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Preface

These notes are divided into three parts. The first two parts correspond to
the one-semester introductory course on differentiable manifolds that I have taught
several times in the graduate program of the Department of Mathematics of the
University of Crete. They are written for graduate students who during their un-
dergraduate studies have built a solid background in Algebra and Analysis. More
precisely, the reader is required to be familiar with basic Algebra, basic Topology
and advanced Calculus of functions of several variables, including the basic theory
of Ordinary Differential Equations.

The first two chapters are devoted to the presentation of the basic notions. The
third chapter is concerned with the basic theory of Riemannian manifolds, the Levi-
Civita connection and the basic theory of geodesics, including geodesic convexity
from which the existence of admissible open covers is derived. The fourth, fifth
and sixth chapters are concentrated on differential forms and de Rham cohomology.
This theory can be considered as a generalization of vector analysis from R? to
higher dimensional and non-euclidean spaces, on the one hand, and as the geometric
viewpoint of the part of Algebraic Topology called (co-)homology theory, on the
other. In particular the fifth and sixth chapters are essentially a crash course on
Algebraic Topology using Calculus.

The third part of these notes is an introduction to vector bundles and the ge-
ometry of characteristic classes via Chern-Weil theory. It corresponds to a part of
the content of a one-semester advanced course on characteristic classes that I have
taught twice in the form of learning seminar in the Department of Mathematics of
the University of Crete.

K. Athanassopoulos
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Part 1

Basic theory of manifolds






Chapter 1

Manifolds

1.1 Topological and smooth manifolds

Problems of Classical Physics lead to the need for the development of differential and
integral calculus on subsets of the phase space, like for instance level sets of constant
energy, which are not open subsets of any euclidean space. Since differentiability of
a function at a given point depends only on its local behaviour near the point, it
is reasonable to try to develop differential calculus on topological spaces which are
locally like euclidean space.

A topological space M is said to be a topological n-manifold, where n € Z7T, if
it is a Hausdorff space with a countable basis for its topology and has the following
property: there exists an open cover U of M every element of which is homeomor-
phic to some open subset of R™. Since the topology of M is assumed to have a
countable basis, there exists a countable open cover U of M every element of which
is homeomorphic to R™. If U € U, a homeomorphism ¢ : U — ¢(U), where ¢(U) is
an open subset of R™, is called a chart of M and is usually denoted by (U, ¢). The
non-negative integer n is the dimension on M.

A topological manifold is a locally compact space, hence regular, and it follows
from Uryshn’s theorem that its topology is defined by some distance function.

If now f : M — R is a continuous function, it is reasonable to call f differentiable
at a point p € M, if there exists a chart ¢ : U — ¢(U) C R™ with p € U such that
fool:¢(U) — R is differentiable at ¢(p).

However, in order such a definition to be good it must be independent of the
choice of the chart ¢. If ¢ : V' — ¢(V) C R™ is another chart with p € V| we have

fog l=(fop Ho(poo ™).

3



4 CHAPTER 1. MANIFOLDS

Therefore, in order the differentiability of f o ¢! at ¢(p) to be equivalent to that
of foy~! at ¢(p) it suffices ¥ 0 ¢~ to be differentiable at ¢(p) and ¢ o p~! to be
differentiable at ¢ (p). We are thus led to the following.

Definition 1.1.1. Two charts (U, ¢y) and (V, ¢y ) of a topological n-manifold M
are called smoothly related if U NV # @& and the transition map

pvogy ou(UNV)—=dy(UNYV)

is a smooth diffeomorphism of open subsets of R".

Abstract set M
(not necessarily in R"™)

Definition 1.1.2. A smooth atlas of a topological n-manifold M is a family
A ={(U,¢y) : U € U} consisting of smoothly related charts of M such that U is
an open cover of M.

Two smooth atlases of M are called equivalent if their union is again a smooth
atlas. Evidently, this is an equivalence relation on the set of smooth atlases of M.
Every smooth atlas is contained in a unique maximal smooth atlas, which is the
union of all smooth atlases in its equivalence class.

Definition 1.1.3. A smooth structure on a topological n-manifold is a maximal
smooth atlas A of M. In this case the couple (M, A) is called a smooth n-manifold.
The smooth atlas A is usually omitted if it is clear which one is considered. The
elements of A are called the smooth charts of M.

It is clear from the above that a smooth structure on a topological manifold
can be described by a single, not necessarily maximal, smooth atlas. So, we can
describe a smooth structure by defining a smooth atlas of minimum cardinality.

Examples 1.1.4. (a) The trivial example of a smooth n-manifold is an open subset
M of R™, whose smooth structure is defined by the smooth atlas A = {(M,idys)}.
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Also, if M is a smooth manifold, then any open set X C M is a smooth manifold.
If A is the smooth structure of M, the smooth structure of X is

"4|X = {(X N Ua¢|XF‘|U) : (U’ gb) € “4}

(b) The n-sphere S% = {Z € R"™' : |Z|| = R} of radius R > 0 is a smooth
n-manifold. Its smooth structure is defined by the smooth atlas consisting of the
stereographic projections with respect to the north and the south poles. More
precisely, the stereographic projection with respect to the north pole is the homeo-
morphism 74 : S} \ {Ren+1} — R” defined by

R
R - Zn+1

and the stereographic projection with respect to the south pole is the homeomor-
phism 7_ : S} \ {—Ren41} — R™ defined by

7T+(Zl7"'7Zn7Zn+1) = : (Z17---7Zn)

__®
R + Zn+1

7'('_(21, ) Zn Zn—l—l)

Since the inverse 7711 is given by the formula

T (21, e 20) = 2821 2Rz R(-R 435 L %)
+ 15940 R2+Z PRI R2+Z 27 R2+Z )

J1J j=1%j

J=1 J
the transition map 7_ o 7' : R™\ {0} — R™\ {0} is given by
R2
(m_omi)(z) = —= - 2
i 1212

In other words, 7_ o 77;1 is the inversion with respect to Sg_l and is of course a
smooth diffecomorphism. The standard smooth structure of S% is defined by the
smooth atlas A = {(SE \ {Rens1},74), (S \ {—Rent1},m-)}. In case R =1, we
usually write S™ instead of ST'.

(¢c) If My is a smooth nji-manifold and My is a smooth mg-manifold, then their
product My x M, is a smooth (n; + ng)-manifold. Indeed, if A; is a smooth atlas
of Mj, j = 1,2, then

A:{(UXV,¢X¢)3(Ua¢)€A1, (V,T/))GAz}
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is a smooth atlas of M7 x M.
In particular, the n-dimensional torus 7" = S! x S! x .- x S! (n times) is a
smooth n-manifold.

(d) The complex projective space CP™, n € Z*, is the quotient space of the equiva-
lence relation ~ in C"*1\ {0} such that z ~ w if and only if there exists A € C\ {0}
with w = Az. In other words, the equivalence classes of ~ are the complex 1-
dimensional linear subspaces of C"*! minus 0 € C"*!. Alternatively, CP", can
be defined as the quotient space of the equivalence relation ~ on S?"*! such that
z ~ w if and only if there exists A € S! with w = Az. Thus, CP" is the or-
bit space of the continuous action of the unit circle S* on the (2n + 1)-sphere
527+l by scalar multiplication, whose orbits are great circles. The quotient map
7 §2tl  CP™ is a continuous, open, surjection and is called the Hopf map.
We usually write 7(z0, 21, ..., 2n) = [20, 21, ---, 2n] and call the complex numbers z,
21,..., zn, the homogeneous coordinates of the point [zg, 21, ..., 2,] € CP™. Obviously,
[205 215 -y 2n) = [Wo, W1, ..., wy,] if and only if

Zji Wil

R Wk

for every j, k=0,1,...,n.
If 20, 21, ..., 2n] # [Wo, W1, ..., wy], there exist 0 < j,k < n such that zjwy, # zpw;.
The sets

U = {[ug,u1, ..., un] € CP" : Jupz; — ujz| < |lupwj — ujwgl},

W = {[ug,u1, ..., un] € CP" : Jupz; — ujzg| > |upw; — ujwg|}

are open, disjoint and [z, 21, ..., 2] € U, [wo, w1, ..., w,] € W. This shows that CP™

is a Hausdorff space. Since the Hopf map is a continuous, open surjection, CP" is a

connected, compact space with a countable basis for its topology, hence metrizable.
For every integer 0 < k < n the set

U, = {[20,2’1,...,Zn] e CP"™: z, 7& O}

is open and the map ¢y : U — C™ with

(@’ O N e S Z_n)

¢k([20,21,...,2n]) = 2k 2k 2k 2k

is a homeomorphism whose inverse is given by
Gr (ty centn) = [ty ey bty Loty ey )
Thus, CP"™ is a topological 2n-manifold, since
CP"=UpUUyU---UU,.
Moreover, if U; N Uy, # @ and j # k, then

{(tl,..tn) Gcnlt]’#O} if j <k

oe(U; N UR) = {{(tl,..tn) €CM:t;_1 #£0} ifj>k
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Thus, for j < k we have

t ti—1 tj k1 1t t
—1 1 7—1 U541 k—1 k n
i o t,eetn) = (—, . , oo T Ty ey —
and for j > k we have
_ t te—1 1 tr ti—o t; tn
G50 & Dt tn) = , , , .
(907 ) (tj,l tion tjo1 tio T it tj,l)

So, A = {(Uk,¢r) : k = 0,1,...,n} is a smooth atlas which defines a smooth
structure and is called the canonical atlas of CP".

(e) The real projective space RP"™, n € Z%, is defined in the same way simply
by replacing the field C with the field R. Now RP" is the quotient space of the
equivalence relation ~ on S™ such that x ~ —z for every x € S™. Again RP" is a
connected, compact metrizable space and a smooth n-manifold.

Definition 1.1.5. Let M be a smooth m-manifold and N be a smooth n-manifold.
A continuous map f : M — N is called smooth if for every p € M there exist a
smooth chart (U, ¢) of M and smooth chart (V,4) of N such that p e U, f(U) CV
and Yo fop!: ¢p(U) — (V) is a smooth map of open subsets of euclidean spaces.
We call 9o f o ¢! the local representation of f with respect to the smooth charts

(U, ¢) and (V,¢)).

The above definition is independent of the choice of the smooth charts (U, ¢)
and (V,1), because if (U1, ¢1) and (V1,11) is another pair of smooth charts with
p € Uy and f(Uy) C V4, then

Yrofodr! = (o oo fog ) o(pogr)

and thus 1 o f o ¢~ ! is smooth if and only if ¥ o f o qul

The class of smooth manifolds are the objects of a category whose morphisms
are the smooth maps between smooth manifolds. The isomorphisms in the category
are called diffeomorphisms. More precisely, a smooth map f : M — N as in
Definition 1.1.5 is called a smooth diffeomorphism if there exists a smooth map
g: N — M such that go f =idy; and fo g =idy.

Definition 1.1.6. Two smooth manifolds M and N are called (smoothly) diffeo-
morphic if there exists a smooth diffeomorphism f: M — N.

Obviously, two diffeomorphic manifolds must have the same dimension. If (U, ¢)
is a smooth chart of a smooth manifold M, then ¢ : U — ¢(U) is a smooth diffeo-
morphism.

It is not true in general that any topological manifold admits a smooth structure.
Also, a topological manifold may carry many non-diffeomorphic smooth structures
(with the same underlying topology). J. Milnor proved in 1956 that on the 7-
sphere S” there are non-diffeomorphic smooth structures. His work was the birth
of Differential Topology. In 1982 S. Donaldson showed that already on R* there
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exist uncountably many non-diffeomorphic smooth structures. On any topological
n-manifold for n = 1,2, 3 there exists a unique up to diffeomorphism smooth struc-
ture. In dimension 1 this is easy to prove. In dimension 2 this follows from the
classification of topological surfaces and the uniformization theorem. In dimension
3 it was proved by J. Munkres in 1960. In both cases of dimensions 2 and 3 an im-
portant step in the proof is the non-trivial fact that topological 2- and 3-manifolds
can be triangulated.

1.2 The tangent space

In order to define the derivative of a smooth map between manifolds, we shall
describe the derivative of a map defined on a open subset of euclidean space in a
suitable way that it can be carried over to smooth manifolds.

Let A C R™ be an open set and p = (p!,...,p") € A. We denote by C*(A, p) the
set of smooth real functions defined on some open neighbourhood of p contained in
A. Let also

S(A,p) ={y]7: (—€,¢) > A is smooth for some e >0, with ~(0)=p}.

Two curves 71, 72 € S(A,p) are tangent at p if and only if (fo~1)'(0) = (f ov2)'(0)
for every f € C°°(A,p). Tangency at p is an equivalence relation ~, on S(A,p).
The quotient set T,A = S(A,p)/ ~, is called the tangent space of A at p and carries
a vector space structure which is defined as follows. If [y1],, [y2]p € TpA and A,
A2 € R, then \i[71]p + A2[y2]p is the element of T, A represented by

Y(t) = Myi(t) + Aovya(t) — (A1 + A2 — 1)p.

The zero element of T, A is represented by the constant curve at p. The elements
of T,,A are called tangent vectors of A at p. If v;(t) = p+tej, j = 1,2,...,n, then
{Imlp, v2lps ---[¥nlp} is a basis of T, A.

We shall give an alternative ”algebraic” description of the tangent space. To
every tangent vector [7], € TpA corresponds a linear operator Dy, : C*°(A,p) — R
which is defined by

Dy, (f) = (f o 7)'(0).

This is a fancy way to consider the directional derivative with respect to the velocity
of v at p. Recall that two functions f, g € C*°(A,p) are said to define the same
germ at p if they agree on some small neighbourhood of p and this is an equivalence
relation on C*°(A,p) whose classes are called the germs of smooth functions at
p. Note that if two functions f, g € C®(A,p) define the same germ at p, then
Dipy, () = Dy, (9)-

The set G, of germs of smooth functions at p can be endowed with the structure
of a commutative, associative real algebra with a unity in the obvious way. The
unity is the germ of the constant function with value 1. It is evident now that to
every tangent vector [y], € T,A corresponds a linear operator Dy, : Gp — R, as
above, and this correspondence is injective by definition. Moreover, it satisfies the
Leibniz rule for the derivative of a product of functions. Thus, we are led to the
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following,.

Definition 1.2.1. A derivation on the algebra G, of germs of smooth functions at
p is a linear operator D : G, — R which satisfies the Leibniz rule

D(a- ) = ep(B)D(e) + ep() D(B)

for every «, B € Gy, where ¢, : G, — R denotes the evaluation at p.

A derivation of G, vanishes on the germs of constant functions, because
D1)=D(1-1)=1-D(1)+1-D(1) =2D(1).

The set T}, of all derivations of G, is obviously a linear subspace of the algebraic
dual of the vector space G, and the map F' : T,,A — T}, defined by

F([v]lp) = D}y,
is a linear monomorphism, because if D;, = F([v;]), then
of

Dyplf) = 25 ()
for j =1,2,...,n and the set {D1 ,, D2 p, ..., Dy p} is linearly independent, since
Djp(a®) = b1

where zF : R — R denotes the projection onto the k-th coordinate.
It is a non-trivial fact that F' is actually a linear isomorphism. Its proof is based
on the following lemma from advanced calculus.

Lemma 1.2.2. For every f € C*(A,p) there exist ¢1,..., gn € C(A,p) and a
convex open neighbourhood W of p such that

fl@)=f)+ > (@ —p")gi(x)
k=1

for every x = (z!, ..., 2") € W, and

9k (p) = %(p)

for every k=1,2,....n.

Proof. Let W be any convex open neighbourhood of p on which f is defined and let

1
gr(x) = /O %(m + (1 —t)p)dt

for every x = (z',...,2") € W and k = 1,2,..n. From the Fundamental Theorem
of Calculus and the chain rule we have

d

1
f@) = 1) = [ Gt (0=
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1 n 9 n
:/ [Z (xk—pk)—fk(tx—i—(l—t)p)}dt:Z(mk—pk)gk(x).

0 L=y Ox k=1
The rest is obvious. O

Proposition 1.2.3. The set {D1p,Dayp,...,Dnp} is a basis of T, and therefore F
s a linear isomorphism.

Proof. Tt suffices to prove that {D1 p, Doy, ..., Dy p} generates Tp,. Let D € T, and
ap = D(z*), k = 1,2,...,n. For every f € C*(A,p) we apply Lemma 1.2.2 and then
we have

D(f) = D(f(@))+Y_ D((=" — 2F(p))gr) =D D(a*)gr(p)+> (¥ (p) — 2¥(p)) D(g)
k=1 k=1 k=1

=Y ar=—=(p) = apDyp |(f). O

Thus, henceforth we shall identify the linear space T, with T, A.
Let now f = (f1, f2,..,fm) : A — R™ be a smooth map. The linear map
Je 1 TpA — Ty, R™ defined by

f*(h]p) = [fo’V]f(p)

is just the derivative of f at p, since (fo~v)'(0) = Df(p)-+'(0) for every v € S(A4, p).
This is a convenient way to consider the derivative of a smooth function that can
be carried over to smooth manifolds.

Let M be a smooth n-manifold and p € M. We can define

S(M,p) ={y|y:(—€€) = M issmooth for some €>0, with ~(0)=p}

and consider the set C*°(M,p) of smooth real functions defined on some open
neighbourhood of p in M. As before we call 71, 72 € S(M,p) tangent at p if
(f o71)(0) = (f 072)(0) for every f € C°(M,p) and define the tangent space
T,M of M at p to be the quotient set of this equivalence relation. Let (U, ¢r)
be a smooth chart of M such that p € U. The map ;5?] s TpM = Ty (n9o(U)

defined by %(Mp) = [pu © 7V]gy(p) is a bijection whose inverse is given by
;5;71([C]¢U ) = (¢ © (], We transfer the vector space structure of Ty (pyPu(U)

to T, M so that ¢y becomes a linear isomorphism. This vector space structure does
not depend on the choice of the smooth chart (U, ¢r7), because if (V, ¢y ) is another
smooth chart of M with p € V', then <ZU ) 5‘71 = (¢vo qj‘_/l)*d)v (p) 1s a linear isomor-
phism, since it is the derivative at ¢y (p) of the transition map ¢y o ¢;,1, which is a
smooth diffeomorphism.

id
T,M : T,M
év U

(¢U0¢\71)*¢V(p>
—

Ty (pyov (V) Ty (pyPu(U)
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The elements of the tangent space T),M are called tangent vectors of M at the
point p. From the above discussion, the tangent vectors of M at p can be considered
as derivations of the algebra of germs G,(M) of real smooth functions defined on

some open neighbourhood of p in M. If (U,¢y) is a smooth chart of M, where

oy = (zt,22,...,2"), and

0 ~-1
(@) =ov (Djou)
P
for j =1,2,...,n, then the set of tangent vectors

(o) i), )

is a basis of T, M which depends on ¢y and is called the canonical basis of T,M
with respect to the chart ¢.

If now f: M — P is a smooth map into a smooth m-manifold P, the derivative
of f at the point p € M is defined to be the linear map f.p : T, M — Ty, P with

Fao(0p) = [f 01 5)

for every [v], € T,M. In particular, oy = (¢u)«p by definition.
Let (U, ¢) be a smooth chart of M with p € U and (W, ) be a smooth chart of
P with f(U) Cc W. If ¢ = (2!, 2%, ...,2") and ¥ = (y*,y?, ...,y™), then

0 _
¢*f(p) <f*p<<%>p>> = (T/JOfO¢ 1)*¢(p)(Dj,¢(p))

for j =1,2,...,n and therefore the matrix of f,, with respect to the ordered basis

@), (32), - (a),
), (@), (o),

of Ty P is the Jacobian matrix at ¢(p) of the local representation ¢ o f o ¢~ of f.

of T,M and

fep

M Tf(p)P
Pxp Yut(p)
(W0 fo6™ ) op)
Ty (V) ———28 Ty ) (W)
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1.3 Submanifolds

Let M be a smooth m-manifold and 0 < n < m be an integer. A set N C M is said
to be a (regular or embedded) n-dimensional smooth submanifold of M if for every
p € N there exists smooth chart (U, ¢) of M such that p € U and

P(NNU)=QN(R" x{0})

for some open set @ C R™. The smooth chart (U,¢) of M is said to be N-
straightening.

Pl

il an

If we denote by m : R™ = R” x R™™" — R" the projection onto the first n
coordinates and by i : R — R™ x {0} C R™ the inclusion, then the map

(modlnar) t=0¢"toi:i N Q)= M

is smooth and is usually called local parametrization of V.
Obviously, a n-dimensional smooth submanifold N of M is a topological n-
manifold, with respect to the subspace topology which it inherits from M. Moreover,

Ay ={(NNnU,mo¢|nnv) : (U,¢) 1is a N-straightening smooth chart of M}

is a smooth atlas of N. If (U, ¢) and (V,1) are two N-straightening smooth charts
of M with NNU NV # &, the transition map of the corresponding elements of
Aly is mo (1o ¢p~1) o defined on an open subset of R”. Thus N becomes a smooth
n-manifold.

The local representation of the inclusion iy : N — M with respect to a IN-
straightening smooth chart (U, ¢) of M and the corresponding smooth chart of N
in A|n, as above, is

¢poino© (7‘(‘ o ¢|N0U)71 = ’L'|Z~—1(Q) : Zlil(Q) — R™.

Therefore, iy is smooth and its derivative at every point of IV is a linear monomor-
phism. Generalizing, we give the following.
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Definition 1.3.1. Let N be a smooth n-manifold and M be a smooth m-manifold,
with n < m. A smooth map f : N — M is called immersion if its derivative
Jeq : TyN — Ty M is a linear monomorphism for every ¢ € N. If moreover f is a
topological embedding, then f is called a smooth embedding.

Perhaps the most important examples of submanifolds are the level sets of
smooth maps. Conditions which ensure that this kind of subsets of a given
smooth manifold are smooth submanifolds are provided from the Implicit Function
Theorem or the more general Constant Rank Theorem of advanced calculus, which
we shall prove as a consequence of the Inverse Map Theorem.

Theorem 1.3.2. Let A C R" be an open set and let f: A — R™ be a smooth map.
If p € A and the Jacobian matriz Df(z) has constant rank k for every x in some
open neighbourhood of p in A, then there exist an open neighbourhood U C A of p
and a smooth diffeomorphism ¢ : U — ¢(U) onto an open set ¢p(U) C R™, and an
open neighbourhood V' of f(p) and a smooth diffeomorphism ¢ : V- — (V') onto an
open set (V') C R™ such that the smooth map

Yo fogp t:g(U) = (V) CR™
is given by the formula
(o fop Nt ..., ak 2 2™ = (2 ..., 25,0,...,0)
for every (z',..,2") € ¢(U).

Proof. Up to translations and linear isomorphisms of R™ and R™, which are of
course diffeomorphisms, we may assume that p =0, f(p) = 0 and

o
Ozl Oxk

on an open neighbourhood Ay C A of 0, where f = (f1, ..., fi, fkt1yer fm)-
We consider the smooth map F': Ag — R"™ defined by

F(z!, ... z") = (fulat, ...z, ..., fulal, . z™), " L an).

Then, F(0) =0 and

on on

o i
det DF(0) = | 7' s £,

20 - S0

Applying the Inverse Map Theorem, there exist an open neighbourhood Uy C Ag of
0 such that F'(Up) is an open subset of R and ¢ = F'|y, is a smooth diffeomorphism.
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Shrinking, we can take Uy such that ¢(Up) is an open cube in R" with center 0. Now
there exist smooth functions gx1,..., gm : ¢(Up) — R such that

(fo gb_l)(zla ---’Zn) = (Zlﬂ ""Zk’gk-‘rl(zl,"'azn)a ""gm(’zla ---,Zn))

for every (2!,...,2") € ¢(Up) and gx11(0) = --- = g;n(0) = 0. Moreover,
1 0 --- 0 0 0
01 -0 0 .0
Df(6~1(2))-D(¢~1)(2) = D(fop)(z) = |0 0 Lo L0
* et (2) gwr ()
% % .. % %(g) Z‘QTZL(Z)

for every z = (z!,...,2") € ¢(Up). Since Df(¢~!(z)) has constant rank k and
D(¢~1)(2) is invertible for every z = (2!, ...,2") € #(Up), we must have

Oa.
%9 _
ox
on ¢(Up) for every j = k+1,....,mand | = k+1,...,n. This implies that the smooth
functions gi1,..., gm do not depend on the variables 2**1 .., ™ and descent to

smooth functions (again denoted by) gx+1,.--, gm : P — R, where the open cube
P C R* is the image of ¢(Up) under the projection onto the first k coordinates.
If now ¢ : P x R™% — R™ is the smooth map defined by

Py ™) = @ VT = g (U ) ™ = g (YY),

Dw<0>=<f"“ 0 )

* Imfk:

and by the Inverse Map Theorem there exists an open neighbourhood V of 0 in
R™ such that (V') is an open neighbourhood of ¥(0) = 0 and |y is a smooth
diffeomorphism. Let U C Uy be an open neighbourhood of 0 such that f(U) C V.
Then,

(Yo fop Nzt .., 28 AL L 2" = (24 ..., 2F,0,...,0)

for every (2!,..,2") € ¢(U). O
Corollary 1.3.3. Let N be a smooth n-manifold, M be a smooth m-manifold, with
n<m, and let f : N — M be an immersion. Then, for every p € N there exist a

smooth chart (U, ¢) of N withp € U and a smooth chart (V, ) of M with f(U) CV

such that the corresponding local representation of f is

(Yo foop Y (zt,...,a") = (z!,...,2",0,..,0). O

Corollary 1.3.4. Let N be a smooth n-manifold and M be a smooth m-manifold,
withn < m. If f: N — M is a smooth embedding, then f(N) is a n-dimensional
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smooth submanifold of M. [J

Let M be a smooth m-manifold, P be a smooth n-manifold, with n < m,
and let f : M — P be a smooth map. We call p € M a critical point of f if the
derivative fi, : TpM — T, P is not a linear epimorphism. Note that if p € M is a
non-critical point of f, then f,, has constant maximal rank n for every point ¢ in
some open neighbourhood of p in M. A point ¢ € P is called a regular value of f if
the level set f~!(c) does not contain any critical point of f.

Corollary 1.3.5. Let M be a smooth m-manifold, P be a smooth n-manifold, with
n<m, and let f : M — P be a smooth map. If c € P is a reqular value of f, then
the level set f~1(c) is a (m—n)-dimensional smooth submanifold of M , if non-empty.

Proof. By Theorem 1.3.2, for every point p € f~1(c) there exists a smooth chart
(U, ¢) of M with p € U and a smooth chart (V,9) of P with f(U) C V such that
the corresponding local representation of f is

(o fop N, .., 2™) = (..., z")
for every (z!,..,2™) € ¢(U). Now we have

¢(fHe)NU) = ¢(U) N ({t(c)} x R™™")
and therefore (U, ¢) is a f~!(c)-straightening chart of M. [J

Definition 1.3.6. Let M be a smooth m-manifold and P be a smooth n-manifold,
with n < m. A smooth map f: M — P onto P is called submersion if its derivative
Jep : TpM — T, P is a linear epimorphism for every p € M.

Thus, if f : M — P is a submersion, then f~!(c) is a (m — n)-dimensional
smooth submanifold of M for every c € P.

Example 1.3.7. The determinant is a smooth function det : R®*™ — R and the
general linear group GL(n,R) = {A € R"*" : det A # 0} is an open subset of R"*".
Let A € GL(n,R) and v(t) = (1 +¢)A. Then, v(0) = A and

(det)«a([7]4) = [det 0Y]det a-
Also, (detoy)(t) = (1 + t)det A, and so (detoy)'(0) = ndetA # 0. This

implies that (det).q is non-zero, and hence an epimorphism. This shows that
det : GL(n,R) — R is a submersion. In particular, the special linear group
SL(n,R) = {A € R : det A = 1} is a (n? — 1)-dimensional smooth submani-
fold of R™*™,

1.4 Smooth partitions of unity

Our requirement a smooth manifold to have a countable basis for its topology
implies the existence of technically very useful families of smooth functions, the
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construction of which will be the subject of this section.

Definition 1.4.1. Let M be a smooth manifold and let &/ be an open cover of
M. A smooth partition of unity subordinated to U is a family of smooth functions
fu: M —0,1], U € U, with the following properties:

(i) suppfuv ={p € M : fu(p) # 0} C U for every U € U.

(ii) The family {suppfy : U € U} of closed subsets of M is a locally finite cover of
M.

(iii) Z fu(p) =1 for every p € M.
veld

Recall that a family F of subsets of a topological space X is called locally finite
if every point z € X has an open neighbourhood V' in X such that the set

(FEF:FNV #a}

is finite. A family S of subsets of X is called a refinement of F if for every F' € F
there exists some S € § such that S C F.

In order to prove the existence of smooth partitions of unity we shall need some
preliminary lemmas. In the sequel we shall denote by B(x,r) the open ball in R™
with center z € R™ and radius r > 0.

Lemma 1.4.2. For every 0 < p < r there exists a smooth function f :R"™ — [0,1]
such that B(0,p) C f~4(1) and R™\ B(0,r) C f~1(0).

Proof. Tt suffices to consider the smooth function g : R — R with

e~i, ift>0,
0, ift<0

and take f: R™ — [0,1] defined by

g(r® — [lI*)

. O
g9(r* = |=[1?) + g(ll=[|* — p*)

fz) =

Functions like f in Lemma 1.4.2 are usually called bump functions.

Lemma 1.4.3. Let M be a smooth n-manifold and let U be an open cover of M.
There exists a countable smooth atlas A of M with the following properties:

(a) The open cover V ={V : (V,¢v) € A} is a locally finite refinement of U.

(b) ¢y (V) = B(0,3) C R", for every (V,¢y) € A.

(c) {¢y(B(0,1)) : (V,¢v) € A} is an open cover of M.

Proof. There exists a countable open cover {4y, : k € N} of M such that Ay C Ay
and A, is compact for every k € N, because M is locally compact and its topology
has a countable basis. This sort of cover can be constructed inductively, starting
with any countable open cover {Cy : k € N} such that Cj is compact for every
k € N. First we choose any open set Ay C M with compact closure such that



1.4. SMOOTH PARTITIONS OF UNITY 17

C, C A; and once Aj_; has been defined we choose A, C M to be any open set
with compact closure such that A;_; U Cy C Ay.

The set A1 \ Ax is compact and contained in the open set Ay o\ Ar_1. For
every p € Agy1 \ Ay there exist U, € U and a smooth chart (Vi p, ¢y, ) of M such
that p € Vi, C Up N Agya \ Ag—1 and ¢y, (Vip) = B(0,3) with ¢y, (p) = 0. By
compactness of Ay, 1\ Ay, there exist D1se-Pmy, € Apy1\ Ay, for some my, € N, such
that

A\ Ax C oy, (BO,1)U---Udy. (B0, 1)).

It suffices now to take
o0
A= U {(Vkum ) ¢Vk,p1 )7 (R23) (Vk,pmk ) ¢Vk,pmk )} O]
k=1

Theorem 1.4.4. If M is a smooth n-manifold and U is an open cover of M, then
there exists a smooth partition of unity subordinated to U.

Proof. Let A be the smooth atlas of M provided by Lemma 1.4.3. By Lemma
1.4.2, there exists a smooth function f : R™ — [0,1] such that B(0,1) C f~(1)
and R\ B(0,2) C f~1(0). For every (V,¢y) € A we consider the smooth function
gy : M — [0,1] defined by

o) {fwv(p)), ifpeV,

0, ifpe M\ V.

According to Lemma 1.4.3, V = {V : (V,¢y) € A} is a locally finite open cover of

M. So the function Z gy : M — [0,+00) is well defined and smooth. Since V is

Vey
also a refinement of U, there exists a function o : V — U such that V' C o(V) for

every V € V. For every U € U we define now

1

fu=s—-
ZVEV agv

Z gy : M —[0,1].
o(V)=U

In case 0 1(U) = @ we put fy = 0. It follows from Lemma 1.4.3(c) that fy is a
well defined smooth function Obviously,

suppfu C U suppgy C U vV cU.
o(V)=U o(V)=U
and {suppfy : U € U} is locally finite, because V is locally finite. Finally,

d fu= > Z gv = D gv=1. O

Ueu ZVEVgV Uel o(V ZVEVW Vey

Corollary 1.4.5. Let M be a smooth manifold and FF C A C M, where F is closed
in M and A is open in M. Then, then exists a smooth function f: M — [0,1] such
that F C f~X(1) and M \ A C f~1(0).
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Proof. From Theorem 1.4.4, there exists a smooth partition of unity {fynr, fa}
subordinated to the open cover {M \ F, A} of M. It suffices to take f = f4. O

As an application of the existence of smooth partitions of unity we shall give
a partial answer to the following question. Is a smooth manifold diffeomorphic to
a smooth submanifold of some RY for sufficiently large N € N and what is the
minimum value of N for which this is possible?

Theorem 1.4.6. If M is a compact smooth n-manifold, there exist N € N and a
smooth embedding g : M — RY.

Proof. From Lemma 1.4.3 and the compactness of M, there exist some m € N,
a finite family {(U;,¢;) : 1 < i < m} of smooth charts of M and a finite family
{V; : 1 <i < m} of open subsets of M such that V; C U; for all 1 <i < m and

M=UU---UUp =V U---UV,.

For each 1 < i < m there exists a smooth function f; : M — [0,1] such that
Vi C fl-_l(l) and suppf; C U;, from Corollary 1.4.5. The map v; : M — R"™ defined
by

fngblpa lfPEUZ’

0, otherwise,

is smooth. The map g : M — (R™)™ x R™ defined by

g(p) = (Y1(p)s s Ym (p), f1(P); oy fin (D))

is smooth and actually an immersion, because for every p € M there exists some
1 <i < m with p € V; and |y, = ¢i|y, maps V; diffeomorphically onto an open
subset of R™. To see that ¢ is injective, let p, ¢ € M be such that g(p) = g(q).
Then, ¢;(p) = ¥i(q) and f;(p) = fi(q) for every 1 < i < m. There exists however
some 1 < j < m with p € V; and so fj(q) = fj(p) = 1. Therefore, ¢ € U; and
#j(p) = ¥j(p) = ¥;(q) = ¢;(q), hence p = ¢. Finally, g is a topological embedding,
since M is compact. [

It has been proved by H. Whitney that a compact smooth n-manifold can be
smoothly embedded in R?". Also any smooth n-manifold can be embedded in R?"+1
as a closed subset. The presentation of these topics are beyond the scope of these
notes.

1.5 Covering topological dimension of manifolds

A Hausdorff topological space X is said to have covering topological dimension at
most m € ZV if every open cover of X has an open refinement such that every
point of X is contained in at most m + 1 of its elements. In this case we write
dim X < m. This property is obviously topologically invariant. If dim X < m and
dim X £ m — 1, we say that X has covering topological dimension m and write
dim X = m.
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Obviously, if Y is a closed subset of X and dim X < m, then dimY < m.
Lemma 1.5.1. If X is a compact subset of R™, then dim X < m.

Proof. Since X is compact, it is contained in a cube C' and is suffices to prove that
dim C < m. Indeed, if U is an open cover of C, there exists a brick decomposition
of C which refines U so that each point of C' is contained in at most m + 1 bricks.
We can thicken the bricks to get an open refinement of U by open bricks such that
each point of C is contained in at most m + 1 of its elements. [J.

The following lemma is useful in the estimation of covering topological dimen-
sions.

Lemma 1.5.2. Let X be a Hausdorff topological space, m € Z and let {A,, : n € N}
be a sequence of closed subsets of X with the following properties:
(i) Ay, CintA, 1 for every n € N.

o

(ii) X = | An.
n=1

(iii) dim A; < m and dim A, 11 \ A, < m for every n € N.
Then dim X < m.

Proof. Let B be an open cover of X. There exists an open refinement By of B
such that every element of By which intersects A, is contained in A,.;. Since
dim A; < m, there exists an open refinement B; of By such that every point of Ay
is contained in at most m + 1 elements of

81’,41 = {UﬂAl U € Bl}

Putting Ay = @ we proceed inductively. Suppose that an open cover B, has been
defined such that every point of A,, is contained in at most m + 1 elements of

Bula, ={UNA, :U € B,}.

Since dim A,,+1 \ A, < m, there exists an open refinement C of B,, such that every
point of A, 1\ A4, is contained in at most m + 1 elements of

Clama = {UN A\ 4, : U eCh



20 CHAPTER 1. MANIFOLDS

We define an open cover B, 1 of X as follows. If U € B,, and U N A,,_1 # &, then
UeBy1- fUeB,andUNA, # 2 but UNA,_1 = J, then we take

J{vec:VcUandVnA,+o}eBu

Finally, V € B, 11 for every V € C. Then B,,+1 is an open cover of X which an open
refinement of B,, and is such that every point of A, is contained in at most m + 1

elements of B,,11|4 It suffices now to take

n+1°

B ={U c X :U € B, for every n € N except for finitely many}

and then B’ is an open refinement of B such that every point of X is contained in
at most m—+ of its elements. [J

Corollary 1.5.3. Let X is a Hausdorff topological space and X1, Xo C X be two
closed sets. If dim X7 < m and dim Xy < m, then dim(X; U X3) < m.

Proof. We apply the preceding Lemma 1.5.2 for A; = X; and A, = X5 for all
n > 2. 0O

Theorem 1.5.4. If M is a topological m-manifold, then dim M < m.

Proof. There exists a countable locally finite cover B = {X,, : n € N} each element
of which is homeomorphic to a compact subset of R”. We shall apply Lemma 1.5.2.
Let Ay = X;. There exists po > 1 such that A; C int(X; U---U X,,) and we take
Ay = X U---UX,,. Proceeding inductively in this way we construct a sequence
A, =X1U---UX,,, n € N of compact subsets of M with the following properties:
(i) A, CintA,, 4 for every n € N.

oo

(i) X = | J An.

(ili) dimA; <m and Ap11 \ Ap C Xp, 41 U---UX

Pn+1>

for every n € N, by Lemma 1.5.1 and Corollary 1.5.3.
It follows from Lemma 1.5.2 that dim M < m. O

hence dim A, 41\ 4, <m

1.6 Exercises

1. On R we consider the smooth structure B defined by the smooth atlas {(R, )},
where ¢ : R — R is the map v(t) = t3. Let A denote the standard smooth structure
of R.

(a) Prove that A # B.

(b) Prove that id : (R, A) — (R, B) is not a smooth diffeomorphism.

(c) Are the smooth 1-manifolds (R, A), (R, B) diffeomorphic?

2. For every t > 0 we consider the map hy : R — R with h(z) = z, if z < 0 and
hi(z) = tx, if £ > 0. Let Ay be the smooth structure on R defined by the smooth
atlas {(R, hy)}, t > 0.
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(a) Prove that A; # A, for t # s.
(b) Are the smooth 1-manifolds (R, .A4;) and (R, As) diffeomorphic for all ¢, s > 07

3. Let U = {(z1,...,xns1) € S" : 7 > 0}, U7 = {(w1, ..., Tpt1) € S : 1; < 0},
and let hgt : Uii — R” be the map with

4+ .
R (215 ey Tp1) = (T15 0y Tim 1, Ti 1 oy Trg1), I<i<n+L

(a) Prove that B = {(U,h) : 1 <i <n+ 1} is a smooth atlas on S™.
(b) Prove that B is equivalent to the smooth atlas

A= {(Sn \ {en-l—l}aﬂ.-f-)? (Sn \ {—6n+1},ﬂ'—)}7

where w1 : S™ \ {e,4+1} — R™ is the stereographic projection.

4. Let (V,(,)) be a finite dimensional inner product real vector space and let

S(V)={z eV ||| =1},
where ||z|| = (z,z)/2.
(a) If p € S(V), prove that for every z € S(V) \ {p} the intersection point of the
line through p and x with the orthogonal complement (p)= is

_ T — (:C,p>p

The map ¢ : S(V) \ {p} — (p)* is the stereographic projection with respect to p.
(b) Compute ¢~ : (p)* — S(V) \ {p}.

(c) If o : S(V)\ {—p} — (p)* is the stereographic projection with respect to —p,
compute 1 o ¢~ 1 1 (p)t — (p)t.

5. Consider the canonical smooth atlas {(Up, #0), (U1, 1)} of CP! and observe that
CP'\ Uy = {[0,1]} and CP!\ Uy = {[1,0]}. Prove that g : CP' — S? defined by

-1 .
w0 ¢o)|z0,21], ifzg#£O0
glzo, 21] = ( * olz0, 21 . Of
(0,0,1), if zo = 0.

is a smooth diffeomorphism, where my : S\ {(0,0,1)} — C denotes the stereo-
graphic projection with respect to the north pole.

6. Let X be a Hausdorff topological space and H(X) be the group of the home-
omorphisms of X onto itself. A subgroup G of H(X) defines on X the following
equivalence relation: x ~ y if and only if there exists some g € G with y = g(z).
The equivalence classes are called the orbits of G. Let m : X — X/G denote the
quotient map. We say that G acts properly discontinuously on X if every point
x € X has some open neighbourhood U in X such that U N g(U) = @, for every
g€ G, g#id.
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(a) If G acts properly discontinuously, prove that every point [z] € X/G has an
open neighbourhood V* such that

(v = e(v),

geG

where V' is a suitable open neighbourhood of x € X, so that g;(V)Ng2(V) = @, for
g1 # g2 and 7|y : V — V* is a homeomorphism.

