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Chapter 1

Vector bundles

1.1 Complex and real vector bundles

A complex, respectively real, vector bundle of rank n is a triple & = (E,p, M),
where F and M are topological spaces and p : E — M is a continuous map such
that for every x € M the level set p~!(z) is a complex, respective;y real, vector
space of dimension n and there exists an open cover U of M together with a family
of homeomorphisms hy : p~1(U) — U x C", respectively hy : p~1(U) — U x R",
U € U, so that hyy maps each level set p~!(x) linearly isomorphically onto {z} x C",
respectively onto {x} x R", for x € U. The homeomorphism hy is called a local
trivialization of the bundle over U. The space E is the total space and M is the
base space of the bundle. The level sets E, = p~!(z), z € M, are called the fibres
of the bundle.

The vector bundle £ = (E,p, M) is smooth, if £ and M are smooth manifolds,
the bundle map p is smooth and it has a family of local trivializations consisting of
smooth diffeomorpisms.

Examples 1.1.1. (a) For every topological space M the projection onto the first
factor pry : M xC"™ — M is a bundle map. The vector bundle et = (M xC", pry, M)
is the complex trivial vector bundle of rank n.

(b) For every smooth n-manifold M its tangent bundle is a smooth real vector
bundle of rank n with total space T M and base space M. In this case the bundle
map p : TM — M is the canonical projection sending each tangent vector to its
point of application.

(c) Let M be a regular m-dimensional submanifold of the euclidean space R™*".
Let

E=J {2} x (T.M)" c M x R™"
zeM
where the orthogonal complements are taken with respect to the euclidean inner
product in R™*". The map p : E — M with p(z,v) = z is a bundle map defining
a real smooth vector bundle over M called the normal bundle of M in R™*". One
way to construct local trivializations of p is the following. Let x¢g € M. There exists
an open neighbourhood U of zy on which there are smooth local coordinates. So,
on U we have smooth basic tangent vector fields Xi,..., X,, to M. Let {v1,...,v,}
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4 CHAPTER 1. VECTOR BUNDLES

be a basis of (T, M)*. There is now an open neighbourhood W C U of zg such
that
det(Xy (), ., X (), 01, ..y vn) # 0

for every x € W. Applying Gram-Schmidt orthogonalization to the basis
{X1(x), .o, Xn (), 01, ooy n }

we obtain an orthonormal basis

{X1(2), .oy Xon (), Y1 (2), ..., Yy ()}

such that {X(x), ..., X, ()} is an orthonormal basis of T, M and {Yi(z), ..., Yy ()}
is an orthonormal basis of (T, M)+ for every x € W. The map g : W xR" — p~1(W)
defined by

n
g(@, b1, tn) = Y _1;Y5(2)
j=1

is a diffeomorphism and h = ¢!
that p is a vector bundle map.

(d) Let n € Z* and E,, = S?"*! x C/ ~, where

is a local trivialization of p over W. This shows

(20, eos Zny 1) ~ (A20, ooy A2y A 100)

for A € S1. The projection prq : S?"*1 x C — $?"*1 onto the first factor induces a
continuous map ¢q : E, — CP", which defines a smooth complex bundle of rank 1.
A vector bundle of rank 1 is usually called line bundle.

There are local trivializations h; : q_l(Uj) —U; xC, 0 < j <n, of gover the
domains of the canonical atlas {(Uy, ¢0), ..., (Un, ¢n)} given by the formulas

hj([z,ul) = ([2], ).

The inverse of h; is given by
B (()u) = [l
! 121

for [2] € U;. It is obvious that E, becomes a smooth manifold and ¢ a smooth
vector bundle map. The complex line bundle (E,,, ¢, CP") is called the tautological
(or canonical) line bundle over the complex projective space CP"™.

Similarly, there is a tautological real line bundle over the real projective space
RP™, where in this case the total space is S™ x R/ ~, and (z,t) ~ (—x,—t). In
particular, for n = 1 the total space is the Mobius strip and the base space is S?.

Let & = (F1,p1, M) and & = (Eq,p2, Ms) be two complex, respectively real,
vector bundles. A vector bundle morphism from &; to & is a pair ( f.f ) of continuous
maps f : My — M, and f : Ey — E5 such that pyo f = f op; and f maps linearly
p1 (x) into py ' (f(x)) for every & € M;. In case the vector bundles are smooth we
say that the morphism is smooth if both f and f are smooth.

B, L B

B |7

M, Lo



1.2. DIRECT SUMS AND INNER PRODUCTS )

If ¢ = (E,p, M) is a vector bundle and A C M, then the restriction of p on
p~(A) is a vector bundle map over A and the pair of the obvious inclusions is a
vector bundle morphism from & to &[4 = (p™'(A), plp-1(4), 4).

Two vector bundles &1 and &; over the same base space M = M; = M, are
called isomorphic if there are vector bundle morphisms ( 1, idpr) from & to & and
(g,idpr) from &, to & such that go f = itdg, and fo g = idg,. In the sequel we
shall simply write f instead of (f, idyr) and f: & = & to denote that f is an
isomorphism from &; to £. In the smooth case, & and & are called smoothly
isomorphic if f and g are smooth diffeomorphisms.

Lemma 1.1.2. Let & = (E1,p1, M) and & = (Fa2,p2, M) be two complex,
respectively real, vector bundles over the space M. If a vector bundle morphism
f : By — E; maps each fiber (p;)~!(x) isomorphically onto the fiber (ps)~!(z),
xr € M, then f 6 2 & If f is smooth, then it is a smooth vector bundle
isomorphism.

Proof. Our assumptions imply that f is a bijection. Thus, we need only show that
f~1is continuous and smooth in the smooth case. If U C M is an open set and
h:(p1) Y (U) = U xC"and g : (p2) 1 (U) — U x C" are local trivializations, then

F=gofoh  :UxC"'—=UxC"

is an isomorphism of trivial vector bundles. Indeed, there is a continuous map
G : U xC" — C" such that F(z,v) = (z,G(z,v)) and G(z,.) € GL(n,C) for
every x € U. Also, taking the inverse in GL(n,C) is a smooth map and G(x,.)™!
depends continuously on x and smoothly in the smooth case. Since continuity and
smoothness are local properties, the conclusion follows. [

Example 1.1.3. Let H,, = {({,u) € CP" x C"*! : 4 € ¢} and p : H,, — CP"
be the projection onto the first factor. The continuous map f : S?"t! x C — H,
defined by

F(20y ooy 2ny W) = ([204 ey Zn ) W20, -y W2y

is onto and open. Moreover, f(zo, ..., 2n,w) = f(2(, ..., 2z, w’) if and only if there
exists some A € C* such that z;- = Azj for all 0 < j < n and v’ = A~ lw. This
implies that f induces a homeomorphism f : E, — H, such that po f = ¢ and
f(g () = LU {0} c C™t1. Since (E,,q,CP") is a smooth complex line bundle,
the triple (H,,, p, CP™) becomes a smooth complex line bundle so that f is a smooth
vector bundle isomorphism. This is an alternative version of the tautological line
bundle over the complex projective space.

1.2 Direct sums and inner products
Let & = (E1,p1, My) and & = (E2, pa, Ms) be two complex, respectively real, vector

bundles. Then, the triple (£} x Eg,p1 X pa, M1 X Ms) is a vector bundle with fibres
py (1) x pyt(x2), (z1,22) € My x My, because if hy : p;'(Uy) — U x C" and
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ho : py '(Uz) — U x C™ are local trivializations, then h; x hy is local trivialization
of p1 X pg over Uy x Us.

Suppose now that M = My = My and & = (F1,p1, M) and & = (Eg, p2, M) are
two vector bundles over the same space M. We put

E, ® Ey = {(v1,v2) € Ey X Ey : p1(v1) = p2(v2)}

and let p : E1 @ Ey — M be defined by p(vi,v2) = p1(vi) = p2(v2). In other
words, p is the restriction of p; X ps over the diagonal in M x M. The vector bundle
&1 D& = (B @ Ea,p, M) is called the direct (or Whitney) sum of {; and & and it
has fibres the direct sums of the corresponding fibres of £; and &s.

It is evident that the direct sum of two trivial vector bundles is a trivial vector
bundle. However, the direct sum of two vector bundles neither of which is trivial
may be trivial. For instance, if M C R™"™ is a regular m-dimensional submanifold
with normal bundle v in R, then TM ® v = GEQ‘L”, the trivial real vector bundle
of rank m + n over M.

An inner product on a complex (or real) vector bundle £ = (E,p, M) is a
continuous function g : E @& E — C (respectively R in the real case) such that its
restriction g, on each fibre E, is a hermitian (respectively euclidean) inner product.

Lemma 1.2.1. If M is a paracompact space, then every vector bundle £ = (E,p, M)
of rank n over M admits an inner product.

Proof. Let U be an open cover of M for which there is a family of local trivializations
hy : pi~'(U) — U x C", U € U. Since M is assumed to be paracompact, there
exists a partition of unity {fy : U € U} subordinated to U. For x € M and v,
w € E, the formula

ge(v,w) = > ful@)(hu (v), by (w))

veld

defines an inner product on &, where (,) is the usual hermitian product on {z} x C"
or the euclidean inner product on {z} x R™ in the real case.

As the proof of the preceding lemma shows, if the vector bundle £ = (E,p, M)
over a smooth manifold M is smooth, then it admits a smooth inner product, by
the existence of smooth partitions of unity. A smooth inner product on the tangent
bundle of a smooth manifold M is a Riemannian metric on M.

As an application of the existence of inner products we shall prove that two
isomorphic smooth vector bundles over a compact smooth manifold are smoothly
isomorphic.

A section of a vector bundle £ = (E,p, M) is a continuous map s : M — FE
such that p o s = idys, that is s(x) € E, for every x € M. The set I'(§) of all
sections of £ becomes a vector space in the obvious way. In the smooth case we shall
denote by Q°(¢) the vector subspace of I'(¢) consisting of the smooth sections of £. If
h:p~1(U) — UxC" is alocal trivialization over the open set U C M and {eq, ..., e, }
is the canonical (or any) basis of C", then the formulas s;(z) = h™!(z,¢;), z € U,
1 < j < n, define sections of &|y and {s1(x),...,sn(z)} is a basis of E, for every
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x € U. The set {s1,...,s,} is called a frame of £ over U. Conversely, each frame
over an open subset U of M gives a trivialization of £ over U. If we have an inner
product on the bundle, then applying the Gram-Schmidt orthogonalization process
we can construct orthonormal sections over U. In the smooth case, the above can
be carried out smoothly.

Let now ¢ = (E',p', M) be a second vector bundle of rank n over M and
f : E — E’ be a vector bundle morphisms of vector bundles over the same base
space M. If {s1,...,s,} is a frame of £ over U and {s], ..., s} a frame of ¢ over U,
then f, = f|g, is represented by a n x n matrix. In this way we get a continuous
map ad(f) : U — C™", which depends on the choice of the local frames. If
everything is smooth, then ad(f) is also smooth.

Lemma 1.2.2. Let M be a compact space, & = (E,p, M) and ¢ = (E',p',M)
two vector bundles of rank n equipped with inner products. If f : E — E' is a
vector bundle isomorphism, then there exists & > 0 any vector bundle morphism
¢ E— E' with p' o ¢ = p and such that sup{||fz — ¢=| : ® € M} < § is a vector
bundle isomorphism.

Proof. Since M is assumed a compact space, it can be covered by a finite number
of compact subsets over each of which both bundles are trivial. Thus, it suffices
to prove the conclusion only in the case where both bundles are trivial. Choosing
frames, f is represented by a continuous map ad(f) : U — GL(n,C). Since
ad(f)(M) is a compact subset of the open subset GL(n,C) of C"*™, there exists
d > 0 such that the ball of radius 0 around Ad(f)(M) is contained in GL(n,C).
This implies the assertion. [

Proposition 1.2.3. Let £ = (E,p,M) and & = (E',p’, M) be two smooth vector
bundles of rank n over a compact smooth manifold M. If & is isomorphic to &,
then it is smoothly isomorphic.

Proof.  Since M is assumed to be compact, there exists a finite open cover
{U1,...,Up} of M and smooth orthonormal frames {s],...,s} and {¢],...,t5,} of &
and ¢’ respectively, over Uj, 1 < j < m. A vector bundle isomorphism f : E — E’
gives rise to continuous maps ad(f’) : U; — GL(n,C), where f/ = flu;, 1<j<m.
There exists § > 0 as in Lemma 1.2.2. For every 1 < j < m there exists a smooth
map G’ : U; — GL(n C) such that |G7(z) — ad(f7)(z)| < 6 for every x € U;. Let
g’ :p_l(U]) — (p')71(U;) be defined by

gj(z Mes? () = Z <Z Gil(ﬂv))\l>tj(m)
k=1 k=1 =1
or in other words ad(¢’) = G’. Obviously, |f7(z) — ¢’(z)|| < § for every z € Uj.

Let {¢1,...,%m} be a smooth partition of unity subordinated to the open cover
{U1,...,Un}. Now we define g : E — E' by

{L'_g|Ez ZT/)]
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for every x € M. Then,

1fz = gall < D Wi (@)l fL —ghll <6

j=1

for every x € M and from Lemma 1.2.2 follows that g is a smooth isomorphism of
vector bundles. [J

1.3 The functors K and KO

As we have already mentioned in the preceding section, the direct sum of two
non-trivial vector bundles can be trivial. Actually, the following general fact holds.

Theorem 1.3.1. If M be a compact space, then for every wvector bundle
&= (E,p, M) over M there exists another vector bundle & such that £ ® & is trivial.

Proof. Since M is compact, there exist a finite open cover {Uy, ..., Uy, } of M and local
trivializations h; : p~1(U;) — U; x C", 1 < j < m. There is also a partition of unity
{1, ..., m} of M subordinated to this open cover. Let f7 = prooh; : p~1(U;) — C",
where pro denotes the projection onto the second factor. Let g : E — M x C™ be
defined by

9(v) = (p(v), Y1 (P(V)) 1 (V), s Vi (P(V)) 7 (0)).

It is obvious that ¢ is a vector bundle morphism of vector bundles over M. Moreover,
9lg, : Ex — {x} x C" is a monomorphism of vector spaces for every z € M. We
put

E={(z,v) € M xC"™ :v € g(E,)*}

where the orthogonal complement is taken with respect to usual hermitian product
on C". Then, { = (E,pri, M) is a vector bundle (see Example 1.1.1(c)) and
obviously £ ® £ = ™. I

In case M is a smooth manifold and the bundle ¢ in Theorem 1.3.1 is
smooth, then the vector bundle §~ can be chosen to be also smooth, by the
existence of smooth partitions of unity. In fact, Theorem 1.3.1 holds also under
the assumption that the base space M is paracompact and has finite covering
dimension. In particular, it holds if M is a topological manifold. We give a proof
of this in the appendix to this chapter. For smooth real vector bundles there is an
easier proof as consequence of Whitney’s immersion theorem, which we present here.

Theorem 1.3.2. Let M be a smooth manifold and let § = (E,p, M) be a smooth
real vector bundle of rank n. There exists a smooth real vector bundle § over M of
rank at most n+ 2dim M such that £ ® £ is trivial.

Proof. Let My be the copy of M in E, which is the image of the zero section of £.
Then T'E|y, = TM @&, because each tangent space T(, ) E is naturally isomorphic
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to T, M & T(x,O)Ex-
TM®ES TE|y, — TE

| |

M — F

By the Whitney immersion theorem, there exists an immersion ¢ : E — R2(+dim M)
The derivative of ¢ gives a monomorphism

¢* . TE|M0 N TRQ(n—i—dim M) — RZ(n—f—dim M) % RQ(n—i—dim M)

of vector bundles. The orthogonal complement of the image of ¢, with respect to
the euclidean inner product is the total space of a smooth vector bundle £+ over M
such that TM @ ¢ @ £+ is the trivial bundle over M of rank 2(n + dim M). Thus,
it suffices to take £ = TM @ &+. O

For any space M and non-negative integer n we let VectS(M ), respectively
Vectﬂ,f(M ), denote the set of isomorphism classes of complex, respectively real, vector
bundles over M. The direct sum of vector bundles makes

Vect®(M) = H VectS (M)
n>0

an abelian semigroup whose neutral element is represented by the trivial bundle of
rank 0 with total space M x {0}. Similarly, for Vect®(M).

From any abelian semigroup one can construct an abelian group more or less in
the same way the integers can be contructed from the set of natural numbers. It
is worth to note however that in contrast to the case of the natural numbers the
cancellation law may not hold in the semigroups Vect®(M) and Vect®(M). Indeed,
consider for example the 2-sphere S2. Its normal bundle v in R? is a trivial line
bundle over S? and T'S? ® v is also trivial. So, v = ¢! and

TS’ar=S =g
However, T'S? is not trivial, by the Hairy Ball Theorem.

Lemma 1.3.3. (A. Grothendieck) For every abelian semigroup (V,®) there exist
a unique abelian group (K(V),+) and a semigroup homomorphism ~v:V — K(V)
with the universal property that for every abelian group G and every semigroup
homomorphism f : V — G there is a unique group homomorphism f : K(\V)—=G
such that foy = f.

Proof. Let (F(V),+) denote the free abelian group with basis the set V' and let R
be its subgroup which is generated by the elements of V' of the form « ®y — x — v,
for z, y € V. We put K(V) = F(V)/R and let v : V. — K(V') be defined by
v(z) = 2 + R. Then, v(0) = R and

Yoy =(@ody)+R=(x+y)+R=(x+R)+ (y+ R)

for every =, y € V, from the choice of R.
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Let now G be an abelian group and f : V — G be any semigroup hoomo-
morphism. There is unique linear extension of f to a group homomorphism
f : F(V) — G. Obviously, R is contained in Ker f and so we get an induced group
homomorphism f : K (V) — G such that fo~ = f. The uniquness of f follows
from the fact that if fo~ = 0, then f(x + R) = 0 for every = € V and since the set
{z + R :z € V} generates K (V) we must have f = 0. This universal property of
K (V) and ~y implies their uniqueness. [J

The abelian group K (V') is called the Grothendieck group of the semigroup V'
and can be realized as follows. On V' x V we consider the equivalence relation with
(x1,22) ~ (y1,y2) if and only if there exists some z € V' such that

2Br1 DY =2Dy1 Do
On the quotient V =V x V/ ~ we have a well defined addition + if we set
[z1, 2] + [a1, az] = [v1 & a1, 22 & as].

Note that [z,y] = [2,0] + [0,y] and [0,b] 4+ [b,0] = [b,b] = [0,0]. Thus, (V,+)

is an abelian group with neutral element [0,0]. Also, —[z,y] = [y,z] and every
[z,y] € V has the expression [z,y] = [z,0] — [y,0]. The map v : V — V defined
by v(z) = [z,0] is obviously a semigroup homomorphism. We shall prove that it

has the universal property. Let G be an abelian group and let f : V — G be a
semigroup homomorphism. We define f : V. — G by flz,y] = f(z) — f(y). The
definition of f is good, because if [x,y] = [a,b], there exists some z € V such that
z2®r@®b = 2dady and therefore f(z)— f(y) = f(a)— f(b), since G is a group. Also,
f(y(x)) = f(x) = £(0) = f(x) — 0 = g(x), because f is a semigroup homomorphism.
Finally, f is unique, because (V) generates V. From the uniqueness of K (V)
follows now that K (V) =V.

Applying Grothendieck’s Lemma, we get for every space M the abelian groups
K(M) = K(Vect®(M)) and KO(M) = K (Vect®(M)). We shall make K and KO
functors describing their effect on continuous and smooth maps.

Proposition 1.3.4. Let f : X — M be a continuous map of topological spaces.
To every vector bundle & = (E,p, M) over M correspond a vector bundle f*§ =
(f*E,q,X) over X and a continuous map f: f*E — E which maps the fibres of
f*€ linearly isomorphically onto the fibres of & so that the pair (f, f) is a vector
bundle morphism.

e L B
o]
x Lowm

Moreover, f*€ is unique with these properties up to isomorphism of vector bundles
over X.

Proof. Let f*E = {(z,v) € X x E : f(x) = p(v)} and define the continuous
maps ¢q : [*E — X by q(xz,v) =z and f : f*E — E by f(x,v) = v. Obviously,
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po f = foq. Moreover, if '(f) = {(z, f(z)) : € X} C X x M is the graph of f,
then g is precisely the composition

FE Y o) S X

and id X p|¢g is a vector bundle map, because (X x E,id x p, X x M) is a vector
bundle. This means that the triple (f*FE, g, X) is a vector bundle. By its definition,
f maps the fibres of ¢ linearly isomorphically onto the fibres of p.

In order to prove that the vector bundle f*¢ = (f*E, ¢, X) is unique with these
properties, suppose that ¢ = (E’, ¢, X) is another such bundle and continuous map
f’. We consider the continuous map F : E' — f*E defined by

F(u) = (q'(u), f'(w)).

