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Abstract. Let X be a compact metric space and 7' : X — X a continuous surjection. We present
sufficient conditions which imply the existence of absolutely continuous automorphic measures
for T with respect to a given ergodic T-invariant Borel probability measure. The same conditions
give measurable or L solutions of the corresponding cohomological equation.

1. Introduction.

Let X be a compact metric space, T' : X — X a continuous surjection and let
f : X — R be a continuous function. A Borel probability measure v on X is called an

= ef. This kind of

v
ef-automorphic measure for T if v is equivalent to T, and
d(T,v)

measure has been used without a particular name in [4].

In this note we study the existence of absolutely continuous automorphic measures
with respect to a given ergodic T-invariant Borel probability measure. We present a
sufficient condition for the existence of an absolutely continuous automorphic measure
for a continuous surjection. The problem of the existence of an ef-automorphic measure
v for a homeomorphism T which is absolutely continuous with respect to an ergodic
T-invariant Borel probability measure p is closely related to the existence and regularity
properties of solutions of the cohomological equation f = u — w o T. This relation is
explained with details in section 2. If there exists a continuous solution u, then f is
called a continuous coboundary. According to the classical Gottschalk-Hedlund theorem
(see page 102 in [3]), if T" is minimal, then f is a continuous coboundary if and only if
there exists xyp € X such that

n—1
sup{| Y _ f(T*(x0))| : n € N} < +oc.
k=0

The main result is Theorem 3.5 which can be stated as follows.

Main Theorem. Let X be a compact metric space and T : X — X a continuous
surjection. Let p € M(X) be an ergodic T-invariant measure and let f : X — R be a

continuous function such that fdu = 0. If there exists a constant ¢ > 1 such that
X

E.(f) <o /X B (f)dp



n—1
for every n € N, where E,(f) = e5*() and S, (f) = —ZfoTk, then there exists
k=0
an el -automorphic measure v for T which is absolutely continuous with respect to fu.
d d
Moreover, d—y € L™®(u) and —log(d—y) is a measurable solution of the cohomological

equation f =u —wuoT. O

In Theorem 3.7 we give sufficient condition for a continuous function f : X — R such
that / fdu =0 to be an L*(u) coboundary, with respect to an ergodic T-invariant
X

measure u, without the minimality assumption for 7. This condition is stronger than
the one given in the main Theorem 3.5, and the result is obtained by investigating the

d
logarithm of the Radon-Nikodym derivative log(—y).
dp

2. Automorphic measures.

Let T : X — X be a continuous surjection, where X is a compact metric space, and
let f: X — R be a continuous function. An ef-automorphic measure for T is a Borel
probability measure v on X such that

/Xqﬁdl/:/x(qSoT)efdu

for every continuous function ¢ : X — R. Evidently, an ef-automorphic measure for T
is T-quasi-invariant. In case T is a homeomorphism, a ef-automorphic measure for T is
an e/ oT_l—autonrlorphic measure for 771,
It is easy to see that if A : X — X is a homeomorphism and S = hoT o h™!, then
hyv is an ef Ohil—amtomorphic measure for S for every ef-automorphic measure v for T.
In the case of a homeomorphism 7' the construction of an automorphic measure can
be described as follows (see [1]). Let (an)neny be a sequence of real numbers and let
o

. Qp . — .
¢ = limsup —. The series g e~ converges for s > ¢, diverges for s < ¢ and we

n
n—-+o0o n—1

cannot tell for s = ¢, by the root test. There exists a sequence of positive real numbers
o

(bn)nen such that lim

n—-+4o0o n+1

=1 and the series ane“"_"s converges for s > ¢ and
n=1
diverges for s < c.
Let f : X — R ba a continuous function such that / fdu =0 for some ergodic

X
T-invariant Borel probability measure u. It is well known that the set of points z € X
such that the limit

. 1
lim —
n—4+oco n

n
—k
> T H@)
k=1
exists in R has measure 1 with respect to every T-invariant Borel probability measure,
and is therefore non-empty. So there exists a point € X such that

. 1
lim —
n—+oo n

S AT ) =o.
k=1



n oo

Let a, = — Zf(Tfk(x)) and M = ane“’ﬁns, where (by,)nen is the corresponding
k=1 n=1

sequence as above. Each accumulation point in the weak® topology as s | 0 of the

directed family

1 &
Hs = A Z bnea"_nS(ST—n(m), §>0
5 n=1

is an ef-automorphic measure for 7.

