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Chapter 1

Vector bundles

1.1 Complex and real vector bundles

A complex, respectively real, vector bundle of rank n is a triple ξ = (E, p,M),
where E and M are topological spaces and p : E → M is a continuous map such
that for every x ∈ M the level set p−1(x) is a complex, respective;y real, vector
space of dimension n and there exists an open cover U of M together with a family
of homeomorphisms hU : p−1(U) → U × Cn, respectively hU : p−1(U) → U × Rn,
U ∈ U , so that hU maps each level set p−1(x) linearly isomorphically onto {x}×Cn,
respectively onto {x} × Rn, for x ∈ U . The homeomorphism hU is called a local
trivialization of the bundle over U . The space E is the total space and M is the
base space of the bundle. The level sets Ex = p−1(x), x ∈ M , are called the fibres
of the bundle.

The vector bundle ξ = (E, p,M) is smooth, if E and M are smooth manifolds,
the bundle map p is smooth and it has a family of local trivializations consisting of
smooth diffeomorpisms.

Examples 1.1.1. (a) For every topological space M the projection onto the first
factor pr1 :M×Cn →M is a bundle map. The vector bundle ǫnC = (M×Cn, pr1,M)
is the complex trivial vector bundle of rank n.

(b) For every smooth n-manifold M its tangent bundle is a smooth real vector
bundle of rank n with total space TM and base space M . In this case the bundle
map p : TM → M is the canonical projection sending each tangent vector to its
point of application.

(c) LetM be a regular m-dimensional submanifold of the euclidean space Rm+n.
Let

E =
⋃

x∈M

{x} × (TxM)⊥ ⊂M × Rm+n

where the orthogonal complements are taken with respect to the euclidean inner
product in Rm+n. The map p : E → M with p(x, v) = x is a bundle map defining
a real smooth vector bundle over M called the normal bundle of M in Rm+n. One
way to construct local trivializations of p is the following. Let x0 ∈M . There exists
an open neighbourhood U of x0 on which there are smooth local coordinates. So,
on U we have smooth basic tangent vector fields X1,..., Xm to M . Let {v1, ..., vn}
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4 CHAPTER 1. VECTOR BUNDLES

be a basis of (Tx0M)⊥. There is now an open neighbourhood W ⊂ U of x0 such
that

det(X1(x), ...,Xm(x), v1, ..., vn) 6= 0

for every x ∈W . Applying Gram-Schmidt orthogonalization to the basis

{X1(x), ...,Xm(x), v1, ..., vn}

we obtain an orthonormal basis

{X̃1(x), ..., X̃m(x), Y1(x), ..., Yn(x)}
such that {X̃1(x), ..., X̃m(x)} is an orthonormal basis of TxM and {Y1(x), ..., Yn(x)}
is an orthonormal basis of (TxM)⊥ for every x ∈W . The map g :W×Rn → p−1(W )
defined by

g(x, t1, ..., tn) =

n
∑

j=1

tjYj(x)

is a diffeomorphism and h = g−1 is a local trivialization of p over W . This shows
that p is a vector bundle map.

(d) Let n ∈ Z+ and En = S2n+1 × C/ ∼, where

(z0, ..., zn, u) ∼ (λz0, ..., λzn, λ
−1u)

for λ ∈ S1. The projection pr1 : S
2n+1 × C → S2n+1 onto the first factor induces a

continuous map q : En → CPn, which defines a smooth complex bundle of rank 1.
A vector bundle of rank 1 is usually called line bundle.

There are local trivializations hj : q
−1(Uj) → Uj × C, 0 ≤ j ≤ n, of q over the

domains of the canonical atlas {(U0, φ0), ..., (Un, φn)} given by the formulas

hj([z, u]) = ([z], u).

The inverse of hj is given by

h−1
j ([z], u) = [

z

‖z‖ , u]

for [z] ∈ Uj. It is obvious that En becomes a smooth manifold and q a smooth
vector bundle map. The complex line bundle (En, q,CPn) is called the tautological
(or canonical) line bundle over the complex projective space CPn.

Similarly, there is a tautological real line bundle over the real projective space
RPn, where in this case the total space is Sn × R/ ∼, and (x, t) ∼ (−x,−t). In
particular, for n = 1 the total space is the Möbius strip and the base space is S1.

Let ξ1 = (E1, p1,M1) and ξ2 = (E2, p2,M2) be two complex, respectively real,
vector bundles. A vector bundle morphism from ξ1 to ξ2 is a pair (f̃ , f) of continuous
maps f :M1 →M2 and f̃ : E1 → E2 such that p2 ◦ f̃ = f ◦ p1 and f̃ maps linearly
p−1
1 (x) into p−1

2 (f(x)) for every x ∈ M1. In case the vector bundles are smooth we
say that the morphism is smooth if both f and f̃ are smooth.

E1
f̃−→ E2





y

p1





y

p2

M1
f−→ M2
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If ξ = (E, p,M) is a vector bundle and A ⊂ M , then the restriction of p on
p−1(A) is a vector bundle map over A and the pair of the obvious inclusions is a
vector bundle morphism from ξ to ξ|A = (p−1(A), p|p−1(A), A).

Two vector bundles ξ1 and ξ2 over the same base space M = M1 = M2 are
called isomorphic if there are vector bundle morphisms (f̃ , idM ) from ξ1 to ξ2 and
(g̃, idM ) from ξ2 to ξ1 such that g̃ ◦ f̃ = idE1

and f̃ ◦ g̃ = idE2
. In the sequel we

shall simply write f̃ instead of (f̃ , idM ) and f̃ : ξ1 ∼= ξ2 to denote that f̃ is an
isomorphism from ξ1 to ξ2. In the smooth case, ξ1 and ξ2 are called smoothly
isomorphic if f̃ and g̃ are smooth diffeomorphisms.

Lemma 1.1.2. Let ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) be two complex,
respectively real, vector bundles over the space M . If a vector bundle morphism
f̃ : E1 → E2 maps each fiber (p1)

−1(x) isomorphically onto the fiber (p2)
−1(x),

x ∈ M , then f̃ : ξ1 ∼= ξ2. If f̃ is smooth, then it is a smooth vector bundle
isomorphism.

Proof. Our assumptions imply that f̃ is a bijection. Thus, we need only show that
f̃−1 is continuous and smooth in the smooth case. If U ⊂ M is an open set and
h : (p1)

−1(U) → U × Cn and g : (p2)
−1(U) → U × Cn are local trivializations, then

F = g ◦ f̃ ◦ h−1 : U × Cn → U ×Cn

is an isomorphism of trivial vector bundles. Indeed, there is a continuous map
G : U × Cn → Cn such that F (x, v) = (x,G(x, v)) and G(x, .) ∈ GL(n,C) for
every x ∈ U . Also, taking the inverse in GL(n,C) is a smooth map and G(x, .)−1

depends continuously on x and smoothly in the smooth case. Since continuity and
smoothness are local properties, the conclusion follows. �

Example 1.1.3. Let Hn = {(ℓ, u) ∈ CPn × Cn+1 : u ∈ ℓ} and p : Hn → CPn

be the projection onto the first factor. The continuous map f : S2n+1 × C → Hn

defined by

f(z0, ..., zn, w) = ([z0, ..., zn], wz0, ..., wzn)

is onto and open. Moreover, f(z0, ..., zn, w) = f(z′0, ..., z
′
n, w

′) if and only if there
exists some λ ∈ C∗ such that z′j = λzj for all 0 ≤ j ≤ n and w′ = λ−1w. This

implies that f induces a homeomorphism f̃ : En → Hn such that p ◦ f̃ = q and
f̃(q−1(ℓ)) = ℓ ∪ {0} ⊂ Cn+1. Since (En, q,CPn) is a smooth complex line bundle,
the triple (Hn, p,CPn) becomes a smooth complex line bundle so that f̃ is a smooth
vector bundle isomorphism. This is an alternative version of the tautological line
bundle over the complex projective space.

1.2 Direct sums and inner products

Let ξ1 = (E1, p1,M1) and ξ2 = (E2, p2,M2) be two complex, respectively real, vector
bundles. Then, the triple (E1 ×E2, p1 × p2,M1 ×M2) is a vector bundle with fibres
p−1
1 (x1) × p−1

2 (x2), (x1, x2) ∈ M1 × M2, because if h1 : p−1
1 (U1) → U × Cn and
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h2 : p−1
2 (U2) → U × Cm are local trivializations, then h1 × h2 is local trivialization

of p1 × p2 over U1 × U2.
Suppose now that M =M1 =M2 and ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) are

two vector bundles over the same space M . We put

E1 ⊕ E2 = {(v1, v2) ∈ E1 × E2 : p1(v1) = p2(v2)}

and let p : E1 ⊕ E2 → M be defined by p(v1, v2) = p1(v1) = p2(v2). In other
words, p is the restriction of p1×p2 over the diagonal in M ×M . The vector bundle
ξ1 ⊕ ξ2 = (E1 ⊕ E2, p,M) is called the direct (or Whitney) sum of ξ1 and ξ2 and it
has fibres the direct sums of the corresponding fibres of ξ1 and ξ2.

It is evident that the direct sum of two trivial vector bundles is a trivial vector
bundle. However, the direct sum of two vector bundles neither of which is trivial
may be trivial. For instance, if M ⊂ Rm+n is a regular m-dimensional submanifold
with normal bundle ν in Rm+n, then TM ⊕ ν ∼= ǫm+n

R , the trivial real vector bundle
of rank m+ n over M .

An inner product on a complex (or real) vector bundle ξ = (E, p,M) is a
continuous function g : E ⊕ E → C (respectively R in the real case) such that its
restriction gx on each fibre Ex is a hermitian (respectively euclidean) inner product.

Lemma 1.2.1. If M is a paracompact space, then every vector bundle ξ = (E, p,M)
of rank n over M admits an inner product.

Proof. Let U be an open cover ofM for which there is a family of local trivializations
hU : pi−1(U) → U × Cn, U ∈ U . Since M is assumed to be paracompact, there
exists a partition of unity {fU : U ∈ U} subordinated to U . For x ∈ M and v,
w ∈ Ex the formula

gx(v,w) =
∑

U∈U

fU(x)〈hU (v), hU (w)〉

defines an inner product on ξ, where 〈, 〉 is the usual hermitian product on {x}×Cn

or the euclidean inner product on {x} × Rn in the real case. �

As the proof of the preceding lemma shows, if the vector bundle ξ = (E, p,M)
over a smooth manifold M is smooth, then it admits a smooth inner product, by
the existence of smooth partitions of unity. A smooth inner product on the tangent
bundle of a smooth manifold M is a Riemannian metric on M .

As an application of the existence of inner products we shall prove that two
isomorphic smooth vector bundles over a compact smooth manifold are smoothly
isomorphic.

A section of a vector bundle ξ = (E, p,M) is a continuous map s : M → E
such that p ◦ s = idM , that is s(x) ∈ Ex for every x ∈ M . The set Γ(ξ) of all
sections of ξ becomes a vector space in the obvious way. In the smooth case we shall
denote by Ω0(ξ) the vector subspace of Γ(ξ) consisting of the smooth sections of ξ. If
h : p−1(U) → U×Cn is a local trivialization over the open set U ⊂M and {e1, ..., en}
is the canonical (or any) basis of Cn, then the formulas sj(x) = h−1(x, ej), x ∈ U ,
1 ≤ j ≤ n, define sections of ξ|U and {s1(x), ..., sn(x)} is a basis of Ex for every
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x ∈ U . The set {s1, ..., sn} is called a frame of ξ over U . Conversely, each frame
over an open subset U of M gives a trivialization of ξ over U . If we have an inner
product on the bundle, then applying the Gram-Schmidt orthogonalization process
we can construct orthonormal sections over U . In the smooth case, the above can
be carried out smoothly.

Let now ξ′ = (E′, p′,M) be a second vector bundle of rank n over M and
f : E → E′ be a vector bundle morphisms of vector bundles over the same base
space M . If {s1, ..., sn} is a frame of ξ over U and {s′1, ..., s′n} a frame of ξ′ over U ,
then fx = f |Ex is represented by a n × n matrix. In this way we get a continuous
map ad(f) : U → Cn×n, which depends on the choice of the local frames. If
everything is smooth, then ad(f) is also smooth.

Lemma 1.2.2. Let M be a compact space, ξ = (E, p,M) and ξ′ = (E′, p′,M)
two vector bundles of rank n equipped with inner products. If f : E → E′ is a
vector bundle isomorphism, then there exists δ > 0 any vector bundle morphism
φ : E → E′ with p′ ◦ φ = p and such that sup{‖fx − φx‖ : x ∈ M} < δ is a vector
bundle isomorphism.

Proof. Since M is assumed a compact space, it can be covered by a finite number
of compact subsets over each of which both bundles are trivial. Thus, it suffices
to prove the conclusion only in the case where both bundles are trivial. Choosing
frames, f is represented by a continuous map ad(f) : U → GL(n,C). Since
ad(f)(M) is a compact subset of the open subset GL(n,C) of Cn×n, there exists
δ > 0 such that the ball of radius δ around Ad(f)(M) is contained in GL(n,C).
This implies the assertion. �

Proposition 1.2.3. Let ξ = (E, p,M) and ξ′ = (E′, p′,M) be two smooth vector
bundles of rank n over a compact smooth manifold M . If ξ is isomorphic to ξ′,
then it is smoothly isomorphic.

Proof. Since M is assumed to be compact, there exists a finite open cover
{U1, ..., Um} of M and smooth orthonormal frames {sj1, ..., s

j
n} and {tj1, ..., t

j
n} of ξ

and ξ′, respectively, over Uj , 1 ≤ j ≤ m. A vector bundle isomorphism f : E → E′

gives rise to continuous maps ad(f j) : Uj → GL(n,C), where f j = f |Uj
, 1 ≤ j ≤ m.

There exists δ > 0 as in Lemma 1.2.2. For every 1 ≤ j ≤ m there exists a smooth
map Gj : Uj → GL(n,C) such that ‖Gj(x) − ad(f j)(x)‖ < δ for every x ∈ Uj . Let
gj : p−1(Uj) → (p′)−1(Uj) be defined by

gj(
n
∑

k=1

λks
j(x)) =

n
∑

k=1

( n
∑

l=1

Gjkl(x)λl

)

tj(x)

or in other words ad(gj) = Gj . Obviously, ‖f j(x) − gj(x)‖ < δ for every x ∈ Uj .
Let {ψ1, ..., ψm} be a smooth partition of unity subordinated to the open cover
{U1, ..., Um}. Now we define g : E → E′ by

gx = g|Ex =
m
∑

j=1

ψj(x)g
j(x)
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for every x ∈M . Then,

‖fx − gx‖ ≤
m
∑

j=1

ψj(x)‖f jx − gjx‖ < δ

for every x ∈ M and from Lemma 1.2.2 follows that g is a smooth isomorphism of
vector bundles. �

1.3 The functors K and KO

As we have already mentioned in the preceding section, the direct sum of two
non-trivial vector bundles can be trivial. Actually, the following general fact holds.

Theorem 1.3.1. If M be a compact space, then for every vector bundle
ξ = (E, p,M) over M there exists another vector bundle ξ̃ such that ξ ⊕ ξ̃ is trivial.

Proof. SinceM is compact, there exist a finite open cover {U1, ..., Um} ofM and local
trivializations hj : p

−1(Uj) → Uj×Cn, 1 ≤ j ≤ m. There is also a partition of unity
{ψ1, ..., ψm} ofM subordinated to this open cover. Let f j = pr2◦hj : p−1(Uj) → Cn,
where pr2 denotes the projection onto the second factor. Let g : E →M × Cnm be
defined by

g(v) = (p(v), ψ1(p(v))f
1(v), ..., ψm(p(v))fm(v)).

It is obvious that g is a vector bundle morphism of vector bundles overM . Moreover,
g|Ex : Ex → {x} × Cnm is a monomorphism of vector spaces for every x ∈ M . We
put

Ẽ = {(x, v) ∈M × Cnm : v ∈ g(Ex)
⊥}

where the orthogonal complement is taken with respect to usual hermitian product
on Cnm. Then, ξ̃ = (Ẽ, pr1,M) is a vector bundle (see Example 1.1.1(c)) and
obviously ξ ⊕ ξ̃ ∼= ǫnm. �

In case M is a smooth manifold and the bundle ξ in Theorem 1.3.1 is
smooth, then the vector bundle ξ̃ can be chosen to be also smooth, by the
existence of smooth partitions of unity. In fact, Theorem 1.3.1 holds also under
the assumption that the base space M is paracompact and has finite covering
dimension. In particular, it holds if M is a topological manifold. We give a proof
of this in the appendix to this chapter. For smooth real vector bundles there is an
easier proof as consequence of Whitney’s immersion theorem, which we present here.

Theorem 1.3.2. Let M be a smooth manifold and let ξ = (E, p,M) be a smooth
real vector bundle of rank n. There exists a smooth real vector bundle ξ̃ over M of
rank at most n+ 2dimM such that ξ ⊕ ξ̃ is trivial.

Proof. Let M0 be the copy of M in E, which is the image of the zero section of ξ.
Then TE|M0

∼= TM ⊕ ξ, because each tangent space T(x,0)E is naturally isomorphic
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to TxM ⊕ T(x,0)Ex.

TM ⊕ E ∼= TE|M0
−→ TE





y





y

M −→ E

By the Whitney immersion theorem, there exists an immersion φ : E → R2(n+dimM).
The derivative of φ gives a monomorphism

φ∗ : TE|M0
→ TR2(n+dimM) = R2(n+dimM) × R2(n+dimM)

of vector bundles. The orthogonal complement of the image of φ∗ with respect to
the euclidean inner product is the total space of a smooth vector bundle ξ⊥ over M
such that TM ⊕ ξ ⊕ ξ⊥ is the trivial bundle over M of rank 2(n + dimM). Thus,
it suffices to take ξ̃ = TM ⊕ ξ⊥. �

For any space M and non-negative integer n we let VectCn(M), respectively
VectRn(M), denote the set of isomorphism classes of complex, respectively real, vector
bundles over M . The direct sum of vector bundles makes

VectC(M) =
∐

n≥0

VectCn(M)

an abelian semigroup whose neutral element is represented by the trivial bundle of
rank 0 with total space M × {0}. Similarly, for VectR(M).

From any abelian semigroup one can construct an abelian group more or less in
the same way the integers can be contructed from the set of natural numbers. It
is worth to note however that in contrast to the case of the natural numbers the
cancellation law may not hold in the semigroups VectR(M) and VectC(M). Indeed,
consider for example the 2-sphere S2. Its normal bundle ν in R3 is a trivial line
bundle over S2 and TS2 ⊕ ν is also trivial. So, ν ∼= ǫ1 and

TS2 ⊕ ν ∼= ǫ3 ∼= ǫ2 ⊕ ǫ1.

However, TS2 is not trivial, by the Hairy Ball Theorem.

Lemma 1.3.3. (A. Grothendieck) For every abelian semigroup (V,⊕) there exist
a unique abelian group (K(V ),+) and a semigroup homomorphism γ : V → K(V )
with the universal property that for every abelian group G and every semigroup
homomorphism f : V → G there is a unique group homomorphism f̃ : K(V ) → G
such that f̃ ◦ γ = f .

Proof. Let (F (V ),+) denote the free abelian group with basis the set V and let R
be its subgroup which is generated by the elements of V of the form x⊕ y − x− y,
for x, y ∈ V . We put K(V ) = F (V )/R and let γ : V → K(V ) be defined by
γ(x) = x+R. Then, γ(0) = R and

γ(x⊕ y) = (x⊕ y) +R = (x+ y) +R = (x+R) + (y +R)

for every x, y ∈ V , from the choice of R.
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Let now G be an abelian group and f : V → G be any semigroup hoomo-
morphism. There is unique linear extension of f to a group homomorphism
f̂ : F (V ) → G. Obviously, R is contained in Kerf̂ and so we get an induced group
homomorphism f̃ : K(V ) → G such that f̃ ◦ γ = f . The uniquness of f̃ follows
from the fact that if f̃ ◦ γ = 0, then f̃(x+R) = 0 for every x ∈ V and since the set
{x + R : x ∈ V } generates K(V ) we must have f̃ = 0. This universal property of
K(V ) and γ implies their uniqueness. �

The abelian group K(V ) is called the Grothendieck group of the semigroup V
and can be realized as follows. On V × V we consider the equivalence relation with
(x1, x2) ∼ (y1, y2) if and only if there exists some z ∈ V such that

z ⊕ x1 ⊕ y2 = z ⊕ y1 ⊕ x2.

On the quotient Ṽ = V × V/ ∼ we have a well defined addition + if we set

[x1, x2] + [a1, a2] = [x1 ⊕ a1, x2 ⊕ a2].

Note that [x, y] = [x, 0] + [0, y] and [0, b] + [b, 0] = [b, b] = [0, 0]. Thus, (Ṽ ,+)
is an abelian group with neutral element [0, 0]. Also, −[x, y] = [y, x] and every
[x, y] ∈ Ṽ has the expression [x, y] = [x, 0] − [y, 0]. The map γ : V → Ṽ defined
by γ(x) = [x, 0] is obviously a semigroup homomorphism. We shall prove that it
has the universal property. Let G be an abelian group and let f : V → G be a
semigroup homomorphism. We define f̃ : Ṽ → G by f̃ [x, y] = f(x) − f(y). The
definition of f̃ is good, because if [x, y] = [a, b], there exists some z ∈ V such that
z⊕x⊕b = z⊕a⊕y and therefore f(x)−f(y) = f(a)−f(b), since G is a group. Also,
f̃(γ(x)) = f(x)− f(0) = f(x)− 0 = g(x), because f is a semigroup homomorphism.
Finally, f̃ is unique, because γ(V ) generates Ṽ . From the uniqueness of K(V )
follows now that K(V ) = Ṽ .

Applying Grothendieck’s Lemma, we get for every space M the abelian groups
K(M) = K(VectC(M)) and KO(M) = K(VectR(M)). We shall make K and KO
functors describing their effect on continuous and smooth maps.

Proposition 1.3.4. Let f : X → M be a continuous map of topological spaces.
To every vector bundle ξ = (E, p,M) over M correspond a vector bundle f∗ξ =
(f∗E, q,X) over X and a continuous map f̃ : f∗E → E which maps the fibres of
f∗ξ linearly isomorphically onto the fibres of ξ so that the pair (f̃ , f) is a vector
bundle morphism.

f∗E
f̃−→ E





y

q





y

p

X
f−→ M

Moreover, f∗ξ is unique with these properties up to isomorphism of vector bundles
over X.

Proof. Let f∗E = {(x, v) ∈ X × E : f(x) = p(v)} and define the continuous
maps q : f∗E → X by q(x, v) = x and f̃ : f∗E → E by f̃(x, v) = v. Obviously,
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p ◦ f̃ = f ◦ q. Moreover, if Γ(f) = {(x, f(x)) : x ∈ X} ⊂ X ×M is the graph of f ,
then q is precisely the composition

f∗E
id×p−→ Γ(f)

≈−→ X

and id × p|f∗E is a vector bundle map, because (X × E, id × p,X ×M) is a vector
bundle. This means that the triple (f∗E, q,X) is a vector bundle. By its definition,
f̃ maps the fibres of q linearly isomorphically onto the fibres of p.

In order to prove that the vector bundle f∗ξ = (f∗E, q,X) is unique with these
properties, suppose that ζ = (E′, q′,X) is another such bundle and continuous map
f̃ ′. We consider the continuous map F : E′ → f∗E defined by

F (u) = (q′(u), f̃ ′(u)).

From the definitions follows that q ◦ F = q′ and

F ((q′)−1(x)) = {(x, f̃ ′(u)) ∈ f∗E : q′(u) = x}

for every x ∈ X. Since f̃ ′ maps the fibres of q′ linearly isomorphically onto the
fibers of p, it follows from Lemma 1.1.2 that F is a vector bundle isomorphism of
vector bundles over X. �

The vector bundle f∗ξ is called the induced (or pull-back) vector bundle of ξ by
f . It is clear from the proof that if ξ is a smooth vector bundle and f is a smooth
map, then f∗ξ is smooth as well. Also, the induced bundle of ξ by the identity map
is ξ itself and (f ◦ g)∗ξ ∼= g∗(f∗ξ)). If X ⊂ M and f : X → M is the inclusion,
then f∗ξ ∼= ξ|X . Finally, the pull-back preserves the direct sums. More precisely,
let ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) be two vector bundles over the same base
space M and let f : X →M be a continuous map. Then,

f∗E1 ⊕ f∗E2 = {(x, v1, x, v2) ∈ X × E1 ×X × E2 : p1(v1) = p2(v2) = f(x)}.