From the definitions follows that g o F' = ¢/ and

F((¢) ' (2)) = {(z. ['(w) € ["E : ' (u) = «}

for every € X. Since f maps the fibres of ¢ linearly isomorphically onto the
fibers of p, it follows from Lemma 1.1.2 that F' is a vector bundle isomorphism of
vector bundles over X. [J

The vector bundle f*¢ is called the induced (or pull-back) vector bundle of £ by
f. It is clear from the proof that if £ is a smooth vector bundle and f is a smooth
map, then f*¢ is smooth as well. Also, the induced bundle of £ by the identity map
is € itself and (f o g)*¢ = ¢*(f*¢)). If X € M and f: X — M is the inclusion,
then f*¢ = ¢|x. Finally, the pull-back preserves the direct sums. More precisely,
let & = (Ey,p1, M) and &£ = (Ea, p2, M) be two vector bundles over the same base
space M and let f: X — M be a continuous map. Then,

J*E1® f"Ey = {(z,v1,2,v2) € X x E; x X X Ey : p1(v1) = pa(ve) = f(2)}.

If q: [*E1 & f*Ey — X is the continuous map defined by q(z,v1,z,v9) =z and
[ B @ f*Ey — Ey © Ey is defined by f(z,v1,,v2) = (v1,v2), then po f = fogq
and f maps the fibres of ¢ linearly isomorphically onto the fibres of p.

ffE1® frEs N E, & Ey

o, b

X — M

The uniqueness now implies that f*&; @ f*& = f*(§ @ &2).

Thus, to every continuous map f : X — M corresponds a group homomor-
phism f* : K(M) — K(X) such that idy, = idg and (f o g)* = g* o f~.
These mean that K is a contravariant functor from the topological category
to the category of abelian groups. In the rest of this section we shall show
that K is actually a homotopy functor (for paracompact spaces) with values in
the category of commutative rings with unity. Similar facts hold for the functor KO.
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Lemma 1.3.5. If X is a paracompact space, then for every open cover U of X
there exists a countable open coverV of X consisting of open sets which are disjoint
unions of open sets each of which is contained in some element of U.

Proof. Let U be an open cover of X. Since X is paracompact, there exists a partition
of unity {¢y : U € U} subordinated to U. For each finite set S C U we define

Vs={x e X :oy(x)>ow(x) forall UeS and W el S}

Since for every x € X the set {U € U : ¢y (x) > 0} is finite, Vg is an open set. Also,
Vs C U for every U € S, because x € Vg implies that ¢y (x) > 0 for U € S. Let
now

Vo=|J{Vs:ScU and |S|=n}

for n € N. This is a disjoint union of open sets. Finally, V = {V,, : n € N} is an
open cover of X, because for every x € X the set S ={U €U : ¢y(x) > 0} is finite
and x € Vg. O

Theorem 1.3.6. Let & = (E,p, M) be a vector bundle and f, g : X — M be two
continuous maps from a paracompact space X to M. If f ~ g, then f*{ = g*&.

Proof. 1f H : [0,1] x X — M is a homotopy with H(0,.) = f and H(1,.) = g,
then H*¢|qoyxx = f*§ and H*¢[1cx = g*¢. Thus, it suffices to prove that if
¢ = (E,p,[0,1] x X) is a vector bundle over [0,1] x X and X is a paracompact
space, then &[0y x = &lyxx-

We observe that if for some 0 < ¢ <1 the restrictions [ xx and & 1jxx are
trivial, then ¢ is trivial. Indeed, let E1 = p~1([0,c] x X) and By = p~1([c, 1] x X),
and suppose that hy : By — [0,¢] x X x C" and hy : Es — [c,1] x X x C" are
vector bundles isomorphisms. Since hy o hy': {c} x X x C" = {c} x X x C" is an
isomorphism of trivial vector bundles over {c} x X there exists a continuous map
p: X — GL(n,C) such that

hio h;l(c,m,u) = (c,v,p(m)(v))

for every x € X, v € C". The map o : [¢c,1] x X x C" — [¢,1] x X x C" defined by
o(t,x.w) = (t,v, p(x)(v)) is an isomorphism of trivial vector bundles over [c,1] x X
and so is o0 o hg : Es — [c,1] x X x C™. Since hy and o o hg coincide on Ey N Es,
they fit together to a form an isomorphism from £ to the trivial vector bundle over
[0,1] x X.

A second observation is that there exists an open cover of U of X such that
&ljo,1)xw 1s trivial for every U € U. This follows easily from our first observation and
the compactness of [0, 1].

From Lemma 1.3.5 there exists a countable open cover V = {Vj : k € N} of
X consisting of open sets which are disjoint unions of open sets each of which is
contained in some element of U. Thus, {| 1)<y, is trivial for every k € N. Let
{¢r : k € N} be a partition of unity subordinated to V. We set )9 = 0 and
Yy =¢1+ -+, k€ N. Let X = {(¢(x),z) : v € X} = X and & = {lx,.
The homeomorphism 7 : X — X1 defined by n(¢r(z),z) = (Yr_1(x),z) can
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be lifted to a homeomorphism 7, : p~1(Xy) — p~1(Xj_1) such that 7 = id on
pH(Xk) \ p([0,1] x V%) and

ik = hy Ly o (id x (nglv,)) © by

on p~1([0,1] x Vx N Xj), where hy : p~1(Vi) — [0,1] x Vi x C™ is a trivialization
of £ over [0,1] x Vi. So, 7 takes each fiber of & linearly isomorphically onto the
corresponding fiber of &;_1. Now the infinite composition 7 = 7y o7jg 0 -+ is well
defined, because {supp¢y : k € N} is a locally finite closed cover of X, and is a
vector bundle isomorphism from &|(1yx x to &[qoyxx- U

Corollary 1.3.7. FEvery homotopy equivalence f : X — Y of paracompact spaces
induces an isomorphism f* : K(Y) — K(X) and similarly for the KO groups.
In particular, every vector bundle over a contractible paracompact space is trivial. [

We shall now define a ring structure on K (M) for any space M using the tensor
product of vector bundles in the same way we used the direct sum to define the group
structure. Let & = (E1,p1, M) and & = (FEa,p2, M) be two complex (respectively
real) vector bundles over the same base space M. We define

Ei@ By =[] pi'(@) @p; (x)
reM

where the tensor product is taken over C (respectively over R in the real case). On
FE1 ® E5 one can define a topology and make it the total space of a vector bundle over
M. Indeed, let V, W C M be two open sets such that V N'W # & for which there
are trivializations h; : p~1(V) = V. x C% and g; : p~ 2 (W) = W x C", j = 1,2, for
& and &, respectively. There exist continuous functions G7 : VN W — GL(nj,C)
such that

(97 0 b7 ) (@) = (2, G () (0)

for j = 1,2. Defining the map

hi ® hy : H pri(x) @ pyt(z) = V x (C™ @ C™)
zeV

by the formula (hy ® he)(vy ® v2) = (2, h1(v1) @ ha(vs)), for every vy € py!(z) and
vy € py L (z), we see that

(g1 ® g2) © (1 ® ho) ") (w1 @ uz) = (2, (G (z) ® G*(2)) (w1 ® ug)).

Since G!(x) ® G?(x) is a continuous function of x € V N W, it is a standard fact
that there exists a unique topology on F; ® F5 such that each set of the form

I ri'@) @py'(2)

zeV

as above is open and the maps like A1 ® ho are homeomorphisms. It is obvious
now that the triple {&; ® £, = (Fy ® Ea,q, M) is a vector bundle over M of rank
nine, where ¢ is the canonical projection, and each map hi ® hy as above is a local
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trivialization. The vector bundle & ® & is called the tensor product of the vector
bundles & and &;.

The basic properties of the tensor product of vector spaces carry over immedi-
ately to the case of vector bundles over a space M. So,

(i) if §&1 = (1 and & = (o, then §1 ®@ {2 = (1 ® (.

(i) &1 ® & = & &h.

(il) (& ®&)®& =& © (& &)

(iv) E @€l 2 €.

(V)R (E1D &) 2ERHOER &.

(vi) If f: X — M is a continuous map then f*(& ® &) = f*& @ f*¢. This
follows from the uniqueness of the induced bundle.

The tensor product defines an associative commutative multiplication with unity
on Vect®(M) and on Vect®(M) which is compatible with the direct sum. From this
we get a commutative ring structure on K (M) and KO(M). More abstractly, let V
be an abelian semigroup on which we have a commutative associative multiplication
with unity which is compatible with the addition. A multiplication on K (V') can be
defined by putting

[a,b] - [x,y] = [az, ay] — [bx, by]

for every [a,b], [z,y] € K(V). Indeed, if [a1,b1] = [a2,bo] and [z1,91] = [z1, 2],
there exist ¢, d € V such that c+a1+bs =c+as+by and d+z1+yo = d+ x2 + y;1.
Then, [a121, a1y1] = [a122, a1y2] and [byz1, biy1] = [b1x2, b1y2]. On the other hand,

(cxo + cy2) + (a1 + b2)xa + (a2 + b1)y2 = (cx2 + cy2) + (a2 + bi)xe + (a1 + b2)y2

which means that [(a1 + b2)z2, (a1 + b2)y2] = [(az + b1)z2, (a2 + b1)y2]. This implies
that

la1z1, a1y1] — [b171, b1y1] = [a172, a1y2] — [b172, b1y2] = [aox2, azya] — [baw2, bays].

In this way K (V') turns into a commutative ring with unity, called the Grothendieck
ring of V. In particular for every space M we have the Grothendieck ring K (M) of
complex vector bundles over M and the Grothendieck ring KO(M) of real vector
bundles. The unity is represented by €' in both cases.

1.4 The classification of vector bundles

In this section we shall show that the functor Vect® (M) is representable for paracom-
pact spaces by constructing an explicit classifying space. Although we present the
case of complex vector bundles, everything holds verbatim for the functor Vect™ (M)
also, replacing the unitary groups involved by orthogonal groups and the complex
Grassmannians by the real ones.

Let 1 < k < n be positive integers and let

Vi(C™) = {(v1, -y vr) € (SN (v, 05) =65, 1< 1,5 <k}

be the space of all orthonormal k-frames in C", where (, ) denotes the usual hermitian
product on C™. Obviously, Vi(C") is a compact space and there is a continuous
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surjection ! : U(n) — Vi (C™) defined by 7} (A) = (Aey, ..., Aey). We observe that
if A, B € U(n), then np(A) = n2(B) if and only if B~'A € U(n — k), where we
consider the inclusion U(n — k) C U(n) so that each element of U(n — k) fixes ej,...,
e, in C". This implies that n;’ induces a homeomorphism

U(n)

M m%Vk(C )-

The inclusion SU(n) < U(n) induces a continuous injection of the homogeneous
space SU(n)/SU(n—k) into U(n)/U(n— k) which is moreover a surjection, because
for every A € U(n) there exists B € SU(n) such that B=*A € U(n — k). Thus,

SU(n) - U(n)
SUn—k) U(n—k)

~ Vk(Cn).

The homogeneous space Vji(C") is called the Stiefel manifold of orthonormal k-
frames in C™.

Each element of V;(C™) generates a k-dimensional vector subspace of C". Let
Gr(C™) be the space of all k-dimensional vector subspaces of C" endowed with the
quotient topology with respect to the natural surjection ¢ : Vi (C") — Gr(C™). The
group U (k) acts smoothly on V(C") from the right and Gy (C™) is the orbit space
of the action. Here we consider U (k) embedded in U(n) so that each element of
U(k) fixes €g41,...,en, in C™. The right action of U(k) on Vi (C™) is defined by

K K
(V1 ) A = (Z anv, . Y azkvl>,
=1 =1

for A = (alj)lgl,jgn S U(k) C U(n), where ay; = 51]', 1<i<n, k+1 <j<n.

If A, B € U(n), then the orthonormal k-frames (Aey, ..., Aey) and (Bey, ..., Bey)
generate the same vector subspace of C" if and only if there exists C' € U(k) C U(n)
such that Ae; = BCej for 1 < j < k. Thus, (B~1A)({0} x C* %) = {0} x C"*,
because {0} x C"* = (C* x {0})*. If D € U(n — k) is defined by De; = e; for
1<j<kand De; = (B 1A)e; for k+1 < j <n, then B~'A=CD € U(k). This
implies that the ¢ o 7 induces a homeomorphism

U(n)
U(k) x U(n — k)

~ Gk((C").

The homogeneous space G (C") is called the Grassmann manifold of k-dimensional
vector subspaces of C". Note that G(C") =~ G,,_1(C") and G1(C") = CP" L.
Nowoowe consider the standard inclusions C ¢ C? ¢ C* C --- and the union

C>* = U CcC" = ligl C", which is the vector space of all sequences of complex num-

bers with only a finite number of non-zero terms. The hermitian product extends
to C*. Also, C*>* becomes a topological space equipped with the weak topology.
Correspondingly, we get a sequence of inclusions

Vi(CF) € Vi (CH Y - c V(T - -
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(o]
and the space V3, (C™) = U Vi(C™) equipped with the weak topology.
n=~k

Similarly, we construct the infinite Grassmannian G(C™) = U Gr(C") en-
n=~k

dowed with the weak topology. In particular we have an infinite comﬁlex projective
space CP* = G1(C™) U cprm.

There is a canonical smooth vector bundle 7* of rank k over G(C") with total

space
E(vf)={(V,2) € Gi(C") xC" : 2 € V}.

The bundle map py, 1. : E(7%) — Gi(C") is the restriction to F(+F) of the projection
onto the first factor. Since p;}ﬁ(V) = {V} x V for every V € Gi(C"), the vector
bundle % = (E(v%), pn.x, Gx(C")) is called the tautological bundle over G (C"). It
is a generalization of Example 1.1.3. In the sequel we shall prove that 7% is indeed
a smooth vector bundle.

Lemma 1.4.1. Suppose that (vi,vs,...,v), (V],0h,...,v;) € Vi(C") are such that
q(v1,v2, ..., v5) = q(v], V5, ...,v,). Then

k
E Z’U]

J=1 ]:1

M»

for every z € C™.

Proof. There exists some A = (ajj)1<ij<k € U(k) such that (vi,ve,...,v)A =
(v],vh, ..., v). This means that

k k k k k
(z, Vi) = aijar;(z,v)v, = ajar; | (z,v (z,v
A ljUrj\<, V) Ur 1j%rj l l

j=1 jilr=1 ri=1 \j=1 1=1

because ZT =A"1. 0O

The preceding Lemma 1.4.1 implies that there is a well-defined smooth map
h:G(C") x C" — C™ with

k
h(q(vy,va,...,;v Z Z,05)v
7=1

which is the projection of the vector z € C™ on the vector subspace of C™ spanned
by the orthonormal k-frame (vy,vs, ..., vg).
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Also the smooth symmetric function o : G(C") x G (C") — R with

O-((Q(Ul, V2 .-ty vk)’ (Q(vllavé’ ) U;C)) = | det((”b U;‘>)1§l,j§k|

is well-defined, because if A, B € U(k) and (v1,v2,...,05)A = (u1,uz,...,ux) and
(v, VY, ..., v ) B = (u], ub, ..., u}), then

| det ((ug, uf)) 1<t <] = |det(AT - (v, v}))1<rj<k - B)| = | det((vy, v}))1<ij<kl-

It is obvious that o((gq(v1,v2,...,vk), (¢(v],v5,...;,v)) > 0 if and only if
h(gq(vi,vh,...,v),v5), 1 < j < k, are linearly independent and form a basis of
q(vy,v3, ..., vy), because the entries of the I row of the matrix ((v;, v}))1<,j<k are the
coordinates of the orthogonal projection of v; on g(v},v5, ..., v}) with respect to its
ordered basis (v}, v5,...,v;). In this case, h(q(v],v5,...,v}),.) maps q(vi,va, ..., Ug)
linearly isomorphically onto g(v},v5, ..., v},).

For every q(v1,va,...,v;) € Gp(C™) the set

Uq(vl,vg,...,vk) = {Q(Ull7vé7 "'7”2) S Gk((cn) : U((Q(U17U27 "'7Uk)7 (q(?}ll,?}é, 7U;€)) > O}

is an open neighbourhood of g(vy, v, ..., vx) and
Gr(C") = J{Uer : T c {1,2,..,n} with [T|=k},

where CF' = ®jerCe;.

For each T C {1,2,...,n} with |T'| = k let jr : C¥ — CT be the linear isomorphism
which sends e; € CF to ej1) € C", where j(1) = minT" and so on taking into account
the ordering of I'. The map ¢r : Ugr x CF — p~1(Ugr) defined by

¢F(V’ Z) = (‘/a h(V,jp(Z)))

is a diffeomorphism which maps {V} x C* linearly isomorphically onto the fibre
p;}g(V) from the above remarks concerning h. This shows that the triple 4% =
(E(%]j),pmk, Gr(C™)) is a smooth complex vector bundle of rank k.

In the same way we have a tautological complex vector bundle of rank k
vk = (BE(YE), pug, Ge(C>®)) over Gi(C*), whose restriction to each Gx(C")) is
-

Definition 1.4.2. Let £ = (E,p, M) be a complex vector bundle of rank k. A
Gauss map of £ is a continuous map g : E — C" for some £ < n < oo such that
Ilp—1(2) : p~1(x) — C" is a linear monomorphism for every x € M.

For example, the restriction of the projection onto the second factor to E (Wﬁ),
that is the map g : E(y¥) — C" with g(V, z) = 2, is a Gauss map of the tautological
bundle v

If a complex vector bundle £ = (E,p, M) of rank k admits a continuous Gauss
map g : F — C", then there are two continuous maps f : M — Gy (C") with
f(z) = g(E;) and f : E — E(7}) with f(v) = (f(p(v), g(v)) such that the following
diagram commutes.
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Thus, the pair (f, f ) is a vector bundle morphism, whose restriction on each fibre is
a linear isomorphism. It follows from Proposition 1.3.4 that & 22 f*4*. Conversely,
if we start from a vector bundle morphism (f, f ) which is a linear isomorphism on
fibres so that the above diagram commutes, then pro f : E — C" is a Gauss map
of & This shows that a complex vector bundle { = (E,p, M) of rank k admits a
Gauss map ¢ : E — C" for some k < n < oo if and only if there exists a continuous
map f: M — Gy(C") such that & = f*f.

Theorem 1.4.3. FEvery complex vector bundle & = (E,p, M) of rank k over a
paracompact space M admits a continuous Gauss map g : E — C*°. Moreover, if
there exists a finite open cover {Ui,...,Un} of M such that &|y, is trivial for all
1 < j < n, then there ezists a continuous Gauss map g : E — CF" of £.

Proof. Since M is assumed to be paracompact, there exists a countable open cover
{Uj : j € N} of M such that ¢|y, is trivial for every j € N, by Lemma 1.3.5. Let
¢; : pHU;) — Uj x CF be a trivialization of §lu;- Then pro ¢, cp HU;) — CF is
a Gauss map for & ]UJ., where pr : U; x CF — CF* is the projection onto the second
factor. Let {f; : j € N} be a partition of unity subordinated to the open cover
{U; : j € N} and for each j € N let g; : E — C* be the continuous map defined by

(v) = {O’ if ve E\p~H(Uj),
9 F(p(0) - pr(d;(v)), if z € p=1(U;).

The map
gngﬁE—)@Ck:Cw
JEN JEN

is now continuous. Since each g; maps E, linearly isomorphically onto C* for
fj(z) > 0 and the images of different g;’s belong to different factors of the direct
sum, it follows that g|g, is a linear monomorphism for every = € M. Hence g is a
continuous Gauss map of £&. The second assertion is now obvious, because in this
case we begin with the finite open cover {Uy,...,U,} and the direct sum is finite. [J

Corollary 1.4.4. For every complex vector bundle § = (E,p, M) of rank k over a
paracompact space M there exists a continuous map f : M — G(C*>) such that
€= f*yk . If M is compact, there exists a continuous map f : M — G(C") for
some large enough n € N such that £ = f*%]j O

Actually, the second part of Corollary 1.4.4 holds under the more general as-
sumption that the base space M is paracompact and has finite covering dimension.
We refer for this to Corollary A.4 in the appendix to this chapter. In particular this
holds for vector bundles over topological manifolds.

The continuous map f in Corollary 1.4.4 is not unique, but its homotopy class
is, as we shall prove shortly. We set

Cev = {(Zn)nZO €C®: 2941 =0 foral me Z+},

Co% = {(2p)n>0 € C* : 29, =0 forall m e Z"}
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and consider the homotopies g, g°¥ : [0,1] x C>® — C> defined by

9¢° (20,21, 22, ...) = (1 = t) - (20, 21, 22, ...) + (20,0, 21,0, 22, ...),

gfdd(zo,zl,zg, ) =1=1)- (20, 21, 22, ...) + (0, 20,0, 21,0, ...).