There is a relation between ef-automorphic measures for a continuous surjection
T : X — X of a compact metric space and solvability of the cohomological equation
f=u—uoT, where f: X — R is continuous.

Let p be any T-invariant Borel probability measure. If there exists a measurable
solution u of the above cohomological equation defined p-almost everywhere such that
e™* € L'(p), then there exists an e/-automorphic measure v for T' equivalent to p with
density
—Uu

dv e

dp / e “du
X

Thus, if there exists a continuous solution u, then for every T-invariant Borel probability
measure we get an equivalent ef-automorphic measure for 7. Moreover, in this case,
every ef-automorphic measure v for T is obtained in this way. Indeed, we have

/X petdy = /X (¢ 0 T)edv

for every continuous function ¢ : X — R, and so the equivalent measure p to v with
density

u

d_,u_ e

dv / edv
X

is T-invariant. Consequently, if f is a continuous coboundary, then the ef-automorphic
measures for T are in one-to-one correspondence with the T-invariant Borel probability
measures and each ef-automorphic measure for T is equivalent to its corresponding T-
invariant measure.

Conversely, suppose that p is an ergodic T-invariant Borel probability measure and

f X — R is a continuous function such that / fdu = 0. Suppose further that there
X

exists an ef-automorphic measure v € M(X) for T which is absolutely continuuous with

d
respect to 4 and g = d—y For every measurable set A C X we have
i

/X (xa0T)(goT)du = v(A) = /

(xaoT)eldv = / (xa o T)el gdp
X

X

and therefore
[, sl (goTdu=o.
T-1(4)

Since p is T-invariant, it follows that g o T = gef p-almost everywhere. The ergodicity
of p implies now that g > 0 p-almost everywhere. So, u = —logg is a measurable



solution of the cohomological equation f = u —uoT. If logg € L>®(u) and T is
a minimal homeomorphism or 7T is a locally eventually onto local homeomorphism
and p has full support, then there exists some continuous function v : X — R such
that f = u—wuoT, by Proposition 4.2 on page 46 in [2] and Theorem 6 in [6], respectively.

Remark 2.1. It is a general fact that every quasi-invariant measure of a homeomorphism

which is is absolutely continuous with respect to an ergodic invariant measure is actually

equivalent to it. Indeed, let T': X — X be a homeomorphism of a compact metric space

X and p be an ergodic T-invariant Borel probability measure. If v is a T-quasi-invariant

Borel probability measure which is absolutely continuous with respect to u, then v is
dv

equivalent to p. Indeed, let g = Tu and A = g71(0). If S = U T"(A), then S is T-
1L

ne”L
invariant and v(S) = 0. On the other hand p(X \ S) > 0, and since p is ergodic we get

1(S) =0, that is g > 0 p-almost everywhere.

3. Absolutely continuous automorphic measures.
Let X be a compact metric space and p € M(X). The set
E,={reMX):v<u}

is not empty, since it contains yu, and is convex. In general, E, is not a closed subset of

M(X) with respect to the weak™ topology. For example, if we let p be the Lebesgue

measure on the unit interval [0,1] and for 0 < € < 1 we let p. denote the Borel

probability measure on [0, 1] with density —x[o ¢, then hII(l] e is the Dirac point measure
€ €e—

at 0.

Lemma 3.1. Let X be a compact metric space and p € M(X). Let (Vy)nen be a

dvy,
Wn e N If
dp

there exist non-negative h, g € L' () such that h < f, < g for everyn € N, then v € E,
dv

and h < — <g.
dp

sequence in E,, converging weakly* to some v € M(X) and let f, =

Proof. Since v is a finite measure, there exists a (countable) basis U of the topology of
X such that v(0U) = 0 for every U € U. So U is contained in the algebra

C(v) = {A]A C X Borel and v(0A) = 0}
and since it generates the Borel o-algebra of X, so does C(v). Let now A C X be a
Borel set with ©(A) = 0 and € > 0. There exists 0 < § < € such that / gdp < e for
B

every Borel set B C X with u(B) < §, because g € L*(u1). There exists some Ay € C(v)

such that u(AAAg) < 6 and v(AAAg) < 6. Thus u(Ap) < 0 and |v(A) — v(Ao)| < 0.

