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ABSTRACT

Let X be a compact metric space and T : X — X a continuous surjection. We
present sufficient conditions which imply the existence of absolutely continuous con-
formal measures for T" with respect to a given ergodic T-invariant Borel probability
measure. The same conditions give measurable or L°° solutions of the corresponding
cohomological equation. We illustrate our results in an example of a sofic system.

1 Introduction

Let X be a compact metric space, T : X — X a continuous surjection and let f : X — R
be a continuous function. We call a Borel probability measure v on X an ef-conformal

= ¢f. This kind of measure has been

measure for T' if v is equivalent to T,v and
d(T.v)
used without a particular name in [7] and in a more general probabilistic setting in [10].
In this note we study the existence of absolutely continuous conformal measures
with respect to a given ergodic T-invariant Borel probability measure. We present a
sufficient condition for the existence of an absolutely continuous conformal measure for
a continuous surjection. The problem of the existence of an ef-conformal measure v
for a homeomorphism 7" which is absolutely continuous with respect to an ergodic T*-
invariant Borel probability measure p is closely related to the existence and regularity
properties of solutions of the cohomological equation f = u — uw o T. This relation is
explained with details in section 2. If there exists a continuous solution u, then f is
called a continuous coboundary. According to the classical Gottschalk-Hedlund theorem
(see page 102 in [5]), if 7" is minimal, then f is a continuous coboundary if and only if
there exists zg € X such that

n—1
sup{| Z F(T*(x0))| : n € N} < 400.
k=0

The main result is Theorem 3.5 which can be stated as follows.
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Main Theorem. Let X be a compact metric space and T : X — X a continuous
surjection. Let p € M(X) be an ergodic T-invariant measure and let f : X — R be a

continuous function such that [ fdu = 0. If there exists a constant ¢ > 1 such that

X
Eu(f) < ¢ /X Eu(f)dp

n—1
for every n € N, where E,(f) = %) and S,(f) = —ZfoTk, then there exists
k=0
an el -conformal measure v for T which is absolutely continuous with respect to fu.
d d
Moreover, d—y € L*®°(u) and —log(d—y) is a measurable solution of the cohomological

equation f =u—uoT. [J

If T is a homeomorphism, then in Theorem 3.7 we prove that if the stronger condition

1
E/x E.(f)du < Eyn(f) < c/X En(f)du

for every n € N (or —n € N) holds for some constant ¢ > 1, then a e/-conformal measure

d
v for T exists which is equivalent to p and log(d—y) € L®(u). Also, f is a L®(u)
W

coboundary with transfer function — log(d—y). This result holds without the assumption
i

that 7' is minimal.

In a final section we illustrate our results in an example of a known sofic system which
is attributed to B. Markus in [4]. In this example 7T is the two-sided left shift restricted
on a suitable compact subset X of {—1,1}” and is a continuous factor of a subshift of
finite type on N + 1 symbols for some integer N > 2. The system is not minimal, it is
chaotic and it has the strong specification property.

2 Conformal measures

Let T : X — X be a continuous surjection of a compact metric space X and let f :
X — R be a continuous function. A ef-conformal measure for T is a Borel probability
measure v on X such that

/X¢du:/x(¢oT)efdu

for every continuous function ¢ : X — R. Evidently, a ef-conformal measure for T is
T-quasi-invariant and is an e~/ oT~'_conformal measure for T—! in case T is a homeo-
morphism.

It is easy to see that if h : X — X is a homeomorphism and S = hoT o h™!, then
h.v is a e/ _conformal measure for S for every ef-conformal measure v for T

According to the main result (Theorem 6.2) of [1] if T': X — X is a homeomorphism
of a compact metric space X and f: X — R is a continuous function, then there exists
a ef-conformal measure for T if and only if there exists a point = € X such that

n—+oo T 7

n—1
lim sup 1 Zf(Tk(x)) <0
k=0



and

1 n
lim sup — Z —f(T ")) <0.
n—4oo N
k=1
For the reader’s convenience we shall describe a construction of conformal measures for
homeomorphisms due to M. Denker and M. Urbanski given in [2] (see also section 9.2
in [6]). Note that there may be no e/-conformal measure for T for a given continuous
function f : X — R. This is the case, for example, if f > 0, since we necessarily have

/ efdv = 1 for every ef-conformal measure. We need some preliminary observations.
X

a
Let (an)nen be a sequence of real numbers and let ¢ =limsup —. The series
n—+oo T

o0
Zean*”s converges for s > ¢, diverges for s < ¢ and we cannot tell for s = ¢, by

n=1

the root test.