The continuous map g{" o pr|g.x) : E(yF) — C?" is a Gauss map of 7¥ from which

we get a vector bundle morphism (f¢¥, f¢¥) from 7% to ~% . Similarly, we get a
vector bundle morphism (fo%, fgdd) from ~* to 7§n for every 1 < n < oco. Since
fev and f°% are induced by ¢§* and ¢¢¢¢, the homotopies g and ¢°% induce
homotopies of f¢¥ and f°% with the canonical inclusion j : G%x(C") — G.(C?"),
because gf¥(C") C €2, g¢44(C™) C C?" and in particular g{¥(C") = C?* N C* and
g?dd((cn) — (C2n N (codd.

Proposition 1.4.5. Let 1 <n < oo, k € N and M be a topological space. Let fy,
f1: M — Gg(C™) be two continuous maps such that fé‘%]j = fl*%lj as vector bundles
over M. Then, jo fo =~ jo fi, where j : GL(C") — Gr(C*) is the canonical
inclusion.

Proof. The hypothesis says that there exists a complex vector bundle £ = (E, p, M)
and two vector bundle morphisms (fo, fo) and (f1, f1) from & to 4%, which are linear
isomorphisms of fibres. As before we get two continuous Gauss maps go, g1 : £ — C"
of € as well as two vector bundle morphisms (f¢¥ o fo, f¢ o fo), (f*% o f1, fo o f1)
to 74 and corresponding Gauss maps g’ o gg : E — C?*, g°¥ o g; : E — C?". The
continuous map h : [0,1] x E — C?" defined by

h(t,v) = (1—1) - gi"(go(v) + tg?™(g1(v))

is now a Gauss map of the vector bundle 1 x £ = (~[O, 1] x E,id x p,[0,1] x M)
from which we get a vector bundle morphism (H,H) from 1 x £ to 7§n. The
map H : [0,1] x M — G¢(C?") is a homotopy from f¢ o fy to f°% o f;. Since

[0 forjo foand oo fi =~ jo fi, it follows that jo fo =~ jo fi. O

Combining the above with Theorem 1.3.6 we get a natural one-to-one correspon-
dence of the set of isomorphism classes of complex vector bundles of rank & over
a paracompact space M onto the set of homotopy classes of maps [M, G (C>)].
To every homotopy class [f] € [M, Gr(C>)] corresponds (the isomorphism class of)
f*+% . Thus, the problem of the classification of complex vector bundles of rank k
over a paracompact space M is equivalent to the calculation of the set [M, G (C>)].

Let H be a contravariant functor on a category of spaces and continuous maps
with values in the category of commutative semigroups. A characteristic class of
complex vector bundles with values in H is a natural transformation ® from the
functor Vect® to H. If for each space M in the category of spaces we consider the
image of ®y; : Vect®(M) — H(M) is contained in a subgroup of H (M), then ®
factors through the functor K. In this case we say that the characteristic class is
stable. Let R be a commutative ring with unity. If ® is a natural transformation
from the functor K to the (singular) cohomology functor H*(—; R) with coefficients
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in R, then to every continuous map of paracmpact spaces f : M — N corresponds
the commutative diagram
K(N) 2%  H*(N;R)
[ |
K(M) 2% H*(M;R).

If c = @Gk(coo)(wfo) € H*(Gx(C*>); R), then for every complex vector bundle £ of
rank k over the paracompact space M there is a continuous map f : M — G (C*>)
such that & = f*y% and ®/(€) = f*(c).

1.5 Operations with vector bundles and their sections

In this section we shall describe some useful constructions using vector bundles and
their sections, which are analogous to the ones in the category of finite dimensional
vector spaces.

As for vector spaces, to every vector bundle £ = (E,p, M) over a space M
corresponds its dual vector bundle £* = (E*,p*, M) over M which is defined in an
analogous way as the cotangent bundle of a smooth manifold. Its total space is the
disjoint union

B = 1] o' @)
zeM
with the obvious topology.

Recall that if V is a finite dimensional vector space then choosing a basis of V'
we have a linear isomorphism V' = V*, but the isomorphism is not natural as it
depends on the initial choice of the basis. If V is real and carries an inner product
(,), then the map which sends v € V' to (.,v) is a natural linear isomorphism of V'
to its dual V*. Since every vector bundle over a paracompact space admits an inner
product, it follows that if £ is a real vector bundle over a paracompact space, then
cxe

To every finite dimensional complex vector space V corresponds its conjugate
V with the same additive structure and exterior multiplication sending A € C and
v € V to Av. If (,) is a hermitian inner product on V, then the map which sends
v € V to (.,v) € V* is a linear isomorphism V = V*. To every complex vector
bundle ¢ = (E, p, M) corresponds its conjugate vector bundle ¢ in the obvious way
and if the base space M is paracompact, then £ = £*.

In any case V is naturally isomorphic to V** and therefore ¢ 22 £** for any vector
bundle &.

Let now V and W be two finite dimensional vector spaces (both complex or

real). The linear map p: V* ®@ W — Hom(V, W) defined by
(e ® w)(v) = a(v)w

for every a € V*, w € W and v € V, is an isomorphism. This carries over to vector
bundles. If & = (E1,p1, M) and & = (Es, pa, M) are two vector bundles over the
same base space M, there is a vector bundle Hom(&1, &2) and

&1 ® & = Hom (&1, &2).



1.5. OPERATIONS WITH VECTOR BUNDLES AND THEIR SECTIONS 21

If ¢ = (E,p, M) is a real vector bundle, the complex vector bundle {¢ = £ ®r e(lc
is called the complexification of £, where e(%: is the trivial complex line bundle over
M. On the other hand, every complex vector bundle ¢ of rank n can be considered
as a real vector bundle of rank 2n denoted by (g. Now we have

()R 2ERR (D ep) X EQRer DERR e X EDE.

For the converse we have the following.

Lemma 1.5.1. (i) If V is a complex vector space then V@r C =V &V as complex
vector spaces.
(ii) If £ = (E,p, M) is a complex vector bundle over a paracompact space M,

then (§r)c =@ E"

Proof. Since the exterior multiplication on V ®@gC is defined by A(v®rz) = v®g (A2)
for v € V and A, z € C, the formula

o(v @R 2) = (2v,zZv)

defines a C-linear isomorphism V ®@g C = V @ V. This proves (i) and (ii) follows
from this choosing a hermitian inner product on &. [

In the rest of this section we shall describe the spaces of smooth sections of
the vector bundles defined above corresponding to a given smooth vector bundle
¢ = (E,p, M) of rank n over a smooth manifold M. The vector space Q2°(¢) of
the smooth sections of ¢ is a C°°(M)-module. From Theorem 1.3.2 there exists a
smooth vector bundle € over M of some rank m such that €€ = €™ and therefore

Q%(e) @ Q°(€) = (e @ §) = Q(M™).

Since Q°(¢"*™) is a finitely generated free C°°(M )-module, we conclude that Q°(¢)
is a finitely generated projective C°°(M )-module.
We shall need the following algebraic lemma.

Lemma 1.5.2. Let R be a commutative ring with unity, A a projective R-module
and B a finitely generated R-module. Then,

Homp(A, R) ®r B = Hompg(A, B).

Proof. Let p : Hompg(A, R) ® g B — Hompg(A, B) be the natural homomorphism
defined by u(f @ b)(a) = f(a)b. If B = R or a finitely generated free R-module,
then p is an isomorphism. If B is a finitely generated R-module, there is a short
exact sequence of R-modules

0O—-K—F—-B—=0

where K and F are free and finitely generated. Since p is natural, we get the
following commutative diagram

Homp(A,R) g K — Hompg(A,R)®rF — Hompg(A,R)®rB — 0
1 lu
Homp(A, K) — Hompg(A, F) — Homp(A, B) — 0
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in which the rows are exact, because A is assumed to be projective and therefore
Hompg(A,.) is an exact functor. The assertion follows now from the five lemma. O

The previous Lemma 1.5.2 is a special case of the more general statement
HOIIlR(A, G) ®pr B = HOIIlR(A, G Rpr B)

which holds under the same assumptions on A and B for every R-module G. The
isomorphism now is given by u(f ® b)(a) = f(a) ® b and the proof is essentially the
same.

Theorem 1.5.3. If & = (E1,p1, M) and & = (Fa,p2, M) are two smooth vector
bundles over the same smooth manifold M then the following hold.

(i) Q°(Hom(€1, £2)) = Homeoo 3y (2°(61), 2°(62)).-
(i) Q&1 ® &) = QO(&1) @ (ar) 2 (62)-
(iii) Q°(€}) = Homeeo(ar) (2°(£1), C°°(M)).

Proof. Let
F : Q°(Hom(¢1, &) — Homeee (1) (2°(61), 2°(2))
e

be the C°°(M)-linear map defined by F(¢)(s)(z) = ¢(z)(s(x)), for every z € M
and ¢ € Q°(Hom(£),&)), s € Q0(&y).

First, we observe that F' is injective, because if F’ (ngS) = 0, then for every z € M
and v € py'(z) there exists s, € Q0(&;) with s,(z) = v and therefore ¢(z)(v) =
F(3)(3)(x) = 0.

In order to prove that F' is onto let ¢ € HOmCm(M)(QO(§1)7QO(§2)). In the
beginning we shall show that if s € Q°(¢) and # € M are such that s(x) = 0,
then ¢(s)(z) = 0. Let s1, So,..., sy, € Q2°(£1) be a local frame of £; on some open
neighbourhood U of . Then

ny
slu = Z fis;
j=1

for some f; € C*(U), 1 < j < ny. Let g € C°°(M) be such that g(z) = 1 and
suppg C U. Then,

o(s) = d((1 — g)s +s59) = (1 — g)d(s) + ¢(gs)

and
n1

g(slu) =D (9f3)s;-

Jj=1

Now each gf; can be extended to a smooth function f; € C°°(M) by setting it zero
outside U. Thus,

d(gs) = > fid(s;) € (&)
j=1
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and ¢(s)(x) = 9(9s)(x) = 0.

We define now ¢ setting ¢(z)(v) = ¢(s,)(z), for every & € M, where s, € Q°(&;)

A~

is any with s,(x) = v. From the above, ¢ is well defined and obviously F(¢) = ¢.
This concludes the proof of (i), while (iii) follows as a special case by taking & = €.

The proof of (ii) is the following chain of isomorphisms
2°(&1 @ &) = Q°(Hom(¢], &))

= HOHlCoo(M) (QO(ST% QO(SQ))
= Homgeo (ar) (Homcoo(M)(QO(&)COO(M)), 90(52))

=~ Q0(&1) @ceo (ar) 2 (62)

where the last isomorphism is given by Lemma 1.5.2. [J

Appendix

A vector bundle £ = (E,p, M) is said to be of finite type if M is a normal space
and may be covered by a finite number of open sets over each of which £ is trivial. If
M is a compact space, then every vector bundle over M is of finite type. The main
purpose of this section is to prove that every vector bundle over a finite dimensional
paracompact space is of finite type.

Recall that a Hausdorff space X is said to have covering dimension not greater
than m if every open cover of X has an open refinement such that no point of X
is contained in more than m 4 1 elements of the refinement. In this case we write
dim X <m. If dim X < m and dim X &« m — 1, we say that the covering dimension
of X is m and write dim X = m. If dim X £ m for every m € Z*, we say that X
is infinite dimensional and set dim X = oco. If M is a topological m-manifold, then
dim M < m.

Proposition A.1. If M is a paracompact space of finite covering dimension, then
every vector bundle & = (E,p, M) over M is of finite type.

Proof. Let U be an open cover of M such that |y is trivial for every U € U.
Suppose that dim M < m and let V be an open refinement of I/ such that no point
of M is contained in more than m + 1 elements of V. Since M is assumed to be
paracompact, we may take V to be locally finite and there exists a partition of unity
{¢v : V € V} subordinated to V. Let

Ai={aCV:|a|=i+1}
for each i € Z*t. For each a € A; with a = {Vp, ..., V;} the set
Wio={z € M : ¢y(xz) < min{opy,(z),...,¢v,(x)} for V #Vp,..,Vi}

is open and contained in Vo N ---NV;. So, {|w,, is trivial. Moreover, if a, b € A;,
then W; , and W;; are disjoint. Thus, if we put

Xi= |J Wia
a€A;
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then ¢|x, is trivial as well and it suffices to show that { Xy, ..., X, } is an open cover
of M. Indeed, if a point z € M is contained in at most m + 1 of V and so at most
m—+ 1 of the functions ¢y, V € V are positive at x. In other words, there exist some
0 <i<mand Vp,..., V; € V such that ¢y, (z) > 0,..., ¢v,(x) > 0 and ¢y (z) = 0 for
V # Vy,...,V;. This implies that z € W; 4, where a = {V}, ..., V;}. This concludes
the proof. [J

Corollary A.2. Every (complex or real) vector bundle over a topological manifold
1s of finite type. [

The proof of Theorem 1.3.1 together with Corollary A.2 show that the following
topological version of Theorem 1.3.2 holds.

Corollary A.3. If M is a paracompact space of finite covering dimension and £ is
a (complex or real) vector bundle over M, then there exists a vector bundle ¢ over
M such that 5@5 is trivial. In particular, this holds if M is a topological manifold.
Moreover, if £ is a smooth vector bundle over a smooth manifold M, then there
exists a smooth vector bundle & over M such that € & € is trivial. [

Corollary A.4. If M is a paracompact space of finite covering dimension and &
1s a complex vector bundle over M, then there exists some n € N and a continuous
map f: M — Gg(C") such that § = f*%]i In particular this holds in case M is a
topological manifold. The same is true for real vector bundles if we replace G (C")
with the real Grassmann manifold G (R™). O



Chapter 2

Characteristic classes

2.1 Connections

Let £ = (E,p, M) be a smooth vector bundle of rank n over a smooth manifold M.
A (linear) connection on ¢ is a linear map

V: Q%) = AN (M) @ceear) 2°(€)
with the additional property (Leibniz formula)
V(fs)=df ® s+ fVs

for every f € C®°(M) and s € Q°(¢), where A'(M) denotes the space of smooth
1-forms of M. If € is real then linear means R-linear. If £ is a smooth complex
vector bundle, a connection on ¢ is a C-linear map

V006 — AY(M;0) B oo (M;C) Q°(¢)

satisfying the Leibniz formula for all f € C®(M;C). We will write A¥(M) and
C*°(M) in both cases, as the meaning will usually be clear from the context.

Since AY(M) = QY(T*M) and AY(M;C) = Q°((T*M)c¢), from Theorem 1.5.3
we have

AN M) @cooan) Q(€) = QUT*M ©€)
= Q% (Hom(T'M, €)) 2= Homeee (ar) (2°(TM), Q°(€)).
So a connection on ¢ is a map V : Q°(¢) x QO(TM) — Q°(¢) which is linear with

respect to the factor Q°(¢), is C°°(M)-linear with respect to the factor Q°(T M) and
if we write Vx = V(., X), then

Vx(fs) = fVxs+(Xf)s

for every X € QO(TM), s € Q°(¢) and f € C°°(M). In other words a connection is
a way to differentiate smooth sections of £ in the directions of smooth vector fields
of M. From the above isomorphisms a connection can be thought of as a linear map
V:Q0(¢) — Q%(Hom(TM,¢)), and so the value (Vys)(z) € E, = p~*(z) depends
only of the vector X(z) € T, M and the values of s on an open neighbourhood of

25
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x € M, because if s|y =0 and U C M is an open neighbourhood of x, there exists
some f € C°(M) such that f(x) =1 and suppf C U, and therefore f-s = 0 on
M, which gives

0=Vx(fs)(x) = f(2)(Vxs)(z) + (X [)(x)s(z) = (Vxs)(@).

Thus, a connection can be localized to &|¢ for every open set U C M.
Let U C M be an open set over which ¢ is trivial and let {eq, ..., e,} be a smooth
local frame of £ on U. Every element of A'(U) ®cee(rry Q0(€|rr) can be written in a

unique way as
n
Z a; X e;
j=1
for some a; € C*°(U), 1 < j < n. Therefore,

n
Ve = Z Ajk X e
j=1
where A = (Aj;) is a n X n matrix of smooth 1-forms on U, called the connection
form with respect to the frame {ey,...,e,}. Conversely, for any n x n matrix of
smooth 1-forms on U and any smooth frame {ey,...,e,} of &|y one can define a
connection on |y by setting

VO frew) =D dfi @er+ Y frdp @,
k=1 k=1

k,j=1

for every fi,..., fn € C°(M).

Example 2.1.1. If { = (E,p, M) is a smooth vector bundle of rank n on a smooth
manifold M, there exists a smooth vector bundle §~ of some rank k£ such that & EBSN =
"tk Let f: E — M x C"t* be the inclusion and ¢ : M x C*** — E the projection.
Let Vo be the connection on €®™* with zero connection form. Equivalently, Vo =
d® - @d, since Q(e"F) =2 C®(M) @ ---C®(M) n + k times and therefore

AN M) @cooary () = AN M) @ --- @ A'(M)

We have C°(M)-linear maps f, : Q°(&) — QO(e"**) and g, : QO(e"HF) — QO(¢)
and the composition V = (id ® g«) o Vg o f

Q0(€) 500 (n+4) Y0 AL(M) @ oo gy Q0(€7F) 2L AV (M) @ oo (ar) 20(E)

is a connection on §. Thus, every (complex or real) smooth vector bundle over a
smooth manifold admits at least one connection.

In the sequel we denote QF(&) = A*(M) ®@ceo(ary Q0(€) for every k € ZT and
every smooth vector bundle £ = (E, p, M).

If & = (E1,p1, M) and & = (E3,p2, M) be two smooth vector bundles over the
same smooth manifold M. We define the C'*°(M)-bilinear form

QP (1) @ (ar) Y (E2) M (€1 ® &) = AFFM)) @ (ar) (Q2(E1) @ (ar) L(E2))
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which sends (w® s) ® (0 @) to (wA ) @ (s ®t), where w A 6 is the usual wedge
product of smooth forms on M.

Since Q%(ef) = C®°(M) and QF(ek) = AF(M), taking & = e and k = 0 the
above bilinear form gives just the C°°(M)-module structure of Q'(&) for a real
vector bundle &. Similarly, Q0(el) = C°(M;C) and QF(el) = A¥(M;C), the
C-valued smooth k-forms on M. Moreover, if & is a complex vector bundle, for
w € A¥(M;C) and s € Q°(&) we have w A s = w ® s, which means that

ARM;C) @cre) 26) <5 Q&) = AR(M;C) @c=rc) 2°(6)

is the identity map. analogously, in case &5 is real.
Obviously, 1A s = s and (WA BO) As = wA (0 As) for every w € A¥(M),
6 € A{(M) and s € (&),

Lemma 2.1.2. If V is a connection on the smooth vector bundle & = (E,p, M),
then there exists a linear map d¥ : QF(€) — QFFY(&) for k € ZF such that

(i) d¥ =V : Q&) — QL&) for k=0 and

(ii) dV (w A s) = dw A s+ (=1)*w AdVs for every w € AF(M) and s € Q&) and
k,leZ".

Proof. For every w € A¥(M) and s € Q°(¢) we put
dV(w®s) =dw A s+ (=1)Fw A (Vs)
and observe that dV is well defined on QF(¢), because
AV (W (fs)) = fdw A s+ (—1)Fw A (df @ s+ fVs)

= fdoAs+ (~1DFOA fwAVs+ (df Aw)As=dY ((fw)® s)

for every f € C*°(M). Since dw A s = dw ® s, we have (i).
To prove (ii) suppose that s = 6§ @ t, where § € A'(M) and t € Q°(¢). Then,

AwhAs)=dV(wA@t)=d"(wA) D)

=dwAb) @t+ (1) (wnb) A (Vi)
= (dw A0+ (~1)fw A B) @t + (=) wA0) A (Vi)
—dwoANOt)+ (—DFwA IRt + (—=1)'0 A (V)]
—donN@t)+ (1) wrdV(@t)
—dons+ (-D)*wAads. O

Thus, for every connection on a smooth vector bundle £ = (E,p, M) we get the
sequence of linear maps

0—00(6) 501502 T -
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In the particular space £ = €', it coincides with the deRham complex of M. However,
as we shall see, this is not a cochain complex in general. In any case, the map
FV =dV oV :Q0%¢) — Q%(¢) is C°(M)-linear. Indeed, for every f € C°°(M) and
5 € QY(¢) we have

dV(V(fs) =dv(df @ s+ fVs)=dY(df Ns+ fAVs)
= d(df) A s —df A (Vs)+df A(Vs)+ fd¥(Vs) = fd¥ (Vs)).
On the other hand, from Theorem 1.5.3 we have
Hom oo (1) (2°(€), 2%(€)) = Homgoo (1) (2°(€), 2°(£)) ®@coe (ar) A*(M)

= QO(Hom(f, 5)) ®C°°(M) AQ(M) = QZ(HOI’n(é., 5))

Thus, FV is a smooth 2-form with values in Hom (&, ) which is called the curvature
form of V. For every X, Y € QU(TM) the evaluation at (X,Y) induces a C>°(M)-
linear map from Q%(Hom(¢,€)) to Q°(Hom(&,€)) which sends FV to an element
Fy’y. Because of the C°°(M )-linearity, for every x € M the value F)Y’Y(CC) depends
only on the values X (z) and Y (z). For every w € A'(M) and s € Q°(¢) we have

A (w@s)=dw®s—wAVs
and therefore
0¥ (@ 5)(X, V) = [Xw(Y) = Ya(X) — w([X,Y])] - s — [w(X)Vys — w(Y)Vxs]
= Vx(w(¥)s) — Vy(w(X)s) —w([X,Y])s
from which follows the traditional formula of the curvature tensor
FYy(s) =d¥(Vs)(X,Y) = Vx(Vys) — Vy(Vxs) — Vixy]s.