(b) Let M be a smooth n-manifold and G be a group of smooth diffeomorphisms
which acts properly discontinuously on M. If the quotient space M /G is Hausdorff,
prove that it is a smooth n-manifold.

(c) Let M be a smooth n-manifold and G be a finite group of smooth diffeomor-
phisms of M. If g(z) # x for every x € M, g € G, g # id, prove that G acts
properly discontinuously on M, the quotient space M /G is Hausdorff and therefore
a smooth n-manifold.

(d) On S™ the antipodal map a : S™ — S™ with a(z) = —z is a smooth diffeomor-
phism. If G = {id, a}, determine the smooth n-manifold S™/G.

(e) On the 2-torus 7% = S! x S' let f: T? — T? be the map

f(eme, e27riy) — (6—27ria:7 _627riy).

If G = {id, f}, Prove that K? = T?/G is a smooth 2-manifold. This manifold is
called Klein bottle.
(f) Prove that the group of translations by vectors with integer coordinates, which is
isomorphic to Z", acts properly discontinuously on R™ and R"/Z" is diffeomorphic
to the n-torus T™.

7. Prove that the 1-dimensional real projective space RP! is diffeomorphic to the
circle S!.

8. Let f: M — N be a bijective smooth map of smooth manifolds. If its derivative
Jep + TyM — Ty,)N is a linear isomorphism for every p € M, prove that f is a
smooth diffeomorphism.

9. Let f: M — @Q be a smooth map of smooth manifolds and ¢ € @ be a regular
value of f with N = f~l(q) # @. If iy : N — M is the inclusion, show that
(in)sp(TpN) = Ker f,,, for every p € N.

10. Prove that 17,5 = {[v], € T,R" " : (/(0),p) = 0} for every p € S™, where (,)
is the euclidean inner product.

11. Let n > 1 and p : R® — R be a homogeneous polynomial of degree m € N.
Prove that p~!(c) is a (n—1)-dimensional smooth submanifold of R™ for every ¢ # 0.

12. Let M be a smooth m-manifold, N be a smooth n-manifold and let f : M — N
be a smooth map. If ¢ € N is such that f~!(¢) # @ and f has constant rank
k on some open neighbourhood of f~!(q), prove that the level set f~l(q) is a
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(m — k)-dimensional smooth submanifold of M.

13. Prove that the set N = {A € R?*? : A has rank 1} is a 3-dimensional smooth
submanifold of R?*2.

14. The set S of all real n x n symmetric matrices is a vector subspace of R"*™ of
dimension n(n + 1)/2. Let f: GL(n,R) — S be the map f(A4) = A- A’

(a) Prove that f.a(H) = AH'+ HA! for every H € TAGL(n,R), A € GL(n,R).
(b) Prove that the identity I,, € S is a regular value of f.

n(n—1)
2

(c) Prove that the orthogonal group O(n,R) is a -dimensional smooth

submanifold of GL(n,R).
(d) Prove that T;, O(n,R) = {H € R"™" : H + H' = 0}.

15. Prove that the map ¢ : T? — R3 with
g(e¥™1® ¥™9) — ((2 4 cos ) cos ¢, (2 + cos 0) sin ¢, sin 6)
is an embedding of the 2-torus 7?2 into R? and its image is
9(T2) = {(0,y,2) € B : (/a2 + 32 — 22+ 22 = 1}.
16. Prove that the map f: S? — R® with
fla,y,2) = (22,97, 2%, V2yz, V221, V2ay)

an immersion which induces an embedding of the real projective plane RP? into
RS,

17. Prove that the map f : RP? — R?® with f([z,y,2]) = (yz,zx,2y) is an
immersion and the map g : RP?2 — R* with g([z,v, 2]) = (yz, 27, 2y, 22 + 23> + 322)
is an embedding.

18. Let M, N be two smooth n-manifolds and let f : M — N be an immersion.
(a) Prove that f is an open map.
(b) If M is compact and N is connected, prove that f(M) = N.

19. Let J : R?" — R?" be the orthogonal transformation (complex structure of R??)
with J(x,y) = (—y, ) for every (x,y) € R?® = R" x R™.

(a) Prove that the set S = {4 € R?"*2" ; A'JA = J} is a smooth submanifold of
R2n><2n.

(b) Describe T}, S as a vector subspace of R>%*2%,

(c) Find the dimension of S.

(Hint : Prove that J € R?™*?" js a regular value of the smooth map
: n, — € P H 4+ = wit = .
GL(2n,R H e R** . H + H' = 0} with f(A) = A'JA

20. Let d € N, n > 2 and denote by V2" the set of points (2, 21, ..., 2,) € C"T1\ {0}
which are solutions of the equation

zg%—z%—l—---—i—zg:().
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(a) Prove that V2" is a smooth 2n-manifold.
(b) Prove that the set W7~ ! = V27N S2"*+! is a smooth (2n — 1)-manifold. W;"
is called Brieskorn manifold.

21. The unit tangent bundle of the 2-sphere S? is the subset
T'S% = {(p,v) € R x R*: [Ip|| = L,[|v]| = 1, {p,v) = 0}

of R® where (,) is the euclidean inner product on R3.

(a) Prove that T1S? is a 3-dimensional smooth submanifold of RS.

(b) Prove that F : SO(3,R) — T'S? with F(A) = (Aes, Ae;) is a smooth diffeo-
morphism.

(c) Let D? = {x € R® : ||| < 1} and let g : D® — SO(3,R) be the map with
g(0) = I3 and such that if x € D3\ {0} then g(z) is the rotation with respect to the
axis generated by x by the oriented angle ||z|| - 7. Prove that g induces a smooth
diffeomorphism from RP? onto SO(3,R).

(Hint : Observe that 7152 = f~1(0), where f : R3 x R3 — R? is the smooth map
7.0) = (1ol = 1,0l = 1, (,)).



Chapter 2

Vector fields

2.1 The tangent bundle and vector fields

In this section we shall define the notion of vector field on a smooth manifold, which
is a generalization and globalization of the notion of ordinary differential equation
on an open subset of euclidean space. A continuous vector field is a map which to a
point p assigns a tangent vector with point of application p and varies continuously
with p. So, first we need to consider the set of all tangent vectors.

Let M be a smooth n-manifold and consider the disjoint union of all tangent
spaces at points of M, that is the set

T™M = | J {p} x T,M.
peEM

Let 7 : TM — M denote the natural projection m(p,v) = p, for v € T,M, p € M.
We shall endow T'M with the structure of a smooth manifold, so that m becomes
smooth and a submersion.

If A is a smooth atlas of M, we define the class

"Zl = {(W_l(U)’ QEU) : (U’ ¢U) € "4}
where ¢y : 71 (U) = ¢y (U) x R™ is the bijection defined by
ou(p.v) = (Gu (), (Pv)p(v))

for every p € U, v € T,M. In other words, if ¢y = (z,...,2™), then for p € M and

- 0
k
V= v <—8xk> e T,M
k=1 p

we have ¢pr(v,v) = (' (p), ..., z"(p), v', ..., v™).
If now (U, ¢u), (V,0v) € .A are such that U NV # @, then the transition map
b o byt dv(UNV) x R™ = ¢y (UNV) x R™ is given by the formula

(dv 0 by )(w,y) = (¢ © oy ) (@), Db 0 ¢y ) ()(y))

25
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and is thus a smooth diffeomorphism. This means that A would be a smooth atlas
of TM, if we had a topology on T'M making it a topological 2n-manifold in such
a way the the sets 7~ 1(U) were open and the maps ¢y homeomorphisms. This
topology is provided by the following.

Lemma 2.1.1. Let X be a non-empty set and U be a family of subsets of X which
covers X. We assume that for every U € U there exist a topological space Xy and a
bijection Yy : U — Xy such that for U, V € U with U NV # & the set Yy (UNV)
s open in Xy and the map Yy o 1}[)"/1 Yy (UNV) — Xy is continuous.

Then there exists a unique topology on X with respect to which every element of
U becomes an open set and every map Yy becomes a homeomorphism.

Proof. Our assumptions imply that ¢y o ¢\;1 cYyy(UNV) > gp(UNV)is a
homeomorphism for every U, V € U with U NV # &. The family

T={AC X :¢Yy(UNA) isopenin Xy for every U € U}

is a topology on X which contains the family ¢/. By the definition of T, each v is
an open map. For the continuity of ¢y let W C Xy be an open set. Then,

(Yo oy ) (v (g (W) N V) =W Ny (UNV)

is open in Xy for every U, V € U with U NV # &. Since ¢y o 1/1‘71 is a homeomor-
phism, 1y (¢ (W) N V)) must be open in Xy. This shows that ;' (W) € T and
that vy is continuous. The uniqueness of the topology T is obvious. [J

Applying now Lemma 2.1.1, we obtain a unique topology on TM with re-
spect to which each set 7=1(U) is open and each map éu is a homeomorphism
for (U,¢ry) € A. Since M and R"™ are Hausdorff spaces and have countable
basis for their topologies, the same is true for TM. Thus, T'M becomes a
smooth 2n-manifold. For every (U, ¢y) € A the corresponding local representation
puomo (5[_]1 : oy (U) x R™ — ¢y (U) of 7 is the projection (¢ oo &El)(x,y) =z
Hence 7 is a submersion.

The triple (T'M,m, M) is the tangent bundle of M. The natural projection m
is the bundle map and M is the base space of the bundle. The total space of the
bundle is TM. Abusing terminology, we shall also use the term tangent bundle for
TM itself.

Definition 2.1.2. A smooth vector field on a smooth n-manifold M is a smooth
map X : M — TM which to every p € M assigns a tangent vector X (p) € T,M.
Briefly, X om = idps or in other words X is a smooth section of .

The set X(M) of all smooth vector fields of a smooth manifold M is an infi-
nite dimensional real vector space. It is also a module over the commutative ring
C>°(M) of all real valued smooth functions defined on M. Every smooth diffeo-
morphism f : M — M induces a linear isomorphism f, : X(M) — X (M) defined
by (f+X)(f(p)) = fip(X(p)) for every p € M. The smooth vector field X of M is
called f-invariant if f, X = X.
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Let X be a smooth vector field on a smooth n-manifold M. If A is a smooth
atlas of M and A is the corresponding smooth atlas of TM, then X (U) C 7~ 1(U)
for every (U,¢y) € A. There exists a smooth map Fy : ¢y(U) — R™, which is
called the principal part of X with respect to (U, ¢y), such that the corresponding
local representation ¢y o X o ¢! @ ¢ (U) — dp(U) x R™ of X is

(¢v 0 X 0 dpt) (@) = (x, Fy ().

Thus, if ¢y = (z!,...,2") and Fyy = (F!,...F™), then

) =Y o) (5 )

for every p € U and the smoothness of X is equivalent to the smoothness of Fy;. In
particular, on U we have the basic smooth vector fields

o 0 0

oxl’ 022’77 9xn

defined by the smooth chart ¢ .
Apart for the notion of tangent vector field on a smooth manifold we need to
have a notion of tangent vector field along a smooth curve.

Definition 2.1.3. A smooth wector field along a smooth curve v : I — M on a
smooth n-manifold M, for I C R an open interval, is a smooth map X : I — TM
which to every s € I assigns a tangent vector X (s) € TyyM.

If v: I — M is a smooth curve on a smooth n-manifold M, then for every s € I

the tangent vector
) d
0= ( (7))

d
is the wvelocity of v at y(s), where T is the basic vector field on R. Thus, 4 : I — TM
is a smooth vector field along -, which is called the velocity field of ~.

d
Recall that <%> is the usual derivation at s. Using the notation of section
S

1.4, note that [v], and 4(0) denote one and the same vector in T, M for p € M and
v € S(M,p), namely the velocity of v at p = ~(0).

If v(I) C U for the smooth chart (U, ¢y) of M and ¢y oy = (v1,...,4™) is the
corresponding local representation of v, then

for every s € I.
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2.2 Flows of smooth vector fields

Let M be a smooth n-manifold and let X be a smooth vector field on M. An integral
curve of X is a smooth curve v : I — M, defined on an open interval I C R, such
that

for every s € I.

If (U, ) is a smooth chart of M with ¢y = (z!,...,2") and Fy = (F!, ..., F")
is the principal part of X on U with respect to ¢y, the discussion in the preceding
section 2.1 shows that a smooth curve v : I — U is an integral curve of X on U if and
only if its local representation ¢y oy = (v',...,7™) is a solution of the autonomous
n-dimensional ordinary differential equation z’(s) = Fy(z(s)), which means that it
satisfies the system of ordinary differential equations

(VY (s) = FE((4Y(s), .7 (5)), sel, k=12, ..,n.

Thus, locally on M the integral curves of smooth vector fields on M are the so-
lutions of autonomous ordinary differential equations. The standard existence and
uniqueness theorems combined with continuous and differentiable dependence on
initial conditions imply that if X is a smooth vector field on M, then for every point
p € M there exist an open neighbourhood V' of p in M, some ¢ > 0 and a smooth
map ®Y : (—¢,¢) x V — M such that ®"(0,q) = ¢ for every ¢ € V and

\%
O (s.0) = X(@" (5,0)
for every (s,q) € (—¢,¢€) x V. Moreover, the map ® is unique, in the sense that
if W, 6 >0and ®V : (=6,6) x W — M is another triple like V, € and ®", then
®YV = W on (—e,€) x VN (=6,8) x W. Thus, for every ¢ € V the smooth curve
®V(-,q) : (—e,€) — M is the unique integral curve of X defined on the interval
(—¢, €) and satisfying the initial condition ®"(0,q) = ¢q. The map ®" is called the
local flow of X on the open set V.
The existence of maximal integral curves globally on M can be established in
the usual way.

Proposition 2.2.1. If X is a smooth vector field on M, then for every p € M
there exist a, < 0 < b, and a mazimal integral curve ®P : (ap,by) — M of X with
®P(0) = p in the sense that if v : I — M is any other integral curve of X defined
on an open interval I C R which contains 0 such that v(0) = p, then I C (ap,bp)
and v = ®P|;.

Proof. Let vj : I; — M, j = 1,2, be integral curves of X defined on open intervals
such that 0 € I1 N I, with 71(0) = 72(0) = p. Then, I; N I is a non-empty open
interval and the set I* = {s € I; N I3 : 71(s) = 72(s)} is non-empty and closed in
I N I, by continuity. If s € I*, there exists 6 > 0 such that (s —d,s+9) C 1 N Is.
The smooth curves f; : (=d,0) — M defined by B;(t) = vt +s), j = 1,2,
are integral curves of X with £1(0) = v1(s) = 72(s) = (2(0). By uniqueness of
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solutions, there exists some 0 < 1 < ¢ such hat 8; = f2 on (—n,n). Therefore,
(s—mn,s+mn) C I*, which shows that I* is open in I; N Is. By connectedness now we
must have I* = I; N I5. This shows that the union of all open intervals I containing
0 on which there is an integral curve v : I — M of X with v(0) = p, is an open
interval (ap,b,) on which a maximal integral curve ®° : (ap,b,) — M of X with
PP(0) = p is well defined. O

Recall that the open interval on which a maximal integral curve is defined is
not necessarily the whole real line R. For instance, the maximal solution of the
autonomous ordinary differential equation 2’(s) = (x(s))? on R with initial condition
z(0) =11is & : (—o0,1) — R given by the formula

Lemma 2.2.2. Let p € M and ®P : (ap,b,) — M be a mazimal integral curve
of a smooth wvector field X on M with ®P(0) = p. Ift € (ap,bp) and q¢ € PP(t),
then the mazximal integral curve ®1 with ®1(0) = q is defined on the open interval
(ap —t, by, —t) and ®(s) = OP(s +1).

Proof. Since the smooth curve v : (ap, —t,b, —t) = M with y(s) = ®P(s+ ) is an
integral curve of X with v(0) = ¢, the maximal integral curve ®¢ with ®?(0) = ¢ is
defined at least on (a, — t,b, —t). Conversely, if the interval of definition of ®9 is
the open interval (aq,b,), then ay < a, —t, b, —t < by and 6 : (ag +t,by +t) = M
defined by 6(s) = ®9(s —t) is an integral curve with 6(0) = p. Hence a, < a4 + t,
by +1t<a, U

Using the notation of Lemma 2.2.2 for a smooth vector field X on M, we define

D= (apby) x {p}

peEM

and ® : D — M by ®(s,p) = ®P(s), which has the following properties:

(i) ®(0,p) = p for every p € M and

(ii) @(t,P(s,p)) = ®(t + s,p) for every p € M and s, t € R such that at least one
side of this equality is defined.

Theorem 2.2.3. The set D is open in R x M and ® : D — M is smooth.

Proof. For p € M we consider the set I* consisting of all a, <t < b, for which there
exist 6 > 0 and an open neighbourhood U of p in M such that (¢t —6,t+0) xU C D
and ® is smooth on (t — d,t + 6) x U. Then, 0 € I* and I* is an open set. Thus, it
suffices to prove that I* is closed in the interval (ayp,b,), by connectedness. Suppose
that a, < s < b, lies in the closure of I*. There exist an open neighbourhood
V of ®(s,p) in M, some € > 0 and a local flow ®" : (—¢,¢) x V. — M, so that

€
PV = ®|(—c,e)xv- By continuity, there exists some ¢ € I* with |t —s| < 3 and

®(t,p) € V. Since t € I*, there exist 0 < § < % and an open neighbourhood U of
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p in M such that (¢t — d,t + ) x U C D and ® is smooth on (¢t — §,t 4+ 6) x U. By
continuity of ®(¢,.) : U — M and the fact that ®(¢,p) € V, shrinking U if necessary,
we may take U so that ®({t} x U) C V. So, from Lemma 2.2.2 we have

(—€,€) C (as(t,q)s ba(t,q) = (ag —t,bq — 1)

for every ¢ € U, which implies that (t — e,t +¢€) x U C D, and ® is smooth on
(t —e,t +¢€) x U, because

®(r,q) = ¥ (r —t,0(t,q))
for every (r,q) € (t —¢,t +¢€) x U. Now
(s,p) €(s—0d,s+0)xUC(t—et+e€)xUCD,

which means that s € I*. OO

The fact that D is an open subset of R x M is equivalent to saying that the
function a : M — [—00,0) is upper semicontinuous and b : M — (0, +o0] is lower
semicontinuous.

The smooth map ® : D — M is called the flow of the smooth vector field X.
The vector field X can be reconstructed from its flow by setting

X() = 5 0.0

for every p € M. The image ®((ap,bp) x {p}) of the maximal integral curve of X
through the point p € M is called the orbit of p with respect to X.

A smooth vector field X on M is called complete if every maximal integral curve
of X is defined on the whole real line R or D = R x M, using the above notation.
In this case, the flow ® : R x M — M is a smooth action of the additive group of
real numbers R on M. For every ¢t € R the map ®; = ®(¢,.) : M — M is a smooth
diffeomorphism. Moreover, 3 = idy; and ®; 0 &, = &4y for every ¢, s € R and the
family (®¢)¢cr is called the one-parameter group of diffeomorphisms defined by X.
For every t € R and p € M we have

(@0 (X(0) = @)y G 0.0)) = 2222 0,

However,

(@1 0 @F)(5) = @(L, (s, p)) = B(t + 5,p) = (s, B(t,p))

for every s € R and therefore

((I)t)*p(X(p)) = X((I)t(p))

This means that X is ®;-invariant for every ¢t € R.

In case the smooth vector field X is not complete, the smooth diffeomorphisms
®; are defined on suitable open subsets of M.

The integral curves of a smooth vector field X which are not defined on the
whole real line must necessarily explode at infinity. This is made more precise in
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the following.

Lemma 2.2.4. Let X be a smooth vector field with flow ® : D — M and p € M.
If b, < +o00, then for every compact set K C M there exists 0 < T < b, such that
O(t,p) € M\ K for every T <t < by.

Proof. For every q € K there exist §; > 0 and an open neighbourhood V, of ¢
such that (—dg4,04) X Vg C D. By compactness of K, there exist ¢i,..., ¢ € K,
for some m € N, such that K C V,; U---UV,, . If now 6 = min{dy,, ..., d,,, }, then
(=9,0) x K C D. Thus, if there exists a sequence t;, ,/* b, such that ®(tx,p) € K
for every k € N, we arrive at the contradiction 0 < d < b, —t;, for all K € N. [J

This implies the following important fact.

Corollary 2.2.5. Fvery smooth vector field on a compact smooth manifold is
complete. [

It is possible to find all integral curves of a given smooth vector field only in very
rare cases. The aim of the qualitative (or geometric) theory of dynamical systems
is to find the distribution of the time oriented orbits of vector fields studying their
asymptotic behaviour. In this point of view, we may replace X with f - X where
f: M — (0,+00) is a smooth function, because both vector fields have the same
orbits. Indeed, if & : D — M is the flow of X, for every p € M the smooth map
h: (ap,by,) — R defined by

$ 1
v = [ sy

is strictly increasing and h((ap,b,)) is an open interval. Also, (h71)'(s) =
f(@(h~1(s)),p). It follows now that the maximal integral curve of f - X through p
is just ®” o h=1 : h((ap,bp)) — M. In other words, the maximal integral curves of
f - X are reparametrizations of the maximal integral curves of X.

The following can be obtained as a consequence of the existence of smooth
partitions of unity.

Theorem 2.2.6. If X is a smooth vector field of a smooth manifold M, then there
exists a smooth function f : M — (0,1] such that the smooth vector field f - X is
complete.

Proof. Let ® : D — M be the flow of X as above. Since D is an open subset of
R x M, the function g : M — (0, 1] defined by

g(p) = min{1, —ay, by}

is lower semicontinuous. Thus, every p € M has an open neighbourhood W), such

1
that g(q) > §g(p) for every ¢ € W,. By Theorem 1.4.4, there exists a smooth
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partition of unity {f, : p € M} subordinated to the open cover {W, : p € M}. The
function f : M — (0, 1] defined by

fa) =5 3 9)fyla)

peEM

is smooth and for every q € M there exist p1,..., pr € M, for some k € N, such that
q € suppfp, N---Nsuppfp, and f,(q) =0 for p # p1, ..., pi. It follows that

k k

flg) = % > 9 fo; (@) <Y 9(a) fr,(9) = 9(q) = min{1,—ag, by}

J=1 J=1

for every q € M.
Let now ¢ : D — R be the smooth function defined by

$ 1
vis:p) :/o @™

The smooth map h : D — R x M with h(s,p) = (¢(s,p),p) is obviously injective,
since

A 1

ot ) = Fatep) ©

Moreover, ¢(s,p) > s for 0 < s < b, and 9(s,p) < s for a, < s < 0. Thus,
lim (s, p) = 400, if b, = +00. In case b, < +o0, for every 0 < s < b, we have

s—bp
s 1 | s
¢(s,p)>/ dt:/ dt:—log<1——>
0 bap) 0o bp—1t bp

and therefore again hr? Y(s,p) = +oo. Similarly, ILm P(s,p) = —oo for all p € M.
s—bp s—ap

This shows that h is surjective.

Since h is a bijection and its derivative h,(,p) is a linear isomorphism at every
point (s,p) € D, it follows from the Inverse Map Theorem that h is a smooth
diffeomorphism.

D h R x M

SN

M

The proof is now concluded by the observation that ¥ = ®oh ™' : R x M — M
is the flow of f - X, because

0®
ot

0®
ot

ov

=7 (0:p) = f(@(h71(0,p)) - - (h7H(0,p) = f(p) - 57 (0.p) = f(p) - X (p)

for every pe M. O
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2.3 The Lie bracket

Let M be a smooth n-manifold and let X be a smooth vector field on M. At every
point p € M the value X(p) € T,M of X is a derivation on the algebra of germs
Gp(M) of smooth functions defined on neighbourhoods of p and

X(p)(f) = lim f(@(t,p)) — f(p)

t—0 t

for every smooth function f which is defined on some open neighbourhood of p in
M, where ® is the flow of X.

Apart from functions, it is possible to define a special kind of derivation of
another smooth vector field Y with respect to X, by transporting Y along the
integral curves of X by the flow of X. The result can be defined in a purely algebraic
way as follows.

Let p € M. If f € C®°(M,p), then Yf(q) = Y(q)(f) is a smooth function
YfeC>®(M,p) for every Y € X(M). We define

(X, Y](p)(f) = X(p)(Y f) = Y (p)(X])
for every f € C>*°(M,p) and X, Y € X(M). We observe that
(X YI@)(f-9) =X@)(f - Yg+g-Y)=Y)If - Xf+g-X[)

= f(p)X(p)(Yg) +Y()(9)X()(f) +Y®)(f)XP)(9) + ) XP)(Y[)
—fP)Y (p)(Xg) = Y(p)(f)X(p)(9) — Y(p)(9)X(P)(f) —9(p)Y (p)(X )
= f(p) - [X,Y](p)(9) + g9(p) - [X,Y](P)(f)-

Therefore, [X,Y](p) is a derivation of the algebra of germs G, (M) and so is a tangent
vector in T, M.
Let (U, ¢) be a smooth chart of M with ¢ = (z!,...,2"). Then

9 9 |_9 (0N 90\ |,
oxt’ Oxd | Oxt \ Oxd oxi\oxt )

on U foralli, j=1,2,...n. If now X, Y € X(U) and

"0 "0
X:;XW, Y:;w@,

then for every p € U and f € C*°(M,p) we have

A = 3 X0 (aﬂ)< i) X rw(as) (i)

1,j=1 1,j=1

3 0
B Z Bxl 31'] )+ Z XY@ 0962 <3f>(p)

5,j=1 1,7=1

)
(
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Yy SLALIAN S v g ( g;) »)

i,j=1 i,j=1

:Z(ZX%p)%’;f(p)—Y( %f,if( >)§jj< )

j=1 Ni=1

This means that

-y <ZH:XZ'8Y? —YiaX.j>i
: ; ox' ox* ) 0xJ
Jj=1 “i=1
on U.

The above show that [X,Y] € X(M) for every X, Y € X(M), and is called the
Lie derivative of Y with respect to X. The so defined function

[,.]: X(M) x X(M) — X(M)

is called the Lie bracket and has the following rather obvious properties:
(i) It is bilinear and alternating.
(ii) It satisfies the Jacobi identity, that is

[X7 [Y7 ZH + [Y7 [ZvXH + [27 [X7 Y]] =0

for every X, Y, Z € X(M).

(iii) [X, fY] = fIX, Y]+ X[ Y for every f € C®°(M) and X, Y € X(M).

(iv) If F : M — M is a smooth diffeomorphism, then [F, X, F.Y]| = F.[X,Y] for
every X, Y € X(M). More generally, let M be a smooth n-manifold, L be a smooth
k-manifold, k < n, and let g : L — M be an injective immersion. Let X, Y € X (M)
be such that X (g(z)), Y(g(x)) € gsx(T:L) for every x € L. Then, there exist unique
X(2), ¥(z) € T, L such that g.,(X (x)) = X(g(x)) and g (¥ (x)) = ¥ (g(x)) and it
follows from the local presentation of immersions provided by the Constant Rank
Theorem 1.3.2 that X, Y € X(L). Now we have

g*a&([X? Y/](.%')) = [X7 Y](g(x))

for every x € L. Indeed, let € L and let f be a smooth function defined on some
open neighbourhood of g(x). Note first that the chain rule implies that

Y(fog)=Yfoy
From the definitions now we have
g (X, Y](2)) f = [X,Y](2)(f 0 g) = X(2)(Y(f 0 9)) = YV(2)(X(f 0 g))
= X(2)(Yfog) = Y(2)(Xfog)=X(g(x)(Y )= Y(g(x))(Xf) = [X,Y](g(x)) .

The structure on a vector space E imposed by an alternating, bilinear map
[.,.] - E x E — E, which satisfies the Jacobi identity is called a Lie algebra. The
following formula reveals the true nature of the Lie bracket.
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Theorem 2.3.1. Let M be a smooth n-manifold and X,Y € X(M). If®: D - M
1s the flow of X, then

X, Y)(p) = I (@ (Y (2(1,) — Y ()

t—0

for every p € M.
For the proof we shall need the following technical lemma.

Lemma 2.3.2. Let U, V C M be two open neighbourhoods of the point p € M
for which there exists € > 0 such that ®((—e,e) x V) C U. Then, for every smooth
function f : U — R there exists a smooth function g : (—e,€) x V. — R with the
following properties:

(1) f(@(=t,q)) = f(q) —tg(t,q) for every (t,q) € (=€,€) x V.

(i) X(q)(f) = 9(0,q) for every g € V.

Proof. If h : (—€,e) x V. — R is the smooth function defined by h(s,q) =
f(@(=s,q)) — f(q), and if we define g : (—¢,€) x V' — R by

L on

t.q)=— [ ZZ(ts,q)d
g(t,q) ; as(s,q) s,

then

—tg(t.q) :/0 %(s,q)ds = h(t,q).

By continuity, we also have

. _ F(®(=t,q)) — f(q)
9(0,q) = %g% g(t,q) = %g% ¢

=X()(f). O

Proof of Theorem 2.3.1. Let f : U — R be a smooth function defined on an open
neighbourhood U of the point p € M. There exist an open neighbourhood V of p
and € > 0 such that ®((—e,e) x V) C U. Let g be the smooth function supplied by
Lemma 2.3.2 and let g; = g(t,.). Then, X f = gg and

lim 2 (@) (V (2(1,)) — V() ()

t—0 ¢

=t | () (¥ (200, 50) ~ Y ()

—tin 7 V(@) 0 0 - Y1)

t—0

~tin 1 [V @) 190~ Y ()]

t—0
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w LY (@(t,p) — Vi) — Y0)(XF)

=1
t—0 ¢

=X()(Y[)-Yp)(XSf)=[X,Y](p)(f). O

Definition 2.3.3. Two complete smooth vector fields X, Y on a smooth manifold
M commute if [X,Y] = 0.

This terminology is justified by the following.

Proposition 2.3.4. Let X and Y be two complete smooth vector fields on a
smooth manifold M. Let (®¢)ier be the one-parameter group of smooth diffeomor-
phisms of M defined by the flow of X and (V)ier be the one-parameter group of
smooth diffeomorphisms defined by the flow of Y. Then [X,Y] = 0 if and only if
DoV, =W,0P; for every t, s € R.

Proof. If ®; 0 W, = W, 0 ®; for every ¢, s € R, differentiating with respect to s at
0, we get (®4).Y =Y for every t € R. It follows now from Theorem 2.3.1 that
[X,Y]=0.

Conversely, let [X,Y] =0 and let p € M and s € R. The velocity of the smooth
curve v : R = Ty, (,) M defined by v(t) = (®—t).a,(w,(p) (Y (2:(¥s(p)))) is

300) = Jim | ) V(@104 00) = (1) Y (010 0))

1

= (@)t (J (Pt 0,00 (V@) V(00| )

= (q)ft)*'ibt(\lls(p))([X? Y](@:(Ys(p)))) = 0.

Thus, « is constant, which means that (®_¢).a,w,(p) (Y (2:(¥s(p)))) = Y (¥s(p)) or
equivalently

Y (®4(¥s(p))) = (‘I)t)*\ps(p)(y(‘lfs(p)))

for every p € M and t, s € R. In other words, Y is ®;-invariant for every ¢t € R.
This implies that ®; o WP is an integral curve of Y and since (®; o ¥P)(0) = ®.(p),
we must necessarily have ®; o W? = W) hence ®;(V,(p)) = W,(P(p)). O

If X and Y are two commuting complete smooth vector fields on a smooth
manifold M with corresponding one-parameter groups of smooth diffeomorphisms
(®4)ter and (W4)ser, respectively, then F': R2 x M — M defined by

F(t,s,p) = (P 0 V) (p)

is a smooth action of the abelian group (R?,+) on M. More generally, a finite family
of mutually commuting complete smooth vector fields Xi,..., X} with corresponding
one-parameter groups of smooth diffeomorphisms (®})icr,..., (®F)icr, respectively,
defines a smooth action F' : R¥ x M — M of the abelian group (RF,+) by the
formula

F(tly"'atk?p) = (q)l%l S q)fk)(p)
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2.4 Geometric distributions

Let M be a smooth n-manifold and let D C T'M be such that D, = DNT,M # &
for every p € M. We denote by X (M) the vector space of all smooth vector fields
of M with values in D and by XZ.(M) the set of all smooth vector fields defined on
open subsets of M with values in D. We shall call D a geometric distribution on M
if it has the following two properties:

(i) Dy is a vector subspace of T,M for every p € M.

(ii) For every p € M and v € D, there exists X € XP(M) such that X (p) = v.

The non-negative integer k(p) = dimD,, is called the rank of D at p. Note that
k is a lower semicontinuous function of p, because condition (ii) implies that every
p € M has an open neighbourhood V' such that k(q) > k(p) for every ¢ € V.

An integral manifold of D is a pair (L,g) where L is a connected smooth
manifold and ¢g : L — M is an injective immersion such that g.,(T,L) = Dy(z) for
every x € L. In particular the rank of D is constant along an integral manifold.
The geometric distribution D is called integrable if for every p € M there exists an
integral manifold (L, g) of D with p € g(L).

Examples 2.4.1. (a) Every X € X(M) generates a geometric distribution D
so that D, = R - X(p) for every p € M. The maximal integral curves of X give
integral manifolds of D which fill out M and so M is integrable. More precisely,
let ® : D — M be the flow of X. If X(p) = 0, then the integral manifold through
p is ({0}, ®P) and the rank at p is 0. If X(p) # 0 and the maximal integral
curve ®? : (ap,b,) — M is not injective, it is not hard to see that (ap,b,) = R
and ®P is periodic of period T' = min{t > 0 : ®P(¢) = p} > 0. In this case PP
induces the embedding ®” : S — M well defined by ®?(e?™) = ®P(tT) and
(S, PP ) is the integral manifold through p. In any other case the maximal integral
curve P : (ap,b,) — M is an injective immersion and ((ap, by), ®P) is the integral
manifold through p.

(b) Let M be a smooth n-manifold and P be a smooth k-manifold with n > k. If
f: M — P is a smooth submersion then D = Kerf, is a geometric distribution
of constant rank n — k, which is integrable. From Corollary 1.3.5, the connected
components of the level sets of f are the integral manifolds of D.

(c) On R? let D be the geometric distribution globally defined by the smooth vector

fields
0 0

%a ya_y
The rank of D at points of the horizontal axis is 1 and it is 2 everywhere else.

Obviously, D is integrable and has only three integral manifolds, These are the
horizontal axis, the open upper half plane and the open lower half plane.

(d) Let D be the geometric distribution globally defined by the smooth vector fields

9 9
ox’ Oy
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The rank at points of the vertical axis is 1 and everywhere else it is 2. This time D
is not integrable, because the only possible integral manifold through (0,0) must be
an open interval in the vertical axis, since the rank remains constant along integral
manifolds. This contradicts the fact that D) is not tangent to the vertical axis.

Let D be an integrable geometric distribution and let (ng) ‘be an integral man-
ifold. We recall that if X, Y € XP(M), there are unique X, Y € X(L) such that

9x2(X(2)) = X(9(2)), gea(Y(2)) = Y(g(z)) and

[X,Y](9(2)) = 9 ([X, Y](2)) € gua(Te L) = Dy
for every x € L. This leads to the following.
Definition 2.4.2. A geometric distribution D on a smooth manifold M is called
involutive if XP(M) is a Lie subalgebra of X(M), that is [X,Y] € XP (M) for every
X, Y e X(M).

According to the above, every integrable geometric distribution is involutive.

Examples 2.4.3. (a) The geometric distribution defined by a smooth vector field
is involutive.

(b) The geometric distribution on R? of Example 2.4.1(c) is involutive, since
o . 9]_
Bx’y(?y N
but the one of Example 2.4.1(d) is not, because
9 91_2
oz’ " oy| oy

(c) The Heisenberg distribution on R3 is the constant rank 2 geometric distribution
which is globally generated by the smooth vector fields

_ o 1oy 90,10
“or 270z Oy 270z
. . o 0
that is not involutive since [X,Y] = 5
z

The question arises whether an involutive geometric distribution is integrable.
In order to study this, we shall need the following two notions. First, a geometric
distribution D on a smooth manifold M is said to be homogeneous if it is invariant
by the flow of every X € XL (M). The second notion is given in the following.
Definition 2.4.4. Let D be a geometric distribution on a smooth n-manifold M.
Let p € M and k = dimD,. A smooth chart (U, ¢) of M where ¢ = (x!,...,2") is
said to be D-adapted at the point p if the following conditions are satisfied.
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() oY) = B and 6(p) =0

. D

(ii) Dl Ok © Xie(M).

(iii) The rank of D is constant along the slices ¢~ (R* x {c}), c € R*7*.

In the particular case of a constant rank k& geometric distribution D condition
(iii) is trivial and D|y is integrable with integral manifolds the slices ¢~ (R¥ x {c}),
ce Rk,

The adapted charts are the higher dimensional analogues of flow boxes in the
theory of dynamical systems.

Proposition 2.4.5. Let X be a smooth vector field on a smooth n-manifold M.
If p € M is such that X(p) # 0, there exists a smooth chart (U,¢) of M with

= (¢!, ...,a") such that p € U and X|y = =—.
¢=(x,....,2") such that p € U and X|u 5

Proof. Let ® : D — M be the flow of X. There exists a smooth chart (W, )
0
of M with ¢(p) = 0 and X(p) = <3—y1> , where ¢ = (y!,...,y™). There exists
P

an open neighbourhood V- C W of p and € > 0 such that (—e,e) x V C D and
®((—e,€) x V) € W. The set S = (V)N ({0} x R"1) is an open neighbourhood
of 0in R"L If F: (—¢,€) x S — M is the smooth map defined by

F(t,x) = o(t, 9~ (z))

we have Fy ) (e1) = X(p) and Fyo0(e;) = <(9iyﬂ> for 2 < j < n. This means

that Fi () is a linear isomorphism and from the Inverse Map Theorem there exists
an open neighbourhood A C (—e,¢€) x S of (0,0) such that U = F(A) is an open
neighbourhood of p = F(0,0) and F|4 : A — U is a diffeomorphism. Therefore,
if ¢ = (F|a)~!, then (U,¢) is a smooth chart of M with ¢(p) = 0 € R" and
Xy = ESE where ¢ = (z!,...,2"). O

The following characterization of integrable geometric distributions is due to P.
Stefan and H.J. Sussman.

Theorem 2.4.6. For a geometric distribution D on a smooth n-manifold M the
following statements are equivalent:

(a) D is integrable.

(b) D is involutive and has constant rank along the mazximal integral curves of every
X € XD.(M).

(¢) D is homogeneous.

(d) At every point of M there exists some D-adapted chart.

Proof. We have already shown above that (a) implies (b). In order to prove that
(b) implies (c), we show first that every point p € M has an open neighbourhood U
such that if X € XL (M) is defined on U with flow ®, then (®;).y(Dp) = Do, (p) for
all ¢ for which ®4(p) is defined.
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If kK = dim Dy, there is an open neighbourhood U of p and Y7,..., ¥, € X(U) such
that {Y1(p), ..., Yx(p)} is a basis of D, and {Y1(q), ..., Yx(q)} is a linearly independent
subset of D, for every ¢ € U. Let X € XL (M) be defined on U with flow ® : D — U.
As in the proof of Proposition 3.3.4 we consider the smooth parametrized curves

Y+ (ap,bp) = TpM, 1 < i <k, defined by

Vi (t) = (q)—t)*'ibt (p) (Y;(@t(p))

where (ap, by) is the interval of definition of the maximal integral curve of X through
p. If we show that the linearly independent set {71 (¢), ..., (¢t)} C T, M is contained
in Dy, we will have (®;).,(Dp) C Dg, () and hence (®4).p(Dp) = Do, (), by our
assumption that the rank of D remains constant along the integral curves of the
elements of X0 (M). From Theorem 2.3.1, the velocity field of v; is

’y,(t) - ((I)—t)*@(P)([X?E](®t(p)))v ap <t < bp'

Since by assumption the rank of D is constant along the integral curves of X, the set
{Y1(®@u(p)), -, Yi(Pi(p))} is a basis of Dg,(,y and since D is involutive, there exist
unique smooth functions Aj; : (ap,b,) = R, 1 <i,j < k such that

(X, Yi](@:(p)) = Z Aji()Y5(®4(p))

J=1

for every a, <t < b, and 1 <4 < k. Thus, 71,..., & satisfy the system of linear
ordinary differential equations

Fit) = Nity(t), ap<t<b, 1<i<k
j=1

From the existence and uniqueness of solutions and since 7;(0) € Dy, 1 <1 < k, we
conclude that ~;(t) € D, for every t € (ap,b,) and 1 < i < k.