If q : f∗E1 ⊕ f∗E2 → X is the continuous map defined by q(x, v1, x, v2) = x and
f̃ : f∗E1 ⊕ f∗E2 → E1 ⊕E2 is defined by f̃(x, v1, x, v2) = (v1, v2), then p ◦ f̃ = f ◦ q
and f̃ maps the fibres of q linearly isomorphically onto the fibres of p.

f∗E1 ⊕ f∗E2
f̃−→ E1 ⊕ E2





y

q





y

p

X
f−→ M

The uniqueness now implies that f∗ξ1 ⊕ f∗ξ2 ∼= f∗(ξ1 ⊕ ξ2).

Thus, to every continuous map f : X → M corresponds a group homomor-
phism f∗ : K(M) → K(X) such that id∗M = idK(M) and (f ◦ g)∗ = g∗ ◦ f∗.
These mean that K is a contravariant functor from the topological category
to the category of abelian groups. In the rest of this section we shall show
that K is actually a homotopy functor (for paracompact spaces) with values in
the category of commutative rings with unity. Similar facts hold for the functor KO.
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Lemma 1.3.5. If X is a paracompact space, then for every open cover U of X
there exists a countable open cover V of X consisting of open sets which are disjoint
unions of open sets each of which is contained in some element of U .

Proof. Let U be an open cover of X. SinceX is paracompact, there exists a partition
of unity {φU : U ∈ U} subordinated to U . For each finite set S ⊂ U we define

VS = {x ∈ X : φU (x) > φW (x) for all U ∈ S and W ∈ U \ S}.

Since for every x ∈ X the set {U ∈ U : φU (x) > 0} is finite, VS is an open set. Also,
VS ⊂ U for every U ∈ S, because x ∈ VS implies that φU (x) > 0 for U ∈ S. Let
now

Vn =
⋃

{VS : S ⊂ U and |S| = n}

for n ∈ N. This is a disjoint union of open sets. Finally, V = {Vn : n ∈ N} is an
open cover of X, because for every x ∈ X the set S = {U ∈ U : φU (x) > 0} is finite
and x ∈ VS . �

Theorem 1.3.6. Let ξ = (E, p,M) be a vector bundle and f , g : X → M be two
continuous maps from a paracompact space X to M . If f ≃ g, then f∗ξ ∼= g∗ξ.

Proof. If H : [0, 1] × X → M is a homotopy with H(0, .) = f and H(1, .) = g,
then H∗ξ|{0}×X ∼= f∗ξ and H∗ξ|{1}×X ∼= g∗ξ. Thus, it suffices to prove that if
ξ = (E, p, [0, 1] × X) is a vector bundle over [0, 1] × X and X is a paracompact
space, then ξ|{0}×X ∼= ξ|{1}×X .

We observe that if for some 0 < c < 1 the restrictions ξ[0,c]×X and ξ[c,1]×X are
trivial, then ξ is trivial. Indeed, let E1 = p−1([0, c] ×X) and E2 = p−1([c, 1] ×X),
and suppose that h1 : E1 → [0, c] × X × Cn and h2 : E2 → [c, 1] × X × Cn are
vector bundles isomorphisms. Since h1 ◦ h−1

2 : {c} ×X × Cn → {c} ×X × Cn is an
isomorphism of trivial vector bundles over {c} ×X, there exists a continuous map
ρ : X → GL(n,C) such that

h1 ◦ h−1
2 (c, x, v) = (c, v, ρ(x)(v))

for every x ∈ X, v ∈ Cn. The map σ : [c, 1] ×X ×Cn → [c, 1] ×X ×Cn defined by
σ(t, x.v) = (t, v, ρ(x)(v)) is an isomorphism of trivial vector bundles over [c, 1] ×X
and so is σ ◦ h2 : E2 → [c, 1] × X × Cn. Since h1 and σ ◦ h2 coincide on E1 ∩ E2,
they fit together to a form an isomorphism from ξ to the trivial vector bundle over
[0, 1] ×X.

A second observation is that there exists an open cover of U of X such that
ξ|[0,1]×U is trivial for every U ∈ U . This follows easily from our first observation and
the compactness of [0, 1].

From Lemma 1.3.5 there exists a countable open cover V = {Vk : k ∈ N} of
X consisting of open sets which are disjoint unions of open sets each of which is
contained in some element of U . Thus, ξ|[0,1]×Vk is trivial for every k ∈ N. Let
{φk : k ∈ N} be a partition of unity subordinated to V. We set ψ0 = 0 and
ψk = φ1 + · · · + ψk, k ∈ N. Let Xk = {(ψk(x), x) : x ∈ X} ≈ X and ξk = ξ|Xk

.
The homeomorphism ηk : Xk → Xk−1 defined by η(ψk(x), x) = (ψk−1(x), x) can
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be lifted to a homeomorphism η̃k : p−1(Xk) → p−1(Xk−1) such that η̃k = id on
p−1(Xk) \ p−1([0, 1] × Vk) and

η̃k = h−1
k−1 ◦ (id× (ηk|Vk)) ◦ hk

on p−1([0, 1] × Vk ∩ Xk), where hk : p−1(Vk) → [0, 1] × Vk × Cn is a trivialization
of ξ over [0, 1] × Vk. So, η̃k takes each fiber of ξk linearly isomorphically onto the
corresponding fiber of ξk−1. Now the infinite composition η̃ = η̃1 ◦ η̃2 ◦ · · · is well
defined, because {suppφk : k ∈ N} is a locally finite closed cover of X, and is a
vector bundle isomorphism from ξ|{1}×X to ξ|{0}×X . �

Corollary 1.3.7. Every homotopy equivalence f : X → Y of paracompact spaces
induces an isomorphism f∗ : K(Y ) → K(X) and similarly for the KO groups.
In particular, every vector bundle over a contractible paracompact space is trivial. �

We shall now define a ring structure on K(M) for any space M using the tensor
product of vector bundles in the same way we used the direct sum to define the group
structure. Let ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) be two complex (respectively
real) vector bundles over the same base space M . We define

E1 ⊗ E2 =
∐

x∈M

p−1
1 (x)⊗ p−1

2 (x)

where the tensor product is taken over C (respectively over R in the real case). On
E1⊗E2 one can define a topology and make it the total space of a vector bundle over
M . Indeed, let V , W ⊂ M be two open sets such that V ∩W 6= ∅ for which there
are trivializations hj : p

−1(V ) → V ×Cnj and gj : p
−1(W ) →W ×Cnj , j = 1, 2, for

ξ1 and ξ2, respectively. There exist continuous functions Gj : V ∩W → GL(nj ,C)
such that

(gj ◦ h−1
j )(x, v) = (x,Gj(x)(v))

for j = 1, 2. Defining the map

h1 ⊗ h2 :
∐

x∈V

p−1
1 (x)⊗ p−1

2 (x) → V × (Cn1 ⊗ Cn2)

by the formula (h1 ⊗ h2)(v1 ⊗ v2) = (x, h1(v1)⊗ h2(v2)), for every v1 ∈ p−1
1 (x) and

v2 ∈ p−1
2 (x), we see that

((g1 ⊗ g2) ◦ (h1 ⊗ h2)
−1)(x, u1 ⊗ u2) = (x, (G1(x)⊗G2(x))(u1 ⊗ u2)).

Since G1(x) ⊗ G2(x) is a continuous function of x ∈ V ∩W , it is a standard fact
that there exists a unique topology on E1 ⊗E2 such that each set of the form

∐

x∈V

p−1
1 (x)⊗ p−1

2 (x)

as above is open and the maps like h1 ⊗ h2 are homeomorphisms. It is obvious
now that the triple ξ1 ⊗ ξ2 = (E1 ⊗ E2, q,M) is a vector bundle over M of rank
n1n2, where q is the canonical projection, and each map h1 ⊗ h2 as above is a local
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trivialization. The vector bundle ξ1 ⊗ ξ2 is called the tensor product of the vector
bundles ξ1 and ξ2.

The basic properties of the tensor product of vector spaces carry over immedi-
ately to the case of vector bundles over a space M . So,

(i) if ξ1 ∼= ζ1 and ξ2 ∼= ζ2, then ξ1 ⊗ ξ2 ∼= ζ1 ⊗ ζ2.
(ii) ξ1 ⊗ ξ2 ∼= ξ2 ⊗ ξ1.
(iii) (ξ1 ⊗ ξ2)⊗ ξ3 ∼= ξ1 ⊗ (ξ2 ⊗ ξ3).
(iv) ξ ⊗ ǫ1 ∼= ξ.
(v) ξ ⊗ (ξ1 ⊕ ξ2) ∼= ξ ⊗ ξ1 ⊕ ξ ⊗ ξ2.
(vi) If f : X → M is a continuous map then f∗(ξ1 ⊗ ξ2) ∼= f∗ξ1 ⊗ f∗ξ2. This

follows from the uniqueness of the induced bundle.
The tensor product defines an associative commutative multiplication with unity

on VectC(M) and on VectR(M) which is compatible with the direct sum. From this
we get a commutative ring structure on K(M) and KO(M). More abstractly, let V
be an abelian semigroup on which we have a commutative associative multiplication
with unity which is compatible with the addition. A multiplication on K(V ) can be
defined by putting

[a, b] · [x, y] = [ax, ay]− [bx, by]

for every [a, b], [x, y] ∈ K(V ). Indeed, if [a1, b1] = [a2, b2] and [x1, y1] = [x1, y2],
there exist c, d ∈ V such that c+a1+ b2 = c+a2+ b1 and d+x1+ y2 = d+x2+ y1.
Then, [a1x1, a1y1] = [a1x2, a1y2] and [b1x1, b1y1] = [b1x2, b1y2]. On the other hand,

(cx2 + cy2) + (a1 + b2)x2 + (a2 + b1)y2 = (cx2 + cy2) + (a2 + b1)x2 + (a1 + b2)y2

which means that [(a1 + b2)x2, (a1 + b2)y2] = [(a2 + b1)x2, (a2 + b1)y2]. This implies
that

[a1x1, a1y1]− [b1x1, b1y1] = [a1x2, a1y2]− [b1x2, b1y2] = [a2x2, a2y2]− [b2x2, b2y2].

In this way K(V ) turns into a commutative ring with unity, called the Grothendieck
ring of V . In particular for every space M we have the Grothendieck ring K(M) of
complex vector bundles over M and the Grothendieck ring KO(M) of real vector
bundles. The unity is represented by ǫ1 in both cases.

1.4 The classification of vector bundles

In this section we shall show that the functor VectC(M) is representable for paracom-
pact spaces by constructing an explicit classifying space. Although we present the
case of complex vector bundles, everything holds verbatim for the functor VectR(M)
also, replacing the unitary groups involved by orthogonal groups and the complex
Grassmannians by the real ones.

Let 1 ≤ k ≤ n be positive integers and let

Vk(C
n) = {(v1, ..., vk) ∈ (S2n+1)k : 〈vl, vj〉 = δlj , 1 ≤ l, j ≤ k}

be the space of all orthonormal k-frames in Cn, where 〈, 〉 denotes the usual hermitian
product on Cn. Obviously, Vk(Cn) is a compact space and there is a continuous
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surjection ηnk : U(n) → Vk(Cn) defined by ηnk (A) = (Ae1, ..., Aek). We observe that
if A, B ∈ U(n), then ηnk (A) = ηnk (B) if and only if B−1A ∈ U(n − k), where we
consider the inclusion U(n− k) ⊂ U(n) so that each element of U(n− k) fixes e1,...,
ek in Cn. This implies that ηnk induces a homeomorphism

η̃nk :
U(n)

U(n− k)
≈ Vk(C

n).

The inclusion SU(n) →֒ U(n) induces a continuous injection of the homogeneous
space SU(n)/SU(n−k) into U(n)/U(n−k) which is moreover a surjection, because
for every A ∈ U(n) there exists B ∈ SU(n) such that B−1A ∈ U(n− k). Thus,

SU(n)

SU(n− k)
≈ U(n)

U(n− k)
≈ Vk(C

n).

The homogeneous space Vk(Cn) is called the Stiefel manifold of orthonormal k-
frames in Cn.

Each element of Vk(Cn) generates a k-dimensional vector subspace of Cn. Let
Gk(Cn) be the space of all k-dimensional vector subspaces of Cn endowed with the
quotient topology with respect to the natural surjection q : Vk(Cn) → Gk(Cn). The
group U(k) acts smoothly on Vk(Cn) from the right and Gk(Cn) is the orbit space
of the action. Here we consider U(k) embedded in U(n) so that each element of
U(k) fixes ek+1,...,en in Cn. The right action of U(k) on Vk(Cn) is defined by

(v1, ..., vk)A =

( k
∑

l=1

al1vl, ...,

k
∑

l=1

alkvl

)

,

for A = (alj)1≤l,j≤n ∈ U(k) ⊂ U(n), where alj = δlj , 1 ≤ l ≤ n, k + 1 ≤ j ≤ n.

If A, B ∈ U(n), then the orthonormal k-frames (Ae1, ..., Aek) and (Be1, ..., Bek)
generate the same vector subspace of Cn if and only if there exists C ∈ U(k) ⊂ U(n)
such that Aej = BCej for 1 ≤ j ≤ k. Thus, (B−1A)({0} × Cn−k) = {0} × Cn−k,
because {0} × Cn−k = (Ck × {0})⊥. If D ∈ U(n − k) is defined by Dej = ej for
1 ≤ j ≤ k and Dej = (B−1A)ej for k + 1 ≤ j ≤ n, then B−1A = CD ∈ U(k). This
implies that the q ◦ η̃nk induces a homeomorphism

U(n)

U(k)× U(n− k)
≈ Gk(C

n).

The homogeneous space Gk(Cn) is called the Grassmann manifold of k-dimensional
vector subspaces of Cn. Note that Gk(Cn) ≈ Gn−k(Cn) and G1(Cn) = CPn−1.

Now we consider the standard inclusions C ⊂ C2 ⊂ C3 ⊂ · · · and the union

C∞ =

∞
⋃

n=0

Cn = lim
→

Cn, which is the vector space of all sequences of complex num-

bers with only a finite number of non-zero terms. The hermitian product extends
to C∞. Also, C∞ becomes a topological space equipped with the weak topology.
Correspondingly, we get a sequence of inclusions

Vk(C
k) ⊂ Vk(C

k+1) ⊂ · · · ⊂ Vk(C
n) · · ·
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and the space Vk(C
∞) =

∞
⋃

n=k

Vk(C
n) equipped with the weak topology.

Similarly, we construct the infinite Grassmannian Gk(C
∞) =

∞
⋃

n=k

Gk(C
n) en-

dowed with the weak topology. In particular we have an infinite complex projective

space CP∞ = G1(C
∞) =

∞
⋃

n=1

CPn.

There is a canonical smooth vector bundle γkn of rank k over Gk(Cn) with total
space

E(γkn) = {(V, z) ∈ Gk(Cn)× Cn : z ∈ V }.
The bundle map pn,k : E(γkn) → Gk(Cn) is the restriction to E(γkn) of the projection
onto the first factor. Since p−1

n,k(V ) = {V } × V for every V ∈ Gk(Cn), the vector

bundle γkn = (E(γkn), pn,k, Gk(C
n)) is called the tautological bundle over Gk(Cn). It

is a generalization of Example 1.1.3. In the sequel we shall prove that γkn is indeed
a smooth vector bundle.

Lemma 1.4.1. Suppose that (v1, v2, ..., vk), (v
′
1, v

′
2, ..., v

′
k) ∈ Vk(Cn) are such that

q(v1, v2, ..., vk) = q(v′1, v
′
2, ..., v

′
k). Then

k
∑

j=1

〈z, vj〉vj =
k

∑

j=1

〈z, v′j〉v′j

for every z ∈ Cn.

Proof. There exists some A = (alj)1≤l,j≤k ∈ U(k) such that (v1, v2, ..., vk)A =
(v′1, v

′
2, ..., v

′
k). This means that

v′j =

k
∑

l=1

aljvl

for every 1 ≤ j ≤ k. Therefore,

k
∑

j=1

〈z, v′j〉v′j =
k

∑

j,l,r=1

āljarj〈z, vl〉vr =
k

∑

r,l=1

( k
∑

j=1

āljarj

)

〈z, vl〉vr =
k

∑

l=1

〈z, vl〉vl

because A
T
= A−1. �

The preceding Lemma 1.4.1 implies that there is a well-defined smooth map
h : Gk(Cn)× Cn → Cn with

h(q(v1, v2, ..., vk), z) =

k
∑

j=1

〈z, vj〉vj

which is the projection of the vector z ∈ Cn on the vector subspace of Cn spanned
by the orthonormal k-frame (v1, v2, ..., vk).
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Also the smooth symmetric function σ : Gk(Cn)×Gk(Cn) → R with

σ((q(v1, v2, ..., vk), (q(v
′
1, v

′
2, ..., v

′
k)) = |det(〈vl, v′j〉)1≤l,j≤k|

is well-defined, because if A, B ∈ U(k) and (v1, v2, ..., vk)A = (u1, u2, ..., uk) and
(v′1, v

′
2, ..., v

′
k)B = (u′1, u

′
2, ..., u

′
k), then

|det(〈ul, u′j〉)1≤l,j≤k| = |det(AT · (〈vl, v′j〉)1≤l,j≤k · B)| = |det(〈vl, v′j〉)1≤l,j≤k|.
It is obvious that σ((q(v1, v2, ..., vk), (q(v

′
1, v

′
2, ..., v

′
k)) > 0 if and only if

h(q(v′1, v
′
2, ..., v

′
k), vj), 1 ≤ j ≤ k, are linearly independent and form a basis of

q(v′1, v
′
2, ..., v

′
k), because the entries of the l row of the matrix (〈vl, v′j〉)1≤l,j≤k are the

coordinates of the orthogonal projection of vl on q(v
′
1, v

′
2, ..., v

′
k) with respect to its

ordered basis (v′1, v
′
2, ..., v

′
k). In this case, h(q(v′1, v

′
2, ..., v

′
k), .) maps q(v1, v2, ..., vk)

linearly isomorphically onto q(v′1, v
′
2, ..., v

′
k).

For every q(v1, v2, ..., vk) ∈ Gk(Cn) the set

Uq(v1,v2,...,vk) = {q(v′1, v′2, ..., v′k) ∈ Gk(C
n) : σ((q(v1, v2, ..., vk), (q(v

′
1, v

′
2, ..., v

′
k)) > 0}

is an open neighbourhood of q(v1, v2, ..., vk) and

Gk(C
n) =

⋃

{UCΓ : Γ ⊂ {1, 2, ..., n} with |Γ| = k},

where CΓ = ⊕j∈ΓCej .
For each Γ ⊂ {1, 2, ..., n} with |Γ| = k let jΓ : Ck → CΓ be the linear isomorphism

which sends e1 ∈ Ck to ej(1) ∈ Cn, where j(1) = minΓ and so on taking into account

the ordering of Γ. The map φΓ : UCΓ × Ck → p−1(UCΓ) defined by

φΓ(V, z) = (V, h(V, jΓ(z)))

is a diffeomorphism which maps {V } × Ck linearly isomorphically onto the fibre
p−1
n,k(V ) from the above remarks concerning h. This shows that the triple γkn =

(E(γkn), pn,k, Gk(C
n)) is a smooth complex vector bundle of rank k.

In the same way we have a tautological complex vector bundle of rank k
γk∞ = (E(γk∞), pn,k, Gk(C∞)) over Gk(C∞), whose restriction to each Gk(Cn)) is
γkn.

Definition 1.4.2. Let ξ = (E, p,M) be a complex vector bundle of rank k. A
Gauss map of ξ is a continuous map g : E → Cn for some k ≤ n ≤ ∞ such that
g|p−1(x) : p

−1(x) → Cn is a linear monomorphism for every x ∈M .

For example, the restriction of the projection onto the second factor to E(γkn),
that is the map g : E(γkn) → Cn with g(V, z) = z, is a Gauss map of the tautological
bundle γkn.

If a complex vector bundle ξ = (E, p,M) of rank k admits a continuous Gauss
map g : E → Cn, then there are two continuous maps f : M → Gk(Cn) with
f(x) = g(Ex) and f̃ : E → E(γnk ) with f̃(v) = (f(p(v), g(v)) such that the following
diagram commutes.

E
f̃−→ E(γkn)





y

p





y

pn,k

M
f−→ Gk(Cn)
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Thus, the pair (f, f̃) is a vector bundle morphism, whose restriction on each fibre is
a linear isomorphism. It follows from Proposition 1.3.4 that ξ ∼= f∗γkn. Conversely,
if we start from a vector bundle morphism (f, f̃) which is a linear isomorphism on
fibres so that the above diagram commutes, then pr ◦ f̃ : E → Cn is a Gauss map
of ξ. This shows that a complex vector bundle ξ = (E, p,M) of rank k admits a
Gauss map g : E → Cn for some k ≤ n ≤ ∞ if and only if there exists a continuous
map f :M → Gk(Cn) such that ξ ∼= f∗γkn.

Theorem 1.4.3. Every complex vector bundle ξ = (E, p,M) of rank k over a
paracompact space M admits a continuous Gauss map g : E → C∞. Moreover, if
there exists a finite open cover {U1, ..., Un} of M such that ξ|Uj

is trivial for all

1 ≤ j ≤ n, then there exists a continuous Gauss map g : E → Ckn of ξ.

Proof. Since M is assumed to be paracompact, there exists a countable open cover
{Uj : j ∈ N} of M such that ξ|Uj

is trivial for every j ∈ N, by Lemma 1.3.5. Let

φj : p
−1(Uj) → Uj × Ck be a trivialization of ξ|Uj

. Then pr ◦ φj : p−1(Uj) → Ck is

a Gauss map for ξ|Uj
, where pr : Uj × Ck → Ck is the projection onto the second

factor. Let {fj : j ∈ N} be a partition of unity subordinated to the open cover
{Uj : j ∈ N} and for each j ∈ N let gj : E → Ck be the continuous map defined by

gj(v) =

{

0, if v ∈ E \ p−1(Uj),

fj(p(v)) · pr(φj(v)), if x ∈ p−1(Uj).

The map

g =
∑

j∈N

gj : E →
⊕

j∈N

Ck = C∞

is now continuous. Since each gj maps Ex linearly isomorphically onto Ck for
fj(x) > 0 and the images of different gj ’s belong to different factors of the direct
sum, it follows that g|Ex is a linear monomorphism for every x ∈ M . Hence g is a
continuous Gauss map of ξ. The second assertion is now obvious, because in this
case we begin with the finite open cover {U1, ..., Un} and the direct sum is finite. �

Corollary 1.4.4. For every complex vector bundle ξ = (E, p,M) of rank k over a
paracompact space M there exists a continuous map f : M → Gk(C∞) such that
ξ ∼= f∗γk∞. If M is compact, there exists a continuous map f : M → Gk(Cn) for
some large enough n ∈ N such that ξ ∼= f∗γkn. �

Actually, the second part of Corollary 1.4.4 holds under the more general as-
sumption that the base space M is paracompact and has finite covering dimension.
We refer for this to Corollary A.4 in the appendix to this chapter. In particular this
holds for vector bundles over topological manifolds.

The continuous map f in Corollary 1.4.4 is not unique, but its homotopy class
is, as we shall prove shortly. We set

Cev = {(zn)n≥0 ∈ C∞ : z2m+1 = 0 for all m ∈ Z+},

Codd = {(zn)n≥0 ∈ C∞ : z2m = 0 for all m ∈ Z+}
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and consider the homotopies gev, godd : [0, 1] × C∞ → C∞ defined by

gevt (z0, z1, z2, ...) = (1− t) · (z0, z1, z2, ...) + t(z0, 0, z1, 0, z2, ...),

goddt (z0, z1, z2, ...) = (1− t) · (z0, z1, z2, ...) + t(0, z0, 0, z1, 0, ...).

The continuous map gev1 ◦ pr|E(γkn)
: E(γkn) → C2n is a Gauss map of γkn from which

we get a vector bundle morphism (f ev, f̃ ev) from γkn to γk2n. Similarly, we get a
vector bundle morphism (f odd, f̃ odd) from γkn to γk2n for every 1 ≤ n ≤ ∞. Since
f ev and f odd are induced by gev1 and godd1 , the homotopies gev and godd induce
homotopies of f ev and f odd with the canonical inclusion j : Gk(Cn) → Gk(C2n),
because gevt (Cn) ⊂ C2n, goddt (Cn) ⊂ C2n and in particular gev1 (Cn) = C2n ∩ Cev and
godd1 (Cn) = C2n ∩ Codd.

Proposition 1.4.5. Let 1 ≤ n ≤ ∞, k ∈ N and M be a topological space. Let f0,
f1 :M → Gk(Cn) be two continuous maps such that f∗0γ

k
n
∼= f∗1γ

k
n as vector bundles

over M . Then, j ◦ f0 ≃ j ◦ f1, where j : Gk(Cn) → Gk(C2n) is the canonical
inclusion.