In order to carry out explicit calculations it is useful to have a local formula for
the curvature 2-form. Let A = (Aj;) be the connection form with respect to some
local smooth frame {eq, ..., e, }. Then,

dv(VGk) = Z dAjk Xe; — Z Ajk A Ve;
j=1 j=1

:ZdAjk(g)ej—ZAjk/\ (ZAlj@)el)
j=1 j=1 =1

= Z <dAlk X e + (Z Alj AN Ajk) (= el> .
=1

j=1

Thus, in matrix form we have

Fv|locally =dA+ANA
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and for every X, Y € QY(TM) the matrix of the linear map F;Y(m) B, — FE,
with respect to the basis {ej(x),...,en(2)} is (dA+ AN A)(X,Y).

Example 2.1.3. Let y; = (H1,p, CP') be the tautological complex line bundle
over CP! ~ S2. Recall that H; = {(¢,u) € CP! x C? : u € ¢} and let

Hi = {(l,u) € CP' x C?:u e ¢*}

with respect to the usual hermitian product on C2. Then, ’Hf is the total space of an
obvious smooth complex vector bundle 77~ over CP! such that v, ©vi = 6<2c- We shall
compute the connection form and the curvature form of the connection V defined
as in Example 2.1.1. using the same notations. Thus, V = (id ® g.) o (d ® d) o fx,
where f : H; — CP! x C? is the inclusion and g : CP! x C?> — #; is the projection.

If ¢ = [2p, z1], then

9([20, 21], (w0, u1)) = (Zouo + Z1u1) - (20, 21) = (|20|%u0 + Z120u1, Z120u1 + |21 2u1).

Let {(Uo, ¢0), (U1, ¢1)} be the canonical atlas of CPL. Over Uy we have the smooth
section s defined by s([1, z]) = (1, 2) and (d&d)s([1, z]) = ([1, 2], (0, dz)). Therefore,

<vS><[1,z1>:(u,zL Lo AR dz)

—_— d
P R N S N A R
z z
=([1 ——dz) - (1 = (——d .
<[’Z]’(1+\z12 z) - ( ,z)> (1‘*‘\2’2 2)®s
So, the connection form on Uy with respect to the frame {s} is

A=z
1+ 2[2

Since A A A =0, we have FV |y, = dA and so

z 1 1
FVi =d(—=— VY Adz = |d Z4+———dz| Ad
i = ) e = (4 ] o
d(1+7%z) _ o 1 -
= |— dZ| Ndz = ————dz Ndz.
At P2 T 112 } T AT et

Note that Hom(vyy,7v) & e}c, because it is a complex line bundle and admits the
global smooth section whose value at £ is the identity map of the corresponding
fiber of ;. Thus,

FY € 0*(Hom(y1,7)) & A*(CP") ®coe(cpry C®°(CPY; C) = A*(CP;C)

is indeed a C-valued smooth 2-form on CP?.

So far we have dealt with FVY = dY o V. It turns out that in higher degrees the
composition dv o d¥ : QF(€) — QFF2(¢) for k > 2 is completely determined by FV.
To see this, we consider the C°°(M)-bilinear map

OF(€) x Hompee (1) (20(6), 2%(€)) 2+ QFF2(¢)
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defined by (w ® s) ANG = wA G(s), for every w € A¥(M), s € Q&) and
G € Homgoo (3 (92°(€), 22(€)), where the wedge in the right hand side is the one
previously deﬁned

Proposition 2.1.4. (d¥ o dV)(t) =t AFV for every t € QF(€).
Proof. Indeed, if t = w ® s € QF(£), we have
(@ odV)(w®s)=dY(dw® s+ (—=1)kw A Vs)

= d(dw) ® s+ (1) dw A Vs + (=1)*dw A Vs +w A (dV(Vs) =w A FV(s). O

2.2 Induced connections

Let f: N — M be a smooth map between smooth manifolds and let £ = (E,p, M)
be a (complex or real) smooth vector bundle of rank n over M. Since the induced
map f*: C®(M) — C*°(N) is a ring homomorphism, every C°°(NN)-module is also
a C*(M)-module. In particular, QV(f*¢) has a C°°(M)-module structure and the
map f*: Q(¢) — QU(f*¢) defined by

(f(s))(@) = (2, 5(f(x))
for every x € N, is C*°(M)-linear.
Lemma 2.2.1. The well defined C*°(N)-linear map
f* 1 C®(N) ®@coear) Q°(€) = QU(f7E)
which sends ¢ @ s to ¢ - f*(s) is an isomorphism.

Proof. 1If € is trivial, then f*¢ is the trivial vector bundle of rank n over N and
Q) 2 OC®(M) @@ C®(M) and QO(f*¢) =2 C®°(N)@®--- ®C>®(N), n-times. It
is immediate from the definitions that in this case f* is an isomorphism, essentially
the identity map.

In the general case, there exists a smooth vector bundle £ = (E,ﬁ, M) over M
of some rank m such that &€ & £ = "™, Then, f*¢ ® f*€ = €™ over N and from
the trivial case

¥ (C%F(N) @coe(ary 2(€)) @ (CF(N) @os(ary 2°(6)) 2 Q°(f7€) © Q°(f€)

where the first factor on the left hand side is send to the first factor on the right
hand side. OJ

It is evident that the C°°(M)-linear map f* : Q°(&) — QO(f*¢) induces a
C>°(M)-linear map f* : AH(M) ®@coo(ary Q0(€) = AHN) @coo(ny Q°(F*€).
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Lemma 2.2.2. For every connection V on & and every smooth map f: N — M
there exists a unique connection f*V on f*¢, which makes the following diagram

commutative. v

QE)  — QN
I Jf*
Of f* "N 10 px
Qe — ()
Proof. From the preceding Lemma 2.2.1 it follows that we have an C°°(N)-
isomorphism QF(f*¢) = A*(N) ®@ceo(ary Q0(€) for every k € Z*. On the other
hand, the pull-back map f*: A¥(M) — A¥(N) induces a C°°(M)-linear map from
C®(N) ®@coo(ar) AF(M) to A¥(N) which sends ¢ ® w to ¢ - f*(w). Taking tensor
products (over C®(M)) with Q°(¢) we obtain a C°°(M)-linear map

p: CX(N) @coe(ary 2"(€) = A*(N) @cooar) 2°(6).
It suffices now to take
V= (d@id) +pid© V) : Q°(f*€) = AY(N) @oee(n) P(f76),
since from Lemma 2.2.1 we have a C°°(N )-isomorphism
f* 2 C®(N) @cooar) 2°(6) = Q0(f7¢). D

Let U C M be an open set over which ¢ is trivial and let {ey,...,e,} be a local
frame of £ on U. Let A be the connection form of a connection V on U with
respect to this frame. Then, {f*(e1),..., f*(e,)} is a frame of f*¢ on f~1(U) and
the corresponding connection form of f*V on f~1(U) is f*A. The commutative
diagram of Lemma 2.2.2 extends to the commutative diagram

) S0

f* J/f*
* a’”v *
Qe = Q(f)
from which we get a commutative diagram

) 5 o

"
FI*Y

QUfrE) — Q(frE)

Since f*(Hom(§,£)) = Hom(f*¢€, £*€), we arrive at f*(FY) = Ff"V. This can also
be seen by computing locally

FHEY) = fdA+ANA) = fH(dA)+ F*(ANA) = d(f*(A)+ [ (AAFH(A) = FIY.

A connection V on a smooth vector bundle £ = (E, p, M) induces a connection
on the dual vector bundle £* as follows. We consider the composition

() Qk(g) ® oo (M) Ql(f*)ggkﬂ(f ® f*)—>Ak+l(M)
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where the second map is induced by the vector bundle morphism &£ ®&* — €! defined
by evaluation on the fibres. So,

(W®s,0®s)=s"(s)-wAb

for every w € A¥(M), 0 € AY(M) and s € Q°(¢), s* € Q(¢*). Since (.,.) is non-
degenerate for (k,l) = (0,0) and for (k,1) = (0,1), the equation

d(s,s*) = (Vs,s")+ (s,V*s¥)

defines a connection V* on £*.
If & = (Eh,p1, M) and & = (Ea,pa, M) are two smooth vector bundles over the
same smooth manifold M with connections V! and V2, respectively, then the wedge

Q0(&1) @cme(ary 20(E2) Q061 ® &)

coincides with the isomorphism Q°(¢1) ®ceo (M) 00(&) = Q¢ @ &) of Theorem
1.5.3(ii), and we can define a connection V on the tensor product £ ® & by the
formula

V(s®t) = (Vis) At +sA (V).

In particular, this gives a way to define a connection V on Hom(&;,&2) = & ® &
putting
V(s*@t) = (V¥*s*) At +s° A (V).

There is another, perhaps more direct, way to define this connection on Hom(&1, &2),
as follows. The evaluation map

0°(&1) x Q°(Hom(&1,&2)) — Q0(&)

induces a C°°(M)-bilinear map

(.,.) : Q&) x QY (Hom(&r, &) — QFH(&)

which for (k,1) = (0,1) is given by the formula (s,w ® ¢) = w ® ¢(s). Thus, it is
non-degenerate and the equation

V2(s,¢) = (V's, ¢) + (s, V'9)

defines a connection V' on Hom (&1, &2).
We shall prove that the connections V and V' on Hom(¢1,&2) coincide through
the isomorphism a : {§ ® §» = Hom(&;,&2). It suffices to show that

(s, Va(s*@1)) = (5, V(s* @1))

for every s € Q9(&), t € Q%(&) and s* € Q°(&}). Indeed, there is a commutative
diagram of vector bundle morphisms

1d®a

1R ®E& — & ®Hom(&y, &)
l(.,.)@id l(.,.)
el ® & — &
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where the bottom map is scalar multiplication, because

(s,a(s* ®@1t)) = (s,8" - t) = s*(s)t = (s,8")t.

Thus,
(5,V(s* @1)) = (s, VIs*) At + (s,5%) V2t

From the definitions now we have
(5, Via(s* @ 1)) = V3(s,a(s* @1)) — (Vls,a(s* @) = V*((s,8")t) — (V1s,s*) At

= d(s,s*) N t+(s,8")V2t — (Vs s*) At = (5, V*s*) At + (5,55 )V?t = (sV(s* D 1)).

Finally, it is easy to check following.

(i) d(s,s*) = (dVs,s*) + (—1)%(s,dVs*) for every s € QF(¢) and s* € QF(¢¥),
and

(i) dV(s@t) = (dVs) @t + (~1)Fs @ (dVe),

(iii) d(s,¢) = (dVs,¢) + (=1)k(s,dV ¢) for every s € QF (&), t € Q&) and
¢ € QY (Hom (&1, &2)).

2.3 Invariant complex polynomials

A complex polynomial P in n? variables of degree k is homogeneous if it is the

sum of monomials of the same degree k. Such a polynomial can be considered as a
function P : C"™*" — C, by arranging the n? variables in a n x n matrix. So P(A)
is determined as a polynomial function of the entries of the matrix A € C™*" with
the property P(AA) = A¥P(A) for every \ € C.

A homogeneous polynomial P : C"*™ — C is called invariant if it is an invariant
function under the action of GL(n,C) on C"*" by conjugation, that is

P(gAg") = P(A)

for every g € GL(n,C) and A € C™". In this case, P induces a well defined
function P : Hom(V, V) — C for every complex vector space of dimension n, since
the value P(A) does not depend on the choice of basis.

Examples 2.3.1. (a) For every A € C"*" the ”characteristic polynomial” of —A is

o(t) = det(I, +tA) = Zak

and o¢(A) = 1. Each coefficient 01 (A) is obviously an invariant homogeneous poly-
nomial of degree k. Note that o,,(A) = det A.

(b) For every A € C™*" the trace Tr(AF) is an invariant homogeneous polynomial
of A of degree k. There is an alternative description which relates this example with
the previous one. Let

d
s(t) = —td— log det([, Zsk
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where log is considered as the formal power series

o~ (DM
log(1+z) = Z —
k=1

d
and T denotes the formal derivative

i (i aktk> = io: /{?aktkfl.
dt k=0 k=0

We shall show that s(A) = Tr(A¥) for every k € N. In the special case of a diagonal
matrix A = diag(\, ..., \,) we have

n

d - d t\g
t) = —t—1 1—th\g) = —t— Y log(l —t)\) =
s(t) dt ngl;[l( k) dth:l og( k) ; 1—ths

D NTES AP
k=1 j=1 j=0 “k=1

This implies that s(A) = Tr(AF) for every diagonal matrix A € C**™. The general

case is a consequence of continuity and the following.

Lemma 2.3.2. The set of diagonalisable complex n x n matrices is dense in C™*™,

Proof. Let A € C™"™ have eigenvalues Ay,..., A\; € C with multiplicities ny,..., nj,
respectively. There exists R € GL(n,C) such that R~ AR is upper triangular. Let
€ > 0. We choose any

1
0<p<§min{e,])\k—)\l]:1§/<:7él§j}.

We also choose distinct points z’f yees zﬁk € C of distance at most p from A\;. Let T,
be the matrix which results in from R~!AR by replacing the diagonal entries with
the complex numbers

1 1

J
21y e Zny s e 2 e

Then, A. = RT.R~! is diagonalisable, because it has distinct eigenvalues, and
|A = Acll < nl[R]| - |R7H| - [|IRTTAR = T < nf|R| - [R7H] - p
where ||.|| denotes the maximum norm. [J

Note that the preceding Lemma 2.3.2 is not true over the field of real numbers.
For instance the matrix of the rotation R;/; by the angle 7/2 has characteristic
polynomial ¢ 4+ 1 which has negative discriminant. Since the discriminant of the
characteristic polynomial is a continuous function of the matrix and the charac-
teristic polynomial of a diagonalisable real 2 x 2 matrix must have non-negative
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discriminant, it follows that R;/, cannot be approximated by diagonalisable ele-
ments of R?*2,

The invariant homogeneous polynomials oy (A) and si(A), 0 < k < n are related
through the Newton identities

s51(A) = sp_1(A)a1(A) + sp_o(A)oa(A) + - + (=1) kor(A) = 0.

To see this, we apply again Lemma 2.3.2, so that it suffices to prove the identities
for diagonal A = diag(\1, ..., A\n). In this case, on the one hand we have

(i (_1)k0k(14)tk> : (i Sk(A)tk> = <§n: - ?‘Z}\j).ﬁ (1-t))

k=0 k=1 =1 j=1

3

T i) = 1S LYo (AN — S (1) Lo ()
—tﬁﬂﬂtm_tﬁg(D%thﬂUJkMMt

and on the other hand

<Z (-1 ou(aet) (fj (At ) = :00 ( ko (=10 (A)suy(4) ),

k=0 k=1 Jj=

where we have set o;(A) = 0 for £ > n and so(A) = 0. Comparing the coefficients
we obtain the Newton identities.

It follows from the Newton identities that sx(A) can be determined inductively
as a polynomial function with integer coefficients of oi1(A),..., or(A). Conversely,
ok(A) is a polynomial function with rational coefficients of s;(A),..., sx(A). For
instance, for £ = 1 we have s1(A) = 01(A) and for k = 2 we have

SQ(A) = Sl(A)O'l(A) — 20‘2(14) = (O‘l(A))2 — 20‘2(14).
For k = 3 we have
Sg(A) = SQ(A)O’l(A) — Sl(A)UQ(A) + 30’3(A) = (0’1(14))3 — 301(A)02(A) + 30’3(14)

and so on.
It is immediate from the definitions that si(diag(A1, A2)) = sk(A1)+sk(As2) and

=

or(diag(A1, As)) = > 0;(A1)ok—;(As).
7=0
Also, sip(A1 ® Ag) = sp(A71) - sp(A2), since Tr(A; ® Ag) = Tr(A;) - Tr(Az), where

A1 ® Ay denotes the matrix of the tensor product of the linear maps with matrices
A1 and AQ.
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The invariant homogeneous polynomials can be described as polynomial func-
tions of the elementary symmetric polynomials. Recall that the elementary sym-
metric polynomials ¢;(Xi,...,X,), 1 < j < n in n variables are determined from
the identity

n n
[T +tX) =D oi(Xy, ., X))t
j=1 j=0
Obviously, o1(X1,...,X,) = X5 + -+ + X,, and 0,(X1,...,X,) = X5Xo--- X,,.

Every symmetric complex polynomial of n variables is a polynomial function of
01400y On.

Theorem 2.3.3. For every invariant homogeneous polynomial P : C"*™ — C there
exists a polynomial p of n variables such that P(A) = p(o1(4), ...,0n(A)) for every
AeCmm,

Proof. Let D, C C™*" be the set of all diagonal matrices. By Lemma 2.3.2, the set

U 9Dng™!
9€GL(n,C)

is dense in C™*™ and so P is completely determined by its values on D,,. Every
permutation s in n symbols determines an element g € GL(n,C) such that

gdiag()\l, ceuy )\n)g_l = diag()\s(l), ceuy )‘s(n))

for every Aq,..., A, € C. Since P is invariant, it follows that P(diag(X7, ..., X)) is
a symmetric polynomial and so there exists a polynomial p of n variables such that

P(diag(Xl, ceey Xn)) = p(O‘l(Xl, ceey Xn), ceey O'n(Xl, ceey Xn))
The conclusion follows now by continuity. [

The set I(C) of invariant homogeneous polynomials of n? complex variables
equipped with the usual operations is a commutative algebra. Similarly, the set
S*(C) of all symmetric homogeneous polynomials of n variables is a commutative
algebra and S} (C) = Cloy, ...,0,]. The preceding Theorem 2.3.3 says that the map
p: IM(C) — S} (C) defined by

p(0)(Xq, ..., Xp) = o(diag(X1, ..., Xp))

is an isomorphism.

2.4 Chern classes

Let £ = (E,p, M) be a smooth complex vector bundle of rank n over a smooth
manifold M. Let U C M be an open set over which ¢ is trivial and let {eq,...,e,}
be a frame of & on U. There is a corresponding isomorphism of the restriction
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Hom(¢,&)|y with the trivial bundle of rank n x n over U. From this we get an
isomorphism

Q% (Hom (¢, €)|y) =2 AX(U; C™™) = A*(U; C)™*".

Thus, every 2-form R on Hom(¢, &) gives a matrix (Ry;) € A?(U;C)™*", which
depends on the initial choice of the frame {ey,...,e,}. For every invariant homoge-
neous complex polynomial P of n? variables and degree k& we have a corresponding
element P((Ry;)) € A?*(U;C), because the wedge product of differential forms of
even degree is commutative.

If {€],...,e},} is another frame on U from which we have a corresponding matrix
(R};) € A%(U;C)™", there exists a smooth function g : U — GL(n,C) such that
(Rit) = g(R};)g~ 1. Since P is invariant, we have P((Ry)) = P((R};)). This shows
that there is a global well defined complex smooth 2k-form P(R) € A%¢(M;C).

In particular, if V is a connection on ¢ with curvature form FV € Q%(Hom(¢, €)),
then for every invariant homogeneous polynomial P : C"*" — C we have a well
defined C-valued smooth 2k-form P(FV) € A%*(M:;C).

