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Abstract. We study D-stable flows on orientable 2-manifolds of finite genus in connection with
the topology of the underlying phase spaces. The description of the phase portrait is used to
prove that a connected orientable 2-manifold of finite genus supporting a non-minimal D-stable
flow must be homeomorphic to an open subset of the 2-sphere or the 2-torus. In the case of the
presence of singularities we necessarily have an open subset of the 2-sphere.
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1. Introduction

The main object of study in this article is the class ofD-stable flows on 2-manifolds
of finite genus (for definition see section 2). We are concerned with their qualitative
behavior in connection with the topological structure of the underlying manifold.
This point of view is in the center of the theory of transformation groups and
dynamical systems. The class of D-stable flows is proved to be suitable for the
main purposes of the two theories.

More precisely, we want to find the orientable 2-manifolds of finite genus that
admit D-stable flows. To do this, we need to examine first the geometric proper-
ties of the orbits of D-stable flows, which is of independent interest in the theory
of dynamical systems. The first, and possibly more important, step towards the
qualitative analysis of a flow is to determine the topological and dynamical struc-
ture of its limit sets. The limit sets (and in fact all orbit closures) of a D-stable
flow are minimal sets. A minimal set of a continuous flow on a manifold is a non-
empty, closed, invariant set which has no proper subset with these properties and
is called simple (or trivial) if it consists of a single orbit or is the whole manifold.
A flow on a 2-manifold of finite genus has simple compact minimal sets if and only
if it is smoothable, that is topologically equivalent to a C∞ flow [5]. This is a
special property of flows on 2-manifolds, since there are C∞ flows even on S3 with
1-dimensional non-simple minimal sets [8]. However the smoothability of a flow
on a 2-manifold of finite genus (even compact) does not prevent the existence of



Vol. 72 (1997) A class of flows on 2-manifolds with simple recurrence 619

non-periodic Poisson stable orbits.
In section 2 we consider the C-flows, which are a larger class of flows contain-

ing the D-stable flows, and whose orbits are either closed sets or positively or
negatively Poisson stable. We prove that a non-periodic positively (or negatively)
Poisson stable orbit of a C-flow on an orientable 2-manifold of finite genus and
with countably many ends is locally dense. Thus, any C-flow on an orientable 2-
manifold of finite genus is smoothable. The assumption on the countability of the
ends can be removed in the subclass of D-stable flows (see Theorem 2.4). Having
at hand a Poincaré-Bendixson type theorem for non-minimal D-stable flows on
orientable 2-manifolds of finite genus, we give in section 3 a qualitative description
of their phase portrait. For the minimal flows we refer the reader to [3]. This
description is used in section 4 to find the orientable 2-manifolds of finite genus
that admit non-minimal D-stable flows. In the main result of section 4 we prove
that these manifolds are precisely the ones of genus zero or one, that is they are
homeomorphic to the complement of a compact and totally disconnected set in the
2-sphere or the 2-torus. Moreover, an orientable 2-manifold of finite genus that
admits a D-stable flow with at least one singularity has genus zero.

Some of the results of section 3 and Theorem 2.4(b) are contained in the second
author’s thesis [10], which was carried out under the guidance of the third author
and is available only in Greek. We thank A. Manoussos for pointing out to us at
an early stage that the method of proof of Theorem 2.4(b) also works to prove (a).

2. Recurrence in C-flows on orientable 2-manifolds of finite genus

Let φ be a continuous flow on a manifold M . We shall denote by φ(t, x) = tx the
translation of the point x ∈ M along its orbit in time t ∈ R. We shall also write
φ(I × A) = IA, for I ⊂ R and A ⊂ M . The orbit of x will be denoted by C(x),
its positive semiorbit by C+(x) and the negative by C−(x). The positive limit set
of x ∈M is the closed invariant set

L+(x) = {y ∈M : tnx→ y for some tn → +∞}

and its (first) prolongational positive limit set is the set

J+(x) = {y ∈M : tnxn → y for some xn → x and tn → +∞}.

The negative versions L−(x) and J−(x) are defined by reversing time. A point
x ∈M is non-wandering if x ∈ J+(x).

The orbit C(x) is called positively (resp. negatively) Poisson stable if x ∈ L+(x)
(resp. x ∈ L−(x)), and Poisson stable if x ∈ L+(x) ∩ L−(x). A positively (or
negatively) Poisson stable orbit C(x) is called locally dense if x ∈ intC(x). An
exceptional orbit is a positively or negatively Poisson stable orbit which is non-
singular, non-periodic and non-locally-dense.
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Definition 2.1. (a) A C-flow is a non-trivial continuous flow on a manifold each
orbit of which is either a closed set or positively or negatively Poisson stable.

(b) A non-trivial flow φ on a manifoldM is called D-stable (or of characteristic 0
[7]) if C(x) = D(x) for every x ∈M , where D(x) is its (bilateral first) prolongation
defined as follows,

D(x) = {y ∈M : tnxn → y, for some xn → x and tn ∈ R}.

Note that D(x) = C(x) ∪ J+(x) ∪ J−(x) and that y ∈ D(x) if and only if
x ∈ D(y). Thus, in a D-stable flow every orbit closure is a minimal set, and we
have a C-flow. Moreover, the reverse flow of a D-stable flow is also D-stable and
the restricted flow in any connected open invariant set of a D-stable flow is D-
stable. It is clear that the property of being D-stable is invariant under topological
equivalences. Actually something more general is true.

Proposition 2.2. Let M and N be two manifolds carrying non-trivial continuous
flows, and let f : M → N be a proper continuous map onto N carrying orbits in
M onto orbits in N . If the flow on M is D-stable, then the flow on N is also
D-stable.