Let now X € XL (M) be defined on an arbitrary open set A C M with flow
®: D — Aandlet (t,p) € D. By compactness of ®([0,¢] x {p}) and the above,
there exists a partition {0 =tp < -+ < t,, =t} of [0,], for some m € N, such that

(®s)sa,, (p)(Pasy, () = D, . (p) for every 0 < s <tiy1 —t;, 0 < i < m. Therefore,

((I)t)*p(Dp) = (®4—t,,_, 00 (I)h)*p(Dp) = Dét(p)-

In order to prove that (c) implies (d) we generalize the proof of Proposition
2.4.5. on the existence of flow boxes for smooth vector fields. Let p € M and
suppose that k = dimD,. As before, there is an open neighbourhood U of p and
Yi,..., Y € X(U) such that {Yi(p), ..., Yr(p)} is a basis of D), and {Y1(q), ..., Yi(q)} is
a linearly independent subset of D, for every ¢ € U. There are Yjy1,..., Y, € X(U)
such that {Y1(q),...,Yx(¢)} is a basis of T;M for every q € U. There exists € > 0
such that the smooth mao U : (—¢,¢€)" — M with

U(ty,.yty) = (\yzl 0.0 g;z/zl)(p)
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is defined, where ¥Yi denotes the flow of Y;, 1 < i < n. Since W,o(e;) = Yi(p),
1 < i < n, by the Inverse Map Theorem, we can choose ¢ > 0 so that ¥ is a
smooth diffeomorphism onto an open subset V of M. If ¢p = U~ then (V,®) is
a smooth chart of M with ¥(p) = 0. Suppose that ¢ = (x!,...,2"). If ¢ € V and

¥(q) = (t1,...,tn), then

) | v
(a) = (U1 o 0 UNLYI(B) T 0 0 WI)(p)
q

belongs to D, for 1 < i <k, by our assumption that D is homogeneous. Finally, D
has constant rank on each slice ¥ ~1((—¢, €)¥ x {c}), because D is homogeneous and
every point ¢ € ¥ ((—e, €)* x {c}) can be joined to ¥(0,c) with the concatenation
of paths of integral curves of Yi,... Y;.

Obviously, (d) implies integrability. OJ.

In the particular case of a geometric distribution of constant rank the preceding
integrability criterion is known as the Frobenius’ Theorem, although it had been
originally proven by A. Clebsch in the context of partial differential equations.

Corollary 2.4.7. A geometric distribution of constant rank on a smooth manifold
1s integrable if and only if it is involutive.

In the rest of this section we shall restrict ourselves to the case of integrable
geometric distributions of constant rank and be concerned with the existence and
uniqueness of maximal integral manifolds. Two integral manifolds (L, g) and (K, h)
of an integrable geometric distribution D of constant rank are called equivalent
if there exists a diffeomorphism f : K — L such that h = g o f. In other words,
equivalent integral manifolds are ”reparametrizations” to each other. An integral
manifold (L, g) is called mazimal if there does not exist an integral manifold (K, h)
such that g(L) is a proper subset of h(K).

Lemma 2.4.8. Let D be an integrable geometric distribution of constant rank k on
a smooth n-manifold M and let (L, g) be an integral manifold. If p € L and (U, ¢)
is a D-adapted chart at p, then the connected components of g(L) NU are countably
many and each one of them is contained in a slice ¢~ (RF x {c}) for some c € R*7*,

Proof. Let C be a connected component of g(L) N U and let 7 : R¥ x R*~% — R*—*
denote the projection. Since the topology of L has a countable basis and g(L) N U
is a union of slices, (m o ¢)(g(L) NU) is a countable set. Thus, (7o ¢)(C) is a
connected subset of a countable subset of R” ¥, hence a singleton. [

Proposition 2.4.9. Let D be an integrable geometric distribution of constant rank
k on a smooth n-manifold M and let (L, g) be an integral manifold. If N is a smooth
manifold and f : N — M is a smooth map such that f(N) C g(L), there is a unique
smooth map f: N — L such that go f = f.
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L
.
Jj/ Jg

N o

Proof. Since g is an injective immersion, there is a unique map f : N — L such
that go f = f and it suffices to show that f is continuous. Let V C L be an open
set, x € V and y € fﬁl(ac). Since D is integrable, there exists a D-adapted chart
(U, ¢) at g(z), so that g~1 (¢~ (R* x {0})) is an open neighbourhood of = contained
in V. Since N is a manifold, hence locally connected, the connected component W
of f~1(V') which contains y is open in N. To prove that f is continuous, it suffices
to show that f(W) C g~' (¢ (R* x {0})) or equivalently f(W) C ¢~ (R* x {0}).
Indeed, since f(W) is connected, it is contained in a connected component of
g(L) N U. Tt follows form Lemma 2.4.8 that f(W) C ¢ '(R¥ x {0}), because

fy) € o~ (R¥ x {0}). O

Theorem 2.4.10. If D is an integrable geometric distribution of constant rank k
on a smooth n-manifold M, then for every p € M there exists a unique mazimal
integral manifold (L, g) of D such that p € g(L) and for any other integral manifold
(K, h) such that p € h(K) we have h(K) C g(L).

Proof. First we shall show the existence of maximal integral manifolds through the
points of M. Let p € M and let L be the set of all points in M which can be joined
to p by a concatenation of smooth paths on integral curves of elements of X2 (M).
Since the topology of M has a countable basis and D is integrable, there exists a
countable smooth atlas A of M consisting of D-adapted charts. Thus, for every
q € L there exists a D-adapted chart (U, ¢) € A such that ¢ € ¢~ (R* x {c}) C L,
for some ¢ € R"*. Applying Lemma 2.1.1, there is a unique topology on L with
respect to which all such slices become open subsets of L and is therefore finer than
the subspace topology. It is clear that with this topology L will become a smooth
k-manifold as soon as we show that it has a countable basis. For this it suffices to
show that given (U, ) € A only a countable number of the slices ¢! (R x {c}) C L,
¢ € R" ¥ can be contained in L. Each point of U N L can be joined to p with a
piecewise smooth path which is a concatenation of smooth paths on integral curves
of elements of X2 (M) and so can be covered (not uniquely) by a finite sequence of
D-adapted charts in A. Since there are only countably many such finite sequences,
it suffices to show that only countably many of the slices ¢~ 1(R¥ x {c¢}) C L,
¢ € R™ % are reachable in this way. This is true because such a slice can intersect
at most countably many analogous slices in another D-adapted chart in A. Indeed,
if S = ¢ 1 (R* x {c}) and (V7)) € A, then SNV is open in S and so consists of
countably many connected components each of which is an integral manifold of D
in V' and hence contained in a slice of (V, ).

If now g : L — M is the inclusion, then g is an injective immersion and (L, g) is
an integral manifold of D by construction. In order to prove that is is maximal, let
(K, h) be another integral manifold of D such that p € h(K). For every q € h(K)
there exists a piecewise smooth path v : [0,1] — K from h~'(p) to h=!(q) and
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ho~ :0,1] — h(K) is a piecewise smooth path from p to ¢ which is a concatenation
of paths on integral curves of elements of XIEC(M ). Hence ¢ € L.

The uniqueness of (L, g) is a consequence of the preceding Proposition 2.4.9. If
(K, h) is another maximal integral manifold of D and p € h(K), then h(K) C L, as
we showed above, and actually h(K) = L, by maximality. From Proposition 2.4.9,
there exists a unique smooth map h : K — L such that go h = h.

K— M

Since h is a bijective immersion between smooth manifolds of the same dimension
k, it is a diffeomorphism. Hence (K, h) is equivalent to (L, g). O

2.5 Exercises

1. Let M be a smooth n-manifold, A = {(U;, ¢;) : i € I} be a smooth atlas of M
and A = {(7=Y(U;), ¢:) : i € I} be the corresponding smooth atlas of TM, where
m:TM — M is the tangent bundle projection. Prove that

det D(¢; o ¢ Yz, v) >0
for every i, j € I with U; NU; # @ and (x,v) € ¢;(U; NUj) x R™.

2. Let M be a smooth manifold and G be a group of diffeomorphisms of M which
acts properly discontinuously on M. If X € X (M) and ¢g. X = X for every g € G,
prove that there exists a unique X € X(M/G) such that p.,(X(p)) = X(r(p)))
for every p € M, where 7 : M — M/G is the quotient map. Construct a smooth
vector field on the real projective plane RP?, which vanishes at exactly one point
and every other maximal integral curve is periodic.

3. A smooth n-manifold M is called parallelizable if there are X1,X5,...,X,, € X (M)
such that {X1(p), X2(p),..., Xn(p)} is a basis of T,M for every p € M. Prove that
M is parellelizable if and only if its tangent bundle is trivial, which means that there
exists a smooth diffeomorphism f : TM — M x R™ such that the following diagram
commutes

> M x R™

\ A ection

and f maps linearly 7T, M onto {p} x R" for every p € M. Prove that the circle S 1
and the n-torus T™ are parallelizable.
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4. On R?" the nowhere vanishing smooth vector field

0 0 0 0
X=2?—" -zl + .. 42 i
Ox! Ox? Tt Ox?n—1 Ox2n
is tangent to S?"~!. In case n = 2, complete this vector field with two other vector
fields to prove that the 3-sphere S® is parallelizable.

5. Let M be a smooth manifold and f : M — M be a diffeomorphism. If
X € X(M) has flow ® : D — M, prove that the flow ¥ of f.X is given by the

formula W(¢, f(p)) = f(®(¢,p)).

6. Let h: [0,1] — [0,7] be a smooth function with h=1(0) = [0,1/5] U [4/5,1] and
h=Y(r/2) = [2/5,3/5]. We extend h on R periodically by h(z + 1) = h(z). Prove
that the smooth vector fields

d

d
X(t) = t* cos? h(t)a and Y (t) = t? sin® h(t)a

on R are complete, but X + Y is not complete.

7. Let M be a smooth manifold, X € X (M) with flow ¢ : D — M, where
D= | (ap.b) x {p}.

peEM

If f: M — (0,1] is a smooth function such that f(p) < min{—a,,b,} for every
p € M, prove that the smooth vector field f - X is complete.

8. On R3 we consider the smooth vector fields
0 0 0 0 0 0

X=22 42 ve=ul 2 7=yl 2.
z@y Y92 Yo:  “ox Yor x@y

(a) Prove that the map g : R? — X (R3) with
g(a,b,c) =aX +bY +cZ

is a linear monomorphism which has the additional property g(Ax B) = [g(A), g(B)]
for every A, B € R?, where X is the usual exterior product on R3.

(b) Prove that the vector fields X, Y and Z generate a geometric distribution of
constant rank 2 on R?\ {0} which is integrable. What are its maximal integral
manifolds?

9. Let M be a smooth manifold and X, Y € X (M) be complete with flows ® and ¥,
respectively. If there exists a smooth function h : M — R such that [X,Y] = hX,
prove

(W10 @5)(p) = (P, 1,5) © Vi) ()
for every p € M, t, s € R, where T}, : R x R — R is the smooth function

0.5) = [ (el [ t Br (60 0)))dr) ) do.
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Riemannian manifolds

3.1 Connections

A straight line segment in euclidean n-space R" is the unique piecewise smooth
curve of minimum length between its endpoints. Equivalently, straight lines in R"
are the smooth curves whose acceleration vanishes identically. One way to define
a notion of ”"straight line” on a smooth manifold is by defining first the notion of
acceleration. The difficulty now lies in the fact that if M is a smooth manifold,
I C R is an open interval and v : I — M is a smooth curve, the velocity vectors
4(t) and +(s) belong to different vector spaces for ¢t # s and their difference has no
meaning. This difference can become meaningful if we have a way to connect the
tangent spaces of M at the points ~y(¢), ¢t € I. This requires the endowment of M
with an extra structure. This structure can be described elegantly in an algebraic
way.

Definition 3.1.1. A (linear) connection on a smooth n-manifold M is a map
V:XM)xX(M)— X(M)

with the following properties, writing VxY instead of V(X,Y):

OVaxi+pxY = LVX,Y + foVx,Y, for every fi, fo € C*(M) and Xi, Xo,
Y € x(M).

(ii)) Vx(a1Y1 + a2Y2) = a1VxY1 + a2VxYs for every ay, ao € R and X, Y7,
Ys € X(M).

(i) Vx(fY) = fVxY + Xf-Y for every f € C*°(M) and X, Y € X(M).

The smooth vector field VxY is called the covariant derivative of Y in the
direction of X. Some immediate consequences of the above definition are given in
the following lemmas.

Lemma 3.1.2. If V is a connection on a smooth n-manifold M and p € M, then

for every X, Y € X (M) the vector (VxY)(p) € T,M depends only on the values of
X and Y in arbitrarily small open neighbourhoods of p.

45
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Proof. By bilinearity, it suffices to prove that (VxY)(p) = 0 in case there exists

an open neighbourhood V of p such that X| = 0 or Y|y = 0. By Corollary 1.4.5,

there exists a smooth function f: M — [0, 1] such that f(p) =1 and suppf C V.
If Y|y =0, then fY =0 on M and so

0=Vx(fY)p) = fp)(VxY)(p)+ (X)) -Y(p) = (VxY)(p).

If X|y =0, we have fX =0 on M, and

0= (VixY)(p) = F(P)(VxY)(p) = (VxY)(p). D

Lemma 3.1.3. If V is a connection on a smooth n-manifold M and p € M, then
for every X, Y € X(M) the vector (VxY)(p) € T,M depends only on the tangent
vector X (p) and the values of Y in arbitrarily small open neighbourhoods of p.

Proof. Tt suffices to prove that (VxY)(p) = 0if X(p) = 0. In view of the preceding
Lemma 3.1.2, we can work locally in the domain of a smooth chart (U, ¢) of M with
peU. If ¢ = (x,...,2"), there exist X!,..., X" € C*°(U) such that

k
ZX s
If X(p) =0, we have X*(p) =0 for 1 <k < n and
(VxY)(p ZX’“ Voo Y)(p)=0. O
According to the above Lemma 3.1.3, it is legitimate to write henceforth V x,) Y
instead of (VxY')(p). The same argument of the proof shows that if
S:XM)x - xX(M)—= X(M)

is a C°°(M)-m-multilinear map, then for every Xj,..., X;;, € X(M) and p € M the
value S(X1, ..., X;n)(p) depends only on the values Xi(p),..., X;n(p) and so we can
write S(X1(p), ..., X;m(p)) instead.

Lemma 3.1.4. IfV is a connection on a smooth n-manifold M and p € M, then
for every X, Y € X(M) the vector (VxY)(p) € T,M depends only on the tangent
vector X (p) and the values Y (v(t)) for any smooth curve v : (—€,e) — M, € > 0,
such that v(0) = p and (0) = X(p).

Proof. According to the preceding Lemmas 3.1.2 and 3.1.3, we may assume that
7((—e€,€)) C U for some smooth chart (U, ¢) of M with p € U. Let ¢ = (x!,...,2").
There exist Y!,..., Y™ € C*°(U) such that

Ve = ZYk@xk
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and
= 0 = 0
VxmY =) Y 0)Vxmarg +2 ¥ en) 0575 -
Oz Ox
k=1 k=1 p
If Y(y(t)) = 0 for all [t| < ¢, then obviously VY =0. O

We can now find a local formula for a given connection V in the domain of a
smooth chart (U, ¢) of M with ¢ = (x!,...,2™). There exist unique I’k e C>(U),
1 <4,j,k <n, such that

Z b

for every 1 < 4,5 < n. The smooth functions I’fj are called the Christoffel symbols
of V with respect to the smooth chart (U, ¢). If now

n

" ) )
X=S xt d vy=Y YvF
kzzl oxk an ; oxk’

a routine computation shows that on U we have

vxyzi< XY +ZrkXYJ> 9
k=1

5,j=1

Conversely, given smooth functions I’fj U —- R, 1 < 14,5,k < n, the above
formula defines a connection on U, because for every f € C*°(U) we have

VX(fY):Zn:< (fY*) + Zr XfYJ) ik

k=1 1,j=1

n
(Xf YE+ fX(YR) + f Z r’fXYJ>% =X[-Y+ fVxY.
k= i,j=1 r
The connection on R™ with Christoffel symbols identically equal to zero is called
the euclidean connection and is given by the formula

0
k
VY = Z X(Y*)==.
In other words, the covariant derivative of Y in the direction of X with respect to
the euclidean connection is the directional derivative of Y in the direction of X.

Example 3.1.5. A (n — 1)-dimensional smooth submanifold M of R" is usually
called hypersurface. We identify the tangent space T, M at a point p € M with
its image under the derivative of the inclusion and consider it a vector subspace of
T,R"™. The euclidean connection V on R™ induces a connection on any hypersurface
M in R™. We observe first that if p € M and (U, ¢) is a M-straightening chart of

" with ¢(U N M) C R"! x {0} and p € UN M, then for every X € X(M) there
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exists an extension X € X (U), that is X|ynas = X|pnn. For every X, Y € X(M)
we put now

VipY =mp(VxpY)
where m, : T,R"™ — T}, M is the projection with respect to the orthogonal splitting
T,R" = T,M & (TpM)l.N By Lemma 3.1.4, this definition does not depend on the
choice of the extension Y. Obviously, V is a connection on M and is called the
euclidean connection of the hypersurface M.

Proposition 3.1.6. On every smooth manifold M there are connections.

Proof. From the above, there are connections locally on M. Let A be a smooth atlas
of M. For every (U, ¢r7) € A there is a connection VY on U. Let {fy : (U, ¢p) € A}
be a smooth partition of unity subordinated to the open cover {U : (U, ¢y) € A} of
M. Then, the formula

VY= > fuVkY
(U7¢U)€-A

for X, Y € X (M), defines a connection on M because if f € C°°(M), we have

Vx(fY)= > fuVRUY)= > fu(Xf Y +[VRY)

(Uyd)U)e'A (Uyd)U)E'A

= ( > fU>Xf-Y+f Y. foVRY =X[Y +fVxY. O
(Upv)eA (U.pv)eA
In view of Lemma 3.1.4, given a connection it is possible to define a covariant
differentiation of smooth vector fields along a smooth curve. Let I C R be an open
interval and v : I — M be a smooth curve. The set X' () of smooth vector fields
along v is a vector space.

Proposition 3.1.7. Let V be a connection on a smooth n-manifold M. For every
smooth curve v : I — M there exists a unique linear operator

D

—: X X
o X)) = X()
with the following properties:
D DX
(i) E(fX) =X+ fﬁ for every X € X(v) and smooth function f: I — R.

(i) If X € X(7) has a smooth extension X € X(V) on an open set V which contains
v(I), then

DX ~
The vector field e along v is called the covariant derivative of X along .

Proof. We shall prove uniqueness first. As in the proof of Lemma 3.1.2 we see

DX
that for every to € I the value W(to) depends only on the values of X on an
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arbitrarily small open interval with center tg. Let (U, ¢) be a smooth chart of M
with ¢ = (2!, ...,2™) and ¥(tg) € U. There exist € > 0 such that y((tg—e¢, to+e€)) C U
and smooth functions X!,..., X" : (tg — €, + €) — R such that

X(t) = Zn:Xk(t)<%>w(t)

k=1

for |t — to| < e. By linearity and properties (i), (ii) we compute

DX = , a
W(t) => (x%) (ﬂ(@)w +2Xk Ok

k=1

:§<(Xk +Zr ()Xﬂ())(ai )W)

i,7=1

where (¢o7)(t) = (v1(t), ...,7™(t)) for every |t —to| < e. This proves the uniqueness.
The existence follows covering ~(I) by the domains of smooth charts of M

D
and defining p7 locally by the above formula. By uniqueness, the local definitions

coincide on overlapping intervals. [

In the rest of the section we shall see that the algebraic definition of a connection
indeed gives a mechanism of ”connecting” tangent spaces at various points of a
smooth manifold. Let V be a connection on a smooth n-manifold M.

Definition 3.1.8. If v : I — M is a smooth curve defined on an open interval

DX
I C R, a smooth vector field X € X(vy) is said to be parallel along ~, if = 0 on

I. A smooth vector field X € X (M) is called parallel if Vy X = 0 on M for every
Y e X(M).

Example 3.1.9. The parallel vector fields on R™ with respect to the euclidean
connection are the constant ones, that is the vector fields

Za (%k
for a',..., a™ € R.

Let (U, ¢) be a smooth chart of M with ¢ = (2!,...,2") and let v : I — U be
a smooth curve with local representation ¢ oy = (y!,...,4™). From the formula of
the covariant differentiation along « derived in the proof of Proposition 3.1.7 follows
that a smooth vector field
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along v is parallel if and only if the smooth functions X',..., X" satisfy the system
of linear ordinary differential equations

n
(XH(#) == > THOMOGY OXI(@), tel, 1<k<n.
ij=1
From the existence and uniqueness of solutions for linear ordinary differential
equations we have that for every tp € I and every v € T’ (;,)M there exists a unique
parallel vector field X along ~ satisfying the initial condition X (¢y) = v.

Proposition 3.1.10. Let I C R be an open interval and v : I — M be a smooth
curve. For every to € I and every v € T, ;)M there exists a unique parallel vector
field X along ~ such that X (tg) = v.

Proof. From the above there exists b > ty such that there exists a unique parallel
vector field along 7|, 5 With X (tg) = v. It suffices to prove that the supremum T
of all such b does not belong to I. Suppose that it does. Choosing a smooth chart
(V,4) of M with v(T") € V, there exists 6 > 0 such that v((I'—6,7+9)) C V. From

the above, there exists a unique parallel vector field X along 7|(7_s 145 satisfying
0

- J
the initial condition X (T — 5) = X(T - 5) From the uniqueness of solutions we

get X = X on (T — 6,T) and so X has a smooth extension on [tg, T 4 §). This
contradicts the definition of T". [

Let I C R be an open interval and v : I — M be a smooth curve. The preceding
Proposition 3.1.10 implies that for every a, b € I with a < b there is a well defined
map 7o : TyayM — T,ypyM where 7 4(u) is the value X (b) of the unique parallel
vector field X along v with X(a) = w. Since the parallel vector fields along
are the solutions of a system of linear ordinary differential equations, 7, is a
linear isomorphism and it is called the parallel translation along vy form ~(a) to v(b).

Theorem 3.1.11. If I C R be an open interval and v : I — M is a smooth curve,
then for every X € X () and s € I we have

DR (5) = Jim 2 [rasan(X(s + h) — X(9)]

Proof. It suffices to prove the assertion in case there exists a smooth chart (U, ¢)
and (I) C U. Since the parallel vector fields along « are the solutions of a system
of linear ordinary differential equations, there are parallel vector fields FEi,..., E,
along 7 such that {E1(t),..., E,(t)} is a basis of T.,4;)M for every t € I. Now there
are unique smooth functions fi,..., f, : I — R such that

n
X(t)=> fut)Be(t), tel.
k=1

Therefore,

DX
v Zfl; - B
k=1
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On the other hand, 7ss1p(Ek(s + h)) = Ei(s), because Ej is parallel along ~,
1 <k <mn, and hence

Ts,s+h(X (s +h)) — ka s+ h)Tss1h(Er(s + h)) ka )Er(s
=1

3

(fr(s+h) = fr(s)) Ex(s).

k=1
It follows that

fk S—|—h

1
lim - ] = li
fim = [7s 54 (X (s+)) =X oy

3.2 Geodesics and exponential map

Let M be a smooth n-manifold and V a connection on M. The acceleration of a
smooth curve v : I — M, where I C R is an open interval, is the smooth vector

D
field d—: along ~.

Definition 3.2.1. A smooth curve v : I — M, where I C R is an open interval, is
DA
called geodesic of the connection V if d_z?l = 0.

Note that the differential equation of geodesics is independent of local coordi-
nates of M. Its expression in the local coordinates of a smooth chart (U, ¢) of M

with ¢ = (x!,...,2"), where p oy = (y!,...,7™), is

n
")+ Y THOE)O) G () =0, 1<k<n
ij=1
In the particular case of the euclidean connection on R", where the Christoffel
symbols vanish, it follows that the geodesics are the euclidean straight lines.
The geodesics in U are the projections under the tangent bundle projection
m:TM — M of the integral curves of the smooth vector field

3k —+Z( 3 r’g])%

k=1 1,j7=1

on m~Y(U), where ¢ = (z',...,2",v',...,v") is the smooth chart of TM corre-
sponding to (U, ¢). Since the differential equation of geodesics does not depend
on smooth charts, we conclude that this is the local representation in the smooth
chart (7= 1(U), ¢) of a smooth vector field G which is globally defined on TM and
is called the geodesic vector field of the connection V. Its flow is called the geodesic
flow of V.

The homogeneity of the differential equation of geodesics implies the following
property.
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Lemma 3.2.2. Ifv: 1 — M is the geodesic of the connection V defined on the
open interval I and satisfying the initial conditions v(0) = p and ¥(0) = v, then for
every A € R\ {0} the maximal geodesic vy satisfying the initial conditions vx(0) = p

1
and ¥, (0) = Av is defined on the open interval XI and is given by yx(t) = v(At).

Dy _ oD%
dt dt

Proof. Indeed #\ = A% and therefore . Hence ~, is a geodesic if and

only if v is. O

In the rest of the section we fix a connection V on a smooth n-manifold M.
Let B C T'M denote the set of all points (p,v) € TM such that the geodesic ()
from p with initial velocity v is defined on the unit interval [0,1]. Let exp : E — M
be the smooth map exp(p,v) = 7 (1). From Lemma 3.2.2, for every p € M
the set £, = E NT,M is an open neighbourhood of 0 € T,M and the map
exp,(v) = exp(p,v) is smooth.

Lemma 3.2.3. For every p € M the set Ey, is star-shaped with respect to 0 € T, M
and the geodesic 7y, . from p with initial velocity v is given by the formula

Y(p,v) (t) = epr(tv)

for all t € R for which at least one of the two sides is defined.

Proof. From Lemma 3.2.2. we have 7(,,)(t) = Ypw)(t 1) = exp,(tv) for every
t € R such that at least one of the two sides is defined. Moreover, if v € E,, then
Y(p,v) 18 defined at least on [0, 1] and hence tv € E, for all 0 < ¢ < 1. This means
that E), is star-shaped with respect to 0 € T, M. [J

Proposition 3.2.4. For every point p € M there exist an open neighbourhood V
of 0 € T,M and an open neighbourhood U of p in M such that exp,(V) = U and
exp, : V. — U is a smooth diffeomorphism.

Proof. According to the Inverse Map Theorem it suffices to prove that the derivative
(expy)s0 : To(TyM) = T,M — T,M is a linear isomorphism. If v € T,M and
o : R — T,M is the straight line o(t) = tv, and Y(p,v) 18 the geodesic from p with
initial velocity v, we have

d

= % epr(U(t)) = ;Y(p,v) (0) =v.
t=0

(expp)+0(v)

Hence (exp,)«0 = idr,p- O

Choosing a basis of T}, M, that is a linear isomorphism h : T,M — R", the pair
(U, h o (exp,|y)™!) is a smooth chart of M and is called a normal chart of M at p
(with respect to the connection V). The neighbourhood U of p in Proposition 3.2.4 is
called normal. Observe that the local representations of geodesics emanating from p
with respect to a normal chart at p are straight lines through 0. Thus, if (v',...,y")
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is the local representation of any geodesic v emanating from p with respect to a
normal chart at p, then

> THEG) (0 (0) =0, 1<k<n
ij=1

This means that the polynomial

n . .
> T

ij=1
vanishes identically on some open neighbourhood of 0 € R™. Therefore,
L(p) +T5i(p) = 0

for every 1 <i,5,k <n.
Given a connection V on a smooth n-manifold M, we define its torsion to be
the C°°(M)-bilinear map T : X(M) x X(M) — X (M) with

T(X,Y)=VxY —VyX — [X,Y].

Thus the value of T'(X,Y) at a point p € M depends only on the values X (p) and
Y(p).

The connection V is said to be symmetric if its torsion vanishes. This terminol-
ogy is justified as follows. Let (U, ¢) be a smooth chart of M with ¢ = (x!,...,2").
If X, Y e X(M) and

n

- 0 0
X\ = E Xk Y, = E }fk?
lv Oxk and Yy oxk’
k=1 k=1

we have
_ k k 7
T(X,Y)|y = gl <Z 321 (I — T X YJ) Dk

Hence V is symmetric if and only if the Christoffel symbols with respect to any
smooth chart are symmetric with respect to the lower indices, that is I’fj = I’;?i for
every 1 <1i,7,k <n.

It follows from the above that if V is a symmetric connection and p € M,
then the Christoffel symbols with respect to a normal chart at p vanish at the point p.

Proposition 3.3.5. For every connection V on a smooth n-manifold M there
exists a unique symmetric connection V on M which has the same geodesics as V.

Proof. If T is the torsion of V, we define the connection V by

_ 1
VxY = VxV - 3T(X,Y).
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Since T(X, X) = 0 for every X € X(M), it follows that V and V have the same
geodesics. The uniqueness is the fact that two symmetric connections with the same
geodesics coincide. Indeed, if V! and V? are two symmetric connections, then

S=V-V2:X(M)x X(M)— X(M)

is a symmetric C°°(M)-bilinear map. If V! and V? have the same geodesics,
S(X,X) =0 for every X € X(M) and therefore

25(X,Y) = S(X+Y,X +Y) =0

for every X, Y € X(M). O

3.3 Riemannian metrics

A Riemannian metric on a smooth n-manifold M is a family g = (gp)pem of inner
products
gp : TyM x T,M — T,M

which depend smoothly on p in the sense that if U C M is an open set and X,
Y € X(U), then the function f : U — R with f(p) = g,(X(p),Y (p)) is smooth. A
Riemannian manifold is a smooth manifold endowed with a Riemannian metric.

Let (M, g) and (N, h) be two Riemannian manifolds. A smooth map f: M — N
is called (Riemannian) isometry if it is a smooth diffeomorphism and its derivative
at each point preserves the Riemannian metrics, that is

i) (fap(V), Fip(w)) = gp(v, w)

for every v, w € T,M and p € M. The isometries are the isomorphisms of the cate-
gory with objects the Riemannian manifolds and the aim of Riemannian Geometry
is the classification of Riemannian manifolds up to isometry.

In the sequel we shall use in any case the symbol (.,.) to denote the Riemannian
metric and the symbol ||.|| for its corresponding norm on tangent spaces, if there is
no danger of confusion.

If M is a Riemannian manifold, the set I(M) of all isometries of M onto itself is
a subgroup of its group of diffeomorphisms and is called the isometry group of M.
If the action of I(M) on M by evaluation is transitive, M is called homogeneous.
Recall that the isotropy group (or stabilizer) at a point p is the subgroup

I,(M) = {f|f € (M) and f(p) =p}

of I(M). The derivative of an element f € I,(M) is an orthogonal transformation,
that is linear isometry, f.p : T,M — T,M. It follows from the chain rule, that
the assignment of f,, to f € I,(M) is a homomorphism of I,(M) into the group
of the orthogonal transformations of T, M which is usually called the isotropic
representation at p. The point p is called isotropic if the action of I,(M) on the
unit sphere in 7, M via the isotropic representation at p is transitive. Thus p € M
is isotropic if for every v, w € T, M with ||v|| = |Jw|| = 1 there exists f € I,(M)
such that f.,(v) = w. A Riemannian manifold M is called isotropic if every point
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of M is isotropic.

Example 3.3.1. On every open set M C R™, n > 1 the euclidean inner product
of R™ defines a Riemannian metric in the obvious way which is called the euclidean
Riemannian metric. FEvidently, the euclidean n-space R™ is a homogeneous and
isotropic Riemannian manifold.

Proposition 3.3.2. On every smooth n-manifold there are Riemannian metrics.

Proof. Let M be a smooth n-manifold and let A be a smooth atlas of M. For every
(U, ¢r) € A there is a Riemannian metric gV on U defined by

gg(UJU) = <(¢U)*p(v)7 (¢U)*P(w)>

for v, w € TyM, p € U, where (.,.) is the euclidean inner product in R". Let
{fu : (U,¢v) € A} be a smooth partition of unity subordinated to the open cover
U={U: U, ¢vu) € A} of M. For every p e M and v, w € T,M we define

gpv,w)= > fulp)gl (v,w).

(U,py)eA

Since g is locally a convex combination of Riemannian metrics, it is a Riemannian
metric itself. [

In the rest of the section we shall give in some detail several examples of
Riemannian manifolds.

Example 3.3.3. Let (M, g) be a Riemannian manifold and let i : N — M be an
immersion of the smooth manifold N into M. There is an induced by ¢ Riemannian
metric ¢!V on N defined by

gév(va w) = Gi(p) (i*p(v)’ i*p(w))

for every v, w € T,N and p € N. In particular, every smooth submanifold of M
inherits a Riemannian metric.

The n-sphere S% = {p € R"*! : ||p|| = R} of radius R > 0 inherits a Riemannian
metric from the euclidean Riemannian metric (.,.) of R"*!. Obviously, the orthog-
onal group O(n+ 1,R) is contained in the isometry group of I(S%). Actually, it can
be proved that O(n + 1,R) coincides with I(S}%), but we will not need this for the
time being. We shall show that S is homogeneous and isotropic with one strike.
Let p € S} and let {F4, ..., B, } be an orthonormal basis of 7,,S%. Then,

1
{Ela ceey Ena Ep}

is an orthonormal basis of T,R""! = R"*1 and there exists f € O(n + 1,R) such
that

flex) =Ep, 1<k<n, f(Rens1)=p.
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This implies that S7 is homogeneous and isotropic, since every point p is the image
of the north pole Re,11 and Ig., ., (S%) acts transitively on the set of orthonormal
basis of Tge,, ,,5p-

Example 3.3.4. The hyperbolic metric on the upper half plane
H? = {7 € C: Tmz > 0}

is defined by
1

g:(v,w) = m(vﬂ@ = mRe(v@)

for v, w € T,H?, z € H?, where (v, w) = Re(vw) is the euclidean inner product in
complex notation.
The reflection with respect to the imaginary semi-axis ¢ = {it : t > 0} is the
map 7 : H? — H? with 7(2) = —% and is an orientation reversing isometry of HZ.
Ifa, b, ¢, d € R and ad — bc = 1, for the Mobius transformation 7 : C — C with

az—+b
T =
(2) cz+d
we have I
mz
Im(T =
m(T'(2)) lcz 4+ d|?
and
T'(z)= 4
~ (ez+d)?

Therefore, T(H?) = H? and

gT(z)(T*z(U)7T*Z(w)) = gT(z)(TI(Z)UaT/(Z)w) = mRe(\T/(z)\Qvﬁ)
1 _
= mRe(vw) = g.(v,w)

for every v, w € T,H? and z € H?. Therefore the group of M&bius transformations
with real coefficients, which is isomorphic to PSL(2,R), is a subgroup of the isom-
etry group I(H?). It can be proved that this is the group of orientation preserving
isometries of H? and it has index 2 in I(H?), but we will not need this now.

The action of PSL(2,R) on H? by Mébius transformations is transitive because
if zo =a+1ib, a € R, b >0, then zy = T(i), where T is the Mdbius transformation

Thus, H? is homogeneous. It is isotropic as well. Indeed, if v € T;H? and g;(v,v) = 1,
there exists 0 < 6 < 27 such that v = e~ 29, If
cosf-z—sinf

T(y) = 27 = >0V
(2) sinf -z + cosf’
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then T'(i) = i and T'(i) = 2. Hence v = T};(1).
The Riemannian manifold H? is the Poincaré upper half-plane model of the
hyperbolic plane.

Example 3.3.5. We shall describe two models of the higher dimensional version
of the hyperbolic plane. The first one resembles the case of the sphere. Let n > 2,
R > 0 and

1..2 2 2 2
HE = {(21, s Tn, Tpp1) € R™T cai 4t —an . =—R°, zp1 >0}

be the upper connected component of the two-sheeted hyperboloid in R+, On H'%
we consider the Riemannian metric which on each tangent space is the restriction
of the Minkowski non-degenerate symmetric bilinear form

n
(,y) = —Tni1yns1 + Z TkYk
k=1

where z = (1,....,%n11), ¥ = (Y1, .-y Yn+1). Although the Minkowski form is not
positive definite, its restriction on each tangent space T,H%, p € H', is. To see this,
suppose that p = (p1, ..., Pnt1). If v = (v1,...,0p41) € T,HY, then

P1v1 + -+ TpUp — Png1Vng1 =0

and ) ) )
n n n
1 - R
=3t () 2 (1B
k=1 Prv1 N5 P k=1
from the Cauchy-Schwarz inequality, and (v,v) = 0 if and only if v; =-+- =v,, =0

and therefore v, 11 = 0 as well, since p, 1 > 0.
The Riemannian manifold H is called the hyperbolic n-space of radius R > 0.
An alternative model is the upper half n-space, which we denote temporarily by

n

% =1{1,.,pn) € R" : p, > 0}, endowed with the Riemannian metric
R

gp(v,w) = — > vpwy
Pn 2

where p = (p1,...,pn) € Ug and v = (vy, ..., v,), w = (w1, ..., w,) € T,U%. A tedious
calculation shows that the map F': H’ — U% defined by

r1(R+opt1)  Tn1(R+ Tny1) R? )

F('Tla "',xnaxTH*l) = ( PR ’
Tn+1 — Tn Tn+1 — Tn Tn+1 — Tn

is an isometry. So we use henceforth the notation H% for both models.

The group O, (n,1) of linear automorphisms of R"*! which preserve the
Minkowski form and send HY, onto itself is contained in the isometry group I(H}).
In this case too, it can be proved that this is the entire isometry group, but we
will not need this fact now. In a similar way as in the case of the n-sphere Sp we
can prove that H% is homogeneous and isotropic. Let p = (p1,...,pnt+1) € HY, so
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{p,p) = —R?%, ppy1 > 0. and let {E1,..., E,} be an orthonormal basis of T,H.
Then, (Fx,p) =0, 1 <k <n and so

1
{Ela ceey Ena }_%p}

is a basis of R"*L. If now A € Oy (n,1) is the matrix with columns Ej,..., E,,
1
=P then A(Ren41) = p, which shows that Oy (n,1) acts transitively on H', and

Aep, = Ej, 1 < k < n, which shows that H} is isotropic, since {eq,...,e,} is an
orthonormal basis of Tge,, ., , Hs.

Example 3.3.6. Let n > 1 and 7 : C"*1\ {0} — CP" be the quotient map. Recall
that in the canonical atlas {(V},¢;) : 0 < j < n} of CP™ we have

Vi ={[z0,...,2n) € CP™ : z; # 0}

and Z z z z
0 -1 Zj41
¢j[20, ceey Zn] = (—, ceey ]—, ]—, veey _n)
j Zj j Zj
The quotient map 7 is a submersion. To see this note first that its local represen-
tation ¢ o : 7 1(Vp) — C™ with respect to the smooth chart (Vp, ¢g) is given by

the formula . .
1 n
O T) (204 evey 2n) = (—, ey —).
(¢0 ﬂ-)( (OPIEEED) n) 207 ) 2
Let z = (20,...,2n) € 7 (Vo) and v = (v, ...,v,) € T.C"" = C"*! be non-zero.

Then v = 4(0), where (t) = z + tv, and

(¢00ﬂ07)(t):<zl+tv1 zn+tvn>

z0+tvg’ 7 2o+ tug
so that
/ V1 21V Un  Zplo
omon)(0)= (&2 Un_ .
(@nomon) (o) = (2 -2, - 0]
This implies that v € Ker 7, if and only if [vo, ..., v,] = [20, ..., 2n]. In other words

Ker 7., = {Az : A € C}. Obviously, for every ((1,...,(,) € C" there exists v =
(v0, -y vn) € C™*L such that

¢ =Y H%
J 20 Zg

Since the same holds for any other chart (V}, ¢;) instead of (Vp, ¢o), this shows that
7 is a submersion.

The inclusion §2"+1 < C**1\ {0} is an embedding and so its derivative at every
point of $?"*1 is a linear monomorphism. For every z € S?"*1 we have

Ker(7|g2nt1)s. = Kerm,, N T, 8?1 = {\z: X € C and Re) = 0}

which is a real line. On the other hand, 7! (7(2))NS?"*! is the trace of the smooth
curve o : R — S?"*! with o(t) = €'z for which ¢(0) = z and &(0) = iz. Therefore
Ker(m|g2n+1)+z is generated by &(0).
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Let h be the usual hermitian product on C**!. If
W, = {n € T.C" " : h(n,z) = 0},

then .. |w, : W, — T},CP" is a linear isomorphism for every z € C"*1\{0}. Indeed,
for every v € T,C"! there are unique A € C and € W, such that v = \z + 7.
Obviously,

h h

hes) b

h(z, 2) h(z, z)
The restricted hermitian product on W, can be transferred isomorphically by .
on 11,)CP". If now

9210, w) = Re h((mx|w.) ™ (v), (maz w) ™ (w))

for v, w € T,;CP", then g is Riemannian metric on CP" called the Fubini-Study
metric. If z € S then W, = {v € T,S*" ! : (v,5(0)) = 0}.

Each element A € U(n + 1) induces a diffecomorphism A : CP" — CP". More-
over, A(W,) = Wy, for every z € C""\ {0} and therefore A is an isometry of
the Fubini-Study metric. In this way, U(n + 1) acts on CP™ by isometries. The
action is transitive and so CP" is a homogeneous Riemannian manifold with re-
spect to the Fubini-Study metric. Indeed, U(n + 1) acts transitively on S?*F1
because if z € S?"*1, there exist Ey,...E, € C""! such that {E,... E,, z} is an
h-orthonormal basis of C"*!. The matrix U with columns F,..., E,, z is an ele-
ment of U(n + 1) such that U(e;) = Ej for 1 < j < n and U(ep41) = 2. This last
equality shows that U(n + 1) acts transitively on CP".