Lemma 2.4.1. Let P : C"*"™ — C be an invariant homogeneous polynomial. If

oP\"
P = <W> , where T means transpose, then P'(X)-X = X - P/(X) for every
x

X e Ccvxm,

Proof. Since P is invariant, we have
P((I, +tE)X) = P(X(I, + tEy))

for every |t| < 1, where E}; is the basic n x n matrix whose (k, [)-entry is equal to 1
and has zeros everywhere else. Differentiating at ¢ = 0 for X = (ay;) the left hand
side gives

n n
oP
DP(X)XEy = DP(X) (Z alekj> =y ayj 5757 (X)
j=1 j=1
which is the (I, k)-entry of P'(X)X. Similarly, the right hand side gives
DP(X)EnX = DP(X) (Z ajkEjl> => a5 (X)
j=1 j=1
which is the (I, k)-entry of X P'(X). O
Proposition 2.4.2. If V is a connection on & with curvature form
FV ¢ Q*Hom(¢,€)), then for every invariant homogeneous polynomial
P :C™ " — C the complex smooth 2k-form P(FY) € A% (M;C) is closed.
Proof. (J. Milnor and J. Stasheff) It suffices to prove the assertion locally. Let

U C M be an open set over which £ is trivial and let A be the connection form of
V on U with respect to some frame. Then FV|; = dA + A A A and differentiating

dFV |y =FVYANA—AANFY.
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This is called the (second) Bianchi identity. If FV |y = (Fy;), then

"\ 9P
dP(FV)|ly =Y W(FV) AdFy = Te(P'(FYV) AdFY),
k=1

where P’ is defined as in the preceding Lemma 2.4.1, by the use of which we get
dP(FV)|y = Te(P'(FY)AFY A A— P (FY)AAANFY)

=Te(FYAP(FYY)ANA—-P(FY)ANAAFY) =0,
because if Y = P/(FV) A A = (Yy), then

n
dP(FV)|py = Te(FYAY =Y AFY) = Z Fie AYi — Y A Fie = 0,
k=1

since Fj, is a 2-form. [

Proposition 2.4.3. If P is an invariant homogeneous complex polynomial of n?
variables of degree k, then the cohomology class [P(FV)] € H?*(M;C) does not
depend on the choice of the connection V on &.

Proof. Let VY and V! be two connections on ¢ and let pr: R x M — M denote the
projection. Let VO = pr*V? and V! = pr*V1! be the induced connections on pr*¢.
On pr*¢ we consider the connection V defined by

(Vs)(t,z) = (1 —t)(VOs)(t,z) + t(V'is)(t, )

for (t,z) € R x M. From Lemma 2.2.2 we have jg@ = V° and ]’f@ = V!, where
Jo, j1: M — R x M are the inclusions jo(x) = (0,2) and ji(x) = (1,z). Moreover,
FY’ = Je(FV) and FV' = §1(FY). Therefore,

[P(EY)] = [js(P(EV))] = j5[P(FYV)] = ji[P(FV)] = [j{ (P(FV))] = [P(FY)]
by homotopy invariance. [

It follows from Propositions 2.4.2 and 2.4.3 that if { = (E,p, M) is a complex
smooth vector bundle of rank n over a smooth manifold M, then for every invariant
homogeneous complex polynomial P on n? variables of degree k there is a well
defined cohomology class in H?*(M;C). If ¢ = (E',p/, M) is another complex
smooth vector bundle isomorphic to £ and f : E/ — FE is a smooth vector bundle
isomorphism, then for every connection V on & we can choose a connection V' on
& such that the following diagram commutes.

Q¢ s le)

|+ I
Q0e) % Ql(¢)
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Then, the local matrices of FV and FV' with respect to suitable local frames coin-
cide and thus P(FV) = P(FV'), since P is invariant. More generally, if f : N — M
is a smooth map and P is an invariant homogeneous polynomial, then for every
connection V on & we have f*(P(FV)) = P(F/"V). This means that the correspon-
dence which sends each isomorphism class of complex vector bundles over M to the
cohomology class in H*(M;C) defined by P is a natural transformation from the
K-functor to the cohomology functor H*(.;C).
For every k € Z* we define by

-1
= —FY ) |e H*(M;C
o(©) = |5 ) | e P Oni0)
the k-Chern class of £ and by

chy (&) = [%sk<_—1Fv>] e H*(M;C)

27

the k-Chern character of £. From the above, the definitions are independent of the
choice of the connection V on £. Obviously, ¢o(§) = 1 and cho(§) = n. The Newton
identities imply that chy(§) is a polynomial function of ¢o(€),..., cx(§).

Examples 2.4.4 (a) Let M be a smooth manifold and let £ = (L,p, M) be a
smooth complex line bundle over M. Then, Q?(Hom(¢,€) =2 A%(M;C). Thus, if V
is a connection on &, then FY € A?(M;C) and

sp(FY)=FYA---AFY  k-times.

Since o1 (FV) = FV, it follows that

hel€) = er(©)"

(b) We shall compute the first Chern class c¢1(y1) of the tautological complex
line bundle y; = (H1,p, CP!) over CP! ~ S2. Since the integration

/ : H*(CP;C) = C
Cp!?

is an isomorphism, by Poincaré duality, it suffices to calculate the integral

/CP1 a(m)-

We use the connection V of Example 2.1.3 and the calculations therein according
to which if {(Up, ¢0), (U1, #1)} is the canonical atlas of CP!, then

2i
sdx A dy

dZNdz = s
N (R

1
FVly = ————
v = TR

where z = 2 + iy. Since CP!\ Uy is a singleton, we have

1 27 “+o00 r
FV =9 —  dxdy =21 ———drdf = 2.
/CPI / It+a2+y22 /0 /0 TS
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Since o1(FV) = FV, it follows that

In particular v is not trivial.

(c) In the Newton identities we see that the coefficient of o, in s, is (=1)""1n.
Let now £ be a smooth complex vector bundle of rank n such that ¢;(§) = 0 for
1 <k <n—1. In this case the Newton identities imply that the n-Chern character
of £ is )

1 1)
ch(€) = (1" nen(©) = e (0

Tl

In particular this holds for every smooth complex vector bundle £ of rank n over
the 2n-dimensional sphere S2".

The following proposition is useful in calculations.

Proposition 2.4.5. If & and & are two smooth complex vector bundles over a
smooth manifold M, then

(a) chi (&1 @ &2) = chp(§1) + chi(§2) and
k
(b) cr(€1® &) =Y ¢j(€1) A er—j(&a)-
=0
Proof. We take connections V! and V2 on &; and &, respectively. Then,
Viev?: Q%) e 0%&%) 2 Q%G e &) —» QNG @ &) 2 QM E) 8 Q%(&)
is a connection on & @ & with curvature form
FY' & F¥" € Q2 (Hom(&; & &, 6, & &)).
So,
1 -1 1 2
e ©) = | gyon (Fpaion(F™ F7) )| = ehulen) + e

This proves (a) and (b) follows in the same way. [

Let £ = (E,p, M) be a complex smooth vector bundle of rank n over a smooth
manifold M. Let I;;(C) be the commutative graded algebra of invariant homoge-
neous complex polynomials. More precisely, we set I2¥71(C) = 0 and let I2*(C) be
the space of invariant homogeneous polynomials of degree k. For each P € I(C)
let ¢¢(P) € H*(M;C) denote the cohomology class defined by P as above choosing
any connection on £. In this way we have a well defined homomorphism of graded
algebras ¢¢ : I"(C) — H*(M;C), which is called the Chern-Weil homomorphism for
the complex vector bundle . The subalgebra ¢¢(1}:(C)) of H*(M;C) is called the
Chern algebra of £ and is generated (as an algebra) by the set of the Chern classes

(6 = (5 ) el ket

211

of &, by Theorem 2.3.3.
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2.5 The Pfaffian polynomial

Let n € N and let so(2n,R) denote the Lie algebra of the special orthogonal group
SO(2n,R), which consists of the skew-symmetric 2n x 2n real matrices. If A =
(Ag) € s0(2n,R), we let
A) =" Aue Nef
k<l
where {e},...,e5 } is the dual of the canonical basis {ej, ..., 2, } of R?", and define
Pf(A) by the equality
W(A) A~ ANw(A) =n!Pf(A) -e] A+ Nej,.

It is obvious that Pf(A) is a homogeneous polynomial of degree n of the 2n? —n real
variables Ap;, 1 < k <1 <mn and is called the Pfaffian polynomial. Explicitly,

1
PHA) = 5 > (3800) As(1)o(2) * * Av@n—1)o(2n) -

O'ESQn

Example 2.5.1. Let ay,..., a, € R and A € s0(2n,R) be the matrix with the 2 x 2

blocks
0 a1 . 0 ap
—al 0 ’ ’ —anp 0
along the diagonal and zeros elsewhere. Then,

w(A) =aje] Ney+ -+ anes, 1 Nes,

and thus
WA)N - ANw(A) =nlay---apne] A+~ Nes,,.

So in this case Pf(4) = aj - - - a,. Note that (Pf(A))? = det A. We shall generalize
this property of the Pfaffian for every element of so(2n,R). We shall need the
following,.

Lemma 2.5.2. If A = (Ay) € s0(2n,R) and B € R*"*?" then
Pf(BABT) = Pf(A) - det B.
Proof. Let B = (By;) and let u; = Be;. From the equalities
Z Agjuy, ANuj = Z Z Bk A Bue, N ej, = Z Z (BABT)VMel*, Nej, = w(BABT)
k<l k<l p,v k<l v<p
follows that

k<l k<l

=nlPf(A) - uj A+ Auy, =nlPf(A) - (det B) -e] A--- Nep

n:

O
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Corollary 2.5.3. The Pffafian polynomial is invariant under the action of
SO(2n,R) by conjugation.

If A € so(2n,R), then A is normal as a complex matrix and by the Spectral
Theorem there exists an orthonormal basis {ey, e, ..., e2,} of C*" with respect to
the usual hermitian product consisting of eigenvectors of A. Let A1, Ao,..., Ao, € C
be the corresponding eigenvalues. Since A is real, A1, Ag,..., Ao, are also eigenvalues
with corresponding eigenvectors &y, €o,..., €, and since A is skew-symmetric, Ay,
Ao,..., Aoy € iR, It is possible to arrange this orthonormal basis so that egr = €951
for all 1 < k < n. This is trivial, if A = 0. If A # 0 and \; # 0, we have
Aé; = M\ié; = —\1é; and eg, € are orthogonal. So, we may take Ao = —\; and
es = €1. Inductively now, if H is the linear subspace of C?" with basis {e1, €1}, then
H, H+ and H are A-invariant and we can repeat this for the restriction of A on H+.

Theorem 2.5.4. (Pf(A))? = det A for every A € s0(2n,R).

Proof. Since A is skew-symmetric, it has eigenvalues
AL, A2 = = A1, Aon—1, Ao = — A1 €4R
and corresponding eigenvectors
— > _ = CZn
€1,62 = €1,...,€2p-1,€2n = €21 €

which comprise an orthonormal basis of C?". Putting
1 1
v = ﬁ(equ +eg) and  wy = m(equ —ey), 1<k<n

we get an orthonormal basis of R?®. If a; = —idop_1, then Avy = —apw; and
Awy, = apvg. This means that there exists g € O(2n,R) such that gAg~! is the
matrix with the 2 x 2 blocks

0 a1 0 ap
—al 0 ’ ’ —anp 0

along the diagonal and zeros everywhere else. From Example 2.5.1 and Lemma
2.5.2, we have on the one hand

(Pf(gAg™"))* = (a1 -+ an)* = det A
and on other other hand
(Pf(gAg™))* = (Pf(gAg"))? = (Pf(A))*(det A)* = (Pf(4))*. O
If A € su(n,C), then A = ~7A" and from it we get an element Ag € so(2n,R).

Corollary 2.5.5. If A € su(n,C), then Pf(Ar) = i" det A.
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Proof. Since A is normal, there exists an orthonormal basis of C" consisting of
eigenvectors of A. Thus, we may assume that A = diag(iaq, ..., ia,), for some ay,...,
an, € R. Since ia; corresponds to the 2 x 2 block

0 —Qf

a, 0
from Example 2.5.1 we have Pf(Ar) = (—1)"ay - - - a,, and on the other hand det A =
i"ay - - - a,. The conclusion follows now from Lemma 2.5.2. [J

2.6 The Euler class

Let £ = (E,p, M) be a smooth real vector bundle of rank n over a smooth manifold
M. A smooth inner product (,) on ¢ induces a bilinear map

() Q) x Q' (&) —» A (M)

defined by (w1 ® s1,ws ® s2) = (51, S2)w1 A wa.
A connection V on ¢ is said to be compatible with the inner product (or a metric
connection with respect to (,)) if

d(s1,s2) = (Vs1,59) + (s1, Vsa)

for every sy, s2 € Q0(€).

Let U C M be an open set over which ¢ is trivial and let {ey,...,e,} be an
orthonormal frame on U. Let A = (Ag;) be the connection form with respect to this
frame. Then,

0=dler,er) = (Y A @ejien) +(en, Y A ®ey)
j=1 j=1

= ZAjk(ej, er) + ZAjl<ek7 ej) = A + Aw.
=1 =

Thus, the connection form A is skew-symmetric and an easy calculation shows that
the converse is also true. More precisely, if the connection form A of V on U with
respect to an orthonormal frame is skew-symmetric, then the restriction of V on U
is a metric connection. The curvature form FV is also skew-symmetric, since on U
it is given by the formula FV|y; = dA + A A A.

We note that if {f; : j € J} is a smooth partition of unity on the base space M
and {V/ : j € J} is a family of connections on ¢, then

V=Y v

jed

is a connection on . Moreover, if each V7 is a metric connection with respect to

the same inner product on & for every j € J, then V is also a metric connection.
Using smooth partitions of unity one can construct connections which are com-

patible with a given inner product on £. Indeed, let U/ be an open cover of M
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consisting of open sets over which ¢ is trivial. For U € U we choose an orthonormal
frame {e1,...,e, } on U. On U we consider the connection VY defined by the formula

vk (Z ¢k€k> = dép(X)ex
k=1 k=1

for every smooth vector field X on U. Then, VY is compatible with the inner
product. If {fyy : U € U} is a smooth partition of unity subordinated to U, then

vV=> furvY

veu

is a connection on £ compatible with the inner product.

The real vector bundle £ of rank n is called orientable if there exists an open
cover U of its base space M such that ¢ is trivial over each element of I/ and for any
U,V €U such that U NV # & and there are trivializations hy, hy of € over U and
V', respectively, such that

(hy o by (z,v) = (z, guv (z)v)

for every x € UNV and v € R", where gyy : UNV — SO(n,R) is a smooth map.
Applying the Gram-Schmidt orthogonalization method, it is always possible to find
such an open cover with the corresponding maps gyy taking values in O(n,R). The
bundle is orientable if gy take values in the connected component of the identity
of O(n,R).

We shall assume now that the rank of ¢ is even and equal to 2n. Then, Pf(FV |¢/)
is a smooth 2n-form on U, which depends on the choice of the initial orthonormal
frame on U. If we choose another orthonormal frame on U, then the curvature form
with respect to the new frame is B - (FV|y) - B~!, where B : U — O(2n,R) is some
smooth map. It follows from Lemma 2.5.2 that the Pfaffian of the curvature form
with respect to the new frame is +Pf(FV|y), assuming that U is connected. Thus,
in case ¢ is orientable, we have a well defined global smooth 2n-form Pf(FY) on M,
for which the proof of Proposition 2.4.2 works and shows that it is closed. We shall
prove in the sequel that its cohomology class does not depend on the choices of the
metric connection and the initial inner product.

Lemma 2.6.1. Let jo, j1 : M — R x M be the inclusions with j(z) = (0,z) and
jx) = (1,x) and pr : R x M — M the projection. If go, g1 are two inner products
on & and VO a connection compatible with gy and V' a connection compatible with
g1, then there exists an inner product g on pr* and a connection V compatible
with g such that jig = go, jig = g1 and j3V =V, j1V = V5.

Proof. Let {fo, f1} be smooth partition of unity subordinated to the open cover

(=00, 3) % M, (3, +00) x M}

of R x M. Then,
g = forr*go + fipr* o
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is an inner product on pr*¢ such that jig = go and j}g = g1. Now pr*V is a connec-

1
tion which is compatible with g only on (—oo, Z) x M and pr*V! is compatible with

3 ~
g on (Z’ +00) X M. Taking any connection V on M which is compatible with g, we

can glue these three connections using a smooth partition of unity subordinated to

the open cover
1 17
{( OO’ 4) 7(87 8

of R x M with the required properties. [

) x M, (2

1 +00) X M}

Corollary 2.6.2. The cohomology class of PE(FY) in H?*(M;R) does not depend
on the choices of the inner product and the compatible connection V on &.

Proof. Let gy, V? and g1, V! be two choices of inner products and compatible
connections on £. Applying the preceding Lemma 2.6.1 and using the same
notations, there exists an inner product g on pr*¢ and a compatible connection
such that ji(FV) = FV’ and JH(FY) = FV'. Hence Je(PE(FY)) = P{(FV") and
JH(PE(FY)) = Pf(FV"). By homotopy invariance, the cohomology classes of these
two closed 2n-forms coincide. [

If £ = (E,p, M) ia a smooth orientable real vector bundle of rank 2n over a
smooth manifold M, then the cohomology class

e(&) = [Pf(i—vﬂ € H*(M;R)

™

is called the Euler class of £.

Example 2.6.3. A connection V on the cotangent bundle T*M of a smooth man-
ifold M of any dimension n is said to be symmetric if the composition

OO(T*M) = A M) 5 QUT*M) = AYM) @ceny ALM) L5 A2(M)

coincides with the exterior derivation d. A
On a local chart (U;x!,...,2") of M there are smooth functions r,:U—R
such that
V(dz?) ZF dazk®dazl, 1<j<n,
k=1

which are traditionally called the Christoffel symbols. If V is symmetric, we have
n ) )
> Tda’ Ada! = d(da?) =0
k=1

and therefore I‘il = ng forall 1 <j,k, 1 <n.
More generally, for every f € C°°(M) we can compute on U that

- ) )
V() = >, <6 k§l+z klafj>d~’5 ® da'.
k,l=
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If V is symmetric, then the coefficient of daz* ® da! is symmetric with respect to the
indices k, . The converse is also true.

A Riemannian metric on M is a (smooth) inner product on T'M and gives rise
to a natural smooth vector bundle isomorphism T*M = TM by the use of which
we can transfer the inner product to T*M. For every Riemannian metric on M
there exists a unique symmetric connection on T*M which is compatible with the
inner product and is called the Levi-Civita connection of the Riemannian metric.
This can be proved in our context as follows. It suffices to prove that for every
local chart (U;xz!,...,2") of M and every orthonormal frame {61, ...,0,} of T*M on
U there exists a unique skew-symmetric matrix (Ay;) of smooth 1-forms on U such
that

del:ZAk‘l/\Hk;, 1<li<n,
k=1

because the local formulas
n
VO = Au®6b;, 1<1<n,
k=1

define a symmetric metric connection on U which is actually defined globally on M
by uniqueness. Indeed, there are smooth functions Ay;; : U — R such that

d@j = Z Akljak A6y
k=1

If we take 1
Byj = §[Akzj + Aij — Ajir — Ajik + Aij + Agji)
and

Chij = %[Aklj — Aukj + Ajet — Ajie — Aijr — Akji]

then By, is symmetric with respect to k, [ and Cyy; is skew-symmetric with respect
to I, j. Moreover, Ay; = By + Cj and this decomposition is unique, because if
Apij = B/,clj + Cllclj and Bllclj’ C’,’dj have the same symmetry properties as By; and
Chij, then Dyjj = By — B,;lj = Ciij — Clglj is at the same time symmetric with
respect to k, [ and skew-symmetric with respect to [, j, which implies that

Dyij = Dixj = —Dijk, = —Djix = Djgi = Dyji = —Dpj
and therefore Dy;; = 0. It follows now that
n
d0; = Crjb A0,
k=1

and it suffices to take

Ay = Z Cibj, 1<kl<n.
k=1



2.6. THE EULER CLASS 47

Specializing to the case where M is an oriented compact Riemannian 2-manifold, let
again {61,602} be an orthonormal frame of 7*M on U. Then 6; A5 is the restriction
to U of the Riemannian volume vol(M). The corresponding connection form of the
Levi-Civita connection is
0 w
A =

where w € AY(U). Also, we have the structure equations
dfi = —wANby, di; =wANb

and the curvature form is

v . o 0 dw
F ’U—dA+A/\A—<_dw E

Hence, Pf(FV)|y = dw, which is called the Gauss-Bonnet 2-form of M, and there
exists a unique smooth function K : M — R such that Pf(FV) = K - vol(M) which
is called the Gauss curvature of M. Then,

/M Kvol(M) = 27 /M e(T*M).

The Euler class is natural in the sense that if f : N — M is a smooth map of
smooth manifolds and £ = (E,p, M) is an smooth, orientable real vector bundle of
rank 2n over M, then

e(f7€) = [7(e(§))-

Also, if & = (E1,p1, M) and & = (E3,p2, M) are two smooth, orientable real
vector bundles of even ranks over M, then

e(§1 @ &2) = e(&1) Ne(&2).

Both assertions are proved in the same way as the corresponding assertions for Chern
classes.