Proof. The hypothesis says that there exists a complex vector bundle ξ = (E, p,M)
and two vector bundle morphisms (f0, f̃0) and (f1, f̃1) from ξ to γkn, which are linear
isomorphisms of fibres. As before we get two continuous Gauss maps g0, g1 : E → Cn

of ξ as well as two vector bundle morphisms (f ev ◦ f0, f̃ ev ◦ f̃0), (f odd ◦ f1, f̃ odd ◦ f̃1)
to γk2n and corresponding Gauss maps gev ◦ g0 : E → C2n, godd ◦ g1 : E → C2n. The
continuous map h : [0, 1] × E → C2n defined by

h(t, v) = (1− t) · gev1 (g0(v)) + tgodd1 (g1(v))

is now a Gauss map of the vector bundle 1 × ξ = ([0, 1] × E, id × p, [0, 1] × M)
from which we get a vector bundle morphism (H, H̃) from 1 × ξ to γk2n. The
map H : [0, 1] × M → Gk(C2n) is a homotopy from f ev ◦ f0 to f odd ◦ f1. Since
f ev ◦ f0 ≃ j ◦ f0 and f odd ◦ f1 ≃ j ◦ f1, it follows that j ◦ f0 ≃ j ◦ f1. �

Combining the above with Theorem 1.3.6 we get a natural one-to-one correspon-
dence of the set of isomorphism classes of complex vector bundles of rank k over
a paracompact space M onto the set of homotopy classes of maps [M,Gk(C∞)].
To every homotopy class [f ] ∈ [M,Gk(C∞)] corresponds (the isomorphism class of)
f∗γk∞. Thus, the problem of the classification of complex vector bundles of rank k
over a paracompact spaceM is equivalent to the calculation of the set [M,Gk(C∞)].

Let H be a contravariant functor on a category of spaces and continuous maps
with values in the category of commutative semigroups. A characteristic class of
complex vector bundles with values in H is a natural transformation Φ from the
functor VectC to H. If for each space M in the category of spaces we consider the
image of ΦM : VectC(M) → H(M) is contained in a subgroup of H(M), then Φ
factors through the functor K. In this case we say that the characteristic class is
stable. Let R be a commutative ring with unity. If Φ is a natural transformation
from the functor K to the (singular) cohomology functor H∗(−;R) with coefficients
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in R, then to every continuous map of paracmpact spaces f : M → N corresponds
the commutative diagram

K(N)
ΦN−→ H∗(N ;R)





y
f∗





y
f∗

K(M)
ΦM−→ H∗(M ;R).

If c = ΦGk(C∞)(γ
k
∞) ∈ H∗(Gk(C∞);R), then for every complex vector bundle ξ of

rank k over the paracompact space M there is a continuous map f :M → Gk(C∞)
such that ξ ∼= f∗γk∞ and ΦM(ξ) = f∗(c).

1.5 Operations with vector bundles and their sections

In this section we shall describe some useful constructions using vector bundles and
their sections, which are analogous to the ones in the category of finite dimensional
vector spaces.

As for vector spaces, to every vector bundle ξ = (E, p,M) over a space M
corresponds its dual vector bundle ξ∗ = (E∗, p∗,M) over M which is defined in an
analogous way as the cotangent bundle of a smooth manifold. Its total space is the
disjoint union

E∗ =
∐

x∈M

(p−1(x))∗

with the obvious topology.
Recall that if V is a finite dimensional vector space then choosing a basis of V

we have a linear isomorphism V ∼= V ∗, but the isomorphism is not natural as it
depends on the initial choice of the basis. If V is real and carries an inner product
〈, 〉, then the map which sends v ∈ V to 〈., v〉 is a natural linear isomorphism of V
to its dual V ∗. Since every vector bundle over a paracompact space admits an inner
product, it follows that if ξ is a real vector bundle over a paracompact space, then
ξ ∼= ξ∗.

To every finite dimensional complex vector space V corresponds its conjugate
V with the same additive structure and exterior multiplication sending λ ∈ C and
v ∈ V to λv. If 〈, 〉 is a hermitian inner product on V , then the map which sends
v ∈ V to 〈., v〉 ∈ V ∗ is a linear isomorphism V ∼= V ∗. To every complex vector
bundle ξ = (E, p,M) corresponds its conjugate vector bundle ξ in the obvious way
and if the base space M is paracompact, then ξ ∼= ξ∗.

In any case V is naturally isomorphic to V ∗∗ and therefore ξ ∼= ξ∗∗ for any vector
bundle ξ.

Let now V and W be two finite dimensional vector spaces (both complex or
real). The linear map µ : V ∗ ⊗W → Hom(V,W ) defined by

µ(a⊗ w)(v) = a(v)w

for every a ∈ V ∗, w ∈W and v ∈ V , is an isomorphism. This carries over to vector
bundles. If ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) are two vector bundles over the
same base space M , there is a vector bundle Hom(ξ1, ξ2) and

ξ∗1 ⊗ ξ2 ∼= Hom(ξ1, ξ2).
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If ξ = (E, p,M) is a real vector bundle, the complex vector bundle ξC = ξ⊗R ǫ
1
C

is called the complexification of ξ, where ǫ1C is the trivial complex line bundle over
M . On the other hand, every complex vector bundle ζ of rank n can be considered
as a real vector bundle of rank 2n denoted by ζR. Now we have

(ξC)R ∼= ξ ⊗R (ǫ1R ⊕ ǫ1R)
∼= ξ ⊗R ǫ

1
R ⊕ ξ ⊗R ǫ

1
R
∼= ξ ⊕ ξ.

For the converse we have the following.

Lemma 1.5.1. (i) If V is a complex vector space then V ⊗RC ∼= V ⊕V as complex
vector spaces.

(ii) If ξ = (E, p,M) is a complex vector bundle over a paracompact space M ,
then (ξR)C ∼= ξ ⊕ ξ∗.

Proof. Since the exterior multiplication on V ⊗RC is defined by λ(v⊗Rz) = v⊗R(λz)
for v ∈ V and λ, z ∈ C, the formula

φ(v ⊗R z) = (zv, zv)

defines a C-linear isomorphism V ⊗R C ∼= V ⊕ V . This proves (i) and (ii) follows
from this choosing a hermitian inner product on ξ. �

In the rest of this section we shall describe the spaces of smooth sections of
the vector bundles defined above corresponding to a given smooth vector bundle
ξ = (E, p,M) of rank n over a smooth manifold M . The vector space Ω0(ξ) of
the smooth sections of ξ is a C∞(M)-module. From Theorem 1.3.2 there exists a
smooth vector bundle ξ̃ overM of some rankm such that ξ⊕ ξ̃ ∼= ǫn+m and therefore

Ω0(ξ)⊕ Ω0(ξ̃) ∼= Ω0(ξ ⊕ ξ̃) ∼= Ω0(ǫn+m).

Since Ω0(ǫn+m) is a finitely generated free C∞(M)-module, we conclude that Ω0(ξ)
is a finitely generated projective C∞(M)-module.

We shall need the following algebraic lemma.

Lemma 1.5.2. Let R be a commutative ring with unity, A a projective R-module
and B a finitely generated R-module. Then,

HomR(A,R)⊗R B ∼= HomR(A,B).

Proof. Let µ : HomR(A,R) ⊗R B → HomR(A,B) be the natural homomorphism
defined by µ(f ⊗ b)(a) = f(a)b. If B = R or a finitely generated free R-module,
then µ is an isomorphism. If B is a finitely generated R-module, there is a short
exact sequence of R-modules

0 → K → F → B → 0

where K and F are free and finitely generated. Since µ is natural, we get the
following commutative diagram

HomR(A,R)⊗R K −→ HomR(A,R)⊗R F −→ HomR(A,R)⊗R B −→ 0




y

µ





y

µ





y

HomR(A,K) −→ HomR(A,F ) −→ HomR(A,B) −→ 0
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in which the rows are exact, because A is assumed to be projective and therefore
HomR(A, .) is an exact functor. The assertion follows now from the five lemma. �

The previous Lemma 1.5.2 is a special case of the more general statement

HomR(A,G) ⊗R B ∼= HomR(A,G⊗R B)

which holds under the same assumptions on A and B for every R-module G. The
isomorphism now is given by µ(f ⊗ b)(a) = f(a)⊗ b and the proof is essentially the
same.

Theorem 1.5.3. If ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) are two smooth vector
bundles over the same smooth manifold M then the following hold.

(i) Ω0(Hom(ξ1, ξ2)) ∼= HomC∞(M)(Ω
0(ξ1),Ω

0(ξ2)).

(ii) Ω0(ξ1 ⊗ ξ2) ∼= Ω0(ξ1)⊗C∞(M) Ω
0(ξ2).

(iii) Ω0(ξ∗1)
∼= HomC∞(M)(Ω

0(ξ1), C
∞(M)).

Proof. Let
F : Ω0(Hom(ξ1, ξ2)) → HomC∞(M)(Ω

0(ξ1),Ω
0(ξ2))

be the C∞(M)-linear map defined by F (φ̂)(s)(x) = φ̂(x)(s(x)), for every x ∈ M
and φ̂ ∈ Ω0(Hom(ξ1, ξ2)), s ∈ Ω0(ξ1).

First, we observe that F is injective, because if F (φ̂) = 0, then for every x ∈M
and v ∈ p−1

1 (x) there exists sv ∈ Ω0(ξ1) with sv(x) = v and therefore φ̂(x)(v) =

F (φ̂)(s)(x) = 0.
In order to prove that F is onto let φ ∈ HomC∞(M)(Ω

0(ξ1),Ω
0(ξ2)). In the

beginning we shall show that if s ∈ Ω0(ξ1) and x ∈ M are such that s(x) = 0,
then φ(s)(x) = 0. Let s1, s2,..., sn1

∈ Ω0(ξ1) be a local frame of ξ1 on some open
neighbourhood U of x. Then

s|U =

n1
∑

j=1

fjsj

for some fj ∈ C∞(U), 1 ≤ j ≤ n1. Let g ∈ C∞(M) be such that g(x) = 1 and
suppg ⊂ U . Then,

φ(s) = φ((1− g)s + sg) = (1− g)φ(s) + φ(gs)

and

g(s|U ) =
n1
∑

j=1

(gfj)sj.

Now each gfj can be extended to a smooth function f̃j ∈ C∞(M) by setting it zero
outside U . Thus,

φ(gs) =

n1
∑

j=1

f̃jφ(sj) ∈ Ω0(ξ2)
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and φ(s)(x) = φ(gs)(x) = 0.
We define now φ̂ setting φ̂(x)(v) = φ(sv)(x), for every x ∈M , where sv ∈ Ω0(ξ1)

is any with sv(x) = v. From the above, φ is well defined and obviously F (φ̂) = φ.
This concludes the proof of (i), while (iii) follows as a special case by taking ξ2 = ǫ1.

The proof of (ii) is the following chain of isomorphisms

Ω0(ξ1 ⊗ ξ2) ∼= Ω0(Hom(ξ∗1 , ξ2))

∼= HomC∞(M)(Ω
0(ξ∗1),Ω

0(ξ2))

∼= HomC∞(M)(HomC∞(M)(Ω
0(ξ1)C

∞(M)),Ω0(ξ2))

∼= Ω0(ξ1)⊗C∞(M) Ω
0(ξ2)

where the last isomorphism is given by Lemma 1.5.2. �

Appendix

A vector bundle ξ = (E, p,M) is said to be of finite type if M is a normal space
and may be covered by a finite number of open sets over each of which ξ is trivial. If
M is a compact space, then every vector bundle over M is of finite type. The main
purpose of this section is to prove that every vector bundle over a finite dimensional
paracompact space is of finite type.

Recall that a Hausdorff space X is said to have covering dimension not greater
than m if every open cover of X has an open refinement such that no point of X
is contained in more than m + 1 elements of the refinement. In this case we write
dimX ≤ m. If dimX ≤ m and dimX � m− 1, we say that the covering dimension
of X is m and write dimX = m. If dimX � m for every m ∈ Z+, we say that X
is infinite dimensional and set dimX = ∞. If M is a topological m-manifold, then
dimM ≤ m.

Proposition A.1. If M is a paracompact space of finite covering dimension, then
every vector bundle ξ = (E, p,M) over M is of finite type.

Proof. Let U be an open cover of M such that ξ|U is trivial for every U ∈ U .
Suppose that dimM ≤ m and let V be an open refinement of U such that no point
of M is contained in more than m + 1 elements of V. Since M is assumed to be
paracompact, we may take V to be locally finite and there exists a partition of unity
{φV : V ∈ V} subordinated to V. Let

Ai = {a ⊂ V : |a| = i+ 1}

for each i ∈ Z+. For each a ∈ Ai with a = {V0, ..., Vi} the set

Wi,a = {x ∈M : φV (x) < min{φV0(x), ..., φVi (x)} for V 6= V0, ..., Vi}

is open and contained in V0 ∩ · · · ∩ Vi. So, ξ|Wi,a
is trivial. Moreover, if a, b ∈ Ai,

then Wi,a and Wi,b are disjoint. Thus, if we put

Xi =
⋃

a∈Ai

Wi,a
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then ξ|Xi
is trivial as well and it suffices to show that {X0, ...,Xm} is an open cover

of M . Indeed, if a point x ∈ M is contained in at most m+ 1 of V and so at most
m+1 of the functions φV , V ∈ V are positive at x. In other words, there exist some
0 ≤ i ≤ m and V0,..., Vi ∈ V such that φV0(x) > 0,..., φVi(x) > 0 and φV (x) = 0 for
V 6= V0, ..., Vi. This implies that x ∈ Wi,a, where a = {V0, ..., Vi}. This concludes
the proof. �

Corollary A.2. Every (complex or real) vector bundle over a topological manifold
is of finite type. �

The proof of Theorem 1.3.1 together with Corollary A.2 show that the following
topological version of Theorem 1.3.2 holds.

Corollary A.3. If M is a paracompact space of finite covering dimension and ξ is
a (complex or real) vector bundle over M , then there exists a vector bundle ξ̃ over
M such that ξ⊕ ξ̃ is trivial. In particular, this holds if M is a topological manifold.
Moreover, if ξ is a smooth vector bundle over a smooth manifold M , then there
exists a smooth vector bundle ξ̃ over M such that ξ ⊕ ξ̃ is trivial. �

Corollary A.4. If M is a paracompact space of finite covering dimension and ξ
is a complex vector bundle over M , then there exists some n ∈ N and a continuous
map f : M → Gk(Cn) such that ξ ∼= f∗γkn. In particular this holds in case M is a
topological manifold. The same is true for real vector bundles if we replace Gk(Cn)
with the real Grassmann manifold Gk(Rn). �



Chapter 2

Characteristic classes

2.1 Connections

Let ξ = (E, p,M) be a smooth vector bundle of rank n over a smooth manifold M .
A (linear) connection on ξ is a linear map

∇ : Ω0(ξ) → A1(M)⊗C∞(M) Ω
0(ξ)

with the additional property (Leibniz formula)

∇(fs) = df ⊗ s+ f∇s

for every f ∈ C∞(M) and s ∈ Ω0(ξ), where A1(M) denotes the space of smooth
1-forms of M . If ξ is real then linear means R-linear. If ξ is a smooth complex
vector bundle, a connection on ξ is a C-linear map

∇ : Ω0(ξ) → A1(M ;C)⊗C∞(M ;C) Ω
0(ξ)

satisfying the Leibniz formula for all f ∈ C∞(M ;C). We will write Ak(M) and
C∞(M) in both cases, as the meaning will usually be clear from the context.

Since A1(M) = Ω0(T ∗M) and A1(M ;C) = Ω0((T ∗M)C), from Theorem 1.5.3
we have

A1(M)⊗C∞(M) Ω
0(ξ) ∼= Ω0(T ∗M ⊗ ξ)

∼= Ω0(Hom(TM, ξ)) ∼= HomC∞(M)(Ω
0(TM),Ω0(ξ)).

So a connection on ξ is a map ∇ : Ω0(ξ) × Ω0(TM) → Ω0(ξ) which is linear with
respect to the factor Ω0(ξ), is C∞(M)-linear with respect to the factor Ω0(TM) and
if we write ∇X = ∇(.,X), then

∇X(fs) = f∇Xs+ (Xf)s

for every X ∈ Ω0(TM), s ∈ Ω0(ξ) and f ∈ C∞(M). In other words a connection is
a way to differentiate smooth sections of ξ in the directions of smooth vector fields
of M . From the above isomorphisms a connection can be thought of as a linear map
∇ : Ω0(ξ) → Ω0(Hom(TM, ξ)), and so the value (∇Xs)(x) ∈ Ex = p−1(x) depends
only of the vector X(x) ∈ TxM and the values of s on an open neighbourhood of

25
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x ∈ M , because if s|U = 0 and U ⊂ M is an open neighbourhood of x, there exists
some f ∈ C∞(M) such that f(x) = 1 and suppf ⊂ U , and therefore f · s = 0 on
M , which gives

0 = ∇X(fs)(x) = f(x)(∇Xs)(x) + (Xf)(x)s(x) = (∇Xs)(x).

Thus, a connection can be localized to ξ|U for every open set U ⊂M .
Let U ⊂M be an open set over which ξ is trivial and let {e1, ..., en} be a smooth

local frame of ξ on U . Every element of A1(U)⊗C∞(U) Ω
0(ξ|U ) can be written in a

unique way as
n
∑

j=1

aj ⊗ ej

for some aj ∈ C∞(U), 1 ≤ j ≤ n. Therefore,

∇ek =
n
∑

j=1

Ajk ⊗ ej

where A = (Ajk) is a n × n matrix of smooth 1-forms on U , called the connection
form with respect to the frame {e1, ..., en}. Conversely, for any n × n matrix of
smooth 1-forms on U and any smooth frame {e1, ..., en} of ξ|U one can define a
connection on ξ|U by setting

∇(

n
∑

k=1

fkek) =

n
∑

k=1

dfk ⊗ ek +

n
∑

k,j=1

fkAjk ⊗ ej

for every f1,..., fn ∈ C∞(M).

Example 2.1.1. If ξ = (E, p,M) is a smooth vector bundle of rank n on a smooth
manifold M , there exists a smooth vector bundle ξ̃ of some rank k such that ξ⊕ ξ̃ ∼=
ǫn+k. Let f : E →M×Cn+k be the inclusion and g :M×Cn+k → E the projection.
Let ∇0 be the connection on ǫn+k with zero connection form. Equivalently, ∇0 =
d⊕ · · · ⊕ d, since Ω0(ǫn+k) ∼= C∞(M)⊕ · · ·C∞(M) n+ k times and therefore

A1(M)⊗C∞(M) Ω
0(ǫn+k) ∼= A1(M)⊕ · · · ⊕A1(M)

We have C∞(M)-linear maps f∗ : Ω
0(ξ) → Ω0(ǫn+k) and g∗ : Ω0(ǫn+k) → Ω0(ξ)

and the composition ∇ = (id ⊗ g∗) ◦ ∇0 ◦ f∗
Ω0(ξ)

f∗−→Ω0(ǫn+k)
∇0−→A1(M)⊗C∞(M) Ω

0(ǫn+k)
id⊗g∗−→A1(M)⊗C∞(M) Ω

0(ξ)

is a connection on ξ. Thus, every (complex or real) smooth vector bundle over a
smooth manifold admits at least one connection.

In the sequel we denote Ωk(ξ) = Ak(M) ⊗C∞(M) Ω
0(ξ) for every k ∈ Z+ and

every smooth vector bundle ξ = (E, p,M).
If ξ1 = (E1, p1,M) and ξ1 = (E2, p2,M) be two smooth vector bundles over the

same smooth manifold M . We define the C∞(M)-bilinear form

Ωk(ξ1)⊗C∞(M) Ω
l(ξ2)

∧−→Ωk+l(ξ1 ⊗ ξ2) ∼= Ak+l(M)) ⊗C∞(M) (Ω
0(ξ1)⊗C∞(M) Ω

0(ξ2))
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which sends (ω ⊗ s) ⊗ (θ ⊗ t) to (ω ∧ θ) ⊗ (s ⊗ t), where ω ∧ θ is the usual wedge
product of smooth forms on M .

Since Ω0(ǫ1R)
∼= C∞(M) and Ωk(ǫ1R)

∼= Ak(M), taking ξ1 = ǫ1R and k = 0 the
above bilinear form gives just the C∞(M)-module structure of Ωl(ξ2) for a real
vector bundle ξ2. Similarly, Ω0(ǫ1C)

∼= C∞(M ;C) and Ωk(ǫ1C)
∼= Ak(M ;C), the

C-valued smooth k-forms on M . Moreover, if ξ2 is a complex vector bundle, for
ω ∈ Ak(M ;C) and s ∈ Ω0(ξ2) we have ω ∧ s = ω ⊗ s, which means that

Ak(M ;C)⊗C∞(M ;C) Ω
0(ξ2)

∧−→ Ωk(ξ2) ∼= Ak(M ;C)⊗C∞(M ;C) Ω
0(ξ2)

is the identity map. analogously, in case ξ2 is real.
Obviously, 1 ∧ s = s and (ω ∧ θ) ∧ s = ω ∧ (θ ∧ s) for every ω ∈ Ak(M),

θ ∈ Al(M) and s ∈ Ωj(ξ2).

Lemma 2.1.2. If ∇ is a connection on the smooth vector bundle ξ = (E, p,M),
then there exists a linear map d∇ : Ωk(ξ) → Ωk+1(ξ) for k ∈ Z+ such that

(i) d∇ = ∇ : Ω0(ξ) → Ω1(ξ) for k = 0 and
(ii) d∇(ω ∧ s) = dω ∧ s+ (−1)kω ∧ d∇s for every ω ∈ Ak(M) and s ∈ Ωl(ξ) and

k, l ∈ Z+.

Proof. For every ω ∈ Ak(M) and s ∈ Ω0(ξ) we put

d∇(ω ⊗ s) = dω ∧ s+ (−1)kω ∧ (∇s)

and observe that d∇ is well defined on Ωk(ξ), because

d∇(ω ⊗ (fs)) = fdω ∧ s+ (−1)kω ∧ (df ⊗ s+ f∇s)

= fdω ∧ s+ (−1)kω ∧ fω ∧ ∇s+ (df ∧ ω) ∧ s = d∇((fω)⊗ s)

for every f ∈ C∞(M). Since dω ∧ s = dω ⊗ s, we have (i).

To prove (ii) suppose that s = θ ⊗ t, where θ ∈ Al(M) and t ∈ Ω0(ξ). Then,

d∇(ω ∧ s) = d∇(ω ∧ (θ ⊗ t)) = d∇((ω ∧ θ)⊗ t)

= d(ω ∧ θ)⊗ t+ (−1)k+l(ω ∧ θ) ∧ (∇t)

= (dω ∧ θ + (−1)kω ∧ θ)⊗ t+ (−1)k+l(ω ∧ θ) ∧ (∇t)

= dω ∧ (θ ⊗ t) + (−1)kω ∧ [dθ ⊗ t+ (−1)lθ ∧ (∇t)]

= dω ∧ (θ ⊗ t) + (−1)kω ∧ d∇(θ ⊗ t)

= dω ∧ s+ (−1)kω ∧ d∇s. �

Thus, for every connection on a smooth vector bundle ξ = (E, p,M) we get the
sequence of linear maps

0−→Ω0(ξ)
∇−→Ω1(ξ)

d∇−→Ω2(ξ)
d∇−→· · ·
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In the particular space ξ = ǫ1, it coincides with the deRham complex ofM . However,
as we shall see, this is not a cochain complex in general. In any case, the map
F∇ = d∇ ◦ ∇ : Ω0(ξ) → Ω2(ξ) is C∞(M)-linear. Indeed, for every f ∈ C∞(M) and
s ∈ Ω0(ξ) we have

d∇(∇(fs)) = d∇(df ⊗ s+ f∇s) = d∇(df ∧ s+ f ∧ ∇s)

= d(df) ∧ s− df ∧ (∇s) + df ∧ (∇s) + fd∇(∇s) = fd∇(∇s)).

On the other hand, from Theorem 1.5.3 we have

HomC∞(M)(Ω
0(ξ),Ω2(ξ)) ∼= HomC∞(M)(Ω

0(ξ),Ω0(ξ))⊗C∞(M) A
2(M)

∼= Ω0(Hom(ξ, ξ))⊗C∞(M) A
2(M) = Ω2(Hom(ξ, ξ)).

Thus, F∇ is a smooth 2-form with values in Hom(ξ, ξ) which is called the curvature
form of ∇. For every X, Y ∈ Ω0(TM) the evaluation at (X,Y ) induces a C∞(M)-
linear map from Ω2(Hom(ξ, ξ)) to Ω0(Hom(ξ, ξ)) which sends F∇ to an element
F∇
X,Y . Because of the C∞(M)-linearity, for every x ∈M the value F∇

X,Y (x) depends

only on the values X(x) and Y (x). For every ω ∈ A1(M) and s ∈ Ω0(ξ) we have

d∇(ω ⊗ s) = dω ⊗ s− ω ∧ ∇s

and therefore

d∇(ω ⊗ s)(X,Y ) = [Xω(Y )− Y ω(X) − ω([X,Y ])] · s− [ω(X)∇Y s− ω(Y )∇Xs]

= ∇X(ω(Y )s)−∇Y (ω(X)s)− ω([X,Y ])s

from which follows the traditional formula of the curvature tensor

F∇
X,Y (s) = d∇(∇s)(X,Y ) = ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s.