The isotropy group of [e,+1] = [0,...,0,1] consists of all A € U(n+ 1) such that
A(eny1) = eny for some A € S'. This means that

B 0
(2
for some B € U(n). Since A= X;l, this implies that the isotropy group of [e,1]
is U(n), considered as a subgroup of U(n + 1) as above, and therefore CP" is

diffeomorphic to the homogeneous space U(n + 1)/U(n).
If A€ U(n+1), then det A € S and taking a € S* such that a” = det A we

have a ' A € SU(n + 1) and A = a=1A. Hence SU(n + 1) acts also transitively on
CP™ and CP" is diffeomorphic to SU(n + 1)/U(n), if we identify U(n) with the
subgroup of SU(n + 1) consisting of matrices of the form

(B : )
1
0 det B

for Be U(n). If A€ SU(n+ 1) belongs to the isotropy group of [e,11] and AA has

1
the above form, then det B = \**! and putting B’ = — B, we have now

)
B 0
=00 3)
0 5
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where det B’ = . Therefore A € U(n), as a subgroup of SU(n + 1).

Example 3.3.7. If (M, g) and (N, h) are two Riemannian manifolds, on the product
manifold M x N there is a Riemannian metric (.,.) defined by

(v, W)y = gp, (V1,W1) + hp, (V2, W2)

for v = (v1,v2), w = (w1, w2) € T,(M xN) =T, M &T,,N, p= (p1,p2) € M x N,
which is called the product Riemannian metric.

Example 3.3.8. Let M be a Riemannian manifold and let G be a subgroup of
its isometry group I(M) which acts properly discontinuously on M, that is every
point p € M has an open neighbourhood U in M such that g(U) N U = & for all
g € G, g # idys. If the orbit space M /G is Hausdorff, it is a smooth manifold and
the quotient map 7 : M — M /G is a smooth covering map, in particular a local
diffeomorphism as it maps each open neighbourhood like U above diffeomorphically
onto w(U).

Let p e M, g € G and g = g(p). Since w o g = 7, from the chain rule we have

Txq O Jxp = Txp, and since g is an isometry, it follows that

(Mg (0), 754 (W))g = (g5 (1 (1)), 9 (Mg (W) = () (), ) (w))
for every v, w € Ty,)(M/G). This means that there is a unique well defined
Riemannian metric § on M /G with respect to which 7 becomes a local isometry, as
it maps each open neighbourhood U as above isometrically onto «(U).

In the special case M = S™ and G = {idgn,a} = Zy, where a(z) = —z is the
antipodal map, we obtain a Riemannian metric on the real projective n-space RP"
which is locally isometric to the euclidean Riemannian metric on S™. Similarly,
the group of translations of R™ by a vector in Z" is isomorphic to Z"™ and acts
properly discontinuously on R™. The orbit space R"/Z" is diffeomorphic to the n-
torus 7" = S x --- x S!, n-times. Since translations are euclidean isometries, we
obtain a Riemannian metric on T™ such that the quotient map 7 : R™ — T™ which
is given by

Tty o ty) = (€1, .., €")

becomes a local isometry. The n-torus T" equipped with this Riemannian metric is
usually called flat n-torus.

3.4 The Levi-Civita connection

In this section we shall prove that on a Riemannian manifold there exists a unique
symmetric connection which is compatible with the Riemannian metric in the sense
that parallel translation along smooth curves with respect to this connection is a
linear isometry of inner product vector spaces. This result is sometimes called the
Fundamental Theorem of Riemannian Geometry. Connections on a Riemannian
manifold which are compatible with the Riemannian metric are characterized as
follows.
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Proposition 3.4.1. Let M be a Riemannian smooth n-manifold. For a connection
V on M the following statements are equivalent.

(1)) XY, Z) = (VxY,Z)+ (Y,VxZ) for every X, Y, Z € X(M).

(ii) If I C R is an open interval and v : I — M is a smooth curve, then

d DV DW
E(‘/a W) = <W’W> +(V, W>

for every V., W € X(v).

(i4i) If a, b € R, a < b, and v : [a,b] — M is a smooth curve, then the parallel
translation myq : Ty M — Ty M from ~y(a) to y(b) along v with respect to V is a
linear isometry of inner product vector spaces.

Proof. The equivalence of (i) and (ii) is an immediate consequence of Lemma 3.1.4
and Proposition 3.1.7. If (ii) holds and V', W are parallel along 7 then

d
—((V,W) =0
SV W)

and so (V, W) is constant on [a, b]. This implies (iii). Conversely, there are parallel
Ex,..., By € X(7) such that {E1(to), ..., En(to)} is an orthonormal basis of T, )M
for some to € I. If (iii) holds, {£1(t),..., E,(t)} is an orthonormal basis of T’ ;) M
for every t € I. If V., W € X (7), there are unique smooth functions fx, gx : I — R,
1 < k < n, such that

V= Z fuEr and ngEk.
k=1 k=1
Then, <V, W> = fig1 + -+ + fngn and

d - - DV DW
VW)= > frge+ Y fugh = (W) +V,—~). O
k=1 k=1

Corollary 3.4.2. Let M be a Riemannian smooth n-manifold and V be a
connection on M. If V is compatible with the Riemannian metric, then the velocity
field of each geodesic of V has constant length.

Proof. Indeed, if y is a geodesic of V and the latter is compatible with the Rieman-
nian metric, we have

d .o Dy . . Dj
S = (L 4) +

=0. O
77 dt>

For every ¢ > 0 the set
T°M ={(p,v) € TM :pe M,veT,M,|v| =c}
is a (2n — 1)-dimensional smooth submanifold of 7'M, by Corollary 1.3.5, because

1 1
T°M = fﬁl(icz) and 502 is a regular value of the kinetic energy f : TM — R
defined by

F(p.v) = gl
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Indeed, if (U, ¢) is a smooth chart of M and (7—*(U), ¢) is the corresponding chart
of T'M, then the local representation of f is

1 — o
(f © ¢—1)(x1, ”.’xn,vl’ ""vn) = 5 Z gij(¢_1($1, ...,CEn))UZUj
1,j=1
and differentiating

o(f o)

n
50 (zt, ...,z 0, ") = Z gii (¢ (!, . 2™
j=1

because the matrix (gi;)i<i j<n of the Riemannian metric is symmetric. Since it is
invertible at every point as well,

b —1
(f(;(lb )(xl’ ,xn,vl,”’vn)zo
v
for all 1 <i <mnifand onlyif v! =--- =" =0.

The tangent space T, ,)T°M is the Kerf,(,,) for every (p,v) € T°M. Now
v is a geodesic of a connection V on M if and only if (v,7) is an integral curve
of the geodesic vector field G of V. If V is compatible with the Riemannian
metric, Corollary 3.4.2 says that ||| takes on a constant value c¢. If v is not
constant, ¢ > 0 and (v,7) lies entirely on the constant kinetic energy level set
T°M. Thus, the geodesic vector field is tangent to constant kinetic energy level
sets. In particular, T'M is called the unit tangent bundle of M and from Lemma
3.2.2 every geodesic is a reparametrization of a geodesic whose velocities lie in 71 M.

Theorem 3.4.3. On every Riemannian smooth n-manifold M there ezists a
unique symmetric connection which is compatible with the Riemannian metric.

Proof. We shall prove first the uniqueness by finding an explicit formula for such a
connection V. For every X, Y, Z € X(M) we have

X(Y,2) =(VxY,Z) + (Y, VxZ) = (VxY,Z) + (Y, VzX) + (V,[X, Z])
Y(Z.X) = (VyZ,X) + (Z,Vy X) = (Vy Z,X) + (Z,VxY) + (Z,[Y, X])

Z(X,Y) = (VzX,Y) + (X, V2Y) = (V2X,Y) + (X, Vy Z) + (X,[Z,Y])

since V is symmetric and compatible with the Riemannian metric. From these we
get

XY, 2)+Y(Z,X) - Z(X,Y) = 2(VxY, Z) + (Y, [X, Z]) + (Z,[Y, X]) — (X,[Z,Y])).

This equality uniquely determines V because the Riemannian metric on each tangent
space is a non-degenerate symmetric bilinear form.

The existence of V will be proved locally by providing the Christoffel symbols
from which it is determined. Due to uniqueness the local definitions will coincide on
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the overlapping domains. Let (U, ¢) be a smooth chart of M with ¢ = (z!,...,2")

and let
=(2 0 1<ij<
9 =\gg g ) 1Shisn

By the above formula, a symmetric connection V which is compatible with the
Riemannian metric must satisfy

= o 0
Ik = V=
Srhom =(V2 55 5

on U, for every 1 < i,5,m < n. The Christoffel symbols are uniquely determined
from the above linear systems, because the Riemannian metric on each tangent
space is a non-degenerate symmetric bilinear form and therefore the symmetric
matrix (gij)i<ij<n is invertible at each point of U. If we denote by g% the entries
of the inverse matrix of the Riemannian metric (gij)fﬁli, j<n> then the Christoffel
symbols are

110gjm n Ogmi  0gij
ox’ oxi  Ox™

2 oxt  OxJ Ol

1 & Ogii  Ogi;  Ogi;
Ffj:_zgkl<iﬂ+ gii 9”) 1<i,j,k<n.
=1

It remains to show that the connection on V on U whose Christoffel symbols
are the solutions of the above linear systems is symmetric and compatible with Rie-
mannian metric. The first is obvious, because the matrix (g;j)1<i j<n is symmetric
and so the (7, 7) linear system is the same as the (j,4) one. To prove compatibility,

we let
o 0 " 0
x=Sxt2 oyl gyl
; ozk’ Z ok’ ; dzk’

and then we have
<VXy Z> + <Y V)(Z>

n

_ Z [gkl(ZlX(Yk) +YkEx(2Y) Z X'YTEguz' + Z X? Zﬂrgjgklyﬂ
k=1 i,j=1 i,j=1

Since the matrix (g;j)1<i j<n iS Symmetric, substituting we compute

n

ST (YVIZ'TE gy + Z7YMTgn) = Z YIZ'TE gy + Z Y ZITE gi
Jik,l=1 gk, 0=1 gk, l=1

= Z ZZY]"‘YIZJ <ZFngl>

7,l=1
1 9g9;1 | Ogu  0Ogij vl 59;1 Oqii  0gij
2 Z:: <63ﬂ OxJ Ozl Z zY ox’ axj Ox!

- i Zlyj%
= oxt’
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Therefore,
- i . 4.
(VxY.2) + (Y, VxZ) = Y (2 X +YrX(2)) + Y X2y
k=1 Ayt T
n
= X(Z ng’fZl> = X(Y,2). O
k=1

The unique connection of a Riemannian manifold M which is symmetric and
compatible with the Riemannian metric is called the Levi-Civita connection of M.
The geodesics of the Levi-Civita connection of M will be simply called geodesics of
M. Tt easy to see that if V is a connection on M and f : M — M is a smooth
diffeomorphism, then the formula

VxY = [N (Vex fY)

for X, Y € X(M) defines a new connection on M. If V is symmetric, so is V. If
V is compatible with the Riemannian metric of M and f is an isometry, then V is
also compatible with the Riemannian metric. By uniqueness, if V is the Levi-Civita
connection of M, it is preserved by isometries, that is

for every X, Y € X(M) and f € I(M). In particular, every isometry sends
geodesics to geodesics. This observation is crucial for the determination of the
geodesics of a Riemannian manifold with sufficiently large isometry group.

Example 3.4.4. The Levi-Civita connection of the euclidean n-space R" is
the euclidean connection with vanishing Christoffel symbols. If M C R" is a
hypersurface, the induced euclidean connection on M defined in Example 3.1.5 is
the Levi-Civita connection of M for the restricted euclidean Riemannian metric, as
it is easily seen.

Example 3.4.5. We shall describe the geodesics on a n-sphere S of radius R > 0.
Let v : I — S} be the geodesic satisfying the initial conditions v(0) = Re,41 and
4(0) = ej, defined on some open interval I C R containing zero. Suppose that
() = (Y1), ...,y T(t)) for t € I. For 2 < j < n, the reflection a; : R*™! — R*1
with

aj(xl, L I S At L)

is an isometry of S% such that a;(Ren41) = Repq1 and

(@))+Rens1 (Y(0)) = aj(er) = ex = (0).

From the invariance of geodesics under isometries and uniqueness follows now that
ajovy =~ and hence v/ (t) = —17(t), that is 77 (t) = 0 for every t € I and 2 < j < n.
This means that (/) is an arc on the great circle which is the intersection of S%
with the plane generated by {e,en4+1}. Since S% is homogeneous and isotropic,
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again the existence and uniqueness of geodesics implies that all geodesics are great
circles. In particular, the geodesic vector field on T'S% is complete.

As an illustration we shall write down the system of differential equations of
geodesics on S? with respect to the spherical coordinates (6, ¢), where the point
(z,y,2) € S? is written

r=cos¢-sinf), y=sin¢g-sinf, z = cosb.

The basic vector fields are

9 cos ¢ cos 8 9 —sin ¢ sin 6
% = singcosf |, Ere cos ¢ sin 0
—sin6 ¢ 0

and so the matrix of the Riemannian metric is

1 0
(9ij)1<ij<2 = 0 sin26)"
It follows that almost all Christoffel symbols vanish except
1 L. 2
I3y = —5 sin 20, T'{,=cot.

Therefore, the system of differential equations of geodesics in spherical coordinates
is

1
0" — 5sin20- (¢')> =0,
¢ +2cotf-¢'0 =0.

The meridians are obvious solutions of this system.

Example 3.4.6. The matrix of the hyperbolic Riemannian metric on the upper

half plane H? is
L0
(9ijhr<ij<e = <0 L)
y2

and so the Christoffel symbols are

<

1 1 1
F%QZ__v F%lz_v F%QZ__v
Y Y Yy
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and the rest are zero, at the point z = = + iy € H?. So the system of differential
equations of geodesics is
" 2 i
" — -y =0,
Yy

y' + ;[(:6’)2 - ) =0

An obvious solution is £(t) = ief, t € R, whose image is the imaginary semi-axis.
Since H? is homogeneous and isotropic with respect to the subgroup PSL(2,R)
of its isometry group which acts by Mobius transformations, the geodesics are
euclidean semi-circles with center on OH? (the boundary taken in the Riemann
sphere @), because the Mébius transformations send circles onto circles on € and
preserve angles.

Let M be a Riemannian smooth n-manifold. On M we shall always consider
the Levi-Civita connection and all the related notions associated with it such as
parallel translation, geodesics and exponential map. Let p € M and U be a normal
neighbourhood of p, that is there exists an open neighbourhood V of 0 € T),M in
T,M such that exp : V' — U is a smooth diffeomorphism. We denote by B,(0,€)
the open ball in T, M of radius € > 0 and center 0 € 7,,M. There exists ¢y > 0 such
that B,(0,e0) C V. The set exp,(B,(0,¢)) will be called the closed geodesic ball of
radius 0 < € < ¢y and center p and its interior exp(B,(0,€)) open geodesic ball. Its
boundary exp,,(0B,(0, €)) will be called geodesic sphere. Fixing an orthonormal basis
{E1, ..., By} of T,M we have a linear isometry of inner product spaces o : R" — T, M
with o(ey) = Eg, 1 < k < n, and a normal chart (U, ¢) where ¢ = oo (exp, [v) '
Let ¢ = (2, ...,2") and

Ox*’ Ox7

Then g¢;;(p) = dij, 1 < 4,5 < n, Since the Levi-Civita connection is symmetric, the
Christoffel symbols with respect to this normal chart vanish at p. From the formula
in the proof of Theorem 3.4.3 giving the Christoffel symbols we compute

& k . k dgii
E U590 + E :Pilgkj = p
k=1 k=1

and in particular %(p) =0 for every 1 < i,j5,1 <n.

In order a normz:fl neighbourhood of p, in particular a geodesic ball, to be useful
for local calculations near p, it is desirable to be a normal neighbourhood of nearby
points also. An open set W C M will be called uniformly normal if it is a normal
neighbourhood of all its points. More precisely, W is uniformly normal if there ex-
ists some 0 > 0 such that W C exp,(B,(0,6)) and exp, : B,(0,5) — exp,(By(0,4))
is a smooth diffeomorphism onto the open set exp,,(B,(0,d)) C M for every p € W.
In order to prove the existence of uniformly normal neighbourhoods we shall need
the following technical remark which is a parametrized version of the equivalence
of norms in finite dimensional real vector spaces.
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Lemma 3.4.7. If M is a Riemannian smooth n-manifold and p € M, for every
open neighbourhood A C TM of (p,0) there exists an open neighbourhood U of p in
M and some § > 0 such that

Us ={(q,v) e TM : q € U,v € By(0,6)} C A.

Proof. Let (W,4) be a smooth chart of M with p € W and ¥(p) = 0. Let
¢ = (2!, ...,2™). We denote by r the euclidean norm on R™. If (7' (W), ) is the
corresponding smooth chart of TM, where w : TM — M is the tangent bundle
projection, we have 1/;(1),0) = 0 and we may assume that A C 7~ '(W). Since
Y¥(A) € R™ x R™ is open, there exists ¢ > 0 such that B(0,2€) x B(0,2¢) C 9(A).
The set

n

K = {(Q,ka(%) Jen (W) ir(W(@) S ok =€

k=1

is compact and so there exist 0 < § < ¢ such that

n
0<6”< Z gij(@)vivj < ¢
ij=1

for (q,» v <—(:)8k> ) € K. If now r(¢(q)) < ¢, then
x
q

n

€ 0
(4, o )2 ;Uk (@)q) €K

5 (s 1/2 (S, 1/2
() < <f(>0)

k=1 k=1

and thus

Su(i)

k=1
for every vy,..., v, € R. If we take U = ¢~ 1(B(0,¢)), we have

Us C o 1(B(0,€) x B(0,e)) c A. O

Proposition 3.4.8. If M is a Riemannian smooth n-manifold and p € M, then
every open neighbourhood of p contains a uniformly normal open neighbourhood of p.

Proof. Let E C TM be the domain of definition of the exponential map and let
F:E— M x M be the smooth map

F(p,v) = (p,exp,(v)).

For every p € M, the derivative F,(, o) is a linear isomorphism and from the Inverse
Map Theorem there exists an open neighbourhood A C E C TM of (p,0) such that
F(A) C M x M is open and F|g : A — F(A) is a smooth diffeomorphism. From
the preceding Lemma 3.4.7 there exists an open neighbourhood U of p and some
d > 0 such that Us C A. Since F'(p,0) = (p,p), there exists an open neighbourhood



68 CHAPTER 3. RIEMANNIAN MANIFOLDS

W C U of p such that W x W C F(Us). We shall show that W uniformly normal.
We observe first that exp, is defined on B,(0,9) C T; M for all ¢ € W. Moreover,
(expy 1B,(0,6)) " = (FlioyxB,(0,6)) " is smooth for ¢ € W. Finally, if (¢,y) € W x W,
there exists v € By(0,6) such that (¢,y) = F(q,v), that is y = exp,(v). This shows
that W C exp,(B,(0,9)) for every ¢ € W. O

Note that if U is a (closed or open) geodesic ball with center p € M, for every
q € U there exists a unique geodesic path in U from p to ¢, but if p, g are two points
in a uniformly normal open set W, there exists a geodesic path from p to ¢, which
however may not lie entirely in W.

3.5 The Riemannian distance

On a Riemannian manifold M it is possible to define the length of curves as follows.
Let a, b € R, a < b, and 7 : [a,b] — M be a piecewise smooth parametrized curve.
The non-negative real number

b
L) = [ ol

is defined to be the length of v with respect to the Riemannian metric. By the
change of variables formula, it is invariant by piecewise smooth reparametrizations.

If v: I — M is a smooth parametrized curve defined on an open interval I C R
such that 4(t) # 0 for every t € I, then taking any tg € I and putting

t
ht) = [ [7(s)llds
to
the smooth function i : I — R is strictly increasing and maps I diffeomorphically
onto an open interval h(I) C R. The smooth parametrized curve

oc=~oh t:h(I) > M

is a reparametrization of - such that ||&|| = 1.

A smooth parametrized curve v with ||¥]] = 1 is said to be parametrized
by arclength or unit speed. By Corollary 3.4.2, every non-constant geodesic is
parametrized proportionally to arclength and from Lemma 3.2.2 every such geodesic
can be reparametrized to a unit speed geodesic.

If M is connected, for every p, ¢ € M the non-negative real number

d(p,q) = inf{L(7)|vy : [a,b] = M is a piecewise smooth parametrized curve

with v(a) = p and ~(b) = ¢ for some a, b € R, a < b}

is called the (Riemannian) distance of p and g. The function d : M x M — R has
the following obvious properties:

(i) d(p,q) = 0 and d(p,p) =0,

(ii) d(p, q) = d(q,p) and

(i) d(p, q) < d(p, 2) + d(z,q)
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for every p, q, z € M. In other words, d is a pseudo-distance on M. It can be
proved directly that the topology defined by d coincides with the topology of M and
hence d is actually a distance. However, we shall derive this from considerations
showing the strong connection of d with geodesics, at least locally. We shall need a
couple of lemmas, which are of independent interest.

Lemma 3.5.1. Let M be a smooth n-manifold endowed with a symmetric connection
V and let A C R? be an open set. If o : A — M is a smooth map then

D (05\ _ D (00

dt\0s ) ds\ot)
Proof. Tt suffices to prove the formula in case there is a smooth chart (U, ¢) of M
such that o(A) C U. If ¢ = (2, ...,2") and po o = (071, ...,0,), we have

Jo =00, 0O

ds 4= 9s Ok
k=1

D (0o = Ooy, g 0oy Ooj| 0O
253 - 5(5) -+ erat'ﬂw

k= 7.7_

D (00 _§~[d (Ook\ , N~ 001 Doj) O
@<m>_21@<m>+§:%a é%bﬂ'

k=1 1,7=1

and

iy

and similarly

Since V is symmetric, I’f = I’;“Z, 1 < 4,5,k < n, and the result follows from
Schwartz’s theorem. [J.

The next lemma is due to C.F. Gauss.

Lemma 3.5.2. Let M be a Riemannian smooth n-manifold, p € M and let
V' = exp,(By(0,€)) be an open geodesic ball of radius € > 0 with center p. Then
every geodesic emanating from p intersects orthogonally the geodesic spheres
exp,(0B,(0,0)), 0 <0 <e.

Proof. Let I C R be an open interval and let u : I — T,,M be a smooth curve with
|lu(t)|| =1 for every t € I. If 0 : I x (—e¢,€) — M is the smooth map

o(t,s) = exp,(su(t)),

0o Oo
it suffi t that { —,— ) =0
it suffices to prove tha < 5 Ds >

We compute

2@8_0_2@00+00D8_0_28080+0
As\ ot  ds/ \ds\ ot ) s Ot ds \ Os ~ \dt\9s ) Os
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by Lemma 3.5.1 and since o(t,.) : (—e,e) — M is a geodesic for every ¢t € I. For

the same reason,
2

oo _1

Bs
by Corollary 3.4.2, and differentiating

D [(0oc\ Ooc
2<%<%)’%>:0

0 /00 00\
ds\ot' 0s /)
do Odo\ . .
and 5 Bs is independent of s. However o(t,0) = p for all ¢ € I and so
s
0
B_(tj("o) = (. Therefore,

<‘Z—j(t,s), ‘;—Z(t, s)> = <‘Z—‘Z(t,0), Z—Z(t,0)> —0. O

As in the situation of the preceding Lemma 3.5.2, let M be a Riemannian smooth
n-manifold, p € M and V' = exp,(B,(0,¢€)) be an open geodesic ball of radius € > 0
with center p. A piecewise smooth parametrized curve 7 : [a,b] — V' \ {p}, where q,
beR, a<b,is of the form

Thus,

(t) = exp, (r(t)u(t))

where 7 : [a,b] — (0, €) is a unique piecewise smooth function and v : [a, b] — T),M is
a unique piecewise smooth parametrized curve with ||u(t)|| = 1 for ¢ € [a,b]. Using
the notation of the proof of Lemma 3.5.2 we have (t) = o(t,7(t)) and

o Oo 0o
A(t) = 5 +7'(t) s
From Lemma 3.5.2 we have
do ||? do ||?
. 2 _ ||92 1211220 > (0 (4))2
ok = 5| + @25 = ew

and the equality holds if and only if u is constant. This implies that

b b
uwz/wwwz/w@ﬂzwmﬂwn

and the equality holds if and only if u is constant and r is monotone.

Proposition 3.5.3. Let M be a Riemannian smooth n-manifold, p € M and let
V' = exp,(By(0,¢)) be an open geodesic ball of radius ¢ > 0 with center p. Let
v :[0,¢] = V be a geodesic from y(0) = p to a point ¢ = ~y({) € V. Ifa, b € R,
a<b, and o : [a,b] = M is any piecewise smooth curve from o(a) =p to o(b) = q,
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then L(v) < L(o). Moreover, if L(v) = L(o), then o([a,b]) = ([0, 4]).

Proof. We may assume that 7 is parametrized by arclength, so that ¢ = L(y) and
7 is given by 7(t) = exp,(tv), where v = 4(0) and [[v|| = 1. Obviously, £ < e. We
shall prove first that L(o) > ¢. Let 0 < 6 < £. By continuity and connectedness,
there exist a < ¢ < d < b such that o(c) € exp,(9B,(0,6)), o(d) € exp,(0B,(0,1))

and o((e,d)) C exp,(By(0,£)) \ exp,(B,(0,9)). Then,
L(o) = L(o|jea) 2 £ =0

from the above considerations and letting § go to zero this implies that L(o) > ¢.
This proves the first part.

Suppose now that L(o) = ¢. Applying what we have already proved to o], g we
have L(o|(4,)) > ¢ and therefore

L(olie,q) < L(olie.q) + L(olg) = £ — L(olq,q) <€ 6.

Hence L(o|j,4) = ¢ — ¢ and from the above the trace o([c,d]) is the same as the
trace of a geodesic path exp,(tv), 0 < t < /, for some v € T,M with [jv] = 1.
Letting again ¢ go to zero we get a geodesic exp,(tv), 0 < ¢ < £ whose trace is the
same as 0|(qq. Thus, necessarily L(c|(qp)) = 0 and y(¢) = ¢ = exp,(fv). It follows
that (t) = exp,(tv) forall 0 <t < (. O

Corollary 3.5.4. Let M be a Riemannian smooth n-manifold with Riemannian
distance d. For every p € M there exists € > 0 such that

exp,(By(0,6)) = {g € M : d(p,q) <&}

for every 0 < § < e.

Proof. By Proposition 3.2.4, there exists ¢ > 0 such that exp, maps B,(0,¢) C T,M
diffeomorphically onto the open neighbourhood exp,,(B,(0, €)) of p. Obviously then

exp,(Bp(0,4)) C {g € M : d(p,q) < d}

for every 0 < 0 < ¢, since each geodesic path in the open geodesic ball exp,,(B,(0, §))
emanating from p has length < 4.

Conversely, if ¢ ¢ exp,(B,(0,0)), then every piecewise smooth parametrized
curve o from p to g intersects the geodesic sphere expp(BBp(O, p)) for all 0 < p < 4,
and so L(o) > p, by Proposition 3.5.3. Consequently, L(o) > §. This shows that
d(p,q) > 4. O

Corollary 3.5.5. On a Riemannian smooth manifold M the Riemannian distance
d induces the original manifold topology and the pair (M,d) is a metric space. O]

In the sequel we shall denote by B(p,d) the open d-ball in M with radius J and
center p. According to Proposition 3.5.3, for every p € M there exists some € > 0
such that B(p,d) is the geodesic open ball of radius 0 and center p and for each



72 CHAPTER 3. RIEMANNIAN MANIFOLDS

q € B(p,9) the distance d(p, q) is the length of the unique geodesic path in B(p,¢)
from p to g for all 0 < § < e. It follows from this that geodesics locally minimize
length.

Proposition 3.5.6. Let M be a Riemannian smooth manifold and v : [a,b] — M,
where a, b € R, a < b, be a piecewise smooth parametrized curve from ~vy(a) = p to
~v(b) = q. If L(v) = d(p,q), then v([a,b]) is the trace of a geodesic path. In partic-
ular, if v is parametrized by arclength, it is a geodesic path and in particular smooth.

Proof. Since being a geodesic is a local property, it suffices to show that the trace
of v is locally the same as that of a geodesic. Let a < tg < b. By Proposition
3.4.8, there exists a uniformly normal neighbourhood W of ~(¢y). So there exists
€ > 0 such that W C exp,(By(0,¢€)) and exp, |, (0, is a diffeomorphism for every
y € W. There exists n > 0 such that y([[to — n,t0 + 1)) C exP.ye)(By (1) (0 €))-
Our assumption implies that L(vli,—p.t9+4) = d(7(to — 1), v(to + 1)) and thus, by
Proposition 3.5.3, v([to — n, to + n]) is the trace of a geodesic path. [

Definition 3.5.7. A geodesic path v : [a,b] — M, a, b € R, a < b, on a
Riemannian smooth manifold M with Riemannian distance d is called minimizing

if L(v) = d(y(a),(b)).

Note that if v is a minimizing geodesic path as in the above definition, then
L(lit,s) = d(v(t),7(s)), that is 7|4 is minimizing, for every a < ¢t < s < b.
According to Proposition 3.5.3, every geodesic of a Riemannian manifold is locally
minimizing. However, the example of the sphere shows that on a Riemannian
manifold there may exist non-minimizing geodesic paths. The question now arises
whether any two points on a connected Riemannian manifold can be joined by a
minimizing geodesic path. This is answered by the following theorem which is due
to H. Hopf and his student W. Rinow. The proof we present here is due G. de Rham.

Theorem 3.5.8. Let M be a connected Riemannian smooth n-manifold. If the
geodesic vector field of M is complete, then any two given points of M can be joined
by a minimizing geodesic path.

Proof. Let p, ¢ € M and r = d(p,q) > 0. According to Corollary 3.5.4, there exists
0 < e < r such that exp,(B,(0,6)) = B(p,d) is a normal neighbourhood of p for
every 0 < ¢ < e. Fixing such a ¢, by compactness, there exists py € exp,(0B,(0,6))
such that

d(po,q) = inf{d(z, q) : z € exp,(9B5,(0,9))}.
Then, pg = exp,(dv) for some v € T, M with |[v|| = 1 and the unit speed geodesic
(1) = expy(tv)

is defined on the entire real line R, because we assume the the geodesic vector field
is complete. It suffices to prove now that d(vy(t),q) = r — ¢t for every 6 < t < r,
because then for ¢ = r we will get (1) = ¢ and v|(p,,) will be minimizing.
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Firstly, we have

r=d(p,q) < d(p,v(t)) +d(v(t),q) <t+d(v(t),q)

and hence d(y(t),q) > r —t for every 0 <t <.
On the other hand we have

r > inf{d(p,z) + d(z,q) : z € expp(ﬁBp(O, M)} =9d+dpo,q)
and so d(pg,q) < r — 9. Hence d(y(9),q) = d(po,q) =r — . Let

T =sup{t € [§,r] : d(y(t),q) =7 —t}.

By continuity, d(y(T'),q) = r — T. Moreover, d(y(t),q) =r —tforall § <t < T,
because

r—t<d(y(t),q) <d(y(t), (1) +d(v(T),q) <T —t+r—-T=r—t

It remains to prove that 7' = r. Suppose that T' < r. We apply what we have already
proved for p to v(7'). Thus, there are some 7 > 0 and pj € exp.1)(9B.1)(0,7))
with

d(py, q) = inf{d(z,q) : 2 € exp, () (B (1) (0,m))}
and d(py,q) = d(v(T),q) —n =r — T —n. Therefore,

d(p,py) > d(p,q) —d(py,q) =r— (r =T —n) =T +1.

However the piecewise smooth parametrized curve, which is the concatenation
of ¥|o;;) and the unique geodesic in exp. ) (By(7)(0,7)) from v(T) to p; has
length T+ n, and from Proposition 3.5.6 its trace must be the trace of a geodesic
path. Since part of this path coincides with [ 7], it follows from uniqueness
of geodesics that this geodesic path is 7|jo 74y Hence py = (T + n) and
d(v(T +1n),q) =7 — (T 4+ n). This contradicts the definition of 7.

A topological characterization of the completeness of the geodesic vector field
is given by the following theorem also due to H. Hopf and W. Rinow.

Theorem 3.5.9. For a connected Riemannian smooth manifold M with Rieman-
nian distance d the following statements are equivalent:

(i) The geodesic vector field of M is complete.

(ii) The metric space (M,d) is complete.

Proof. Suppose that the geodesic vector field of M is complete. In order to prove
that (M,d) is a complete metric space, it suffices to show that every d-bounded
set C' C M is contained in a compact set. Let p € M. Since C is bounded, there
exists ¢ > 0 such that d(p,q) < ¢ for every ¢ € C. From Theorem 3.5.8, there
exists some v € T, M such that ¢ = exp,(v) and |jv|]| = d(p,q). This shows that

C C exp,(By(0,c¢)), and exp,(By(0,c)) is compact, because exp,, is continuous.
Conversely, suppose that there exists a geodesic parametrized by arclength
whose maximal interval of definition is an open interval (a,b) for some a < b < +o0.
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Then, d(y(t),v(s)) < |t — s| for every t, s € (a,b). If (M,d) is complete, then
p= lim v(t) exists in M. From Proposition 3.4.8 there exists a uniformly
t—b—

normal open neighbourhood W of p, for which there exists some § > 0 such that
W C exp,(By(0,6)) for every ¢ € W. There exists b—6 < T' < bsuch that v(T') € W
and then the geodesic form ~(7") with initial velocity 4(7") is defined at least on
the interval [0,0). By uniqueness of geodesics, this implies that + is defined at
least on (a, T+¢) and since T'+6 > b this contradicts our assumption the b < +o00. [

If any of the two equivalent conditions of the preceding theorem is satisfied, we
shall call the Riemannian manifold M complete. As the proof shows, the following
also holds.

Corollary 3.5.10. A connected Riemannian smooth manifold M is complete if
and only if there exists a point p € M such that exp, is defined on the entire
tangent space T,M. []

Corollary 3.5.11. The geodesic vector field of a compact Riemannian smooth
manifold is complete. [J

The fact that homogeneous Riemannian manifolds are complete is a consequence
of the following.

Proposition 3.5.12. Let (M,d) be a locally compact metric space. If it is
homogeneous in the sense that for every x, y € M there exists a d-isometry
f: M — M such that f(x) =y, then it is complete.

Proof. Let p € M. Since M is assumed to be locally compact, there exists some
r > 0 such that B(p,r) is compact. The homogeneity implies now that B(z,7)
is compact for every x € M. If (xp)ren is a Cauchy sequence in M, there exists
some ko € N such that d(zg,,zr) < r for every k > ko. Hence the sequence
has a convergent subsequence, by compactness of B(zg,,7), which implies that it
converges in M. [

Corollary 3.5.13. A homogeneous connected Riemannian smooth manifold is
complete. [

The euclidean space, the spheres and the hyperbolic spaces are all complete
Riemannian manifolds.

3.6 Geodesic convexity

Let M be a Riemannian smooth n-manifold and p € M. By Proposition 3.4.8 and
Proposition 3.5.3, there exists a uniformly normal open neighbourhood W of p for
which there exists some ¢ > 0 such that W C exp,(B,(0,6)), for every ¢ € W, and
for every ¢, go € W there exists a unique minimizing geodesic path from ¢; to ¢o
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of length < §. However this geodesic path may not lie entirely in W.

Definition 3.6.1. A subset C of a Riemannian smooth manifold is said to be
strongly (geodesically) convex if for every z, y € C there exists a unique and
minimizing geodesic path 7 : [a,b] — C, for some a, b € R, a < b, from x = y(a) to
y = 7(b) such that y(t) € C for a <t <b.

In this section we shall prove that sufficiently small geodesic balls with center
any given point on a Riemannian smooth manifold are strongly convex (and of
course uniformly normal). This result on the existence of strongly convex open
neighbourhoods is due to J.H.C. Whitehead and is based on the following.

Lemma 3.6.2. Let M be a Riemannian smooth n-manifold. For every p € M
there exists some €y > 0 such that for 0 < § < €y if I C R is an open interval and
v : 1 — M is a geodesic which is tangent to the geodesic sphere exp,(0B,(0,0)) at
the point y(to), for some tg € I, then there exists some 1 > 0 such that

Y((to —n,t0 + 1) \ {to}) C M \ exp,(By(0,0)).

Proof. There exists some € > 0 such that exp, maps B,(0, €) diffeomorphically onto
U = exp,(By(0,0)). Let 0 < < e. We choose an orthonormal basis {F1, ..., B, } of
T,M and consider the normal chart (U, ¢) at p, where ¢ = h o (exp, |Bp(07e))_1 and
h : T,M — R™ is the linear isometry with h(E;) =e;, 1 <i<n. Let y: I - U
be a geodesic which is tangent to the geodesic sphere exp,(0B,(0,6)) at the point
v(to). Suppose that ¢ = (z?,...,2") and gpoy = (y!,...,4™). We consider the smooth
function f : I — R with

10 =360
k=1

Since 7 is tangent to exp,(9B,(0,8)) at (to), we have
(to) = 2k§njlw’f<to><wk>'<to> —o.
Since v is a geodesic,
(Y)'(t) = - i:l TH () ) ()
2-

and substituting

n

F'6) =23 1M @)+ (F O @)

k=1

= 3 (20 - 20T G0 ) ) 067
k=1

i,j=1
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for every t € I. Since Ffj(p) =0, 1<1,j,k <n, there exists some 0 < ¢y < € such
that the quadratic form

3 ( ZP )1

i,j=1

is positive definite for every ¢ € exp,(B,(0, €0)). Thus, if 0 < § < €, then f"(tg) >0
and f has has a strict local minimum at ¢y, which means that there exists n > 0
such that f(t) > 62 for t € (tg —n,to +n) \ {to}. This proves the assertion. [J

We shall also use the following remark. If p € M, for every open neighbourhood
U of p there exists an open neighbourhood V' of (p,0) in T'M such that exp,(tv) € U
for every 0 < ¢t <1 and (q,v) € V. To see this, it suffices to consider the smooth
map g : [0,1] x E — M with g(t,q,v) = exp,(tv), where E C T'M is the domain of
definition of the exponential map and note that g(¢,p,0) = p for all 0 < ¢ < 1. By
continuity, for every ¢ € [0,1] there exists an open neighbourhood V; C E of (p,0)
and d; > 0 such that g((t —d¢,t+0;) x Vz) C U. By compactness of [0, 1], there exist
t1,..y tm € [0,1], for some m € N, such that

= |J (t = 6t tx + 6.
k=1

It suffices now to take V. =V, N---NV,,.

Theorem 3.6.3. If M is a Riemannian smooth n-manifold, then for every p € M
there exists some € > 0 such that for every 0 < § < e the geodesic ball exp,,(B,(0,9))
is strongly convex.

Proof. Let ¢g > 0 be as in the preceding Lemma 3.6.2 and let F': E — M x M be
the smooth map F'(q,v) = (¢,exp,(v)), where £ C T'M is the domain of definition
of the exponential map. As in the proof of Proposition 3.4.8, there exists an open
neighbourhood V- C TM of (p,0) and some 0 < € < ¢ such that F maps V
diffeomorphically onto exp,,(B;(0, €)) xexp, (B, (0, €)) and exp,(tv) € exp,(By(0, o))
for every (¢,v) € V and 0 <t < 1, form the above remark. Moreover, there exists
some 7 > 0 such that exp,(B,(0, )) C exp,(B,(0,7m)) for every q € exp,(By(0,¢)).

We shall prove that exp,(B ( J)) is strongly convex for every 0 < ¢ < .
Let q1, g2 € exp,(By(0,6)) = exp,(By(0,9)), Since (q1,q2) € F(V) there exists
v € Ty, M such that go = exp,, (v ) and v(t) = exp,, (tv) € exp,(B,(0,€0)) for every
0 <t < 1. By Proposition 3.5.3, v is the unique and minimizing geodesic path
%1( 7(0,7m)) .and it suffices to S}.IOW tha‘c v(t) € exp,(By(0,0))
for 0 <t < 1. Let (v*,...,7™) be its local representation with respect to the normal
chart on exp,,(B,(0, eo)) and let again f :[0,1] — R be the smooth function

from ¢; to ¢o in exp

F)y = ()

k=1
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as in the beginning of the proof of Lemma 3.6.2. If v((0,1)) has points outside
exp,(B,(0,0)), then f takes its maximal value on [0, 1] at some 0 < ¢y < 1 and

6% < f(to) < €

or equivalently ([0, 1]) € exp,(B,(0,+/f(t0))). On the other hand, we must have

0=f(to)) =2 (v")(to)(+*) (t0)
k=1

which means that the geodesic path ~((0,1)) is tangent to the geodesic sphere
exp,(0By(0,+/ f(to))). This contradicts Lemma 3.6.2. [J

Corollary 3.6.4. If M is a Riemannian smooth manifold with Riemannian
distance d, then for every p € M there exists some € > 0 such that for every
0 < 6 < e the open d-ball B(p,9) is the geodesic ball with center p and radius § and
1s uniformly normal and strongly convex. [

The existence of strongly convex geodesic balls can be applied to facilitate alge-
braic calculations on smooth manifolds involving de Rham and Cech cohomology,
as we shall see in chapters 5 and 6.

3.7 Exercises

1. Prove that the euclidean connection on R"™ is the unique connection for which
VxY =0 for every X € X(R") and every constant Y € X'(R").