So far in this section we have considered real vector bundles. It is obvious
however that the notion of metric connection or hermitian connection can be defined
on a smooth complex vector bundle equipped with a hermitian inner product. In
the same way as in the real case, it is easy to show that the connection form A of a
hermitian connection with respect to an orthonormal local frame is skew-hermitian,
that is A= —A4 .

Let £ = (E,p, M) be a smooth complex vector bundle of rank n over a smooth
manifold M. As a real vector bundle £ has rank 2n and is orientable, because
U(n) C SO(2n,R), expanding the entries of U(n) to 2 x 2 real blocks in the usual
way. Let h be a smooth hermitian inner product on £ and let V be a compatible
connection. The underlying real vector bundle &g inherits the real inner product Reh
and a corresponding compatible connection V. The connection form A of V with
respect to some orthonormal local frame of £ on an open set U C M corresponds
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to a connection form Ag of {g. For instance, if € is a complex line bundle, that is
n =1, then A = (iw) € A}(U;C)*! for some smooth 1-form w on U and

0 —w
()

In case n = 2, there are smooth 1-forms wi, wy and € on U such that

o iwl 0
A= <—§ ’iWQ> ’

0 —wq Ref Imé

w1 0 —Imé Reb

—Refl Imé 0 —Wwo
—Imé —Refl wo 0

and

Ap =

From Corollary 2.5.5 we have PE(FV") = i" det(FV).

Theorem 2.6.4. If & = (E,p, M) is a smooth complex vector bundle of rank n
over a smooth manifold M, then e(¢g) = ¢,(€). In particular ¢, (&) € H*™(M;R).

Proof. We compute

Pf(%FVR> = (%)ndet(FV) = (%)nan(zﬂ) = an<2_—7éFV>. 0

Theorem 2.6.5. Let & = (E,p, M) is a smooth orientable real vector bundle of
rank 2n over a smooth manifold M. If there exists a nowhere vanishing smooth
section of &, then e(§) = 0.

Proof.We choose any smooth inner product on . Normalising we may assume
that there exists a nowhere vanishing smooth section s of £ of unit length. There
is an open cover U of M consisting of open sets over which £ is trivial. Applying
the Gram-Schmidt process on each U € U we can construct a smooth local
orthonormal frame {ej,...,ea2,} such that e; = s|y. Using a smooth partition of
unity subordinated to U as in the beginning of this section, we can construct a
metric connection V on £ such that Vs = 0. The connection form A of V with
respect to the orthonormal frame {ey,...,e2,} on U has zeros in the first column.
The same is true for the curvature form FV|y = dA + A A A. This implies that
Pf(FV) = 0 and therefore e(¢) = 0. [J

Example 2.6.6. As an illustration we shall compute the Euler class of the tangent
bundle T'S?" of the 2n-dimensional sphere using the Levi-Civita connection of the
standard euclidean round Riemannian metric (,) of constant sectional curvature 1.
The curvature in then given by the formula

FNy(Z) = (Y, 2)X —(X,2)Y

for every X, Y, Z € Q0(TS?").
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Let {v1,va,...,v2,} be a positively oriented smooth local orthonormal frame of
TS* on U = 52"\ {e,41} and {v},v3,...,v5,} be its dual. For every 1 < j < 2n we
have

2n
FYy (o)) = (Vo)X — (X, 05)Y =3 (<X, w) - (Y.5) — (X,05) - (¥, vk>)vk

k=1

2n
=> (v AV (X,Y) - v
k=1

Therefore

v
F¥y = (v /\U;)gk,jgm

and on U the Euler class is represented by the smooth closed 2n-form
Pf<%> ~ 2mnl(2m)n D (58100050 Aoy A A1) AVpony

UL AVE AN AUs, g A VS,
It follows that

/ Pf<F_V>_ SN ) I N . | XV
g2n 27 npl2m)" T(n+3)  22'n! T(n+3)

—2npl(27)n

: 21t t41 :
Since I'(t) = —=T'(Z)I'(—=—) for every t > 0, taking t = 2n we get
™

VT2 2
Voo 22"D(n)  22'p)

I(n+1) I'(2n) (2n)!”

Substituting we arrive at

which means that e(7'S?") is twice the standard generator of H?*(S?";R).

For n = 1 it follows from the above that for every Riemannian metric on S? with
Gauss curvature K of the corresponding Levi-Civita connection we have

Kvol(S?) = 271'/ e(T*S?) = 4.

52 52

This is the Gauss-Bonnet Theorem for the 2-sphere. The Gauss-Bonnet Theorem
for the 2-torus 7% = S x S! takes the form

Kvol(T?) = 271'/ e(T*T?) = 0,

T2 T2

by Theorem 2.6.5, because T2 is parallelizable.
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We shall conclude this section with the statement and proof of the Gauss-Bonnet
Theorem for oriented compact 2-manifolds. Let M be an oriented compact Rieman-
nian 2-manifold with Levi-Civita connection V. We shall use the notations of the
end of Example 2.6.3. The total space T'M of the unit tangent bundle of M
can be identified with the set L of triples (z,v1,v9), where x € M and (v1,vs2)
is an ordered positively oriented orthonormal basis of T, M, through the bijection
f: L — T'M with f(z,v1,v2) = (z,v1). In other words, the unit tangent bundle
of M can be identified with the frame bundle of positively oriented orthonormal
frames. There is a natural smooth action of S' on T'M defined by the diffeomor-
phisms Ry : T'M — T'M with

Ry(x,v1,v2) = (x,c08 ¢ - v +sin¢ - vg, —sing - vy + cos ¢ - v2)

for all e € S,

Let U C M be an open set which is diffeomorphic to R? and let (e,ez) be an
ordered positively oriented orthonormal frame on U. Let (61,62) be its dual frame
with respect to the Riemannian metric. If (é1,é3) is a second ordered positively
oriented orthonormal frame on U with dual frame (él,éQ), there exists a smooth
function 7 : U — R such that

é1(x) = cosT(x) - e1(x) +sinT(x) - ea(x)

éo(x) = —sin7(z) - e1(x) + cos 7(x) - ea(x)

and correspondingly

01(x) = cosT(x) - O1(x) + sinT(x) - O2(x)

Oy(z) = —sint(x) - 01(z) + cosT(z) - ()

for every x € U. Of course vol(M)|y = 61 A Oy = 01 A 5.
If A and A are the corresponding connection forms on U and

0 w - 0 w
a=(55) 4= (5% o)

then w = w — d7, by uniqueness, because

dfy = —(w—dr) Nby, dby = (w—dr) A6y
On T'M we consider the smooth 1-forms w, wo defined by

(wj)(x,vl ,02) (’U)) = <vj ) p*($7’l}1,1}2) (’U))>

for w € T(m}lm)TlM, (z,v1,v2) € T'M, j = 1,2, where (,) is the Riemannian
metric on M and p : T*M — M is the unit tangent bundle projection. It is useful
to find local expressions of wy, wy on p~Y(U). The map hy : U x S* — p~1(U)
defined by

hy(z.€?) = (z,cos ¢ - e1(x) +sing - ex(x), —sin ¢ - e1(x) + cos ¢ - ea(x))
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is a diffeomorphism and pr = po hy : U x S' — U is the projection. It follows from
the definitions that

(hy)*wy = cos ¢ - pr*fy + sin ¢ - pr*bs

(hy)*we = —sin¢ - pr6y + cos ¢ - prrs

and therefore
(hU)*(w1 /\WQ) = p?“*((gl A 62)

or equivalently
w1 A walp-1y = p* (01 A 62) = p*(vol(M)|v).

Since U is an arbitrary open subset of M diffeomorphic to R?, it follows that
w1 Awg = p*(vol(M))

on T1M.

Lemma 2.6.7. There exists a smooth 1-form o on T*M such that
(i) dw; = —a Aws and dwy = a A wy,

(ii) doa = p*(Pf(FV)) on T'M and

(iii) o is invariant under the smooth action of S* on T'M.

Proof. Using the above notations, let again U C M be an open set which is diffeo-
morphic to R2. Differentiating we see that

(hy)*(dwy) = —(priw —do) A (hy)*we, (hy)*(dwe) = (priw — do) A (hy) wy.

If hy is taken from another frame (é1,é2) on U, then

(hi' o hu)(@, ') = (2, + (x))
and so d¢ = d + dr, from which follows that
(h[_]1 o iLU)*(pr*w —do) =priw — dqg

since @ = w — d7. This means hat there exists a globally defined smooth 1-form «
on T'M such that

aly-1w) = (hy)* (pr'w = do) = p'w = (hy')" (d9)
for every open set U C M diffeomorphic to R?. Differentiating
daly-1 ) = p*(dw) = p* (PEHFY) ).
Finally, it is evident from the definitions that
(hi' o Rg o hyy)(x,€'?) = (a, ! 9+h))

from which follows immediately that o is invariant unser the action of S'. O
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The tangent bundle of M is actually a smooth complex line bundle over M,
because U(1) = SO(2,R). In section 3.2 we shall generalize the above construction
of a to any smooth complex line bundle over a smooth manifold.

Let now I C R be an open interval and ¢ : I — M be a smooth curve
parametrized by arclength. For the lifted smooth curve v : I — T'M defined
by v(s) = (o(s),d(s)) we have y*w; = ds and v*wy = 0. There exists a unique
smooth function x : I — R such that

*

Y'a = —k(s)ds

which is called the geodesic curvature of o. Locally, on an open set U C M
diffeomorphic to R? with respect to an ordered positively oriented orthonormal
frame (e1,e2), if o(I) C U, there exists a smooth function ¢ : I — R such that
hit (v(s)) = (c(s), €®®)) for every s € I. The smooth map €' : I — S is the angle
between e; and ¢ and

—k(s)ds = v a = (hyt o y)*(priw — do) = c*w — d¢
as the proof of Lemma 2.6.7 shows.

Theorem 2.6.8. (C.F. Gauss - P.O. Bonnet) If M is an oriented compact Rie-
mannian 2-manifold with Riemannian volume form vol(M) and Gauss curvature
K : M — R, then

/ K -vol(M) = 2nx(M).
M

Proof. The assertion has been proved in case M is the 2-torus T2, by Theorem
2.6.5 (and in the case of the 2-sphere, by Example 2.6.6). Let V = T2\ Dy U Do,
where D, Dy C T? are two disjoint closed discs with smooth boundary. Since 72
is parallelizable, there exists a global ordered positively oriented orthonormal frame
(e1,e2) on T2, If ¢; is the angle between e; and 9D; and ; is the geodesic curvature
of 0Dj, j = 1,2, we have

/ K-volM)=— [ K-voM)=— [ K-vol(M)= [ K-vol(M)
v T2\V Dy Do

:—/ dw—/ dw:—/ w—/ w
D, Do 0D 0D,

= [, o= mnds— [ (@0 ra(s))is

0D>

=27+ / k1(s)ds — 2w + / Ko(s)ds.
0D, 9D2

Suppose now that the genus of M is g > 1. Then,

M:V()leU"'UVgUVngl
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where Vj, V41 are closed discs with smooth boundaries OVy = Cp, 0Vyy1 = Cyy1,
and each Vj is diffeomorphic to V for 1 < j < g with 9V; = C; U C} so that
C% = —Cj+1 homologically, 0 < j < g. We have

g+1

/MK-vol(M) :jZ::O/VjK-vol(M).

If k; denotes the geodesic curvature of C; and /{9 the geodesic curvature of C]’», we

have
K -vol(M)+ [ K -vol(M)
Vo Wi
= 271'—/ Ko(s)ds —47T+/ m(s)ds—l—/ Kk (s)ds
Co ol o
=2m — 47 — / Ko(s)ds.
C>
Similarly,

K -vol(M) + K -vol(M) =2r —4nx +/ Kkg(s)ds.

\Z Vg+1 Cy
For 2 < 5 < g— 2 we have
K -vol(M)+ | K -vol(M)
Vj Vi1
= —4r +/ k;(s)ds +/ kj(s)ds — 4m +/ k;(s)ds +/ kj(s)ds
tef C; Cj+1 G+1

= —4r 4+ / kj(s)ds — 4w + / K5 (s)ds.
o

J Jj+1
Consequently,
/ K -vol(M) = 4r — 4wg = 2nx(M). O
M

In purely topological terms the Gauss-Bonnet Theorem can be stated as follows.

Corollary 2.6.9. If M is an oriented compact 2-manifold, then

/e(T*M):X(M). O
M
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2.7 The splitting principle for complex vector bundles

The notion of vector bundle is a special case of the more general notion of fibre
bundle. A fibre bundle is a quadruple (E,p, M,F) where E, M and F are
topological spaces and p : E — M is a continuous onto map such that there exists
an open cover U of M consisting of open sets U C M for each of which there
exists a homeomorphism hy : p~'(U) — U x F such that pr o hy = p, where
pr: U x F' — U is the projection. The space F is called the total space, the space
M is the base space and F' is the fibre. Each homeomorphism like hy is a local
trivialization of the bundle on U. The fibre bundle is said to be smooth if E, B
and F are smooth manifolds and p : £ — M is a smooth map. It is obvious from
the definitions that a vector bundle is fibre bundle with fibre a vector space and
local trivializations which are linear on fibres. The fibre bundle (M x F,pr, M, F)
is the trivial fibre bundle over M with fibre F'.

Examples 2.7.1 (a) If ¢ = (F, p, M) is a real vector bundle of rank n equipped with
an inner product (,) and we put S(&) = {v € E : (v,v) = 1}, then (S, p|s, M, S" 1)
is a fibre bundle, which is called the corresponding sphere bundle of £. Indeed,
if U C M is an open set over which ¢ is trivial, then applying the Gram-Schmidt
orthogonalization process to any local frame of £ on U we obtain a local trivialization
of p|s on U.

(b) Let £ = (E,p, M) be a (real or complex) vector bundle of rank n and

PE)={(z,0):xeM and (€ Pp z)}

where P(p~!(z)) denotes the projective space corresponding to the vector space
p~(z). The projection ¢ : P(§) — M with ¢(z,¢) = x is a fibre bundle map. The
total space is P(£), base space M and fibre RP"~! in case ¢ is real or CP" 71 if ¢
is a complex vector bundle. This is the projective vector bundle which corresponds
to £. If the initial vector bundle £ is smooth, then its corresponding projective fibre
bundle is also smooth.

In the case of a vector bundle the total space and the base space have the same
homotopy type and actually (a copy of) the base space is a strong deformation
retract of the total space. This is not the case in general for fibre bundles. If
(E,p, M, F) is a smooth fibre bundle, then on H*(E;R) one can define an exterior
multiplication

- H(M;R) ® H*(E;R) - H*(E;R)

by setting a - e = p*(a) ANe, for a € H*(M;R), e € H*(E;R). In this way the
cohomology algebra H*(E;R) of the total space becomes a graded module over the
graded cohomology algebra H*(M;R) of the base space.

Theorem 2.7.2. (J. Leray and G. Hirsch) Let (E,p, M, F) be a smooth fibre bundle.
We assume that H*(F;R) is a finite dimensional vector space and that there exist

ni,..., i, € N and cohomology classes e; € H" (E;R), 1 < j <k, such that

{ej|p*1(a:) j = 1,2,...,](5}



2.7. THE SPLITTING PRINCIPLE FOR COMPLEX VECTOR BUNDLES 55

is a basis of H*(p~1(x);R) = H*(F;R) for every x € M. Then, H*(E;R) is the
free H*(M;R)-module with basis {e1, ...,ep}.

Proof. Let V be an open cover of M consisting of open subsets of M over each
of which the fibre bundle is trivial. Let also U/ denote the family of all open sets
U C M such that the assertion is true for {|yy. By Proposition B.1 in the appendix
to this chapter, it suffices to prove the following:

(i) @ el.

(ii) If V. € YV and U C V is an open subset of M diffeomorphic to R™, where
m =dim M, then U € Y.

(iii) If Uy, Uy € U are such that Uy NUs € U, then U; UU; € U.

(iv) If {U, : n € N} is a countable family of mutually disjoint elements of U,

o0

then | J U, e U.
n=1
The first point is trivially true as well as the second, because H*(R™ x F;R) &
H*(F;R) is a real vector space, hence a free H*(R";R) = R-module. The fourth

point is also clear from the facts

H(|JUuR) = [[ H (UsR) and H*(p (| J U.siR) = [[ B (0 (Un)iR)
n=1 n=1 n=1

n=1

and our assumption. The non-trivial point of the proof is (iii) which can be proved
using Mayer-Vietoris sequences. For simplicity of notation we denote £y = p~!(Uy),
Ey = p1(Uy) and E12 = p~1(U; NU3). Let also U = Uy UUs and Ey = p~}(U).

We have the two Mayer-Vietoris long exact sequences
o HI Y (B9 R) S HI(Ey; R) - HY(Ey; R) @ HY(Ey; R) s - -

S HIY UL N Uss R) S HI(U; R) - HI(U; R) @ HI(Un; R) -2 - -

k

If Zaj-ej =0 in H*(Ey;R), where a; € H*(U;R), 1 < j < k, then a; = 0,
j=1
1 <j <k, because this holds in H*(E;;R) and H*(Ey;R).

It remains to prove that for every e € H*(Ey;R) there exist a; € H*(U;R),
1<j<k,suchthate=aj-e;+---+ag-¢ in H(Ey;R). If 41 : By — Ey and
i9 : F3 — Ey are the inclusions, then our assumption implies that ij(e) and 5(e)
can be written as

k k

ij(e) = Zajl- -e; and i5(e) = Za? - €.

J=1 J=1

If g1 : F1o — E1 and g9 : E19 — E», it follows by exactness of the first Mayer-
Vietoris sequence that
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and therefore g7 (a;) = g5(a;), 1 < j < k. By exactness of the second Mayer-Vietoris
sequence, there are a; € H*(U;R), 1 < j <k, such that I(a;) = (a},a?) for every

1 <j < k. Hence
k
I(e—Zaj-ej)ZO
j=1

k
and e — Z a; - ej € Imd*, by exactness. Thus, it suffices to prove the assertion in
j=1
Imod*. This follows from the assumption that it holds on Fq2 and the formula
6" (a - ijy(e)) = 6%(a) - e

for every a € H*(U;R) and e € H*(Ey;R), where i12 : Ej9 — Ey is the inclusion.
This formula follows immediately from the formula giving the connecting homo-
morphism §* using a smooth partition of unity {fi, fo} subordinated to the open
cover {Uy,Us} of U and the induced partition of unity {fi o p, fo o p} subordinated
to the open cover {E1, Es} of Ey. O

Of course in the preceding Theorem 2.7.2 we could have used cohomology with
complex coefficients. We recall now that for every n € N the canonical inclu-
sion j : CP' — CP™ with j[z0,21] = [20,21,0,...,0] induces and isomorphism
j* + H*(CP™,C) — H?*(CP';C) (also in cohomology with real or integer coeffi-
cients). Actually, if X generates H2(CP';C) = C, then (j*)~!(X) generates the
cohomology algebra of CP™. If v,, = (Hn,,p, CP™) is the tautological complex line
bundle, then j*v,, = 1. Since the Chern classes are natural, from Example 2.4.4
we conclude that

i (er(m)) = a(f*m)) = ci(n) = =X #0

and hence ¢ (7,) = —(5*)"}(X) # 0.

Let £ = (E,p, M) be a smooth complex vector bundle of rank n + 1 and let
(P(£),q, M,CP"™) be the corresponding projective fibre bundle of Example 2.7.1(b).
There exists a smooth complex line bundle ¢ = (H, 7, P(§)), where

H={(z,l,v): (x,0) € P(§),v €}

and 7(z,¢,v) = (x,£). In case M is a singleton this is just the tautological complex
line bundle v, over CP™. We consider any smooth hermitian inner product on
&. This induces a smooth hermitian inner product on ¢*¢ and we have a splitting
q*¢ = ¢ @ ¢t where the total space of ¢t is Ht = {(z,£,v) : (z.£) € P(£),v € £1}.

¢FE — FE
P
Ple) L M

Let e = c1(¢) € H2(P(£);C). Since the restriction of ¢ on a fibre ¢~!(x) is isomor-
phic to the tautological complex line bundle v,, we conclude that e[,-1(,) is (minus)
the generator of H?(q~!(x);C). This implies that the set of cohomology classes

{1,e,...,e"}



2.7. THE SPLITTING PRINCIPLE FOR COMPLEX VECTOR BUNDLES 57

in H*(P(¢); C), where powers are taken with respect to the wedge product, satisfies
the assumptions of Theorem 2.7.2. Thus, H*(P(£);C) is the free H*(M;C)-module
with basis {1,e,...,e" }. In particular, for every a € H*(M;C) we have

¢"(a) =q" (@) N1 =a-1e H(P();C)
and so ¢* : H*(M;C) — H*(P(£);C) is a injective.