By weak* convergence, v(Ag) = lirf vn(Ap) and so there exists some ng € N such that
— 100

|vn(Ap) — v(Ap)| < € for n > ng. Therefore,

v(Ao) < vn(Ap) + €= . fnd,u+e§/A gdp + € < 2e.
0 0

4



It follows that 0 < v(A) < 3e for every € > 0, which means that v(A) = 0. This shows
that v € E,,.
To prove the last assertion, we note first that there exists a sequence of (finite)
partitions (P, )nen of X such that P, 1 is a refinement of P, the Borel o-algebra of X
o0

is generated by U P, and u(0B) = 0 for every B € P, and n € N. It can be constructed
n=1
starting with a countable basis {U,, : n € N} of the topology of X such that u(0U,) =0
for every n € N and defining inductively P, to be the finite family consisting of Borel
sets with positive g measure of the form BN U, or BN (X \ U,), for B € P,,_1, taking
Po={X}.
Let P, (x) denote the element of P,, which contains x € X. Then,
dv . v(Pn(z))

Z(x) =

lim ,
a5 = B 1P @)

p-almost everywhere on X and in L!(u) (see page 8 in [5]). On the other hand, by the
weak™ convergence and since v € E,, for every k € N and € X there exists some
ng € N such that

P(Py() = v (Pee))] < L(Pe())
It follows that

v(Pi(x) _ 1 vn,(Pr(z)) 1 1 1 1
0= @) S F T uPe@) k@) /W Il = 1 D) /p,cm gapi
Since

1
lim 7/ gdu = g(x
e 2P @) S oy 9 = I
dv

p-almost everywhere on X and in L'(p), it follows that 0 < d—(ac) < g(z) p-almost

I
everywhere on X.

Similarly, from

v(Pr(x)) 1+1/nk(77k(x)) 1 1

1 1
UP(@)) — it [ adnz s [
w(Pr(z)) k= pu(Pr(z)) k- w(Pe(z)) Jpp@) " " k- u(Pr(x)) Jp, ()
follows that h(z) < ;l—y(x) p-almost everywhere on X. [J
i

Let X be a compact metric space and T : X — X a continuous surjection. For

n—1

any continuous function f : X — R we put S,(f) = — Z foT* and E,(f) = ().
k=0

Let M, = sup{S,(f)(z) : © € X} and L, = inf{S,(f)(z) : = € X}, n € N. Since

n—1
Sp(f)oT = 8S,41(f) + f for n e N, if g, = ZEk(f), then we have
k=0

(gn o T)e_f —0gn = En(f) —e .



Let now p € M(X) be T-invariant and suppose that / fdu=0.So, L, <0< M,
X
9n

/ gndp
X

(hpoT) — hpel =

for every n € N. Putting h,, = , we get

ef — e_Sn(f)

o—Sn(f) / andy
X
for every n € N.

Suppose that there exists a positive h € L!(u) such that E,(f) < h/ E.(f)du for

X
every n € N. Then also 0 < h, < h for n € N. If v, denotes the element of £, with
d -
hp, = %, then {v, : n € N} C E,, by Lemma 3.1.
I
Proposition 3.2. Let X be a compact metric space and T : X — X a continuous
surjection. Let p € M(X) be T-invariant and let f : X — R be a continuous function

such that / fdu = 0. Suppose that
X

(i) there exists a positive h € L*(u) such that E,(f) < h/ E,(f)du for everyn € N,
b'e

and
n—1

(ii) the sequence e~ Mn Z et n e N, is unbounded.
k=0
Then there exists an ef -automorphic measure for T which is absolutely continuous
with respect to .

Proof. Using the above notations, it suffices to prove that there exists a sequence of
positive integers n; — +o0o such that lim ((hn]. oT) — hy, ef) = 0 p-almost everywhere

J—r+oo
on X. Indeed, passing to a subsequence if necessary, there exists v € £, such that
v = lim vy,,, by Lemma 3.1. Since p is T-invariant, for every continuous function
J—+o0

¢ : X — R we have

[ o= @om)eydy = tim_ [ (00T)((h, o T) ~ hue)au =0,
X J=too Jx

by dominated convergence, because
(¢ 0 T)((hn o T) — hne! )| < [|¢l|((h o T) + he’) € L*(n).

