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ABSTRACT
In this note we give a statistical approximation of the unstable mani-
fold of a connected isolatedunstable attractor of a smooth flowusing
coherent measures relative to it. In the main result we show that
almost all orbits in the support of a coherent measure relative to an
isolated unstable attractor are contained in its unstable manifold.
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1. Introduction

This note is concerned with the study of the negative limit sets of orbits in the region of
attraction (the stable manifold)W+(A) of an isolated unstably attracting continuum A of
a smooth flow (φt)t∈R on a connected smooth manifold M. It is well known that the first
positive prolongation

D+(A) = {x ∈ M : L−(x) ∩ A �= ∅}

of A is asymptotically stable with the same region of attraction W+(D+(A)) = W+(A)
(see Theorem 8.20 in [3]).

It is possible to define a finer topology on the region of attractionwith respect towhichA
becomes asymptotically stable. This is called the intrinsic topology andwas first introduced
in [9] (for an alternative definition see [11]). The region of attraction endowed with the
intrinsic topology is denoted by W+

i (A). The space W
+
i (A) is locally compact, separable

and metrizable.
The negative limit set of an orbit in D+(A) \ A may not be contained in A (see Exam-

ple 4.4 in [2]). This is a case where the phenomenon explosion occurs (see [1, 2, 7, 10]).
The flow explodes at a point x ∈ W+(A) if the identity map id : W+(A) → W+

i (A) is not
continuous at x. SinceA is not stable, the flow explodes at some point ofA (Proposition 4.1
in [2]). Here we are interested in the detection of orbits whose negative limit sets are con-
tained in A. In other words, we would like to have a tool in order to locate the unstable
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manifold (e.g. region of negative attraction)

W−(A) = {x ∈ M : ∅ �= L−(x) ⊂ A}

of an isolated unstable attractorA. Note thatW−(A) \ Amay be nowhere dense inD+(A) \
A (see Example 4.4 in [2]).

We show that orbits in the unstable manifold can be located statistically through coher-
ent measures, but it is impossible to locate explosive orbits in this way. The notion of
coherent measure relative to an isolated invariant set of a smooth flow on a smooth closed
manifold has been introduced in [6] in connection to the problem of the existence of a
smooth Lyapunov 1-form for a general isolated invariant set of a smooth flow on a closed
smooth manifold. First we give a preliminary characterization of coherent measures rela-
tive to a connected isolated unstable attractor. Precisely, we prove that a Radon measure
μ on W+(A) \ A is coherent relative to A if and only if μ is invariant under the flow and
its support is contained in D+(A) \ A (see Corollary 4.4). The main result is Theorem 4.8
below which says that if μ is a coherent measure relative to a connected isolated unsta-
ble attractor, then M \ W−(A) has μ-measure zero. So, actually, a Radon measure μ on
W+(A) \ A is coherent relative toA if and only if it is invariant and suppμ ⊂ W−(A) \ A.
It follows that

W−(A) ⊂ A ∪
⋃

μcoherent

suppμ ⊂ W−(A).

In case there are no external explosions, these three sets are equal.

2. Isolated unstable attractors

Let (φt)t∈R be a continuous flow on a separable, locally compact, metrizable spaceM. The
positive limit set of x ∈ M is the closed, invariant set

L+(x) = {y ∈ M : φtn(x) → y for some tn → +∞}.

The negative limit set L−(x) is defined analogously. Let A ⊂ M be a compact invariant set.
The invariant set

W+(A) = {x ∈ M : ∅ �= L+(x) ⊂ A}
is called the region of attraction (or stable manifold) of A. If W+(A) is an open neigh-
bourhood of A, then A is called an attractor. A compact invariant set A is called (positively
Lyapunov) stable if every neighbourhood of A contains a positively invariant open neigh-
bourhood of A. A stable attractor is usually called asymptotically stable. An unstable
attractor is an attractor which is not stable.

Asymptotically stable compact invariant sets are very special cases of isolated invariant
sets. A compact invariant set A ⊂ M is called isolated if it has a compact neighbourhood
V such that A is the maximal invariant set in V. Each such V is called an isolating neigh-
bourhood of A and contains a smaller isolating neighbourhood N of A such that there are
compact sets N+, N− ⊂ ∂N with the following properties:

(i) ∂N = N+ ∪ N−.
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(ii) For every x ∈ N+ there exists ε > 0 such that φt(x) ∈ M \ N for−ε ≤ t < 0, and for
every y ∈ N− there exists δ > 0 such that φt(y) ∈ M \ N. for 0 < t ≤ δ.