Proof. Let tn ∈ R, f(xn) → f(x) and tnf(xn) → f(y). Since f is proper, the
family D = {f−1(z) : z ∈ N} is an upper semicontinuous decomposition of M into
compact sets. This implies that there are x′, y′ ∈M and t′n ∈ R, n ∈N, such that
f(x) = f(x′), f(y) = f(y′) and xn → x′, t′nxn → y′. Hence y′ ∈ D(x′) = C(x′),
because the flow on M is D-stable. It follows that f(y) = f(y′) ∈ f(C(x′)) =
f(C(x′)) = C(f(x′)) = C(f(x)).

Starting with a minimal flow on the 2-torus one can easily construct examples
of C-flows on 2-manifolds with locally dense orbits. Here we are interested in the
recurrence properties of C-flows on orientable 2-manifolds of finite genus.

An orientable 2-manifold of finite genus n is constructed as follows. Let F
be a closed and totally disconnected subset (maybe empty) of the 2-sphere S2.
From S2 \ F we remove the interiors of 2n pairwise disjoint closed discs and
identify their boundaries to form n handles h1, ..., hn. Then M is homeomorphic
to S2 ∪ h1 ∪ ... ∪ hn \ F . Adding F to M we obtain a compact 2-manifold M+ of
genus n, which is the end point compactification of M . The elements of M+ \M
are called ends of M . It can be proved that a flow on M can be extended to a
flow on M+ that fixes the ends pointwise [1, Satz 2.3].

Let φ be a C-flow on an orientable 2-manifold of finite genus M and denote by
R the set of points in M whose orbit is a non-compact closed set. The orbit of a
point x ∈ R tends in positive time to an end, which we denote by e+(x). So we
get a well defined map e+ : R→M+ \M and similarly a map e−, by considering
negative time.
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Proposition 2.3. If φ is a D-stable flow on an orientable 2-manifold of finite
genus M , then the maps e+, e− are continuous.

Proof. Let {xn : n ∈ N} be a sequence of points in R converging to a point x ∈ R
and suppose, by contradiction, that the sequence {e+(xn) : n ∈ N} does not
converge to e+(x). Since M+\M is compact, passing to a subsequence if necessary,
we may assume that there is an end e 6= e+(x) such that e+(xn)→ e. There is a
compact neighbourhood V of e in M+ such that e+(x) /∈ V and ∂V ⊂M , because
M+ \M is totally disconnected. Since limt→+∞ tx = e+(x), the continuity of the
extended flow on M+ and the connectedness of the orbits imply that there are
tn → +∞ such that tnxn ∈ ∂V and C+(tnxn) ⊂ V eventually for all n ∈ N.
The sequence {tnxn : n ∈ N} has a limit point y ∈ ∂V and C+(y) ⊂ V . Hence
y /∈ C(x). On the other hand, y ∈ D(x) = C(x). This contradiction shows that
the map e+ is continuous.

The above Proposition is true for D-stable flows on any manifold of arbitrary
dimension. For the general definition of the end point compactification we refer
the reader to [1].

Theorem 2.4. Let φ be a C-flow on an orientable 2-manifold of finite genus M .
If
(a) M has countably many ends, or
(b) φ is D-stable,
then φ has no exceptional orbit.

Proof. Suppose, by contradiction, that there is an exceptional orbit C(x). There
exists a local section S at x which is an arc [6, Ch. VII, Theorem 1.6]. The set
S ∩C(x) is a totally disconnected perfect set, because C(x) is exceptional. Thus,
there is a sequence of mutually disjoint intervals in S \ C(x) accumulating to
x. Since M has finite genus, there are finitely many pairwise disjoint non-periodic
positively (or negatively) Poisson stable orbit closures [5], [9]. Moreover, according
to the Structure Theorem in [5], if x ∈ C(y) and y is positively (or negatively)
Poisson stable, then C(x) = C(y). On the other hand, x cannot be the limit of
a sequence of singular or periodic points [9, Lemma 6]. It follows from these and
our assumption on the flow that shrinking S we may assume that S \C(x) ⊂ intR.
Each point of S \C(x) returns to S at most finitely many times. If we assume (a),
then every connected component of S \ C(x) contains at least two points (in fact
uncountably many) whose orbits tend in positive (resp. negative) time to the same
end. If we assume (b), then the orbits of all points in a connected component of
S \C(x) tend in positive (resp. negative) time to the same end, because M+ \M
is totally disconnected and the maps e+, e− are continuous, by Proposition 2.3.
Thus, in either case there exists a sequence {xn : n ∈N} of points of R converging
to x, with mutually disjoint orbits, and two sequences of ends {e+

n : n ∈ N} and
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{e−n : n ∈ N} such that

lim
t→±∞

tx2n−1 = lim
t→±∞

tx2n = e±n

for every n ∈N. Passing to suitable subsequences if necessary, it suffices to consider
only the following two cases.

Case I. Suppose that e+
n = e−n for every n ∈ N. The sets C2n−1 = C(x2n−1) ∪

{e+
n } and C2n = C(x2n) ∪ {e+

n } are simple closed curves for all n ∈ N. If Cn
separates M+, then it is the boundary of an invariant open set in M+. By the
continuity of the flow and because C(x) is exceptional, the orbit C(xn) crosses S
at least three times, provided n is large enough, and we arrive at a contradiction
as in the proof of Lemma 6 in [9]. This shows that there exists N ∈ N such that
Cn does not separate M+ for n ≥ N .