Theorem 2.7.3. (Splitting Principle) If ¢ = (E,p, M) is a smooth complex vector
bundle of rank n, then there exist a smooth manifold N, a proper smooth map
f: N —= M and smooth complez line bundles {; = (Ej,p;, N), 1 < j <n such that
(i) f*: H*(M;C) — H*(N;C) is injective and
(i) 626D @&
Proof. Let (P(£),q, M,CP" 1) be the corresponding projective fibre bundle and let
¢ = (H,7,P(£)) be the smooth complex line bundle which was defined above. We

have the commutative diagrams

¢E — FE GHY) — HE
l , lp and l ., lm
PE) — M P(HY) — P(§)

and ¢ ¢t is isomorphic to the direct sum of a complex line bundle and another
complex vector bundle (like ¢*). This implies a splitting

(qoq)é=6 &0l
where & = ¢ and & are complex line bundles. Moreover, the homomorphisms
¢+ H*(M;C) — H*(P(£);C) and ¢} : H*(P(£);C) — H*(P(¢1);C) are injective
and hence so is (goq1)*.
Repeating this construction we get a finite sequence of smooth proper maps

dn—1

P, 5 Bp By = P(O)-LM

such that each ¢; induces an injective homomorphism in cohomology and

(qoqio-q)) (=& DED - B aE

for 1 < j < n — 1, where &, &,..., {41 are smooth complex line bundles. Setting
f=qoqio---qu_1 and N = P,_1 the assertion follows. [J

The combination of the preceding Theorem 2.7.3 with Theorem 2.6.4 yields
that the Chern classes of a smooth complex vector bundle are actually real.

Corollary 2.7.4. If £ = (E,p,M) is a smooth complex vector bundle over a
smooth manifold M, then cy(¢) € H**(M;R) for every k € Z+. O

Corollary 2.7.5. If ¢ = (E,p, M) is a smooth complex vector bundle of rank n,
then ¢ (&) =0 for k >n. O
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In particular, for the tautological complex line bundle -, over CP" we have
ck(v) = 0 for k& > 1. From the Splitting Principle we obtain the following
characterization of the Chern classes.

Theorem 2.7.6. For every smooth manifold M there exists exactly one set consist-
ing of cohomology classes cx(€) € H**(M;R), k € Z*+, for each isomorphic class of
smooth complex vector bundles & over M with the following properties:

(i) / c1(1) = =1 and co(n) =1, ck(vn) =0 for k > 1 and for every n € N.
(ii) J(”C*]?ck(f)) = ci(f*(&)) for every smooth map f: N — M.
k

(iii) cx(61 @ &) =Y cj(&1) Aew—j(&).
7=0
Proof. From what we have proved so far in this and the previous sections only
the uniqueness needs proof. Suppose that we have a set of cohomology classes cg,
k € Z*, with the properties (i), (ii) and (iii). From (i) we have immediately that
c1(71) is the first Chern class of ~;.

Let now £ = (L, p, M) be a smooth complex line bundle over M. There exists a
smooth complex vector bundle £ over M such that & & & = "+1 We consider the
smooth map f: M — CP™ with f(x) = pr(L;), where pr : M x Cntl — L s
the projection. In the commutative diagram

L Low,
I
M L cpr

each f|, is a linear isomorphism for every z € M, which implies that f*(y,) = &
and from property (ii) we have ¢1(§) = f*(ci(vn)) and cx(§) = 0 for & > 1.
These show that properties (i) and (ii) determine uniquely the Chern classes for
smooth complex line bundles. Using inductively property (iii), it follows that
ci(&1®- - - ®&y) is uniquely determined from ¢ (§;), 1 < j < k, for every finite family
&1,..., &, of smooth complex line bundles. From Theorem 2.7.3 it follows immediately
that ¢ (€), k € Z™ is uniquely determined for every smooth complex line bundle £. [J

The total Chern class of a smooth complex vector bundle £ = (E,p, M) is by

definition
o0

(&) = cl(§) € H*(M;R).
k=

O

In case £ is a line bundle, then ¢(§) =14 ¢1(§). =& -+ D E,, where &y,..., &,
are line bundles, then

n

= H (1 + Cl(fk)) = Uk(01(§1), ---7cl(§n))
k=1

k=0

and therefore ci (&) = o1 (c1(£1), ..., c1(&,)) for every k € Z+.
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Analogously, the total Chern character of £ is defined to be

o0

ch(€) =) chi(€) € H*(M;R)

k=0

and
n

chi(€) =) chi(¢)) stw

7=0
by Proposition 2.4.5(a) and Example 2.4.4(a). Therefore,

n

ch(€) = Z ec1(&5)

j=1

where for a € H?(M;R) we have put

=1
Zk—a e H*(M;R).
k=0

2.8 Pontryagin classes

Let £ = (E,p, M) be a smooth complex vector bundle of rank n. Recall that from
it we derive its conjugate bundle ¢ and its dual bundle ¢* which are isomorphic.
The Chern classes of £ and £* are related as follows.

Proposition 2.8.1. If £ = (E,p, M) is a smooth complex vector bundle of rank n,
then ci(€*) = (=1)kc(€) for every k € Z+.

Proof. There exists a hermitian inner product on £ and a compatible connection V,
which is also a connection on &. The connection form A of V with respect to an
orthonormal local frame of £ is skew-hermitian, that is A" = —A. The curvature
FY =dA + AN A is also skew-hermitian. An orthonormal local frame of ¢ is also
orthonormal for ¢ and the corresponding connection form of V is A. Thus, the
connection form of FV on £ is FV = —(FV)T. Thus,

— -1— 1
= —FV || = —(FVT ).
0 o2 - o )
On the other hand, for every B € C™*™ we have
det(I, — tBT) = det(I, — tB) = Y ox(B)(~t)"
which means that oy (—BT) = (=1)k0(B), 1 < k < n. Therefore,

@ = [on (5 F77) | = 1t o (55T ) | = tat. O

211 211
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Let now £ = (E,p, M) be a smooth real vector bundle of rank n and let {c =
£ Rr e(%: be its complexification. Then,

Ec 2 EQREE 2 E®Rer 2 &,

because the map [ : £ Qg E<1C — £ ®r % defined by f(v ®r 2z) = v ®g Z is an
isomorphism of complex vector bundles since

fl(v@r 2)) = f(vRg (i2)) = v Qg (—iZ) = if (v QR 2).

Consequently, (&c)* = & = € ®r € = & Qret = (£%)c and it follows from
Proposition 2.8.1 that

ce(éc) = a((€9)c) = (b)) = (—1)Fex(&0).

Hence ck(¢c) = 0, if k is odd.
The cohomology classes

pe(&) = (-1)Fea(éc) € H™(M;R), ke Z¥,

are called the Pontryagin classes of the real vector bundle £. The total Pontryagin
class of £ is by definition

p(€) =Y pr(6) € H*(M;R).
k=0

If now £ is a smooth complex vector bundle, then the Pontryagin classes of the
underlying real vector bundle and its Chern classes satisfy certain quadratic poly-
nomial equations. To see this, let pr, = pi(§r) and ¢, = ¢x(€). Then, ({r)c = B EF,
by Lemma 1.5.1, and so

2k

pe=(—1fen(¢®&) = (-1)" Z (=1)7¢j (&) A can—j ().

§=0
If we consider the total classes, we have
l=pr+pr—+()"pp=04c1+ca+ - +cu) Al—c1+ca—-+(=1)"cp).

Specifically, p1 = ¢ — 2c2, p2 = 3 — 2c1c3 + 2¢4, etc, where the powers are taken
with respect to the wedge product. These polynomial equations can serve as ob-
structions for a smooth real vector bundle of even rank to admit a complex structure.

Example 2.8.2. We shall calculate the Chern classes of the tangent bundle of the
n-dimensional complex projective space CP™, which is a complex manifold and so
its tangent bundle TCP" (when CP" is considered as a real smooth 2n-manifold)
is a smooth complex vector bundle of rank n. We shall need a generalization of
the canonical atlas of CP". With the term line we mean a 1-dimensional (complex)
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linear subspace of C"*1. For each line /£ let g, : Hom (¢, #+) — CP™ be the map which
sends ¢ € Hom(¢, /1) to its graph. The orthogonal complement ¢ is considered
with respect to the usual hermitian inner product and Hom = Home. Obviously,
g¢(0) = . For instance, if ¢ is the line which is generated by (1,0,...,0), then
¢+ = {(0,21,...,20) : 21,...,2n € C} and the map which sends ¢ € Hom(¢,¢*) to
#(1,0, ...,0) establishes an isomorphism Hom(¢, ¢+) 22 C". Using this identification,
we have go(¢) = [1,uq, ..., up], where ¢(1,0,...,0) = (0,uq,...,u,). Similarly, if ¢ is
generated by (0, ...,0,1,0,...,0), using an analogous identification we have

gg((ﬁ) = [ula ceey 15 ceey un]

where ¢((0,...,0,1,0,...,0) = (uq,...,0,...,u,). The image of g, is the set U, of
points in CP", which as lines in C"*! are not orthogonal to £. The pair (Uy, g;) is
a holomorphic chart of CP™.

Let 7# = (HL,pt,CP™) be the smooth complex vector bundle with total space

HE={(t,u) e CP" x C"! .y e ¢t}

and pt the obvious projection. Then, v, ® ;- = ngrl >~ el @ D et Moreover,
Hom(v,, ;") = TCP™. Such a vector bundle isomorphism is for instance the map
which restricted on the fibre over ¢ € CP"™ is the complex derivative of gy, at 0. We
recall also that Hom (7, 7,) = e}c, since 7, is a line bundle. Now we have

TCP" @ et = Hom (7, v, ) ® Hom (v, vs) = Hom (v, v @ ) = Hom (v, ef™)

2 Hom(yn, ¢ & -+ & ec) = Hom(, e¢) @ -+ & Hom(yn, ep) 2 @ - @ ;1.
According to Proposition 2.8.1, the total Chern class of TCP™ is

n+1
1
{TCP") = (TCP" o) = o)™ = (1=ea () = Y- -1F (" 1) caton)t
k=0
where powers are considered with respect to the wedge product. Hence

e (TCP) = (~1)* ("jg 1) em)f £0, 0<k<n.

Example 2.8.3. We can use the calculation of the preceding Example 2.8.2 in order
to prove that CP?" is not the boundary of any compact smooth (4n + 1)-manifold
with boundary for all n € N. Suppose that there exists a compact smooth (4n + 1)-
manifold M with boundary M = CP?" and let j : CP?" — M be the inclusion.
From the existence of collar along M we conclude that

TOM @ ek = j*(TM).
Complexifying, it follows that

(TCP*)r)c ® et = j*((TM)c).
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From Lemma 1.5.1 and the calculations of Example 2.8.2 we have
(TCP™)R)c & & = (TCP™ @ eb) @ ((TCP™)" @ k)
2V @ DV D V2n D D Yo

The total Chern class is

((TCP*™R)c) = (1 = c1(y2n)™™ T A (1 + e1(720))”" T = (1= (c1(720)*)*"

=S 0t ()

k=0
If w € A (M) represents ca,((T'M)c), then

2n+1

%] = 3" (en(TM)) = a7 (TA) = (-1 (P

) ) 0.

It follows now from Stokes’ formula that

OZ/dw:/ Jfw # 0.
M oM

This contradiction proves the assertion.

Example 2.8.4. The non-triviality of the Chern or the Pontryagin classes can be
used as obstruction to embedding smooth manifolds into euclidean spaces. As an
illustration, we consider CP. Let X denote the standard generator of H?(CP*;R).
The calculation of the preceding Example 2.8.3 gives

((TCPYR)c) = (1 — X35 =1-5X% +10x*

in the cohomology ring H*(CP*;R).
Suppose that CP?* can be smoothly embedded in R”, where n > 9 is a positive
integer. There is a normal bundle ¢ over CP?* such that

(TCPYR @ € = TR|cps = €B.

From Proposition 2.4.5(b) we obtain c¢(((TCP*)g)c) A c(éc) = 1 and therefore

1
c(éc) = Txep Lt 5X° +15X*

in H*(CP*R). Since 5X2 and 15X* are non-zero in H*(CP* R) and H%(CP*R),
respectively, this implies that & must be of rank at least 4. In other words, CP*
cannot be embedded in R,

Example 2.8.5. If { = (E,p, M) is an orientable real smooth vector bundle of rank
2n, then from the definitions and Theorem 2.6.4 we have

Pa(€) = can(éc) = e((éc)r) = (€@ €) = e(€)”.
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Example 2.8.6. A (complex or real) vector bundle ¢ of rank n is said to be
stably trivial, if there exists k € N such that £ @ € = €'k, For instance the
tangent bundle T'S™ of the n-sphere is stably trivial for every n € N, because
the normal bundle of S in R™! is trivial and so T'S™ @ ¢! = 1. From
Proposition 2.4.5(b) follows that the Chern classes of a stably trivial smooth com-
plex vector bundle are trivial. Similarly, the Pontryagin classes of a stably trivial
real vector bundle are trivial. In particular, the Pontryagin classes of T'S™ are trivial.

Example 2.8.7. Using characteristic classes we can prove that the 4k-dimensional
sphere S* &k € N, does not admit any almost complex structure. We recall that
an almost complex structure on a smooth manifold M is a smooth vector bundle
endomorphism J : TM — TM such that J? = —id. If M admits an almost complex
structure J, then each tangent space T, M, x € M, becomes a complex vector space
and M must be even dimensional. Also, J extends to a smooth vector bundle
endomorphism of (T'M)c = TM ®g €i- and there exists a smooth complex vector
bundle £ over M such that (T'M)c = £®E*. Actually, £ is the i-eigenspace of J and
£* is the (—i)-eigenspace of J. Note that &g = T M.

In case M = S* the rank of ¢ is 2k and from the previous Example 2.8.6 we

have
2k

0= (=1)*pp(TS™) = cop( B ") = Z%‘(@ A car—j(€7)

J=0

= 2 (€%) + car(€) = (= 1) ear (&) + can(€) = 2c1(€) = 2e(TS*),

by Theorem 2.6.4. Thus, e(T'S*) = 0, which contradicts the fact that e(7S*)
is twice the standard generator of H**(S%*:R), as we have calculated in Example
2.6.6.

Appendix
In the proof of Theorem 2.7.2 we have used the following.

Proposition B.1 Let M be a smooth m-manifold and let U be a set of open subsets
of M with the following properties:

(i) @ elU.

(ii) If U is an open subset of M diffeomorphic to R™, then U € U.

(iii) If Uy, Us € U are such that Uy NUs € U, then Uy UUs € U.

(i) If {U, : n € N} is a countable family of mutually disjoint elements of U,

then U U, elU.

n=1

Then, M € U.
The proof of Proposition B.1 relies on the following lemma.

Lemma B.2 With the assumptions of Proposition B.1, let {U, : n € N} be a
locally finite countable family of open and relatively compact subsets of M such that
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ﬂ Uj € U for every finite set J C N. Then, U U,elU.
jeJ n=1

Proof. First we show that finite unions of elements of the countable family belong to
U. Let n € Nand 4y,..., i, € N. We shall show by induction on n that U;, U---UU;,, €
U. For n = 1,2 this is true by property (iii) and our assumption (in case J is a
singleton). Let n > 3 and suppose that the assertion holds for finite subfamilies
with n — 1 elements. If V =U;, U---UU,,, then

n
U,nV=JU,nU, eu
k=2
from the inductive hypothesis. Moreover, from our assumption (iii) we have
Uy, u---ul;, =U;, UV el.

Since finite unions of elements of the countable family belong to U, for every
n € N and indices i1, j1,..., in, jn € N we have

Uuinu;, eu.
k=1

Now we define inductively I; = {1}, W, = U; and

n—1
ILn={n}u{ieN:i>n and UinWeya#e}\|JIn Wu=|]JU,
k=1 1€ln

for n > 2. If I,,_q is finite, then W,,_1 is relatively compact and intersects at most
finitely many of the elements of the countable family, since the latter is assumed
to be locally finite. Thus, inductively I,, is finite and W, is relatively compact and
belongs to U for every n € N. Moreover, W,, "W, 11 € U and W,, N W}, = @, if
k > n + 1, because otherwise there exists some ¢ € I, such that W, NU; # & and
thus ¢ € I; for some j < n + 1, contradiction. From property (iv) of U we have

<U W2k> n (U W%l) =JwWanWaeu
k=1 k=1

n=1

and from property (iii) the proof is concluded. O

Proof of Proposition B.1. In the beginning we consider the case where M is an open
subset of R™. Then there exists a locally finite countable open cover of M which
consists of open cubes (with edges parallel to the axis) and refines U. Any finite
intersection of open cubes is an open cube and thus again diffeomorphic to R™.
From property (ii) and Lemma B.2 follows that M € U.

In the general case, for every chart (U, ¢) of M the family

U®={Bc ¢(U): Bisopenand ¢ (B)elU}

has the properties (i), (ii), (iii) and (iv). Hence ¢(U) € U? and therefore U € U.
Now we take any locally finite countable open cover of M consisting of relatively
compact open sets which are domains of charts. Lemma B.2 gives immediately
MeUu. O



Chapter 3

Prequantization

3.1 Classification of complex line bundles

In this section we shall describe the smooth complex line bundles over a smooth
manifold M in terms of the cohomology of M. Let & = (L,p, M) be a smooth
complex line bundle and let &/ be an open cover of M consisting of open sets U
over each of which there is a trivialization hy : p~1(U) - U x Cof £&. IfU, V €U
are such that U NV # @, there exists a smooth map gyy : UNV — C*, called
transition function, such that

(hy o h‘_,l)(x, z) = (z, guv(x)z)

for every z € UNV and z € CX, where C* = C\ {0}. It is obvious that gyr = gy,
and gyw = guvgvw, fUNV NW # @.

We can change the local trivializations hy, U € U to new ones hy on each U so
that the new corresponding transition functions take values in S and are

quv
lguv |

quv =

Indeed, sy : U — L defined by sy(z) = hl}l(:v, 1) is a smooth local section and
guvsu(z) = sy(x) for every z € U NV. Choosing any hermitiam inner product on
¢ and defining hy : p~1(U) — U x C by

: su ()

hur <27> = (z,2)
s ()]

for every z € C, we have

(hy o by )z, 2) = hy <ZL> = hy (z guv(x) _ su ) - <x Mz).

[sv (@) lguv ()] Isu(@)]] guv (z)|

On the set of isomorphism classes of complex line bundles over a given smooth
manifold M, one can define a group structure induced by the tensor product of
complex line bundles. The inverse of the isomorphism class of the complex line
bundle ¢ = (L,p, M) is represented by its dual bundle &* = &, Indeed, there
exists an open cover U of M over the elements of which ¢ is trivial such that the

65
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corresponding transitions functions gyy for U, V € U with U NV # @& take values
in S'. Then, £*|y is also trivial for every U € U and the corresponding transition
functions are gyy. Since the transition functions for the tensor product £ ® £* are
guvgoy = 1, it follows that € ® £* 2 el. We shall denote by Pic® (M) the group of
smooth complex line bundles over a smooth manifold M.

We shall call an open cover U of the smooth manifold M admissible if for any
n € N and Uy,..., U, € U the set Uy N ---N U, is contractible, if non-empty. From
the existence of geodesically convex neighbourhoods with respect to a Riemannian
metric on M it follows that the set of admissible open covers of M is non-empty
and cofinal in the set of all open covers of M. Thus, every open cover of M has an
admissible refinement.

If now € = (L, p, M) is a smooth complex line bundle and ¢/ is an admissible open
cover of M, then |y is trivial for every U € Y. If U, V € U are such that UNV # &
with transition function gy : U NV — S1, there exists a smooth function fy :
UNV — R such that gyy = €>™/vv | because UNV is contractible. If UNVNW # @,
then the relation gyw = guvgyvw implies that ayyvw = fyw — fuw + fuv € Z,
since U NV N W is contractible, hence arcwise connected. Moreover, if U, V', W,
Y € U are such that UNV NIW NY # &, then

aywy — aywy +auvy —agvw = 0.

This means that a = (agyw) is a Cech 2-cocycle with respect to the open cover U
with integer coefficients and so defines a Cech cohomology class

o] € H*U;2) = H*(M;Z) = H*(M; Z),

since U is an admissible open cover of M.
If f;,y :UNV — R is another set of smooth functions such that
quy = e27rifUV — e27rif{]v7
then nyy = fuv — firy € Z. If a’ = (ayyw) is the corresponding Cech 2-cocycle,
we see that
ayvw = agyw + nov — nuw + nyw.

Thus, a = ' +0n, where n = (nyy) and § is the coboundary operator in Cech coho-
mology. Hence, the Cech class [a] does not depend on the choice of the logarithms
of the transition functions.