(iii) For every x ∈ ∂N \ N+ there exists ε > 0 such that φt(x) ∈ intN for −ε ≤ t < 0,
and for every y ∈ ∂N \ N− there exists δ > 0 such that φt(y) ∈ intN for 0 < t ≤ δ.

The triad (N,N+,N−) is called an isolating block of A. The sets A± = {x ∈
N : C±(x) ⊂ N} and a± = ∂N ∩ A± are compact and A = A+ ∩ A−. Moreover, ∅ �=
L+(x) ⊂ A for every x ∈ A+ and a+ ⊂ N+ \ N−.

If M is a smooth n-manifold and the flow is smooth, then every neighbourhood of an
isolated invariant set A contains a smooth isolating block (N,N+,N−) of A. This means
that N is a smooth compact n-manifold with boundary ∂N = N+ ∪ N−, the sets N+ and
N− are smooth compact (n − 1)-manifolds with common boundaryN+ ∩ N−, which is a
smooth compact (n − 2)-manifold (without boundary) and onwhich the flow is externally
tangent to N. Moreover, the flow is transverse to N+ \ N− into N and transverse to N− \
N+ out of N (see [5, 13]).

Let A ⊂ M be an isolated compact invariant set and let (N,N+,N−) be an isolating
block of A. The final entrance time function τ : W+(A) → [−∞,+∞) defined by

τ(x) = sup{t ∈ R : φt(x) ∈ M \ N},

if x ∈ W+(A) \ A and τ(x) = −∞, if x ∈ A, is lower semicontinuous. This follows imme-
diately from the definition and the continuity of the flow. Obviously, φτ(x)(x) ∈ a+ and
τ(φt(x)) = τ(x)− t for every t ∈ R and x ∈ W+(A) \ A. The final entrance time function
τ is discontinuous at x ∈ W+(A) \ A if and only if there is xn → x such that τ(xn) → +∞
(see Lemma 3.1 in [1]). These are the points of the set φ(R × ∂∂Na+).

It is clear from the above that if A is an isolated compact invariant set, then A is not
necessarily asymptotically stable with respect to the restricted flow inW+(A). However, it
is possible to define a new topology inW+(A), which is finer than the subspace topology,
with respect to which the flow remains continuous and A becomes asymptotically stable.
Roughly speaking, this new topology is obtained by cuttingW+(A) along the discontinu-
ity set of the final entrance time function with respect to any isolating block of A. It was
originally defined in [9]. According to an alternative description given in [11] the intrinsic
topology is the smallest topology which contains the subspace topology ofW+(A) and the
sets

W+(A) ∩
⋂
t≥ 0

φ−t(V),

where V runs over the open neighbourhoods of A inM. We denote byW+
i (A) the region

of attraction equipped with the intrinsic topology. The space W+
i (A) is locally compact,

separable and metrizable and the topology of A remains unchanged (see [2]).
The final entrance time function τ : W+

i (A) → [−∞,+∞) is continuous for any
isolating block (N,N+,N−) of A (see Lemma 3.1 in [2]). The function F : W+

i (A) →
[0,+∞) defined by

F(x) =
{
eτ(x), if x ∈ W+

i (A) \ A,
0, if x ∈ A
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is then continuous. It is obvious that A = F−1(0) and F(φt(x)) = e−tF(x) for every t ∈ R

and x ∈ W+
i (A) \ A. This shows that A is globally asymptotically stable inW+

i (A). More-
over, the restricted flow onW+

i (A) \ A is parallelizable and each level set F−1(c), c>0, is
a compact global section. In particular the set a+ = F−1(1) is a global section to the flow
onW+

i (A) \ A and thusW+
i (A) \ A is homeomorphic to R × a+.

Note that F : W+(A) → [0,+∞) is a lower semicontinuous Lyapunov function for A,
which by no means implies that A is stable with respect to the restricted flow in W+(A).
The identitymap id : W+(A) → W+

i (A) is continuous at a point x ∈ W+(A) if and only if
F is continuous at x. IfW+(A) is locally compact, it follows that the set of points where the
identity map id : W+(A) → W+

i (A) is continuous contains an invariant, open and dense
set D ⊂ W+(A) \ A. If M is a smooth manifold, the flow is smooth and A is a connected
isolated unstable attractor, then for every smooth isolating block (N,N+,N−) of A the set
a+ has nonempty interior in ∂N, by transversality. This implies that D is also dense in
W+

i (A) \ A (and of course open).

