On the existence of absolutely continuous conformal measures

Konstantin Athanassopoulos
Department of Mathematics and Applied Mathematics, University of Crete, GR-70013
University Campus, Voutes-Iraklion, Greece
e-mail: thanako@uoc.gr

ABSTRACT
Let X be a compact metric space and $T : X \to X$ a continuous surjection. We present sufficient conditions which imply the existence of absolutely continuous conformal measures for T with respect to a given ergodic T-invariant Borel probability measure. The same conditions give measurable or L^∞ solutions of the corresponding cohomological equation. We illustrate our results in an example of a sofic system.

1 Introduction
Let X be a compact metric space, $T : X \to X$ a continuous surjection and let $f : X \to \mathbb{R}$ be a continuous function. We call a Borel probability measure ν on X an e^f-conformal measure for T if ν is equivalent to $T_*\nu$ and \[
\frac{d\nu}{d(T_*\nu)} = e^f.
\] This kind of measure has been used without a particular name in [5].

In this note we study the existence of absolutely continuous conformal measures with respect to a given ergodic T-invariant Borel probability measure. We present a sufficient condition for the existence of an absolutely continuous conformal measure for a continuous surjection. The problem of the existence of an e^f-conformal measure ν for a homeomorphism T which is absolutely continuous with respect to an ergodic T-invariant Borel probability measure μ is closely related to the existence and regularity properties of solutions of the cohomological equation $f = u - u \circ T$. This relation is explained with details in section 2. If there exists a continuous solution u, then f is called a continuous coboundary. According to the classical Gottschalk-Hedlund theorem (see page 102 in [4]), if T is minimal, then f is a continuous coboundary if and only if there exists $x_0 \in X$ such that

$$\sup\{|\sum_{k=0}^{n-1} f(T^k(x_0))| : n \in \mathbb{N}\} < +\infty.$$

The main result is Theorem 3.5 which can be stated as follows.
Main Theorem. Let X be a compact metric space and $T : X \to X$ a continuous surjection. Let $\mu \in \mathcal{M}(X)$ be an ergodic T-invariant measure and let $f : X \to \mathbb{R}$ be a continuous function such that $\int_X f d\mu = 0$. If there exists a constant $c \geq 1$ such that

$$E_n(f) \leq c \int_X E_n(f) d\mu$$

for every $n \in \mathbb{N}$, where $E_n(f) = e^{S_n(f)}$ and $S_n(f) = \sum_{k=0}^{n-1} f \circ T^k$, then there exists an e^f-conformal measure ν for T which is absolutely continuous with respect to μ. Moreover, $\frac{d\nu}{d\mu} \in L^\infty(\mu)$ and $-\log\left(\frac{d\nu}{d\mu}\right)$ is a measurable solution of the cohomological equation $f = u - u \circ T$. □

If T is a homeomorphism, then in Theorem 3.7 we prove that if the stronger condition

$$\frac{1}{c} \int_X E_n(f) d\mu \leq E_n(f) \leq c \int_X E_n(f) d\mu$$

for every $n \in \mathbb{N}$ (or $-n \in \mathbb{N}$) holds for some constant $c \geq 1$, then an e^f-conformal measure ν for T exists which is equivalent to μ and $\log\left(\frac{d\nu}{d\mu}\right) \in L^\infty(\mu)$. Also, f is a $L^\infty(\mu)$ coboundary with transfer function $-\log\left(\frac{d\nu}{d\mu}\right)$. This result holds without the assumption that T is minimal.

In a final section we illustrate our results in an example of a known sofic system which is attributed to B. Markus in [3]. In this example T is the two-sided left shift restricted on a suitable compact subset X of $\{-1,1\}^\mathbb{Z}$ and is a continuous factor of a subshift of finite type on $N + 1$ symbols for some integer $N \geq 2$. The system is not minimal, it is chaotic and it has the strong specification property.

2 Conformal measures

Let $T : X \to X$ be a continuous surjection of a compact metric space X and let $f : X \to \mathbb{R}$ be a continuous function. An e^f-conformal measure for T is a Borel probability measure ν on X such that

$$\int_X \phi d\nu = \int_X (\phi \circ T)e^f d\nu$$

for every continuous function $\phi : X \to \mathbb{R}$. Evidently, an e^f-conformal measure for T is T-quasi-invariant and is an $e^{-f \circ T^{-1}}$-conformal measure for T^{-1}, in case T is a homeomorphism.

It is easy to see that if $h : X \to X$ is a homeomorphism and $S = h \circ T \circ h^{-1}$, then $h_* \nu$ is an $e^{hf^{-1}}$-conformal measure for S for every e^f-conformal measure ν for T.

For the reader’s convenience we shall describe a construction of conformal measures for homeomorphisms due to M. Denker and M. Urbanski given in [1]. Note that there may be no e^f-conformal measure for T for a given continuous function $f : X \to \mathbb{R}$.

2
This is the case, for example, if $f > 0$, since we necessarily have \(\int_X e^f \, d\nu = 1 \) for every \(e^f \)-conformal measure. We need some preliminary observations.

Let \((a_n)_{n \in \mathbb{N}} \) be a sequence of real numbers and let \(c = \limsup_{n \to +\infty} \frac{a_n}{n} \). The series \(\sum_{n=1}^{\infty} e^{a_n - ns} \) converges for \(s > c \), diverges for \(s < c \) and we cannot tell for \(s = c \), by the root test.