Since iy
(b0 T) — hyef] = o/ TN =]

Gndp
X

we need only prove that there exist n; — +o00 such that

fim (o € X ¢ |y, (@) =70 25 [ gu,dud) =0

Jj——+o0o

6



for every 6 > 0. Let

An75 = {.%' cX: En(f)(.%') > e_f(x) + % iEk(f)(x)L and
k=0

n—1
o= (0 € X B(N0) < 10 = 253 BN )
k=0

Our assumption (i) implies that it suffices to prove the existence of a sequence of positive
integers n; — +oc such that lim u(A,; ) = hm M(An ) = 0 for every ¢ > 0.
J—+oo —+00

For every x € A, 5 we have

M) e 3 B @)
k=0

and integrating over A, s we obtain

1 — M, L
5/hdu>u Zek

Similarly, for every x € A/ ; we have

n—1

S Bl < " ese

k=0

and integrating over A! s we get

n—1
1
! §ij<— he Tdu.
5)k:0€ _5/)(6 1Y

n;—1

Our assumption (ii) means that there exist n; — +oo such that e M Z el — oo,
k=0

nj—1

and therefore we also have Z e - 400, because L, < 0 < M,. Consequently,
k=0

lim u(Ay;s) = lim ,u(A 5)=0.0

j—+o0 j—+oo
In the next proposition we make a more restrictive assumption (i) and a weaker

assummption (ii).

Proposition 3.3. Let X be a compact metric space and T : X — X a continuous
surjection. Let p € M(X) be T-invariant and let f : X — R be a continuous function

such that / fdu = 0. Suppose that
X

(i) there exists a conatsnt ¢ > 1 such that E,(f) < c/ E.(f)du for every n € N,
X

and



n—1
(ii) the sequence e~ Mn Z ek n e N, is unbounded,
k=0
Then there exists an ef -automorphic measure for T which is absolutely continuous
with respect to .

Proof. Our assumption (ii) means that there exists a sequence of positive integers n; —
n;—1

+00 such that e Z eMk — 400, as j — +o0o. Using the same notations as above
k=0

we have / gn;dp — +00 and
X

n;—1

e My E eMr 5 400,
k=0

Qlr

e 5n / Inydp =
X

as j — +o00, by our assumptions. Therefore, lim ((hnj oT) — hy, ef ) = 0 uniformly
J—r+oo

on X and as in the proof of Proposition 3.2, every v € {vy, : j € N} is ef-automorphic
measure for T' that is absolutely continuous with respect to u. [

As the following Lemma shows, if in Proposition 3.3 the T-invariant measure
€ M(X) is ergodic, then condition (ii) is implied by condition (i).

Lemma 3.4. Let X be a compact metric space and T : X — X a continuous surjection.
Let pn € M(X) be an ergodic T-invariant measure and let f : X — R be a continuous

function such that / fdu = 0. Suppose that there exists a constant ¢ > 1 such that
X

E.(f) <o /X Eo(f)dp

for every n € N.
(a) If Ay, = {x € X : Sp(x) > M, —logec — 1}, n € N, then u(Ay,) >

n € N.
(b) For every N € N there exists n € N such that My, ; < M, +1 for all0 < j < N.

n—1
(c) The sequence e~ Mr Z eMe e N, is unbounded.
k=0

e—1
ec—1

for

Proof. (a) From our assumption we have
eMnlose < / En(f)du < e pu(An) + M8 (X0 4,),
X

from which the required inequality follows.

(b) We proceed to prove the assertion by contradiction assuming that there exists
some N € N such that for every n € N there exists 1 < j, < N such that M,,1;, > M,+1.
Inductively, if we put ny = 1471 +-- -+ jg, then M,,, > Mi+kand 1+k <ny <1+kN

for every k € N. Therefore,
My, 1

>
Nk N +1




1 1
for every k € N. If now kg € N is such that ‘ 08c ™ ‘ < SN+ 1) for k > kg, then for
x € A, we have
1 Sy (2) > 1
—_ 1‘ _—
ng ok 2(N +1)
and by (a) we get
1 e—1

1
X:— — ) >
nifr € ng S () > 2(N +1) ec—1

1 .
for every k > ko. Hence the sequence (—S,,)nen does not converge in measure to zero.