3. Invariant Radonmeasures in the region of attraction

Let M be a connected, locally compact, metric space and (φt)t∈R be a continuous flow
on M. Let A ⊂ M be a connected isolated unstable attractor of the flow. Note that the
chain recurrent set of the restricted flow on W+(A) is contained in D+(A). In the par-
ticularly interesting case where A is a minimal set, then D+(A) is a chain component of
the flow. This very mild kind of recurrence is the only one that points ofW+(A) \ Amay
present.

If (N,N+,N−) is an isolating block for A with N ⊂ W+(A), then the flow defines an
equivariant continuous bijection h : R × a+ → W+(A) \ A, where on R × a+ we con-
sider the parallel flow with section a+. Recall that h is not a homeomorphism in general.
It becomes a homeomorphism if on the region of attraction we consider the intrinsic
topology. However, it is Borel bimeasurable, because it maps closed subsets of R × a+
to Borel subsets of W+(A) \ A. So, h induces a one-to-one correspondence between
the Borel measures on R × a+ and the ones on W+(A) \ A. Note that by Poincaré
Recurrence there is no non-trivial invariant finite Borel measure on W+(A) \ A, nor
on D+(A) \ A.

If μ is a flow invariant Borel measure on W+(A) \ A, then (h−1)∗μ is a Borel mea-
sure on R × a+, which is invariant under the parallel flow. Therefore, μ = h∗(λ× ν),
where λ is the Lebesgue measure on R and ν is the Borel measure on a+ defined by the
formula

ν(K) = lim
ε→0

1
ε
μ(h([0, ε)× K)) = μ(h((0, 1)× K))

for every Borel set K ⊂ a+. If μ is locally finite, hence a positive Radon measure, then ν
is a finite measure, because a+ is compact. The converse is not true. If we begin with a
finite Borel measure ν on a+, the formulaμ = h∗(λ× ν) defines a σ -finite invariant Borel
measure on W+(A) \ A, which may be not locally finite. Indeed, there may exist a point
x ∈ a+ ∩ D+(A) such that L−(x) ∩ (D+(A) \ A) �= ∅. Let νx be the Dirac point measure
at x and μ = h∗(λ× νx). If y ∈ L−(x) ∩ (D+(A) \ A), so that the flow explodes at y, and
B is a flow box corresponding to some local section S at y of some extent ε > 0, there are
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tn → −∞ such that φtn(x) ∈ S and φtn(x) → y. Then,

μ(B) ≥
∞∑
n=1

(λ× νx)((tn − ε, tn + ε)× {x}) =
∞∑
n=1

2ε = +∞.

In the sequel we shall assume that M is a connected smooth manifold and the flow is
smooth with infinitesimal generator X. So, in every neighbourhood of A there is a smooth
isolating block of A. Let μ = h∗(λ× ν) be an invariant, locally finite Borel measure on
W+(A) \ A, which is equivalent to saying that μ is a (positive) Radon measure.

Proposition 3.1: Let f : W+(A) → R be a smooth function with compact support such
that

(i) Xf=0 on some open neighbourhood of A and
(ii) f is constant on A (which follows from (i) if A is a minimal set).

Then the limit limT→+∞ f (φ−T(x)) exists for μ-almost all x ∈ W+(A) \ A and∫
W+(A)\A

Xf dμ = (f |A) · ν(a+ ∩ (W+(A) \ D+(A)).

Proof: Since Xf has compact support contained in W+(A) \ A, we use Fubini’s theorem
to compute∫

W+(A)\A
Xf dμ =

∫
W+(A)\A

Xf dh∗(λ× ν) =
∫

R×a+
(Xf ) ◦ h dt dν

=
∫
a+

∫ +∞

−∞
∂(f ◦ h)
∂t

(t, x) dt dν

=
∫
a+

lim
T→+∞

(f (φT(x))− f (φ−T(x))) dν.

Our assumptions imply that for every x ∈ W+(A) there exists some T0 > 0 such that
f (φT(x)) = f |A for every T ≥ T0. Hence limT→+∞ f (φ−T(x)) exists for ν-almost every
x ∈ a+, and so for μ-almost every x ∈ W+(A) \ A, and∫

W+(A)\A
Xf dμ = (f |A) · ν(a+)−

∫
a+

lim
T→+∞

f (φ−T(x)) dν.