2. Let V be a connection on a smooth n-manifold M. A smooth diffeomorphism
[+ M — M is called affine, if it preserves V, that is f.(VxY) = V xf.Y,
for every X, Y € X(M). The set of all affine diffeomorphisms of V is a group.
Prove that in case M = R™ and V is the euclidean connection, for every affine
diffeomorphism f there exist A € GL(n,R) and b € R™ such that f(z) = Az + b for
every x € R".

3. A smooth n-manifold M is said to be affinely flat, if there exists a smooth atlas
A= {(U;, ;) : i € I} of M such that for every i, j € I with U;NU; # & there exist
A;j € GL(n,R) and b;; € R™ such that

i 0 ¢; () = Ay + by

for every x € ¢;(U; N Uj). Prove that then there exists a natural connection V on

M such that every ¢; : U; — ¢;(U;) transfers V|y to the euclidean connection on
(JSZ(UZ) C R™.

4. Let A € R™*" be a positive definite symmetric matrix and

M={zeR": (A z,z) =1}
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be the (n — 1)-dimensional ellipsoid with semi-axis the eigenvalues of A. Prove that
a smooth parametrized curve v : R — M is a geodesic of M (with respect to the
euclidean connection) if and only if

(A‘lv’,ﬂfrl

/i
- =0.
L e ER

5. On R? we consider the connection whose Christoffel symbols are T'{; = x,
I'l, =1, I'4, = 2y and the rest vanish.

(a) Write down the system of differential equations of its geodesics.

(b) Let v : [0,1] — R2 be the smooth parametrized curve v(t) = (¢,0). Find the

0

parallel translation of the vector <8_> along v on (1,0) with respect to this
Y/ (0,0)

connection.

6. Let M be a smooth manifold endowed with a connection V and let p: M — R
be a smooth function. For every X, Y € X (M) we put

VEY =VxY =Y (p)X — X(p)Y.

(a) Prove that V?” is a connection on M.
(b) Let € > 0 and v : (—¢,6) — M be a geodesic of VP. If h : (—e,e) — R is the

smooth function with .
h(t) = / ¢2009)) g,
0

prove that v o h™! is a geodesic of V. Thus, the two connections V and V” have
the same non-parametrized geodesics.

7. On R3 we define V : X(R3) x X(R3) — X(R3) by
1
VxY = DxY + X xY,

where DxY is the directional derivative of Y with respect to X and X x Y is the
usual exterior product on R3.

(a) Prove that V is a connection.

(b) Is V symmetric?

(c) Is V compatible with the euclidean Riemannian metric?

8. Let M, N be two connected Riemannian manifolds and let f : M — N be a
smooth diffeomorphism. Assume that there exists some point p € M such that
Jep : TpM — T,y N is a linear isometry. Prove that f is an isometry if and only if
it preserves the corresponding Levi-Civita connections.

9. Let M be a Riemannian smooth n-manifold and let f : M — R be a smooth
function. The gradient of f is the unique smooth vector field grad f such that

fip(v) = (grad f(p),v)
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for every v € T,M, pc M.
(a) Prove that in the local coordinates (z!,...,2") of a smooth chart of M the

gradient of f is given by the formula

—1
gradf = (gij)lgi,jgn
af
dz™

(b) If ||gradf]] = 1 everywhere on M, prove that the integral curves of gradf are
geodesics.

10. On D? = {z € C: |z| < 1} we consider the Riemannian metric

4

W'RQ(W% v,we T,D?* zeD?

(v,w) =

(a) Prove that the map C : D? — H? defined by

C(z) = i al

zZ—1

is an isometry. C is called the Cayley transformation.
(b) Prove that if a, b € C and |a|? — |b|? = 1, then

az+b
=) = bz +a

is an isometry of D?.
(c) Describe the geodesics of D?.

11. Let « : R — H? be the smooth parametrized curve v(t) = (¢,1). Find the paral-

lel vector field X along v with X (0) = <2 and draw X on the interval [—g, .

99/ (o)
12. Let M and N be two connected Riemannian manifolds.
(a) Let pe M, g€ N and T : T,M — T,N be a linear isometry. If there exists an
isometry h : M — N such that h(p) = ¢ and h,, = T, prove that there exist normal
open neighbourhoods V' of p and W of ¢ such that A(V) = W and

h|V = exp,oT o exp;1 .

(b) Prove that if g, h : M — N are two isometries for which there exists some
p € M such that g(p) = h(p) and gip = hup, then g = h.

13. Let M ne a Riemannian smooth n-manifold and let G be a non-empty set of
isometries of M. If FF = {p € M : g(p) = p for every g € G}, prove that F is a
smooth submanifold of M.
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(Hint: Consider for every p € F' the vector subspace
V ={veT,M: gy,(v) =v for every g € G}

of T, M and show that exp,(UNV) = F'Nexp,(U) for a suitable open neighbourhood
Uof0eT,M.)

14. Let M be a Riemannian smooth manifold with group of isometries I(M). For
a properly discontinuous subgroup G of I(M), the orbit space M/G inherits a
Riemannian metric, if it is a Hausdorff space, and the quotient map p : M — M/G
is a local isometry. If M is complete, prove that M /G is complete as well. Describe
the geodesics of the flat 2-torus T2 and the geodesics of RP? with respect to the
induced Riemannian metric from S2.

15.  Prove that a connected isotropic and complete Riemannian manifold is
homogeneous.

16. Let M be a connected, non-compact, complete Riemannian manifold with
Riemannian distance d. Prove that for every p € M there exists a geodesic
v : [0,400) = M with v(0) = p and d(p,~(t)) =t for every t > 0.

17. Let M and N be two Riemannian smooth manifolds and let h : M — N be a
smooth diffeomorphism for which there exists ¢ > 0 such hat c||h.,(v)|| < ||v]| for
every v € T,M and p € M. If N is complete, prove that M is also complete.

18. Let M be a Riemannian smooth manifold with Riemannian distance d. For
every piecewise smooth parametrized curve 7 : [a,b] — M, where a, b € R, a < b,
the non-negative real number

b
10 =3 [ P

is called the energy of v and is not invariant under reparametrizations.
(a) Prove that (L(7))? < 2(b — a)J(y) and the equality holds if and only if ||¥| is
constant.

For every p, ¢ € M we define

e(p,q) = inf{2J(7)|y:[0,1] = M piecewise smooth with ~(0) = p,v(1) = ¢}.

(b) Prove that (d(p,q))? = e(p, q) for every p, ¢ € M.

(c) If p, ¢ € M and + is a piecewise smooth parametrized curve from p to ¢, prove
that v minimizes the energy, that is 2J(y) = e(p, q), if and only if +y is a minimizing
geodesic.
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Chapter 4

Differential forms

4.1 The cotangent bundle

Let M be a smooth n-manifold. The disjoint union of the algebraic duals of tangent
spaces at points of M, that is the set

T°M = | J {p} x (T,M)*
peEM

can be endowed with a smooth structure in a similar way as the tangent bundle
can, so that the natural projection 7 : TM — M with w(p,a) = p, for a € (T,M)*,
p € M, becomes smooth and a submersion.

0 0
Let (U, ¢) be a smooth chart of M, where ¢ = (z,...,2") and let { —, ..., —
ox! oxm

be the corresponding set of basic vector fields on U. For every p € U, we have a
dual basis {(dz1),, ..., (dz"),} of (T,M)*, so that

i 0
(dz*)p (@)p = dij

for all i, j = 1,2,...,n. Let ¢ : 71 (U) = ¢(U) x R™ be defined by

o(p,a) = (z*(p), ... 2" (p), ar, ...an)

for a = ay(dzt), + -+ + ay(da™), € (I,M)* and p € U.
If (V,4) is another smooth chart of M with U NV # &, then

(oo™ (z,y) = (Wo o )(@), (Do d ) (@) ) (y))-

Applying Lemma 2.1.1, precisely as in the case of the tangent bundle, T*M
can be made a smooth 2n-manifold with respect to which each (7=1(U),¢) is a
smooth chart and 7 : T*M — M is a submersion. The triple (T*M, 7, M) is
the cotangent bundle of M. As in the case of the tangent bundle, the natural
projection m is the bundle map, M is the base space of the bundle and T*M is the
total space of the bundle. We shall also use the term cotangent bundle for T* M itself.

83
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Definition 4.1.1. A differential 1-form on a smooth n-manifold M is a smooth
map w : M — T*M which to every p € M assigns a cotangent vector w, € (T,M)*.
Briefly, w o m = idys or in other words w is a smooth section of .

The set A'(M) of all differential 1-forms of a smooth manifold M is an infinite
dimensional real vector space and a C°°(M)-module. As for vector fields, if (U, ¢)
is a smooth chart of M, where ¢ = (2!, ...,2"), then for every w € A'(U) there is
a unique smooth function F' = (F,...,F),) : ¢(U) — R™ such that w has a local
representation

(powoo™")(z) = (z, F(a)).
If we put f; = Fjo¢, j =1,...,n, then

Wp = Z i (p)(dxj)p
j=1

for every p € U. In particular, dz’? is a differential 1-form on U, j = 1,...,n and in
analogy with the basic vector fields on U defined by the chart ¢, we call dzt,.., dz"
the basic differential 1-forms on U with respect to the smooth chart (U, ¢).

Example 4.1.2. Let M be a smooth n-manifold and let f : M — R be any smooth
function. At every point p € M, the derivative fi, : T,M — Ty, R of f at p,
can be considered an element of (7, M)*, identifying T, R with R via the linear

d
isomorphism which sends <—> to 1. So we obtain a map df : M — T*M, that is

f(p)
(df)p = fup- If (U, ®) is a smooth chart of M and ¢ = (x1,...,2"), the corresponding

local representation of df on U is given by the formula
7j=1

Therefore, df is a differential 1-form and is called the differential of f. Note that in
particular the basic differential 1-form dz? is the differential of the j-th coordinate
27 : U — R of the smooth chart ¢.

The differential is a linear map d : C°(M) — A'(M) which has the additional
property

d(fg) = gdf + fdg

for every f, g € C°(M). Indeed, if p € M, a tangent vector v € T,M is a
derivation of the algebra G,(M) of germs smooth real valued functions defined on
neighbourhoods of p and so

(d(f9))p(v) = v(fg) = g(p)o(f) + f(p)v(9) = 9(p)(df)p(v) + f(p)(dg)p(v).

A smooth map f: M — N of smooth manifolds induces transpose linear maps
f*:C®(N) = C®(M) and f*: AY(N) — AY(M) by f*h = ho f for h € C®(M)
and

(frw)p(v) = W) (fip(v))
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for every v € T,M, p € M. The differential 1-form f*w is called the pull-back of w
with respect to f. If g : N — P is a second smooth map of smooth manifolds, it
follows immediately from the chain rule that (go f)* = f* o g*.

Another consequence of the chain rule is the fact that the differential is natural.
This means that if f : M — N is any smooth map of smooth manifolds, then the
following diagram commutes.

C®(N) —L— AY(N)

I l lf*

(M) ——s AT(M)

4.2 Alternating multilinear forms

Let V' be a real vector space of finite dimension n. Recall that a k-multilinear form
on V, for k € N, is any function ¢ : V¥ — R which is linear with respect to each
variable separately. The set J*(V) of all k-multilinear forms of V' carries an obvious
vector space structure. Note that J!(V) = V* is the algebraic dual space of V. We
also put J°(V) = R.

The graded vector space J(V @j k ) of all multilinear forms on V can

be endowed with the tensor product ® deﬁned by

(Qb & ¢)(/U17 <y U, UL, ...,Ul) = ¢(U1, "'avk‘) : rlzz)(ula ...,Ul)

for ¢ € JE(V), ¥ € JYV) and vy, ..., 0%, U1, ..., u; € V with respect to which it
becomes a graded associative (non-commutative) algebra.
If {v1,...,v,} is a basis of V and {v},...,v}} is its dual basis of V*, then

7n
{0 @ @0, 1< ity i < )

is a basis of J¥(V). Note that

0, if (i1, k) # (J15 - Jr)
v R R Viyy s Vi ) = ’ T o ’
( i1 Zk)( J1 .]k) {1’ lf (Zl,,lk) = (]1,,]]4;)

and

Z D(Viys ey iy ) -V, @ D U]

U1yt =1

for every ¢ € J*(V).
Every linear map f : V — W of finite dimensional real vector spaces induces a

linear map f*: J(W) — J(V) which is defined by
(f* ) (ur, oy ur) = O(f (ur), .., f(ur))

for every uy,...,ur € V and ¢ € J*(V) and which is called the transpose of f. It is
immediate from the definitions that f* preserves the tensor product and is thus an
algebra homomorphism.
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The determinant is an example of an n-multilinear form which has the additional
property that is alternating.

Definition 4.2.1. A k-multilinear form w € J*(V) is called alternating if

W(ULy e U ) = (SGNO) - W(Ug(1)s ooy Ug (k) )

for every uq,...,ur € V and every permutation o € S,,.

The set A¥(V) of alternating k-multilinear forms of V is a vector subspace of
TE(V). If {v1, ..., v, } is a basis of V and w € A¥(V) for k > n, then w(vj,, ..., v;, ) =
0 for every 1 < ij,...,i < n, because at least two of v;,,...,v;, must coincide.
Therefore, w = 0. This means that A¥(V) =0 for k > n.

The tensor product of two alternating k-multilinear forms need not be alternat-

k

n
ing. In order to define an algebra structure on the vector space A(V) = @Ak(V)
k=0

of all alternating forms we consider the linear map A : (V) — J(V) defined by

1
A(gb)(ula ,Uk) = E Z (Sgl’lO’) ’ w(uo(l)a ""uo(k))
’ ogESy

and we observe that A(¢) € A*(V) for every ¢ € J*(V). Indeed, if 7 = (i j) is
the transposition which permutes the symbols ¢ and j, we have

1
A(P)(Ur(r)s - Ur(h)) = 715 D (5g00) - W(ty(r(1))s oo U (r(k)))
) €S}

1
=7 ZS sgn(0 0 T) - W(Ug(r(1))s -+ Us(r(k))) = —A(P) (U1, .o up).
OOTESY
Moreover, A(w) = w, if w € A(V).
If now w € A¥(V) and 6 € AY(V), the element

(k+1)!
Rl

is called the wedge product of w with 8. It follows from the linearity of A that the
wedge product

WwAO= Alw ® 0) € AR (V)

A AF(V) x ALV — ARV

is bilinear.
If f:V — W is a linear map of finite dimensional real vector spaces, then

FH(ARW)) € AR(V) and f*(wAB) = f*(w)A f*(0) for every w € AR(W), 0 € AL(W).
Lemma 4.2.2. If w € A¥(V) and 6 € AY(V), then w A 0 = (=1)*9 A w.

Proof. If7=(1 2---k+DF=(1 k+1)---(1 2)), that is

(1 2 o 1 I+1 - l+k
TT\k+1 k42 - kvl 1 - k)
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then sgn7 = (—1)*H=Dk — (_1)k and we have

1
A(w®0)(u1, ...,’U,k+l) = m Z (Sgl’lo’) . w(ua(l), 7u0'(k;)) . 0(“0’(16-}—1)7 ...7ua(k+1))

UeSk-H

1
BT Y (5800) - W(U(r(i41))s - Ua(r(rn))) - OUo(r()))s -+ Yo (r1)))

UeSk-H

1
= (-UMW D (s80(07)) - W(Uo(r(i41)) s oo Uar(r (b)) - Oo(r(1)))s oo Uer(r(1)))

UeSk-H
= (-D)"APow). O
As a consequence, if k is odd, then w A w = 0 for every w € A¥(V). For the
proof of the associativity of the wedge product we shall need the following.

Lemma 4.2.3. Let ¢ € J*(V) and o € JY V). If A(¢) =0, then
Alp @) =AW © ¢) = 0.

Proof. For every uyq,..., ux1; € V we have by definition

1

A(d@Y) (U1, .oy up41) = ] D (5810) - (1), s Uo()) Y (Ueleg)s o Uo(tr))

UeSk-H

The set G = {0 € Sgyi1:0(k+1) =k+1,...,0(k+1) = k+ 1} is a subgroup
of Sk.; isomorphic to Sy and Sjy; is the disjoint union of the right cosets of G in
Sk11- Now we have

Z (SgIlO') ’ ¢(UU(1), X uo(k)) ’ w(uo(khLl)’ ey ua(k+l))

oeG

= k'A(qﬁ)(ul, ,uk) . w(uk+1, ...,ukH) =0
and

D (3800) - G(to(1), oo Uo(r)) - Y (U (hs1)s -+os Yer(ss))

oeGT

= (SgDT) Z (Sgn(o-'ril)) : ¢(UUT*17(1)a ) ua’rflfr(k)) ’ w(uaT*IT(k—l—l)a ) uarflr(k—l—l))
or~1le@

= (sgnT)k'A(¢) (U,T(l), ceny uT(k)) . ,l/}(uT(k+1)’ ceny uT(kH)) =0

for every 7 € Siy;. This proves that A(¢ ® ¢) = 0 and similarly one can prove that
Ap®¢)=0. 0

Corollary 4.2.4. Ifw € A¥(V), 0 € A(V) and n € A™(V), then
AAAw®0)@n) =Alwe A0 n)) = Alwe 0 @n).
Proof. Since A(A(w ® 0) —w ®0) =0, it follows from Lemma 4.2.3 that

0=A(Alw®l)—wel)en =AAwel)on) —Alwebdxn). O
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Proposition 4.2.5. If w € A*(V), 6 € AL(V) and n € A™(V), then

(k+1+m)!

(WAO) An=wA(OAN) =7

Alw® 0 ®@n).

Proof. Using Corollary 4.2.4 we compute

(w/\H)/\nzW-A((w/\@)@n)

(k+1+m)! (k+1)
- ' CAAw® ) @n =
k+01-ml k0 (Awe ) ®n

(k+1+m)!

Il Alw®xn). O

The above show that A(V') endowed with the wedge product is a graded com-
mutative associative algebra with unity. If now {vi,...,v,} is a basis of V and
{v},...,v}} is its dual basis of V*, then

i, N Avp 1T <vie - <lip <nj}

i1

generates A*(V), since A(J*(V)) = A¥(V). Actually, it is a basis, because if
aj,..ipy, € R, 1 <4; <--- < < n are such that

* *
1<iy < <ip<n

then

0= Z Qg iy, (v;kl /\“‘/\U;kk)(vjla""vjk)
1<ig << <n

= Z iy ey, - K] 'A(U; ®"'®U;k)(uj17'“7vjk)

1<i1 < <ip<n

= Z Wiy - Z (sgno) - v, (Uo(jl)) e vfk (vg(jk)) = j, .-

1< << <n ocESK

Therefore, the dimension of A¥(V') is (n

k:) In particular, dim A™(V') = 1 and A™(V)

n
is generated by the determinant. If w; = Z a;jv;, j = 1,...,n, then
=1
w(wl, ceey wn) = w(vl, ceey Un) . det(aij)1§i7j§n.

4.3 The exterior algebra of a smooth manifold

In analogy to the tangent and the cotangent bundle of a smooth n-manifold M, the
disjoint union of the spaces of alternating k-multilinear forms, 1 < k < n, of the
tangent spaces
AR = ] {p} x A¥(T, M)
peEM
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can be endowed with a smooth structure so that the projection 7 : AF(M) — M
with 7(p,a) = p for p € M, a € A¥(T,M) becomes a submersion. Note that
AY (M) =T*M.
— (1 n 9 9
Let (U, ¢) be a smooth chart of M, where ¢ = (z',...,2"). Let {w,..., %}
be the corresponding set of basic vector fields and {dz!,...,dz"} the corresponding
set of basic differential 1-forms on U. For each p € U the set

{(dz™)p A=+ A(da'™), : 1 <ip < -+ <ip <n}
is a basis of A*(T,M).
Let ¢ : m=1(U) = 6(U) x R() be defined by

¢(p,a) = (&(p); (@iy-ip)1<in < <ig<n)
for a = Z iy.oiy (AT A=+ A (d2'™), and p € U. If (V,¢) is an-

1<iy <-<ip<n
other smooth chart of M, then 1/; o ¢! is a smooth diffeomorphism, since
(D(¢p 0 ¢~ 1)(z)~1)! depends smoothly on = € ¢(U N'V). Thus, applying Lemma
2.1.1 we obtain a topology and a smooth structure on A¥(M) turning it into a
smooth manifold and the natural projection 7 : A¥(M) — M a submersion. The
triple (A¥(M),m, M) is called the exterior k-bundle of M. As usual, we shall also
use the same term for its total space A*(M).

Definition 4.3.1. A differential k-form on a smooth n-manifold M, 1 < k < n,
is a smooth map w : M — A¥(M) which to every p € M assigns an element
wp € A¥(T,M). So, wom = idy, which means that w is a smooth section of . The
non-negative integer k is the degree of w.

The set A¥(M) of all differential k-forms of a smooth manifold M is an infinite
dimensional real vector space and a C* (M )-module. We also put A°(M) = C>°(M).
If (U, ¢) is a smooth chart of M, where ¢ = (2, ...,2™), then for every w € A¥(U)

there is a unique smooth function F' = (Fj iy...iy )1<ii<-<ip<n : #(U) = R ’“> such
that w has a local representation

(powod !)(z) = (z, F(x)).
If we put fi1i2---ik = E1i2...ik o ¢, then

wp = Z Firigiy () (d2™)p A -+ A (da™),,

1<ip < <ip<n

for every p € U. In particular, every dz* A --- A dz® is a differential k-form on
U, which we call a basic differential k-form on U with respect to the smooth chart

U, 9).
On the graded vector space A*(M) = @ AF(M) we have a wedge product
k=0

Az AF(M) x AY M) — AR
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which is defined by (wA#), = w, A8, for every p € M. Therefore, all the properties
that the wedge product of alternating multilinear forms of vector spaces have transfer
verbatim to differential forms making thus A*(M) a graded commutative associative
algebra with unity, which is called the exterior algebra of the smooth manifold M.

Every smooth map f : M — N of smooth manifolds induces a transpose map
f*: A*(N) — A*(M) defined by

(f*w)p(vl, veey Uk) = wf(p)(f*p(vl), ceuy f*p(vk))

for vi,..., vy € T,M, p € M and every w € A¥(N). The differential form f*w is
called the pull-back of w with respect to f. The transpose f* is a homomorphism
of graded algebras, since it preserves the wedge product. If g : N — P is another
smooth map of smooth manifolds, then (g o f)* = f* o g*, by the chain rule, and
evidently (idpr)* = ida«(pp)- It follows that if f is a smooth diffeomorphism, then
f*: A*(N) — A*(M) is an isomorphism of graded algebras.

On the exterior algebra of a smooth manifold there exists a natural linear endo-
morphism, which is not an algebra homomorphism, but satisfies a graded Leibniz
formula. This unifies and extends the classical operators of vector analysis in R3.
We shall construct it starting locally from open subsets of R™.

For every differential k-form w on an open subset S C R™ there exist unique
smooth functions f; ;.5 : S =+ R, 1 <43 <--- <1 <n, such that

w= Z fi1i2'~.ik cdxt A - A dxt

1<i1 < <ip<n

The differential of w is the differential (k 4 1)-form defined by the formula

do= Y dfiyiyeiy A A Ada,

1<i1 < <ip<n

So we get a linear endomorphism d : A*(S) — A*(S) which is called the exterior
differential.

Proposition 4.3.2. The exterior differential d : A*(S) — A*(S) for an open set
S C R"™ has the following properties:

(i) If B C S is an open subset of S, then dw|p = d(w|B) for every w € A*(S).

(ii) d has degree 1, which means that d(A*(S)) c AF1(S), 0 <k <n.

(i) If f € AY(M) = C>®(M), then df is the usual differential of f which was
defined in Fxample 3.1.2.

(iv) d(wAB) = dw A0+ (—1)FwAdo for every w € A¥(S) and 0 € AY(S), 0 < k,1<n
(graded Leibniz formula).

(v) dod =0, that is d(dw) = 0 for every w € A*(S).

Proof. The properties (i), (ii) and (iii) are immediate from the definitions. For (iv)
we suppose that

w= Z filiz---ik : dxil ARERNA dxik’ 0= Z Gj1j2-41 dle ARRRA dxll

1<ip < <ip<n 1<ji<<gi<n
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and compute

d(wAf) = A(firioeivGivigei) AT A <o Adz™ Ada?t Ao A dalt
122 kJdJ1J2 i

1<i) < <ip<n
1<) <+ <j<n

= Z gj1j2~~~jldfi1i2---ik Adz A Ada™ AdzIt A - A dah

1<iy < <ip<n
1<j1<<jj<n

+ > Firigein @Gy AT A Ada Adat A A dat
1<4; << <n
1<j1<--<gi<n

= Z (df21222k Adzt A A dmz’“) VAN gj1j2---jld$jl VANIERIVAY dah

1<iy < <ip<n
1<j1<<j<n

+ ) (Firigmip dz™ A - Adz™) A (=1)¥dgjy jpgy A da?t A A dah
1<iy < <ip<n
1<4y < <gy<n

=dwAf+(—1)*w A db.
To prove (v), we start with a f € A°(M). Then, by definition,

df:Z@-de
j=1

and
n

d(df)=> d of Adj—f: O°f dz* Adx? =0
_,1 oxJ a:—“ orior * v
j:

,5=1

In particular, it follows inductively form this and (iv) that d(dz® A --- A dz'*) = 0.
If now

v Z Jivigig, * dz A A dﬂ?ik’

1<ip < <ip<n
then

d(dw) = d( S iy AT A A dmik>

1<ip < <ip<n

= Z d(dfumzk) N dxil ARERRA dxik_ Z dfi1i2---ik A d(dxil ARERNA dxlk)

1<iq <-<ig<n 1<iy < <ip<n
=0-0=0. O

An additional important property of the exterior differential is that it is natural.

Proposition 4.3.3. Let S C R™ and T C R™ be open sets and let f: S — T be a
smooth map. Then f*od = do f*, that is the following diagram commutes.

AX(T) —%— A¥(T)

f*l lf*

A*(8) —4 5 A%(S)
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Proof. We already now from the chain rule that f*(dg) = d(g o f) = d(f*g) for
g€ ANT) = C®(T). If we AY(T) and

m
w= Zgjdxj,
j=1

we have

m m

d(f*w) =Y d((gjo f)- f*(da?)) = d(gjo f) A f(da?)+) (g f*(da?))
7=1

j=1 7=1

Zf* dg;) N f*( dxj +Zf gj - dx] (Zg]dx]> = dw).
7j=1

The proof now can be concluded by induction on the degree. If the conclusion is
true for differential forms of degree smaller than k and w = gdx® A --- A dz'*, then

d(f*w) = d(f* (gda™) A f*(da® A - A da®))
= d(f*(gdz™)) A f*(dz A - Ada') — f*(gdx™) Ad(f*(dz®2 A --- A dz'®))
= f*(d(gdx™)) A f*(dz® A - Adx') — f*(gdz™) A FH(d(dz A -+ A dz'*))
= f*(dg Adx™ A f*(dz® A--- Adz'™) — 0 = f*(dw).
By linearity of the exterior differential this proves the assertion. [J
We are now in a position to extend the definition of the exterior differential
from open subsets of euclidean spaces to smooth manifolds. The crucial fact that

we shall need is that the definition we gave for open sets of euclidean spaces is
invariant under smooth diffeomorphisms. This is provided by Proposition 4.3.3.

Definition 4.3.4. An exterior differential is a linear endomorphism
d: A*(M) — A*(M)

of degree 1 which is defined for every smooth manifold M and has the following
properties:

(i) If f € A°M), then df is the usual differential of f.

(i) dw A 0) = dw A0+ (—=1)*w A df for every w € AF(M) and 0 € AY(M),
0<k,l<n.

(iii) dod = 0.

(iv) If f: M — N is a smooth map of smooth manifolds, then f*od =do f*.

In particular, if U C M is an open set and ¢ : U < M is the inclusion, then
dw|y = i*(dw) = d(i*w) = d(w|v), by (iv).

Theorem 4.3.5. There exists a unique exterior differential.



4.3. THE EXTERIOR ALGEBRA OF A SMOOTH MANIFOLD 93

Proof. For the uniqueness it suffices to prove that for every smooth chart (U, ¢)
of a smooth n-manifold M the differential (k + 1)-form d(w|y) on U is uniquely
determined for every w € A¥(M). Since ¢ : U — ¢(U) is a smooth diffeomorphism,
its transpose ¢* : A*(¢p(U)) — A*(U) is an isomorphism of graded algebras. This
implies that it suffices to prove uniqueness for open subsets of R”. Indeed, if S € R"
is an open set and

W= > gy - da" A Ada's € AF(S),

1<ip < <ip<n

it follows from properties (i)-(iv) of Definition 3.3.4 that necessarily

do= Y dfiyiyeiy Ada A Adalh,

1<i1 < <ip<n

This proves uniqueness because the smooth functions f; ;,...;, are uniquely deter-
mined by w.

The existence of the exterior differential has already been proved on open subsets
of euclidean spaces in Proposition 3.3.2. Let M be a smooth n-manifold and let A
be a smooth atlas of M. If (U, ¢yr), (V,¢v) € A are such that U NV # &, then
ouy = Py o qj‘_,l oy (UNV) = ¢op(UNV) is a smooth diffeomorphism and we have
a commutative diagram

A(Gu(UNV)) —L—= A*(gu(UNV))
¢av=(¢Uo¢;1)*J J%V:(Wowl)*
A gy (UNV)) —L— A (¢ (UNV))
from Proposition 4.3.3. So, d = (((onqﬁ‘;l)*)*lodo(¢Uo¢‘j1)*. For every w € A*(M)
we define
(dw)lr = 3 (d((dg")* (]))-

From the above commutative diagram we have
op(d((9p")* (Wlurw)) = (Spv 0 dv)* o do (éy" © duv)*) Wluay)

= oy (d((éy") (@l ))-
Since (dw)|y and (dw)|y coincide on U NV for every (U, ¢rr), (V, ¢v) € A such that

UNV # @, we get a globally well defined differential (k + 1)-form dw on M. This
concludes the proof. [.

Thus, the exterior algebra A*(M) of a smooth manifold M becomes a differential
graded algebra, which is invariant under smooth diffeomorphisms, and is called the
de Rham covhain complex of M.

C(M) = A°(M) -5 AV L - - AR () - AR () L
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This is infinite dimensional and impossible to compute. Its cohomology is also
invariant under smooth diffeomorphisms and we can use traditional homological
methods to compute it.

We call w € A¥(M) a closed differential k-form (or k-cocycle) if dw = 0 and
an exact differential k-form (or k-coboundary) if there exists some n € A*1(M)
such that dn = w. Since d o d = 0, an exact differential form is always closed. The
converse however is not true.

Example 4.3.6. Let M = R?\ {(0,0)}
Y

=————d ——dy.
w 22+ 42 x+x2+y2y
Then w is a closed differential 1-form, because
22 — 2 4 q?
dw=———="=dyANd dx Ndy = 0.
w (@2 + y2)2 %Y T+ @2+ 22 0N

However w is not exact. Indeed, suppose that there exists a smooth function (the po-
tential) f: M — R such that w = df. Let v: R — M be the standard parametriza-
tion of the unit circle, that is v(t) = (cost,sint). Then w, ) (y(t)) = 1 and from the
Fundamental Theorem of Calculus we arrive at the contradiction

2T 2m
o = /O W) ((1))dt = /0 (f o) (t)dt = f(v(2m)) — f(+(0)) = 0.

The set of closed differential k-forms on a smooth manifold M is the vector
subspace Z¥(M) = A¥(M) N Kerd and the set of exact differential k-forms is the
vector subspace B¥(M) = A*(M) N TImd of Z*(M). The quotient vector space

ZE(M
o=

is called the de Rham cohomology of M at degree k or the k-th de Rham cohomology
of M. The total de Rham cohomology of a smooth n-manifold M is the graded
n

vector space H*(M) = @H ¥(M) and it can be given the structure of a graded
k=0

commutative associative f_ilgebra with unity. Indeed, the wedge product on A*(M)
induces a product —: H*(M) x H' (M) — H**'(M) well defined by

W] — 6] = [w A 6]

for w € Z¥(M), 6 € Z'(M), which is called the cup product on H*(M). To see this,
note first that w A 6 is closed , by the Leibniz formula. If now 7, ¢ € A¥~1(M), then
for the cohomologous closed differential k-forms w + dn to w and 6 4 d¢ to 6 we have

(wWHdn)A(O+dC) = wAO+dnANO+wAd(+dnAd( = wAO+d(nAEwAd(+nAdQ)

and therefore [w A 6] = [(w+dn) A (0 + d¢)]. Evidently, the cup product on H*(M)
inherits the properties of the wedge product on A*(M) . The graded algebra H*(M)
is called the de Rham cohomology algebra of M.
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If f: M — N is now a smooth map of smooth manifolds, then the transpose
f*: A*(N) — A*(M) maps closed differential forms on N to closed differential forms
on M and exact differential forms to exact differential forms, because it commutes
with the exterior differential. Thus it induces a homomorphism of graded algebras
(denoted again by) f*: H*(N) — H*(M). If g : N — P is another smooth map of
smooth manifolds, then (go f)* = f*og* and (idys)* = idp=(ar)- It follows that if f
is a smooth diffeomorphism, then f*: H*(N) — H*(M) is an algebra isomorphism.
Thus, the de Rham cohomology at every degree is a diffeomorphism invariant, as
well as the total de Rham cohomolody algebra.

In Chapter 4 we shall use powerful algebraic methods for the computation
of the de Rham cohomology. For the time being, we can compute the de Rham
cohomology of every smooth manifold at degree 0.

Theorem 4.3.7. If M is a connected smooth n-manifold, then H°(M) = R.

Proof. Note first that BY(M) = 0 and Z%(M) = {f € C®°(M) : df = 0}. Since
every point of M has an open neighbourhood which is diffeomorphic to R", every
f € Z%M) is locally constant on M. The connectedness of M implies now that f
is constant on M. Therefore, H(M) = Z°(M) 2 R. OJ

4.4 Orientable smooth manifolds

Let V be a real n-dimensional vector space, n > 1 . We say that two ordered basis
[U1,...,v] and [wy,...,w,] define the same orientation of V if the change of basis
matrix has positive determinant. This is an equivalence relation on the set of all
ordered basis of V with exactly two equivalence classes, which are called orientations
of V. The choice of an orientation of V' turns it into an oriented vector space.

n
Recall that if w; = Zaijvi, j=1,...,n, then
i=1

w(wl, ey wn) = w(vl, ey Un) . det(aij)1§i7j§n.

for every w € A™(V) = R. This implies that two ordered basis [v1,...,v,] and
[wy, ..., wy,] define the same orientation of V' if and only if

(VT A Avp)(wr, . wy) >0

or equivalently
W1, ey Up) - w(W1, ey wy) >0

for every non-zero w € A™(V). Thus the choice of an orientation on V' can be
determined by the choice of a non-zero element of A"(V'). More precisely, having
chosen chosen a non-zero w € A™(V'), we usually say that the ordered basis [vy, ..., v,]
is positively oriented with respect to w if w(vy,...,v,) > 0. Two non-zero elements
w, 8 € A™"(V) determine the same orientation if and only if § = Aw for some A > 0.
This is again an equivalence relation with two equivalence classes on the set of non-
zero elements of A™(V'). So, we could have equally well defined an orientation of V'
to be one of these two equivalence classes.
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An orientation of a smooth n-manifold is now the choice of an orientation on
each tangent space coherently, so that they vary smoothly. However, this choice
my not be always possible.

Defibition 4.4.1. A smooth n-manifold M, n > 1, is called orientable if there
exists a nowhere vanishing differential n-form w on M. Any such form is called a
volume element of M.

We say that two volume elements w, § € A™(M) define the same orientation on
M if there exists a smooth function f: M — (0,400) such that § = fw. This is an
equivalence relation on the set of volume elements of A™(M), an equivalence class
of which is called an orientation of M. The choice of an orientation on M makes it
an oriented manifold.

On a connected orientable smooth n-manifold M there are exactly two orienta-
tions. Indeed, let w be a nowhere vanishing differential n-form on M. If 6 is any
other nowhere vanishing differential n-form on M, there exists a smooth function
f: M — R\ {0} such that # = fw. Since M is connected, we must have f > 0
everywhere of M or f < 0. In the first case § and w define the same orientation,
and in the second 6 and —w define the same orientation.

Examples 4.4.2. (a) Any open subset M of R™ n > 1, is orientable. An
orientation is defined by the volume element dx! A --- A dz™ restricted on M. Note
that at each tangent space T,R™ = R" its value is the determinant. This is usually
called the positive orientation of R".

(b) The n-sphere S™ is an orientable smooth n-manifold. We shall prove that if
w=Y (1) aldat A AdaTT A daI A A da™ e AT(RMTY),
7j=1

and i : S < R"*! is the inclusion, then i*w is nowhere vanishing. This is the
standard volume element of S™.

Let p = (x!,...,2""1) € S" . The tangent space T,S™ is the hyperplane in R"*?
which is orthogonal to the vector p. The subgroup G = {0 € Sp4+1 : 0(1) = 1} of
the symmetric group S, is isomorphic to S,,. Let alsoo; = (1 j),1<j<n+1.
The right cosets of G in S,41 are Goj, 1 < j < n+ 1. Putting v; = p, for every
V2,..., Ung1 € TpS™ we compute

(dz A~ Ada™ ), (v1,v2, 0, Ung1)

= > (sgno)(dz)p(voa)) - (d2™ ) p(Vo(ns1))

0ESH+1
n+1

=3 > (sgn0)(dz")p(ve)) - (d2™ ) p(Vo(nr1))

j=loo;€G
n+1

=> " (=senr)(dz!)p(vro, 1) - (2™ p(Vro, (s

j=l71eG
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n+1

=3 > (=senr)(dat)p(vry) -+ (dad)p(vrr)) - - (A )y (Vs ()

j=1l1eqd

n+1

= Z Z —sgnr) mj dat )p (UT(j)) e (dmj_l)p(vT(j_l))

j=171eqG

(d2? ) p(vrigny) -+ - (A2 )y (vr(nn))
n+1

= Z Z (—1)j71xj(sgnp)(dxl)p(vp@)) e (dxjfl)p(vp(j))

j=1 peG
(dl"jﬂ)p(vp(jntl)) T (d$n+1)p(vp(n+1))
(putting p=7(2 3---5)7")

n+1
= (Z (=1 addat Ao Adad TN dTTE A A dm”“) (V2 ooy Upt1)-
j=1

If now {v2,...,Un41} is a basis of T,S™, then {vi,va,...,vn+1} is a basis of R™"?
and therefore (dz! A -+ A dax™ 1) (v, v, ..., vn41) # 0. It follows that i*w nowhere
vanishes on S™.

(c) If a : R"*1 — R™*! denotes the antipodal map a(r) = — and w is the differential
n-form of (b), then

o= S (U =) A Al () A A=
j=1

— (_1)n+1w.

Thus, w is a-invariant, that is a*w = w, if n is odd. In this case, if i : 8™ — R*t!
is the inclusion as before, then i*w induces a unique well defined differential n-form
Q on RP™ such that 7*€) = i*w, where 7 : S™ — RP" is the quotient map. Since m
a local smooth diffeomorphism, that is its derivative at each point of S™ is a linear
isomorphism, and ¢*w nowhere vanishes, it follows that {2 vanishes nowhere on RP".
This shows that the odd dimensional real projective spaces are orientable smooth
manifolds.

Suppose now that n is even. If there exists a nowhere vanishing 2 € A"(RP"),
then 7*Q € A™(S™) nowhere vanishes and is a-invariant. There exists a smooth
function f : S™ — R\ {0} such that 7*Q = f-i*w. Since S™ is connected, f > 0
everywhere on S™ or f < 0. Now we have

fu=m"Q=a"(7"Q) =a"(fw) = (foa)a®w = —(f ca)w,

because n is even. It follows that f = —(f o a), contradiction. Thus, RP" is
non-orientable in case n is even.
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Theorem 4.4.3. A smooth n-manifold M, n > 1, is orientable if and only if there
exists a smooth atlas A of M such that

det D(¢y o gb&l)(x) >0
for every x € oy (UNV) and (U, pur), (V,¢v) € A withU NV # @.

Proof. Suppose first that M is orientable and let w € A™(M) be nowhere vanishing
on M. There exists a smooth atlas B of M such that ¢y (U) = R™ for every
(U,9Yp) € B. There exist smooth functions fiy : R” — R\ {0} such that

(wz;l)*(w\U) = fudzt A - Adz™.

If fu > 0, we put ¢y = Yy, but if fy <0, we put ¢y = g o ¥y, where g : R — R”
is the linear isomorphism

glat,2?, ..., 2") = (=2, 22, ..., 2")

which has negative determinant. In this second case, where fiy < 0, we have
(pg)* wlv) = (fuog ™) - (¢ H)*(dz A+ Ada™)

= (fuog ) -detg™'-da' Ao Ada" = —(fyogt) -dat A--- Ada™.