Lemma 2.1. There exists a sequence of positive real numbers \((b_n)_{n \in \mathbb{N}} \) such that \(\lim \frac{b_n}{b_{n+1}} = 1 \) and the series \(\sum_{n=1}^{\infty} b_n e^{a_n - ns} \) converges for \(s > c \) and diverges for \(s \leq c \).

Proof. If the series \(\sum_{n=1}^{\infty} e^{a_n - nc} \) diverges, we may take \(b_n = 1 \) for every \(n \in \mathbb{N} \). Suppose that it converges. We choose a sequence of positive integers \((n_k)_{k \in \mathbb{N}} \) such that
\[
\lim_{k \to +\infty} \frac{n_k}{n_{k+1}} = 0 \quad \text{and} \quad \lim_{k \to +\infty} \frac{a_{n_k}}{n_k} = c.
\]
It suffices now to put \(\epsilon_k = \frac{a_{n_k}}{n_k} - c \) and take
\[
b_n = \exp \left[n \left(\frac{n - n_k}{n_k - n_{k-1}} \epsilon_{k-1} + \frac{n - n_{k-1}}{n_k - n_{k-1}} \epsilon_k \right) \right]
\]
for \(n_{k-1} \leq n < n_k \). \(\square \)

Let \(f : X \to \mathbb{R} \) be a continuous function such that \(\int_X f \, d\mu = 0 \) for some ergodic \(T \)-invariant Borel probability measure \(\mu \). It is well known that the set of points \(x \in X \) such that the limit
\[
\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(T^{-k}(x))
\]
exists in \(\mathbb{R} \) has measure 1 with respect to every \(T \)-invariant Borel probability measure, and is therefore non-empty. So there exists a point \(x \in X \) such that
\[
\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(T^{-k}(x)) = \int_X f \, d\mu = 0,
\]
since \(\mu \) is assumed to be ergodic.

If we take \(a_n = -\sum_{k=1}^{n} f(T^{-k}(x)) \), then \(\lim_{n \to +\infty} \frac{a_n}{n} = 0 \). Let \(M_s = \sum_{n=1}^{\infty} b_n e^{a_n - ns} \), \(s > 0 \), where \((b_n)_{n \in \mathbb{N}} \) is the corresponding sequence given from Lemma 2.1, and
\[
\mu_s = \frac{1}{M_s} \sum_{n=1}^{\infty} b_n e^{a_n - ns} \delta_{T^{-n}(x)}, \quad s > 0.
\]
Proposition 2.2. Every accumulation point with respect to the weak* topology of the directed family of Borel probability measures \((\mu_s)_{s>0}\), as \(s \downarrow 0\), is a \(e^f\)-conformal measure for \(T\).

Proof. For every continuous function \(\phi : X \rightarrow \mathbb{R}\) we have on the one hand

\[
\int_X \phi d\mu_s = \frac{1}{M_s} \sum_{n=1}^{\infty} b_n e^{a_n - ns} \phi(T^{-n}(x))
\]

and on the other

\[
\int_X (\phi \circ T) e^f d\mu_s = \frac{1}{M_s} \sum_{n=1}^{\infty} b_n e^{a_n - ns} \phi(T^{-n+1}(x)) e^{f(T^{-n}(x))}
\]

\[
= \frac{1}{M_s} \left[b_1 e^{-s} \phi(x) + \sum_{n=1}^{\infty} b_{n+1} e^{-s} e^{a_n - ns} \phi(T^{-n}(x)) \right].
\]

Since \(\lim_{s \downarrow 0} \frac{b_1 e^{-s} \phi(x)}{M_s} = 0\), we need to estimate the difference

\[
\frac{1}{M_s} \left| \sum_{n=1}^{\infty} b_n e^{a_n - ns} \phi(T^{-n}(x)) - \sum_{n=1}^{\infty} b_{n+1} e^{-s} e^{a_n - ns} \phi(T^{-n}(x)) \right|
\leq \frac{\|\phi\|}{M_s} \sum_{n=1}^{\infty} \frac{b_{n+1}}{b_n} e^{-s} - 1 \left| b_n e^{a_n - ns} \right|.
\]

Given \(\epsilon > 0\) there exists \(n_0 \in \mathbb{N}\) such that for \(n \geq n_0\) we have

\[
\left| \frac{b_{n+1}}{b_n} - 1 \right| < \epsilon
\]

and therefore

\[
\left| \frac{b_{n+1}}{b_n} e^{-s} - 1 \right| < \epsilon e^{-s} + |1 - e^{-s}|.
\]

It follows that

\[
\frac{1}{M_s} \sum_{n=1}^{\infty} \left| \frac{b_{n+1}}{b_n} e^{-s} - 1 \right| b_n e^{a_n - ns} < \frac{1}{M_s} \sum_{n=1}^{n_0} \left| \frac{b_{n+1}}{b_n} e^{-s} - 1 \right| b_n e^{a_n - ns} + \frac{\epsilon e^{-s} + |1 - e^{-s}|}{M_s} \sum_{n=n_0}^{\infty} b_n e^{a_n - ns}
\]

\[
\leq \frac{1}{M_s} \sum_{n=1}^{n_0} \left| \frac{b_{n+1}}{b_n} e^{-s} - 1 \right| b_n e^{a_n - ns} + \epsilon e^{-s} + |1 - e^{-s}|.
\]