In order to carry out explicit calculations it is useful to have a local formula for
the curvature 2-form. Let A = (Ajk) be the connection form with respect to some
local smooth frame {e1, ..., en}. Then,

d∇(∇ek) =
n
∑

j=1

dAjk ⊗ ej −
n
∑

j=1

Ajk ∧ ∇ej

=

n
∑

j=1

dAjk ⊗ ej −
n
∑

j=1

Ajk ∧
(

n
∑

l=1

Alj ⊗ el
)

=
n
∑

l=1

(

dAlk ⊗ el +
(

n
∑

j=1

Alj ∧Ajk
)

⊗ el

)

.

Thus, in matrix form we have

F∇|locally = dA+A ∧A
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and for every X, Y ∈ Ω0(TM) the matrix of the linear map F∇
X,Y (x) : Ex → Ex

with respect to the basis {e1(x), ..., en(x)} is (dA+A ∧A)(X,Y ).

Example 2.1.3. Let γ1 = (H1, p,CP 1) be the tautological complex line bundle
over CP 1 ≈ S2. Recall that H1 = {(ℓ, u) ∈ CP 1 × C2 : u ∈ ℓ} and let

H⊥
1 = {(ℓ, u) ∈ CP 1 × C2 : u ∈ ℓ⊥}

with respect to the usual hermitian product on C2. Then, H⊥
1 is the total space of an

obvious smooth complex vector bundle γ⊥1 over CP 1 such that γ1⊕γ⊥1 ∼= ǫ2C. We shall
compute the connection form and the curvature form of the connection ∇ defined
as in Example 2.1.1. using the same notations. Thus, ∇ = (id ⊗ g∗) ◦ (d ⊕ d) ◦ f∗,
where f : H1 → CP 1×C2 is the inclusion and g : CP 1×C2 → H1 is the projection.
If ℓ = [z0, z1], then

g([z0, z1], (u0, u1)) = (z0u0 + z1u1) · (z0, z1) = (|z0|2u0 + z1z0u1, z1z0u1 + |z1|2u1).

Let {(U0, φ0), (U1, φ1)} be the canonical atlas of CP 1. Over U0 we have the smooth
section s defined by s([1, z]) = (1, z) and (d⊕d)s([1, z]) = ([1, z], (0, dz)). Therefore,

(∇s)([1, z]) =
(

[1, z],
1

1 + |z|2 · 0 + z

1 + |z|2 dz,
z

1 + |z|2 · 0 + |z|2
1 + |z|2 dz

)

=

(

[1, z],
( z

1 + |z|2 dz
)

· (1, z)
)

=
( z

1 + |z|2 dz
)

⊗ s.

So, the connection form on U0 with respect to the frame {s} is

A =
z

1 + |z|2 dz.

Since A ∧A = 0, we have F∇|U0
= dA and so

F∇|U0
= d

( z

1 + |z|2
)

∧ dz =

[

d
( 1

1 + |z|2
)

z +
1

1 + |z|2 dz
]

∧ dz

=

[

− d(1 + zz)

(1 + |z|2)2 z +
1

1 + |z|2 dz
]

∧ dz = 1

(1 + |z|2)2 dz ∧ dz.

Note that Hom(γ1, γ1) ∼= ǫ1C, because it is a complex line bundle and admits the
global smooth section whose value at ℓ is the identity map of the corresponding
fiber of γ1. Thus,

F∇ ∈ Ω2(Hom(γ1, γ1)) ∼= A2(CP 1)⊗C∞(CP 1) C
∞(CP 1;C) = A2(CP 1;C)

is indeed a C-valued smooth 2-form on CP 1.

So far we have dealt with F∇ = d∇ ◦ ∇. It turns out that in higher degrees the
composition d∇ ◦ d∇ : Ωk(ξ) → Ωk+2(ξ) for k ≥ 2 is completely determined by F∇.
To see this, we consider the C∞(M)-bilinear map

Ωk(ξ)×HomC∞(M)(Ω
0(ξ),Ω2(ξ))

∧−→ Ωk+2(ξ)
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defined by (ω ⊗ s) ∧ G = ω ∧ G(s), for every ω ∈ Ak(M), s ∈ Ω0(ξ) and
G ∈ HomC∞(M)(Ω

0(ξ),Ω2(ξ)), where the wedge in the right hand side is the one
previously defined.

Proposition 2.1.4. (d∇ ◦ d∇)(t) = t ∧ F∇ for every t ∈ Ωk(ξ).

Proof. Indeed, if t = ω ⊗ s ∈ Ωk(ξ), we have

(d∇ ◦ d∇)(ω ⊗ s) = d∇(dω ⊗ s+ (−1)kω ∧∇s)

= d(dω)⊗ s+ (−1)k+1dω ∧ ∇s+ (−1)kdω ∧ ∇s+ ω ∧ (d∇(∇s)) = ω ∧ F∇(s). �

2.2 Induced connections

Let f : N →M be a smooth map between smooth manifolds and let ξ = (E, p,M)
be a (complex or real) smooth vector bundle of rank n over M . Since the induced
map f∗ : C∞(M) → C∞(N) is a ring homomorphism, every C∞(N)-module is also
a C∞(M)-module. In particular, Ω0(f∗ξ) has a C∞(M)-module structure and the
map f∗ : Ω(ξ) → Ω0(f∗ξ) defined by

(f∗(s))(x) = (x, s(f(x))

for every x ∈ N , is C∞(M)-linear.

Lemma 2.2.1. The well defined C∞(N)-linear map

f∗ : C∞(N)⊗C∞(M) Ω
0(ξ) → Ω0(f∗ξ)

which sends φ⊗ s to φ · f∗(s) is an isomorphism.

Proof. If ξ is trivial, then f∗ξ is the trivial vector bundle of rank n over N and
Ω0(ξ) ∼= C∞(M)⊕· · · ⊕C∞(M) and Ω0(f∗ξ) ∼= C∞(N)⊕· · · ⊕C∞(N), n-times. It
is immediate from the definitions that in this case f∗ is an isomorphism, essentially
the identity map.

In the general case, there exists a smooth vector bundle ξ̃ = (Ẽ, p̃,M) over M
of some rank m such that ξ ⊕ ξ̃ ∼= ǫn+m. Then, f∗ξ ⊕ f∗ξ̃ ∼= ǫn+m over N and from
the trivial case

f∗ : (C∞(N)⊗C∞(M) Ω
0(ξ))⊕ (C∞(N)⊗C∞(M) Ω

0(ξ)) ∼= Ω0(f∗ξ)⊕ Ω0(f∗ξ̃)

where the first factor on the left hand side is send to the first factor on the right
hand side. �

It is evident that the C∞(M)-linear map f∗ : Ω0(ξ) → Ω0(f∗ξ) induces a
C∞(M)-linear map f∗ : A1(M)⊗C∞(M) Ω

0(ξ) → A1(N)⊗C∞(N) Ω
0(f∗ξ).
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Lemma 2.2.2. For every connection ∇ on ξ and every smooth map f : N → M
there exists a unique connection f∗∇ on f∗ξ, which makes the following diagram
commutative.

Ω0(ξ)
∇−→ Ω1(ξ)





y
f∗





y
f∗

Ω0(f∗ξ)
f∗∇−→ Ω1(f∗ξ)

Proof. From the preceding Lemma 2.2.1 it follows that we have an C∞(N)-
isomorphism Ωk(f∗ξ) ∼= Ak(N) ⊗C∞(M) Ω

0(ξ) for every k ∈ Z+. On the other

hand, the pull-back map f∗ : Ak(M) → Ak(N) induces a C∞(M)-linear map from
C∞(N) ⊗C∞(M) A

k(M) to Ak(N) which sends φ ⊗ ω to φ · f∗(ω). Taking tensor
products (over C∞(M)) with Ω0(ξ) we obtain a C∞(M)-linear map

ρ : C∞(N)⊗C∞(M) Ω
k(ξ) → Ak(N)⊗C∞(M) Ω

0(ξ).

It suffices now to take

f∗∇ = (d⊗ id) + ρ(id⊗∇) : Ω0(f∗ξ) → A1(N)⊗C∞(N) Ω
0(f∗ξ),

since from Lemma 2.2.1 we have a C∞(N)-isomorphism

f∗ : C∞(N)⊗C∞(M) Ω
0(ξ) ∼= Ω0(f∗ξ). �

Let U ⊂ M be an open set over which ξ is trivial and let {e1, ..., en} be a local
frame of ξ on U . Let A be the connection form of a connection ∇ on U with
respect to this frame. Then, {f∗(e1), ..., f∗(en)} is a frame of f∗ξ on f−1(U) and
the corresponding connection form of f∗∇ on f−1(U) is f∗A. The commutative
diagram of Lemma 2.2.2 extends to the commutative diagram

Ω1(ξ)
d∇−→ Ω2(ξ)





y
f∗





y
f∗

Ω1(f∗ξ)
df

∗
∇

−→ Ω2(f∗ξ)

from which we get a commutative diagram

Ω0(ξ)
F∇

−→ Ω2(ξ)




y
f∗





y
f∗

Ω0(f∗ξ)
F f∗∇

−→ Ω2(f∗ξ)

Since f∗(Hom(ξ, ξ)) ∼= Hom(f∗ξ, f∗ξ), we arrive at f∗(F∇) = F f
∗∇. This can also

be seen by computing locally

f∗(F∇) = f∗(dA+A∧A) = f∗(dA)+f∗(A∧A) = d(f∗(A))+f∗(A)∧f∗(A) = F f
∗∇.

A connection ∇ on a smooth vector bundle ξ = (E, p,M) induces a connection
on the dual vector bundle ξ∗ as follows. We consider the composition

(., .) : Ωk(ξ)⊗C∞(M) Ω
l(ξ∗)

∧−→Ωk+l(ξ ⊗ ξ∗)−→Ak+l(M)
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where the second map is induced by the vector bundle morphism ξ⊗ξ∗ → ǫ1 defined
by evaluation on the fibres. So,

(ω ⊗ s, θ ⊗ s∗) = s∗(s) · ω ∧ θ

for every ω ∈ Ak(M), θ ∈ Al(M) and s ∈ Ω0(ξ), s∗ ∈ Ω(ξ∗). Since (., .) is non-
degenerate for (k, l) = (0, 0) and for (k, l) = (0, 1), the equation

d(s, s∗) = (∇s, s∗) + (s,∇∗s∗)

defines a connection ∇∗ on ξ∗.
If ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) are two smooth vector bundles over the

same smooth manifoldM with connections ∇1 and ∇2, respectively, then the wedge

Ω0(ξ1)⊗C∞(M) Ω
0(ξ2)

∧−→Ω0(ξ1 ⊗ ξ2)

coincides with the isomorphism Ω0(ξ1) ⊗C∞(M) Ω
0(ξ2) ∼= Ω0(ξ1 ⊗ ξ2) of Theorem

1.5.3(ii), and we can define a connection ∇ on the tensor product ξ1 ⊗ ξ2 by the
formula

∇(s⊗ t) = (∇1s) ∧ t+ s ∧ (∇2t).

In particular, this gives a way to define a connection ∇ on Hom(ξ1, ξ2) ∼= ξ∗1 ⊗ ξ2
putting

∇(s∗ ⊗ t) = (∇1∗s∗) ∧ t+ s∗ ∧ (∇2t).

There is another, perhaps more direct, way to define this connection on Hom(ξ1, ξ2),
as follows. The evaluation map

Ω0(ξ1)×Ω0(Hom(ξ1, ξ2)) → Ω0(ξ2)

induces a C∞(M)-bilinear map

(., .) : Ωk(ξ1)× Ωl(Hom(ξ1, ξ2)) → Ωk+l(ξ2)

which for (k, l) = (0, 1) is given by the formula (s, ω ⊗ φ) = ω ⊗ φ(s). Thus, it is
non-degenerate and the equation

∇2(s, φ) = (∇1s, φ) + (s,∇′φ)

defines a connection ∇′ on Hom(ξ1, ξ2).
We shall prove that the connections ∇ and ∇′ on Hom(ξ1, ξ2) coincide through

the isomorphism a : ξ∗1 ⊗ ξ2 ∼= Hom(ξ1, ξ2). It suffices to show that

(s,∇′a(s∗ ⊗ t)) = (s,∇(s∗ ⊗ t))

for every s ∈ Ω0(ξ1), t ∈ Ω0(ξ2) and s∗ ∈ Ω0(ξ∗1). Indeed, there is a commutative
diagram of vector bundle morphisms

ξ1 ⊗ ξ∗1 ⊗ ξ2
id⊗a−→ ξ1 ⊗Hom(ξ1, ξ2)





y
(.,.)⊗id





y
(.,.)

ǫ1 ⊗ ξ2 −→ ξ2
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where the bottom map is scalar multiplication, because

(s, a(s∗ ⊗ t)) = (s, s∗ · t) = s∗(s)t = (s, s∗)t.

Thus,
(s,∇(s∗ ⊗ t)) = (s,∇1s∗) ∧ t+ (s, s∗)∇2t.

From the definitions now we have

(s,∇′a(s∗ ⊗ t)) = ∇2(s, a(s∗ ⊗ t))− (∇1s, a(s∗ ⊗ t)) = ∇2((s, s∗)t)− (∇1s, s∗) ∧ t

= d(s, s∗)∧ t+(s, s∗)∇2t− (∇1s, s∗)∧ t = (s,∇1∗s∗)∧ t+(s, s∗)∇2t = (s∇(s∗⊗ t)).

Finally, it is easy to check following.
(i) d(s, s∗) = (d∇s, s∗) + (−1)k(s, d∇s∗) for every s ∈ Ωk(ξ) and s∗ ∈ Ωk(ξ∗),

and
(ii) d∇(s⊗ t) = (d∇s)⊗ t+ (−1)ks⊗ (d∇t),
(iii) d(s, φ) = (d∇s, φ) + (−1)k(s, d∇φ) for every s ∈ Ωk(ξ1), t ∈ Ωl(ξ2) and

φ ∈ Ωl(Hom(ξ1, ξ2)).

2.3 Invariant complex polynomials

A complex polynomial P in n2 variables of degree k is homogeneous if it is the
sum of monomials of the same degree k. Such a polynomial can be considered as a
function P : Cn×n → C, by arranging the n2 variables in a n × n matrix. So P (A)
is determined as a polynomial function of the entries of the matrix A ∈ Cn×n with
the property P (λA) = λkP (A) for every λ ∈ C.

A homogeneous polynomial P : Cn×n → C is called invariant if it is an invariant
function under the action of GL(n,C) on Cn×n by conjugation, that is

P (gAg−1) = P (A)

for every g ∈ GL(n,C) and A ∈ Cn×n. In this case, P induces a well defined
function P : Hom(V, V ) → C for every complex vector space of dimension n, since
the value P (A) does not depend on the choice of basis.

Examples 2.3.1. (a) For every A ∈ Cn×n the ”characteristic polynomial” of −A is

σ(t) = det(In + tA) =

n
∑

k=0

σk(A)t
k

and σ0(A) = 1. Each coefficient σk(A) is obviously an invariant homogeneous poly-
nomial of degree k. Note that σn(A) = detA.

(b) For every A ∈ Cn×n the trace Tr(Ak) is an invariant homogeneous polynomial
of A of degree k. There is an alternative description which relates this example with
the previous one. Let

s(t) = −t d
dt

log det(In − tA) =

∞
∑

k=0

sk(A)t
k
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where log is considered as the formal power series

log(1 + x) =
∞
∑

k=1

(−1)k−1

k
xk

and
d

dt
denotes the formal derivative

d

dt

( ∞
∑

k=0

akt
k

)

=
∞
∑

k=0

kakt
k−1.

We shall show that sk(A) = Tr(Ak) for every k ∈ N. In the special case of a diagonal
matrix A = diag(λ1, ..., λn) we have

s(t) = −t d
dt

log

n
∏

k=1

(1− tλk) = −t d
dt

n
∑

k=1

log(1− tλk) =

n
∑

k=1

tλk
1− tλk

=

n
∑

k=1

∞
∑

j=1

λjkt
j =

∞
∑

j=0

( n
∑

k=1

λjk

)

tj.

This implies that sk(A) = Tr(Ak) for every diagonal matrix A ∈ Cn×n. The general
case is a consequence of continuity and the following.

Lemma 2.3.2. The set of diagonalisable complex n×n matrices is dense in Cn×n.

Proof. Let A ∈ Cn×n have eigenvalues λ1,..., λj ∈ C with multiplicities n1,..., nj,
respectively. There exists R ∈ GL(n,C) such that R−1AR is upper triangular. Let
ǫ > 0. We choose any

0 < ρ <
1

2
min{ǫ, |λk − λl| : 1 ≤ k 6= l ≤ j}.

We also choose distinct points zk1 ,..., z
k
nk

∈ C of distance at most ρ from λk. Let Tǫ
be the matrix which results in from R−1AR by replacing the diagonal entries with
the complex numbers

z11 , ..., z
1
n1
, ..., zjnj

.

Then, Aǫ = RTǫR
−1 is diagonalisable, because it has distinct eigenvalues, and

‖A−Aǫ‖ ≤ n‖R‖ · ‖R−1‖ · ‖R−1AR− Tǫ‖ ≤ n‖R‖ · ‖R−1‖ · ρ

where ‖.‖ denotes the maximum norm. �

Note that the preceding Lemma 2.3.2 is not true over the field of real numbers.
For instance the matrix of the rotation Rπ/2 by the angle π/2 has characteristic
polynomial t2 + 1 which has negative discriminant. Since the discriminant of the
characteristic polynomial is a continuous function of the matrix and the charac-
teristic polynomial of a diagonalisable real 2 × 2 matrix must have non-negative
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discriminant, it follows that Rπ/2 cannot be approximated by diagonalisable ele-
ments of R2×2.

The invariant homogeneous polynomials σk(A) and sk(A), 0 ≤ k ≤ n are related
through the Newton identities

sk(A)− sk−1(A)σ1(A) + sk−2(A)σ2(A) + ·+ (−1)kkσk(A) = 0.

To see this, we apply again Lemma 2.3.2, so that it suffices to prove the identities
for diagonal A = diag(λ1, ..., λn). In this case, on the one hand we have

( n
∑

k=0

(−1)kσk(A)t
k

)

·
( ∞
∑

k=1

sk(A)t
k

)

=

( n
∑

j=1

tλj
1− tλj

)

·
n
∏

j=1

(1− tλj)

=
n
∑

j=1

tλj(1− tλ1) · · · (1− tλj−1)(1 − tλj+1) · · · (1− tλn)

= −t d
dt

n
∏

j=1

(1− tλj) = −t d
dt

n
∑

k=0

(−1)kσk(A)t
k =

n
∑

k=1

(−1)k−1kσk(A)t
k

and on the other hand

( n
∑

k=0

(−1)kσk(A)t
k

)

·
( ∞
∑

k=1

sk(A)t
k

)

=

∞
∑

k=0

( k
∑

j=0

(−1)kσj(A)sk−j(A)

)

tk,

where we have set σk(A) = 0 for k > n and s0(A) = 0. Comparing the coefficients
we obtain the Newton identities.

It follows from the Newton identities that sk(A) can be determined inductively
as a polynomial function with integer coefficients of σ1(A),..., σk(A). Conversely,
σk(A) is a polynomial function with rational coefficients of s1(A),..., sk(A). For
instance, for k = 1 we have s1(A) = σ1(A) and for k = 2 we have

s2(A) = s1(A)σ1(A)− 2σ2(A) = (σ1(A))
2 − 2σ2(A).

For k = 3 we have

s3(A) = s2(A)σ1(A) − s1(A)σ2(A) + 3σ3(A) = (σ1(A))
3 − 3σ1(A)σ2(A) + 3σ3(A)

and so on.

It is immediate from the definitions that sk(diag(A1, A2)) = sk(A1)+sk(A2) and

σk(diag(A1, A2)) =
k

∑

j=0

σj(A1)σk−j(A2).

Also, sk(A1 ⊗ A2) = sk(A1) · sk(A2), since Tr(A1 ⊗ A2) = Tr(A1) · Tr(A2), where
A1 ⊗A2 denotes the matrix of the tensor product of the linear maps with matrices
A1 and A2.
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The invariant homogeneous polynomials can be described as polynomial func-
tions of the elementary symmetric polynomials. Recall that the elementary sym-
metric polynomials σj(X1, ...,Xn), 1 ≤ j ≤ n in n variables are determined from
the identity

n
∏

j=1

(1 + tXj) =

n
∑

j=0

σj(X1, ...,Xn)t
j .

Obviously, σ1(X1, ...,Xn) = X1 + · · · + Xn and σn(X1, ...,Xn) = X1X2 · · ·Xn.
Every symmetric complex polynomial of n variables is a polynomial function of
σ1,..., σn.

Theorem 2.3.3. For every invariant homogeneous polynomial P : Cn×n → C there
exists a polynomial p of n variables such that P (A) = p(σ1(A), ..., σn(A)) for every
A ∈ Cn×n.

Proof. Let Dn ⊂ Cn×n be the set of all diagonal matrices. By Lemma 2.3.2, the set

⋃

g∈GL(n,C)

gDng
−1

is dense in Cn×n and so P is completely determined by its values on Dn. Every
permutation s in n symbols determines an element g ∈ GL(n,C) such that

gdiag(λ1, ..., λn)g
−1 = diag(λs(1), ..., λs(n))

for every λ1,..., λn ∈ C. Since P is invariant, it follows that P (diag(X1, ...,Xn)) is
a symmetric polynomial and so there exists a polynomial p of n variables such that

P (diag(X1, ...,Xn)) = p(σ1(X1, ...,Xn), ..., σn(X1, ...,Xn)).

The conclusion follows now by continuity. �

The set I∗n(C) of invariant homogeneous polynomials of n2 complex variables
equipped with the usual operations is a commutative algebra. Similarly, the set
S∗
n(C) of all symmetric homogeneous polynomials of n variables is a commutative

algebra and S∗
n(C) = C[σ1, ..., σn]. The preceding Theorem 2.3.3 says that the map

ρ : I∗n(C) → S∗
n(C) defined by

ρ(σ)(X1, ...,Xn) = σ(diag(X1, ...,Xn))

is an isomorphism.

2.4 Chern classes

Let ξ = (E, p,M) be a smooth complex vector bundle of rank n over a smooth
manifold M . Let U ⊂ M be an open set over which ξ is trivial and let {e1, ..., en}
be a frame of ξ on U . There is a corresponding isomorphism of the restriction
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Hom(ξ, ξ)|U with the trivial bundle of rank n × n over U . From this we get an
isomorphism

Ω2(Hom(ξ, ξ)|U ) ∼= A2(U ;Cn×n) ∼= A2(U ;C)n×n.

Thus, every 2-form R on Hom(ξ, ξ) gives a matrix (Rkl) ∈ A2(U ;C)n×n, which
depends on the initial choice of the frame {e1, ..., en}. For every invariant homoge-
neous complex polynomial P of n2 variables and degree k we have a corresponding
element P ((Rkl)) ∈ A2k(U ;C), because the wedge product of differential forms of
even degree is commutative.

If {e′1, ..., e′n} is another frame on U from which we have a corresponding matrix
(R′

kl) ∈ A2(U ;C)n×n, there exists a smooth function g : U → GL(n,C) such that
(Rkl) = g(R′

kl)g
−1. Since P is invariant, we have P ((Rkl)) = P ((R′

kl)). This shows
that there is a global well defined complex smooth 2k-form P (R) ∈ A2k(M ;C).

In particular, if ∇ is a connection on ξ with curvature form F∇ ∈ Ω2(Hom(ξ, ξ)),
then for every invariant homogeneous polynomial P : Cn×n → C we have a well
defined C-valued smooth 2k-form P (F∇) ∈ A2k(M ;C).

Lemma 2.4.1. Let P : Cn×n → C be an invariant homogeneous polynomial. If

P ′ =

(

∂P

∂xkl

)T

, where T means transpose, then P ′(X) · X = X · P ′(X) for every

X ∈ Cn×n.

Proof. Since P is invariant, we have

P ((In + tEkl)X) = P (X(In + tEkl))

for every |t| < 1, where Ekl is the basic n×n matrix whose (k, l)-entry is equal to 1
and has zeros everywhere else. Differentiating at t = 0 for X = (akl) the left hand
side gives

DP (X)XEkl = DP (X)

( n
∑

j=1

aljEkj

)

=
n
∑

j=1

alj
∂P

∂xkj
(X)

which is the (l, k)-entry of P ′(X)X. Similarly, the right hand side gives

DP (X)EklX = DP (X)

( n
∑

j=1

ajkEjl

)

=

n
∑

j=1

ajk
∂P

∂xjl
(X)

which is the (l, k)-entry of XP ′(X). �

Proposition 2.4.2. If ∇ is a connection on ξ with curvature form
F∇ ∈ Ω2(Hom(ξ, ξ)), then for every invariant homogeneous polynomial
P : Cn×n → C the complex smooth 2k-form P (F∇) ∈ A2k(M ;C) is closed.