Case II. Suppose that e+
n 6= e−n for every n ∈ N. The set Cn = C(x2n−1) ∪

C(x2n) ∪ {e+
n , e

−
n } is a simple closed curve for all n ∈ N. As in case I there exists

N ∈ N such that Cn does not separate M+ for n ≥ N .
In both cases, the set M1 = M ∩ (M+ \ CN ) is a connected, open, invariant

subset of M , which as a 2-manifold has genus smaller than M and has countably
many ends, if M has. The restricted flow in M1 is a C-flow, which again has the
exceptional orbit C(x). Repeating now the above process, we arrive after a finite
number of steps at a connected, open, invariant subset of M of genus zero which
contains C(x). This contradicts the Poincaré-Bendixson theorem and proves the
conclusion under the assumption (a). If we assume (b), then the restricted flow on
M1 is a D-stable flow on an orientable 2-manifold of genus smaller than M having
the exceptional orbit C(x). Again by induction we arrive at a contradiction to the
Poincaré-Bendixson theorem.

Proposition 2.5. Let φ be a C-flow with totally disconnected set of singularities
on an orientable 2-manifold of finite genus M . If there exists a locally dense orbit
C(x) with compact closure, then M = C(x).

Proof. Since C(x) is compact and φ is a C-flow, every orbit in C(x) is either
singular or positively or negatively Poisson stable, because C(x) cannot contain
periodic points by the trapping argument. By the Structure Theorem in [5], ∂C(x)
consists of singularities and is therefore totally disconnected by assumption. Hence
M = C(x).

For any n ∈ N there are C-flows without singularities on orientable 2-manifolds
of genus n and with finitely many ends, having exactly n pairwise disjoint locally
dense, non-compact, orbit closures. For example, there is a flow on the 2-torus T 2

having an invariant closed disc D such that the flow in D looks like that of figure
1 and the restricted flow in T 2 \ D is minimal. Take two orbits C1, C2 in intD
and remove the interior of the disc in T 2 bounded by C1 ∪ C2. Take two copies of
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the remainder with reversely oriented flows and identify their boundaries point-
wise to get an orientable compact 2-manifold of genus 2 carrying a flow with two
(hyperbolic) singularities and two locally dense orbit closures, whose intersection
is the two singularities. Removing the singularities, we obtain a C-flow without
singularities on an orientable 2-manifold of genus 2 with two ends and two disjoint
locally dense, non-compact, orbit closures.

Figure 1.

3. D-stable flows on orientable 2-manifolds of finite genus

In this section we shall analyze the global qualitative behavior of D-stable flows
defined on orientable 2-manifolds of finite genus. So from now on φ will be a D-
stable flow on an orientable 2-manifold of finite genus. In order to study the global
qualitative behavior of φ, we must first describe its recurrence properties. Note
that φ has a locally dense orbit if and only if it is a minimal flow. So, Theorem
2.4 has the following consequence.

Corollary 3.1. Let φ be a non-minimal D-stable flow on an orientable 2-manifold
of finite genus M . If x ∈ M is a positively (or negatively) Poisson stable point,
then x is singular or periodic.

For the rest of the section we assume further that φ is a non-minimal D-stable
flow. Let R denote the set of points in M whose orbit is a non-compact closed
set and let e+, e− : R → M+ \M be the continuous maps defined just before
Proposition 2.3. If F denotes the set of singularities and P the set of periodic
points, then M = F ∪ P ∪R.

Lemma 3.2. The set F ∪ P is open in M .

Proof. If x ∈ F ∪ P , then its orbit C(x) is a bilaterally Lyapunov stable compact
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invariant set [4, Ch. V, Theorem 1.12]. Hence C(x) has a compact invariant
neighbourhood V . It is clear now that V ⊂ F ∪ P .

Lemma 3.3. If R 6= M and C is a connected component of R, then e+|C = e−|C
and is constant. Moreover, the closure of C in M+ is C ∪ {e+(C)}.

Proof. By proposition 3.1, the maps e+, e− are continuous and so take constant
values on C. Let e1 = e−(C) and e2 = e+(C). If x ∈ ∂C, which exists because
R 6= M , there are periodic points xn → x. Suppose that e1 6= e2 and let V be
a compact neighbourhood of e2 in M+ such that e1 /∈ V and ∂V ⊂ M . By the
continuity of the flow and the connectedness of orbits, there are tn → +∞ and
T > 0 such that C+(Tx) ⊂ V and [T, tn]xn ⊂ V and tnxn ∈ ∂V . The sequence
{tnxn : n ∈ N} has a limit point y ∈ ∂V such that C−(y) ⊂ V . However,
y ∈ J+(x) ⊂ C(x), and we have a contradiction, since limt→−∞ tx = e1. This
proves the first assertion.

To prove the second assertion, suppose that the end e belongs to the closure
of C in M+ and e 6= e+(C). Let W be a compact neighbourhood of e such that
∂W ⊂ M and e+(C) /∈ W . There exists a sequence {yn : n ∈ N} of points in
C ∩W converging to e. Since e+(yn) = e−(yn) = e+(C), there are sn < 0 < tn
such that [sn, tn]yn ⊂ W and snyn, tnyn ∈ ∂W for every n ∈ N. Moreover,
tn → +∞ and sn → −∞. The sequence {tnyn : n ∈ N} has a limit point in
z ∈ ∂W such that C−(z) ⊂W . Hence e+(C) = e−(z) ∈W , contradiction.

Theorem 3.4. If P = ∅, then the flow is parallelizable and M is homeomorphic
either to R2 or to R× S1.