Since \(\lim_{s \downarrow 0} M_s = +\infty\), there exists some \(0 < s_0 < 1\) such that \(\epsilon e^{-s} + 1 - e^{-s} < 2\epsilon\)

\[
\frac{1}{M_s} \sum_{n=1}^{n_0} \left| \frac{b_{n+1}}{b_n} e^{-s} - 1 \right| b_n e^{a_n - ns} < \epsilon
\]

and \(\frac{b_1 e^{-s}}{M_s} < \epsilon\) for all \(0 < s < s_0\).
Summarizing, for every $\epsilon > 0$ there exists $0 < s_0 < 1$ such that

$$\left| \int_X \phi d\mu_s - \int_X (\phi \circ T)e^f d\mu_s \right| < 4\epsilon \| \phi \|
$$

for all $0 < s < s_0$ and every continuous function $\phi : X \to \mathbb{R}$. This proves the assertion. □

There is a close relation between e^f-conformal measures for a homeomorphism $T : X \to X$ of a compact metric space and solvability of the cohomologic al equation $f = u - u \circ T$, where $f : X \to \mathbb{R}$ is continuous.

Let μ be any T-invariant Borel probability measure. If there exists a measurable solution u of the above cohomological equation defined μ-almost everywhere such that $e^{-u} \in L^1(\mu)$, then there exists a e^f-conformal measure ν for T equivalent to μ with density

$$\frac{d\nu}{d\mu} = \frac{e^{-u}}{\int_X e^{-u} d\mu}.
$$

Thus, if there exists a continuous solution u, then for every T-invariant Borel probability measure we get an equivalent e^f-conformal measure for T. Moreover, in this case, every e^f-conformal measure ν for T is obtained in this way. Indeed, we have

$$\int_X \phi e^u d\nu = \int_X (\phi \circ T)e^u d\nu
$$

for every continuous function $\phi : X \to \mathbb{R}$, and so the equivalent measure μ to ν with density

$$\frac{d\mu}{d\nu} = \frac{e^u}{\int_X e^u d\nu}
$$

is T-invariant. Consequently, if f is a continuous coboundary, then the e^f-conformal measures for T are in one-to-one correspondence with the T-invariant Borel probability measures and each e^f-conformal measure for T is equivalent to its corresponding T-invariant measure.

Conversely, suppose that μ is an ergodic T-invariant Borel probability measure and $f : X \to \mathbb{R}$ is a continuous function such that $\int_X f d\mu = 0$. Suppose further that there exists a e^f-conformal measure $\nu \in \mathcal{M}(X)$ for T which is absolutely continuous with respect to μ and let $g = \frac{d\nu}{d\mu}$. For every measurable set $A \subset X$ we have

$$\int_X (\chi_A \circ T)(g \circ T) d\mu = \nu(A) = \int_X (\chi_A \circ T)e^f d\nu = \int_X (\chi_A \circ T)e^f g d\mu
$$

and therefore

$$\int_{T^{-1}(A)} [ge^f - (g \circ T)] d\mu = 0.
$$

Since μ is T-invariant, it follows that $g \circ T = ge^f$ μ-almost everywhere. The ergodicity of μ implies now that $g > 0$ μ-almost everywhere. So, $u = -\log g$ is a measurable solution of the cohomological equation $f = u - u \circ T$. If $\log g \in L^\infty(\mu)$ and T is a
minimal homeomorphism, then there exists some continuous function \(u : X \to \mathbb{R} \) such that \(f = u - u \circ T \), by Proposition 4.2 on page 46 in [2].

Note that \(\nu \) is equivalent to \(\mu \), because \(g > 0 \). We remark that this is actually a more general fact which holds for every \(T \)-quasi-invariant Borel probability measure. To see this, let \(T : X \to X \) be a homeomorphism of a compact metric space \(X \) and \(\mu \) be an ergodic \(T \)-invariant Borel probability measure. Let \(\nu \) be a \(T \)-quasi-invariant Borel probability measure which is absolutely continuous with respect to \(\mu \). Let \(g = \frac{d\nu}{d\mu} \) and \(A = g^{-1}(0) \). If \(S = \bigcup_{n \in \mathbb{Z}} T^n(A) \), then \(S \) is \(T \)-invariant and \(\nu(S) = 0 \). On the other hand \(\mu(X \setminus S) > 0 \), and since \(\mu \) is ergodic we get \(\mu(S) = 0 \), that is \(g > 0 \) \(\mu \)-almost everywhere. In particular, if \(T \) is uniquely ergodic, then every \(T \)-quasi-invariant measure for \(T \) which is absolutely continuous with respect its unique invariant Borel probability measure is equivalent to it.

3 Absolutely continuous conformal measures

Let \(X \) be a compact metric space and \(\mu \in M(X) \). The set

\[A_\mu = \{ \nu \in M(X) : \nu \ll \mu \} \]

is not empty, since it contains \(\mu \), and is convex. In general, \(A_\mu \) is not a closed subset of \(M(X) \) with respect to the weak* topology. For example, if we let \(\mu \) be the Lebesgue measure on the unit interval \([0,1]\) and for \(0 < \epsilon < 1 \) we let \(\mu_\epsilon \) denote the Borel probability measure on \([0,1]\) with density \(\frac{1}{\epsilon} \chi_{[0,\epsilon]} \), then \(\lim_{\epsilon \to 0} \mu_\epsilon \) is the Dirac point measure at 0.