Proof. (J. Milnor and J. Stasheff) It suffices to prove the assertion locally. Let
U ⊂ M be an open set over which ξ is trivial and let A be the connection form of
∇ on U with respect to some frame. Then F∇|U = dA+A ∧A and differentiating

dF∇|U = F∇ ∧A−A ∧ F∇.
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This is called the (second) Bianchi identity. If F∇|U = (Fkl), then

dP (F∇)|U =
n
∑

k,l=1

∂P

∂xkl
(F∇) ∧ dFkl = Tr(P ′(F∇) ∧ dF∇),

where P ′ is defined as in the preceding Lemma 2.4.1, by the use of which we get

dP (F∇)|U = Tr(P ′(F∇) ∧ F∇ ∧A− P ′(F∇) ∧A ∧ F∇)

= Tr(F∇ ∧ P ′(F∇) ∧A− P ′(F∇) ∧A ∧ F∇) = 0,

because if Y = P ′(F∇) ∧A = (Ykl), then

dP (F∇)|U = Tr(F∇ ∧ Y − Y ∧ F∇) =

n
∑

k,l=1

Flk ∧ Ykl − Ykl ∧ Flk = 0,

since Flk is a 2-form. �

Proposition 2.4.3. If P is an invariant homogeneous complex polynomial of n2

variables of degree k, then the cohomology class [P (F∇)] ∈ H2k(M ;C) does not
depend on the choice of the connection ∇ on ξ.

Proof. Let ∇0 and ∇1 be two connections on ξ and let pr : R×M →M denote the
projection. Let ∇̃0 = pr∗∇0 and ∇̃1 = pr∗∇1 be the induced connections on pr∗ξ.
On pr∗ξ we consider the connection ∇̃ defined by

(∇̃s)(t, x) = (1− t)(∇̃0s)(t, x) + t(∇̃1s)(t, x)

for (t, x) ∈ R ×M . From Lemma 2.2.2 we have j∗0∇̃ = ∇0 and j∗1∇̃ = ∇1, where
j0, j1 : M → R ×M are the inclusions j0(x) = (0, x) and j1(x) = (1, x). Moreover,

F∇0

= j∗0(F
∇̃) and F∇1

= j∗1(F
∇̃). Therefore,

[P (F∇0

)] = [j∗0(P (F
∇̃))] = j∗0 [P (F

∇̃)] = j∗1 [P (F
∇̃)] = [j∗1(P (F

∇̃))] = [P (F∇1

)]

by homotopy invariance. �

It follows from Propositions 2.4.2 and 2.4.3 that if ξ = (E, p,M) is a complex
smooth vector bundle of rank n over a smooth manifold M , then for every invariant
homogeneous complex polynomial P on n2 variables of degree k there is a well
defined cohomology class in H2k(M ;C). If ξ′ = (E′, p′,M) is another complex
smooth vector bundle isomorphic to ξ and f : E′ → E is a smooth vector bundle
isomorphism, then for every connection ∇ on ξ we can choose a connection ∇′ on
ξ′ such that the following diagram commutes.

Ω0(ξ′)
∇′

−→ Ω1(ξ′)




y
f∗





y
f∗

Ω0(ξ)
∇−→ Ω1(ξ)
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Then, the local matrices of F∇ and F∇′

with respect to suitable local frames coin-
cide and thus P (F∇) = P (F∇′

), since P is invariant. More generally, if f : N →M
is a smooth map and P is an invariant homogeneous polynomial, then for every
connection ∇ on ξ we have f∗(P (F∇)) = P (F f

∗∇). This means that the correspon-
dence which sends each isomorphism class of complex vector bundles over M to the
cohomology class in H∗(M ;C) defined by P is a natural transformation from the
K-functor to the cohomology functor H∗(.;C).

For every k ∈ Z+ we define by

ck(ξ) =

[

σk

(−1

2πi
F∇

)]

∈ H2k(M ;C)

the k-Chern class of ξ and by

chk(ξ) =

[

1

k!
sk

(−1

2πi
F∇

)]

∈ H2k(M ;C)

the k-Chern character of ξ. From the above, the definitions are independent of the
choice of the connection ∇ on ξ. Obviously, c0(ξ) = 1 and ch0(ξ) = n. The Newton
identities imply that chk(ξ) is a polynomial function of c0(ξ),..., ck(ξ).

Examples 2.4.4 (a) Let M be a smooth manifold and let ξ = (L, p,M) be a
smooth complex line bundle over M . Then, Ω2(Hom(ξ, ξ) ∼= A2(M ;C). Thus, if ∇
is a connection on ξ, then F∇ ∈ A2(M ;C) and

sk(F
∇) = F∇ ∧ · · · ∧ F∇ k-times.

Since σ1(F
∇) = F∇, it follows that

chk(ξ) =
1

k!
c1(ξ)

k.

(b) We shall compute the first Chern class c1(γ1) of the tautological complex
line bundle γ1 = (H1, p,CP 1) over CP 1 ≈ S2. Since the integration

∫

CP 1

: H2(CP 1;C) → C

is an isomorphism, by Poincaré duality, it suffices to calculate the integral
∫

CP 1

c1(γ1).

We use the connection ∇ of Example 2.1.3 and the calculations therein according
to which if {(U0, φ0), (U1, φ1)} is the canonical atlas of CP 1, then

F∇|U0
=

1

(1 + |z|2)2dz ∧ dz =
2i

(1 + x2 + y2)2
dx ∧ dy

where z = x+ iy. Since CP 1 \ U0 is a singleton, we have

∫

CP 1

F∇ = 2i

∫

R2

1

(1 + x2 + y2)2
dxdy = 2i

∫ 2π

0

∫ +∞

0

r

(1 + r2)2
drdθ = 2πi.
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Since σ1(F
∇) = F∇, it follows that

∫

CP 1

c1(γ1) =

∫

CP 1

(−1

2πi

)

F∇ = −1.

In particular γ1 is not trivial.
(c) In the Newton identities we see that the coefficient of σn in sn is (−1)n−1n.

Let now ξ be a smooth complex vector bundle of rank n such that ck(ξ) = 0 for
1 ≤ k ≤ n− 1. In this case the Newton identities imply that the n-Chern character
of ξ is

chn(ξ) =
1

n!
(−1)n−1ncn(ξ) =

(−1)n−1

(n − 1)!
cn(ξ).

In particular this holds for every smooth complex vector bundle ξ of rank n over
the 2n-dimensional sphere S2n.

The following proposition is useful in calculations.

Proposition 2.4.5. If ξ1 and ξ2 are two smooth complex vector bundles over a
smooth manifold M , then

(a) chk(ξ1 ⊕ ξ2) = chk(ξ1) + chk(ξ2) and

(b) ck(ξ1 ⊕ ξ2) =
k

∑

j=0

cj(ξ1) ∧ ck−j(ξ2).

Proof. We take connections ∇1 and ∇2 on ξ1 and ξ2, respectively. Then,

∇1 ⊕∇2 : Ω0(ξ1)⊕ Ω0(ξ2) ∼= Ω0(ξ1 ⊕ ξ2) → Ω1(ξ1 ⊕ ξ2) ∼= Ω1(ξ1)⊕ Ω0(ξ2)

is a connection on ξ1 ⊕ ξ2 with curvature form

F∇1 ⊕ F∇2 ∈ Ω2(Hom(ξ1 ⊕ ξ2, ξ1 ⊕ ξ2)).

So,

chk(ξ1 ⊕ ξ2) =

[

1

k!
sk

(−1

2πi
diag(F∇1

, F∇2

)

)]

= chk(ξ1) + chk(ξ2).

This proves (a) and (b) follows in the same way. �

Let ξ = (E, p,M) be a complex smooth vector bundle of rank n over a smooth
manifold M . Let I∗n(C) be the commutative graded algebra of invariant homoge-
neous complex polynomials. More precisely, we set I2k+1

n (C) = 0 and let I2kn (C) be
the space of invariant homogeneous polynomials of degree k. For each P ∈ I∗n(C)
let φξ(P ) ∈ H∗(M ;C) denote the cohomology class defined by P as above choosing
any connection on ξ. In this way we have a well defined homomorphism of graded
algebras φξ : I

∗
n(C) → H∗(M ;C), which is called the Chern-Weil homomorphism for

the complex vector bundle ξ. The subalgebra φξ(I
∗
n(C)) of H∗(M ;C) is called the

Chern algebra of ξ and is generated (as an algebra) by the set of the Chern classes

ck(ξ) =

(−1

2πi

)

φξ(σk), k ∈ Z+

of ξ, by Theorem 2.3.3.
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2.5 The Pfaffian polynomial

Let n ∈ N and let so(2n,R) denote the Lie algebra of the special orthogonal group
SO(2n,R), which consists of the skew-symmetric 2n × 2n real matrices. If A =
(Akl) ∈ so(2n,R), we let

ω(A) =
∑

k<l

Akle
∗
k ∧ e∗l

where {e∗1, ..., e∗2n} is the dual of the canonical basis {e1, ..., e2n} of R2n, and define
Pf(A) by the equality

ω(A) ∧ · · · ∧ ω(A) = n!Pf(A) · e∗1 ∧ · · · ∧ e∗2n.

It is obvious that Pf(A) is a homogeneous polynomial of degree n of the 2n2−n real
variables Akl, 1 ≤ k < l ≤ n and is called the Pfaffian polynomial. Explicitly,

Pf(A) =
1

2nn!

∑

σ∈S2n

(sgnσ)Aσ(1)σ(2) · · ·Aσ(2n−1)σ(2n) .

Example 2.5.1. Let a1,..., an ∈ R and A ∈ so(2n,R) be the matrix with the 2× 2
blocks

(

0 a1
−a1 0

)

, · · · ,
(

0 an
−an 0

)

along the diagonal and zeros elsewhere. Then,

ω(A) = a1e
∗
1 ∧ e∗2 + · · · + ane

∗
2n−1 ∧ e∗2n

and thus

ω(A) ∧ · · · ∧ ω(A) = n!a1 · · · ane∗1 ∧ · · · ∧ e∗2n.

So in this case Pf(A) = a1 · · · an. Note that (Pf(A))2 = detA. We shall generalize
this property of the Pfaffian for every element of so(2n,R). We shall need the
following.

Lemma 2.5.2. If A = (Akl) ∈ so(2n,R) and B ∈ R2n×2n, then

Pf(BABT ) = Pf(A) · detB.

Proof. Let B = (Bkl) and let ul = Bel. From the equalities

∑

k<l

Aklu
∗
k ∧ u∗l =

∑

k<l

∑

µ,ν

BνkAklBµle
∗
ν ∧ e∗µ =

∑

k<l

∑

ν<µ

(BABT )νµe
∗
ν ∧ e∗µ = ω(BABT )

follows that

ω(BABT ) ∧ · · · ∧ ω(BABT ) =

(

∑

k<l

Aklu
∗
k ∧ u∗l

)

∧ · · · ∧
(

∑

k<l

Aklu
∗
k ∧ u∗l

)

= n!Pf(A) · u∗1 ∧ · · · ∧ u∗n = n!Pf(A) · (detB) · e∗1 ∧ · · · ∧ e∗n. �
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Corollary 2.5.3. The Pffafian polynomial is invariant under the action of
SO(2n,R) by conjugation.

If A ∈ so(2n,R), then A is normal as a complex matrix and by the Spectral
Theorem there exists an orthonormal basis {e1, e2, ..., e2n} of C2n with respect to
the usual hermitian product consisting of eigenvectors of A. Let λ1, λ2,..., λ2n ∈ C
be the corresponding eigenvalues. Since A is real, λ̄1, λ̄2,..., λ̄2n are also eigenvalues
with corresponding eigenvectors ē1, ē2,..., ē2n and since A is skew-symmetric, λ1,
λ2,..., λ2n ∈ iR. It is possible to arrange this orthonormal basis so that e2k = ē2k−1

for all 1 ≤ k ≤ n. This is trivial, if A = 0. If A 6= 0 and λ1 6= 0, we have
Aē1 = λ̄1ē1 = −λ1ē1 and e1, ē1 are orthogonal. So, we may take λ2 = −λ1 and
e2 = ē1. Inductively now, if H is the linear subspace of C2n with basis {e1, ē1}, then
H, H⊥ and H are A-invariant and we can repeat this for the restriction of A on H⊥.

Theorem 2.5.4. (Pf(A))2 = detA for every A ∈ so(2n,R).

Proof. Since A is skew-symmetric, it has eigenvalues

λ1, λ2 = −λ1, ..., λ2n−1, λ2n = −λ2n−1 ∈ iR

and corresponding eigenvectors

e1, e2 = ē1, ..., e2n−1, e2n = ē2n−1 ∈ C2n

which comprise an orthonormal basis of C2n. Putting

vk =
1√
2
(e2k−1 + e2k) and wk =

1

i
√
2
(e2k−1 − e2k), 1 ≤ k ≤ n

we get an orthonormal basis of R2n. If ak = −iλ2k−1, then Avk = −akwk and
Awk = akvk. This means that there exists g ∈ O(2n,R) such that gAg−1 is the
matrix with the 2× 2 blocks

(

0 a1
−a1 0

)

, · · · ,
(

0 an
−an 0

)

along the diagonal and zeros everywhere else. From Example 2.5.1 and Lemma
2.5.2, we have on the one hand

(Pf(gAg−1))2 = (a1 · · · an)2 = detA

and on other other hand

(Pf(gAg−1))2 = (Pf(gAgT ))2 = (Pf(A))2(detA)2 = (Pf(A))2. �

If A ∈ su(n,C), then A = −AT and from it we get an element AR ∈ so(2n,R).

Corollary 2.5.5. If A ∈ su(n,C), then Pf(AR) = in detA.
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Proof. Since A is normal, there exists an orthonormal basis of Cn consisting of
eigenvectors of A. Thus, we may assume that A = diag(ia1, ..., ian), for some a1,...,
an ∈ R. Since iak corresponds to the 2× 2 block

(

0 −ak
ak 0

)

from Example 2.5.1 we have Pf(AR) = (−1)na1 · · · an and on the other hand detA =
ina1 · · · an. The conclusion follows now from Lemma 2.5.2. �

2.6 The Euler class

Let ξ = (E, p,M) be a smooth real vector bundle of rank n over a smooth manifold
M . A smooth inner product 〈, 〉 on ξ induces a bilinear map

〈, 〉 : Ωk(ξ)×Ωl(ξ) → Ak+l(M)

defined by 〈ω1 ⊗ s1, ω2 ⊗ s2〉 = 〈s1, s2〉ω1 ∧ ω2.
A connection ∇ on ξ is said to be compatible with the inner product (or a metric

connection with respect to 〈, 〉) if

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉

for every s1, s2 ∈ Ω0(ξ).
Let U ⊂ M be an open set over which ξ is trivial and let {e1, ..., en} be an

orthonormal frame on U . Let A = (Akl) be the connection form with respect to this
frame. Then,

0 = d〈ek, el〉 = 〈
n
∑

j=1

Ajk ⊗ ej , el〉+ 〈ek,
n
∑

j=1

Ajl ⊗ ej〉

=
n
∑

j=1

Ajk〈ej , el〉+
n
∑

j=1

Ajl〈ek, ej〉 = Alk +Akl.

Thus, the connection form A is skew-symmetric and an easy calculation shows that
the converse is also true. More precisely, if the connection form A of ∇ on U with
respect to an orthonormal frame is skew-symmetric, then the restriction of ∇ on U
is a metric connection. The curvature form F∇ is also skew-symmetric, since on U
it is given by the formula F∇|U = dA+A ∧A.

We note that if {fj : j ∈ J} is a smooth partition of unity on the base space M
and {∇j : j ∈ J} is a family of connections on ξ, then

∇ =
∑

j∈J

fj∇j

is a connection on ξ. Moreover, if each ∇j is a metric connection with respect to
the same inner product on ξ for every j ∈ J , then ∇ is also a metric connection.

Using smooth partitions of unity one can construct connections which are com-
patible with a given inner product on ξ. Indeed, let U be an open cover of M
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consisting of open sets over which ξ is trivial. For U ∈ U we choose an orthonormal
frame {e1, ..., en} on U . On U we consider the connection ∇U defined by the formula

∇U
X

( n
∑

k=1

φkek

)

=

n
∑

k=1

dφk(X)ek

for every smooth vector field X on U . Then, ∇U is compatible with the inner
product. If {fU : U ∈ U} is a smooth partition of unity subordinated to U , then

∇ =
∑

U∈U

fU∇U

is a connection on ξ compatible with the inner product.
The real vector bundle ξ of rank n is called orientable if there exists an open

cover U of its base space M such that ξ is trivial over each element of U and for any
U , V ∈ U such that U ∩V 6= ∅ and there are trivializations hU , hV of ξ over U and
V , respectively, such that

(hU ◦ h−1
V )(x, v) = (x, gUV (x)v)

for every x ∈ U ∩ V and v ∈ Rn, where gUV : U ∩ V → SO(n,R) is a smooth map.
Applying the Gram-Schmidt orthogonalization method, it is always possible to find
such an open cover with the corresponding maps gUV taking values in O(n,R). The
bundle is orientable if gUV take values in the connected component of the identity
of O(n,R).

We shall assume now that the rank of ξ is even and equal to 2n. Then, Pf(F∇|U )
is a smooth 2n-form on U , which depends on the choice of the initial orthonormal
frame on U . If we choose another orthonormal frame on U , then the curvature form
with respect to the new frame is B · (F∇|U ) ·B−1, where B : U → O(2n,R) is some
smooth map. It follows from Lemma 2.5.2 that the Pfaffian of the curvature form
with respect to the new frame is ±Pf(F∇|U ), assuming that U is connected. Thus,
in case ξ is orientable, we have a well defined global smooth 2n-form Pf(F∇) on M ,
for which the proof of Proposition 2.4.2 works and shows that it is closed. We shall
prove in the sequel that its cohomology class does not depend on the choices of the
metric connection and the initial inner product.

Lemma 2.6.1. Let j0, j1 : M → R ×M be the inclusions with j(x) = (0, x) and
j(x) = (1, x) and pr : R×M → M the projection. If g0, g1 are two inner products
on ξ and ∇0 a connection compatible with g0 and ∇1 a connection compatible with
g1, then there exists an inner product g on pr∗ξ and a connection ∇ compatible
with g such that j∗0g = g0, j

∗
1g = g1 and j∗0∇ = ∇0, j∗1∇ = ∇1.

Proof. Let {f0, f1} be smooth partition of unity subordinated to the open cover

{(−∞,
3

4
)×M, (

1

4
,+∞)×M}

of R×M . Then,
g = f0pr

∗g0 + f1pr
∗g1
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is an inner product on pr∗ξ such that j∗0g = g0 and j
∗
1g = g1. Now pr∗∇0 is a connec-

tion which is compatible with g only on (−∞,
1

4
)×M and pr∗∇1 is compatible with

g on (
3

4
,+∞)×M . Taking any connection ∇̃ on M which is compatible with g, we

can glue these three connections using a smooth partition of unity subordinated to
the open cover

{(−∞,
1

4
)×M, (

1

8
,
7

8
)×M, (

3

4
,+∞)×M}

of R×M with the required properties. �

Corollary 2.6.2. The cohomology class of Pf(F∇) in H2n(M ;R) does not depend
on the choices of the inner product and the compatible connection ∇ on ξ.

Proof. Let g0, ∇0 and g1, ∇1 be two choices of inner products and compatible
connections on ξ. Applying the preceding Lemma 2.6.1 and using the same
notations, there exists an inner product g on pr∗ξ and a compatible connection
such that j∗0 (F

∇) = F∇0

and j∗1(F
∇) = F∇1

. Hence j∗0(Pf(F
∇)) = Pf(F∇0

) and
j∗1(Pf(F

∇)) = Pf(F∇1

). By homotopy invariance, the cohomology classes of these
two closed 2n-forms coincide. �

If ξ = (E, p,M) ia a smooth orientable real vector bundle of rank 2n over a
smooth manifold M , then the cohomology class

e(ξ) =

[

Pf

(

F∇

2π

)]

∈ H2n(M ;R)

is called the Euler class of ξ.

Example 2.6.3. A connection ∇ on the cotangent bundle T ∗M of a smooth man-
ifold M of any dimension n is said to be symmetric if the composition

Ω0(T ∗M) = A1(M)
∇−→ Ω1(T ∗M) = A1(M)⊗C∞(M) A

1(M)
∧−→ A2(M)

coincides with the exterior derivation d.
On a local chart (U ;x1, ..., xn) of M there are smooth functions Γjkl : U → R

such that

∇(dxj) =
n
∑

k,l=1

Γjkldx
k ⊗ dxl, 1 ≤ j ≤ n,

which are traditionally called the Christoffel symbols. If ∇ is symmetric, we have

n
∑

k,l=1

Γjkldx
k ∧ dxl = d(dxj) = 0

and therefore Γjkl = Γjlk for all 1 ≤ j, k, l ≤ n.
More generally, for every f ∈ C∞(M) we can compute on U that

∇(df) =

n
∑

k,l=1

(

∂2f

∂xk∂xl
+

n
∑

j=1

Γjkl
∂f

∂xj

)

dxk ⊗ dxl.
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If ∇ is symmetric, then the coefficient of dxk ⊗ dxl is symmetric with respect to the
indices k, l. The converse is also true.

A Riemannian metric on M is a (smooth) inner product on TM and gives rise
to a natural smooth vector bundle isomorphism T ∗M ∼= TM by the use of which
we can transfer the inner product to T ∗M . For every Riemannian metric on M
there exists a unique symmetric connection on T ∗M which is compatible with the
inner product and is called the Levi-Civita connection of the Riemannian metric.
This can be proved in our context as follows. It suffices to prove that for every
local chart (U ;x1, ..., xn) of M and every orthonormal frame {θ1, ..., θn} of T ∗M on
U there exists a unique skew-symmetric matrix (Akl) of smooth 1-forms on U such
that

dθl =

n
∑

k=1

Akl ∧ θk, 1 ≤ l ≤ n,

because the local formulas

∇θl =
n
∑

k=1

Akl ⊗ θk, 1 ≤ l ≤ n,

define a symmetric metric connection on U which is actually defined globally on M
by uniqueness. Indeed, there are smooth functions Aklj : U → R such that

dθj =

n
∑

k,l=1

Akljθk ∧ θl.

If we take

Bklj =
1

2
[Aklj +Alkj −Ajkl −Ajlk +Aljk +Akjl]

and

Cklj =
1

2
[Aklj −Alkj +Ajkl −Ajlk −Aljk −Akjl]

then Bklj is symmetric with respect to k, l and Cklj is skew-symmetric with respect
to l, j. Moreover, Aklj = Bklj + Cklj and this decomposition is unique, because if
Aklj = B′

klj + C ′
klj and B′

klj, C
′
klj have the same symmetry properties as Bklj and

Cklj, then Dklj = Bklj − B′
klj = Cklj − C ′

klj is at the same time symmetric with
respect to k, l and skew-symmetric with respect to l, j, which implies that

Dklj = Dlkj = −Dljk = −Djlk = Djkl = Dkjl = −Dklj

and therefore Dklj = 0. It follows now that

dθj =

n
∑

k,l=1

Ckljθk ∧ θl

and it suffices to take

Akl =

n
∑

k,l=1

Cjklθj, 1 ≤ k, l ≤ n.
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Specializing to the case whereM is an oriented compact Riemannian 2-manifold, let
again {θ1, θ2} be an orthonormal frame of T ∗M on U . Then θ1∧θ2 is the restriction
to U of the Riemannian volume vol(M). The corresponding connection form of the
Levi-Civita connection is

A =

(

0 ω
−ω 0

)

where ω ∈ A1(U). Also, we have the structure equations

dθ1 = −ω ∧ θ2, dθ2 = ω ∧ θ1

and the curvature form is

F∇|U = dA+A ∧A =

(

0 dω
−dω 0

)

.

Hence, Pf(F∇)|U = dω, which is called the Gauss-Bonnet 2-form of M , and there
exists a unique smooth function K :M → R such that Pf(F∇) = K · vol(M) which
is called the Gauss curvature of M . Then,

∫

M
Kvol(M) = 2π

∫

M
e(T ∗M).

The Euler class is natural in the sense that if f : N → M is a smooth map of
smooth manifolds and ξ = (E, p,M) is an smooth, orientable real vector bundle of
rank 2n over M , then

e(f∗ξ) = f∗(e(ξ)).

Also, if ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) are two smooth, orientable real
vector bundles of even ranks over M , then

e(ξ1 ⊕ ξ2) = e(ξ1) ∧ e(ξ2).

Both assertions are proved in the same way as the corresponding assertions for Chern
classes.