Proof. From Lemma 3.2 and connectedness we have M = R and Proposition 2.3
implies that there are e1, e2 ∈ M+ \M such that e−(x) = e1 and e+(x) = e2 for
every x ∈M . Suppose, by contradiction, that the flow is not parallelizable. Then,
there exists some point x ∈ M such that J+(x) 6= ∅ [4, Ch. IV, Theorem 2.6]
and hence x ∈ J+(x), since J+(x) ⊂ D(x) = C(x). Thus, there are xn → x and
tn → +∞ such that tnxn → x. If e1 6= e2, then an argument similar to that used
in the proof of Lemma 3.3 leads to a contradiction. So, necessarily e1 = e2 and
the set C = C(x) ∪ {e1} is a simple closed curve in M+. Since M+ is orientable,
there exists an open neighbourhood V of C in M+ such that ∅ 6= ∂V ⊂ M , that
is homeomorphic to (−1, 1)× S1 so that C corresponds to {0} × S1. The orbits
C(xn), n ∈ N, lie eventually in V , since D(x) = C(x). Let S be a local section
at x, which is an arc and intersects C(x) only at x. We may assume that xn,
tnxn ∈ S and that xn is the first point C(xn) crosses S. If V1 and V2 are the two
connected components of V \ C, then we may further assume that C(xn) ⊂ V1
for all n ∈ N. The set Sn = [0, tn]xn ∪ [xn, tnxn] is a simple closed curve in V ,
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where [xn, tnxn] denotes the segment on S with endpoints xn and tnxn. If Sn is
nullhomotopic in V , then it bounds a positively (resp. negatively) invariant open
disc D ⊂ V . Otherwise, Sn and C bound a positively (resp. negatively) invariant
subannulus in V1. But then in both cases it is impossible to have e+(xn) = e−(xn).
This proves that the flow must be parallelizable. The rest is a consequence of [6,
Ch. VII, Theorem 1.6].

Proposition 3.5. The non-wandering set is F ∪ P and the restricted flow on R
is parallelizable.

Proof. If R = M , then the flow is parallelizable, by Theorem 3.4, and there is
nothing to prove. Suppose that R 6= M . Then, e+(x) = e−(x) for every x ∈ R,
by Lemma 3.3. Let y ∈ R and assume that there are points xn ∈ R, n ∈ N,
and times tn → +∞ such that xn → x and tnxn → y. Then, we arrive at a
contradiction in the same way as in the proof of Theorem 3.4. This proves both
assertions simultaneously.

Corollary 3.6. Let x, xn ∈ R and tn ∈ R, n ∈ N, be such that tn → ±∞ and
xn → x. Then tnxn → e±(x).

Proof. If R = M , the flow is parallelizable, by Theorem 3.4, and the assertion is
evident. Let R 6= M . Then, e+(x) = e−(x), from Lemma 3.3, and Proposition
3.5 implies that there is some e ∈ M+ \ M such that tnxn → e. Suppose by
contradiction that e 6= e+(x). There is then a compact neighbourhood V of e in
M+ such that ∂V ⊂M and V ∩ (C(x) ∪ {e+(x)}) = ∅. Eventually, xn ∈M+ \ V
and tnxn ∈ V . Hence there are sn > 0, n ∈ N, such that snxn ∈ ∂V . The
sequence {snxn : n ∈ N} has a limit point y ∈ ∂V . Obviously, y ∈ D(x) = C(x),
contradiction.

Our job for the rest of this section will be to study the topological structure of
each one of the sets F , P and R. We start with the structure of F .

Lemma 3.7. The set F consists of local centers.

Proof. Let z ∈ ∂F . By Lemma 3.2, there exists an invariant, open, connected
neighbourhood V of z in M such that V ⊂ F ∪ P . Then, J+(x) = C(x) = L+(x)
for every x ∈ V . It follows from [2, Theorem 3.1.4] that z is a local center. In
particular, D∩F = {z} for some invariant disc D ⊂ V , and {z} is open and closed
in F . It follows that F consists of local centers.

We shall prove later in section 4 that there can be at most two singularities
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(see Theorem 4.4).
Let now P 6= ∅ and suppose that K is a connected component of P . By Lemma

3.2 and [13], the restricted flow on K is topologically equivalent to the standard
periodic flow on the 2-torus T 2 or on R× S1. In the former case, M = K ∼= T 2,
by invariance of domain. So we deal only with the later. In this case there is a
homeomorphism h : R× S1 → K such that the periodic orbits in K are the sets
h({t}×S1), t ∈ R. Since K is open, elementary topology shows that the boundary
∂+K of K in M+ is K1 ∪K2 where

K1 =
⋂
t<0

h((−∞, t]× S1) and K2 =
⋂
t>0

h([t,+∞)× S1)

(closures taken in M+). The sets K1, K2 are invariant, compact and connected.
If K1 ∩ K2 6= ∅, then ∂+K is connected. Otherwise, they are its connected
components.

Proposition 3.8. Let P 6= ∅. If K is a connected component of P , then its
boundary ∂K in M has at most two connected components and each of them is an
orbit in F ∪R.

Proof. Using the above notation, we have ∂K ⊂ (K1 ∩M) ∪ (K2 ∩M). If x ∈
K2 ∩M , and x ∈ R, then the set C = C(x) ∪ {e+(x)} is a simple closed curve,
by Lemma 3.3. Since M+ is orientable, C has a neighbourhood basis consisting
of annular tubular neighbourhoods not intersecting h({0} × S1). Let V be such
an annulus. Since D(x) = C(x), there is an orbit Γ = h({t} × S1) ⊂ V ∩K, for
some t > 0. Then Γ cannot bound a disc in V , because if it did, then K2 would
be contained in the interior of that disc, but not C, which is a contradiction.
Thus, Γ and C bound an invariant subannulus and this with connectedness imply
that h([t,+∞)× S1) ⊂ V . It follows that K2 ⊂ V for every annular tubular
neighbourhood V of C. This shows that K2 = C(x) ∪ {e+(x)}. If x ∈ F , then
x is a local center by Lemma 3.7 and has a neighbourhood basis consisting of
closed invariant discs. For any such disc D there is some t > 0 such that that
h([t,+∞)× S1) ⊂ D. It follows that K2 ⊂ D, which shows that K2 = {x}.
Similarly for K1.

Our next task is to analyze the structure of the flow in R, if R 6= M , which we
assume for the rest of this section.