Lemma 3.1. Let \(X \) be a compact metric space and \(\mu \in M(X) \). Let \((\nu_n)_{n \in \mathbb{N}}\) be a sequence in \(A_\mu \) converging weakly* to some \(\nu \in M(X) \) and let \(f_n = \frac{d\nu_n}{d\mu} \), \(n \in \mathbb{N} \). If there exist non-negative \(h \), \(g \in L^1(\mu) \) such that \(h \leq f_n \leq g \) for every \(n \in \mathbb{N} \), then \(\nu \in A_\mu \) and \(h \leq \frac{d\nu}{d\mu} \leq g \).

Proof. Since \(\nu \) is a finite measure, there exists a (countable) basis \(\mathcal{U} \) of the topology of \(X \) such that \(\nu(\partial U) = 0 \) for every \(U \in \mathcal{U} \). So \(\mathcal{U} \) is contained in the algebra \(\mathcal{C}(\nu) = \{ A | A \subset X \text{ Borel and } \nu(\partial A) = 0 \} \)

and since it generates the Borel \(\sigma \)-algebra of \(X \), so does \(\mathcal{C}(\nu) \). Let now \(A \subset X \) be a Borel set with \(\mu(A) = 0 \) and \(\epsilon > 0 \). There exists \(0 < \delta < \epsilon \) such that \(\int_B gd\mu < \epsilon \) for every Borel set \(B \subset X \) with \(\mu(B) < \delta \), because \(g \in L^1(\mu) \). There exists some \(A_0 \in \mathcal{C}(\nu) \) such that \(\mu(A \Delta A_0) < \delta \) and \(\nu(A \Delta A_0) < \delta \). Thus \(\mu(A_0) < \delta \) and \(|\nu(A) - \nu(A_0)| < \delta \).

By weak* convergence, \(\nu(A_0) = \lim_{n \to +\infty} \nu_n(A_0) \) and so there exists some \(n_0 \in \mathbb{N} \) such that \(|\nu_n(A_0) - \nu(A_0)| < \epsilon \) for \(n \geq n_0 \). Therefore,

\[\nu(A_0) < \nu_n(A_0) + \epsilon = \int_{A_0} f_n d\mu + \epsilon \leq \int_{A_0} gd\mu + \epsilon < 2\epsilon. \]
It follows that $0 \leq \nu(A) < 3\epsilon$ for every $\epsilon > 0$, which means that $\nu(A) = 0$. This shows that $\nu \in A_\mu$.

To prove the last assertion, we note first that there exists a sequence of (finite) partitions $(P_n)_{n \in \mathbb{N}}$ of X such that P_{n+1} is a refinement of P_n, the Borel σ-algebra of X is generated by $\bigcup_{n=1}^{\infty} P_n$ and $\mu(\partial B) = 0$ for every $B \in P_n$ and $n \in \mathbb{N}$. It can be constructed starting with a countable basis $\{U_n : n \in \mathbb{N}\}$ of the topology of X such that $\mu(\partial U_n) = 0$ for every $n \in \mathbb{N}$ and defining inductively P_n to be the finite family consisting of Borel sets with positive μ measure of the form $B \cap U_n$ or $B \cap (X \setminus U_n)$, for $B \in P_{n-1}$, taking $P_0 = \{X\}$.

Let $P_n(x)$ denote the element of P_n which contains $x \in X$. Then,

$$\frac{d\nu}{d\mu}(x) = \lim_{n \to +\infty} \frac{\nu(P_n(x))}{\mu(P_n(x))},$$

μ-almost everywhere on X and in $L^1(\mu)$ (see page 8 in [6]). On the other hand, by the weak* convergence and since $\nu \in A_\mu$, for every $k \in \mathbb{N}$ and $x \in X$ there exists some $n_k \in \mathbb{N}$ such that

$$|\nu(P_k(x)) - \nu_{n_k}(P_k(x))| < \frac{1}{k}\mu(P_k(x)).$$

It follows that

$$0 \leq \frac{\nu(P_k(x))}{\mu(P_k(x))} < \frac{1}{k} + \frac{\nu_{n_k}(P_k(x))}{\mu(P_k(x))} = \frac{1}{k} + \frac{1}{\mu(P_k(x))} \int_{P_k(x)} f_{n_k} d\mu < \frac{1}{k} + \frac{1}{\mu(P_k(x))} \int_{P_k(x)} g d\mu.$$

Since

$$\lim_{k \to +\infty} \frac{1}{\mu(P_k(x))} \int_{P_k(x)} g d\mu = g(x)$$

μ-almost everywhere on X and in $L^1(\mu)$, it follows that $0 \leq \frac{d\nu}{d\mu}(x) \leq g(x)$ μ-almost everywhere on X.