So far in this section we have considered real vector bundles. It is obvious
however that the notion of metric connection or hermitian connection can be defined
on a smooth complex vector bundle equipped with a hermitian inner product. In
the same way as in the real case, it is easy to show that the connection form A of a
hermitian connection with respect to an orthonormal local frame is skew-hermitian,

that is A = −AT .
Let ξ = (E, p,M) be a smooth complex vector bundle of rank n over a smooth

manifold M . As a real vector bundle ξ has rank 2n and is orientable, because
U(n) ⊂ SO(2n,R), expanding the entries of U(n) to 2 × 2 real blocks in the usual
way. Let h be a smooth hermitian inner product on ξ and let ∇ be a compatible
connection. The underlying real vector bundle ξR inherits the real inner product Reh
and a corresponding compatible connection ∇R. The connection form A of ∇ with
respect to some orthonormal local frame of ξ on an open set U ⊂ M corresponds
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to a connection form AR of ξR. For instance, if ξ is a complex line bundle, that is
n = 1, then A = (iω) ∈ A1(U ;C)1×1 for some smooth 1-form ω on U and

AR =

(

0 −ω
ω 0

)

.

In case n = 2, there are smooth 1-forms ω1, ω2 and θ on U such that

A =

(

iω1 θ

−θ iω2

)

.

and

AR =









0 −ω1 Reθ Imθ
ω1 0 −Imθ Reθ

−Reθ Imθ 0 −ω2

−Imθ −Reθ ω2 0









.

From Corollary 2.5.5 we have Pf(F∇R

) = in det(F∇).

Theorem 2.6.4. If ξ = (E, p,M) is a smooth complex vector bundle of rank n
over a smooth manifold M , then e(ξR) = cn(ξ). In particular cn(ξ) ∈ H2n(M ;R).

Proof. We compute

Pf

(

1

2π
F∇R

)

=

(

i

2π

)n

det(F∇) =

(

i

2π

)n

σn(F
∇) = σn

(−1

2πi
F∇

)

. �

Theorem 2.6.5. Let ξ = (E, p,M) is a smooth orientable real vector bundle of
rank 2n over a smooth manifold M . If there exists a nowhere vanishing smooth
section of ξ, then e(ξ) = 0.

Proof.We choose any smooth inner product on ξ. Normalising we may assume
that there exists a nowhere vanishing smooth section s of ξ of unit length. There
is an open cover U of M consisting of open sets over which ξ is trivial. Applying
the Gram-Schmidt process on each U ∈ U we can construct a smooth local
orthonormal frame {e1, ..., e2n} such that e1 = s|U . Using a smooth partition of
unity subordinated to U as in the beginning of this section, we can construct a
metric connection ∇ on ξ such that ∇s = 0. The connection form A of ∇ with
respect to the orthonormal frame {e1, ..., e2n} on U has zeros in the first column.
The same is true for the curvature form F∇|U = dA + A ∧ A. This implies that
Pf(F∇) = 0 and therefore e(ξ) = 0. �

Example 2.6.6. As an illustration we shall compute the Euler class of the tangent
bundle TS2n of the 2n-dimensional sphere using the Levi-Civita connection of the
standard euclidean round Riemannian metric 〈, 〉 of constant sectional curvature 1.
The curvature in then given by the formula

F∇
X,Y (Z) = 〈Y,Z〉X − 〈X,Z〉Y

for every X, Y , Z ∈ Ω0(TS2n).
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Let {v1, v2, ..., v2n} be a positively oriented smooth local orthonormal frame of
TS2n on U = S2n \ {en+1} and {v∗1 , v∗2 , ..., v∗2n} be its dual. For every 1 ≤ j ≤ 2n we
have

F∇
X,Y (vj) = 〈Y, vj〉X − 〈X, vj〉Y =

2n
∑

k=1

(

〈X, vk〉 · 〈Y, vj〉 − 〈X, vj〉 · 〈Y, vk〉
)

vk

=
2n
∑

k=1

(

v∗k ∧ v∗j
)

(X,Y ) · vk.

Therefore
F∇|U =

(

v∗k ∧ v∗j
)

1≤k,j≤2n

and on U the Euler class is represented by the smooth closed 2n-form

Pf

(

F∇

2π

)

=
1

2nn!(2π)n

∑

σ∈S2n

(sgnσ)v∗σ(1) ∧ v∗σ(2) ∧ · · · ∧ v∗σ(2n−1) ∧ v∗σ(2n)

=
(2n)!

2nn!(2π)n
· v∗1 ∧ v∗2 ∧ · · · ∧ v∗2n−1 ∧ v∗2n.

It follows that

∫

S2n

Pf

(

F∇

2π

)

=
(2n)!

2nn!(2π)n
· Vol(S2n) =

(2n)!

2nn!(2π)n
· 2πn+

1

2

Γ(n+ 1
2)

=
(2n)!

22nn!
· 2

√
π

Γ(n+ 1
2)
.

Since Γ(t) =
2t−1

√
π
Γ(
t

2
)Γ(

t+ 1

2
) for every t > 0, taking t = 2n we get

√
π

Γ(n+ 1
2)

=
22nΓ(n)

Γ(2n)
=

22nn!

(2n)!
.

Substituting we arrive at
∫

S2n

Pf

(

F∇

2π

)

= 2

which means that e(TS2n) is twice the standard generator of H2n(S2n;R).

For n = 1 it follows from the above that for every Riemannian metric on S2 with
Gauss curvature K of the corresponding Levi-Civita connection we have

∫

S2

Kvol(S2) = 2π

∫

S2

e(T ∗S2) = 4π.

This is the Gauss-Bonnet Theorem for the 2-sphere. The Gauss-Bonnet Theorem
for the 2-torus T 2 = S1 × S1 takes the form

∫

T 2

Kvol(T 2) = 2π

∫

T 2

e(T ∗T 2) = 0,

by Theorem 2.6.5, because T 2 is parallelizable.
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We shall conclude this section with the statement and proof of the Gauss-Bonnet
Theorem for oriented compact 2-manifolds. LetM be an oriented compact Rieman-
nian 2-manifold with Levi-Civita connection ∇. We shall use the notations of the
end of Example 2.6.3. The total space T 1M of the unit tangent bundle of M
can be identified with the set L of triples (x, v1, v2), where x ∈ M and (v1, v2)
is an ordered positively oriented orthonormal basis of TxM , through the bijection
f : L → T 1M with f(x, v1, v2) = (x, v1). In other words, the unit tangent bundle
of M can be identified with the frame bundle of positively oriented orthonormal
frames. There is a natural smooth action of S1 on T 1M defined by the diffeomor-
phisms Rφ : T 1M → T 1M with

Rφ(x, v1, v2) = (x, cos φ · v1 + sinφ · v2,− sinφ · v1 + cosφ · v2)

for all eiφ ∈ S1.

Let U ⊂ M be an open set which is diffeomorphic to R2 and let (e1, e2) be an
ordered positively oriented orthonormal frame on U . Let (θ1, θ2) be its dual frame
with respect to the Riemannian metric. If (ê1, ê2) is a second ordered positively
oriented orthonormal frame on U with dual frame (θ̂1, θ̂2), there exists a smooth
function τ : U → R such that

ê1(x) = cos τ(x) · e1(x) + sin τ(x) · e2(x)

ê2(x) = − sin τ(x) · e1(x) + cos τ(x) · e2(x)
and correspondingly

θ̂1(x) = cos τ(x) · θ1(x) + sin τ(x) · θ2(x)

θ̂2(x) = − sin τ(x) · θ1(x) + cos τ(x) · θ2(x)
for every x ∈ U . Of course vol(M)|U = θ1 ∧ θ2 = θ̂1 ∧ θ̂2.

If A and Â are the corresponding connection forms on U and

A =

(

0 ω
−ω 0

)

, Â =

(

0 ω̂
−ω̂ 0

)

,

then ω̂ = ω − dτ , by uniqueness, because

dθ̂1 = −(ω − dτ) ∧ θ̂2, dθ̂2 = (ω − dτ) ∧ θ̂1.

On T 1M we consider the smooth 1-forms ω1, ω2 defined by

(ωj)(x,v1,v2)(w) = 〈vj , p∗(x,v1,v2)(w)〉

for w ∈ T(x,v1,v2)T
1M , (x, v1, v2) ∈ T 1M , j = 1, 2, where 〈, 〉 is the Riemannian

metric on M and p : T 1M → M is the unit tangent bundle projection. It is useful
to find local expressions of ω1, ω2 on p−1(U). The map hU : U × S1 → p−1(U)
defined by

hU (x.e
iφ) = (x, cosφ · e1(x) + sinφ · e2(x),− sin φ · e1(x) + cosφ · e2(x))
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is a diffeomorphism and pr = p ◦ hU : U ×S1 → U is the projection. It follows from
the definitions that

(hU )
∗ω1 = cosφ · pr∗θ1 + sinφ · pr∗θ2

(hU )
∗ω2 = − sinφ · pr∗θ1 + cosφ · pr∗θ2

and therefore
(hU )

∗(ω1 ∧ ω2) = pr∗(θ1 ∧ θ2)
or equivalently

ω1 ∧ ω2|p−1(U) = p∗(θ1 ∧ θ2) = p∗(vol(M)|U ).
Since U is an arbitrary open subset of M diffeomorphic to R2, it follows that

ω1 ∧ ω2 = p∗(vol(M))

on T 1M .

Lemma 2.6.7. There exists a smooth 1-form α on T 1M such that
(i) dω1 = −α ∧ ω2 and dω2 = α ∧ ω1,
(ii) dα = p∗(Pf(F∇)) on T 1M and
(iii) α is invariant under the smooth action of S1 on T 1M .

Proof. Using the above notations, let again U ⊂ M be an open set which is diffeo-
morphic to R2. Differentiating we see that

(hU )
∗(dω1) = −(pr∗ω − dφ) ∧ (hU )

∗ω2, (hU )
∗(dω2) = (pr∗ω − dφ) ∧ (hU )

∗ω1.

If ĥU is taken from another frame (ê1, ê2) on U , then

(h−1
U ◦ ĥU )(x, eiφ̂) = (x, φ̂+ τ(x))

and so dφ = dφ̂+ dτ , from which follows that

(h−1
U ◦ ĥU )∗(pr∗ω − dφ) = pr∗ω̂ − dφ̂

since ω̂ = ω − dτ . This means hat there exists a globally defined smooth 1-form α
on T 1M such that

α|p−1(U) = (h−1
U )∗(pr∗ω − dφ) = p∗ω − (h−1

U )∗(dφ)

for every open set U ⊂M diffeomorphic to R2. Differentiating

dα|p−1(U) = p∗(dω) = p∗(Pf(F∇)|U ).

Finally, it is evident from the definitions that

(h−1
U ◦Rβ ◦ hU )(x, eiφ) = (x, ei(φ+β))

from which follows immediately that α is invariant unser the action of S1. �
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The tangent bundle of M is actually a smooth complex line bundle over M ,
because U(1) = SO(2,R). In section 3.2 we shall generalize the above construction
of α to any smooth complex line bundle over a smooth manifold.

Let now I ⊂ R be an open interval and σ : I → M be a smooth curve
parametrized by arclength. For the lifted smooth curve γ : I → T 1M defined
by γ(s) = (σ(s), σ̇(s)) we have γ∗ω1 = ds and γ∗ω2 = 0. There exists a unique
smooth function κ : I → R such that

γ∗α = −κ(s)ds

which is called the geodesic curvature of σ. Locally, on an open set U ⊂ M
diffeomorphic to R2 with respect to an ordered positively oriented orthonormal
frame (e1, e2), if σ(I) ⊂ U , there exists a smooth function φ : I → R such that
h−1
U (γ(s)) = (c(s), eiφ(s)) for every s ∈ I. The smooth map eiφ : I → S1 is the angle

between e1 and ċ and

−κ(s)ds = γ∗α = (h−1
U ◦ γ)∗(pr∗ω − dφ) = c∗ω − dφ

as the proof of Lemma 2.6.7 shows.

Theorem 2.6.8. (C.F. Gauss - P.O. Bonnet) If M is an oriented compact Rie-
mannian 2-manifold with Riemannian volume form vol(M) and Gauss curvature
K :M → R, then

∫

M
K · vol(M) = 2πχ(M).

Proof. The assertion has been proved in case M is the 2-torus T 2, by Theorem
2.6.5 (and in the case of the 2-sphere, by Example 2.6.6). Let V = T 2 \D1 ∪D2,
where D1, D2 ⊂ T 2 are two disjoint closed discs with smooth boundary. Since T 2

is parallelizable, there exists a global ordered positively oriented orthonormal frame
(e1, e2) on T

2. If φj is the angle between e1 and ∂Dj and κj is the geodesic curvature
of ∂Dj , j = 1, 2, we have

∫

V
K · vol(M) = −

∫

T 2\V
K · vol(M) = −

∫

D1

K · vol(M)−
∫

D2

K · vol(M)

= −
∫

D1

dω −
∫

D2

dω = −
∫

∂D1

ω −
∫

∂D1

ω

= −
∫

∂D1

(dφ− κ1(s))ds −
∫

∂D2

(dφ− κ2(s))ds

= −2π +

∫

∂D1

κ1(s)ds− 2π +

∫

∂D2

κ2(s)ds.

Suppose now that the genus of M is g > 1. Then,

M = V0 ∪ V1 ∪ · · · ∪ Vg ∪ Vg+1
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where V0, Vg+1 are closed discs with smooth boundaries ∂V0 = C0, ∂Vg+1 = Cg+1,
and each Vj is diffeomorphic to V for 1 ≤ j ≤ g with ∂Vj = Cj ∪ C ′

j so that
C ′
j = −Cj+1 homologically, 0 ≤ j ≤ g. We have

∫

M
K · vol(M) =

g+1
∑

j=0

∫

Vj

K · vol(M).

If κj denotes the geodesic curvature of Cj and κ′j the geodesic curvature of C ′
j , we

have
∫

V0

K · vol(M) +

∫

V1

K · vol(M)

= 2π −
∫

C0

κ0(s)ds− 4π +

∫

C1

κ1(s)ds +

∫

C′
1

κ′1(s)ds

= 2π − 4π −
∫

C2

κ2(s)ds.

Similarly,

∫

Vg

K · vol(M) +

∫

Vg+1

K · vol(M) = 2π − 4π +

∫

Cg

κg(s)ds.

For 2 ≤ j ≤ g − 2 we have

∫

Vj

K · vol(M) +

∫

Vj+1

K · vol(M)

= −4π +

∫

Cj

κj(s)ds+

∫

C′

j

κj(s)ds− 4π +

∫

Cj+1

κj(s)ds +

∫

C′

j+1

κj(s)ds

= −4π +

∫

Cj

κj(s)ds − 4π +

∫

C′

j+1

κ′j(s)ds.

Consequently,
∫

M
K · vol(M) = 4π − 4πg = 2πχ(M). �

In purely topological terms the Gauss-Bonnet Theorem can be stated as follows.

Corollary 2.6.9. If M is an oriented compact 2-manifold, then

∫

M
e(T ∗M) = χ(M). �
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2.7 The splitting principle for complex vector bundles

The notion of vector bundle is a special case of the more general notion of fibre
bundle. A fibre bundle is a quadruple (E, p,M,F ) where E, M and F are
topological spaces and p : E → M is a continuous onto map such that there exists
an open cover U of M consisting of open sets U ⊂ M for each of which there
exists a homeomorphism hU : p−1(U) → U × F such that pr ◦ hU = p, where
pr : U × F → U is the projection. The space E is called the total space, the space
M is the base space and F is the fibre. Each homeomorphism like hU is a local
trivialization of the bundle on U . The fibre bundle is said to be smooth if E, B
and F are smooth manifolds and p : E → M is a smooth map. It is obvious from
the definitions that a vector bundle is fibre bundle with fibre a vector space and
local trivializations which are linear on fibres. The fibre bundle (M × F, pr,M,F )
is the trivial fibre bundle over M with fibre F .

Examples 2.7.1 (a) If ξ = (E, p,M) is a real vector bundle of rank n equipped with
an inner product 〈, 〉 and we put S(ξ) = {v ∈ E : 〈v, v〉 = 1}, then (S, p|S ,M, Sn−1)
is a fibre bundle, which is called the corresponding sphere bundle of ξ. Indeed,
if U ⊂ M is an open set over which ξ is trivial, then applying the Gram-Schmidt
orthogonalization process to any local frame of ξ on U we obtain a local trivialization
of p|S on U .

(b) Let ξ = (E, p,M) be a (real or complex) vector bundle of rank n and

P (ξ) = {(x, ℓ) : x ∈M and ℓ ∈ P (p−1(x))}

where P (p−1(x)) denotes the projective space corresponding to the vector space
p−1(x). The projection q : P (ξ) → M with q(x, ℓ) = x is a fibre bundle map. The
total space is P (ξ), base space M and fibre RPn−1, in case ξ is real or CPn−1, if ξ
is a complex vector bundle. This is the projective vector bundle which corresponds
to ξ. If the initial vector bundle ξ is smooth, then its corresponding projective fibre
bundle is also smooth.

In the case of a vector bundle the total space and the base space have the same
homotopy type and actually (a copy of) the base space is a strong deformation
retract of the total space. This is not the case in general for fibre bundles. If
(E, p,M,F ) is a smooth fibre bundle, then on H∗(E;R) one can define an exterior
multiplication

· : H∗(M ;R) ⊗H∗(E;R) → H∗(E;R)

by setting a · e = p∗(a) ∧ e, for a ∈ H∗(M ;R), e ∈ H∗(E;R). In this way the
cohomology algebra H∗(E;R) of the total space becomes a graded module over the
graded cohomology algebra H∗(M ;R) of the base space.

Theorem 2.7.2. (J. Leray and G. Hirsch) Let (E, p,M,F ) be a smooth fibre bundle.
We assume that H∗(F ;R) is a finite dimensional vector space and that there exist
n1,..., nk ∈ N and cohomology classes ej ∈ Hnj (E;R), 1 ≤ j ≤ k, such that

{ej |p−1(x) : j = 1, 2, ..., k}
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is a basis of H∗(p−1(x);R) ∼= H∗(F ;R) for every x ∈ M . Then, H∗(E;R) is the
free H∗(M ;R)-module with basis {e1, ..., ek}.

Proof. Let V be an open cover of M consisting of open subsets of M over each
of which the fibre bundle is trivial. Let also U denote the family of all open sets
U ⊂M such that the assertion is true for ξ|U . By Proposition B.1 in the appendix
to this chapter, it suffices to prove the following:

(i) ∅ ∈ U .
(ii) If V ∈ V and U ⊂ V is an open subset of M diffeomorphic to Rm, where

m = dimM , then U ∈ U .
(iii) If U1, U2 ∈ U are such that U1 ∩ U2 ∈ U , then U1 ∪ U2 ∈ U .
(iv) If {Un : n ∈ N} is a countable family of mutually disjoint elements of U ,

then

∞
⋃

n=1

Un ∈ U .

The first point is trivially true as well as the second, because H∗(Rm × F ;R) ∼=
H∗(F ;R) is a real vector space, hence a free H∗(Rm;R) ∼= R-module. The fourth
point is also clear from the facts

H∗(

∞
⋃

n=1

Un;R) ∼=
∞
∏

n=1

H∗(Un;R) and H∗(p−1(

∞
⋃

n=1

Un);R) ∼=
∞
∏

n=1

H∗(p−1(Un);R)

and our assumption. The non-trivial point of the proof is (iii) which can be proved
using Mayer-Vietoris sequences. For simplicity of notation we denote E1 = p−1(U1),
E2 = p−1(U2) and E12 = p−1(U1 ∩ U2). Let also U = U1 ∪ U2 and EU = p−1(U).
We have the two Mayer-Vietoris long exact sequences

· · · −→Hq−1(E12;R)
δ∗−→Hq(EU ;R)

I−→Hq(E1;R)⊕Hq(E2;R)
ρ−→· · ·

· · · −→Hq−1(U1 ∩ U2;R)
δ∗−→Hq(U ;R)

I−→Hq(U1;R)⊕Hq(U2;R)
ρ−→· · ·

If

k
∑

j=1

aj · ej = 0 in H∗(EU ;R), where aj ∈ H∗(U ;R), 1 ≤ j ≤ k, then aj = 0,

1 ≤ j ≤ k , because this holds in H∗(E1;R) and H∗(E2;R).
It remains to prove that for every e ∈ H∗(EU ;R) there exist aj ∈ H∗(U ;R),

1 ≤ j ≤ k, such that e = a1 · e1 + · · · + ak · el in H∗(EU ;R). If i1 : E1 → EU and
i2 : E2 → EU are the inclusions, then our assumption implies that i∗1(e) and i∗2(e)
can be written as

i∗1(e) =

k
∑

j=1

a1j · ej and i∗2(e) =

k
∑

j=1

a2j · ej .

If g1 : E12 → E1 and g2 : E12 → E2, it follows by exactness of the first Mayer-
Vietoris sequence that

k
∑

j=1

g∗1(a
1
j ) · ej =

k
∑

j=1

g∗2(a
2
j ) · ej
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and therefore g∗1(aj) = g∗2(aj), 1 ≤ j ≤ k. By exactness of the second Mayer-Vietoris
sequence, there are aj ∈ H∗(U ;R), 1 ≤ j ≤ k, such that I(aj) = (a1j , a

2
j ) for every

1 ≤ j ≤ k. Hence

I(e−
k

∑

j=1

aj · ej) = 0

and e−
k

∑

j=1

aj · ej ∈ Imδ∗, by exactness. Thus, it suffices to prove the assertion in

Imδ∗. This follows from the assumption that it holds on E12 and the formula

δ∗(a · i∗12(e)) = δ∗(a) · e

for every a ∈ H∗(U ;R) and e ∈ H∗(EU ;R), where i12 : E12 → EU is the inclusion.
This formula follows immediately from the formula giving the connecting homo-
morphism δ∗ using a smooth partition of unity {f1, f2} subordinated to the open
cover {U1, U2} of U and the induced partition of unity {f1 ◦ p, f2 ◦ p} subordinated
to the open cover {E1, E2} of EU . �

Of course in the preceding Theorem 2.7.2 we could have used cohomology with
complex coefficients. We recall now that for every n ∈ N the canonical inclu-
sion j : CP 1 → CPn with j[z0, z1] = [z0, z1, 0, ..., 0] induces and isomorphism
j∗ : H2(CPn;C) → H2(CP 1;C) (also in cohomology with real or integer coeffi-
cients). Actually, if X generates H2(CP 1;C) ∼= C, then (j∗)−1(X) generates the
cohomology algebra of CPn. If γn = (Hn, p,CPn) is the tautological complex line
bundle, then j∗γn = γ1. Since the Chern classes are natural, from Example 2.4.4
we conclude that

j∗(c1(γn)) = c1(j
∗γn)) = c1(γ1) = −X 6= 0

and hence c1(γn) = −(j∗)−1(X) 6= 0.
Let ξ = (E, p,M) be a smooth complex vector bundle of rank n + 1 and let

(P (ξ), q,M,CPn) be the corresponding projective fibre bundle of Example 2.7.1(b).
There exists a smooth complex line bundle ζ = (H, τ, P (ξ)), where

H = {(x, ℓ, v) : (x, ℓ) ∈ P (ξ), v ∈ ℓ}

and τ(x, ℓ, v) = (x, ℓ). In case M is a singleton this is just the tautological complex
line bundle γn over CPn. We consider any smooth hermitian inner product on
ξ. This induces a smooth hermitian inner product on q∗ξ and we have a splitting
q∗ξ ∼= ζ ⊕ ζ⊥, where the total space of ζ⊥ is H⊥ = {(x, ℓ, v) : (x.ℓ) ∈ P (ξ), v ∈ ℓ⊥}.

q∗E −→ E




y





y

p

P (ξ)
q−→ M

Let e = c1(ζ) ∈ H2(P (ξ);C). Since the restriction of ζ on a fibre q−1(x) is isomor-
phic to the tautological complex line bundle γn, we conclude that e|q−1(x) is (minus)
the generator of H2(q−1(x);C). This implies that the set of cohomology classes

{1, e, ..., en}
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in H∗(P (ξ);C), where powers are taken with respect to the wedge product, satisfies
the assumptions of Theorem 2.7.2. Thus, H∗(P (ξ);C) is the free H∗(M ;C)-module
with basis {1, e, ..., en}. In particular, for every a ∈ H∗(M ;C) we have

q∗(a) = q∗(a) ∧ 1 = a · 1 ∈ H∗(P (ξ);C)

and so q∗ : H∗(M ;C) → H∗(P (ξ);C) is a injective.

Theorem 2.7.3. (Splitting Principle) If ξ = (E, p,M) is a smooth complex vector
bundle of rank n, then there exist a smooth manifold N , a proper smooth map
f : N →M and smooth complex line bundles ξj = (Ej , pj , N), 1 ≤ j ≤ n such that

(i) f∗ : H∗(M ;C) → H∗(N ;C) is injective and
(ii) f∗ξ ∼= ξ1 ⊕ · · · ⊕ ξn.