Lemma 3.9. Let C be a connected component of R. If x ∈ ∂C, there exists
a sequence of periodic points {xn : n ∈ N} converging to x such that C(xn)
and C(x) ∪ {e+(C)} bound an invariant closed annulus Wn in M+ such that the
sequence {Wn : n ∈N} decreases and

∞⋂
n=1

Wn = C(x) ∪ {e+(C)}.
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Proof. Since R 6= M , the set B = C(x)∪{e+(C)} is a simple closed curve in M+.
Let V be an annular tubular neighbourhood of B in M+, which exists because
M+ is assumed to be orientable. Let S ⊂ V be a local section to the flow at x
which is an arc and such that S ∩ C(x) = {x}. The set S \ {x} consists of two
segments S1 and S2. Then, S1 ⊂ V1 and S2 ⊂ V2, where V1 and V2 are the two
subannuli in which B separates V . Since x ∈ ∂C, there is a sequence of periodic
points on S converging monotonically to x from at least one side. Let ”<” denote
an orientation of S and let {xn : n ∈ N} be a sequence of periodic points on S1
which decreases to x. Since D(x) = C(x), we may assume that C(xn) ⊂ V1 for
every n ∈ N. Then, C(xn) crosses S only at xn. Passing to a subsequence if
necessary, it suffices to deal only with the following two cases.

Case I. Suppose that C(xn) bounds an open, invariant disc Dn ⊂ V1 for every
n ∈ N. Let [x, xn] denote the closed segment on S with endpoints x and xn. Since
x /∈ Dn, if [x, xn] ∩Dn 6= ∅, then some point between x and xn on S would be on
∂Dn = C(xn), contrary to S∩C(xn) = {xn}. Hence [x, xn]∩Dn = ∅ and therefore
S ∩Dn = S1 \ [x, xn]. For every n ∈ N we have S1 \ [x, xn] ⊂ Dn ∩Dn+1, because
x < xn+1 < xn on S, and ∂Dn ∩ ∂Dn+1 = ∅. Consequently, Dn ⊂ Dn+1, because
(xn+1, xn] ⊂ Dn+1 \Dn, by the Jordan Curve Theorem. The set D = ∪∞k=1Dk is
an invariant open disc in V1, by a theorem of M. Brown. The boundary ∂+D of
D in M+ is

∂+D =
∞⋂
k=1

∞⋃
n=k

Dn

(closures taken in M+) and of course B ⊂ ∂+D. We shall show that we actually
have equality. Suppose that there is a point z ∈ ∂+D\B. There is a neighbourhood
W of z in M+, which is a closed disc such that W ∩B = ∅ and ∂W ⊂M . Then,
W ∩ Dnk 6= ∅ for some nk → +∞. Since z ∈ W \ D, we have W ∩ ∂Dnk 6= ∅,
for every k ∈ N, by connectedness of W . On the other hand we have eventually
xnk ∈ M+ \W . Hence ∂W ∩ ∂Dnk 6= ∅, by connectedness of ∂Dnk = C(xnk ).
This means that there are tnk ∈ R such that tnkxnk ∈ ∂W for every k ≥ k0,
some k0 ∈ N. The sequence {tnkxnk : k ≥ k0} has a limit point y ∈ ∂W . But
y ∈ D(x) = C(x), which contradicts our choice of W . This shows that we must
necassarily have B = ∂+D. That is B bounds a disc in V . This contradiction to
the choice of V proves that case I cannot occur.

Case II. Every periodic orbit C(xn) bounds with B an invariant, open annulus
An ⊂ V1. Then the sets Wn = An, n ∈ N, are invariant closed annulli and
constitute a neighbourhood basis of B in V1, because D(x) = C(x).

Corollary 3.10. Let C be a connected component of R. If intC = ∅, then C
consists of a single orbit.

Proof. Let x ∈ C. The set B = C(x) ∪ {e+(x)} is a simple closed curve in M+.
Let V be an annular tubular neighbourhood of B in M+ and V1, V2 the subannuli
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in which B divides V . Since intC = ∅, the point x is approximated by periodic
points from both sides of B. So, by the proof of Lemma 3.9, there are periodic
orbits C(xn) ⊂ V1, n ∈ N, such that each C(xn) bounds with B a closed annulus
Wn and ∩∞n=1Wn = B. Similarly for V2. It follows from this that C ∩ V = C(x).
Hence C = C(x).

Proposition 3.11. Let C be a connected component of R. If intC 6= ∅, then intC
is homeomorphic to R2 and ∂C consists of at most two orbits. If ∂C contains only
one orbit, then the restricted flow in C has a section homeomorphic to the interval
[0, 1) and C is homeomorphic to R× [0, 1). If ∂C consists of two orbits, then the
section in C is homeomorphic to [0, 1] and C is homeomorphic to R× [0, 1].

Proof. Let A be a connected component of intC. Let Σ be section to the restricted
flow in C and S a section to the flow in A. There is a continuous function τ :
C → R such that τ(x)x ∈ Σ for every x ∈ C [4, Ch. IV, Theorem 2.4]. Let
f : S → Σ be the continuous map defined by f(x) = τ(x)x. It is easy to see that f
is a topological embedding and that f(S) is open in Σ. Since A is connected and
open in M , the section S is homeomorphic to R or to S1 [6,Ch. VII, Theorem
1.6]. In the later case f(S) would be an open and compact subset of Σ, which is
connected, and therefore C = A would itself be an open and closed subset of M .
Hence the flow on M would be parallelizable and R = M would be homeomorphic
to R× S1. Thus, there is a homeomorphism h : R→ S and the map ψ : R2 → A
defined by ψ(t, s) = th(s) is a homeomorphism also. The boundary ∂+A of A in
M+ is

∂+A =
⋂
t>0

ψ(R2 \ [−t, t]2)