Similarly, from

$$\frac{\nu(P_k(x))}{\mu(P_k(x))} > \frac{1}{k} + \frac{\nu_{n_k}(P_k(x))}{\mu(P_k(x))} = \frac{1}{k} + \frac{1}{\mu(P_k(x))} \int_{P_k(x)} f_{n_k} d\mu \geq \frac{1}{k} + \frac{1}{\mu(P_k(x))} \int_{P_k(x)} h d\mu$$

follows that $h(x) \leq \frac{d\nu}{d\mu}(x)$ μ-almost everywhere on X. \square

Let X be a compact metric space and $T : X \to X$ a continuous surjection. For any continuous function $f : X \to \mathbb{R}$ we put $S_0(f) = -\sum_{k=0}^{n-1} f \circ T^k$ and $E_n(f) = e^{S_n(f)}$.

Let $M_n = \sup\{S_n(f)(x) : x \in X\}$ and $L_n = \inf\{S_n(f)(x) : x \in X\}$, $n \in \mathbb{N}$. Since $S_n(f) \circ T = S_{n+1}(f) + f$ for $n \in \mathbb{N}$, if $g_n = \sum_{k=0}^{n-1} E_k(f)$, then we have

$$(g_n \circ T)e^{-f} - g_n = E_n(f) - e^{-f}.$$
Let now \(\mu \in \mathcal{M}(X) \) be \(T \)-invariant and suppose that \(\int_X f \, d\mu = 0 \). So, \(L_n \leq 0 \leq M_n \) for every \(n \in \mathbb{N} \). Putting \(h_n = \frac{g_n}{\int_X g_n \, d\mu} \), we get

\[
(h_n \circ T) - h_n e^f = \frac{e^f - e^{-S_n(f)}}{e^{-S_n(f)}} \int_X g_n \, d\mu,
\]

for every \(n \in \mathbb{N} \).

Suppose that there exists a positive \(h \in L^1(\mu) \) such that \(E_n(f) \leq h \int_X E_n(f) \, d\mu \) for every \(n \in \mathbb{N} \). Then also \(0 \leq h_n \leq h \) for \(n \in \mathbb{N} \). If \(\nu_n \) denotes the element of \(E_\mu \) with \(h_n = \frac{d\nu_n}{d\mu} \), then \(\{\nu_n : n \in \mathbb{N}\} \subset E_\mu \), by Lemma 3.1.

Proposition 3.2. Let \(X \) be a compact metric space and \(T : X \to X \) a continuous surjection. Let \(\mu \in \mathcal{M}(X) \) be \(T \)-invariant and let \(f : X \to \mathbb{R} \) be a continuous function such that \(\int_X f \, d\mu = 0 \). Suppose that

(i) there exists a positive \(h \in L^1(\mu) \) such that \(E_n(f) \leq h \int_X E_n(f) \, d\mu \) for every \(n \in \mathbb{N} \), and

(ii) the sequence \(e^{-M_n} \sum_{k=0}^{n-1} e^{L_k} \), \(n \in \mathbb{N} \), is unbounded.

Then there exists an \(e^f \)-conformal measure for \(T \) which is absolutely continuous with respect to \(\mu \).

Proof. Using the above notations, it suffices to prove that there exists a sequence of positive integers \(n_j \to +\infty \) such that \(\lim_{j \to +\infty} \int_X (h_{n_j} \circ T) - h_{n_j} e^f \, d\nu = 0 \) \(\mu \)-almost everywhere on \(X \). Indeed, passing to a subsequence if necessary, there exists \(\nu \in E_\mu \) such that \(\nu = \lim_{j \to +\infty} \nu_{n_j} \), by Lemma 3.1. Since \(\mu \) is \(T \)-invariant, for every continuous function \(\phi : X \to \mathbb{R} \) we have

\[
\int_X (\phi - (\phi \circ T)e^f) \, d\nu = \lim_{j \to +\infty} \int_X (\phi \circ T)((h_{n_j} \circ T) - h_{n_j} e^f) \, d\mu = 0,
\]

by dominated convergence, because

\[
|(\phi \circ T)((h_n \circ T) - h_n e^f)| \leq \|\phi\|((h \circ T) + he^f) \in L^1(\mu).
\]

Since

\[
|(h_n \circ T) - h_n e^f| = e^f \frac{|E_n(f) - e^{-f}|}{\int_X g_n \, d\mu},
\]

we need only prove that there exist \(n_j \to +\infty \) such that

\[
\lim_{j \to +\infty} \mu\{x \in X : |E_{n_j}(f)(x) - e^{-f(x)}| \geq \delta \int_X g_{n_j}(x) \, d\mu\} = 0
\]

8
for every $\delta > 0$. Let

$$A_{n,\delta} = \{ x \in X : E_n(f)(x) \geq e^{-f(x)} + \frac{\delta}{h(x)} \sum_{k=0}^{n-1} E_k(f)(x) \},$$

and

$$A'_{n,\delta} = \{ x \in X : E_n(f)(x) \leq e^{-f(x)} - \frac{\delta}{h(x)} \sum_{k=0}^{n-1} E_k(f)(x) \}.$$

Our assumption (i) implies that it suffices to prove the existence of a sequence of positive integers $n_j \to +\infty$ such that

$$\lim_{j \to +\infty} \mu(A_{n_j,\delta}) = \lim_{j \to +\infty} \mu(A'_{n_j,\delta}) = 0$$

for every $\delta > 0$.