This contradicts the Ergodic Theorem of Birkhoff, since we assume that p is an ergodic
T-invariant Borel probability measure.

(c) Suppose on the contrary that there esists a real number a > 0 such that
n—1

e Mn ZeMk < a, for every n € N. By (b), for every N € N there exists n € N such

k=0
that M, ; < M, + 1 for all 0 < j < N, and so

N n+j—1 N n+N-—1 n—1
E eMe < g E eMnti < eqeMr 4 g E eMi E Mk

j=0 k=0 J=0

< ea(l+ a)e™ Z M,

Substituting

1

N n+j—
Z Z Mk = (N+1) ZeM’“—i—NeM"—i—Z "“
k=0

7=0

we arrive at

N-1
(N+1+a) Z M’“—l—NeM"—{—Z Muti < eq(1 4 a)eMn
k=0 i=1

and therefore N < ea(1l + a) for every N € N, contradiction. [J

The above immediately imply the following theorem which is the main result of this
note.

Theorem 3.5. Let X be a compact metric space and T : X — X a continuous surjection.
Let p € M(X) be an ergodic T-invariant measure and let f : X — R be a continuous

function such that / fdu = 0. If there exists a constant ¢ > 1 such that
X

[ B



for every n € N, then there exists an ef -automorphic measure v for T which is absolutely
d d
continuous with respect to p. Moreover, d—y € L>®(pn) and —log(d—y) is a measurable
i

solution of the cohomological equation f =u —wuwoT. [

Corollary 3.6. Let X be a compact metric space andT : X — X a continuous surjection
which is a locally eventually onto local homeomorphism. Let yp € M(X) be an ergodic

T-invariant measure and let f: X — R be a continuous function such that | fdu =0.
X

If there exists a constant ¢ > 1 such that

1
L[ Bnan< B < | B

for every n € N, then there exists an ef -automorphic measure v for T which is absolutely

d
continuous with respect to u. Moreover, —log(d—y) € L>®(u) and in case p has full
1L

support the cohomological equation f = u— uoT has a continuous solution. [J

If X is a compact metric space and 7' : X — X is a homeomorphism, for any
continuous function f : X — R we put

n
epofonk, if n >0,
k=1
n|—1
exp (— Z foTh), ifn<o.
k=0

As before we also put S,,(f) = log E,(f) and M,, = sup{S,(f)(z):x € X}, n € Z.
Let now pu € M(X) be T-invariant and suppose that / fdu =0. Then, M,, > 0 for
X

n—1
every n € Z. Since S,(f) o T 1 =S, 1(f) — foT L forneN,ifg, = ZEk(f), then
k=0

we have )
(gnoTil)efOT — 0gn :En(f) -1
n

/ Gndp
X

Putting h, = , we get

1 — e_sn(f)

e~ n) / Indps
X

for every n € N. So the same reasoning as above and Lemma 3.1 give the following.

(hn OTfl)efoT—l _ hn _

Theorem 3.7. Let X be a compact metric space and T : X — X a homeomorphism.
Let p € M(X) be an ergodic T-invariant measure and let f : X — R be a continuous

function such that / fdu=0.
X

10



(a) If there exists a constant ¢ > 1 such that

E.(f) <o /X Eu(f)dp

for everyn € N (or —n € N), then there exists an ef -automorphic measure v for T which
d
is equivalent to p such that d—y € L™®(u) .
1L
(b) Moreover, if

1
E/x E.(f)du < Eyn(f) < c/X En(f)dp

d
for every n € N (or —n € N), then log(d—y) € L>™(p). O
m
Combining Theorem 3.7 with section 2 we get the following.

Corollary 3.8. Let X be a compact metric space and T : X — X a minimal homeo-
morphism. Let u € M(X) be an ergodic T-invariant measure and let f : X — R be a

continuous function such that | fdu = 0. Then the following assertions are equivalent.
X
(i) f is a continuous coboundary.

(i) There exists a constant ¢ > 1 such that

1
E/X En(f)du < En(f) < c/X En(f)dp

for everyn € N (or —n € N). O
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