(closure taken in M+). Let x ∈ ∩t>0ψ((t,+∞)× (−t, t)) and suppose that x 6=
e+(C). The second assertion in Lemma 3.3 implies that there are tn → +∞ and
sn ∈ R, n ∈ N, such that tnh(sn)→ x. The sequence {sn : n ∈ N} must diverge,
because otherwise there is a subsequence {snk : k ∈ N} converging to some s ∈ R.
But then we would have x, h(snk), h(s) ∈ C, h(snk)→ h(s) and ψ(tnk , snk)→ x,
which contradicts Proposition 3.5. Thus necessarily sn → ±∞. This and similar
considerations for ∩t>0ψ((−∞, t)× (−t, t)) show that ∂+A = A1 ∪A2 where

A1 =
⋂
s<0

ψ(R× (−∞, s]) and A2 =
⋂
s>0

ψ(R× [s,+∞))

(closures in M+). Of course e+(C) ∈ A1 ∩A2.
We shall prove now that each of A1, A2 contains at most one orbit in M . Let

x ∈ A2 ∩M . The set B = C(x) ∪ {e+(C)} is a simple closed curve and has a
neighbourhood basis in M+ consisting of closed annular tubular neighbourhoods,
because M+ is orientable. Let V be such a neighbourhood of B. There exist
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tn ∈ R, n ∈ N, and sn → +∞ monotonically, such that ψ(tn, sn) → x. Since
D(x) = C(x), we may assume that C(h(sn)) ⊂ intV1 for every n ∈ N, where
V1 is one of the two subannuli in which B divides V . The (non-simple) closed
curve C(h(sn)) ∪ C(h(sn+1)) ∪ e+(C) is the complete boundary in M+ of the
invariant open disc Dn = ψ(R × (sn, sn+1)), n ∈ N. Clearly, Dn ∩Dm = ∅ for
n 6= m and eventually Dn ⊂ intV1. Indeed, if DN 6⊂ intV1 for some N ∈ N, then
DN ∩∂V1 6= ∅ and since DN ∩B = ∅, necessarily DN intersects the other boundary
component, say Γ, of V1. Then we have DN ∩ Γ = DN ∩ Γ, and hence Γ ⊂ DN

by connectedness of Γ. It follows that Dn ∩ Γ = ∅ and therefore Dn ⊂ intV1 for
n > N . Consequently,

A2 ⊂ ψ(R× [sN+1,+∞)) =
⋃
n>N

Dn ⊂ V1 ⊂ V

for every closed annular tubular neighbourhood V of B. This proves that A2 =
C(x) ∪ {e+(C)} and similarly one can prove that if y ∈ A1 ∩ M then A1 =
C(y)∪ {e+(C)}. Since ∂A ⊂ (A1 ∩M)∪ (A2 ∩M), we conclude that ∂A consists
of at most two orbits.

If now x ∈ A2∩M as above, then x ∈ ∂C and one can use the same arguments as
in the proof of Lemma 3.9 to prove that there is an annular tubular neighbourhood
V of B such that V ∩ C = V ∩A (closure in M). Similarly for y ∈ A1 ∩M . This
shows that A is open and closed in C, hence C = A. The rest of the proposition
is obvious.

We are now in a position to describe topologically the closure C ∪ {e+(C)}
of a connected component C of R in M+. If intC = ∅, then C ∪ {e+(C)} is a
simple closed curve. We denote by R0 the class of such connected components. If
intC 6= ∅ and ∂C is connected, then C ∪{e+(C)} is homeomorphic to [0, 1]× [0, 1]
with [0, 1] × {1} ∪ {0, 1} × [0, 1] identified to a point. Thus, it is a closed disc
in M+, as shown in figure 2(a). The class of these connected components of R
will be denoted by R1. If intC 6= ∅ and ∂C has two connected components, then
C ∪ {e+(C)} is homeomorphic to [0, 1] × [0, 1] with {0, 1} × [0, 1] identified to a
point. So it has the homotopy type of a simple closed curve and looks like figure
2(b). We denote the class of these connected components of R by R2.

Corollary 3.12. If C is a connected component of R, then its closure in M+ has
a neighbourhood basis consisting of invariant connected open sets Vn, n ∈ N, such
that ∂Vn consists of one or two periodic orbits for every n ∈ N.

Proof. The closure of C in M+ is C ∪ {e+(C)}, by Lemma 3.3. If intC = ∅,
it is a simple closed curve, by Corollary 3.10, and the proof shows that it has a
neighbourhood basis consisting of annuli bounded from periodic orbits. If intC 6=
∅, then ∂C consists of at most two orbits by Proposition 3.11. If x ∈ ∂C, there are
periodic points xn → x and closed annuli Wn, n ∈N, in M+ bounded by C(x) and
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C(xn) respectively, such that Wn ∩C = C(x), by Lemma 3.9. If ∂C = C(x), that
is ∂C has only one connected component, then Vn = intWn∪C is an invariant open
connected neighbourhood of C ∪ {e+(C)} and ∂Vn = C(xn). If ∂C has another
connected component C(y), we have periodic points yn → y and closed annuli Un,
n ∈ N, bounded by C(y) and C(yn) respectively, such that Un ∩C = C(y). Then
we set Vn = intWn ∪ intUn ∪C and thus ∂Vn = C(xn)∪C(yn) . It is clear that in
both cases {Vn : n ∈N} is a neighbourhood basis of C ∪ {e+(C)} in M+.

Corollary 3.13. If C1 and C2 are two disjoint connected components of R, then
e+(C1) 6= e+(C2).