In the sequel we shall show that actually [a] € H?(M;Z) depends only on the
isomorphy class of the line bundle. Suppose that £’ = (L', ¢, M) is a smooth complex
line bundle and h : L — L’ be a smooth isomorphism of complex vector bundles
over M. If U is an admissible open cover of M and hy are local trivializations for of
€|y and U € U with transition functions gy, then hyy o h~! are local trivializations
of ¢'|y with the same transition functions. Thus, it suffices to prove that if hy,
and hy;, U € U, are two sets of local trivializations with corresponding transition
functions gyy and gg;y,, then they define the same element of H?(U;7Z). The smooth
map hj; o hy : U x C— U x C is of the form

(hiy o hy)(z, 2) = (2, Bu(x)z)
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for some smooth function 8y : U — C* and for every x € U NV we have

(2, 9uv (2)Bv (2)2) = (hyohy')(z, 2) = (hyohy' )z, guv (2)2) = (z, Bu(z)guv (x)z).

Thus, Suguv = gy By on UNV. Since U is contractible, there exists a smooth
function py : U — R such that Sy = e*™U. There exist myy € Z such that

foviu = f(/]v+MV+mUVa where gbv = e?™fuv If now a/UVW = f\//W_f[,]W+f[/]Va
then

auyw — agyw = myw — myw + myy
which means that a = a’ + ém, if m = (myy). Hence [a] = [d'] € H*(M;Z).
Since the transition functions of the tensor product of two complex line bundles
over M are the products of the transition functions of the line bundles, we obtain a
well defined group homomorphism

c: Pic®(M) — H*(M;Z).

Theorem 3.1.1. ¢ is an isomorphism of abelian groups.

Proof. Let U be an admissible open cover of M and let {¢)y : U € U} be a smooth
partition of unity subordinated to U. In order to prove that c is injective, we need
to show that if £ = (L,p, M) is a smooth complex line bundle and ¢(§) = [a] = 0,
then ¢ is trivial. For this it suffices to construct a nowhere vanishing smooth global
section of . For each U € U let hyy be a trivialization of &|y and let gyy be the
corresponding transition functions. Since [a] = 0, there exists o € C'(U;Z) such
that a = do, that is

fvw — fow + fuv = avvw = ovw — ouyw + ouv

on UNV NW and using the same notation as above. Since oyy, oyw, oyy € Z

and (fyw — ovw) — (fuw — ouw) + (fuv — ouy) = 0, we may assume from the
very beginning that ayyw = 0 for every U, V, W € U such that UNV NW # &.
Let

dv =Y v fuv

Veu

for U € U. Then, ¢y — ¢y = fyy for every U, V € U such that UNV # &, because
agpyvw = 0 for every U, V., W € U such that UNV NW # @. Further, if we set
Bu = 2™V then By = gyv Py on U N V. This implies that the formula

s(z) = h;' (2, Bu(z)), forzeU,
defines a nowhere vanishing smooth global section s : M — L, because
(hv o by ') (x, By (2)) = (x, u(x))

for € U NV. This shows that £ = e}c.
In order to show that c is surjective, let a € C?(U;7Z) be a 2-cocycle. For each
pair U, V € U with U NV # & we define the smooth function

fov="Y" avywiw : UNV = R.
Wel
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Then,

fow—fow+fov =Y dyvlavwy — avwy +avyy) = (Z ¢Y> agvw = ayvw € Z
Yeu Yeu

on UNV NW. If we define
quv = GQMfUV :UNvV — Sl,

then gyyvgvw = guw on U NV NW. Since a is a 2-cocycle, taking U =V we have
aywy —aywy +apuy —ayyw =0 for all U, W, Y € U such that UNW NY # &,
which implies that
fov =Y avuyty = aypu € Z
Yeu
and therefore gyy = 1 for every U € U. There exists now a complex line bundle
over M having transition functions gyy, for U, V € U with U NV # &. For this it

suffices to take
L= H U x (C/N
Ueld

where (z, z) ~ (z, guv (z)2), if (z,2) € (UNV) x C, and take as vector bundle map
p: L — M the obvious projection. This concludes the proof. [

3.2 Connections on complex line bundles

Let £ = (L,p, M) be a smooth complex line bundle over a smooth manifold M and
v Q0() = AN (M;C) ®omarc) ()

be a connection. Let U be an open cover of M consisting of open sets over each of
which £ is trivial. On each U € U there exists a nowhere vanishing smooth section
ey : U — Land if gyy : UNV — C* are the corresponding transition functions,
then gyyvey = ey on UNV.

For each U € U we have a connection form wy € AY(U;C) which by definition
satisfies Vey = wy ® eyy. Thus,

guvwy ey =wy ®ey = Vey = V(guver) = dguv ® ey + guvwy @ ey

and therefore on U NV we have

_dguv
wy — Wy = .
guv

Conversely, given a set of smooth 1-forms wy € A (U;C), U € U, which satisfies
the above condition for every U, V € U with UNV # @, we can define a connection
on £ by setting

Vs =dfy ® ey + fuwy ® ey
on U, where s € Q(¢) and fy € C®(U;C) is the unique function such that s|y =
fueu. Indeed, on U NV we have gyv fiy = fu, because

fvev = slunv = fvev = fvguveu,
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and therefore
V(fvey) =dfy ® ey + frwy @ ey

dguv
= guvdfy @ ey + fvguvwy ® ey + fv - — ® (guveur)

= guvdfv @ ey + fowy ® ey + fvdguv ® ey
=d(fvguv) ® ev + fuwy @ ey
=dfy ey + fowy Qey = V(erU).

A connection on a smooth complex line bundle £ = (L, p, M) can be described
though a connection form on its associated principal C*-bundle (or circle bundle).
Let Lo = {v € L : v # 0}. The multiplicative group C* acts freely on Ly by scalar
multiplication and the orbit space of this action is M. Thus, F(&) = (Lo, p, M,C*)
is a fibre bundle from which £ can be recovered as follows. The multiplicative group
C* acts on Ly x C by

A (v, 2) = (Ao, A\2)

and the map f : Ly x C — L with f(v,2z) = zv is constant on orbits. So we get a
smooth diffeomorphism f : Lo Xex C — L, where Lo x¢x C denotes the orbit space.
If q[v, z] = p(v), then (Lo xcx C,q, M) is a smooth complex line bundle and f is a
vector bundle isomorphism.

The correspondence of F(§) = (Lg,p, M,C*) to £ is a functor F from the cate-
gory Ly of complex line bundles over M to the category of principle C*-bundles
Prr over M. In both categories the morphisms are the bundle isomorphisms over
M. Trivially, if f is a vector bundle isomorphism from £ to some complex line
bundle &', then F(f) = f|z, is a fibre bundle isomorphism.

Proposition 3.2.1. The functor F is an equivalence of categories.

Proof. We need to show that every object of Py; comes from Ly; and if &, £ are
two objects of Ly, then the corresponding map

Homyg,, (¢,¢") — Homp,, (F(£), F(£)

is bijective. The first assertion has already been shown above. For the second
assertion, it is easy to see that if two principle C*-bundles over M with total spaces
Ly and Lj, are isomorphic and f : Ly — Lo is such an isomorphism, then the map
f:Loxcx C— Liyxcx C with f[v, 2] = [f(v), 2] is a vector bundle isomorphism. []

According to Proposition 3.2.1, no piece of information is lost if instead of the
smooth complex line bundle £ we consider its associated principle C*-bundle F(§).
In order to describe a connection on & in terms of F(£), we note first that the
C-valued smooth 1-form

dz 1 9 . . . .

— = ﬁd(r ) +idf = d(log r) +idf, (in polar coodinates (r,8))

z
remains invariant under scalar multiplication with non-zero complex numbers. This
implies that there exists a unique invariant C-valued smooth 1-form 3, on each fibre
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p~Y(x) N Lo for x € M, such that if 7 : C* — p~!(z) N Lg is any C*-equivariant
smooth map, we have

T(Be) = %

where the action of C* on itself is the scalar multiplication, because if we have two
such C*-equivariant smooth maps 71, 7o : C* — p~!(z) N Ly and X\ = 7, (ma(1)),

then m(z) = 11(Az) for every z € C*. Thus, 7 (5;) = & implies that 75 (5;) = @
2 z

A connection form on F(§) is a C-valued smooth 1-form a on Ly which is invari-
ant under the action of C* and al,-1(3)nr, = B: for every x € M.

Let now U C M be an open set for which there exists a nowhere vanishing
smooth section s : U — Lg of £&. Let o : U x C — p~}(U) be the corresponding
parametrization o(x,z) = z-s(x), so that h = o~ ! is a trivialization of £|;;. Suppose
that a is a connection form on F(§). For every z € U we have

dz

*

oa = —

’{x}X(CX >

because 0|z cx is C*-equivariant. On the other hand, for every z € C* we have
0*alyx{z} = s*a, because a is C*-invariant. Consequently,

z
oc*a=s"a+ —.
z
Let t : U — Lo be another nowhere vanishing section of £ on U and 7(x, z) = z-t(z)
be the corresponding parametrization of p~!(U). There exists a unique smooth
function g : U — C* such that

“lor)(z,2) = (z,9(x)z)

(o
for every x € U and z € C*. In other words, 7 = o o p, where p(z, 2z) = (z,g9(x)z),
and

dz d
7a = p*(c*a) = p*(s¥a,0) + p*(0, —) = c*a + %
z g
These remarks imply that if we choose an open cover U of M consisting of open sets
U over which there exist a trivializations hy of |y with transition functions gyy,

then
dguv

hy')fa = (hy')*a+
(hy" ) a = (hy) v

and therefore there exists a unique connection on ¢ such that Vey = (h&l)*a ® ey,
for every U € U, where ey = h[_Jl(., 1).
Conversely, if we start with a connection V on &, using the same notation, we

put
d
ay = h*U <WU + —Z>
z

on every p~1(U) N Lg. A similar computation as above gives

dgyy  dz dz

h—l* — ladg v
(V)aU wy + +Z wV+Z

guv
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and thus ay = ay on p~1(U N V)N Ly. This means that we have a well defined
connection form a on F(&) such that

o+

which is unique with the property wy = ef;a for every U € U.

The curvature form FV of a connection V on the smooth complex line bundle
¢ = (L,p,M) is a C-valued smooth 2-form on M, because Hom(¢,§) is trivial.
Taking an open cover U of M as above we have

FV|U = dwy — wy A wy = dwy.
If a is the corresponding connection form on F (), it follows immediately that
da = (p|1,)*(FY)

and FV is unique with this property, since plry : Lo — M is a submersion.

3.3 Hermitian connections

Let £ = (L,p, M) bw a smooth complex line bundle over a smooth manifold M.
Since M is paracompact, there exists a smooth hermitian inner product h on &.
Given such a hermitian inner product, we recall that a connection V on £ is called
hermitian (or the other way round h is called invariant under V) if it is compatible
with A, that is
dh(s,t) = h(Vs,t) + h(s, Vi)

for every s, t € Q0(¢), where h(0 ® s,t) = 0 - h(s,t) and h(s,0 ®@t) = 0 - h(s,t) for
0 € AY(M;C).

The curvature form FV is then skew-hermitian and actually if ¢/ is an open cover
of M over each element U of which there exists a nowhere vanishing smooth section
ey : U — L and Vey = wy ® ey, we have

dh(ey,ey) = hwy ® ey, ey) + hiey,wy ® ey) = (wu +wu)h(ev, ev)
and so wy + wy = d(log h(ey, er)). Therefore,
FV + FV = dwy +dog =0

1
on U. In other words 2—F V is a real closed smooth 2-form on M, which represents

i
—c1(§)-
Let hy : p~H(U) — U x C be the trivialization of ¢|; such that ey = hy' (., 1). If
a is the connection 1-form on the associated principal C*-bundle F (&) = (Lo, p, M)

defined by V, then
. dz
a\U = hU <WU + ;),

as we saw in the previous section and so

aly + aly = hiy(d(log(h(ev, efr))) + d(log |2[*)) = d(log |H?)
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where |H|? : p~1(U) N Ly — [0, +00) is the smooth function defined by

|H[*(hyy (2, 2)) = h(zey (z), zeu (2)) = h(hy' (2, 2), (hy' (2, 2)).

In other words, |H|? is the quadratic form defined by the hermitian inner product
h, which is defined everywhere on L. Hence

a+a=d(log|H|?), on Ly
and since L is connected, |H|? is unique with this property, up to a constant.

Proposition 3.3.1. Given a connection V on & with corresponding connection
1-form a on the associated principle C*-bundle F(§), there exists an invariant
hermitian inner product h on £ if and only if a + @ is exact. In this case, the
mvariant hermitian inner product is unique, up to a constant.

Proof. The above considerations show that only the converse needs proof. Thus,
suppose that there exists some smooth function ¢ : Ly — R such that a +a@ = di.
Putting ¢ = ¥ we have

d
a+a= f, on L
and J .
f —a+a= h’&(wU+m+Wd(|z|2)>

on p~1(U) N Lg. If we fix a point € U and let y : C* — (0, +00) be the smooth
function defined by x(2) = ¢(h ' (z, 2)), it follows that

@, _
¢ |z

d
YX = (holp1) ™)

or equivalently d(log x) = d(log(|z|?)) on C*. Integrating, we conclude
log x(A2) — log x(2) = log [A2/? — log|2/?
or equivalently x(\z) = |A|?*x(z) for every A € C* and z € C*. Thus,

¢(\) = [APg(v)

for every A € C* and v € Ly.

For every u, v € p~!(z) N Lo there exists a unique A € C* such that u = \v. We
set then h(u,v) = Ap(v). If either u = 0 or v = 0, we set h(u,v) = 0. It is easy to
see now that h is a smooth hermitian inner product on &.

On U € U we have

d(log h(ey,ev)) = efr (%) = (eg o hyy) (wU HRC d(lzf)>

_ A _
=pr | wy +wy + EE = wy +wy
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and thus
dh(ey,ey) = wyhley,ev) + wuh(ev,ev) = h(Vey,eu) + h(ey, Ver).
Finally, if fi, fo: U — C are two smooth functions we compute
h(V(fiev), faeu) + h(frev, V(f2ev))
= h(df1 ® eu, faev) + h(f1Veu, f2ev) + h(frev, df2 @ ev)) + h(frev, f2Veu)

= fohlev,eu)dfi + fifoh(Veu,eu) + fih(eu,ev)dfz + fifoh(eu, Ver)
= fifah(eu, ev) + hleu, ev)d(fif2) = dh(fiey, faer). O

It is evident from the above that given a hermitian inner product h on the
complex line bundle &, then a connection V on £ is hermitian if and only if locally

wy + Wy = d(log h(ey, ev))

on every U € U. If we choose unit local sections, that is h(ey,ey) = 1 on U, then
wy + wy = 0 and wy is purely imaginary. If Ly = {v € L : h(v,v) = 1}, then
(L1,p|L,, M, S') is the associated principle circle bundle to & and this is equivalent
to saying that the corresponding connection 1-form a on L; is purely imaginary.

3.4 Integer cohomology classes in degree 2

Let M be a smooth manifold and Q € A2(M) be a (real) closed smooth 2-form.
In this section we shall be concerned with the problem of finding necessary and
sufficient conditions in order the cohomology class [)] € H?(M;R) to be equal
to ¢1(&€) for some smooth complex line bundle ¢ over M. We need to recall the
Cech-deRham isomorphism

H*(U;R) = H*(M;R) = H*(M;R)

in degree 2 for an admissible open cover U of M.

Since each U € U is contractible and € is closed, there exists wyy € A'(U) such
that Q|y = dwy. If U, V € U are such that U NV # &, there is a smooth function
fuv : UNV — R such that dfyy = wy —wy on U NV, because dwy = dwy on
U NV and the latter is contractible. If now W e f and UNV NW # &, then

dfvw — dfuw +dfyy =0, onUNVNW
and from the connectivity of U NV N W there exists ayyw € R such that

fvw — fow + fuv = apvw, onUNVNW.

It is obvious that a = (agyw) € C?(U;R) is a Cech 2-cocycle. In this way one
constructs the Cech-deRham isomorphism H?(M;R) = H?(U;R), which sends [{]
to [a]. It is well defined because if Q' is another representative of [Q], there exists
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some smooth 1-form n such that Q' = Q + dn. If f[,, are the smooth functions
corresponding to ¥, there are gy € C*°(U) such that w};; — wy = 1+ dgy and
therefore

df[I]V:deV+dgV_nga OnUﬂV,

Thus, Suv = fi;v — fuv + gu — gv is a constant on U N'V. Consequently,

agyw — avvw = Bvw — Buw + Buv, on UNVNW,

which means that o’ — a = 68, where 8 = (Buvw) € C*(U;R).

The inclusion ¢ : Z — R induces a homomorphism ¢? : H?(U;Z) — H*(U;R)
(and in any other degree). We say that the cohomology class [2] € H2(M;R) is
integer if there exists some admissible open cover U of M such that its corresponding
Cech class [a] € H?*U;R) under the Cech-deRham isomorphism belongs to the
image of €2, which is equivalent to fyw — fuw + fuy € Z for every U, V, W € U
such that UNV NW # @.

Proposition 3.4.1. The Chern class c1(€) of a smooth complex line bundle
€ = (L,p, M) over M is integer and actually c1(&) = —€e?(c(€)).

Proof. Let V be any connection on £. Let U be an admissible open cover of M.
For each U € U let ey : U — L be a nowhere vanishing smooth section of & and
corresponding transition functions gy : UNV — S, Let also wyy be the connection
form of V on U with respect to ey. Then,

d
wy —wy = gUV, onUNV

guv

and FV|y = dwy. From Corollary 2.7.4, the Chern class

a©) = | 7]

27

is real. Hence there exists a real closed smooth 2-form F' € A%(M) and a C-valued
smooth 1-form 1 on M such that

1
—FY =F +dn.
2mi
Since each U € U is contractible, there exists Fyy € AY(U) such that dfy = Fly. If
now gy = e2mfuv on U NV, then
1 dguv

1
F — F —_ — — —_ —
v—Fy =gl —wr) = oo P

= dfyv

on UNV. From the constructions of the Cech-deRham isomorphism and the
isomorphism ¢ : Pic® (M) = H?(U;7Z) follows immediately that c;(¢) = —e2(c(€)).
O
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The preceding Proposition 3.4.1 combined with the Splitting Principle for
complex vector bundles implies the following corollary.

Corollary 3.4.2. If £ = (E,p,M) is a smooth complex vector bundle over a
smooth manifold M, then the Chern classes c(£), k € Z, of € are integer. [

Corollary 3.4.3. If & and & are two smooth complex line bundles over the same
smooth manifold, then c1(& ® &) = c1(&1) + ¢1(&2). O

A combination of the Splitting Principle and Proposition 3.4.1 also gives the
following important property of the total Chern character which says that it is a
ring homomorphism from the K-ring of a smooth manifold to its cohomology ring
with rational coefficients.

Corollary 3.4.4. If £ and ( are two smooth complex vector bundles over the
smooth manifold M, then ch({ @ ) = ch(§) A ch(Q).

Proof. If £ has rank n and ¢ has rank m, then there are smooth complex line bundles
&1, .60,C1y ooy G over M such that E =26 B --- D&, and (= (LD - D (- Thus,

£ ¢=P&© ¢ and

k.l

ch(§®¢) = Z ch(ér ® @) = Z eC1(Er8Q)
k,l

, k.l

_ ; (&) +e1(G) — (Z ec1(6r) > (Z ec1 (@) > = ch(&) A ch(C)

from Proposition 2.4.5(a) and Corollary 3.4.3. [J
The converse of Proposition 3.4.1 also holds.

Theorem 3.4.5. (B. Kostant) Let M be a smooth manifold and Q0 € A*(M) a
real closed smooth 2-form on M. The cohomology class [Q] is integer if and only if

2mi§2 is the curvature form of a hermitian connection on some smooth complex line
bundle over M.

Proof. Only the direct needs proof, as the converse is Proposition 3.4.1. So, let [Q]
be integer. Using the same notation as in the beginning of this section with respect
to an admissible open cover U of M, we have

fvw—fuw+fuvEeZ, onUNVNW.

Putting gy = e*™/vv, for U, V € U with UNV # @, we have gyy = g;b, since
fuu € Z, and gyvgyw = guw- As in the last part of the proof of Theorem 3.1.1,
there exists a smooth complex line bundle £ = (L, p, M) with transition functions
guy with respect to U. Since

1 dguv

WV_WU:deV:%' o
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there exists a connection V on £ with curvature form 2mi€). It remains to show that
there is an invariant hermitian inner product on £. We consider the hermitian inner
product h defined by

h(h[_]1 (x,21), hEl (x,29)) = 2122

where hy is a trivialization of {|y;. This defines h globally, because |gyy| = 1. In
order to show that V is hermitian with respect to h, it suffices to check that

2miwy + 2miwy = d(log h(ey, ey))

where ey = hl}l(., 1) for every U € U. But this is trivial since both sides are equal
to zero, the left hand side of this equality being zero because wy = Q|y is real.



