for the Killing formB implies thatB is non-degenerate and so SO(n,R)
is semi-simple. Indeed, if X ∈ so(n,R) and X = (xij)1≤i,j≤n, then for 1 ≤ i < j ≤ n
we have

Tr(X · (Eij − Eji)) = Tr(
n∑
k=1

xkiEkj −
n∑
k=1

xkjEki)

=
n∑
k=1

xkiTrEkj −
n∑
k=1

xkjTrEki = xji − xij = −2xij.

So if Tr(XY ) = 0 for every Y ∈ so(n,R), then X = 0.
In case n = 3 we have the Lie algebra isomorphism ̂ : (R3,×)→ so(n,R) with

v̂ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 for v =

 v1
v2
v3

 ∈ R3. If u =

 u1
u2
u3

 ,

and then a simple calculation shows that Tr(ûv̂) = −2 〈u, v〉, where 〈 , 〉 is the
Euclidean inner product on R3. In other words B is negative defined and −1

2
B

corresponds to the Euclidean inner product under the isomorphism ̂ .

65



CHAPTER 5. APPENDICES

66



Bibliography

[1] K. Athanassopoulos, Notes on Symplectic Geometry, Course Notes.

[2] V.I. Arnold, Mathematical methods of Classical Mechanics, Springer-Verlag,
New York/Berlin, 1984.

[3] W. Ballman, Complete integrability of Hamiltonian systems after Anton Thimm,
preliminary seminar notes.

[4] A. Canas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Math.
vol 1764, Springer-Verlag, Berlin, 2001.

[5] J. Cheeger and D.G. Ebin, Comparison theorems in Riemannian Geometry,
North-Holland, Amsterdam, 1975.

[6] J.-H. Eschenburg, Lecture notes on symmetric spaces, Course notes.

[7] V. Guillemin and S. Sternberg, The momentum map and collective motion,
Annals of Physics 127 (1980), 220-253.

[8] V. Guillemin and S. Sternberg, On collective complete integrability according to
the method of Thimm, Ergodic Theory & Dynamical Systems 3 (1983), 219-230.

[9] V. Guillemin and S. Sternberg, Multiplicity-free spaces, J. Diff. Geom. 19 (1984),
31-56.

[10] V. Guillemin and S. Sternberg, Symplectic techniques in Physics, Cambridge
Univ. Press, Cambridge, 1984.

[11] S. Helgason, Differential Geometry, Lie groups and symmetric spaces, Academic
Press, New York, 1962.

[12] J. Hilgert and K.-H. Neeb, Structure and Geometry of Lie Groups, Springer
Science and Bussiness Media, 2012.

[13] A. Kirillov Jr., An introduction to Lie groups and Lie algebras, Cambridge
Univ. Press, Cambridge, 2010.

[14] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I and
II, Interscience, New York, 1963 and 1969.

[15] G.P. Paternain and R.J. Spatzier, New examples of manifolds with completely
integrable geodesic flows, Advances in Math. 108 (1994), 346-366.

67



BIBLIOGRAPHY

[16] A. Thimm, Integrable geodesic flows on homogeneous spaces, Ergodic Theory
& Dynamical Systems 1 (1981), 495-517.

[17] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups,
Springer, New York/Berlin, 1983.

68