Lemma 2.1. There exists a sequence of positive real numbers (bp)nen such that

o
=1 and the series Z bpe® "% converges for s > ¢ and diverges for s < c.

n=1

lim
n—-+4oo bn+1

o
Proof. If the series Z e "¢ diverges, we may take b, = 1 for every n € N. Suppose
n=1

that it converges. We choose a sequence of positive integers (ny)ren such that

Nk Q.

lim =0 and lim
k—+00 Nk41 k—+oo Ny

= C.

a
It suffices now to put €, = —% — ¢ and take
ng

ne—n n—ng—1
bn —exp|n| ———€p—1 + ——€;
NEe —Nk—1 ng —Nkg—1

for ng_1 <n < ng. O

Let f : X — R be a continuous function such that / fdu =0 for some ergodic

X
T-invariant Borel probability measure u. It is well known that the set of points z € X
such that the limit

. 1
lim —
n—4+oo n

S F(T @)
k=1

exists in R has measure 1 with respect to every T-invariant Borel probability measure,
and is therefore non-empty. So there exists a point € X such that

R kg B
i 3 ) = | fdu=o,

since p is assumed to be ergodic.



If we take a,, = — Zf x)), then lim dn . Let M, = Zb e 5> 0,

n—+oo n
n=1

where (b, )nen is the correspondlng sequence given from Lemma 2.1, and

T
Ms = A Z bneanfns(;T_n(x), s> 0.
5

Proposition 2.2. Fvery accumulation point with respect to the weak* topology of the
directed family of Borel probability measures (jis)s>0, as s | 0, is a ef -conformal measure
for T.

Proof. For every continuous function ¢ : X — R we have on the one hand

1 - An—ns —n
/X ¢dus=ﬁsn§:jlbne ST (2))

and on the other
/ (poT)e dps = Zb e TS (T (1)) e/ T @)

= Mis [ble_stb(x) + ; bn+1e_se“"_"5q§(T_"(x))} .

Since lim M
510 s

. an—ns¢(T an-l—le sean—ns(b( ' H(bH Z

=0, we need to estimate the difference

M
Slp=1

n+1 e~ — 1 ‘b edn—ns
n .

Given € > 0 there exists ng € N such that for n > ny we have

bn+1
-1 <
by ¢
and therefore )
ptle=s 1| <ee ™ + |1 —e %
bn
It follows that -
1 bnt1 g '
— — 1(be® "8
3L 2=,
1" by s ' e 5+ |1 —e ¥
- -5 _1lp ean—ns+ Z b, g0n ="
My = | b, M il
1
< n+1 =5 _ 1|b, e " ;e 4|1 —e 8
a Ms n=1 bn " | |




Since liﬁ)l M, = 400, there exists some 0 < sg < 1 such that ee™® +1 —e™% < 2,
S

1110711)le
n —8 an—ns
—g e —1|be™ <€
My “~— | by '"

b —S
and 1 < eforall 0 < s < sp.

S
Summarizing, for every e > 0 there exists 0 < sg < 1 such that

‘/X ¢dus—/x(¢oT)efdus

for all 0 < s < sg and every continuous function ¢ : X — R. This proves the assertion. [

< delg]

There is a close relation between ef-conformal measures for a homeomorphism 7T :
X — X of a compact metric space and solvability of the cohomological equation f =
u—wuoT, where f: X — R is continuous (see also Proposition 4.4 in [1]).

Let p be any T-invariant Borel probability measure. If there exists a measurable
solution v of the above cohomological equation defined p-almost everywhere such that
e~ € L'(p), then there exists a ef-conformal measure v for T equivalent to u with
density
—Uu

dv e

dp / e “du
X

Thus, if there exists a continuous solution u, then for every T-invariant Borel probability
measure we get an equivalent ef-conformal measure for 7. Moreover, in this case, every
ef-conformal measure v for T is obtained in this way. Indeed, we have

/X petdy = /X (¢ 0 T)edv

for every continuous function ¢ : X — R, and so the equivalent measure p to v with
density

u

d_,u_ e

dv / edv
X

is T-invariant. Consequently, if f is a continuous coboundary, then the ef-conformal
measures for T" are in one-to-one correspondence with the T-invariant Borel probability
measures and each ef-conformal measure for T is equivalent to its corresponding T-
invariant measure.

Conversely, suppose that p is an ergodic T-invariant Borel probability measure and
f X — R is a continuous function such that / fdu = 0. Suppose further that there

X
exists a ef-conformal measure v € M(X) for T which is absolutely continuous with

respect to p and let g = d—y For every measurable set A C X we have
1
/ (xaoT)(goT)dp=v(A) = / (xaoT)eldv = / (xa o T)e! gdp
X X X

5



and therefore

/ [ge” — (g0 T)]du = 0.
T1(4)

Since p is T-invariant, it follows that g o T = gef p-almost everywhere. The ergodicity
of p implies now that g > 0 p-almost everywhere. So, u = —logg is a measurable
solution of the cohomological equation f = uw —wuoT. If logg € L>®(u) and T is a
minimal homeomorphism, then there exists some continuous function u : X — R such
that f =u —wo T, by Proposition 4.2 on page 46 in [3].

Note that v is equivalent to u, because g > 0. We remark that this is actually a
more general fact which holds for every T-quasi-invariant Borel probability measure. To
see this, let T : X — X be a homeomorphism of a compact metric space X and u be
an ergodic T-invariant Borel probability measure. Let v is a T-quasi-invariant Borel

dv
probability measure which is absolutely continuous with respect to u. Let g = u and
1L

A=g70). If S = U T"(A), then S is T-invariant and v(S) = 0. On the other hand
nez

w(X\S) > 0, and since p is ergodic we get u(S) = 0, that is g > 0 p-almost everywhere.

In particular, if T is uniquely ergodic, then every T-quasi-invariant measure for 7" which

is absolutely continuous with respect to its unique invariant Borel probability measure

is equivalent to it.

3 Absolutely continuous conformal measures

Let X be a compact metric space and p € M(X). The set
Ay ={re M(X) :v < u}

is not empty, since it contains yu, and is convex. In general, A, is not a closed subset of
M(X) with respect to the weak™ topology. For example, if we let p be the Lebesgue
measure on the unit interval [0,1] and for 0 < € < 1 we let . denote the Borel

probability measure on [0, 1] with density — X([0,¢]» then hII(l] e is the Dirac point measure
€ ’ e—
at 0.

Lemma 3.1. Let X be a compact metric space and p € M(X). Let (Vy)nen be a
sequence in A, converging weakly* to some v € M(X) and let f, = %, n € N. If
1
there exist non-negative h, g € L* () such that h < f, < g for everyn € N, then v € A,
dv
and h < — < g.
dp

Proof. Since v is a finite measure, there exists a (countable) basis U of the topology of
X such that v(0U) = 0 for every U € U. So U is contained in the algebra

C(v) = {A]A C X Borel and v(0A) = 0}

and since it generates the Borel o-algebra of X, so does C(v). Let now A C X be a

Borel set with ©(A) = 0 and € > 0. There exists 0 < § < € such that / gdp < e for
B



every Borel set B C X with p(B) < 8, because g € L'(u1). There exists some Ag € C(v)

such that u(AAAg) < 6 and v(AAAg) < 6. Thus u(Ap) < 0 and |v(A) — v(Ao)| < 0.

By weak* convergence, v(Ag) = lirf vn(Ap) and so there exists some ny € N such that
n——+0o0

|vn(Ap) — v(Ap)| < € for n > ng. Therefore,

v(Ao) < vn(Ap) + €= ; fml,u%—eﬁ/A gdp + € < 2e.
0 0

It follows that 0 < v(A) < 3e for every € > 0, which means that v(A) = 0. This shows
that v € A,.
To prove the last assertion, we note first that there exists a sequence of (finite)
partitions (P )nen of X such that P, is a refinement of P, the Borel o-algebra of X
e}

is generated by U P, and u(0B) = 0 for every B € P, and n € N. It can be constructed
n=1
starting with a countable basis {U,, : n € N} of the topology of X such that u(0U,) =0
for every n € N and defining inductively P, to be the finite family consisting of Borel
sets with positive p measure of the form BN U, or BN (X \ U,), for B € P,_1, taking
Po={X}.
Let P,,(x) denote the element of P,, which contains x € X. Then,

dv — lim v(Pn(x))

p-almost everywhere on X and in L'(u) (see page 8 in [8]). On the other hand, by the
weak™® convergence and since v € A, for every k € N and x € X there exists some
ng € N such that

P(Pele) — vy (Pu(a))| < 7 u(Pi(a).
It follows that
V(Pu@) 1 v (Pi@) 1 1 1
0= Pe@) Sk uPe@) kT uPe@) /pm Il = 3 L B(@)) /%) gap-

Since
1

i s [ gdu=g(a)
k—+o00 [1(Pr()) Jp, (2)
d
p-almost everywhere on X and in L'(u), it follows that 0 < d—y(az) < g(z) p-almost
"

everywhere on X.
Similarly, from

WP@) 1w (Pel@) _ 11 R
WPe@) R u(Pa) R uPu(@) /7>k<x>f"kd“2 (@) /7>k<m>hd“

follows that h(z) < Z—V(x) p-almost everywhere on X. [J
w

Let X be a compact metric space and T : X — X a continuous surjection. For

n—1
any continuous function f : X — R we put S,(f) = — Z foT* and E,(f) = ().
k=0

7



Let M,, = sup{S,(f)(z) : © € X} and L, = inf{S,(f)(z) : = € X}, n € N. Since

n—1

Sp(f)oT = Spt1(f)+ f forn e N, if g, = ZEk(f), then we have
k=0

(gn o T)eif —gn = En(f) —e .

Let now p € M(X) be T-invariant and suppose that / fdp=20. So, L, <0< M,
X
9n

/ Gndp
X

(hp o T) — hpe! =

for every n € N. Putting h,, = , we get

ef — eiSn(f)
o—Sn(h) / ndps
X
for every n € N.

Suppose that there exists a positive h € L!(u) such that E,(f) < h/ E.(f)du for

X
every n € N. Then also 0 < h, < h for n € N. If v, denotes the element of £, with

hy, = %, then {v, : n € N} C E,, by Lemma 3.1.
w

Proposition 3.2. Let X be a compact metric space and T : X — X a continuous
surjection. Let p € M(X) be T-invariant and let f : X — R be a continuous function

such that / fdu = 0. Suppose that
X

(i) there exists a positive h € L*(u) such that E,(f) < h/ E.(f)dup for everyn € N,
b's

and
n—1

(ii) the sequence e~ Mn Z el* n e N, is unbounded.
k=0
Then there exists an e’ -conformal measure for T which is absolutely continuous with
respect to p.

Proof. Using the above notations, it suffices to prove that there exists a sequence of

positive integers n; — 400 such that lim ((hnj oT) — P, ef ) = 0 p-almost everywhere
J—+o0

on X. Indeed, passing to a subsequence if necessary, there exists v € K, such that

v = lim vy, by Lemma 3.1. Since p is T-invariant, for every continuous function
Jj—+oo

¢: X — R we have
/ (¢—(¢o T)ef)dy = lim (poT)((hn, oT) — hn.ef)d,u =0,
X Jj—4oo X 7 7
by dominated convergence, because

(¢ 0 T)((hn 0 T) = hnel)| < [|6]|((h o T) + hel) € L ().

Since

|(hy 0 T) — hpel| = efw,

Gndp
X



we need only prove that there exist n; — +o00 such that

fim (o € X ¢ |y, (@) =70 25 [ gu,dud) =0

Jj——+o0

for every d > 0. Let

Ans={r e X :E,(f)(z) > e /@ 4 ZEk and

n—1

Ls={r € X Ey(f)(x) < e d) - hL kz_:

Our assumption (i) implies that it suffices to prove the existence of a sequence of positive
integers n; — 400 such that hIJP (An;5) = hm M(An ) = 0 for every ¢ > 0.
.]*)

For every = € A, s we have

n—1
Ma) s e 3 B )
k=0

and integrating over A, s we obtain

n—1

1 —M, L
S/th,u > wu(Aps)e Ze k.

k=0
Similarly, for every « € A/ ; we have

n—1

> Bl < " ese

k=0

and integrating over A;L s we get

n—1
1
! §ij<— he Tdu.
5)k:0€ _5/)(6 H

n;—1

Our assumption (ii) means that there exist n; — +oo such that e M Z el — oo,

nj—1

and therefore we also have Z elv — 400, because L, < 0 < M,. Consequently,
k=0

1 Ap5) = li Al ) =0.0

i p(Anyg) = N (A, )

In the next proposition we make a more restrictive assumption (i) and a weaker
assumption (ii).



Proposition 3.3. Let X be a compact metric space and T : X — X a continuous
surjection. Let p € M(X) be T-invariant and let f : X — R be a continuous function

such that / fdu = 0. Suppose that
X

(i) there exists a constant ¢ > 1 such that E,(f) < c/ E.(f)du for every n € N,
X

and
n—1

(ii) the sequence e~ Mn Z eMr n e N, is unbounded,
k=0
Then there exists an el -conformal measure for T which is absolutely continuous with
respect to .

Proof. Our assumption (ii) means that there exists a sequence of positive integers n; —
n;—1

+o0 such that e M Z eMr 5 400, as j — +oo. Using the same notations as above
k=0

we have / gn;dp — +00 and
X

n;—1

e My E eMr 5 400,
k=0

Qlr

e / Gn;dp >
X

as j — +oo, by our assumptions. Therefore, lim ((hnj oT) — hy, el ) = 0 uniformly
J—+o0

on X and as in the proof of Proposition 3.2, every v € {v,, :j € N} is ef-conformal
measure for T' that is absolutely continuous with respect to u. [

As the following Lemma shows, if in Proposition 3.3 the T-invariant measure
€ M(X) is ergodic, then condition (ii) is implied by condition (i).

Lemma 3.4. Let X be a compact metric space and T : X — X a continuous surjection.
Let p € M(X) be an ergodic T-invariant measure and let f : X — R be a continuous

function such that fdu = 0. Suppose that there exists a constant ¢ > 1 such that
X

Eu(f) < ¢ /X En(f)dp

for every n € N.
(a) If Ay, = {x € X : Sp(x) > M, —logc — 1}, n € N, then u(Ay,) >

n € N.
(b) For every N € N there exists n € N such that My, ; < M, +1 for all0 < j < N.

n—1
(c) The sequence e~ Mr Z eMe n €N, is unbounded.
k=0

e—1
ec—1

for

Proof. (a) From our assumption we have

Mn—loge < / En(f)dp < eMrpp(Ay) 4+ MO8 (X Ay,
X

10



from which the required inequality follows.

(b) We proceed to prove the assertion by contradiction assuming that there exists
some N € N such that for every n € N there exists 1 < j, < N such that M,,1;, > M,+1.
Inductively, if we put ny = 14 j1 +-- -+ jg, then M,,, > Mi+kand 1+k <ny <1+kN
for every k € N. Therefore,

My, 1
Nk N +1

f keN. If now ko € N i htht(logc ‘< L for k> ko, then £
I 1 1 1 I 11 I
or every ow kg S suc a 3N +1) or k > kg, then fo
x € A, we have

IS ()> 1

—_— 1‘ —_—

ng ok 2(N +1)
and by (a) we get

1 1 e—1

eX:—8 >— 1) > >0

1 .
for every k > ko. Hence the sequence (—S,,)nen does not converge in measure to zero.

This contradicts the Ergodic Theorem of Birkhoff, since we assume that p is an ergodic
T-invariant Borel probability measure.

(c) Suppose on the contrary that there exists a real number a > 0 such that
n—1

e Mn ZeMk < a, for every n € N. By (b), for every N € N there exists n € N such

k=0
that M, ; < M, +1for all 0 < j < N, and so

N n+j—1 N n+N-—1 n—1
E eMe < g E eMnti < eqeMr 4 g E eMr _ E Mk

j=0 k=0 J=0

< ea(l+ a)e™ Z M,

Substituting

1

N n+j—
Z Z Mk — (N +1) ZeM’“—i—NeM"—i—Z "“
k=0

7=0

we arrive at

N-1
(N+1+a) Z M’“—l—NeM"—{—Z Muti < eq(1 4 a)eMn
k=0 i=1

and therefore N < ea(1 + a) for every N € N, contradiction. [

The above immediately imply the following theorem which is the main result of this
note.

11



Theorem 3.5. Let X be a compact metric space and T : X — X a continuous surjection.
Let pn € M(X) be an ergodic T-invariant measure and let f : X — R be a continuous

function such that / fdu = 0. If there exists a constant ¢ > 1 such that
X

Eu(f) < ¢ /X Ea(f)dp

for every n € N, then there exists an el -conformal measure v for T which is absolutely
dv v
continuous with respect to p. Moreover, — € L°°(u) and —log(——) is a measurable

du du
solution of the cohomological equation f =u —wuwoT. [

The preceding Theorem 3.5 combined with the main result of [9] gives the following.

Corollary 3.6. Let X be a compact metric space andT : X — X a continuous surjection
which is a locally eventually onto local homeomorphism. Let € M(X) be an ergodic

T-invariant measure and let f: X — R be a continuous function such that fdu=0.
X

If there exists a constant ¢ > 1 such that

1
s Bnan< B < e [ B

for every n € N, then there exists an el -conformal measure v for T which is absolutely

continuous with respect to p. Moreover, —log(d—y) € L>®(u) and in case p has full
1

support the cohomological equation f =u— uoT has a continuous solution. [J

If X is a compact metric space and 7' : X — X is a homeomorphism, for any
continuous function f: X — R we put

n
epofonk, if n >0,
k=1
n|—1
exp (— Z foTh), ifn<o.
k=0

As before we also put S,,(f) = log E,(f) and M,, = sup{S,(f)(z): 2z € X}, n € Z.
Let now p € M(X) be T-invariant and suppose that / fdu =0. Then, M,, > 0 for
X
n—1
every n € Z. Since S,,(f) o T ' = S, 1(f) — foT ! for n € N, if g, = ZEk(f), then

k=0
we have

1\ fop-1
(gnOT 1)6fT _gn:En(f)_l'

12



9n

/ Gndp
X

Putting h,, = , we get

1 — eiSn(f)

eisn(f) / Gndp
X

for every n € N. So the same reasoning as above and Lemma 3.1 give the following.

(hn OT_l)efoT_l _ hn _

Theorem 3.7. Let X be a compact metric space and T : X — X a homeomorphism.
Let p € M(X) be an ergodic T-invariant measure and let f : X — R be a continuous

function such that / fdu=0.

X
(a) If there exists a constant ¢ > 1 such that

E.(f) <o /X E(f)dp

for every n € N (or —n € N), then there exists an ef -conformal measure v for T which
is equivalent to p such that 3—: € L™®(u) .
(b) Moreover, if
| B < Bu() < [ Bur)a

for every n € N (or —n € N), then log(j—y) € L>(p). O
1L
Combining Theorem 3.7 with section 2 we get the following.

Corollary 3.8. Let X be a compact metric space and T : X — X a minimal homeo-
morphism. Let p € M(X) be an ergodic T-invariant measure and let f : X — R be a

continuous function such that | fdu = 0. Then the following assertions are equivalent.

(i) f is a continuous coboundary.
(ii) There exists a constant ¢ > 1 such that

1
L] BNau < Buh) < ¢ Bu(P)du

for everyn € N (or —n € N). O

4 An example

We shall illustrate the results of the preceding section by applying them to a specific
homeomorphism and continuous function. Let N > 2 be an integer and Xy be the
compact subset of {—1,1}% consisting of all sequences (,),cz such that

n

> o

k=m

<N

13



for every m, n € Z with m < n. Obviously, Xy is invariant under the shift. The
restriction T of the shift on Xy defines a symbolic dynamical system which is sofic,
that is a continuous factor of a subshift of finite type. To see this, we consider the
shift S : {0,1,...,N}? — {0,1,..,N}? on N + 1 symbols and the transition matrix
A = (a;j)o<ij<n where a;; =1, if |i — j| = 1, and a;; = 0 otherwise. The corresponding
subshift of finite type is defined on

Q4 ={(Wn)nez € {0,1,... N} . |yps1 —yu| =1 forall neZ}.

The continuous surjection h : 24 — Xy defined by

h((Yn)nez) = (Yn+1 — Yn)nez

satisfies h o S = T o h. Since A is an irreducible 0-1 matrix, the subshift (24,.5) is
topologically transitive and has a dense subset of periodic points. Since the symbolic
system (X, T) is a continuous factor of (24, 5), it has the same properties and so it is
chaotic.

Let f: X — {—1,1} be the restriction to Xy of the projection to the 0-th coordinate.
It is proved in Proposition 11.16 in [4] that f is a Borel measurable coboundary with a
bounded measurable transfer function but it is not a continuous coboundary for 7.

A Markov measure on €24 defined by a stochastic matrix which is compatible with
A and a corresponding probability vector is ergodic for S (see page 161 in [8]) and is
projected by h to an ergodic T-invariant Borel probability measure p on Xy. Since f is
an L°°(u)-coboundary, we have

fdu=0.
XN

In this case we have E,(f)((zn)nez) = e~ @ot@1++2n-1) and therefore
e N<E,(f)<eN

for every n € N. It follows from Theorem 3.7 that there exists an ef-conformal measure

d
v for T on X which is equivalent to p such that log(é) € L*™(u).
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