1

Thus, putting gy = —fyog ", in case fy < 0, and gy = fu, in case fy > 0, we

have
(pp")* (wlv) = guda® A--- A da™

in any case and gy > 0. The class A = {(U, ¢v) : (U,¢r) € B} is a smooth atlas of
M and if (U, ¢v), (V,¢yv) € A are such hat U NV # @, we have

gudz' A Ada™ = (o) (wluav) = (dv 0 o) (1) (wluav))

det D(¢y o ¢p;') - (gv o (v o @) - dzt A -+ A da”™

on U NV and therefore det D(¢y o gb&l) >0
Conversely, suppose that there exists a smooth atlas A such that

det D(¢y o gb[_]l)(x) >0

for every x € ¢py(UNV) and (U, ¢v), (V,¢v) € A with U NV # @. There exists
a smooth partition of unity {fr : (U, ¢y) € A} which is subordinated to the open
cover U = {U : (U,¢py) € A} of M, by Theorem 1.4.4. We shall show that the
differential n-form
w= Z fu - o5 (dat Ao A da™)
(U gu)eA

vanishes nowhere on M.

Let p € M. There exists an open neighbourhood W of p contained in in some
Uy € U, which intersects only a finite number suppfy,,..., suppfu,, for some k € N,
of elements of the class {suppfy : (U, ¢v) € A}. Thus,

k

wy =3 fuy(@) - 8 (de" Ao Ada™),
j=1
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k
= ¢*UO <Z fU o gbU - det D(gij o @601) ° Py, - del Ao A dxn>

q

- (Z i @)+ det Do, 0051 )(0u,f) ) i 8 A+ ™),
j=1

for every ¢ € W. Since fy,(p) + - + fu,(p) = 1, at least one of fy, (p),..., fu,(p)
must be positive. This together with our assumption imply that w, # 0. [

Example 4.4.4. The transition maps of the smooth charts of the canonical
atlas of the complex projective n-space CP"™ described in Example 1.1.4(d) are
biholomorphic maps of open subsets of C™. Hence its Jacobian matrix at every
point in its domain of definition has positive determinant. From the above Theorem
4.4.3 follows that CP™ is orientable for every n € Z*.

Let M be an oriented smooth n-manifold by a volume element w. A smooth
chart (U,¢) of M will be called positively oriented if there exists some smooth
function g : ¢(U) — (0, +00) such that (¢~1)*(w|y) = gdx' A--- Adx™. A smooth
diffeomorphism f : M — M is called orientation preserving if f*w and w define the
same orientation. If f*w and —w define the same orientation, we say that f reverses
orientation. In particular, a smooth diffeomorphism f : R” — R"™ is orientation
preserving if and only if det D f(x) > 0 for every x € R™, because

frdz* A Ada™) = (det Df) - dat A - Ada™.

If det Df < 0, then f is reverses orientation.

4.5 Integration on oriented manifolds

A differential k-form w on a smooth n-manifold M has compact support if there
exists a compact set K C M such that w, = 0 for every p € M \ K. The closed
set suppw = {p € M : w,, # 0} is the support of w. The set A¥(M) of all differential
k-forms with compact supports on M is a vector subspace of A¥(M), 0 < k < n.
Of course A°(M) is just the set C°(M) of all smooth real valued functions on M
with compact supports.

If w € A?(R™), there exists a unique g € C2°(R™) such that w = gda! A-- - Ada™.

We define
L= .o

If f:R" — R"is a smooth diffeomorphism (or more generally f is a smooth
diffeomorphism of open subsets of R™), then

ffw=(fog)-det Df-dx' A-- Nda™

On the other hand, from the change of variables formula we have

| o= og-laeny
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It follows that

/ w, if f is orientation preserving,
* n

flw=

Rn

— w, if f is orientation reversing.
R?’L
Let now M be a oriented smooth n-manifold and let A be a smooth atlas of M
consisting of positively oriented smooth charts of M. Thus,

det D(¢y o ¢p;')(z) >0

for every x € ¢y (UNV) and (U, ¢v), (V,¢y) € A with UNV # &, as the proof of
Theorem 4.4.3 shows. There exists a smooth partition of unity {fy : (U, ¢u) € A}
subordinated to the open cover U = {U : (U, ¢y) € A} of M. For every w € A} (M)
the differential n-form fryw has compact support and vanishes outside U. We define

] w- Py syt

In order this definition to be sound, we must show that it does not depend on the
choice of the smooth atlas A and the subordinated smooth partition of unity. Let B
be another smooth atlas of M consisting of positively oriented charts of M and let
{hw : (W,9¥w) € B} be smooth partition of unity subordinated to the open cover
W ={W : (W,¢¥w) € B} of M. The transition maps ¢y o ¢X7V1 for (U, ¢p) € A,
(W,dw) € B with U NW # @, are orientation preserving smooth diffeomorphisms
between open subsets of R”. We compute

> /Rn(¢U1)*(wa)= > /Rn(%l)*(fUhW“)

(U,pu)eA U,oy)eA
(Wb )EB

= > [ evov @y = Y [ Ry enwe)

(U,py)eA (U,py)eA

(W )EB (W,yy)EB
- [ @),
(Wpw)eB " B"

In this way we get a linear map / : AZ(M) — R which is called the (oriented

M
Riemann) integral on the oriented smooth n-manifold M.
If f: M — M is a smooth diffeomorphism of a connected, smooth n-manifold
M, then

/ w, if f is orientation preserving,
M

— / w, if f is orientation reversing.
M

for every w € AZ(M).
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Theorem 4.5.1. If M is an oriented smooth n-manifold then

/dw:O
M

for every w € A"H(M).

Proof. Suppose first that there exists a positively oriented smooth chart (U, ¢) of
M such that suppw C U. There exist g1,..., gn € C°(¢(U)) such that

n
(o~ Hw = Z (=1 tgjdat Ao AdITE NN A da”
j=1
and differentiating

n

((JSfl)*(dw) = d((qﬁfl)*w) = Z (—1)j71dgj Adz' A Add AT A A da”

n

= (—1)j_1ii-dmi/\dazl/\---Adxj_l/\dxj+1A---/\dx"

Therefore,

([ B
: Rn—1

by Fubini’s theorem and the Fundamental Theorem of Calculus.

In the general case we consider a smooth atlas A of M consisting of positively
oriented charts and a smooth partition of unity {fy : (U, ¢y) € A} subordinated to
the open cover U = {U : (U, ¢y) € A} of M. Then, supp(fyw) C U and from the

above we get
/ dw = Z / (frw)=0. O

Upv)eA

Corollary 4.5.2. Let M be an oriented smooth n-manifold.
(a) If M is compact, then
/ dw =10
M

(b) c AV(M) — R is a linear epimorphism.
M

for every w € A"~Y(M).
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Proof. Only the second assertion requires proof. For this it suffices to construct a
differential n-form with compact support on M with non-zero integral. Let (U, ¢)
be a positively oriented smooth chart of M and let p € U be any point. There exists
a smooth function f : M — [0, 1] such that f(p) = 1 and suppf is a compact subset
of U, by Corollary 1.4.5. If we take

o ((foot)-dat A Ada™), onU
“ o, on M\ U

then w € A?(M) and
/ w= | foél'>0. O
M R"

The kernel of the linear epimorphism / : A?(M) — R contains d(A?~1(M)),

M
by Theorem 4.5.1. It is a non-trivial fact that this is precisely the kernel in case M
is connected. The proof can be divided into a series of steps, the most crucial of
which is the first one.

Lemma 4.5.3. The kernel of : AT(R™) — R is d(APL(R™)).
Rn

Proof. Let w € AZ(R™) be such that / w = 0. There exists a unique f € C°(R")
Rn

such that w = fdax' A--- Ada™. If € AP 1(R"), there exist fi,..., fn € C(R")

such that

0=> (1) " fyda' Av- Adad T N daITE A A da”
j=1

and
n
. af] 1 n
df = (Z@> cdz' A N da
7j=1
Thus it suffices to prove that given f € C2°(R™) such that f =0, there exist
R’ﬂ
fiseeey fn € C°(R™) such that
n Bf]
=2 50
7j=1
t
We proceed by induction. For n = 1, it suffices to take g;(t) :/ f. Suppose

—0o0
that the problem can be solved in dimension n — 1. There exists R > 0 such that

suppf C (—R,R)"™. Let g : R"! — R be defined by

g(xl,...,ﬂ:"_l):/f(xl,...,x"_l,x")dx".
R

/ g=| =0,
Rn—1 Rn

Then, g € C(R™!) and
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by Fubini’s theorem. So there exist g1,..., gn_1 € C°(R"1) such that
n—1

g= =L
J
= Ox

Let now p € C°(R) be such that suppp C (—R,R) and /p: 1. We define
R
fi € C(R") by X X X
fila®, .., 2") =gz, ...,z" ") - p(a™)
for j=1,..,n—1. Let h € C°(R™) be the function with

fn(xl,...,x”):/ h(z!, .., 2" t)dt.

n
Then, f = Z %fé, by construction. Finally, f, has compact support because
j=1

h(x!,...,2™) = 0 for 2" < —R and for 2" > R we have

™

fo(zt, ... 2™) = /:v" f(zt, . 2" dt — g(at, ...,x”l)/ p(t)dt

—00

:/f(xl,...,x”l,t)dt—g(xl,...,x"1)/p(t)dt
R

R
:/f(xl,...,x"l,t)dt—g(xl,...,xnl):O. O
R

Lemma 4.5.4. For every non-empty open set W C R"™ and every w € AZ(R™)
there exists some 0 € A" 1(R"™) such that supp(w — df) C W.

Proof. There exists some w; € AZ?(R™) with suppw; C W and / wy = 1. Then,

L)

and by Lemma 4.5.3 there exists some § € A 1(R") such that

e ([

Therefore, supp(w — df) C suppw; C W. O

Lemma 4.5.5. If M is a connected smooth n-manifold, then for every non-empty
open set W C R™ and every w € A%(M) there exists some 0 € A" 1 (M) such that
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supp(w — df) C W.

Proof. First suppose that w € A (M) is such that its support is contained in an open
subset U of M which is diffeomorphic to R™. Since M is connected, there is a finite
chain of open subsets Uy, ...,U; of M, for some k € N, which are all diffeomorphic
to R™ and are such that Uy C U, U, C W and U; NUj4q # @, for j =1,...,n — 1.
From Lemma 4.5.4, there exist 01, ...,0,_1 € A?~}(M) such that

J
supp(w — Zd9i> cU;NUju

i=1
k—1
for every j =1,...,n — 1. Thus, it suffices to take 6 = Zd@i.
i=1

In the general case using a smooth partition of unity it is possible to write

m
w = E w]'
Jj=1

for some m € N, where each w; € A}(M) has support which is contained in some
open subset of M which is diffeomorphic to R™. According to the above, there exists

m
n; € AP71(M) such that supp(w; —dn;) C W, j=1,...,m. If now 0 = an, then
j=1

supp(w — df) C U supp(wj —dn;) C W. O
j=1

Theorem 4.5.6. If M 1is a connected smooth n-manifold, the kernel of
/ s AM(M) — R is d(AVH(M)).

M
Proof. Let w € A?(M) be such that / w = 0. Let W C M be an open set which is

M
diffeomorphic to R™. From Lemma 4.5.5 there exists some 6 € A?~1(M) such that

supp(w — df) C W. From Theorem 4.5.1 we have

/M(w_de):o

and from Lemma 4.5.3 there exists some n € A" 1(M) such that suppn C W and
w—df =dn. Thus w=d(@+n)and § +n € AP (M). O

It follows immediately from Theorem 4.5.1 and its Corollary 4.5.2 that integra-
tion on a compact oriented smooth n manifold M induces a linear epimorphism

/M : H"(M) — R.

In particular, H™(M) is non-trivial. In case M is connected and compact, Theorem
4.5.6 gives the following.
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Corollary 4.5.7. If M is a connected compact oriented smooth n-manifold, then
the integration of differential n-forms on M induces a linear isomorphism

/M CHY(M) = R. O

4.6 Stokes’ formula

Let M be a smooth n-manifold. An open set D C M is called a domain with smooth
boundary if for every p € 9D there exists a smooth chart (U,¢) of M such that
p € U and

H(UND)=oU)N{(z!,...,z" 1 z") € R": 2™ > 0},

¢(UNAD) = o(U) N (R x {0}).

In particular, 9D is a (n—1)-dimensional smooth submanifold of M. A smooth chart
(U, ¢) as above will be called D-half space smooth chart. Each such smooth chart
is OD-straightening. Let (V) be another D-half space smooth chart such that
oDNUNV #@. If potp™ = (g1,...,g,) is the transition smooth diffeomorphism,
then g, (z!,...,2"71,0) = 0 and g, (', ...,2™) > 0 for 2™ > 0. So,

91 ... _On 91
Ozl Ozn—1 o™
-1 1 1 c e oo o e oo
D(¢O¢ )(x g T ’0) = | 99n-1 .. 9gn-1 9gn-1
Ozl Ozn—1 7
0 0 Dt
and . .
Ogn , 1 ne1 gn(T, .,z t)
—(z*,..., 2" ",0) = lim A 2 > 0.
(93:”( T »0) t—0+ t

If 7 : R® — R"™! denotes the projection onto the first n — 1 coordinates and
i: R — R"! x {0} C R™ is the inclusion, then

(mo(po 1/171) o z')(xl, ...,x”fl) = (gl(xl, T e 0), ...,gn_l(ml, ...,x"il,O))

and
991 .. _Om
1 1 1 Ozl Oxn—1
D(ro(potp™ )oi)(x",...,z" ,0) =
Ogn—1 . Ogn—1
Ozl Ozn—1

If now M is orientable and we have chosen a specific orientation, we can cover
0D by positively oriented smooth charts of M, which are 0 D-straightening as above.
It follows that det D(m o (¢ oy~ 1) od)(al,...,2" 1 0) > 0. This means that 9D is
orientable and has an orientation induced by the orientation of M.

Let now M be oriented and let A be a smooth atlas of M which consists of
positively oriented smooth charts of M, so that every element of A whose domain
of definition intersects D is a D-half space smooth chart as above. We choose
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a smooth partition of unity {fy : (U,ér) € A} subordinated to the open cover
U={U: (U, oy) € A} of M. For every w € AZ(M) we define its integral over D by

[o= % /¢ o, 8 )

(U,pu)eA

The definition does not depend on the choice of the smooth atlas A consisting
of positively oriented D-half space smooth charts, as above, and the choice of
the subordinated smooth partition of unity. The following is a generalization of
Theorem 4.5.1, as well as its proof.

Theorem 4.6.1. Let M be an oriented smooth n-manifold and let D C M be a
domain with smooth boundary. Let i : 0D — M denote the inclusion. Then

(—1)"/ i"w = /dw
oD D
for every w € AZ(M).

Proof. We assume first that there exists a positively oriented D-half space smooth
chart (U, ¢) as above such that U N 9D # @ and ¢(D Nsuppw) C (0,1)" C ¢(U).
As in the proof of Theorem 4.5.1, there exist g1,..., g, € C°(¢(U)) such that

(0 'w= (-1 gdet Ao AdaT Tt AdaTHE A A de”
j=1

and

(¢~ (Z%) b A Ada

Therefore,

- 09, _ _
dw — / 23 dxt. ..d":—/ gn(zt, .. 2" 0)dat - da™ !
/5 ]Zl 0,1 0% [0,1]n—1 ( )

by Fubini’s theorem and the Fundamental Theorem of Calculus.
On the other hand ¢(suppi*w) C (0,1)"~! and so

/a = /MM (0 8)~)" (")

e T T
[071}77,71 5

In case (U, ¢) is a positively oriented chart of M such that suppw C U C D, we

have
/ ifw = (—1)”/ dw =10
oD D

from Theorem 4.5.1.
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In the general case, we take a smooth atlas A of M which consists of positively
oriented smooth charts, so that every element of A whose domain of definition
intersects D is a D-half space smooth chart as in the beginning, and a smooth
partition of unity {fy : (U,¢y) € A} which is subordinated to the open cover
U={U: (U ¢y) € A} of M. Since supp(fyw) C U we have

Lao= 3 [agw)= ¥ [ vt =07 [ w0

(Upr)eA (Upr)eA D

It is worth to describe the induced orientation used to define integration over
0D. We shall need the notion of tangent vector which is directed inward or outward
of D. Let p € 9D. A tangent vector v € T,M \ T,,0D is directed inward of D if it
is the velocity of a smooth curve v : (—e,e) — M, that is v(0) = p and v = %(0),
such that y(t) € D for all 0 < t < e. If (U,¢) is any D-half space smooth chart
with ¢ = (2!, ...,2" "1, 2") and p € U, then 2"(p) = 0 and z"(y(¢)) > 0 for every
0 <t < e. Therefore

x"(y(t
(dz™)p(v) = tl_i)r(% w > 0.
The converse is evidently also true, that is v is directed inward of D if and only if
(dz™)p(v) > 0 for any D-half space smooth chart ¢ = (z!,...,2""1,2™). Similarly,
v is directed outward of D if there is a smooth curve v : (—¢,e) — M such that
7(0) = p, v = 4(0) and ~(t) € D for all —e < t < 0 or equivalently (dz"),(v) < 0
for any D-half space smooth chart ¢ = (z!,...,2"~ !, 2"). Obviously, v is directed
outward of D if and only if —v is directed inward of D.

Let A be a smooth atlas of M such that each (U,¢) € A with U N oD # &
is a D-half space smooth chart and let Agp = {(U,¢) € A: UNID # }. Let
{fv : (U,¢v) € A} be a smooth partition of unity subordinated to the open cover
U={U: (U, ¢y) € A} of M. The smooth map Y : 9D — T'M defined by

CEIP UL (507).

where in the sum ¢ = (2!, ..., 2", 2"), satisfies Y (p) € T,M for every p € 9D.
In other words Y is a smooth vector field along the smooth submanifold 0D. If
(V) € Agp and ¢ = (y!,...,y" 1, y") with p € V, then

@)= X o) o

(U7¢) EABD

because fy(p) > 0 and there exists at least one (U, ¢) € Agp such that fy(p) > 0,

while
(dy")pl =— | >0
Y'r ox™ P

for all (U,¢) € Asp. Hence Y(p) is directed inward of D for every p € dD. Also
X = —Y is a smooth vector field along dD which is directed outward of D.
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Let now M be oriented and let the smooth atlas A as above consist of positively
oriented smooth charts. As the proof of Theorem 4.4.3 shows, the orientation of M
is defined by the volume element

Z fU 1 -/\e;).

(U,p)eA

For every vy,..., v,—1 € T,0D we have

Qp(v1, ., Up—1, Y Z fulp z")p(Y(p)) - ¢" (el A+ ANep_1)(V1, ey Un—1).

(U,p)eA

This implies that an ordered basis [vy, ..., vp—1] of T,0D is positively oriented with
respect to the induced orientation from M if and only if Q,(v1,...,v,—1,Y (p)) > 0.
Thus, the induced orientation on 9D is given by Qgp € A"~1(0D) which is defined
by

(QBD)p(Uh ceey Un—l) = Qp(vl, ey Up—1, Y(p))

for vi,..., vp—1 € T,0D, p € OD, where Y : 0D — T'M is any smooth vector field
along 0D which is directed inward of D.

The left hand side of the asserted formula in Theorem 3.6.1 is however the
integral of i*w with respect to the orientation of 0D given by (—1)"Qsp. In odd
dimensions this orientation is given by a Qsp € A"=1(0D) which is defined by

(QBD)p(Uh ceey Un—l) = Qp(vl, ceey Un—1, X(p))

for vi,..., vp—1 € T,0D, p € 0D, where Qe A™(M) gives the orientation of M and
X : 0D — TM is any smooth vector field along 0D which is directed outward of D.
Theorem 4.6.1 can now be rephrased as follows.

Theorem 4.6.2. Let M be an oriented smooth n-manifold whose orientation is
given by a volume element Q). Let D C M be a domain with smooth boundary which
is considered oriented by (—1)"Qsp and let i : 0D — M denote the inclusion. Then

/ ifw = / dw
aD D
for every w € AZ(M). O

This is known as the (generalized) Stokes’ formula and is a generalization of the
Fundamental Theorem of Calculus.

Examples 4.6.3. (a) The boundary 0D of a domain with smooth boundary D
and with compact closure in R? is a compact 1-dimensional smooth submanifold of
R2. A differential 1-form w defined on some open neighbourhood of D is given by
w = Pdx 4+ Qdy, for a pair of smooth functions P, (). Then

oQ 0P
dw = <% — 8—y>dm/\dy
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and according to Stokes’ formula

/ <8—Q — a—P>dxdy :/ Pdx + Qdy.
p\0z Oy oD

This is Green’s theorem.

(b) Let D C R3? be a domain with smooth boundary and compact closure. A
differential 2-form w on an open neighbourhood of D can be written

w = Pdy Ndz 4+ Qdz A dz + Rdx A dy.

Then,
oP 0Q OR
dw=|—=—+4+ —+ — |dx ANdy Ndz.
w <3x+3y+32>x Yy A\dz
From Stokes’ formula we get Gauss’ Divergence Formula

oP 0 OR
/ Pdy ANdz + Qdz A dx 4+ Rdzx A dy :/ <— + 9Q + —>dwdydz.
oD p\0x Oy Oz
Recall that in this case 0D is considered oriented so that an order basis vy, v2]
of T,0D, p € 9D, is positively oriented if and only if it can be completed with a
third vector vs which is directed outward of D such that [v1,ve,v3] is a positively
oriented ordered basis of R3.

(c) Let v = 71 + i be a parametrised smooth simple closed curve in the complex
plane C whose image is the boundary of a domain with smooth boundary D. Let
f be a holomorphic complex function defined on some open neighbourhood of D.
Then, the smooth real valued functions u = Ref, v = Imf satisfy the Cauchy-
Riemann equations

ou_v o
oxr Oy’ oy Ox’

The complex line integral of f along v can be written

[{f(z)dz:[/w1+i/yw2

where wy = udr — vdy and wy = vdzr + udy. The Cauchy-Riemann equations are
equivalent to dwi; = 0 and dwy = 0. It follows from Stokes’ formula that

/vf(z)dz:/ﬁdm%—i/ﬁdmzo.

This is known as Cauchy’s Theorem in Complex Analysis.
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4.7 Vector fields and differential forms

Let V be a real n-dimensional vector space. For each 0 < k < n we define the
bilinear map i : V x A¥(V) — A*=1(V) by

(ixw)(ul, ...,uk,l) = w(X, ui, ...,ukfl)

for every X € V, w € A¥(V) and uy,..., up_1 € V. In case k = 0 we define i = 0.
We call ixw the contraction of w by X. Fixing the vector X € V we get thus a
linear map ix : A(V) — A(V) of degree —1, which has the following important

property.
Proposition 4.7.1. If X € V, w € A¥(V) and n € AY(V), then
ix(wAn) =ixwAn+ (=1)Fw Aixn.

Proof. Let v1,..., vg1;—1 € V and put vg = X. Then,
ixw A ’I’](UO, CAPRRE /Uk‘-i-l—l)

1
= Goom D (5200)w(X, V(1) oo Voo 1)) (Vs ++0s Vo (-1
" o€Skhqi-1
and
(=D)Fw Aixn(vo, v1, s Vkti-1)
(—1)*
= m Z (sgna)w(va(l), ...,?}Uk))n(X, Ua(lc+1)7 '-'7va(k+l—1))-
' " 0€Skti-1

The symmetric group Sk; on the set of symbols {0,1,...,k +1 — 1} is the disjoint
union of the two sets

A= {7T S S]{;+l : 77(0) € {Oa ?k - 1}}5

B={re Sky:7m(0)e{k,....k+1—1}}

Now we have
ZX(W A n)(UO’ V1, eery /Uk‘-i-l—l)

1
— W Z (Sgnﬂ-)w(vﬂ(o), ceny ’Uﬂ—(k‘_l))n(’vﬂ.(k), ceey vT((kJ-f—l—l))
TEA

1
ot 2 8T (Vr(0), - V(1)) (Un (k) s Unhti-1) )-
TEB

If 7 € A, we need to make 7—!(0) transpositions in order to move vg to the first
entry and so

W(Vr(0)s s Vi (k=) )N (Ve (k) s -1 Vm(kti—1))

= (_1)ﬂ_1(0)w(X? Va(1)s+++» vo(kfl))n(vo(k)a ) vo(kJrlfl))
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for some unique o € Siy;_1 such that sgnm = (—1)”_1(0)sgna. Since vg = X can be
at any of the first k£ entries it follows that the first sum is equal to

k
m Z (SgnO’)W(X, ’UU(I), ...7’00(]?71))?’](’00(]?)7 "'7UU(k+l71))'

0€Sk41-1
Similarly, the second sum is equal to

—1)*1
( k!l)! D (5800)W(Vo(1), s Vo) XK, V(g 1) 1 Verllti—1));

OESk+i-1

because in this case we need to perform k extra transpositions in order to move
vg = X to the first entry. [J

Example 4.7.2. A particularly interesting case of contraction is the following. Let
{v1,...,vn} be a basis of Vand w = v A--- Av. If X = Xju; + -+ + X, 0, then

n
ixw =Y (=1 XUt A AVT AV A A
j=1

This can be seen by a computation which is similar to the computation of Example
3.4.2 and which we repeat for the sake of clarity. Let G = {0 € S,, : 0(1) = 1} and
= (1 j). For ug,..., u, € V and putting v; = X we compute

ixw(ug, ..y ty) = Z (sgno )vy (Ug(r) =+ Uy (Ug(n))
gESy

3

Z (sgno) vy (Uyq) - - - v (Uo(n))

j=loo;eG

o /U;'kl (u’TUj (n) )

I
tf
a9
=}
\]
C
S
F
8
s

n

DN —(senm)vt (ury) -+ V1 (Ur (1) XU (Ur i) - - Ui ()

j=l71eG

:Z 171X (sgnp) v (up()) - - 071 (- 1)V (Upgisn)) -+ U ()

Z (=171 X0f A A Uiy ANV A A vg (U2, s Up).
j=1

It follows immediately from this that the linear map F : V — A" Y(V) de-
fined by F(X) = ixw is a monomorphism and hence an isomorphism since

dim A" (V) = dimV = n.
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Let now M be a smooth n-manifold. For every X € X(M) and w € A¥(M), the
differential (k — 1)-form ixw defined by

(ixw)p(ut, ..., ug—1) = wp(X(p),u1, ..., ug—1)

for every wuy,..., up—1 € T,M, p € M, is called the contraction of w by the vector
field X.

From Proposition 4.7.1 follows that the linear map ix : A*(M) — A*(M) of
degree —1 satisfies the graded Leibniz formula

ix(wAn) =ixwAn+(=1)*wAixn
for w € A¥(M), n € A*(M).

Proposition 4.7.3. If M is an oriented smooth n-manifold by a volume element
w € A"(M) then the linear map F : X(M) — A""Y(M) defined by F(X) = ixw is
an isomorphism.

Proof. Let (U, ¢) be a positively oriented smooth chart of M and ¢ = (x!,....,2").
There exists a unique smooth function f : U — (0, +00) such that

wlg = f-dz' Ao A da™.

For every X € (M) there exist unique smooth functions Xi,..., X,, : U — R such
that

= 0
j=1

As in Example 4.7.2 we have then

n
lpw = Z (=17 fXdat A AdaT T N AT TN A da
j=1
This implies that F' is injective. Unlike Example 4.7.2 we need an extra globalization
argument in order to show that F is surjective, since this time we deal with infinite

dimensional vector spaces. Let § € A" 1(M). There are unique smooth functions
Xi,..., X5 0 U — R such that

0y = Z (=17 fXdet A Ada? T A AT A A da™
j=1

Let (V,) be another positively oriented smooth chart of M and ¢ = (y,...,y").
There exists a unique smooth function g : V' — (0, +00) such that

n

and unique smooth functions Y7,..., Y, : V' — R such that

n
Oly => (=1 'gYidy' A Ayt AdyT A A dy
j=1
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IfUNV #£ @, then
S (=1 XGdat A Adad T A daTTE A A da”
j=1

n
= Z (_1)jflg}/}dy1 A A dyjfl /\dyj+1 A Ady™

on U NV, because 8 is globally defined. Since w is also globally defined, on UNV
for each 1 < i < n we have

n

Ywluav = dy' Aluay = > (1) f X dy' Ada' A Ada? T Adad TN A da”
j=1

X <Z oy —dx >d A Adz? " ANdaT A A da”
j=1

= (Z Xj@)&)h]mv.
7=1

Hence
i

n ay
Yi= 2 Xig,
j=1

which implies that

n

0 = 0
2 X150 = 2 Vi
7j=1 7=1

on U N V. Thus, these local vector fiends piece together to a globally defined
smooth vector field X such that ixw = 6. O

If M is an oriented smooth n-manifold by a volume element w € A™(M), the
differential (n — 1)-form ixw is called the flux form of the smooth vector field X.

There is a useful formula for the exterior differential in terms of vector fields
considered as derivations and the Lie bracket.

Theorem 4.7.4. Let M be a smooth n-manifold, w € A*(M), 0 < k < n, and let
Xo,..., Xp, € X(M). Then

k
dw(XO,.. Xk = Z Xw Xo,...,Xi_l,Xi+1,...,Xk)
=0

+Z D™ w (X, X1, Xos ooy Xie1, Xigts oo Xjo1, X1, s Xi).
1<J
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Proof. A first observation is that since both sides involve derivations, it suffices
to prove the formula locally. A second observation is that both sides are C*°(M)-
multilinear on the C°°(M)-module X' (M) x --- x X(M). This is trivial for the left
hand side. In order to confirm it for the right hand side, we put

k
S(Xo, o Xig) = D (=1)' Xitw(Xoy o, Xi1, Xig1, oo Xp)
=0

and

T(X07 s Xk;) = Z (_1)Z+jw([Xl? X]]? XOa a3 Xi*laXH*la a3 Xj*l? Xj+17 e Xk;)
1<J
For every f € C°°(M) and 1 < m < k we have
S(Xo, s [ Xy ooy Xp) = FS(Xos oo X))+ (— W(X0s ooy Xie1, Xit1, ooy Xpp).
i#m
On the other hand,
T( X0y oo, [Xomy ooy Xi)

= Z (_1)Z+jw([Xl7Xj]7X07 ey me7 "'7Xi—17Xi+17 "'7Xj—17Xj+17 7Xk)

i<j
i,jFEM
+Z Z-HTL XZ7fX ] X07"'7X’i—17Xi+17"'7Xm—17Xm+17"-7Xk)
i<m
+ 3 ()™ w([f X, X, X0, ooy X1y X1 s X1, X1, oony X
m<j
= FT(Xy, 0, Xp)+ D> (D)X f - 0(Xony X0, 000y Xio 1, Xig 1 ooy X1, Xong 1, 000 Xi)
<m
- Z (—1)m+jX]’f . w(Xm, XQ, ceey Xm—laXm—i—ly ceey Xj—17 Xj+1, veey Xk)
m<j
= fT(Xy, ..., Xg) + Z X e w(Xo, e X1, Xigts o Xi)
i<m
- Z (—1)m+j+ijf . w(XO, "'7Xj—17Xj+17 ,Xk)
m<j
= fT(X), o Xi) = Y (D)X f - w(Xoy ooy Ximt, Xig1, s Xp).

Hence the right hand side S+7" is C°°(M )-multilinear. From these two observations
we see that it is sufficient to prove the formula on the domain U of a smooth chart
(U, ¢), where ¢ = (x!,...,2™), for any set of k basic vector fields. There are unique
smooth functions wjyi;...i, , : U =+ R, 1 <ig < --- <ip_1 <n, such that

w= Z wl-o...ikfldxio Ao Adzier,

1<ig<-<ip_1<n
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For any 1 < jo < -+ < jr < n we have

(2 )
“\ozio” " oaix

= Z %dxm/\dxlo A A dgpt-t (aajo’_.-,a;ajk>
m=11<ip<--<ip_1<n x €T T
k
= Z (_1)i awjo'"jifljﬂfl'“jk
i=1
and .
9 d ;0 d d

a iaij"'ji—lji+l"'jk 0

Let now ® : D — M be the flow of a smooth vector field X on M. Forw € A*(M)
the differential form

1
Pjw = lim —(Pjw — w)

L =
X t—0 t

]

is called the Lie derivative of w with respect to X. Note that Lxf = Xf for
f € A°(M) = C>(M). Tt is obvious that the Lie derivative operator

Ly : A*(M) — A*(M)

commutes with the exterior differentiation d, that is do Lx = Lx o d. Finally, the
Lie derivative Lx with respect to X is a derivation of the exterior algebra A*(M)
since it satisfies a (non-graded) Leibliz formula

Lx(wAn)=LxwAn+wALxn

for every w, n € A*(M). Actually, these properties characterize Lx.

Proposition 4.7.5. Let M be a smooth n-manifold and let X € X(M). Let
D: A*(M)— A*(M) be a linear map with the following properties:
(a) D(AF(M)) c A¥(M) for all 0 < k < n.
(b) D(wAn)=DwAn+wA Dn for every w, n € A*(M).
(¢) D commutes with the exterior differentiation d, that is D od =do D.
(d) Df = X f for every f € C®(M).
Then, D = Lx.

Proof. 1t suffices to prove the assertion locally in the domain U of a smooth chart
(U, ¢) with ¢ = (2!,...,2"). If w € A¥(M), there exist unique smooth functions
Wipgy, - U = R, 1 <4y < -+ <4 < n such that

wly = g Wiyeip AT A <o N dx'®
1<y <--<ip<n
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Then,
Dw|y = Z Dwiy i dx A - A da'™

1<i1 << <n
k
+ Z Wiy ey, Z dz"* A - A D(dz"™) A - - dx™
1<ip << <n m=1
= Z Lxwi...i), - dzU A - A dxtt

1<i1 <-<ip<n

+ > Wieq, D dat A ALx(da'™) A da™ = Lyxwly. O

1<iy < <ip<n

The Lie derivative is closely related with the contraction and the exterior
differentiation through a formula which is due to E. Cartan.

Theorem 4.7.6. If X is a smooth vector field of a smooth n-manifold M, then
Lx =ixod+doix.

Proof. Tt suffices to check that D = ix od + d o ix has the properties (a)-(d) in
the statement of Proposition 4.7.5. Obviously, D is linear of degree 0. Also, D is a
derivation, because if w € A*¥(M) and n € A (M) we have

D(wAn) =d(ixwAn+ (=1)*w Aixn) +ix(dw An+ (=1)Fw A dn)
=dixwAn+ (=) LixwAdy+ (=1)Fdw Aixn +w Adixn
+ixdw A+ (1) dw Aixn + (=1)Fixw Adp+w Aixdny
= (dixw+ixdw) An+wA (dixn+ixdn) = Dw An+w A Dn.
Finallyy, Dod = doix od = do D and Df = ix(df) = df(X) = Xf for every
fec>mM). O

Corollary 4.7.7. Ifw € A¥(M), 1 <k <mn, and X, X1,..., X € X(M), then
k
Lxw(X1, .0y Xp) = X (X1, Xp) = D w0(X1, 000, X1, [X, X X1, s Xi)-
7=1

Proof. Applying Theorem 3.7.6 we have

k
ixdw(Xl, ,Xk) = Xw(Xl, ,Xk) + ZXZQ)(X, X1,y Xic1, Xig1, ,Xk)
=1

k
+Z jw X X] Xla---ij—lan+17---,Xk)
7=1

+ 3 (D)X, X, X X Xim1, Xt o Xjo1, X, 0 Xp)
1<J
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and i
dixw(Xi, ... Xi) = Y (D ' Xiw(X, X1, ooy Ximp, Xigtsory X)
=1
+Z ZJF]W Xi)Xj]’"',XiflyXZ'Jrl?"'anflanJrla"',Xk‘)'
1<J
Therefore,

LXw(Xl, ,Xk) = dixw(Xl, ,Xk) + ixdw(Xl, ,Xk)
k
= Xw(X1, .0, Xp) = Y w(X1, o, X1, [X, X5), X, X)), O
7=1

Corollary 4.7.8. If M is a smooth n-manifold and X, Y € X (M), then
Z.[X,Y} - LX o iy - iy (¢] LX

Proof. Applying the formula for the Lie derivative proved in the preceding
Corollary 4.7.7, for any w € A¥(M) and Xi,...,K}_1 € X(M) we have
Lx(iyw)(Xl, veey Xk—l)

k—1
:XW(KXla?Xk 1 Zw YXI, _] la[X X] XjJrl,"'an—l)
7j=1

and
iy (Lxw) (X1, .., Xk—1) = Xw(Y, X1, ..., Xp1) —w([X, Y], X1, ..., Xg—1)
k—1
= WY, X, X, (X X)X e Xim1).
j=1
Therefore,

(inyw—iyLXw)(Xl, ---7Xk71) = w([X, Y],Xl, ...,kal) = Z'[X7y]w(X1, ,Xk) O

4.8 Integration on Riemannian manifolds

Let V' be a n-dimensional real vector space equipped with an inner product (.,.)
which we assume that it is oriented by a non-zero element of A”(V'). There exists a
unique © € A"(V) such that Q(vy,...,v,) = 1 for every positively oriented ordered
orthonormal basis [v1, ..., v,] of V' or equivalently Q = v} A--- Avk, where [v], ..., v}]
is the dual basis. Indeed, if [wy, ..., w,] is another such basis of V', then

wj = Zaz’jvia 1<j<n
i—1

for some a;; € R, 1 < 4,5 <n. The matrix A = (ai;)1<i j<n is orthogonal and has
det A = 1. Since

w(wy, ..., wy) = (det A)w(vy, ..., vp) = w(vy, ..., vy)
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for every w € A™(V), it follows that vi A--- Av} =wi A+ Aw}.

Let now M be an oriented Riemannian smooth n-manifold. According to
the above, on each tangent space T,M, p € M, there exists a unique element
Q, € A"(T,M) such that Qp,(v1,...,v,) = 1 for every positively oriented ordered
orthonormal basis [v1, ...,v,] of T,M. This defines a volume element of M which
gives its orientation and is called the Riemannian volume element of M. We need
only show that € is indeed smooth. To see this, let (U, ¢) be a smooth chart of M
with ¢ = (x',...,2"). Let p € U and let [vy,...,v,] be a positively oriented ordered
orthonormal basis of T, M. Then,

(5), -2
— ) =) agu, 1<j<n
Ox? p =1

for some a;; € R, 1 <i,j <n. Let A= (ai;)i<ij<n- The matrix of the Riemannian
metric at p with respect to the chosen smooth chart has entries

93(P) = <<aii> <axﬂ> > <Zak’v’“ Za”vl> :éa’”%'

Thus, (gi;(p))1<ij<n = A'A and since
0
0 i
P ( <ax1 )p’ ’

Qp, = \/det(gij(p))lﬁmﬁn ’ (dxl)p A A (dx™)p.

Since this holds for every p € U, we conclude that €2 is smooth.
Let now V be the Levi-Civita connection of M. If X € X (M), the smooth
function

0

we have

divX = Tr(V X)

is called the divergence of X with respect to the Riemannian metric and can be
alternatively characterized as follows.

Proposition 4.8.1. Let M be an oriented Riemannian smooth n-manifold with
Riemannian volume element Q2. The divergence divX of X € X (M) is the unique

smooth function such that

d(ixQ) = (divX) - Q.
Proof. Let (U, ¢) be a smooth chart of M with ¢ = (z!,...,2") and suppose that

k
Xy = ZX &Ck
Using Example 4.7.2 and the above local formula for 2, we compute

d(ixQ)|v = d(ix (y/det(gij)i<ijen - dz' A~ A da™))
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= d(Z (=D)* 1\ Jdet(gij)1<ijen X® - dat Ao AdaFTE A daf A dm")
k=1
n 8 )
- <Z axk( det(gz‘j)lgi,jank)> cdxt A Adr
k=1

1 "9
- ( 2 it det(gij)lﬁi,anX’“)> -

det(gij)1<ij<n 1

On the other hand, for every 1 < ¢ < n we have

Vo X = Z(axz +§n:r'fXﬂ>ik

dxt

and so
diex =3 (G + LTk - Z +Z (ZP )%
k=1 j=1

Using the formula for the Christoffel symbols derived in the proof of Theorem 5.4.3

we have
9951  Ogie  Ogk; n aglk 8g:1 g
F g" 2 - — J ) — Kl k(09 ;
Z k;l <8xk + Oxd Ozl Z Z Bk oo
3glk 1 1 P
g
S 5 det "
Z:: T2 det(gkl)lgk,lgn Oz (gk1)1<k,1<

1

9 det(grr)
= Ca kL) 1<k 1<n-
Vdet(gu)i<ki<n 027 -

Substituting we arrive at

, & aXJ‘ X
divX = < det(gri)1<k l<n>
j=

w7 Vdet(gr)i<k,i<n ax]
n

! 9 (\/— |
N E det(gkl)1<k,l<nX]>, 0
\/m;axﬂ <k,I<

In the end of the proof of the preceding Proposition 4.8.1 we have used the
following fact. Let A : R™ — R™*" be a smooth map. If p € R™ and det A(p) > 0,
then

L detA (04
det A(p)  OxF B Dz

Indeed, if G : (—e€,e) — R™ ™ is a smooth curve for some € > 0 with G(0) = I,,
then from Taylor’s formula we have

®)- <A<p>>—1>, I <k<n

G(t) = I, + tG'(0) + O(t?)
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and therefore
det G(t) = 1+ tTrG'(0) + O(?).