Proof. Let (P (ξ), q,M,CPn−1) be the corresponding projective fibre bundle and let
ζ = (H, τ, P (ξ)) be the smooth complex line bundle which was defined above. We
have the commutative diagrams

q∗E −→ E




y





y

p

P (ξ)
q−→ M

and

q∗1(H⊥) −→ H⊥




y





y

p1

P (H⊥)
q1−→ P (ξ)

and q∗1ζ
⊥ is isomorphic to the direct sum of a complex line bundle and another

complex vector bundle (like ζ⊥). This implies a splitting

(q ◦ q1)∗ξ ∼= ξ1 ⊕ ξ2 ⊕ ξ′

where ξ1 = ζ and ξ2 are complex line bundles. Moreover, the homomorphisms
q∗ : H∗(M ;C) → H∗(P (ξ);C) and q∗1 : H∗(P (ξ);C) → H∗(P (ζ⊥);C) are injective
and hence so is (q ◦ q1)∗.

Repeating this construction we get a finite sequence of smooth proper maps

Pn−1
qn−1−→ · · · q2−→P1

q1−→P0 = P (ξ)
q−→M

such that each qj induces an injective homomorphism in cohomology and

(q ◦ q1 ◦ · · · qj)∗ξ ∼= ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξj+1 ⊕ ξ′

for 1 ≤ j ≤ n − 1, where ξ1, ξ2,..., ξj+1 are smooth complex line bundles. Setting
f = q ◦ q1 ◦ · · · qn−1 and N = Pn−1 the assertion follows. �

The combination of the preceding Theorem 2.7.3 with Theorem 2.6.4 yields
that the Chern classes of a smooth complex vector bundle are actually real.

Corollary 2.7.4. If ξ = (E, p,M) is a smooth complex vector bundle over a
smooth manifold M , then ck(ξ) ∈ H2k(M ;R) for every k ∈ Z+. �

Corollary 2.7.5. If ξ = (E, p,M) is a smooth complex vector bundle of rank n,
then ck(ξ) = 0 for k > n. �
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In particular, for the tautological complex line bundle γn over CPn we have
ck(γn) = 0 for k > 1. From the Splitting Principle we obtain the following
characterization of the Chern classes.

Theorem 2.7.6. For every smooth manifold M there exists exactly one set consist-
ing of cohomology classes ck(ξ) ∈ H2k(M ;R), k ∈ Z+, for each isomorphic class of
smooth complex vector bundles ξ over M with the following properties:

(i)

∫

CP 1

c1(γ1) = −1 and c0(γn) = 1, ck(γn) = 0 for k > 1 and for every n ∈ N.

(ii) f∗(ck(ξ)) = ck(f
∗(ξ)) for every smooth map f : N →M .

(iii) ck(ξ1 ⊕ ξ2) =
k

∑

j=0

cj(ξ1) ∧ ck−j(ξ2).

Proof. From what we have proved so far in this and the previous sections only
the uniqueness needs proof. Suppose that we have a set of cohomology classes ck,
k ∈ Z+, with the properties (i), (ii) and (iii). From (i) we have immediately that
c1(γ1) is the first Chern class of γ1.

Let now ξ = (L, p,M) be a smooth complex line bundle over M . There exists a
smooth complex vector bundle ξ̃ over M such that ξ ⊕ ξ̃ ∼= ǫn+1

C . We consider the
smooth map f : M → CPn with f(x) = pr(Lx), where pr : M × Cn+1 → Cn+1 is
the projection. In the commutative diagram

L
f̂−→ Hn





y

p





y

M
f−→ CPn

each f̂ |Lx is a linear isomorphism for every x ∈ M , which implies that f∗(γn) ∼= ξ
and from property (ii) we have c1(ξ) = f∗(c1(γn)) and ck(ξ) = 0 for k > 1.
These show that properties (i) and (ii) determine uniquely the Chern classes for
smooth complex line bundles. Using inductively property (iii), it follows that
ck(ξ1⊕· · ·⊕ξn) is uniquely determined from c1(ξj), 1 ≤ j ≤ k, for every finite family
ξ1,..., ξn of smooth complex line bundles. From Theorem 2.7.3 it follows immediately
that ck(ξ), k ∈ Z+ is uniquely determined for every smooth complex line bundle ξ. �

The total Chern class of a smooth complex vector bundle ξ = (E, p,M) is by
definition

c(ξ) =

∞
∑

k=0

ck(ξ) ∈ H∗(M ;R).

In case ξ is a line bundle, then c(ξ) = 1+ c1(ξ). If ξ ∼= ξ1 ⊕ · · · ⊕ ξn, where ξ1,..., ξn
are line bundles, then

c(ξ) =

n
∏

k=1

(1 + c1(ξk)) =

n
∑

k=0

σk(c1(ξ1), ..., c1(ξn))

and therefore ck(ξ) = σk(c1(ξ1), ..., c1(ξn)) for every k ∈ Z+.
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Analogously, the total Chern character of ξ is defined to be

ch(ξ) =

∞
∑

k=0

chk(ξ) ∈ H∗(M ;R)

and

chk(ξ) =

n
∑

j=0

chk(ξj) =

n
∑

j=0

1

k!
c1(ξj)

k,

by Proposition 2.4.5(a) and Example 2.4.4(a). Therefore,

ch(ξ) =

n
∑

j=1

ec1(ξj)

where for a ∈ H2(M ;R) we have put

ea =

∞
∑

k=0

1

k!
ak ∈ H∗(M ;R).

2.8 Pontryagin classes

Let ξ = (E, p,M) be a smooth complex vector bundle of rank n. Recall that from
it we derive its conjugate bundle ξ and its dual bundle ξ∗ which are isomorphic.
The Chern classes of ξ and ξ∗ are related as follows.

Proposition 2.8.1. If ξ = (E, p,M) is a smooth complex vector bundle of rank n,
then ck(ξ

∗) = (−1)kck(ξ) for every k ∈ Z+.

Proof. There exists a hermitian inner product on ξ and a compatible connection ∇,
which is also a connection on ξ. The connection form A of ∇ with respect to an

orthonormal local frame of ξ is skew-hermitian, that is A
T
= −A. The curvature

F∇ = dA + A ∧ A is also skew-hermitian. An orthonormal local frame of ξ is also
orthonormal for ξ and the corresponding connection form of ∇ is A. Thus, the
connection form of F∇ on ξ is F∇ = −(F∇)T . Thus,

ck(ξ) =

[

σk

(−1

2πi
F∇

)]

=

[

σk

(

1

2πi
(F∇)T

)]

.

On the other hand, for every B ∈ Cn×n we have

det(In − tBT ) = det(In − tB) =

n
∑

k=1

σk(B)(−t)k

which means that σk(−BT ) = (−1)kσk(B), 1 ≤ k ≤ n. Therefore,

ck(ξ) =

[

σk

(

1

2πi
(F∇)T

)]

= (−1)k
[

σk

(−1

2πi
F∇

)]

= (−1)kck(ξ). �
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Let now ξ = (E, p,M) be a smooth real vector bundle of rank n and let ξC =
ξ ⊗R ǫ

1
C be its complexification. Then,

ξC ∼= ξ ⊗R ǫ1C
∼= ξ ⊗R ǫ

1
C
∼= ξC,

because the map f : ξ ⊗R ǫ
1
C → ξ ⊗R ǫ1C defined by f(v ⊗R z) = v ⊗R z is an

isomorphism of complex vector bundles since

f(i(v ⊗R z)) = f(v ⊗R (iz)) = v ⊗R (−iz) = if(v ⊗R z).

Consequently, (ξC)
∗ ∼= ξC ∼= ξ ⊗R ǫ

1
C

∼= ξ∗ ⊗R ǫ
1
C = (ξ∗)C and it follows from

Proposition 2.8.1 that

ck(ξC) = ck((ξ
∗)C) = ck((ξC)

∗) = (−1)kck(ξC).

Hence ck(ξC) = 0, if k is odd.
The cohomology classes

pk(ξ) = (−1)kc2k(ξC) ∈ H4k(M ;R), k ∈ Z+,

are called the Pontryagin classes of the real vector bundle ξ. The total Pontryagin
class of ξ is by definition

p(ξ) =
∞
∑

k=0

pk(ξ) ∈ H∗(M ;R).

If now ξ is a smooth complex vector bundle, then the Pontryagin classes of the
underlying real vector bundle and its Chern classes satisfy certain quadratic poly-
nomial equations. To see this, let pk = pk(ξR) and ck = ck(ξ). Then, (ξR)C ∼= ξ⊕ ξ∗,
by Lemma 1.5.1, and so

pk = (−1)kc2k(ξ ⊕ ξ∗) = (−1)k
2k
∑

j=0

(−1)jcj(ξ) ∧ c2k−j(ξ).

If we consider the total classes, we have

1− p1 + p2 − · · ·+ (−1)npn = (1+ c1 + c2 + · · ·+ cn)∧ (1− c1 + c2 − · · ·+ (−1)ncn).

Specifically, p1 = c21 − 2c2, p2 = c22 − 2c1c3 + 2c4, etc, where the powers are taken
with respect to the wedge product. These polynomial equations can serve as ob-
structions for a smooth real vector bundle of even rank to admit a complex structure.

Example 2.8.2. We shall calculate the Chern classes of the tangent bundle of the
n-dimensional complex projective space CPn, which is a complex manifold and so
its tangent bundle TCPn (when CPn is considered as a real smooth 2n-manifold)
is a smooth complex vector bundle of rank n. We shall need a generalization of
the canonical atlas of CPn. With the term line we mean a 1-dimensional (complex)
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linear subspace of Cn+1. For each line ℓ let gℓ : Hom(ℓ, ℓ⊥) → CPn be the map which
sends φ ∈ Hom(ℓ, ℓ⊥) to its graph. The orthogonal complement ℓ⊥ is considered
with respect to the usual hermitian inner product and Hom = HomC. Obviously,
gℓ(0) = ℓ. For instance, if ℓ is the line which is generated by (1, 0, ..., 0), then
ℓ⊥ = {(0, z1, ..., zn) : z1, ..., zn ∈ C} and the map which sends φ ∈ Hom(ℓ, ℓ⊥) to
φ(1, 0, ..., 0) establishes an isomorphism Hom(ℓ, ℓ⊥) ∼= Cn. Using this identification,
we have gℓ(φ) = [1, u1, ..., un], where φ(1, 0, ..., 0) = (0, u1, ..., un). Similarly, if ℓ is
generated by (0, ..., 0, 1, 0, ..., 0), using an analogous identification we have

gℓ(φ) = [u1, ..., 1, ..., un ]

where φ((0, ..., 0, 1, 0, ..., 0) = (u1, ..., 0, ..., un). The image of gℓ is the set Uℓ of
points in CPn, which as lines in Cn+1 are not orthogonal to ℓ. The pair (Uℓ, gl) is
a holomorphic chart of CPn.

Let γ⊥n = (H⊥
n , p

⊥,CPn) be the smooth complex vector bundle with total space

H⊥
n = {(ℓ, u) ∈ CPn × Cn+1 : u ∈ ℓ⊥}

and p⊥ the obvious projection. Then, γn ⊕ γ⊥n
∼= ǫn+1

C
∼= ǫ1C ⊕ · · · ⊕ ǫ1C. Moreover,

Hom(γn, γ
⊥
n )

∼= TCPn. Such a vector bundle isomorphism is for instance the map
which restricted on the fibre over ℓ ∈ CPn is the complex derivative of gℓ at 0. We
recall also that Hom(γn, γn) ∼= ǫ1C, since γn is a line bundle. Now we have

TCPn ⊕ ǫ1C
∼= Hom(γn, γ

⊥
n )⊕Hom(γn, γn) ∼= Hom(γn, γ

⊥
n ⊕ γn) ∼= Hom(γn, ǫ

n+1
C )

∼= Hom(γn, ǫ
1
C ⊕ · · · ⊕ ǫ1C)

∼= Hom(γn, ǫ
1
C)⊕ · · · ⊕Hom(γn, ǫ

1
C)

∼= γ∗n ⊕ · · · ⊕ γ∗n.

According to Proposition 2.8.1, the total Chern class of TCPn is

c(TCPn) = c(TCPn⊕ǫ1C) = c(γ∗n)
n+1 = (1−c1(γn))n+1 =

n+1
∑

k=0

(−1)k
(

n+ 1
k

)

c1(γn)
k

where powers are considered with respect to the wedge product. Hence

ck(TCP
n) = (−1)k

(

n+ 1
k

)

c1(γn)
k 6= 0, 0 ≤ k ≤ n.

Example 2.8.3. We can use the calculation of the preceding Example 2.8.2 in order
to prove that CP 2n is not the boundary of any compact smooth (4n + 1)-manifold
with boundary for all n ∈ N. Suppose that there exists a compact smooth (4n+1)-
manifold M with boundary ∂M = CP 2n and let j : CP 2n → M be the inclusion.
From the existence of collar along ∂M we conclude that

T∂M ⊕ ǫ1R
∼= j∗(TM).

Complexifying, it follows that

((TCP 2n)R)C ⊕ ǫ1C
∼= j∗((TM)C).
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From Lemma 1.5.1 and the calculations of Example 2.8.2 we have

((TCP 2n)R)C ⊕ ǫ2C
∼= (TCP 2n ⊕ ǫ1C)⊕ ((TCP 2n)∗ ⊕ ǫ1C)

∼= γ∗2n ⊕ · · · ⊕ γ∗2n ⊕ γ2n ⊕ · · · ⊕ γ2n.

The total Chern class is

c(((TCP 2n)R)C) = (1− c1(γ2n))
2n+1 ∧ (1 + c1(γ2n))

2n+1 = (1− (c1(γ2n)
2)2n+1

=
2n+1
∑

k=0

(−1)k
(

2n+ 1
k

)

(c1(γ2n))
2k.

If ω ∈ A4n(M) represents c2n((TM)C), then

[j∗ω] = j∗(c2n((TM)C)) = c2n(j
∗(TM)C) = (−1)n

(

2n+ 1
n

)

(c1(γ2n))
2n 6= 0.

It follows now from Stokes’ formula that

0 =

∫

M
dω =

∫

∂M
j∗ω 6= 0.

This contradiction proves the assertion.

Example 2.8.4. The non-triviality of the Chern or the Pontryagin classes can be
used as obstruction to embedding smooth manifolds into euclidean spaces. As an
illustration, we consider CP 4. Let X denote the standard generator of H2(CP 4;R).
The calculation of the preceding Example 2.8.3 gives

c(((TCP 4)R)C) = (1−X2)5 = 1− 5X2 + 10X4

in the cohomology ring H∗(CP 4;R).
Suppose that CP 4 can be smoothly embedded in Rn, where n ≥ 9 is a positive

integer. There is a normal bundle ξ over CP 4 such that

(TCP 4)R ⊕ ξ ∼= TRn|CP 4
∼= ǫnR.

From Proposition 2.4.5(b) we obtain c(((TCP 4)R)C) ∧ c(ξC) = 1 and therefore

c(ξC) =
1

(1−X2)5
= 1 + 5X2 + 15X4

in H∗(CP 4;R). Since 5X2 and 15X4 are non-zero in H4(CP 4;R) and H8(CP 4;R),
respectively, this implies that ξ must be of rank at least 4. In other words, CP 4

cannot be embedded in R11.

Example 2.8.5. If ξ = (E, p,M) is an orientable real smooth vector bundle of rank
2n, then from the definitions and Theorem 2.6.4 we have

pn(ξ) = c2n(ξC) = e((ξC)R) = e(ξ ⊕ ξ) = e(ξ)2.
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Example 2.8.6. A (complex or real) vector bundle ξ of rank n is said to be
stably trivial, if there exists k ∈ N such that ξ ⊕ ǫk ∼= ǫn+k. For instance the
tangent bundle TSn of the n-sphere is stably trivial for every n ∈ N, because
the normal bundle of Sn in Rn+1 is trivial and so TSn ⊕ ǫ1 ∼= ǫn+1. From
Proposition 2.4.5(b) follows that the Chern classes of a stably trivial smooth com-
plex vector bundle are trivial. Similarly, the Pontryagin classes of a stably trivial
real vector bundle are trivial. In particular, the Pontryagin classes of TSn are trivial.

Example 2.8.7. Using characteristic classes we can prove that the 4k-dimensional
sphere S4k, k ∈ N, does not admit any almost complex structure. We recall that
an almost complex structure on a smooth manifold M is a smooth vector bundle
endomorphism J : TM → TM such that J2 = −id. IfM admits an almost complex
structure J , then each tangent space TxM , x ∈M , becomes a complex vector space
and M must be even dimensional. Also, J extends to a smooth vector bundle
endomorphism of (TM)C = TM ⊗R ǫ

1
C and there exists a smooth complex vector

bundle ξ over M such that (TM)C = ξ⊕ ξ∗. Actually, ξ is the i-eigenspace of J and
ξ∗ is the (−i)-eigenspace of J . Note that ξR ∼= TM .

In case M = S4k the rank of ξ is 2k and from the previous Example 2.8.6 we
have

0 = (−1)kpk(TS
4k) = c2k(ξ ⊕ ξ∗) =

2k
∑

j=0

cj(ξ) ∧ c2k−j(ξ∗)

= c2k(ξ
∗) + c2k(ξ) = (−1)2kc2k(ξ) + c2k(ξ) = 2c2k(ξ) = 2e(TS4k),

by Theorem 2.6.4. Thus, e(TS4k) = 0, which contradicts the fact that e(TS4k)
is twice the standard generator of H4k(S4k;R), as we have calculated in Example
2.6.6.

Appendix

In the proof of Theorem 2.7.2 we have used the following.

Proposition B.1 Let M be a smooth m-manifold and let U be a set of open subsets
of M with the following properties:

(i) ∅ ∈ U .
(ii) If U is an open subset of M diffeomorphic to Rm, then U ∈ U .
(iii) If U1, U2 ∈ U are such that U1 ∩ U2 ∈ U , then U1 ∪ U2 ∈ U .
(iv) If {Un : n ∈ N} is a countable family of mutually disjoint elements of U ,

then
∞
⋃

n=1

Un ∈ U .

Then, M ∈ U .

The proof of Proposition B.1 relies on the following lemma.

Lemma B.2 With the assumptions of Proposition B.1, let {Un : n ∈ N} be a
locally finite countable family of open and relatively compact subsets of M such that
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⋂

j∈J

Uj ∈ U for every finite set J ⊂ N. Then,

∞
⋃

n=1

Un ∈ U .

Proof. First we show that finite unions of elements of the countable family belong to
U . Let n ∈ N and i1,..., in ∈ N. We shall show by induction on n that Ui1∪· · ·∪Uin ∈
U . For n = 1, 2 this is true by property (iii) and our assumption (in case J is a
singleton). Let n ≥ 3 and suppose that the assertion holds for finite subfamilies
with n− 1 elements. If V = U12 ∪ · · · ∪ Uin , then

Ui1 ∩ V =

n
⋃

k=2

Ui1 ∩ Uik ∈ U

from the inductive hypothesis. Moreover, from our assumption (iii) we have

Ui1 ∪ · · · ∪ Uin = Ui1 ∪ V ∈ U .
Since finite unions of elements of the countable family belong to U , for every

n ∈ N and indices i1, j1,..., in, jn ∈ N we have

n
⋃

k=1

Uik ∩ Ujk ∈ U .

Now we define inductively I1 = {1}, W1 = U1 and

In = {n} ∪ {i ∈ N : i > n and Ui ∩Wn−1 6= ∅} \
n−1
⋃

k=1

Ik, Wn =
⋃

i∈In

Ui,

for n ≥ 2. If In−1 is finite, then Wn−1 is relatively compact and intersects at most
finitely many of the elements of the countable family, since the latter is assumed
to be locally finite. Thus, inductively In is finite and Wn is relatively compact and
belongs to U for every n ∈ N. Moreover, Wn ∩Wn+1 ∈ U and Wn ∩Wk = ∅, if
k > n + 1, because otherwise there exists some i ∈ Ik such that Wn ∩ Ui 6= ∅ and
thus i ∈ Ij for some j ≤ n+ 1, contradiction. From property (iv) of U we have

( ∞
⋃

k=1

W2k

)

∩
( ∞
⋃

k=1

W2k−1

)

=

∞
⋃

n=1

Wn ∩Wn+1 ∈ U

and from property (iii) the proof is concluded. �

Proof of Proposition B.1. In the beginning we consider the case whereM is an open
subset of Rm. Then there exists a locally finite countable open cover of M which
consists of open cubes (with edges parallel to the axis) and refines U . Any finite
intersection of open cubes is an open cube and thus again diffeomorphic to Rm.
From property (ii) and Lemma B.2 follows that M ∈ U .

In the general case, for every chart (U, φ) of M the family

Uφ = {B ⊂ φ(U) : B is open and φ−1(B) ∈ U}
has the properties (i), (ii), (iii) and (iv). Hence φ(U) ∈ Uφ and therefore U ∈ U .
Now we take any locally finite countable open cover of M consisting of relatively
compact open sets which are domains of charts. Lemma B.2 gives immediately
M ∈ U . �



Chapter 3

Prequantization

3.1 Classification of complex line bundles

In this section we shall describe the smooth complex line bundles over a smooth
manifold M in terms of the cohomology of M . Let ξ = (L, p,M) be a smooth
complex line bundle and let U be an open cover of M consisting of open sets U
over each of which there is a trivialization hU : p−1(U) → U × C of ξ. If U , V ∈ U
are such that U ∩ V 6= ∅, there exists a smooth map gUV : U ∩ V → C×, called
transition function, such that

(hU ◦ h−1
V )(x, z) = (x, gUV (x)z)

for every x ∈ U ∩V and z ∈ C×, where C× = C \ {0}. It is obvious that gV U = g−1
UV

and gUW = gUV gVW , if U ∩ V ∩W 6= ∅.
We can change the local trivializations hU , U ∈ U to new ones h̃U on each U so

that the new corresponding transition functions take values in S1 and are

g̃UV =
gUV
|gUV |

.

Indeed, sU : U → L defined by sU (x) = h−1
U (x, 1) is a smooth local section and

gUV sU (x) = sV (x) for every x ∈ U ∩ V . Choosing any hermitiam inner product on
ξ and defining hU : p−1(U) → U × C by

h̃U

(

z
sU (x)

‖sU (x)‖

)

= (x, z)

for every z ∈ C, we have

(h̃U ◦ h̃−1
V )(x, z) = h̃U

(

z
sV

‖sV (x)‖

)

= h̃U

(

z
gUV (x)

|gUV (x)|
· sU
‖sU (x)‖

)

=

(

x,
gUV (x)

|gUV (x)|
z

)

.

On the set of isomorphism classes of complex line bundles over a given smooth
manifold M , one can define a group structure induced by the tensor product of
complex line bundles. The inverse of the isomorphism class of the complex line
bundle ξ = (L, p,M) is represented by its dual bundle ξ∗ ∼= ξ. Indeed, there
exists an open cover U of M over the elements of which ξ is trivial such that the

65
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corresponding transitions functions gUV for U , V ∈ U with U ∩ V 6= ∅ take values
in S1. Then, ξ∗|U is also trivial for every U ∈ U and the corresponding transition
functions are gUV . Since the transition functions for the tensor product ξ ⊗ ξ∗ are
gUV gUV = 1, it follows that ξ ⊗ ξ∗ ∼= ǫ1C. We shall denote by Pic∞(M) the group of
smooth complex line bundles over a smooth manifold M .

We shall call an open cover U of the smooth manifold M admissible if for any
n ∈ N and U1,..., Un ∈ U the set U1 ∩ · · · ∩ Un is contractible, if non-empty. From
the existence of geodesically convex neighbourhoods with respect to a Riemannian
metric on M it follows that the set of admissible open covers of M is non-empty
and cofinal in the set of all open covers of M . Thus, every open cover of M has an
admissible refinement.

If now ξ = (L, p,M) is a smooth complex line bundle and U is an admissible open
cover ofM , then ξ|U is trivial for every U ∈ U . If U , V ∈ U are such that U ∩V 6= ∅
with transition function gUV : U ∩ V → S1, there exists a smooth function fUV :
U∩V → R such that gUV = e2πifUV , because U∩V is contractible. If U∩V ∩W 6= ∅,
then the relation gUW = gUV gVW implies that aUVW = fVW − fUW + fUV ∈ Z,
since U ∩ V ∩W is contractible, hence arcwise connected. Moreover, if U , V , W ,
Y ∈ U are such that U ∩ V ∩W ∩ Y 6= ∅, then

aVWY − aUWY + aUV Y − aUVW = 0.

This means that a = (aUVW ) is a Čech 2-cocycle with respect to the open cover U
with integer coefficients and so defines a Čech cohomology class

[a] ∈ Ȟ2(U ;Z) ∼= Ȟ2(M ;Z) ∼= H2(M ;Z),

since U is an admissible open cover of M .
If f ′UV : U ∩ V → R is another set of smooth functions such that

gUV = e2πifUV = e2πif
′

UV ,

then nUV = fUV − f ′UV ∈ Z. If a′ = (aUVW ) is the corresponding Čech 2-cocycle,
we see that

aUVW = a′UVW + nUV − nUW + nVW .