For every $x \in A_{n,\delta}$ we have

$$\frac{h(x)}{\delta} > e^{-M_n} \sum_{k=0}^{n-1} E_k(f)(x)$$

and integrating over $A_{n,\delta}$ we obtain

$$\frac{1}{\delta} \int_X h \, d\mu \geq \mu(A_{n,\delta}) e^{-M_n} \sum_{k=0}^{n-1} e^{L_k}.$$

Similarly, for every $x \in A'_{n,\delta}$ we have

$$\sum_{k=0}^{n-1} E_k(f)(x) < \frac{h(x)}{\delta} e^{-f(x)}$$

and integrating over $A'_{n,\delta}$ we get

$$\mu(A'_{n,\delta}) \sum_{k=0}^{n-1} e^{L_k} \leq \frac{1}{\delta} \int_X h e^{-f} \, d\mu.$$

Our assumption (ii) means that there exist $n_j \to +\infty$ such that

$$e^{-M_{n_j}} \sum_{k=0}^{n_j-1} e^{L_k} \to +\infty,$$

and therefore we also have $\sum_{k=0}^{n_j-1} e^{L_k} \to +\infty$, because $L_n \leq 0 \leq M_n$. Consequently,

$$\lim_{j \to +\infty} \mu(A_{n_j,\delta}) = \lim_{j \to +\infty} \mu(A'_{n_j,\delta}) = 0.$$

□

In the next proposition we make a more restrictive assumption (i) and a weaker assumption (ii).

Proposition 3.3. Let X be a compact metric space and $T : X \to X$ a continuous surjection. Let $\mu \in \mathcal{M}(X)$ be T-invariant and let $f : X \to \mathbb{R}$ be a continuous function such that $\int_X f \, d\mu = 0$. Suppose that

1. there exists a constant $c \geq 1$ such that $E_n(f) \leq c \int_X E_n(f) \, d\mu$ for every $n \in \mathbb{N}$, and

...
(ii) the sequence $e^{-M_n} \sum_{k=0}^{n-1} e^{M_k}, \ n \in \mathbb{N}$, is unbounded.

Then there exists an $\mathcal{L}T$-conformal measure for T which is absolutely continuous with respect to μ.

Proof. Our assumption (ii) means that there exists a sequence of positive integers $n_j \to +\infty$ such that $e^{-M_n} \sum_{k=0}^{n_j-1} e^{M_k} \to +\infty$, as $j \to +\infty$. Using the same notations as above we have $\int_X g_{n_j} d\mu \to +\infty$ and

$$e^{-S_{n_j}} \int_X g_{n_j} d\mu \geq \frac{1}{c} \cdot e^{-M_{n_j}} \sum_{k=0}^{n_j-1} e^{M_k} \to +\infty,$$

as $j \to +\infty$, by our assumptions. Therefore, $\lim_{j \to +\infty} (h_{n_j} \circ T - h_{n_j} e^f) = 0$ uniformly on X and as in the proof of Proposition 3.2, every $\nu \in \{\nu_{n_j} : j \in \mathbb{N}\}$ is $\mathcal{L}T$-conformal measure for T that is absolutely continuous with respect to μ. \square

As the following Lemma shows, if in Proposition 3.3 the T-invariant measure $\mu \in \mathcal{M}(X)$ is ergodic, then condition (ii) is implied by condition (i).

Lemma 3.4. Let X be a compact metric space and $T : X \to X$ a continuous surjection. Let $\mu \in \mathcal{M}(X)$ be an ergodic T-invariant measure and let $f : X \to \mathbb{R}$ be a continuous function such that $\int_X f d\mu = 0$. Suppose that there exists a constant $c \geq 1$ such that

$$E_n(f) \leq c \int_X E_n(f) d\mu$$

for every $n \in \mathbb{N}$.

(a) If $A_n = \{x \in X : S_n(x) > M_n - \log c - 1\}, \ n \in \mathbb{N}$, then $\mu(A_n) \geq \frac{e - 1}{ec - 1}$ for $n \in \mathbb{N}$.

(b) For every $N \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that $M_{n+j} \leq M_n + 1$ for all $0 \leq j \leq N$.

(c) The sequence $e^{-M_n} \sum_{k=0}^{n-1} e^{M_k}, \ n \in \mathbb{N}$, is unbounded.

Proof. (a) From our assumption we have

$$e^{M_n - \log c} \leq \int_X E_n(f) d\mu \leq e^{M_n} \mu(A_n) + e^{M_n - \log c - 1} \mu(X \setminus A_n),$$

from which the required inequality follows.

(b) We proceed to prove the assertion by contradiction assuming that there exists some $N \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ there exists $1 \leq j_n \leq N$ such that $M_{n+j} > M_n + 1$. Inductively, if we put $n_k = 1 + j_1 + \cdots + j_k$, then $M_{n_k} > M_1 + k$ and $1 + k \leq n_k \leq 1 + kN$ for every $k \in \mathbb{N}$. Therefore,

$$\frac{M_{n_k}}{n_k} > \frac{1}{N + 1}$$
for every \(k \in \mathbb{N} \). If now \(k_0 \in \mathbb{N} \) is such that
\[
\left| \frac{\log c - 1}{n_k} \right| < \frac{1}{2(N + 1)}
\]
for \(k \geq k_0 \), then for \(x \in A_n \) we have
\[
\frac{1}{n_k} S_{n_k}(x) > \frac{1}{2(N + 1)}
\]
and by (a) we get
\[
\mu(\{x \in X : \frac{1}{n_k} S_{n_k}(x) > \frac{1}{2(N + 1)}\}) \geq \frac{e - 1}{ec - 1} > 0
\]
for every \(k \geq k_0 \). Hence the sequence \(\frac{1}{n} S_n \) does not converge in measure to zero. This contradicts the Ergodic Theorem of Birkhoff, since we assume that \(\mu \) is an ergodic \(T \)-invariant Borel probability measure.