Since f has compact support, if limT→+∞ f (φ−T(x)) exists, then it must necessarily vanish
in case x /∈ D+(A) or it must be equal to f |A in case x ∈ D+(A) \ A. Therefore,∫

a+
lim

T→+∞
f (φ−T(x)) dν = (f |A) · ν(a+ ∩ D+(A))

from which follows that∫
W+(A)\A

Xf dμ = (f |A) · [ν(a+)− ν(a+ ∩ (D+(A) \ A))]

= (f |A) · ν(a+ ∩ (W+(A) \ D+(A)). �
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Corollary 3.2: Let μ = h∗(λ× ν) be an invariant Radon measure on W+(A) \ A whose
support is contained in D+(A) \ A. If f : W+(A) → R is a smooth function with compact
support such that Xf=0 on some open neighbourhood of A and f is constant on A, then

∫
W+(A)\A

Xf dμ = 0

and the limit limT→+∞ f (φ−T(x)) exists for μ-almost all x ∈ D+(A) \ A.

Proof: Since the support of μ is assumed to be contained in D+(A) \ A, the support of
ν must be contained in a+ ∩ D+(A). Therefore, ν(a+ ∩ (W+(A) \ D+(A)) = 0 and the
assertion follows immediately from Proposition 3.1. �

4. Coherent measures and the unstable manifold

Let M be a connected smooth manifold and X be a complete smooth vector field on M
with flow (φt)t∈R. Throughout this section A ⊂ M will be a connected isolated unstable
attractor of the flow.

Definition 4.1: A Radon measure μ onW+(A) \ A is called coherent relative to A if it has
the following property:

(C) For every smooth function f : W+(A) → R with compact support such that df =0
on some open neighbourhood of A we have

∫
W+(A)\A

Xf dμ = 0.

This definition is a slight generalization of the one introduced in [6].

Lemma4.2: Every coherentmeasure relative to A is invariant under the flow onW+(A) \ A.

Proof: If f : W+(A) \ A → R is a smooth function with compact support, then for every
t ∈ R we have

∫
W+(A)\A

(f ◦ φt − f ) dμ =
∫
W+(A)\A

∫ t

0
X(f ◦ φs) ds dμ

=
∫ t

0

∫
W+(A)\A

X(f ◦ φs) dμ ds = 0,

since μ is assumed coherent. If B ⊂ W+(A) \ A is a compact set, there exists a decreas-
ing sequence of smooth functions with compact supports fn : W+(A) \ A → [0, 1], n ∈ N,
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which converges pointwise to χB and then

μ(B) =
∫
W+(A)\A

χB dμ = lim
n→+∞

∫
W+(A)\A

fn dμ = lim
n→+∞

∫
W+(A)\A

(fn ◦ φt) dμ

=
∫
W+(A)\A

χB ◦ φt dμ =
∫
W+(A)\A

χφ−t(B) dμ = μ(φ−t(B))

for every t ∈ R. It follows by regularity that this holds for every Borel subset ofW+(A) \ A.
�

Lemma 4.3: The support of any coherent measure relative to A is contained in D+(A) \ A.

Proof: Let x0 ∈ W+(A) \ D+(A). Since D+(A) is asymptotically stable with region of
attractionW+(D+(A)) = W+(A), there exists a smooth, uniformly unbounded Lyapunov
function f : W+(A) → [0,+∞) forD+(A) (see [8, 12]).More precisely, f is continuous on
W+(A), smooth on W+(A) \ D+(A), f−1(0) = D+(A) and Xf <0 on W+(A) \ D+(A).
Moreover, limt→−∞ f (φt(x)) = +∞ for every x ∈ W+(A) \ D+(A) and f−1([0, c]) is
compact for every c>0.

Let ψ : R → [0, 1] be a smooth function such that ψ−1(1) = (−∞, f (x0)/2],
ψ−1(0) = [2f (x0),+∞) and ψ ′(t) < 0 for f (x0)/2 < t < 2f (x0). Let g = ψ ◦ f . Then g
is smooth, dg=0 on the open neighbourhood f−1[0, f (x0)/2) of A and g has compact
support contained in f−1[0, 2f (x0)], the latter being compact. Also, Xg>0 on the open
neighbourhood f−1(f (x0)/2, 2f (x0)) of x0. If now μ is a Radon measure on W+(A) \ A
such that x0 ∈ suppμ ∩ (W+(A) \ D+(A)), there is a compact neighbourhood W of x0
contained in f−1(f (x0)/2, 2f (x0)) and so∫

W+(A)\A
Xg dμ ≥

∫
W
Xg dμ > 0.