Proof. The closure of C1 in M+ has a neighbourhood basis {Vn : n ∈ N} in M+

consisting of invariant open sets such that ∂Vn consists of one or two periodic
orbits for every n ∈ N. Since C1 6= C2, if e+(C1) = e+(C2) and x ∈ C2, there is
some n ∈ N such that x /∈ Vn. But then we must have ∅ 6= C(x) ∩ ∂Vn ⊂ P , by
connectedness of C(x), because limt→+∞ tx = e+(C2). This contradiction proves
the corollary.

Corollary 3.14. The set
⋃
C∈R1

C is closed in M .

Proof. Let x ∈ M , Cn ∈ R1 and xn ∈ Cn, n ∈ N, be such that xn → x.
Then x belongs to some connected component C of R. It suffices to prove that
eventually Cn = C. Suppose the contrary. Then x ∈ ∂C and we may assume
that Cn 6= C for every n ∈ N. Let {Vn : n ∈ N} be the neighbourhood basis of
C ∪ {e+(C)} in M+ given by Corollary 3.12. Then, ∂Vn consists of one or two
periodic orbits and at least one of them bounds with C ∪ {e+(C)} an annulus
Wn ⊂ M+ \ C. Fixing n ∈ N, connectedness implies that there is some k0 ∈ N
such that Ck ∪ {e+(Ck)} ⊂ Wn for k ≥ k0. Applying again Corollary 3.12 for
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each Ck, we get a sequence of periodic orbits C(yk), k ≥ k0, which bound closed
discs Dk in Wn, because Ck ∈ R1, and xk ∈ Dk for every k ≥ k0. It follows that
yk → x and we arrive at a contradiction as in case I of the proof of Lemma 3.9.

Note that R may have uncountably many connected components. Consider,
for example, the planar ordinary differential equation (in polar coordinates)

ṙ = 0 and θ̇ = f(r, θ)

where f : R2 → [0, 1] is a smooth function such that f−1(0) is the standard
Cantor set X on θ = 0. The restricted flow on M = R2 \ X is D-stable and
R has uncountably many connected components with empty interiors. Note also
that an orbit in the boundary of R may not be in the boundary of any connected
component of P .

4. The orientable 2-manifolds of finite genus admiting D-stable
flows

In this section we shall use the analysis of the dynamics of the preceeding section
3 to determine topologically the orientable 2-manifolds of finite genus that admit
non-minimal D-stable flows. For the rest of the section we assume that M is an
orientable 2-manifold of finite genus and we continue to use the notation of section
3 for a given D-stable flow.

Note that if M is compact and admits a non-minimal D-stable flow φ, then
J+(x) = L+(x) for every x ∈M , that is the flow is D+-stable in the sense of [2],
and therefore M must be homeomorphic to the 2-sphere S2 or the 2-torus T 2, by
[2, Corollary 3.4]. On the other hand, if M admits a D-stable flow with R = M ,
then M is homeomorphic to R2 or to R×S1, by Theorem 3.4. Thus, we proceed
making the assumption that M is non-compact and not homeomorphic to R2 or
R× S1.

Lemma 4.1. If M admits a non-minimal D-stable flow, then it admits a non-
minimal D-stable flow with the same number of singularities such that the set of
points with non-compact orbits has no connected component in class R1.

Proof. Let φ be a non-minimal D-stable flow on M . From Corollary 3.14, the set

N = M \
⋃

C∈R1

C

is an open invariant subset of M . Moreover N is homeomorphic to M and the
restricted flow on it is D-stable. By the definition of N , no connected component
of the set of points in N with non-compact orbits is in class R1.



632 K. Athanassopoulos, T. Petrescou and P. Strantzalos CMH

Proposition 4.2. If M admits a non-minimal D-stable flow, then it admits a
non-minimal D-stable flow with the same number of singularities, and whose set
of points with non-compact orbits has empty interior.

Proof. Let φ be a non-minimal D-stable flow on M . Our assumption that M is
non-compact and not homeomorphic to R2 or R×S1 implies that φ has periodic
orbits. Let Rφ denote the set of points of M whose orbit with respect to φ is
non-compact. Let S be a section to the restricted flow in Rφ, which exists because
of Proposition 3.5. As we showed in section 3 and by Lemma 4.1, we may assume
that the connected components of Rφ with non-empty interior belong to class R2.
If C ∈ R2, the restricted flow in C is parallelizable with section SC = S∩C, which
is homeomorphic to the interval [0, 1]. Corollary 3.13 implies that the family

D = {{x} : x ∈M+ \
⋃

C∈R2

C} ∪ {tSC : t ∈ R, C ∈ R2} ∪ {{e+(C)} : C ∈ R2}

is a decomposition of M+ into compact contractible subsets. We shall show that
D is upper semicontinuous, meaning that if A ∈ D and W ⊂ M+ is an open set
containing A, there is an open subset V of M+ which a union of elements of D
such that A ⊂ V ⊂W .

Suppose by contradiction that this is not true for some A ∈ D and some open
neighbourhood W of A in M+ with ∂W ⊂ M . By compactness of A there are a
point x ∈ A and xn → x such that D(xn) 6⊂ W . Since xn ∈ W , eventually, this
means that we may assume that D(xn) = tnSCn for some tn ∈ R and Cn ∈ R2,
from the definition of D. By connectedness of SCn , there are yn ∈ SCn such that
tnyn ∈ ∂W for every n ∈ N. Since ∂W is compact, passing to a subsequence if
necessary, we may assume that there is a point z ∈ R ∩ ∂W such that tnyn → z.
It follows that there are t ∈ R and y ∈ R such that tn → t and yn → y, because
the restricted flow in R is parallelizable. Hence z = ty. Let C be the connected
component of R that contains z. We have to deal with the following two cases.

Case I. If x ∈ M , then x ∈ tS and e+(x) = e+(z), by Proposition 2.3. Hence
x ∈ tSC , from Corollary 3.13. If C ∈ R0, then C = C(x) = C(z), from Corollary
3.10, x 6= z and {x, z} ⊂ C(x) ∩ tS, contradiction. If C ∈ R2, then A = D(x) =
tSC . But then z ∈ A ∩ ∂W = ∅, contradiction again.