(c) Suppose on the contrary that there exists a real number \(a > 0 \) such that
\[
e^{-M_n} \sum_{k=0}^{n-1} e^{M_k} \leq a,
\]
for every \(n \in \mathbb{N} \). By (b), for every \(N \in \mathbb{N} \) there exists \(n \in \mathbb{N} \) such that \(M_{n+j} \leq M_n + 1 \) for all \(0 \leq j \leq N \), and so
\[
\sum_{j=0}^{N} \sum_{k=0}^{n+j-1} e^{M_k} \leq a \sum_{j=0}^{N} e^{M_{n+j}} \leq ea e^{M_n} + a \left(\sum_{k=0}^{n-N-1} e^{M_k} - \sum_{k=0}^{n-1} e^{M_k} \right)
\]
\[
\leq ea(1 + a)e^{M_n} - a \sum_{k=0}^{n-1} e^{M_k}.
\]
Substituting
\[
\sum_{j=0}^{N} \sum_{k=0}^{n+j-1} e^{M_k} = (N + 1) \sum_{k=0}^{n-1} e^{M_k} + Ne^{M_n} + \sum_{i=1}^{N-1} (N - i)e^{M_{n+i}},
\]
we arrive at
\[
(N + 1 + a) \sum_{k=0}^{n-1} e^{M_k} + Ne^M_n + \sum_{i=1}^{N-1} (N - i)e^{M_{n+i}} \leq ea(1 + a)e^{M_n}
\]
and therefore \(N \leq ea(1 + a) \) for every \(N \in \mathbb{N} \), contradiction. \(\square \)

The above immediately imply the following theorem which is the main result of this note.

Theorem 3.5. Let \(X \) be a compact metric space and \(T : X \to X \) a continuous surjection. Let \(\mu \in \mathcal{M}(X) \) be an ergodic \(T \)-invariant measure and let \(f : X \to \mathbb{R} \) be a continuous function such that \(\int_X f d\mu = 0 \). If there exists a constant \(c \geq 1 \) such that
\[
E_n(f) \leq c \int_X E_n(f) d\mu
\]
for every \(n \in \mathbb{N} \), then there exists an \(\mathcal{U} \)-conformal measure \(\nu \) for \(T \) which is absolutely continuous with respect to \(\mu \). Moreover, \(\frac{d\nu}{d\mu} \in L^\infty(\mu) \) and \(-\log(\frac{d\nu}{d\mu})\) is a measurable solution of the cohomological equation \(f = u - u \circ T \). □

The preceding Theorem 3.5 combined with the main result of [7] gives the following.

Corollary 3.6. Let \(X \) be a compact metric space and \(T : X \to X \) a continuous surjection which is a locally eventually onto local homeomorphism. Let \(\mu \in \mathcal{M}(X) \) be an ergodic \(T \)-invariant measure and let \(f : X \to \mathbb{R} \) be a continuous function such that \(\int_X f d\mu = 0 \).

If there exists a constant \(c \geq 1 \) such that
\[
\frac{1}{c} \int_X E_n(f) d\mu \leq E_n(f) \leq c \int_X E_n(f) d\mu
\]
for every \(n \in \mathbb{N} \), then there exists an \(\mathcal{U} \)-conformal measure \(\nu \) for \(T \) which is absolutely continuous with respect to \(\mu \). Moreover, \(-\log(\frac{d\nu}{d\mu}) \in L^\infty(\mu) \) and in case \(\mu \) has full support the cohomological equation \(f = u - u \circ T \) has a continuous solution. □

If \(X \) is a compact metric space and \(T : X \to X \) is a homeomorphism, for any continuous function \(f : X \to \mathbb{R} \) we put
\[
E_n(f) = \begin{cases} \exp \sum_{k=1}^{n} f \circ T^{-k}, & \text{if } n > 0, \\ 1, & \text{if } n = 0, \\ \exp \left(- \sum_{k=0}^{\lfloor |n| \rfloor} f \circ T^k \right), & \text{if } n < 0. \end{cases}
\]

As before we also put \(S_n(f) = \log E_n(f) \) and \(M_n = \sup \{ S_n(f)(x) : x \in X \} \), \(n \in \mathbb{Z} \).