Thus, a = a′+δn, where n = (nUV ) and δ is the coboundary operator in Čech coho-
mology. Hence, the Čech class [a] does not depend on the choice of the logarithms
of the transition functions.

In the sequel we shall show that actually [a] ∈ H2(M ;Z) depends only on the
isomorphy class of the line bundle. Suppose that ξ′ = (L′, q,M) is a smooth complex
line bundle and h : L → L′ be a smooth isomorphism of complex vector bundles
over M . If U is an admissible open cover of M and hU are local trivializations for of
ξ|U and U ∈ U with transition functions gUV , then hU ◦h−1 are local trivializations
of ξ′|U with the same transition functions. Thus, it suffices to prove that if hU ,
and h′U , U ∈ U , are two sets of local trivializations with corresponding transition
functions gUV and g′UV , then they define the same element of Ȟ2(U ;Z). The smooth
map h′U ◦ hU : U ×C → U × C is of the form

(h′U ◦ hU )(x, z) = (x, βU (x)z)
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for some smooth function βU : U → C× and for every x ∈ U ∩ V we have

(x, gUV (x)βV (x)z) = (h′U ◦h−1
V )(x, z) = (h′U ◦h−1

U )(x, gUV (x)z) = (x, βU (x)gUV (x)z).

Thus, βUgUV = g′UV βV on U ∩ V . Since U is contractible, there exists a smooth
function µU : U → R such that βU = e2πiµU . There exist mUV ∈ Z such that
fUV µU = f ′UV +µV +mUV , where g

′
UV = e2πif

′

UV . If now a′UVW = f ′VW−f ′UW+f ′UV ,
then

aUVW − a′UVW = mVW −mUW +mUV

which means that a = a′ + δm, if m = (mUV ). Hence [a] = [a′] ∈ H2(M ;Z).
Since the transition functions of the tensor product of two complex line bundles

over M are the products of the transition functions of the line bundles, we obtain a
well defined group homomorphism

c : Pic∞(M) → H2(M ;Z).

Theorem 3.1.1. c is an isomorphism of abelian groups.

Proof. Let U be an admissible open cover of M and let {ψU : U ∈ U} be a smooth
partition of unity subordinated to U . In order to prove that c is injective, we need
to show that if ξ = (L, p,M) is a smooth complex line bundle and c(ξ) = [a] = 0,
then ξ is trivial. For this it suffices to construct a nowhere vanishing smooth global
section of ξ. For each U ∈ U let hU be a trivialization of ξ|U and let gUV be the
corresponding transition functions. Since [a] = 0, there exists σ ∈ Č1(U ;Z) such
that a = δσ, that is

fVW − fUW + fUV = aUVW = σVW − σUW + σUV

on U ∩ V ∩W and using the same notation as above. Since σUV , σUW , σUV ∈ Z
and (fVW − σVW ) − (fUW − σUW ) + (fUV − σUV ) = 0, we may assume from the
very beginning that aUVW = 0 for every U , V , W ∈ U such that U ∩ V ∩W 6= ∅.

Let
φU =

∑

V ∈U

ψV · fUV

for U ∈ U . Then, φU −φV = fUV for every U , V ∈ U such that U ∩V 6= ∅, because
aUVW = 0 for every U , V , W ∈ U such that U ∩ V ∩W 6= ∅. Further, if we set
βU = e2πiφU , then βU = gUV βV on U ∩ V . This implies that the formula

s(x) = h−1
U (x, βU (x)), for x ∈ U,

defines a nowhere vanishing smooth global section s :M → L, because

(hU ◦ h−1
V )(x, βV (x)) = (x, βU (x))

for x ∈ U ∩ V . This shows that ξ ∼= ǫ1C.
In order to show that c is surjective, let a ∈ Č2(U ;Z) be a 2-cocycle. For each

pair U , V ∈ U with U ∩ V 6= ∅ we define the smooth function

fUV =
∑

W∈U

aUVWψW : U ∩ V → R.
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Then,

fVW−fUW+fUV =
∑

Y ∈U

ψY (aVWY − aUWY + aUV Y ) =

(

∑

Y ∈U

ψY

)

aUVW = aUVW ∈ Z

on U ∩ V ∩W . If we define

gUV = e2πifUV : U ∩ V → S1,

then gUV gVW = gUW on U ∩ V ∩W . Since a is a 2-cocycle, taking U = V we have
aUWY − aUWY + aUUY − aUUW = 0 for all U , W , Y ∈ U such that U ∩W ∩ Y 6= ∅,
which implies that

fUU =
∑

Y ∈U

aUUY ψY = aUUU ∈ Z

and therefore gUU = 1 for every U ∈ U . There exists now a complex line bundle
over M having transition functions gUV , for U , V ∈ U with U ∩ V 6= ∅. For this it
suffices to take

L =
∐

U∈U

U × C
/

∼

where (x, z) ∼ (x, gUV (x)z), if (x, z) ∈ (U ∩ V )×C, and take as vector bundle map
p : L →M the obvious projection. This concludes the proof. �

3.2 Connections on complex line bundles

Let ξ = (L, p,M) be a smooth complex line bundle over a smooth manifold M and

∇ : Ω0(ξ) → A1(M ;C)⊗C∞(M ;C) Ω
0(ξ)

be a connection. Let U be an open cover of M consisting of open sets over each of
which ξ is trivial. On each U ∈ U there exists a nowhere vanishing smooth section
eU : U → L and if gUV : U ∩ V → C× are the corresponding transition functions,
then gUV eU = eV on U ∩ V .

For each U ∈ U we have a connection form ωU ∈ A1(U ;C) which by definition
satisfies ∇eU = ωU ⊗ eU . Thus,

gUV ωV ⊗ eU = ωV ⊗ eV = ∇eV = ∇(gUV eU ) = dgUV ⊗ eU + gUV ωU ⊗ eU

and therefore on U ∩ V we have

ωV − ωU =
dgUV
gUV

.

Conversely, given a set of smooth 1-forms ωU ∈ A1(U ;C), U ∈ U , which satisfies
the above condition for every U , V ∈ U with U ∩V 6= ∅, we can define a connection
on ξ by setting

∇s = dfU ⊗ eU + fUωU ⊗ eU

on U , where s ∈ Ω(ξ) and fU ∈ C∞(U ;C) is the unique function such that s|U =
fUeU . Indeed, on U ∩ V we have gUV fV = fU , because

fUeU = s|U∩V = fV eV = fV gUV eU ,
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and therefore
∇(fV eV ) = dfV ⊗ eV + fV ωV ⊗ eV

= gUV dfV ⊗ eU + fV gUV ωU ⊗ eU + fV · dgUV
gUV

⊗ (gUV eU )

= gUV dfV ⊗ eU + fUωU ⊗ eU + fV dgUV ⊗ eU

= d(fV gUV )⊗ eU + fUωU ⊗ eU

= dfU ⊗ eU + fUωU ⊗ eU = ∇(fUeU ).

A connection on a smooth complex line bundle ξ = (L, p,M) can be described
though a connection form on its associated principal C×-bundle (or circle bundle).
Let L0 = {v ∈ L : v 6= 0}. The multiplicative group C× acts freely on L0 by scalar
multiplication and the orbit space of this action is M . Thus, F(ξ) = (L0, p,M,C×)
is a fibre bundle from which ξ can be recovered as follows. The multiplicative group
C× acts on L0 × C by

λ · (v, z) = (λ−1v, λz)

and the map f : L0 × C → L with f(v, z) = zv is constant on orbits. So we get a
smooth diffeomorphism f̃ : L0×C× C → L, where L0×C× C denotes the orbit space.
If q[v, z] = p(v), then (L0 ×C× C, q,M) is a smooth complex line bundle and f̃ is a
vector bundle isomorphism.

The correspondence of F(ξ) = (L0, p,M,C×) to ξ is a functor F from the cate-
gory LM of complex line bundles over M to the category of principle C×-bundles
PM over M . In both categories the morphisms are the bundle isomorphisms over
M . Trivially, if f is a vector bundle isomorphism from ξ to some complex line
bundle ξ′, then F(f) = f |L0

is a fibre bundle isomorphism.

Proposition 3.2.1. The functor F is an equivalence of categories.

Proof. We need to show that every object of PM comes from LM and if ξ, ξ′ are
two objects of LM , then the corresponding map

HomLM
(ξ, ξ′) → HomPM

(F(ξ),F(ξ′))

is bijective. The first assertion has already been shown above. For the second
assertion, it is easy to see that if two principle C×-bundles over M with total spaces
L0 and L′

0 are isomorphic and f : L0 → L0 is such an isomorphism, then the map
f̃ : L0×C× C → L′

0×C× C with f̃ [v, z] = [f(v), z] is a vector bundle isomorphism. �

According to Proposition 3.2.1, no piece of information is lost if instead of the
smooth complex line bundle ξ we consider its associated principle C×-bundle F(ξ).
In order to describe a connection on ξ in terms of F(ξ), we note first that the
C-valued smooth 1-form

dz

z
=

1

2r2
d(r2) + idθ = d(log r) + idθ, (in polar coodinates (r, θ))

remains invariant under scalar multiplication with non-zero complex numbers. This
implies that there exists a unique invariant C-valued smooth 1-form βx on each fibre



70 CHAPTER 3. PREQUANTIZATION

p−1(x) ∩ L0 for x ∈ M , such that if τ : C× → p−1(x) ∩ L0 is any C×-equivariant
smooth map, we have

τ∗(βx) =
dz

z

where the action of C× on itself is the scalar multiplication, because if we have two
such C×-equivariant smooth maps τ1, τ2 : C× → p−1(x) ∩ L0 and λ = τ−1

1 (τ2(1)),

then τ2(z) = τ1(λz) for every z ∈ C×. Thus, τ∗1 (βx) =
dz

z
implies that τ∗2 (βx) =

dz

z
.

A connection form on F(ξ) is a C-valued smooth 1-form a on L0 which is invari-
ant under the action of C× and a|p−1(x)∩L0

= βx for every x ∈M .
Let now U ⊂ M be an open set for which there exists a nowhere vanishing

smooth section s : U → L0 of ξ. Let σ : U × C → p−1(U) be the corresponding
parametrization σ(x, z) = z ·s(x), so that h = σ−1 is a trivialization of ξ|U . Suppose
that a is a connection form on F(ξ). For every x ∈ U we have

σ∗a|{x}×C× =
dz

z

because σ|{x}×C× is C×-equivariant. On the other hand, for every z ∈ C× we have
σ∗a|U×{z} = s∗a, because a is C×-invariant. Consequently,

σ∗a = s∗a+
dz

z
.

Let t : U → L0 be another nowhere vanishing section of ξ on U and τ(x, z) = z · t(x)
be the corresponding parametrization of p−1(U). There exists a unique smooth
function g : U → C× such that

(σ−1 ◦ τ)(x, z) = (x, g(x)z)

for every x ∈ U and z ∈ C×. In other words, τ = σ ◦ ρ, where ρ(x, z) = (x, g(x)z),
and

τ∗a = ρ∗(σ∗a) = ρ∗(s∗a, 0) + ρ∗(0,
dz

z
) = σ∗a+

dg

g
.

These remarks imply that if we choose an open cover U of M consisting of open sets
U over which there exist a trivializations hU of ξ|U with transition functions gUV ,
then

(h−1
V )∗a = (h−1

U )∗a+
dgUV
gUV

and therefore there exists a unique connection on ξ such that ∇eU = (h−1
U )∗a⊗ eU ,

for every U ∈ U , where eU = h−1
U (., 1).

Conversely, if we start with a connection ∇ on ξ, using the same notation, we
put

aU = h∗U

(

ωU +
dz

z

)

on every p−1(U) ∩ L0. A similar computation as above gives

(h−1
V )∗aU = ωU +

dgUV
gUV

+
dz

z
= ωV +

dz

z
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and thus aU = aV on p−1(U ∩ V ) ∩ L0. This means that we have a well defined
connection form a on F(ξ) such that

(h−1
U )∗a = ωU +

dz

z

which is unique with the property ωU = e∗Ua for every U ∈ U .
The curvature form F∇ of a connection ∇ on the smooth complex line bundle

ξ = (L, p,M) is a C-valued smooth 2-form on M , because Hom(ξ, ξ) is trivial.
Taking an open cover U of M as above we have

F∇|U = dωU − ωU ∧ ωU = dωU .

If a is the corresponding connection form on F(ξ), it follows immediately that

da = (p|L0
)∗(F∇)

and F∇ is unique with this property, since p|L0
: L0 →M is a submersion.

3.3 Hermitian connections

Let ξ = (L, p,M) bw a smooth complex line bundle over a smooth manifold M .
Since M is paracompact, there exists a smooth hermitian inner product h on ξ.
Given such a hermitian inner product, we recall that a connection ∇ on ξ is called
hermitian (or the other way round h is called invariant under ∇) if it is compatible
with h, that is

dh(s, t) = h(∇s, t) + h(s,∇t)
for every s, t ∈ Ω0(ξ), where h(θ ⊗ s, t) = θ · h(s, t) and h(s, θ ⊗ t) = θ · h(s, t) for
θ ∈ A1(M ;C).

The curvature form F∇ is then skew-hermitian and actually if U is an open cover
of M over each element U of which there exists a nowhere vanishing smooth section
eU : U → L and ∇eU = ωU ⊗ eU , we have

dh(eU , eU ) = h(ωU ⊗ eU , eU ) + h(eU , ωU ⊗ eU ) = (ωU + ωU)h(eU , eU )

and so ωU + ωU = d(log h(eU , eU )). Therefore,

F∇ + F∇ = dωU + dωU = 0

on U . In other words
1

2πi
F∇ is a real closed smooth 2-form on M , which represents

−c1(ξ).
Let hU : p−1(U) → U ×C be the trivialization of ξ|U such that eU = h−1

U (., 1). If
a is the connection 1-form on the associated principal C×-bundle F(ξ) = (L0, p,M)
defined by ∇, then

a|U = h∗U

(

ωU +
dz

z

)

,

as we saw in the previous section and so

a|U + a|U = h∗U (d(log(h(eU , e
2
U ))) + d(log |z|2)) = d(log |H|2)
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where |H|2 : p−1(U) ∩ L0 → [0,+∞) is the smooth function defined by

|H|2(h−1
U (x, z)) = h(zeU (x), zeU (x)) = h(h−1

U (x, z), (h−1
U (x, z)).

In other words, |H|2 is the quadratic form defined by the hermitian inner product
h, which is defined everywhere on L0. Hence

a+ a = d(log |H|2), on L0

and since L0 is connected, |H|2 is unique with this property, up to a constant.

Proposition 3.3.1. Given a connection ∇ on ξ with corresponding connection
1-form a on the associated principle C×-bundle F(ξ), there exists an invariant
hermitian inner product h on ξ if and only if a + a is exact. In this case, the
invariant hermitian inner product is unique, up to a constant.

Proof. The above considerations show that only the converse needs proof. Thus,
suppose that there exists some smooth function ψ : L0 → R such that a+ a = dψ.
Putting φ = eψ we have

a+ a =
dφ

φ
, on L0

and
dφ

φ
= a+ a = h∗U

(

ωU + ωU +
1

|z|2 d(|z|
2)

)

on p−1(U) ∩ L0. If we fix a point x ∈ U and let χ : C× → (0,+∞) be the smooth
function defined by χ(z) = φ(h−1

U (x, z)), it follows that

dχ

χ
= ((hU |p−1(x))

−1)∗(
dφ

φ
) =

d(|z|2)
|z|2

or equivalently d(log χ) = d(log(|z|2)) on C×. Integrating, we conclude

log χ(λz)− logχ(z) = log |λz|2 − log |z|2

or equivalently χ(λz) = |λ|2χ(z) for every λ ∈ C× and z ∈ C×. Thus,

φ(λv) = |λ|2φ(v)

for every λ ∈ C× and v ∈ L0.
For every u, v ∈ p−1(x)∩L0 there exists a unique λ ∈ C× such that u = λv. We

set then h(u, v) = λφ(v). If either u = 0 or v = 0, we set h(u, v) = 0. It is easy to
see now that h is a smooth hermitian inner product on ξ.

On U ∈ U we have

d(log h(eU , eU )) = e∗U

(

dφ

φ

)

= (e∗U ◦ h∗U )
(

ωU + ωU +
d(|z|2)
|z|2

)

= pr∗
(

ωU + ωU +
d(|z|2)
|z|2

)

= ωU + ωU
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and thus

dh(eU , eU ) = ωUh(eU , eU ) + ωUh(eU , eU ) = h(∇eU , eU ) + h(eU ,∇eU ).

Finally, if f1, f2 : U → C are two smooth functions we compute

h(∇(f1eU ), f2eU ) + h(f1eU ,∇(f2eU ))

= h(df1 ⊗ eU , f2eU ) + h(f1∇eU , f2eU ) + h(f1eU , df2 ⊗ eU )) + h(f1eU , f2∇eU )
= f2h(eU , eu)df1 + f1f2h(∇eU , eU ) + f1h(eU , eU )df2 + f1f2h(eU ,∇eU )

= f1f2h(eU , eU ) + h(eU , eU )d(f1f2) = dh(f1eU , f2eU ). �

It is evident from the above that given a hermitian inner product h on the
complex line bundle ξ, then a connection ∇ on ξ is hermitian if and only if locally

ωU + ωU = d(log h(eU , eU ))

on every U ∈ U . If we choose unit local sections, that is h(eU , eU ) = 1 on U , then
ωU + ωU = 0 and ωU is purely imaginary. If L1 = {v ∈ L : h(v, v) = 1}, then
(L1, p|L1

,M, S1) is the associated principle circle bundle to ξ and this is equivalent
to saying that the corresponding connection 1-form a on L1 is purely imaginary.

3.4 Integer cohomology classes in degree 2

Let M be a smooth manifold and Ω ∈ A2(M) be a (real) closed smooth 2-form.
In this section we shall be concerned with the problem of finding necessary and
sufficient conditions in order the cohomology class [Ω] ∈ H2(M ;R) to be equal
to c1(ξ) for some smooth complex line bundle ξ over M . We need to recall the
Čech-deRham isomorphism

Ȟ2(U ;R) ∼= Ȟ2(M ;R) ∼= H2(M ;R)

in degree 2 for an admissible open cover U of M .
Since each U ∈ U is contractible and Ω is closed, there exists ωU ∈ A1(U) such

that Ω|U = dωU . If U , V ∈ U are such that U ∩ V 6= ∅, there is a smooth function
fUV : U ∩ V → R such that dfUV = ωV − ωU on U ∩ V , because dωU = dωV on
U ∩ V and the latter is contractible. If now W ∈ U and U ∩ V ∩W 6= ∅, then

dfVW − dfUW + dfUV = 0, on U ∩ V ∩W

and from the connectivity of U ∩ V ∩W there exists aUVW ∈ R such that

fVW − fUW + fUV = aUVW , on U ∩ V ∩W.

It is obvious that a = (aUVW ) ∈ Č2(U ;R) is a Čech 2-cocycle. In this way one
constructs the Čech-deRham isomorphism H2(M ;R) ∼= Ȟ2(U ;R), which sends [Ω]
to [a]. It is well defined because if Ω′ is another representative of [Ω], there exists
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some smooth 1-form η such that Ω′ = Ω + dη. If f ′UV are the smooth functions
corresponding to Ω′, there are gU ∈ C∞(U) such that ω′

U − ωU = η + dgU and
therefore

df ′UV = dfUV + dgV − dgU , on U ∩ V ,

Thus, βUV = f ′UV − fUV + gU − gV is a constant on U ∩ V . Consequently,

a′UVW − aUVW = βVW − βUW + βUV , on U ∩ V ∩W,

which means that a′ − a = δβ, where β = (βUVW ) ∈ Č1(U ;R).
The inclusion ǫ : Z → R induces a homomorphism ǫ2 : Ȟ2(U ;Z) → Ȟ2(U ;R)

(and in any other degree). We say that the cohomology class [Ω] ∈ H2(M ;R) is
integer if there exists some admissible open cover U ofM such that its corresponding
Čech class [a] ∈ Ȟ2(U ;R) under the Čech-deRham isomorphism belongs to the
image of ǫ2, which is equivalent to fVW − fUW + fUV ∈ Z for every U , V , W ∈ U
such that U ∩ V ∩W 6= ∅.

Proposition 3.4.1. The Chern class c1(ξ) of a smooth complex line bundle
ξ = (L, p,M) over M is integer and actually c1(ξ) = −ǫ2(c(ξ)).

Proof. Let ∇ be any connection on ξ. Let U be an admissible open cover of M .
For each U ∈ U let eU : U → L be a nowhere vanishing smooth section of ξ and
corresponding transition functions gUV : U∩V → S1. Let also ωU be the connection
form of ∇ on U with respect to eU . Then,

ωV − ωU =
dgUV
gUV

, on U ∩ V

and F∇|U = dωU . From Corollary 2.7.4, the Chern class

c1(ξ) =

[−1

2πi
F∇

]

is real. Hence there exists a real closed smooth 2-form F ∈ A2(M) and a C-valued
smooth 1-form η on M such that

1

2πi
F∇ = F + dη.

Since each U ∈ U is contractible, there exists FU ∈ A1(U) such that dfU = F |U . If
now gUV = e2πifUV on U ∩ V , then

FV − FU =
1

2πi
(ωV − ωU) =

1

2πi
· dgUV
gUV

= dfUV

on U ∩ V . From the constructions of the Čech-deRham isomorphism and the
isomorphism c : Pic∞(M) ∼= Ȟ2(U ;Z) follows immediately that c1(ξ) = −ǫ2(c(ξ)).
�
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The preceding Proposition 3.4.1 combined with the Splitting Principle for
complex vector bundles implies the following corollary.

Corollary 3.4.2. If ξ = (E, p,M) is a smooth complex vector bundle over a
smooth manifold M , then the Chern classes ck(ξ), k ∈ Z+, of ξ are integer. �

Corollary 3.4.3. If ξ1 and ξ2 are two smooth complex line bundles over the same
smooth manifold, then c1(ξ1 ⊗ ξ2) = c1(ξ1) + c1(ξ2). �

A combination of the Splitting Principle and Proposition 3.4.1 also gives the
following important property of the total Chern character which says that it is a
ring homomorphism from the K-ring of a smooth manifold to its cohomology ring
with rational coefficients.

Corollary 3.4.4. If ξ and ζ are two smooth complex vector bundles over the
smooth manifold M , then ch(ξ ⊗ ζ) = ch(ξ) ∧ ch(ζ).

Proof. If ξ has rank n and ζ has rank m, then there are smooth complex line bundles
ξ1, ..., ξn, ζ1, ..., ζm over M such that ξ ∼= ξ1 ⊕ · · · ⊕ ξn and ζ ∼= ζ1 ⊕ · · · ⊕ ζm. Thus,

ξ ⊗ ζ ∼=
⊕

k,l

ξk ⊗ ζl and

ch(ξ ⊗ ζ) =
∑

k,l

ch(ξk ⊗ ζl) =
∑

k,l

ec1(ξk⊗ζl)

=
∑

k,l

ec1(ξk)+c1(ζl) =

( n
∑

k=1

ec1(ξk)
)

∧
( m
∑

l=1

ec1(ζl)
)

= ch(ξ) ∧ ch(ζ)

from Proposition 2.4.5(a) and Corollary 3.4.3. �

The converse of Proposition 3.4.1 also holds.

Theorem 3.4.5. (B. Kostant) Let M be a smooth manifold and Ω ∈ A2(M) a
real closed smooth 2-form on M . The cohomology class [Ω] is integer if and only if
2πiΩ is the curvature form of a hermitian connection on some smooth complex line
bundle over M .

Proof. Only the direct needs proof, as the converse is Proposition 3.4.1. So, let [Ω]
be integer. Using the same notation as in the beginning of this section with respect
to an admissible open cover U of M , we have

fVW − fUW + fUV ∈ Z, on U ∩ V ∩W.

Putting gUV = e2πifUV , for U , V ∈ U with U ∩ V 6= ∅, we have gUV = g−1
V U , since

fUU ∈ Z, and gUV gVW = gUW . As in the last part of the proof of Theorem 3.1.1,
there exists a smooth complex line bundle ξ = (L, p,M) with transition functions
gUV with respect to U . Since

ωV − ωU = dfUV =
1

2πi
· dgUV
gUV

,
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there exists a connection ∇ on ξ with curvature form 2πiΩ. It remains to show that
there is an invariant hermitian inner product on ξ. We consider the hermitian inner
product h defined by

h(h−1
U (x, z1), h

−1
U (x, z2)) = z1z2

where hU is a trivialization of ξ|U . This defines h globally, because |gUV | = 1. In
order to show that ∇ is hermitian with respect to h, it suffices to check that

2πiωU + 2πiωU = d(log h(eU , eU ))

where eU = h−1
U (., 1) for every U ∈ U . But this is trivial since both sides are equal

to zero, the left hand side of this equality being zero because ωU = Ω|U is real. �


