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1. Introduction

This note is concerned with the study of the negative limit sets of orbits in the region of
attraction (the stable manifold) W (A) of an isolated unstably attracting continuum A of
a smooth flow (¢;):;cr on a connected smooth manifold M. It is well known that the first
positive prolongation

DY A ={xeM: L (x) NA # O)

of A is asymptotically stable with the same region of attraction Wt (D" (A)) = W (A)
(see Theorem 8.20 in [3]).

Itis possible to define a finer topology on the region of attraction with respect to which A
becomes asymptotically stable. This is called the intrinsic topology and was first introduced
in [9] (for an alternative definition see [11]). The region of attraction endowed with the
intrinsic topology is denoted by W;"(A). The space W, (A) is locally compact, separable
and metrizable.

The negative limit set of an orbit in D™ (A) \ A may not be contained in A (see Exam-
ple 4.4 in [2]). This is a case where the phenomenon explosion occurs (see [1, 2, 7, 10]).
The flow explodes at a point x € W (A) if the identity map id : W (A) — WiJr (A) is not
continuous at x. Since A is not stable, the flow explodes at some point of A (Proposition 4.1
in [2]). Here we are interested in the detection of orbits whose negative limit sets are con-
tained in A. In other words, we would like to have a tool in order to locate the unstable
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manifold (e.g. region of negative attraction)
W (A ={xeM:T#L (x) CA}

of an isolated unstable attractor A. Note that W~ (A) \ A may be nowhere densein DT (A) \
A (see Example 4.4 in [2]).

We show that orbits in the unstable manifold can be located statistically through coher-
ent measures, but it is impossible to locate explosive orbits in this way. The notion of
coherent measure relative to an isolated invariant set of a smooth flow on a smooth closed
manifold has been introduced in [6] in connection to the problem of the existence of a
smooth Lyapunov 1-form for a general isolated invariant set of a smooth flow on a closed
smooth manifold. First we give a preliminary characterization of coherent measures rela-
tive to a connected isolated unstable attractor. Precisely, we prove that a Radon measure
pwon WH(A) \ A is coherent relative to A if and only if 4 is invariant under the flow and
its support is contained in DT (A) \ A (see Corollary 4.4). The main result is Theorem 4.8
below which says that if 1 is a coherent measure relative to a connected isolated unsta-
ble attractor, then M \ W~ (A) has u-measure zero. So, actually, a Radon measure v on
W (A) \ Ais coherent relative to A if and only if it is invariant and supp u C W= (A) \ A.
It follows that

W (A) CAU U suppu C W—(A).

JLcoherent

In case there are no external explosions, these three sets are equal.

2. Isolated unstable attractors

Let (¢¢)ter be a continuous flow on a separable, locally compact, metrizable space M. The
positive limit set of x € M is the closed, invariant set

LT(x)={yeM: ¢ (x) >y forsomet, — +00}.

The negative limit set L™ (x) is defined analogously. Let A C M be a compact invariant set.
The invariant set

WHA) ={xeM: @ #L"(x) C A}

is called the region of attraction (or stable manifold) of A. If W (A) is an open neigh-
bourhood of A, then A is called an attractor. A compact invariant set A is called (positively
Lyapunov) stable if every neighbourhood of A contains a positively invariant open neigh-
bourhood of A. A stable attractor is usually called asymptotically stable. An unstable
attractor is an attractor which is not stable.

Asymptotically stable compact invariant sets are very special cases of isolated invariant
sets. A compact invariant set A C M is called isolated if it has a compact neighbourhood
V such that A is the maximal invariant set in V. Each such V is called an isolating neigh-
bourhood of A and contains a smaller isolating neighbourhood N of A such that there are
compact sets NT, N~ C 9N with the following properties:

(i) 8N =NtUN".
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(ii) Foreveryx € N thereexists e > 0such that¢;(x) € M \ N for —e < t < 0,and for
every y € N~ there exists § > 0 such that ¢;(y) € M\ N.for0 < t <.

(iii) For every x € N \ N there exists € > 0 such that ¢(x) € intN for —e <t <0,
and for every y € N \ N~ there exists § > 0 such that ¢;(y) € intN for 0 < t <.

The triad (N,Nt,N7) is called an isolating block of A. The sets At ={xe
N:C*(x) C N} and a* = AN N A* are compact and A = AT N A~. Moreover, & #
LT (x) C Aforeveryx € Atanda® C N\ N™.

If M is a smooth n-manifold and the flow is smooth, then every neighbourhood of an
isolated invariant set A contains a smooth isolating block (N, N*,N™) of A. This means
that N is a smooth compact #-manifold with boundary 9N = N* U N, the sets N* and
N~ are smooth compact (n — 1)-manifolds with common boundary N* N N~, which isa
smooth compact (n — 2)-manifold (without boundary) and on which the flow is externally
tangent to N. Moreover, the flow is transverse to N* \ N~ into N and transverse to N~ \
N+ out of N (see [5, 13]).

Let A C M be an isolated compact invariant set and let (N, N*,N~) be an isolating
block of A. The final entrance time function 7 : W (A) — [—00, +00) defined by

7(x) = sup{t € R: ¢:(x) € M\ N},

ifx e WT(A)\ Aand 7(x) = —00, if x € A, is lower semicontinuous. This follows imme-
diately from the definition and the continuity of the flow. Obviously, ¢ (x)(x) € a™ and
T(¢t(x)) = 7(x) — tforeveryt € Randx € Wt (A) \ A. The final entrance time function
7 is discontinuous at x € W1 (A) \ A ifand only if there is x, — x such that 7 (x,,) — +0o0
(see Lemma 3.1 in [1]). These are the points of the set ¢ (R x dzna™).

It is clear from the above that if A is an isolated compact invariant set, then A is not
necessarily asymptotically stable with respect to the restricted flow in W+ (A). However, it
is possible to define a new topology in W+ (A), which is finer than the subspace topology,
with respect to which the flow remains continuous and A becomes asymptotically stable.
Roughly speaking, this new topology is obtained by cutting W (A) along the discontinu-
ity set of the final entrance time function with respect to any isolating block of A. It was
originally defined in [9]. According to an alternative description given in [11] the intrinsic
topology is the smallest topology which contains the subspace topology of W+ (A) and the
sets

WHA) N () ¢V,

t>0

where V runs over the open neighbourhoods of A in M. We denote by W;" (A) the region
of attraction equipped with the intrinsic topology. The space W;" (A) is locally compact,
separable and metrizable and the topology of A remains unchanged (see [2]).

The final entrance time function 7 : W;r (A) — [—00,400) is continuous for any
isolating block (N,N*,N7) of A (see Lemma 3.1 in [2]). The function F : WiJr (A) —
[0, +-00) defined by

"™, ifxe W(A)\ 4,

F(x) =
) 0, ifxe A
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is then continuous. It is obvious that A = F~1(0) and F(¢(x)) = e 'F(x) for every t € R
and x € W;"(A) \ A. This shows that A is globally asymptotically stable in W;" (A). More-
over, the restricted flow on WiJr (A) \ A is parallelizable and each level set F~!(c), ¢ > 0, is
a compact global section. In particular the set a* = F~(1) is a global section to the flow
on WZ-Jr (A) \ A and thus Wl-Jr (A) \ A is homeomorphicto R x a*.

Note that F : WH(A) — [0, +00) is a lower semicontinuous Lyapunov function for A,
which by no means implies that A is stable with respect to the restricted flow in W (A).
The identity map id : WT(A) — W' (A) is continuous ata pointx € W+ (A) ifand only if
F is continuous at x. If W+ (A) is locally compact, it follows that the set of points where the
identity map id : WF(A) — W, (A) is continuous contains an invariant, open and dense
set D C W (A) \ A. If M is a smooth manifold, the flow is smooth and A is a connected
isolated unstable attractor, then for every smooth isolating block (N, N, N7) of A the set
at has nonempty interior in N, by transversality. This implies that D is also dense in
WiJr (A) \ A (and of course open).

3. Invariant Radon measures in the region of attraction

Let M be a connected, locally compact, metric space and (¢;);cr be a continuous flow
on M. Let A C M be a connected isolated unstable attractor of the flow. Note that the
chain recurrent set of the restricted flow on W (A) is contained in D" (A). In the par-
ticularly interesting case where A is a minimal set, then D (A) is a chain component of
the flow. This very mild kind of recurrence is the only one that points of W (A) \ A may
present.

If (N,NT,N7) is an isolating block for A with N C W (A), then the flow defines an
equivariant continuous bijection & : R x at — W™ (A) \ A, where on R x at we con-
sider the parallel flow with section a™. Recall that /4 is not a homeomorphism in general.
It becomes a homeomorphism if on the region of attraction we consider the intrinsic
topology. However, it is Borel bimeasurable, because it maps closed subsets of R x at
to Borel subsets of W1 (A) \ A. So, h induces a one-to-one correspondence between
the Borel measures on R x at and the ones on W+ (A) \ A. Note that by Poincaré
Recurrence there is no non-trivial invariant finite Borel measure on W (A) \ A, nor
on D' (A) \ A.

If 1 is a flow invariant Borel measure on W+ (A) \ A, then (h~ '), is a Borel mea-
sure on R x a™, which is invariant under the parallel flow. Therefore, 1t = hy (A x v),
where 1 is the Lebesgue measure on R and v is the Borel measure on a* defined by the
formula

1
v(K) = lim zu(h([O,é) x K)) = n(h((0,1) x K))

for every Borel set K C at. If wis locally finite, hence a positive Radon measure, then v
is a finite measure, because a*t is compact. The converse is not true. If we begin with a
finite Borel measure v on a™, the formula it = hy (A x v) defines a o -finite invariant Borel
measure on W (A) \ A, which may be not locally finite. Indeed, there may exist a point
x € a” N DT (A) such that L™ (x) N (DT (A) \ A) # &. Let v, be the Dirac point measure
atxand = hy(A x vy). If y € L™ (x) N (DT (A) \ A), so that the flow explodes at y, and
B is a flow box corresponding to some local section S at y of some extent € > 0, there are
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ty — —oo such that ¢y, (x) € Sand ¢, (x) — y. Then,

wB) = Y (X v)((tn— 6t +€) x x)) = ) 2€ = +o0.

n=1 n=1

In the sequel we shall assume that M is a connected smooth manifold and the flow is
smooth with infinitesimal generator X. So, in every neighbourhood of A there is a smooth
isolating block of A. Let ;t = h, (A x v) be an invariant, locally finite Borel measure on
WT(A) \ A, which is equivalent to saying that w is a (positive) Radon measure.

Proposition 3.1: Let f : W (A) — R be a smooth function with compact support such
that

(i) Xf=0 on some open neighbourhood of A and
(ii) fis constant on A (which follows from (i) if A is a minimal set).

Then the limit im7_, 4 oo f (p—1(x)) exists for p-almost all x € W (A) \ A and

/ Xfdp = (fla) - v@@™ N (WH@) \ DT (A)).
WH(A)\A

Proof: Since Xf has compact support contained in W (A) \ A, we use Fubini’s theorem
to compute

/ de/L:/ deh*(kxv):/ (Xf) o hdtdv
WH(A)\A WH(A\A Rxat

+0 5(f o
:// of h)(t,x)dtdv
at J oo ot

= f+ TETOO (f(pr(x)) — f(¢d-1(x))) dv.

Our assumptions imply that for every x € W (A) there exists some Ty > 0 such that

f(@r(x)) = fla for every T > Ty. Hence limr_, o f(¢p—7(x)) exists for v-almost every
x € a™, and so for -almost every x € Wt (A) \ A, and

f Xfdyu = (fla) - via®) - / lim f(61(x)) dv.
WH(A)\A  Ioo

a

Since f has compact support, if limr_, o f (¢—7(x)) exists, then it must necessarily vanish
in case x ¢ D" (A) or it must be equal to f|4 in case x € DT (A) \ A. Therefore,

/ lim f@_r(x)dv = (fl4) - v(a* N D*(A))
gt T—+00

from which follows that
/ Xfdu = (fla) - (@) — va* 0 (D (A) \ A)]
W (ANA

= (fla) - v@" N (W (A)\ DT (A)). u
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Corollary 3.2: Let ;1 = hy (A x v) be an invariant Radon measure on W+ (A) \ A whose
support is contained in DT (A) \ A. If f : WH(A) — R is a smooth function with compact
support such that Xf=0 on some open neighbourhood of A and fis constant on A, then

/ Xfdu =0
WH(A\A

and the limit lim7_, 4 f (¢—71(x)) exists for w-almost all x € Dt (A) \ A.

Proof: Since the support of 4 is assumed to be contained in D" (A) \ A, the support of
v must be contained in a™ N D" (A). Therefore, v(a™ N (WT(A) \ DT (A)) = 0 and the
assertion follows immediately from Proposition 3.1. |

4. Coherent measures and the unstable manifold

Let M be a connected smooth manifold and X be a complete smooth vector field on M
with flow (¢¢):er. Throughout this section A C M will be a connected isolated unstable
attractor of the flow.

Definition 4.1: A Radon measure it on W (A) \ A is called coherent relative to A if it has
the following property:

(C) For every smooth function f : W+ (A) — R with compact support such that df =0
on some open neighbourhood of A we have

/ Xfdu =0.
WHANA
This definition is a slight generalization of the one introduced in [6].
Lemma4.2: Every coherent measure relative to A is invariant under the flow on W (A) \ A.

Proof: Iff : WF(A) \ A — R is a smooth function with compact support, then for every
t € R we have

t
/ (J‘O¢t—f)du=/ /X(foqﬁs)dsdu
WH(A)\A wH@ana Jo

t
:/ / X(f o ) djds =0,
0 W+(A)\A

since  is assumed coherent. If B C W (A) \ A is a compact set, there exists a decreas-
ing sequence of smooth functions with compact supportsf, : W (A) \ A — [0,1],n € N,
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which converges pointwise to xp and then

w(B) = / xpdpn = lim fuduw = lim (fa 0 ¢r) due
WH(A)\A "m0 JwH(A)\A n=>+00 Jw+(A)\A

= / xo¢rdu = / Xo_.B) dit = u(¢p—¢(B))
WH(A\A WH(A)\A

for every t € R. It follows by regularity that this holds for every Borel subset of W (A) \ A.
[

Lemma 4.3: The support of any coherent measure relative to A is contained in D' (A) \ A.

Proof: Let xo € WH(A) \ D" (A). Since D' (A) is asymptotically stable with region of
attraction W (D' (A)) = W (A), there exists a smooth, uniformly unbounded Lyapunov
functionf : Wt (A) — [0, +00) for DT (A) (see [8, 12]). More precisely, f is continuous on
W+ (A), smooth on WF(A) \ D*(A), f~1(0) = DT (A) and Xf <0 on WF(A) \ DT (A).
Moreover, lim;_, _ f(¢:(x)) = +oo for every x € WH(A) \ DT (A) and f~1([0,c]) is
compact for every ¢ > 0.

Let ¥ :R — [0,1] be a smooth function such that ¥~ (1) = (—o00,f(x0)/2],
Y(0) = [2f (x0), +00) and ¥/ (t) < 0 for f(x9)/2 <t < 2f(xp). Let g =Y of. Then g
is smooth, dg=0 on the open neighbourhood f~1[0,f(x9)/2) of A and g has compact
support contained in f ~1o, 2f (x9)], the latter being compact. Also, Xg > 0 on the open
neighbourhood f~1(f(x0)/2, 2f (x)) of xo. If now w is a Radon measure on WT(A) \ A
such that xp € supp u N (WT(A) \ D" (A)), there is a compact neighbourhood W of x,
contained in 1 (f (x0) /2, 2f (x0)) and so

f ngMZ/ Xgdu > 0.
WH(A)\A w

Therefore 1 cannot be coherent relative to A. [ |

The combination of Corollary 3.2 and Lemma 4.3 yields the following characterization
of coherent measures.

Corollary 4.4: For a Radon measure ;1 on WH(A)\ A the following assertions are
equivalent:

(i) w is a coherent measure relative to A.
(ii) The support of w is contained in D (A) \ A and p is invariant.

Corollary 4.5: If f : WH(A) — R is a smooth function such that Xf=0 on some open
neighbourhood of A and fis constant on A, then Xf € L'(w) and

/ Xfdu=0
WH(A\A

for every coherent measure i relative to A.
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Combining Proposition 3.1 with Lemmas 4.2 and 4.3 we get also the following.

Corollary 4.6: If 1 is a coherent measure relative to A then for every smooth function
f: WH(A) — R with compact support such that df=0 on some open neighbourhood of A
there exists a Borel set B C DT (A) \ A such that w(WT(A) \ (AU B)) = 0 and the limit
lim7_, 4o f(¢p—1(x)) exists for every x € B.

The following lemma guarantees the existence of coherent measures seemingly of a
rather special kind. As the simple proof shows, for every x € W~ (A) there exists a coherent
measure  relative to A such that such that x € supp pu.

Lemma 4.7: There exists a coherent measure on W (A) \ A relative to A.

Proof: Since A is an unstable attractor, there exists at least one point x € W (A) \ A such
that @ # L¥(x) C A,andso necessarily x € D" (A) \ A (see Corollary 1.2 of Chapter VIin
[4]). The parametrization y, : R — DT (A) \ A of the orbit of x defined by y,(t) = ¢¢(x) is
ahomeomorphism onto its image. If 14 is the push forward of the Lebesgue measure on R by
¥x> then w islocally finite. We shall prove that it satisfies condition (C). Letf : Wt (A) — R
be a smooth function with compact support such that df =0 on some open neighbourhood
V of A. Since A is connected, V can be chosen to be also connected. Then f|y is constant
and

“+00
/ Xfdu= [ (foy)(®dt=fly —flv=0. o
WH(AN\A —o©

The simple coherent measure relative to A constructed in Lemma 4.7 has the property
that the negative limit set of almost every point is contained in A. Actually, this is a property
that every coherent measure has.

Theorem 4.8: If 1 is a coherent measure relative to A, then & # L™ (x) C A for p-almost
every x € DT (A) \ A.

Proof: Suppose that p is coherent relative to A. Let (N, N, N7) be an isolating block of
A with N € WT(A). Since p is invariant under the flow, by Lemma 4.2, it has the form
1 = hy(A x v), where A is the Lebesgue measure on R and v is a finite Borel measure on
a*. Let V be a relatively compact open neighbourhood of a™ such that V. W (A) \ A.
There exists a smooth function f : W (A) — [0, 1] such that f~!1(1) = a™ and f~1(0) =
W™ (A) \ V. According to Corollary 4.6, there exists a Borel set B C D (A) \ A such that
w(WH(A)\ (AU B)) = 0and lim7_, 1 f(¢—7(x)) exists for every x € B.If x € Bis such
that L™ (x) N (D" (A) \ A) # &, there exist y € a* and s, — +00 such that ¢_g, (x) —
. On the other hand, L™ (x) N A # &, because x € DT (A) \ A, and so there are z € A
and t, — +o00 such that ¢_; (x) — z. Then f(¢_¢, (x)) = 0 eventually for all n € N and
limy—s 4 oo f(P—s, (x)) = f(y) = 1, which contradicts the existence of limr_, 4 f(¢—_1(X)).
This proves that @ # L™ (x) C A for every x € B. |

Corollary 4.9: If i is a coherent measure relative to A, then supp u C W—(A) \ A.
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