Case II. If x ∈ M+ \M , then D(x) = {x}. Moreover, we may assume that
Cn 6= C for every n ∈ N. It follows that z, y ∈ ∂C. Let U be a compact
neighbourhood of y in M which does not intersect the other boundary component
of C, if any. We have eventually SCn ∩ ∂U 6= ∅, because xn → x and yn → t ∈ R.
If zn ∈ SCn ∩ ∂U , the sequence {zn : n ∈ N} has a limit point z0 ∈ S ∩ ∂U , and
e+(z0) = e+(y), from Proposition 2.3. Therefore, z0 ∈ ∂C ∩ ∂U , by Corollary
3.13. Our choice of U implies that z0 ∈ C(y)∩S = {y}. This contradiction proves
the upper semicontinuity of D.

According now to [11, Theorem 1], the quotient space M+/D is homeomorphic
to M+. Intuitively, M+/D is obtained by shrinking each C ∈ R2 to an orbit,
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along a section. Note that the extended flow on M+ preserves D and so induces
a flow on M+/D, which makes the identification map p : M+ → M+/D an
epimorphism of dynamical systems. It is obvious from the definition of D that
p maps M+ \M in a one-to-one manner onto p(M+ \M). Thus, the invariant
set N = M+/D \ p(M+ \M) is homeomorphic to M . However, N = p(M) from
the definition of D, and therefore p|M : M → N is a homomorphism of φ onto
the restricted flow in N , which we denote by ψ. Note that {D(x) : x ∈ M} is an
upper semicontinuous decomposition ofM into compact sets. This is equivalent to
saying that p|M is a proper map. Thus, ψ is a D-stable flow by Proposition 2.2. It
remains to prove that intRψ = ∅, where Rψ is the set of non-compact orbits of ψ.
If intRψ 6= ∅, then p−1(intRψ) is a non-empty, open subset of Rφ, and is a union
of elements of D. If x ∈ p−1(intRψ), then p−1(intRψ) is an open neighbourhood
of D(x) containd in Rφ. But Corollary 3.12 and the definition of D imply that
there is no such neighbourhood.

Theorem 4.3. An orientable 2-manifold of finite genus M admits a non-minimal
D-stable flow if and only if M has genus 0 or 1.

Proof. If M is compact, then it is homeomorphic to S2 or T 2. If it is non-compact
and admits a parallelizableD-stable flow, then it is homeomorphic to R2 or R×S1.
So in these cases M has genus 0 or 1. If M is non-compact and not homeomorphic
to R2 or R × S1 and admits a non-minimal D-stable flow, then, by Proposition
4.2, it admits a non-minimal D-stable flow with the same number of singularities
and whose set R of points with non-compact orbits has intR = ∅. Let M̃ =
M ∪ {e+(x) : x ∈ R}. We shall show that M̃ is open in M+.

Since intR = ∅, every connected component C of R is a single orbit and C ∪
{e+(C)} is a simple closed curve which has a neighbourhood basis inM+ consisting
of invariant open annuli bounded by periodic orbits. Let V be such an annulus.
It suffices to prove that V ∩ (M+ \M) ⊂ M̃ . Let e ∈ V ∩ (M+ \M) and D be a
closed disc neighbourhood of e such that D ⊂ V and ∂D ⊂M . As in case I of the
proof of Lemma 3.9, there is no periodic orbit in V which is nullhomotopic in V .
It follows from this and the assertion of Lemma 3.9 that D contains no complete
orbit in M . According to [4, Ch. VI, Theorem 1.1], there exist ends en ∈ D and
points xn ∈ ∂D such that en → e and e+(xn) = en, for every n ∈N. Since ∂D is
compact, we may assume that there is a point x ∈ ∂D such that xn → x. Then,
x ∈ R and there are tn → +∞ such that tnxn → e. From Corollary 3.6 we have
e = e+(x). This shows that M̃ is an open subset of M+, and it is obvious that it
is invariant under the extended flow on M+. Note also that M̃ and M have the
same genus.

The family of disjoint simple closed curves
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F = {C(x) : x ∈ P} ∪ {C(x) ∪ {e+(x)} : x ∈ R}

fills M̃ \ F , where F is the set of singularities and P the set of periodic points of
the flow in M . It follows from Corollary 3.12, that F is an oriented regular family
of curves in the sense of H. Whitney, and so there is a flow on M̃ whose orbits
in M̃ \ F are the elements of F and F is the set of its singularities [12]. From
Corollary 3.12 follows immediately that this flow on M̃ is D+-stable in the sense
of [2]. Since each orbit is singular or periodic, it follows that if F 6= ∅, then M̃ is
homeomorphic to S2 or R2 and F consists of one or two centers, by [2, Theorem
3.1.4], and if F = ∅, then M̃ is homeomorphic to R × S1 or T 2, by [2, Theorem
3.1.5]. In every case M̃ has genus 0 or 1, and so has M .

From the proof of Theorem 4.3 we get the following information about the
number of singularities.

Theorem 4.4. A D-stable flow on an orientable 2-manifold of finite genus can
have at most two singularities and they are necessarily centers. Moreover, the
existence of a singularity implies that the underlying manifold has genus 0.

It is difficult to state a theorem describing the global qualitative behavior of a
D-stable flow on an orientable 2-manifold of finite genus and covering all possible
cases. However, the cases occuring if the underlying manifold is compact are easily
described as in [2] and the results of section 3 with Theorems 4.3 and 4.4 give a
picture of what the typical phase portrait of a non-minimal D-stable flow on a
non-compact 2-manifold of finite genus looks like.
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