Let now \(\mu \in \mathcal{M}(X) \) be \(T \)-invariant and suppose that \(\int_X f d\mu = 0 \). Then, \(M_n \geq 0 \) for every \(n \in \mathbb{Z} \). Since \(S_n(f) \circ T^{-1} = S_{n+1}(f) - f \circ T^{-1} \) for \(n \in \mathbb{N} \), if \(g_n = \sum_{k=0}^{n-1} E_k(f) \), then we have
\[
(g_n \circ T^{-1}) e^{f \circ T^{-1}} - g_n = E_n(f) - 1.
\]

Putting \(h_n = \frac{g_n}{\int_X g_n d\mu} \), we get
\[
(h_n \circ T^{-1}) e^{f \circ T^{-1}} - h_n = \frac{1 - e^{-S_n(f)}}{e^{-S_n(f)} \int_X g_n d\mu},
\]
for every \(n \in \mathbb{N} \). So the same reasoning as above and Lemma 3.1 give the following.
Theorem 3.7. Let X be a compact metric space and $T : X \to X$ a homeomorphism. Let $\mu \in \mathcal{M}(X)$ be an ergodic T-invariant measure and let $f : X \to \mathbb{R}$ be a continuous function such that $\int_X f d\mu = 0$.

(a) If there exists a constant $c \geq 1$ such that
$$E_n(f) \leq c \int_X E_n(f) d\mu$$
for every $n \in \mathbb{N}$ (or $-n \in \mathbb{N}$), then there exists an e^f-conformal measure ν for T which is equivalent to μ such that $d\nu/d\mu \in L^\infty(\mu)$.

(b) Moreover, if
$$\frac{1}{c} \int_X E_n(f) d\mu \leq E_n(f) \leq c \int_X E_n(f) d\mu$$
for every $n \in \mathbb{N}$ (or $-n \in \mathbb{N}$), then $\log\left(d\nu/d\mu\right) \in L^\infty(\mu)$. □

Combining Theorem 3.7 with section 2 we get the following.

Corollary 3.8. Let X be a compact metric space and $T : X \to X$ a minimal homeomorphism. Let $\mu \in \mathcal{M}(X)$ be an ergodic T-invariant measure and let $f : X \to \mathbb{R}$ be a continuous function such that $\int_X f d\mu = 0$. Then the following assertions are equivalent.

(i) f is a continuous coboundary.

(ii) There exists a constant $c \geq 1$ such that
$$\frac{1}{c} \int_X E_n(f) d\mu \leq E_n(f) \leq c \int_X E_n(f) d\mu$$
for every $n \in \mathbb{N}$ (or $-n \in \mathbb{N}$). □

4 An example

We shall illustrate the results of the preceding section by applying them to a specific homeomorphism and continuous function. Let $N \geq 2$ be an integer and X_N be the compact subset of $\{-1, 1\}^\mathbb{Z}$ consisting of all sequences $(x_n)_{n \in \mathbb{Z}}$ such that
$$\sum_{k=m}^{n} x_k \leq N$$
for every $m, n \in \mathbb{Z}$ with $m < n$. Obviously, X_N is invariant under the shift. The restriction T of the shift on X_N defines a symbolic dynamical system which is sofic, that is a continuous factor of a subshift of finite type. To see this, we consider the shift $S : \{0, 1, ..., N\}^\mathbb{Z} \to \{0, 1, ..., N\}^\mathbb{Z}$ on $N + 1$ symbols and the transition matrix $A = (a_{ij})_{0 \leq i, j \leq N}$ where $a_{ij} = 1$, if $|i - j| = 1$, and $a_{ij} = 0$ otherwise. The corresponding subshift of finite type is defined on
$$\Omega_A = \{(y_n)_{n \in \mathbb{Z}} \in \{0, 1, ..., N\}^\mathbb{Z} : |y_{n+1} - y_n| = 1 \text{ for all } n \in \mathbb{Z}\}.$$
The continuous surjection \(h : \Omega_A \to X_N \) defined by
\[
h((y_n)_{n \in \mathbb{Z}}) = (y_{n+1} - y_n)_{n \in \mathbb{Z}}
\]
satisfies \(h \circ S = T \circ h \). Since \(A \) is an irreducible 0-1 matrix, the subshift \((\Omega_A, S)\) is topologically transitive and has a dense subset of periodic points. Since the symbolic system \((X_N, T)\) is a continuous factor of \((\Omega_A, S)\), it has the same properties and so it is chaotic.

Let \(f : X \to \{-1, 1\} \) be the restriction to \(X_N \) of the projection to the 0-th coordinate. It is proved in Proposition 11.16 in [3] that \(f \) is a Borel measurable coboundary with a bounded measurable transfer function but it is not a continuous coboundary for \(T \).

A Markov measure on \(\Omega_A \) defined by a stochastic matrix which is compatible with \(A \) and a corresponding probability vector is ergodic for \(S \) (see page 161 in [6]) and is projected by \(h \) to an ergodic \(T \)-invariant Borel probability measure \(\mu \) on \(X_N \). Since \(f \) is an \(L^\infty(\mu) \)-coboundary, we have
\[
\int_{X_N} f \, d\mu = 0.
\]
In this case we have \(E_n(f)((x_n)_{n \in \mathbb{Z}}) = e^{-(x_0 + x_1 + \cdots + x_{n-1})} \) and therefore
\[
e^{-N} \leq E_n(f) \leq e^N
\]
for every \(n \in \mathbb{N} \). It follows from Theorem 3.7 that there exists an \(e^f \)-conformal measure \(\nu \) for \(T \) on \(X_N \) which is equivalent to \(\mu \) such that \(\log\left(\frac{d\nu}{d\mu}\right) \in L^\infty(\mu) \).

References