This implies (det G)'(0) = TrG’(0). Applying this to G(¢) = B(t)B(0)~! we obtain

(det B)'(0) / 1
qet B0) Tr(B'(0)B(0)™")
for any smooth B : (—¢,€) — R™*™,

Let now D be a domain with smooth boundary in an oriented Riemannian
smooth n-manifold M. There exists a unique smooth vector field v : 0D — TM
along 0D which is directed outward of D and is orthogonal to 9D and has unit
length. We shall call v the unit outer normal to 0D. As we saw in section 3.6,
the orientation of 0D with respect to which Stokes’ formula holds is represented by
1,82, where ) is the Riemannian volume element of M. Let p € 9D and let vs,...,
vp, € T,0D be such that [v(p),va, ..., vy] is a positively oriented ordered orthonormal
basis of T,,0D. Then,

i, Qp) =v3 A Awp.

If X € X(M), from Example 4.7.2 we have
ixQp) = (X(p), v(p))+Y_ (=) X (D), vk)v(p)* AV5 A= Avi_y Avfg A-e- Ay
k=2

= <X(p)7 V(P)>iuQ(p) + 0.

Thus, ixQ|sp = (X, v)i, 8. Stokes’ formula has the following version on Rieman-
nian manifolds, which is known also as the Divergence Theorem.

Theorem 4.8.2. Let M be an oriented Riemannian smooth n-manifold with Rie-
mannian volume element  and let D C M be a domain with smooth boundary. Let
v be the unit outer normal to OD. If X € X(M) has compact support in M, then

/divX-Q:/ (X, v)i,0.
D oD

Proof. From the above considerations, Theorem 4.6.2 and Proposition 4.8.1 we

have
/divX-Q:/ d(z’XQ):/ iXQ|aD:/ (X,v)i,Q. O
D D oD oD

4.9 Differential ideals

Let M be a smooth n-manifold and let D be a geometric distribution of constant rank
k on M. A differential r-form w on M is said to annihilate D if wy(vy,...,v,) =0
for every vi,..., v, € D, and p € M. An element of the exterior algebra A*(M)
annihilates D if all its components annihilate D. The set £(D) of all elements of
A*(M) which annihilate D is an ideal in A*(M), by the definition of the wedge
product. We shall analyse further the structure of the annihilating ideal £(D).
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In general, an ideal S in A*(M) is said to be locally generated by n — k
independent differential 1-forms if there exists an open cover U of M such that for
every U € U there exist pointwise linearly independent 6,..., 8, € AY(U) such
that a differential form w on M belongs to £(D) if and only if w|y belongs to the
ideal in A*(U) which is generated by 0,..., 0,_.

Proposition 4.9.1. If D is a geometric distribution of constant rank k on a
smooth n-manifold M, then its annihilator E(D) is an ideal locally generated by
n — k independent differential 1-forms.

Proof. Let p € M. There exists an open neighbourhood U of p and Y1,..., Y}, € X(U)
such that {Y1(q), ..., Yx(q)} is a basis of D, for every ¢ € U. There exist some Yj,11,...,
Y, € X(U) such that {Yi(q), ..., Yx(q), Yit1(q), ..., Yn(¢)} is a basis of T, M for every
q € U. There are unique dual differential 1-forms w,..., w, € AY(U), that is
wi(Yj) = 65, 1 < 4,5 < n. Then, wy1,..., wy € E(D) and they are pointwise linearly
independent. If now w € £(D) is a differential r-form, there are f;,..;, € C*(U),
{i1,...,3r } C {1,...,n}, such that

W = Z fil"'irwil ARERWAN/ .

{i1,ir}C{1,...,n}

where fi,..;, = 0 in case {i1,....5, } N {k+1,...,n} = @. Hence w|y belongs to the
ideal in A*(U) which is generated by wg1,..., w,. Conversely, if w € A*(M) is such

hat w|y belongs to the ideal in A*(U) generated by wgy1,..., wy, then evidently
we&(D). O

Proposition 4.9.2. Let M be a smooth n-manifold and let S be an ideal in A*(M).
If § is locally generated by n — k independent differential 1-forms, there exists a
unique geometric distribution D of constant rank k such that S = E(D).

Proof. Let p € M and let 61,..., 8,1 be pointwise linearly independent differential
1-forms defined on some open neighbourhood U of p which generated S on U. Then,

n—k

D, = ﬂ Kerb;(p)
i=1

is a k-dimensional vector subspace of T,. It is obvious that D = U D, is a

peEM
geometric distribution of constant rank ¥ and & = &(D). The uniqueness is
immediate from the fact that if D! and D? are two geometric distributions of the
same constant rank and D! # D2, then £(D') # £(D?). O

Thus, there is a bijective correspondence between geometric distributions of
constant rank k on a smooth n-manifold M and ideals in its exterior algebra A*(M)
that are locally generated by n — k independent differential 1-forms. In terms of
annihilating ideals the Frobenius’ theorem can be stated as follows.
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Theorem 4.9.3. A geometric distribution D of constant rank k on a smooth
n-manifold M is integrable if and only if d(E(D)) C (D).

Proof. If D is integrable, it is involutive and so if w € A"(M) annihilates D, from

Theorem 4.7.4 we have
dw(Xy,....X;) =0

for every Xi,... X, € XP(M). Hence dw annihilates D as well.

Conversely, suppose that d(£(D)) C £(D) and let X, Y € XP(M). By Proposi-
tion 3.8.1, every point p € M has an open neighbourhood U such that £(D) is gener-
ated on U by pointwise linearly independent differential 1-forms 61,..., 8, € AY(U).
By Corollary 1.4.5, we may assume that these are restrictions to U of globally de-
fined differential 1-forms on M with support contained in U. From Theorem 4.7.4
we have

0;([X,Y]) = —db;(X,Y) + X0;(Y) - Y6;(X) =0
for all 1 < j <mn — k. Therefore,

n—k
[X,Y](p) € () Kert;(p) = D,
j=1

This shows that D is involutive, hence integrable, by Corollary 2.4.7. [J

Combined with Proposition 4.9.1, the preceding version of Frobenius’ theorem
can be restated in local terms as follows.

Corollary 4.9.4. Let D be a geometric distribution of constant rank k on a smooth
n-manifold M with annihilating ideal E(D). The following statements are equivalent.
(a) D is integrable.

(b) There ezists an open cover U of M such that for every U € U the ideal E(D) on
U is generated by n — k independent differential 1-forms 01,..., 0,1 for which there
exist a;; € AL(U), 1 <i,j <n—k, such that

n—k
dﬂj:ZHi/\aij, 1<j<n—k
i=1

(c) There ezists an open cover U of M such that for every U € U the ideal E(D) on
U is generated by n — k independent differential 1-forms 04,..., 0,1 such that

de/\Hl/\---/\Hn_kzo, 1<j<n—k 0O

Example 4.9.5. Let M be an open subset of R® and § € A'(M) be nowhere
vanishing. Then Kerf is geometric distribution of constant rank 2 on M and & (Ker6)
is generated by 6. According to Theorem 4.9.3, Kerf is integrable if and only if
dd N0 = 0. In particular, Kerf is integrable, if 6 is closed. The euclidean inner
product (.,.) gives a natural linear isomorphism ¢ : X(M) — A'(M) defined by
#(X) = (., X). If X = (), by aroutine computation we see that the integrability
condition translates to (X, curlX) = 0. This observation is due to G. Reeb and is
considered to have given birth to the theory of foliations.
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4.10 Exercises

1. Let M be a smooth manifold and w € A'(M). If there exists f € C°°(M), such
that f(p) # 0 for every p € M and fw is closed, prove that w A dw = 0.

2. Let M and N be two smooth manifolds and f : M — N be a submersion onto
N. Prove that the transpose f*: A*(N) — A*(M) is injective.

3. Prove that H!(R) = 0.

4. Let f: R — R be a smooth periodic function of period 1, that is f(z+1) = f(x)
for every € R. Prove that there exists A € R and a smooth periodic function
g : R = R of period 1 such that fdxr = Adx 4+ dg on R. Use this to prove that
H(SY) =R,

5. On R%\ {(0,0)} we consider the differential 1-form

w= . +y2dm+ = +y2dy.

Let F: (0,400) x R — R2\ {(0,0)} the local smooth diffeomorphism defined by
F(p,0) = (pcosB, psin).

a) Prove that F*w = d#.

(b) Let n be a closed differential 1-form on R?\ {(0,0)}. Prove that there exist
A € R, a smooth periodic function g : R — R of period 27 and a smooth function
h:(0,+00) x R — R such that h(p,0 + 27) = h(p,8) for every p > 0, § € R and

F*n=dh+ \df + ¢'(0)do

on (0,+00) x R.
(c) Use the above to prove that H'(R?\ {(0,0)}) = R.

6. Let M C R3 be an open set. For every a € A'(M) there exist oy, e, a3 € C°(M)
such that o = aydz! + agsdx?® + azdx®. The map ¢ : X (M) — A'(M) with

0
a1 T®ays a3

= aydz’ + aydz® + Oé3d$3
ox

0
927
is a linear isomorphism. For every § € A%(M) there exist 31, B2, 33 € C°°(M) such
that 0 = B1dz? A da3 + Bada® A dat + Bsda! A da? and ¢ : X(M) — A%(M) with

0 0 0
7/’(51@ +/82W +53@) =0

is a linear isomorphism. Finally, u: C*°(M) — A3(M) with u(f) = fdz* Adx? Ada®
is a linear isomorphism. Prove that ¢(§)A¢(¢) = ¥(€x () and ¢(§) AP (C) = p((§,))
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for every &, ¢ € X (M), where x is the usual exterior product on R? and (,) is the
euclidean inner product, and the following diagram commutes.

C> (M) X (M) x(M) oo ()

T T

ce() -5 AN M) S A2(M) L A3(M)

grad curl
—

7. Let M C R™ be an open set and w € A'(M) such that wAdz'A- - -Adz* = 0, where
k < n. Prove that there exist fi, ..., fy € C°°(M) such that w = fidz!' + - - -+ frda*.

8. Prove that the (total space of the) tangent bundle of a smooth manifold is
always an orientable smooth manifold.

9. Let U C R" be an open set and let f : U — R be a smooth function. If
c € R is a regular value of f and M = f~1(¢) # @, prove that M is an orientable
(n — 1)-dimensional smooth submanifold of R".

of

el de' A AdZITV AN ATV A A d2" on
z

n
(Hint : The pull-back of Z (1)1
j=1

M vanishes nowhere on M.)

10. Prove that orientability is a property of smooth manifolds which remains
invariant under smooth diffeomorphisms.

11. Let M be a smooth n-manifold and w € A*(M), 0 < k < n. Let G be a group
of diffeomorphisms of M which acts properly discontinuously on M so that M/G
is a Hausdorff space. If g*w = w for every g € G, prove that there exists a unique
& € A¥(M/G) such that p*@ = w, where p : M — M/G is the quotient map. Use
this to prove that if M is orientable and w is a volume element such that ¢g*w = w
for every g € G, then M/G is orientable.

12. Let M be a smooth n-manifold and w € A*¥(M), 0 < k < n. Let G be a group
of diffeomorphisms of M which acts properly discontinuously on M and let M/G
be Hausdorff. If & € A¥(M/G), 0 < k < n and w = p*®, where p: M — M/G is
the quotient map, prove that g*w = w for every g € G. Thus, if M /G is orientable,
then M is necessarily orientable.

13. Let G =< g,h >, where g,h : R? — R? are defined by g(z,y) = (z + 1,y)
and h(z,y) = (1 — 2,y +1). In other words G =< ¢,h : h~'gh = g~' >. Prove
that the quotient space, K? = R?/G, which is the Klein bottle, is a non-orientable
connected compact smooth 2-manifold.

14. Let A € R™™ be symmetric and let w be the standard volume element of S~
Prove that

1
/ (Az,z)w = —TrA - vol(§"™1)
Sn—1 n

where (,) is the euclidean inner product.
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(Hint: Use the Spectral Theorem.)

15. If k € Z, prove that the differential (n — 1)-form

n+1 j
_ ERAVES S| I=1 p gt n+1
wk—jzl( 1) T2l de' A ANd? T ANd? T A LA de

is not exact on R"1\ {0}.
16. Let M be an oriented smooth n-manifold by a volume element w € A™(M). For
every X € X (M) there exists a unique smooth function div,X € C°°(M), which

is called the w-divergence of X such that d(ixw) = (divyX)w. If M = R™ and
w = fdx' A ... \Ndx", where f € C®(R") with f # 0, prove that for

= )
X =) Xxk_—
kZ::l Oxk

we have

, 1 O(f X%
lewX = ? ; axk‘ .

17. If M is a smooth manifold and X, Y € X(M), prove that
L[X,Y] - LX (¢] LY - Ly o LX

18. Let M be a compact connected oriented smooth n-manifold by a volume element
w € A"(M). A smooth vector field X € X(M) with corresponding one-parameter
group of diffeomorphisms (®;)ser is called w-volume preserving if ®;w = w for every
teR
(a) Prove that X € X(M) is w-volume preserving if and only if the flux form ixw
is closed.
(b) Prove that that the vector space X,(M) of all w-volume preserving smooth
vector fields of M is isomorphic to A"~1(M) N Kerd.

A w-volume preserving smooth vector field X € X (M) is called w-homologically
trivial if the flux form ixw is exact.
(c) Prove that for every X, Y € X, (M) the smooth vector field [X,Y] is always
w-homologically trivial.

Let now M be 3-dimensional such that H'(M) = {0} and H?(M) = {0}.
(d) If X, Y € X, (M) and n € AL(M) is such that dn = iyw, prove that the integral

U(X,Y) :/ ixwAn
M

does not depend on the choice of the primitive 7 of the flux form iyw.
(e) Prove that ¢ : X,(M) x X,(M) — R is a non-degenerate, symmetric, bilinear
form.

19. Let M be an open subset of R? and § € A'(M) be nowhere vanishing. Prove
that Kerf is integrable if and only if every p € M has an open neighbourhood U on
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which there exists a nowhere vanishing f € C°°(U) such that f0|y is exact.

20. Let M be a Riemannian smooth n-manifold and let f : M — R be a smooth
function. We assume that M is oriented with Riemannian volume element €. The

function
Af = div(gradf)

is the (Riemannian) Laplacian of f.

(¢) If h: M — R is another smooth function, prove that

(i) div(fgradh) = (grad f,gradh) + fAh and

(i) A(fh) = 2(grad f,gradh) + fAh+ hAf.

(d) Let D C M be a domain with smooth boundary and v be the unit outer normal
on 0D. If f,h: M — R are two smooth functions at least one of which has compact
support, prove Green’s formulas

/((grad f,gradh) + fAR)Q :/ (f(gradf,v)i, 2,
D

oD

/(hAf — fAR)Q :/ (h{gradf,v) — f(gradh,v))i, Q.
D oD

(e) The smooth function f : M — R is called harmonic if Af = 0. Prove that
if M is connected, then every harmonic function on M with compact support is
constant.

21. Let n > 2 be an integer and g : (0,4+00) x (0,7)" "1 x (0,27) — R"*! be the
smooth map with g(p, 01, ...,0,) = (z!, ..., 2", 2"*!) where

z! = pcosb;

2 = psin 01 cos 0y
2™ = psinfy ---sinf,_1 cos b,
2"t = psin@; - - -sin6,,_; sinb,,.
(a) Prove that g*w = p"t1sin® 10, sin® 20y ---sinb,_; - dfy A --- A db,, where

n+1
w= Z (_1)j71xjd1'1 A Add P AdI T A oA de T € An(Rn+1).
j=1

(b) Let i : S — R"*! be the inclusion. Prove that if n = 2m — 1, then

2m—1\ _ K
vol(S )= /52m1 w= m = 1)1

and if n = 2m, then

2m+1ﬂ.m

2my __ ko
vol($ )_/ngw_ 135 (2m—1)




Chapter 5

De Rham cohomology

5.1 Homotopy invariance

This chapter is devoted to the development of methods of computation of the de
Rham cohomology of smooth manifolds. The first important property of the de
Rham cohomology is homotopy invariance. This will give the de Rham cohomology
of R™, a result which is traditionally known as the Poincaré Lemma.

Let M be a smooth n-manifold. In order to compute the de Rham cohomology of
the smooth (n 4 1)-manifold R x M we consider the projection 7 : R x M — M and
the inclusion i : M — R x M with i(p) = (0,p). Since 7w o i = idys, we immediately
have that i* o 7 = id. The greater part of this section is devoted to proving that
7 04* = id also, and therefore 7* : H*(M) — H*(R x M) is an isomorphism of
graded algebras with inverse i*. We note that in place of the inclusion i we could
very well use the inclusion i; : M — R x M with i;(p) = (¢,p) for any t € R.

Let A be a smooth atlas of M and let {fy : (U, ¢ur) € A} be a smooth partition
of unity subordinated to the open cover U = {U : (U, ¢y) € A} of M. Then, A =
{(RxU,idx¢y) : (U,dy) € A} is asmooth atlas of Rx M and {fy : (U, ¢y) € A}lisa
smooth partition of unity subordinated to the open cover U = {Rx U : (U, ¢p) € A}
of R x M, where fy = fyom.

Let now w € AF(R x M). If ¢y = (z!,...,2"), there are smooth functions
fU g%___jk on R x U such that

i1ip—1?

W|RxU = Z f-U___Z-kfldt Adzt A A dtEr

)
1<i1 < <ip—1<n

+ > g daT A A dah
1<i<<gp<n

and globally

W= ( Z fU g...ik_ldt Adz? A - A dmik—1>
(Upr)eA MM<ip<<ip_1<n

=+ Z < Z fugg.,.kdﬂcjl/\---/\dmjk>.

(Ugpr)eA M<ji<-<jp<n

127



128 CHAPTER 5. DE RHAM COHOMOLOGY

From Corollary 1.4. 5 for every U € U there is a smooth function hy : M — [0, 1]
such that suppfy C hy; 1(1) and supphy € U. If hy = hy o, then fyhy = fu and

o Z < Z Jufil i1 1dt/\(iLUd~’Ui1/\"'/\d:Ci’“_l)>

(Uypr)eA M<ip<-<ig_1<n

+ Z ( Z fUQ%...k(iLdejl /\--./\dxjk:)>.
cA

U¢u) 1<j1<<Jr<n

On each strip R x U only a finite number of elements of A give non-zero terms of the
above sum. Note that each differential form hyda™ A --- A dz'*—1 can be smoothly
extended to all of R x M by setting it zero outside R x U so that

iLdeil Ao Adzth1 = W*ng..@kl

where
U hydz™ A -+ Adz* =1, on U
T =9 on M\ U.

Similarly, in the second sum we have hydzit A -« A dzde = ¢V where

J1Jk?

CU B hydxdt A - ANdadk, on U
e ), on M\ U.

Thus, every w € A¥(R x M) is a locally finite sum of differential k-forms of (the
compressed) type

f(t,x)dt N7y + g(t, z)7"C

for suitable smooth functions f, g and n € A*=1(M), ¢ € AF(M).
Now set A¥(M) = 0 for every integer k < 0 and define S : A¥(M) — A*=1(M)

t
Sw = S, T dS 7(*

if w= f(t,z)dt N 7*n+ g(t,z)m*¢ and extending using the above. Thus we obtain
a linear map S : A*(M) — A*(M) of degree —1 of the graded vector space A*(M),
which according to the following crucial lemma is a cochain homotopy between
7 o4* and the identity.

Lemma 5.1.1. do S+ Sod=1id— 7" oi*.

. Ak— 1 Ak M Ak+1

l/l/**l

__)Akl —)AkM Ak+1 d
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Proof. If w = g(t,x)7*(, we have Sw = 0, by definition, and so

d(Sw) + S(dw) = S(dg N7 + g™ (d()) = S(dg AN7*(¢) = S(%dt A7)

_ (/Ot ?(s,x)ds) ¢ = (g(t,2) — 9(0,2)) 7 = w — (7 0 i*)w.

S

If now w = f(t,z)dt A w*n, then w — (7* 0 i*)w = w, because i*(dt) = 0. On the
other hand, we have

d(Sw) = d((/ot f(s,x)ds) 7T*77> - d(/ot f(s,x)ds) '+ (/Ot f(s,:c)ds) d(m*n)

_ K/Ot g—x(s, x)ds) de + f(t, x)dt] AT+ (/Ot £(s, x)ds) (")

and
- _ <At %(5, iE)dS) dx AN 77*77 _ (/Ot f(S’ ,I)ds) d(ﬂ_*n)
therefore,

d(Sw) + S(dw) = f(t,x)dt ANT"n=w=w — (7" 0 i")w.
This completes the proof. [J

Corollary 5.1.2.  For every smooth manifold M the canonical projection
m: R X M — M induces an isomorphism ©* : H*(M) — H*(R x M) in de Rham
cohomology.

Proof. Indeed, for every closed differential form w € A*(R x M) we have
w— (1% 0w = d(Sw)

from Lemma 5.1.1 and hence id — 7* 0 4* = 0 in the level of cohomology. [J
Since RY is a singleton, from Theorem 4.3.7 and we get inductively the following.

Corollary 5.1.3. The de Rham cohomology of R, n € Z*, is

Hk(R") R, for k =0,
{0}, for k> 0.

Definition 5.1.4. Let M and N be two smooth manifolds. Two smooth maps
fy9g: M — N are said to be (smoothly) homotopic if there exists a smooth map
F :R x M — M such that F(t,p) = f(p) for all t <0, p € M and F(t,p) = g(p)
forallt > 1, p € M or equivalently Foi, = f fort <0and Foi, =g fort>1. In
this case we write f ~ g and call F' a (smooth) homotopy from f to g.
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It is obvious that (smooth) homotopy is an equivalence relation in the set of all
smooth maps from M to N.

Theorem 5.1.5. Let M and N be two smooth manifolds. If two smooth maps f,
g: M — N are (smoothly) homotopic, then f* = g*: H*(N) — H*(M).

Proof. If F: R x M — M is a smooth homotopy from f to g, then
ff=(Foi) =ifoF* =" 'oF=iloF*=(Foi))* =g¢* O

As we know, the de Rham cohomology is a diffeomorphism invariant. Actually,
Theorem 5.1.5 implies a much more stronger statement.

Definition 5.1.6. Two smooth manifolds M and N are said to have the same
smooth homotopy type if there are smooth maps f: M — N and g : N - M
such that go f ~ idy; and f o g ~ idy. Such maps f and g are called homotopy
equivalences and homotopy inverses to each other.

Corollary 5.1.7. If two smooth manifolds have the same smooth homotopy type,
they have isomorphic de Rham cohomology algebras.

Two smooth manifolds with the same smooth homotopy type may be quite
different, for instance they may not even have the same dimension.

Examples 5.1.8. (a) The n-dimensional euclidean space has the homotopy
type of a singleton for every n € Z*. Indeed, if i : {0} < R" is the inclusion
and 7 : R" — {0} the unique obvious map, then r oi = idgy. On the other
hand, if A : R — [0,1] is a smooth function such that h=(0) = (—oc,0] and
h=1(1) = [1,+00), then F : R x R® — R" defined by F(t,z) = h(t)z is a smooth
homotopy from i or to idg. A smooth manifold with the smooth homotopy type of
a singleton is called contractible.

(b) The n-sphere S™ has the same smooth homotopy type with the punctured (n+1)-
dimensional euclidean space R"*1\ {0}. To see this, let i : S™ < R"*1\ {0} be the
inclusion and let r : R"*1\ {0} — S™ be the smooth map

1
r(x) = m - T

Then, obviously r o7 = idgn, and i o7 =~ idgn+1\fo}. Indeed, the smooth map
F:R xR\ {0} — R*1\ {0} defined by

1
x
where h is the smooth function of (a), is a smooth homotopy from ior to idgn+1\ (o-
In the terminology of Algebraic Topology, the map r is a retraction and S™ is a
(strong) deformation retract of R™*1,
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5.2 The degree of a smooth map

If M is a compact, connected, oriented smooth n-manifold, there exists a unique de
Rham cohomology class oy € H™(M) whose integral over M is equal to 1, which is
called the cohomological fundamental class (or orientation class) of M. By Theorem
4.5.7, the cohomology class of a differential n-form w € A™(M) is then

i ([ o

Let N be another compact, connected, oriented smooth n-manifold and suppose
that f: M — N is a smooth map. We call

deg f = /M fron

the degree of f. Then, for every § € A™(N) we have

| 1o =taegp)- (/Ne>

and so the transpose f*: H"(N) — H™(M) is given by the formula

F50 = (deg f) - </N9> o

The degree has the following properties.

Proposition 5.2.1. Let M, N be two compact, connected, oriented smooth
n-manifolds and f : M — N be a smooth map.

(a) If f is a diffeomorphism, then deg f = 1, in case f preserves orientation, and
deg f = —1, if f reverses orientation.

(b) If f is smoothly homotopic to a smooth map g: M — N, then deg f = degg.
(¢) If P is compact, connected, oriented smooth n-manifold and h : N — P is a
smooth map, then deg(ho f) = (degh) - (deg f).

(d) If deg f # 0, then f is onto N.

Proof. Assertions (a) and (c) are obvious from the definition of the degree, and
assertion (b) is an immediate consequence of Theorem 5.1.5. To prove (d), suppose
that f is not onto N. Then N \ f(M) is a non-empty open subset of N and there
exists a smooth function A : N — [0.1] such that @ # supph C N \ f(M), by
Corollary 1.4.5. Thus, ho f = 0 and therefore

/ f*(hon) :/ (ho f)ffon = 0.
M M
This means that deg f = 0. O.

We shall give an important application of the notion of degree to tangent vector
fields of even dimensional spheres which is known as the ”Hairy Ball Theorem”.
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We observe first that the antipodal map a : S™ — S™, n > 1 with a(x) = —x has
degree (—1)"*1. This follows immediately from Example 4.4.2(c).

Lemma 5.2.2. If two smooth maps f, g : S™ — S™, n > 1, satisfy f(z) # —g(x)
for every x € S™, then they are smoothly homotopic and so deg f = degg.

Proof. If h : R — [0,1] is a smooth function such that h~1(0) = (—o0,0] and
h=(1) = [1,+00), then F : R x S™ — S™ defined by
1

is a smooth homotopy from f to g. U

Theorem 5.2.3. FEvery smooth tangent vector field on an even dimensional sphere
vanishes in at least one point.

Proof. Let X € X(S™), n > 1, be nowhere vanishing. There exists a unique smooth
map F : S — R\ {0} such that X (p) = (p, F(p)) and (p, F(p)) = 0 for every
p € S™. We consider the smooth map f : S™ — S™ defined by

1
1®) = 1FG

Again (p, f(p)) = 0, and so f(p) # £p for every p € S™. From the preceding Lemma
5.2.2, f must be smoothly homotopic to the identity and to the antipodal map a.
Therefore,

- F(p).

1 =deg f = dega = (—1)"*!
and n must be odd. [O.

In the sequel we shall give another more geometric description of the degree
from which will follow that the degree is always an integer. As before, let M, N
be two compact, connected, oriented smooth n-manifolds and let f : M — N be
a smooth map. Let y € N be a regular value of f such that f~'(y) # @. For
each p € f~Y(y) the derivative f., : T,M — T,N is a linear isomorphism and so
there exists an open neighbourhood V' C M of p such that f(V) C N is open and
flv : V.= f(V) is a smooth diffeomorphism, by the Inverse Map Theorem. In
particular, f~!(y) NV = {p}. This means that f~!(y) is a closed discrete subset of
M, hence finite, because M is compact. So, there are py,..., p,, € M for some m € N
such that f~(y) = {p1,...,Pm}, and each p; has an open neighbourhood V; C M
such that fly, : Vi — f(V%) is a smooth diffeomorphism. Moreover, V;, N'V; = @ for
kE#1. Theset C=M\VyU---UVj is compact and so is f(A). The set

W= () f(Vi) N (N \ £(C))
k=1
is an open neighbourhood of y and f~Y(W) C ViU---UV,. If now Uy = VN f~H(W)
for 1 < k < m, we have
ffw)y=t,u--- U,
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each Uy is an open neighbourhood of py and f(Uy) = W. Finally, Uy,..., Uy, are
mutually disjoint and fly, : Uy — W is a smooth diffeomorphism. Shrinking W, if
necessary, we may always pick it to be connected.

In the particular case where f is a local diffeomorphism onto N the above con-
siderations show that f is a finite covering map.

For every p € M we set now

0, if f.p is not a linear isomorphism,
€(p) = ¢ +1, if fip is an orientation preserving linear isomorphism,

—1, if f,p is an orientation reversing linear isomorphism.

Theorem 5.2.4. Let M, N be compact, connected, oriented smooth n-manifolds
and let f : M — N be a smooth map. If y € N is a reqular value of f such that

[ (y) # 2, then
degf= > e

pef~1(p)

Proof. We continue to use the notations of the preceding considerations. The
cohomological fundamental class oy can be represented by a differential n-form
w € A"(N) such that suppw C W. Then, suppf*w C f~1(W) and

deg f = /M frw= i/v frolu, = i/v (fl) .

If e(p) = +1, then f|y, is orientation preserving, since Uy, is connected, and for the

same reason if €(p) = —1, then f|y, is orientation reversing. It follows that
m m m
degf =Y [ (flo)w =Y clm) [ wlw = etm). O
k=1"Uk k=1 w k=1

5.3 The Mayer-Vietoris exact sequence

In this section we shall develop the Mayer-Vietoris long exact sequence for de Rham
cohomology, which is a powerful tool for computations. Let M be a smooth n-
manifold and let U, V' C M be two open sets such that M = U U V. We denote by
1:UNV —Uand j:UNV — V the inclusions. We also consider the inclusions
ig: U= Mandiy:V — M.

Uunv ; U H 1% inclusion M

Passing to the level of differential forms we get the following sequence of cochain
maps

(i 47)

0 — A*(M) A*U) @ A*(V) —2— A*(UNV) —— 0
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where p(w,0) = 70 — i*w, which is exact and is called the Mayer-Vietoris exact
sequence. Its exactness at A*(M) and A*(U) & A*(V) is obvious. In order to see
that p is an epimorphism, let w € A*(U NV) and {fy, fv'} be a smooth partition
of unity subordinated to the open cover {U,V} of M. At every point p € U NV we
have
j*(wa)p - i*(_fvw)p = fU(p)wp + fV(p)wp = Wp-
Therefore, p(— fyw, fuw) = w and — fyw can be considered in A*(U), extended by
zero on U \ U NV, and similarly fyw can be considered in A*(V).
From the fundamental theorem of homological algebra (also known as ”the snake
lemma”) we get the Mayer-Vietoris long exact sequence for the de Rham cohomology.

o HR (M) Goiv) H*U) e HY(V) -2 HYUNV) -2 HMY(M) — ...

We shall describe in detail the connecting homomorphism d*. The following com-
mutative diagram

0 ——— A=) L 40y @ AL Y) 2 AU AT) ——— 0
d ded d

0 ARy — ) 4k Uy @ ARY) ——f s AR V) —— 0
d ded d

Gy i)
u»'v

0 —— AFtI(M) ALY @ AFY(Y) —2— AN U NV) —— 0

has exact rows. Let w € A¥(UNV) be a closed differential k-form. From the above,
p(—fyw, fuw) = w and p(—d(fyw),d(fuw)) = 0, by exactness. Thus,

j*(d(fow)) = i* (—d(fyw))
and we obtain a well defined closed differential (k 4 1)-form 6 € A*+1(M) by

_ _d(fvw)’ on U,
~ ld(fuw), onV.

The cohomology class [f] € H*+1(M) depends only on the cohomology class of w
and d*[w] = [0].

Example 5.3.1. Using a Mayer-Vietoris long exact sequence combined with the
homotopy invariance we shall compute the de Rham cohomology of the spheres S,
n > 0. We already know from Theorem 4.3.7 and Theorem 4.5.7 that H(S") = R
and H"(S™) =R for n > 1. In particular,
Hk(Sl) _ {]R, for k =0,1,
{0}, for k> 1.
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Moreover, H°(S%) =2 R @ R and H*(S°) = {0} for k > 0. So we assume that n > 2
in the sequel.
To begin with, we note first that for every 0 < e < 1 the set

Ac={z € S": [(z,ent1)| < €}

where (,) is the euclidean inner product in R"*!, has the smooth homotopy type
of S~ which is identified with the set {x € S™ : (z,e,41) = 0}. Indeed, let
i: 8" ! < 8™ be the inclusion and let 7 : A, — S™~! be the smooth map defined
by

1
r(z) = m (z — (2, ent1)).

Then, obviously r o = idgn—1. On the other hand, let h : R — [0, 1] be a smooth
function such that h=1(0) = (—o00,0] and A~!(1) = [I,+00). The smooth map
F:R x A — A defined by

1
P2 = o hmmanny @~ MO ens)
is a smooth homotopy of id4, with ¢ or. Hence ¢ o r ~ id4, and the transpose of
the inclusion on cohomology i* : H*(A.) — H*(S™ 1) is an isomorphism of graded
algebras.
Let now U = {z € S™ : (x,ep41) > —€cf and V = {z € S" : (x,ep+1) < €}.
Then, S* = U UV and U NV = A.. Moreover, the open subsets U, V are both
contractible, because the smooth map G : R x U — U defined by

1
(0= R(®)ens1 + h(B)a]

Gt x) = (1 = h(t))ent1 + h(t)z)

is a smooth homotopy of idy with the constant map of U with value e,,+1. Therefore,

Hk(U) _ R, for k=0,
{0}, for k> 0.

and similarly for V. It follows that the corresponding Mayer-Vietoris long exact
sequence splits in short exact sequences

0R—-R®R— H(S" 1) = H(S") =0

0 — HE(S™ ) L HRL(S™) - 0
for k > 1. The first short exact sequence gives H'(S™) = {0} for every n > 2 and
the second one gives inductively
HF(S™) = ...= HY(S"*1), 2<k<n.
It follows that
R, for k=0,n,

H*(S") = {
{0}, for k#0,n.
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Example 5.3.2. Let A = {(Ug,¢x) : K = 0,1,..n} be the canonical atlas of the
complex projective n-space CP™, n > 0. Since CPY is a singleton, H°(CP") = R
and H*(CPY) = {0}, for k > 0. So we assume that n > 1 in the sequel. We already
know that H°(CP") = R and H**(CP") = R, since CP" is a connected, compact
orientable smooth 2n-manifold.

If E=CP™\{[0,...,0,1]}, then CP" = EUU,, and E has the smooth homotopy
type of CP"~!. Indeed, let i : CP"~! — E be the smooth embedding i[zo, ..., z,_1] =
[20, ..., 2n_1,0] and let 7 : E — CP"~! be the smooth submersion r[z, ..., 21, 2] =
[204 -y Zn—1]. Obviously, 7 0 i = idcpn-1. On the other hand, the smooth map
F:R x E — FE defined by

F(ta [ZOa ees Zn—1, Zn]) = [ZO, ey Zn—1; h(t)Zn],

where h is the smooth function of the previous Example 5.3.1, is a smooth homotopy
of i or with idg. Therefore, i* : H*(E) — H*(CP"~!) is an isomorphism of graded
algebras.

Recall that the canonical smooth chart ¢, : U, — C™ is given by

20 Zn—1
an[ZO,...,Zn,l,Zn] — (2,"'5 Zn )

and so

Sn(ENU) = {(22, ., 222 ¢ (20,00, 201) # (0,...,0)} = C"\ {0}

Zn Zn

has the homotopy type of S%"~! according to the Example 5.1.8(b). Hence from
the previous Example 5.3.1 the de Rham cohomology of ENU, is

R, for k=0,2n—1,

HYENU,) = {
{0}, for k#0,2n — 1.

From the corresponding Mayer-Vietoris long exact sequence

. — H*YENU,) % HYCPY) — HYE)® HYU,) 2 HYENU,) & ..

follows that the inclusion i, : CP"~! — CP"™ with i,[20, ..., 2n_1] = [20, .-, Zn_1,0]
induces a linear monomorphism 4} : H(CP") — H'(CP" ') and hence H!(CP") =
{0} for every n > 1. Also H*" }(CP") = {0}, because H?"~2(5?"~1) = {0}
and H*""1(E) = H* Y(CP" 1) = {0}, since CP""! has dimension 2n — 2. For
1 < k < 2n — 1 the Mayer-Vietoris long exact sequence gives a linear isomorphism

it - HF(CP") — HF(CPr .
It follows now inductively that the de Rham cohomology of the complex projective
n-space is

R for k=0,2,4,...,2
Hk(CPn):{ 9 or g Ly Ey eeey LT,

{0}, otherwise.
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Note that this computation only gives H*(CP™) as a graded vector space. It gives
no information about the algebra structure. One way to obtain the de Rham
cohomology algebra H*(CP™) is by applying the Poincaré Duality Theorem which
will be proved in the next section.

In principle, using the Mayer-Vietoris long exact sequence we can compute the
de Rham cohomology vector spaces of a smooth manifold M inductively from a
finite open cover if we have control over the cohomologies of its elements as well
as their intersections. This is possible if the open cover is admissible. An open
cover U of M is called admissible if for every m € N and any Uy,..., U, € U the set
Ui N---NU,, is contractible.

Theorem 5.3.3. Let M be a smooth n-manifold. For every open cover U of M
there exists a countable open cover V of M which is an admissible locally finite
refinement of U consisting of relatively compact sets.

Proof. From Lemma 1.4.3 there exists an open cover B which is a locally finite
refinement of & and consists of relatively compact sets. We can choose any Rieman-
nian metric on M, by Proposition 3.3.2. Each point p € M has a strongly convex
uniformly normal open ball W), contained in some element of B, by Corollary 3.6.4.
Then W = {W,, : p € M} is an open cover of M and for each B € B there exists a
finite set Wy C W which covers B. Now

V=] Wws
BeB

is an open cover of M which is a locally finite refinement of U consisting of
relatively compact sets. For every m € N and Vi,..., V,;, € V the open set
C =ViNn---NV, is strongly convex and is contained in V; which is a uniformly
normal strongly convex open ball. It follows that C is contractible, because fixing
any point p € C, and choosing a smooth function h : R — [0, 1] such such that
h=(0) = [1,+0c0) and h~1(1) = (—oc0,0], the smooth map H : R x C — C with
H(t,q) = exp,(h(t)exp,'(q)) is a smooth homotopy from H(0,.) = idc to the
constant H(1,.) =p. O

Thus the set of admissible covers of a smooth manifold constitutes a cofinal
subset of the directed set of its open covers.

A smooth manifold M is said to be of finite type if it has a finite admissible
cover. Obviously, every compact manifold is of finite type. More generally, if C' is
a compact subset of a smooth manifold, then every open neighbourhood of C in
M contains an open neighbourhood of C' which as a smooth manifold is of finite
type. The terminology of finite type is justified by the following fact whose proof
is an illustration of the inductive use of the Mayer-Vietoris long exact sequence in
computing cohomologies.

Proposition 5.3.4. If M is a smooth manifold of finite type, then H*(M) has
finite dimension.
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The proof relies on the following elementary observation. Let Vi, V5, V3 be three
real vector spaces and let

!

Vi Vo 2= W

be a short exact sequence of linear maps. If V4 and V3 have finite dimension, then
also V5 has finite dimension. Indeed, there exist vy,..., vy € Va, for some k& € N such
that {g(v1),...,g(vk)} is a basis of g(V2) and also vgy1,..., Uy, € Va, for some m € N
such that {vgy1,...,0m} is a basis of f(V7) = Kerg. For every v € V5 there exist
ai,..., ap € R such that

g(o) = Zf;aig(m) - g(i>

and so there exist agi1,..., am € R such that

k m
v — E a;v; = E a;V;.
i=1

i=k+1

Thus, V5 is finitely generated.

Proof of Proposition 5.3.4. We proceed by induction on the number m of the ele-
ments of the admissible finite cover. If m = 1, the conclusion is trivial, by Corollary
5.1.7. Suppose that the conclusion holds for smooth manifolds which have an ad-
missible cover with m — 1 elements. Let M be a smooth manifold which has an
admissible cover {Uy,Us,...,Upy}. Putting V. = Us U --- U Uy, by the inductive
hypothesis H*(V') has finite dimension. Since M = U; UV from the corresponding
Mayer-Vietoris long exact sequence we obtain short exact sequences

HY U, nV) —X HYM) —— H*Uy) @ H(V).

Since {U; N Uy, ...,U; NU,,} is an admissible cover of U; NV, by the inductive hy-
pothesis H*(U; NV) has finite dimension. From the above elementary observation,
H*(M) has finite dimension. [J

Corollary 5.3.5. The de Rham cohomology of a compact smooth manifold has
finite dimension. [J

5.4 Poincaré Duality

Let M be a smooth n-manifold. Since d(A¥(M)) ¢ A¥+1(M) for every k € Z7T, the
pair (A% (M),d) is a cochain complex. The quotient vector space

_ ZMM) 0 AE(M)

H' (M) = BX(M) N Ak (M)

is called the de Rham cohomology of M with compact supports at degree k. Since
the wedge product of two differential forms with compact supports also has compact
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n
support, the graded vector space H; (M) = @ H¥(M) endowed with the cup prod-
k=0

uct becomes an associative commutative graded algebra which is a diffeomorphism
invariant. In general however if f : M — N is a smooth map, f*(A%(N)) may not
be a subset of A%(M).

According to Theorem 4.5.6, if M is a connected oriented smooth n-manifold,
then integration over M induces a well defined linear isomorphism

/M CHY(M) =5 R.

Also, the proof of Theorem 4.3.7 shows that if M is a connected, non-compact
smooth manifold, then H?(M) = {0}. The version of the Poincaré Lemma for the
de Rham cohomology with compact supports can be stated as follows.