Therefore μ cannot be coherent relative to A. �

The combination of Corollary 3.2 and Lemma 4.3 yields the following characterization
of coherent measures.

Corollary 4.4: For a Radon measure μ on W+(A) \ A the following assertions are
equivalent:

(i) μ is a coherent measure relative to A.
(ii) The support of μ is contained in D+(A) \ A and μ is invariant.

Corollary 4.5: If f : W+(A) → R is a smooth function such that Xf=0 on some open
neighbourhood of A and f is constant on A, then Xf ∈ L1(μ) and∫

W+(A)\A
Xf dμ = 0

for every coherent measure μ relative to A.
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Combining Proposition 3.1 with Lemmas 4.2 and 4.3 we get also the following.

Corollary 4.6: If μ is a coherent measure relative to A then for every smooth function
f : W+(A) → R with compact support such that df=0 on some open neighbourhood of A
there exists a Borel set B ⊂ D+(A) \ A such that μ(W+(A) \ (A ∪ B)) = 0 and the limit
limT→+∞ f (φ−T(x)) exists for every x ∈ B.

The following lemma guarantees the existence of coherent measures seemingly of a
rather special kind. As the simple proof shows, for every x ∈ W−(A) there exists a coherent
measure μ relative to A such that such that x ∈ suppμ.

Lemma 4.7: There exists a coherent measure on W+(A) \ A relative to A.

Proof: Since A is an unstable attractor, there exists at least one point x ∈ W+(A) \ A such
that∅ �= L±(x) ⊂ A, and so necessarily x ∈ D+(A) \ A (see Corollary 1.2 of Chapter VI in
[4]). The parametrization γx : R → D+(A) \ A of the orbit of x defined by γx(t) = φt(x) is
a homeomorphismonto its image. Ifμ is the push forward of the Lebesguemeasure onR by
γx, thenμ is locally finite.We shall prove that it satisfies condition (C). Let f : W+(A) → R

be a smooth functionwith compact support such that df =0 on some open neighbourhood
V of A. Since A is connected, V can be chosen to be also connected. Then f |V is constant
and ∫

W+(A)\A
Xf dμ =

∫ +∞

−∞
(f ◦ γx)′(t) dt = f |V − f |V = 0. �

The simple coherent measure relative to A constructed in Lemma 4.7 has the property
that the negative limit set of almost every point is contained inA. Actually, this is a property
that every coherent measure has.

Theorem 4.8: If μ is a coherent measure relative to A, then ∅ �= L−(x) ⊂ A for μ-almost
every x ∈ D+(A) \ A.

Proof: Suppose that μ is coherent relative to A. Let (N,N+,N−) be an isolating block of
A with N ⊂ W+(A). Since μ is invariant under the flow, by Lemma 4.2, it has the form
μ = h∗(λ× ν), where λ is the Lebesgue measure on R and ν is a finite Borel measure on
a+. Let V be a relatively compact open neighbourhood of a+ such that V ⊂ W+(A) \ A.
There exists a smooth function f : W+(A) → [0, 1] such that f−1(1) = a+ and f−1(0) =
W+(A) \ V . According to Corollary 4.6, there exists a Borel set B ⊂ D+(A) \ A such that
μ(W+(A) \ (A ∪ B)) = 0 and limT→+∞ f (φ−T(x)) exists for every x ∈ B. If x ∈ B is such
that L−(x) ∩ (D+(A) \ A) �= ∅, there exist y ∈ a+ and sn → +∞ such that φ−sn(x) →
y. On the other hand, L−(x) ∩ A �= ∅, because x ∈ D+(A) \ A, and so there are z ∈ A
and tn → +∞ such that φ−tn(x) → z. Then f (φ−tn(x)) = 0 eventually for all n ∈ N and
limn→+∞ f (φ−sn(x)) = f (y) = 1, which contradicts the existence of limT→+∞ f (φ−T(x)).
This proves that ∅ �= L−(x) ⊂ A for every x ∈ B. �

Corollary 4.9: If μ is a coherent measure relative to A, then suppμ ⊂ W−(A) \ A.
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