Proposition 5.4.1. The de Rham cohomology with compact supports of R™ is

Hf(]R”) _ {R, for k = n,
{0}, for k #n.

Proof. From the above, this is obviously true for n = 0,1 and for n > 1, it suffices
to prove that H¥(R") = {0} for all 0 < k < n. Since R" is diffeomorphic to
S™\ {eny1}, it suffices to prove that H¥(S™ \ {e,11}) = {0} for 0 < k < n. The
elements of A¥(S™\ {e,41}) are differential k-forms on S™ which vanish on an open
neighbourhood of the north pole e, 1. Let w € A¥(S™\ {e,41}) with dw = 0. Since
H*(S™) = {0}, by Example 5.3.1, there exists § € A*~1(S™) such that w = df. Tt
remains to show that there exists such a 6 that vanishes on an open neighbourhood
of ent1.

There exists an open neighbourhood V' C S™ of e, which is diffeomorphic
to R™ such that w|y = 0. If k = 1, then § € C>®(S") = A°(S™) is a smooth
function such that df|yy = 0 and therefore 6 is constant on V. We denote this
constant value by 0|y. Now § = 6 — (8]y) € C>°(S™) vanishes on V and df = w.
This proves the assertion for kK = 1. Let 2 < k < n. From Corollary 5.1.3, there
exists 7 € AF=2(V) such that dn = 6|y, because d(f|y) = df|y = w|y = 0. Let U
be an open neighbourhood of e, ;1 with U C V. There exists a smooth function
f: 8™ — [0,1] such that U C f~!(1) and suppf C V, by Corollary 1.4.5. The
differential (k — 2)-form fn € A¥=2(V) can be extended to the differential (k — 2)-
form 7 € A¥=2(S™) defined by

__Jfn, onV,
7 0, onS"\V.

If § = 0 — dj, then df = df = w and O]y = 0|y — dn|y = 0. This completes the
proof. I

There is a Mayer-Vietoris exact sequence for de Rham cohomology with compact
supports. We observe first that if W C U C M are open sets of a smooth n-manifold
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M, the inclusion i : W < U induces a cochain map i, : A5(W) — A%(U) defined by

. wp, forpe W,
(isw)p =
0, forpe U\ suppw.

Let now U, V C M be two open sets such that M = U UV. Leti: UNV < U
and 5 : UNV < V denote the inclusions and iy : U <— M and iy : V < M be the
inclusions in M.

Uunv ; U H 1% inclusion M

Passing to the level of differential forms with compact supports we get the fol-
lowing sequence of cochain maps

0 — AA(UNV) ——— AXU)p A(V) —T— A*(M) ——— 0

where 7(w) = (—iw, jww) and o(w1,w2) = (iy)sw1 + (iv)swe, which is exact. Its
exactness at AX(U NV) and at A%(U) @ A%(V) is obvious from the definitions of
7 and 0. To see that o is onto A*(M), let {fv, fv} be a smooth partition of
unity subordinated to the open cover {U,V} of M. If w € A%(M), then w =
o(fuwlu, frwlv).

Thus we get a Mayer-Vietoris long exact sequence for the de Rham cohomology
with compact supports.

S HRUNV) D HYU) @ HEV) 2 HYNM) 25 R UAV) — -

The connecting homomorphism d, can be described as follows. If w € AF(M),
there are w1 = fyw, wy = fyw € A¥(M), so that suppw; C U, suppwz C V and
w = (iy)«(wi|ly) + (tv)«(w2]y). If moreover dw = 0, then —dw;|yny = dwaluny =
n € AL (U NV) and dny = 0. We have now d[w]. = [1]e.

If we A¥(M) and 6 € AL(M), then w A @ € AKTL(M). If w and 6 are closed and
n e AF=Y(M), ¢ € ALY (M), we have

(wWHd)ANO+dl) —wNl=xdlwA()xdnAb)L£dnAdQ)

and the differential forms w A {, n A0, n A d¢ have compact supports. This means
that the wedge product induces a well defined cup product

—: H*(M) x H\(M) — H*'(M)

which inherits its properties.
Let now M be an oriented smooth n-manifold. From the above, we get a well

defined bilinear map
/.

H*(M) x H=F(M) —=— H"(M)

C

R
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and a linear map Dy : H¥(M) — HPF(M)* with

Dar([w]) ([8le) = /Mme

which we call the Poincaré Duality map.

Theorem 5.4.2. If M is an oriented smooth n-manifold, then the Poincaré Dual-
ity map Dyy : HF(M) — H?F(M)* is a linear isomorphism for every k = 0,1, ...,n.

The proof will be given in several steps, starting locally and going to global
using a Mayer-Vietoris argument.

Lemma 5.4.3. The Poincaré Duality map Dgn : H¥(R™) — H?~F(R™)* is a linear
isomorphism for all 0 < k < n.

Proof. By Corollary 5.1.3 and Proposition 5.4.1, we need only check that
Dgn : HY(R") — H(R™)*

is a linear isomorphism. Indeed, as the proof of Theorem 4.3.7 shows, H°(R") = R
is generated by the constant function with value 1. This is sent from Dgn to the
integration
:HI'(R™) — R
Rn

over M, which is a linear isomorphism, according to Theorem 4.5.6. [J

Lemma 5.4.4. If U, V C M are two open subsets of an oriented smooth n-
manifold M such that M = U UV, then the following diagram, with first row the
Mayer-Vietoris long exact sequence in de Rham cohomology and second the dual
Mayer-Vietoris long exact sequence in de Rham cohomology with compact supports,
commutes.

s grn) UV gy @ BYYV) —2s BRNU V) —C s HEL(M) —s
lDM lDU@DV lDUﬂV lDM
+dt +dt

C c

Proof. The left square commutes because if w € A*¥(M), ¢ € AP=F(U), § € AP=F(V)
are closed, then

Duligel) (610) + Dy (i (8)) = |

i(*]w/\¢+/ iywA b
U

\%4

= /Mw A ((i0)«¢ + (iv):0) = Dt ([w]) (o ([@le, [0]e) = (0" 0 Dar)([w])([¢]e, [0]e)-

=% gk (M) 2 HYORU)S @ HER(V) D HERU AV S gk LM s
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For the commutativity of the middle square let w1 € A¥(U), wy € A*(V) and
n € APF(U NV) be closed. Then

Dy (e = al)(nle) = [

unv

(wz—wl)AUZ/

wz/\j*n—/wl/\i*n
1% U

= Dy ([w1])(=[isn]e) + Dv ([wa])([jxnle) = 7" ((Du ([w1]), Dy (wa]))([n]e)-

To prove the commutativity of the right square, we consider a smooth partition

of unity {fy, fi} subordinated to the open cover {U,V} of M. If w € A¥(UNV) is
closed, then d*[w] is represented by the closed differential (k + 1)-form

. {—d(fvw>, on U,
d(fyw), onV.

On the other hand, if ¢ € A" *~1(M) is closed, then d.[¢]. is represented by
—d(fud)lunv = d(fv¢)lunv. Now we compute

Das (@ (w))([8le) = /

M

d*wm;s:—/Umvd(fvw)m:—/mvdvaqus

— (1) /U W= () Dy (D)) O

An immediate consequence of the above Lemma 5.4.4 and the five lemma is the
following,.

Corollary 5.4.5. Let U, V. C M be two open subsets of an oriented smooth
n-manifold M. If Dy, Dy and Dyny are linear isomorphisms, so is Dyyy. O

Recall that the algebraic dual of the direct sum of a family V of vector spaces is
isomorphic to the direct product of their algebraic duals. Indeed, the map

G: HV*—><@V>*

Vey Vey

defined by
Gl(av)vev)((zv)vey) = Y av(ay)

Vey

for (zv)vey € @ V' is a linear isomorphism.
Vey
Lemma 5.4.6. If U is an open cover of a smooth manifold M consisting of
mutually disjoint open sets, then H*(M) = H H*(U) and EB HX(U)=H;(M).
veu veu
Proof. 1t suffices to observe that if iy : U < M is the inclusion, then the maps
L: A" (M) — J] A*(U) defined by L(w) = (ifw)vey and T : @ ALU) — AL(M)
veu veu
defined by T'((wy)veu) = Z (ir)«wy are cochain isomorphisms of obvious cochain
veu
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complexes. [

Corollary 5.4.7. If U is an open cover of a smooth n-manifold M consisting of
mutually disjoint open sets and Dy is a linear isomorphism for every U € U, then
so is Dyy.

Proof. The assertion follows immediately from the commutative diagram

HE (M) ———— T[] H*U)
Ueu
Dy H Dy
Ueu
Hy (M) —— [] H M U)*
Ueu

in which the horizontal maps are the isomorphisms of Lemma 5.4.6. [J

The proof of Theorem 5.4.2 will be a combination of the above lemmas and
corollaries and the following general proposition.

Proposition 5.4.8. Let M be a smooth m-manifold and let U be a set of open
subsets of M with the following properties:

(i) @ €lU.

(ii) If U is an open subset of M diffeomorphic to R™, then U € U.

(i5i) If Uy, Uy € U are such that Uy NUs € U, then Uy UUz € U.

(i) If {U, : n € N} is a countable family of mutually disjoint elements of U, then

Uuneu.
n=1
Then, M € U.

The proof of Proposition 5.4.8 relies on the following lemma.

Lemma 5.4.9. With the assumptions of Proposition 5.4.8, let {U, : n € N} be a
locally finite countable family of open and relatively compact subsets of M such that
o

ﬂ Uj € U for every finite set J C N. Then, U U,elU.

JjeJ n=1

Proof. First we show that finite unions of elements of the countable family belong to
U. Let n € N and 141,..., i, € N. We shall show inductively that U;, U---UU; € U.
For n = 1, 2 this is true by property (iii) and our assumption (in case J is a singleton).
Let n > 3 and suppose that the assertion holds for finite subfamilies with n — 1
elements. If V. =U;, U---UU;, , then

U,nV=JU,nU, eu
k=2
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from the inductive hypothesis. Moreover, from our assumption (iii) we have
Uy, U---uU;, =0, UV elU.

Since finite unions of elements of the countable family belong to U, for every
n € N and indices i1, j1,..., in, jn € N we have

Uuvinu,, eu.
k=1

Now we define inductively I; = {1}, W = U; and

n—1
I,={n}u{ieN:i>n and Uiﬂanl#Q}\UIk, Wn:UUi,
k=1

= i€l

for n > 2. If I,,_q is finite, then W,,_1 is relatively compact and intersects at most
finitely many of the elements of the countable family, since the latter is assumed
to be locally finite. Thus, inductively I,, is finite and W, is relatively compact and
belongs to U for every n € N. Moreover, W,, "W, 11 € U and W,, N W}, = @, if
k > n + 1, because otherwise there exists some ¢ € I, such that W, N U; # & and
thus ¢ € I; for some j < n + 1, contradiction. From property (iv) of U we have

<U W2k> N (U WZk—l) = U WonWpieU
k=1 k=1

n=1

and from property (iii) the proof is concluded. O

Proof of Proposition 5.4.8. In the beginning we consider the case where M is an
open subset of R™. Then there exists a locally finite countable open cover of M
which consists of open cubes (with edges parallel to the axis) and refines U. Any
finite intersection of open cubes is an open cube and thus again diffeomorphic to
R™. From property (ii) and Lemma 5.4.9 follows that M € U.

In the general case, for every chart (U, ¢) of M the family

U®={Bc ¢(U): Bisopenand ¢ (B)elU}

has the properties (i), (ii), (iii) and (iv). Hence ¢(U) € U? and therefore U € U.
Now we take any locally finite countable open cover of M consisting of relatively

compact open sets which are domains of charts. Lemma 5.4.9 gives immediately
Med. O

Proof of Theorem 5.4.2. Tt suffices to consider the family U/ of all open subsets
of M such that Dy is an isomorphism for all U € Y. Then, Lemma 5.3.3 and
Corollaries 5.3,5 and 5.3.7 say that U satisfies the assumptions of Proposition 5.3.8
and therefore Dy, € Y. O

Corollary 5.4.10. If M is a mon-compact orientable smooth n-manifold, then
H™(M)={0}. O
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We shall give some applications of the Roincaré Duality Isomorphism in the
particular case of compact smooth manifolds.

Example 5.4.11. We shall compute the de Rham cohomology algebra of the com-
plex projective n-space CP" for n > 1. The Poincaré Duality Isomorphism gives a

non-degenerate bilinear pairing
cpr

for every 0 < k < n. Let X denote the generator of H?(CP"). For k = 1 this gives
X2:XvX;éOandinductivelka:Xv---vX#O,forallOﬁkgn,
while X" = 0. This implies that the map F : R[X] — H*(CP") defined by

H?**(CP™) x H*"“?*(CP") ——— H*"(CP") R

F <i aka> = (ag, ..., an) € é H?**(CP") = H*(CP")
k=0 k=0

is an epimorphism of algebras and its kernel is the ideal in R[X] that is generated
by the monomial X"*!. Hence the de Rham cohomology algebra H*(CP") is
isomorphic to the truncated polynomial algebra R[X]/ < X! >.

Recall that if V' is a real vector space and A C V is a basis of V, then V = EB]R.

acA
Since

<§4R>*zgz@

is follows that if V* has finite dimension, then V necessarily has finite dimension.
This simple algebraic observation combined with the Poincaré Duality Isomorphism
and Proposition 5.3.4 gives immediately the following.

Corollary 5.4.12. If M is an orientable smooth n-manifold of finite type, then
H}(M) has finite dimension and H*(M)* = H' k(M) for every 0 <k <n. O
If M is a compact orientable smooth n-manifold, the integer

n

V(M) = 37 (~1)" dim H* (M)
k=0

is the Fuler characteristic of M. Suppose that M is also connected and n = 2m is
even. The Poincaré Duality Isomorphism gives a non-degenerate bilinear form

(,.): H™(M) x H™(M) — R

which is skew-symmetric if m is odd, and symmetric if m is even. In the latter case
its signature is usually called the signature of M.
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Proposition 5.4.13. Let M be a connected, compact, oriented smooth n-manifold.
(a) If n is odd, then x(M) = 0.

(b) If n = 2m and m is odd, then x(M) =0 mod 2.

(¢) If n = 2m and m is even, then dim H™(M) = x(M) mod 2.

Proof. Using the Poincaré Duality Isomorphism and Corollary 4.3.12 we compute

n n

X(M) =" (—=1)Fdim H*(M) = (=1)" dim H" (M) = (=1)"x(M)
k=0 k=0

and so x(M) =0, if n is odd.
If n = 2m, we have

—_

(M) = f: (—1)F dim H* (M) = 2m_ (=1)* dim H*(M) + (=1)™ dim H™(M).
k=0 k=0

In case m is odd, dim H™(M) is even, since the real vector space H™ (M) carries
the non-degenerate skew-symmetric bilinear form (.,.). The rest is obvious. [J

5.5 The Kiinneth formula

In this section we shall compute the de Rham cohomology with compact supports of
the cartesian product of two smooth manifolds. Let M, N be two smooth manifolds
and let mpr : M X N — M and 7wy : M X N — N denote the natural projections.
There is a well defined cochain map v : A*(M) ® A*(N) — A*(M x N) by

Y(w ® 0) = myw A b

which induces a linear map v : H*(A*(M) ® A*(N)) — H*(M x N). Composing
with the algebraic isomorphism p : H*(M) @ H*(N) — H*(A*(M) ® A*(N)) with
w(lw] @ [0]) = [w® 0], we get a linear map ¢ : H*(M) ® H*(N) — H*(M x N)
defined by

Y(a® B) = mya— wns
which is natural.

We observe that  has a restriction 7, : A%(M) ® Af(N) — Af(M x N), from
which as above we take a well defined linear map ¢, : HX(M)QHY(N) — H(MxN)
with

Ye(lwle ® [0]c) = [mpw A myble

since the support of 7},w A w0 is contained in suppw x suppf.
Theorem 5.5.1. If M and N are two smooth manifolds, then
ot HE(M) © HX(N) — HX(M x N)

with Ye([wl]e ® [0]c) = [myw A TrO]e is an isomorphism.
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Corollary 5.5.2. If M and N are two compact smooth manifolds, then
Y :H*(M)® H*(N) — H*(M x N)
with Y(a ® B) = my,a — wn B is a natural isomorphism. O

The procedure of the proof is similar to that of Theorem 5.4.2. We begin with
the case M = R", n > 1. Of course it suffices to prove that

e : HY(R)®@ HY(N) — HX(R x N)
is an isomorphism. From Proposition 5.4.1 follows however that
(H:(R® H:(N))* = H;(R) ® Hy~'(N) = HY(N)

for every k € Z, because H!(R) = R, the isomorphism being integration over R.
Taking into account this isomorphism, we have to show that

Ve : HFY(N) — H¥(R x N)

defined by
¢c([9]c) = [e(t)dt A W}kva]c

is an isomorphism for every k € Z, where e € C°(R) is such that / e(t)dt = 1.

This is a version of the Poincaré Lemma for the de Rham cohomology with compact
supports. Of course 1. can be defined at the level of the cochain complexes A%(N)
and A’ (R x N) where it is a cochain map of degree 1.

Theorem 5.5.3. The map . : H*1(N) — H¥(R x N) is an isomorphism for
every k € 7.

Proof. As we did in the proof of Corollary 5.1.2, we shall construct a cochain
map 7 : AX(R x N) — A%(N) of degree —1 and a cochain homotopy K such that
mot. = +id and id — . om = £(do K — K od). We define the linear map
7: AF(R x N) — AF1(N) by

) = ( [ attoyie)

if w= f(t,z)7%0 + g(t,x)min A dt, where f, g € CX(R x N) § € A¥(N) and
n € A¥1(N). Now on the one hand we have

d(n(w)) = </R g—idt> dz An+ (/Rg(t,x)dt> dn

and on the other

m(dw) = w(df N0+ frn(dO) + dg A myn A dt 4+ gr(dn) A dt)

:i(/lk%dt)%r (/R%dt)dmm </Rg(t,x)dt>dn
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- (/R %dt)dxmw (Ag(t,x)dt)dn

from the Fundamental Theorem of Calculus, since f has compact support. Hence
7 is a cochain map. It is also obvious from the definitions that

m(ve(n)) = w(e(t)dt Amyn) = (=1)* 1.

Now we define the linear map K : A¥(R x N) — A*~}(R x N) by

k) = ([ _ats.aris )min— (bio) [ ate.arat )i

t
where h(t) = / e(s)ds. Again from the Fundamental Theorem of Calculus we

— 00

have
Lo d
(do K — K od)(friy#) = (—1)*1 [( o a—{dt) 0 — (h(t) /R 8—‘:dt> w;@e}
= (=) frn0 = (id = (=1)* e o m) (f7N0).
Also,

(id — (—1)"“1¢c om)(gryn Adt) = gryn Adt — </ g(t, x)dt)e(t)ﬂfvn A dt
R

and
t

(do K)(gr¥m Adt) = d[(/

—0o0

= </; g(s,x)ds — h(t) /Rg(t,x)dt> v (dn) + (=D Lain A </; g—ids> dx

+H(=1)Fgmam A dt — (—1)F i A K /R g(t, x)dt) e(t)dt + h(t) ( /R %dt) dm]

g(s,x)ds — h(t) /

R

sor0) ]

while
(K od)(gnyn Adt) = K (gma(dn) A dt + (—1)’“—1%njvn Adx A dt)
t
= ([ _atsards =t [ ate.pe )s(an)
+(=1)k1 [(/_too %ds — h(t) /R %dt)ﬂvn A dz.
Hence

(do K — Kod)(griynAdt) = (=1 Lgrinndt — (—1)F1 (/Rg(t,x)dt>e(t)7rfvn/\dt

= (1" Hid — (=) e om) (g A db).
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This shows that (id — (=1)* 1. o 1) = (=1)*1(do K — K o d). It follows
immediately the 1, : H*"'(N) — HF(R x N) is an isomorphism. Moreover, its
inverse is (—1)*~17 : H¥(R x N) — HF~Y(N) for every k € Z. O

Lemma 5.5.4. Let U, V C M be two open subsets of the smooth manifold M such
that M = U UV and N be a smooth manifold. If
Ye: HY(U)®@ HY(N) — H:(U x N),
Ve : HI(V)®Q HY(N) — HX(V x N),
Ve : HH{UNV)®Q HY(N) — H(UNV) x N)
are isomorphisms, then so is Y. : HY¥(M)® H(N) — H}(M x N).

Proof. From the Mayer-Vietoris exact sequences
0 —— A UNV) —— A;(U) @ A (V) —— AX(M) —— 0
and
0— A((UNV)x N) 5 AS(U x N) @ A5(V x N) % AX(M x N) — 0

we get the following commutative diagram with exact rows

0 — AUNV)RALN) — A;(U)@ AL(N) @ AL(V)® AL(N) — AX(M)® A;(N) — 0

) = I
0 — A((UNV)xN) —— A (UxN)®d A5(V x N) —— A¥(M x N) — 0.

This gives an analogous commutative diagram for the corresponding long exact
sequences in cohomology. The assertion follows then from the five lemma. [J

Lemma 5.5.5. LetU be a countable open cover of the smooth manifold M by mutu-
ally disjoint sets and N be a smooth manifold. If . : HY¥(U)Q HY(N) — HX(U x N)
is an isomorphism for every U € U, then so is . : HY(M)® HY(N) — H}(M x N).

Proof. The assertion follows from the obvious isomorphism
P H:(U) @ H;(N) = H;(M) @ H;(N)
veud

and the commutative diagram

Pe

veu

P H:(U) @ Hi(N) P H:(U x N)

veu veud
e

H*(M)® Hf(N) —— H*(M x N). O

C
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Proof of Theorem 5.5.1. Let U be the family of all open subsets U of M such
that ¢, : H}(U) ® HY(N) — HX(U x N) is an isomorphism. Then ¢ fulfils the
assumptions of Proposition 4.4.8, by Theorem 5.5.3, Lemma 5.5.4 and Lemma
5.5.5. Therefore, M € U. This completes the proof. [J

Example 5.5.6. As an illustration we shall compute the de Rham vohomology
algebra of the connected compact orientable 6-manifold S? x S*. Using Example
5.3.1 and Corollary 5.5.2, we have

H(8? x §%) = HY(S?) @ H'(S") @ H'(5%) ® H°(S") = {0},

H%(S? x 8% = H°(S%) ® H*(SY) @ H'(S?) @ H*(SY) @ H*(S?) @ H°(S*) = R,
and similarly H3(S? x S%) = {0}, H*(S? x §%) = R. Of course H’(S? x S*) = R
and H%(/S? x §*) = R. The gencrator of H?(5? x %) is 7,052 = ¢(052®1). Thus,

(7'(';2052)2 = 722052 ~ 722052 = 722(052 ~— 052) =0
in H*(S? x S*). In other words the cup product
—: H?(8? x 8*) x H*(S? x §%) — H*(5?% x S%)
is trivial
We observe now that although H*(S? x §%) = H*(CP?) for all k, the de Rham
cohomology algebras H*(S? x S%) and H*(CP3) are not isomorphic, since the cup

product
—: H*(CP?) x H*(CP?) — H*(CP?)

is non-trivial. This illustrates the fact that the de Rham cohomology algebra is a
much finer invariant than the de Rham cohomology vector space.

5.6 Intersection theory

Let M be a compact connected oriented smooth n-manifold. A k-cyclein M is a pair
(S,0), where S is a compact oriented (possibly not connected) smooth k-manifold
and o : S — M is a smooth map. Such a k-cycle induces a well defined element of
H*(M)* which sends each a € H¥(M) to the integral of o*a over S. Indeed, if w,
0 € AK(M) and n € A*~1(M) are such that w = 0 + dn, then

/a*w:/a*0+/d(0*n):/a*6
S S S S

by Theorem 4.5.1. By Poincaré Duality, there exists a unique 6. € H n=k(M)

such that
/ a— §(s,q) :/J*a
M S

for every o € H¥(M), which is called the Poincaré dual de Rham cohomology class
of the k-cycle (S,0). We will usually write simply ds instead of (g, if there no
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danger of confusion.

Examples 5.6.1. (a) The Poincaré dual cohomology class of a point in a compact
connected oriented smooth n-manifold M is oyy.

(b) If M is a compact, connected, oriented smooth n-manifold, then the Poincaré
dual cohomology class of the n-cycle (M, idys) in M is 1.

(¢) If N is a compact oriented k-dimensional smooth submanifold of a compact
connected oriented smooth n-manifold M and i : N — M is the inclusion, then
(N,i) is a k-cycle in M.

(d) Let M be a compact connected oriented smooth m-manifold and N be a compact
connected oriented smooth n-manifold. If (S,0) is a k-cycle in M and (T, 7) is a
l-cycle in N, then (S x T,o x 7) is a (k + [)-cycle in M x N and

Sgxr = (—1) Rzt 5o w4 0r

where mpy : M X N — M and 7wy : M x N — N are the projections. Indeed, for
every a € H¥(M) and 8 € H'(M) we have

fugoxmrisse=sim= (L) () = (=) (=)

— / Tl < 8s) — mh(n — 67)
MxN

= (—1)mHr /M il wim) — (xids — wior)
X

This computation and Corollary 4.5.2 prove the assertion.

(e) Let M be a compact connected oriented smooth n-manifold. The diagonal map
A:M—>MxM

gives a n-cycle (M, A) in the smooth 2n-manifold M x M. If 7; : M x M — M
denotes the projection onto the j-th coordinate, 7 = 1,2, then

| Ao —mp) = [ o

for every a € H¥(M) and 8 € H"*(M), 0 < k < n. Let {a;} be a basis of H*(M)
and let {a'} be its Poincaré dual, that is

7
/ [0 vaj:5ij.
M

Every a € H*(M) can be written as

azz</Maua>ai and a:2</Mavai>ai

K3 3
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and so

[a—s=([ e =a) ([ 5=u)([ a—a)

/[:7.7

N ZZ: </Ma - ai) ' (/MIB - ai) N Zi:/MxMWT(a = o) = (5 — i)
— [ e me) — (S el < ma)

i
It follows from Corollary 4.5.2 that
N Z (—1)deg“iﬂ'1‘ai — THQ.
%
Note that

/ A*A = Z (_1)degai / A*(Tfiai — 7'(';04@') _ Z (_1)degai / ol — i
M i M

i M

n

_ Z (_1)degai — Z (=1)* dim H* (M) = x(M).

k=0

Two k-cycles (S1,01) and (S3,02) are called cobordant if there exists a relatively
compact connected domain with smooth boundary D in an oriented smooth (n+1)-
manifold P such that

oD = (=51) [ [ 52

and a smooth map ¢ : P — M such that a]gj =0}, j = 1,2, where we have denoted
by —S51 the smooth k-manifold S; endowed with the reverse orientation.

o

Proposition 5.6.2. If two k-cycles (S1,01) and (Se2,02) in M are cobordant, then
ds, = 0s,-

Proof. Using the above notations, by Stokes’ formula we have

/ Ugw—/ wa:/ J*w:/ d(a*w):/ o*(dw) =0
So S1 oD D D
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for every closed w € A¥(M). O

An observation that is often useful in computations involving Poincaré dual
cohomology classes of cycles is the following. Let (S,0) be a k-cycle in a compact
connected oriented smooth n-manifold M. If U is any open neighbourhood of o(5)
in M, then U contains a smaller open neighbourhood W of ¢(S) which as a smooth
manifold is of finite type. Let i : W — M denote the inclusion. There exists then
a Poincaré dual 6% € H *(W) of (S,0) in W, by Corollary 5.4.12, and

/ aviﬁg/:/ i*av6?/:/a*a
M w S

for every a € H¥(M). This shows that the Poincaré dual cohomology class of (S, o)
in M is dg = 2'*5?/. In other words dg can be represented by closed differential
(n — k)-forms in M with compact supports in arbitrarily small neighbourhoods of
o(S). This is the localization principle for Poincaré dual classes.

Let now N be an compact oriented k-dimensional smooth submanifold of M. If
S is a smooth manifold, a smooth map o : S — M is said to be transverse to N if

To(x)M = Ta(:v)N + U*w(TaCS)

for every x € N. We shall restrict ourselves to the case where the dimension of S is
n—k and then the above sum of vector spaces is direct. It follows that if in addition
S is compact, then o ~!(N) is a finite set. This is a consequence of the elementary
observation that if f : R™ — R is a smooth map and there exists a sequence (z;);en
converging to some point 2 € R™ such that f(z;) € R¥ x {0} for every [ € N, there
exists some v € S™~! such that Df(z)v € R* x {0}.

Suppose that S is oriented. The orientations of T5,)N and T3S induce an
orientation on T,y M = T5(,) N @ 04 (T2 S). 1If it coincides with the orientation of
M, we put i,(N,S) = +1. If not, we put i,(N,S) = —1. The integer

NeS= > iy(N,5)
z€o~1(N)

is called the intersection number of N with S.

Lemma 5.6.3. Let M be a compact connected oriented smooth n-manifold and N
be a compact oriented k-dimensional smooth submanifold of M. Let B = (—1,1)"7F
and let ¢ : B — M be a smooth map which is transverse to N and o~'(N) = {0}.

Then,
NeDB :/ o .
B

Proof. Since o is assumed to be transverse to IV, we have
Tyo)M = Ty0)N ® 040(R"F)

and so 0,9 : R"F — T5(0)M is a monomorphism. Then o, : Rk TyyM is a
monomorphism for  in an open neighbourhood of 0. There is no loss of generality



154 CHAPTER 5. DE RHAM COHOMOLOGY

if we assume the ¢ is an immersion. By the Constant Rank Theorem 1.3.2 or rather
its proof and its Corollary 1.3.3, we may further assume that there exists a smooth
chart (U, ¢) of M with ¢ = (x!,...,2™) with the following properties:

(i) o(B) C U and ¢(U) = (—1,1)™.

(ii) 0(0) € U and ¢(c(0)) = 0.

(iii) (U, ) is N-straightening, that is ¢(N NU) = (—1,1)* x {0}.

(iv) The orientation on N N U is defined by dz! A --- A da*.

(v) o has a local representation

(poa)(th, .. .t"F)=(0,..,0,tL, ..., t" ).

By a previous observation, the dual cohomology class dy is represented by a differ-
ential (n—k)-form on M with compact support contained in an open neighbourhood
W of N such that WNU = ¢~ 1((—1/2,1/2)").

By definition, e = N @ B = i,(N,B) = £1 and so edz! A --- A dz™ defines an
orientation on U. For every p € NNU, let o, : B — U be the smooth map defined
by

op(th, . ) = o2 (p), ..., 2R (p), L, . R,

It suffices to prove now that / 0,0N = €.
B
If g : RF — R is a smooth function with compact support contained in

(=1/3,1/3)F and w = (g o ¢)dx' A --- Ada* then w is closed and

/ [w] — N :/ w\NmU:/ g(th, . tF)dtt - - - dt*.
U NAU (—1,1)k

The left hand side can be computed by assuming that the restriction of dx in U is
represented by a differential (n — k)-form fdz"T! A .- Ada™ for some f € C°(W),
because in the wedge product with w all other terms involving da/ for 1 < j < k
will disappear. Then,

W] —dn =€ g-(foo™)
/U /(-1,1)71

:e/ g.</ (fo¢—1)dtk+1---dt”)dtl---dtk
(_171)k {(tlv"'vtk)}x(_lvl)nik

:e/ g</ 0;5N>dt1---dtk.
(—1,1)k B
Thus,

/ g, . )t - at® :/ g(tt, o t%) e /J;5N dtt ... ik
(=L1)k (—1,1)k B

for any such g. This implies that
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Theorem 5.6.4. Let M be a compact connected oriented smooth n-manifold and
let N C be a compact oriented k-dimensional smooth submanifold of M. If (S,0) is
a (n — k)-cycle in M which is transverse to N, then

NOS:/ 5N\‘/5$-
M

Proof. Since S is compact and the (n — k)-cycle (S,0) is transverse to N, the
set 0~ 1(N) is finite. Suppose that o= 1(N) = {p1,...,pm} for some m € N. By
transversality, each p; has an open neighbourhood Bj in S which is diffeomorphic
to (—1,1)F and such that o; = o|p, is a smooth embedding with O';l(N) = {p;}.
From Lemma 5.6.3 we have

m m
j=1 j=1"Bi

The Poincaré dual cohomology class dy can be represented by a differential (n — k)-
form with compact support contained in an open neighbourhood W of N such that
m

Wno(S\ U B;) = @. So, 0*x can be represented by a differential (n — k)-form
j=1
with compact support contained in By U--- U By, and

NeS = J*(SN:/J*(SN:/(SN\/(SS. O
B1U---UBp, S M

This can be seen as a geometric interpretation of the wedge product of closed
differential forms in terms of submanifolds which intersect transversally. From
Proposition 5.6.2 and Theorem 5.6.4 we get the invariance of the intersection
number under cobordism.

Corollary 5.6.5. Let M be a compact connected oriented smooth n-manifold and
let Nj € M, j = 1,2, be compact oriented k-dimensional smooth submanifolds
of M. Let (Sj,05) is a (n — k)-cycle in M which is transverse to Nj, j = 1,2.
If Ny is cobordant to No and (S1,01) is cobordant to (S2,02), then N1 oSy = Nye.Ss.

A compact k-dimensional smooth submanifold N of M intersects transversally
a compact (n — k)-dimensional smooth submanifold S of M if T,M = T,N & T,,S
for every p e NN S.

Corollary 5.6.6. Let M be a compact connected oriented smooth n-manifold. If
a compact k-dimensional smooth submanifold N intersects transversally a compact
(n — k)-dimensional smooth submanifold S of M, then

NeS= (—1)n_k/ ONxs — OA.
MxM
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Proof. From Example 5.6.1(d) we have
Inxs = (—1)" Fridn — m3os

where m1 : M x M — M and ws : M x M — N are the projections onto the first
and second coordinate, respectively. Since m1 0 A = w9 0 A = idjys, we compute

/ Sy — b5 = / A*(mi8y — m03)

M M

:/ ﬁéva;‘6Sv6A:(—1)"_k/ SNxs — 0a. O
Mx M MxM

5.7 The Lefschetz formula

The aim of this section is to give a proof of the Lefschetz Fixed Point Theorem
for smooth maps of compact oriented smooth manifolds and some of its numerous
applications. We shall need some algebraic preliminaries.

Let V, W be two real vector spaces and let g : V* @ W — Hom(V, W) be the
linear map defined by

g9(a @ w)(v) = a(v)w

for every v € V, a € V* and w € W. Then g is a linear monimorphism. Indeed, let
{a;} be a basis of V* and let {w;} be a basis of W. Then {a; ® w;} is a basis of
V* @ W and each element z € V* ® W has a unique expansion

z = Z )\ijai &K wj
i7j
for some \;; € R. If g(z) = 0, then
Z <Z )\ijal-(v)>wj =0
j i
for every v € V. Therefore,

Z )\ijai(v) =0

for every v € V and every j, which means that A;; = 0 for all ¢, j.
In case W is finite dimensional, g is an isomorphism. To see this, let {w1, ..., wy}
be a basis of W. For each h € Hom(V, W) there are ¢1,..., ¢ € V* such that

h(v) = ¢1(v)wy + - - + Pp(v)wy

for every v € V. For each 1 < j < there are ayj,..., a,j, for some n € N, and some
Aljyeery Anj € R such that

n
¢ =Y Nijai;.
=1
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Substituting,

n

k
h(v) =Y Njay(v)w; = g(Z

j=11=1 j=11=1

This shows that g is an epimorphism.

Lemma 5.7.1. Let V be a finite dimensional real vector space. If a € V* and
v eV, then Trg(a ® v) = a(v).

Proof. Let dimV = n and {v1, ..., v, } be a basis of V. Let (a;j)1<i j<n be the matrix
of g(a ® v) with respect to this basis. For every 1 < j < n we have

a(v)v = gla®v)(v;) = > ayvi
=1

and hence
n

a(v;)

(v)

i=1
for every j € I = {1 <k <n:a(vg) # 0}. The expansion of a with respect to the
dual basis {v],...,v5} isa = Z a(vj)v;. It follows that

Jel

a(w) = Y ales)oj(0) = 3 alw) s = 3 ag; = Trgla @ v)

- - Uy -
JeI jeI JeI

because if a(v;) = 0, then g(a ®v)(v;) = a(v;)v =0 and so a;; =0 for all 1 < i < n.
(]

Let M be a compact connected oriented smooth n-manifold. For brevity we
shall use the notation

E*(M) = Hom(H*(M), H*(M)), 0<k<n.

n
and E(M) = @ E*(M). By Corollary 5.4.12 and the above considerations, we have
k=0

isomorphisms g : H¥(M)* ® H*¥(M) — E¥(M), 0 < k < n and the isomorphism

g= n (=Dkgy : éHk(M)* ® HY(M) — E(M).
k=0 k=0

From the Poincaré Duality Isomorphism Djy; we get the isomorphism

Dy ®id é H" (M) o H¥(M) — é H*(M)* @ H*(M).
k=0 k=0
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We shall also need the Kiinneth isomorphism
n
v : @ HF(M) @ HY(M) — H*(M x M)
k=0

of Corollary 5.5.2 defined by ¥(a ® ) = nja — w5/, where 7; : M x M — M
denotes the projection onto the j-th coordinate, j = 1,2. Composing, we get the
isomorphism

A=4vo (D} ®id)og ™ : E(M)— H"(M x M).
Lemma 5.7.2. If 0 = (09,01, ...,0n) € E(M), then
n
> (—1)FTroy, = / A*(A(o))
k=0 M
where A : M — M x M is the diagonal map.
Proof. Let 0 < k < n. There are unique o € H"¥(M) and 8 € H¥(M) such that

or = gr(Dy(a) @ B and therefore A(oy) = (—1)k7rfoz — 5/, because g_l(ak) =
(—=1)*Dps(a) ® B. On the other hand, from Lemma 4.7.1 we get

Tro,, = Dy (a)(B) = / a— = / A*(mja — m5p) = / A*(Mog)). O
M M M
A smooth map f: M — M induces for each 0 < k < n a transpose linear map
fi+ HY(M) — H®(M) and so an element f* = (fg, ff,..., ;) € E(M). We call

n

L(f) = (-1)FTrf;

k=0

the Lefschetz number of f. According to Lemma 5.7.2,

L(f) = /MA*<A<f*>>.

Obviously, two smoothly homotopic maps of M have the same Lefschetz number.
Note that L(idys) = x(M), the Euler characteristic of M. Actually,

A(id) = (=16,

where 0 is the Poincaré dual cohomology class of the diagonal in M x M. To see
this, recall from Example 5.6.1(e) that

on = Z (—1)deg“i7ﬁo/ — T

7

where {;} is a basis of H*(M) and is {a'} is its Poincaré dual basis that is

( — 5.
/ o' — o = 0.
M
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So, _ '
AT 0a) () = D (=1)* B g(Dur(a’) @ ai)(ay)

i

37 (1) Dy (o) o) = (1)

Lemma 5.7.3. If f: M — M is a smooth map, then

A7) = (=1)"(idar < f)"(0a)-

Proof. Suppose that id = gr(Dp(a) @ 8) for some o € H"*(M) and 8 € H*(M).
Then, \(id) = (—1)*7fa — 758 and for every § € H*(M) we have

f1(0) = fr(Dar()(0)B) = D () (0) S8 = g (Dar(a) @ f:5)(6).

This means that f; = gx(Dn (o) ® f3) and consequently
A7) = (=D ria — w3 (f*B) = (id x f)*((=1)*ria — m30)
= (id x f)"(A(id)) = (=1)"(id x f)*(6a). O

We are now ready to state and prove the following.

Theorem 5.7.4. Let M be a compact connected oriented smooth n-manifold and
f: M — M be a smooth map.
(a) If T': M — M x M is the smooth map T'(p) = (p, f(p)), then

L(fy=(-1)" /M | RN
(b) If L(f) # 0, then f has at least one fized point.

Proof. (a) Prom the preceding Lemma 5.7.2 and Lemma 5.7.3 we have

N=[ a0 = [ atiax i) = [ o) = @ [ 1.

(b) If f has no fixed point, then M x M \ I'(M) is an open neighbourhood of the
diagonal A(M) and so da can be represented by a differential n-form with compact
support contained in M x M \ I'(M). Therefore I'*6a = 0 and L(f) = 0, by (a). O

Corollary 5.7.5. Let M be a compact connected oriented smooth n-manifold. If
X(M) # 0, then every smooth vector field X € X(M) vanishes at some point of M
and so has some constant integral curve.

Proof. Since M is compact, a smooth vector field X on M is complete, by Corollary
2.2.5. Let (®)er be the one-parameter group of diffeomorphisms of M defined by
the flow @ : R x M — M of X. Note that ® is a smooth homotopy and thus each
®, is smoothly homotopic to @9 = idys. Therefore, L(®;) = L(idpr) = x(M). From
our assumption and Theorem 5.7.4, every ®; has at least one fixed point. Let Fj
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denote the fixed point set of @, 51, k € N. Since @y pr+1 0 Py j9r+1 = Py /o, we have
Fy 1 C Fy, for every k € N. By compactness of M, we have

o
F:fﬁ%#g
k=1

Thus, there exists p € M such that ®r(p) = p and hence

D (55.7) = Py (p) = (1) (p) = p

for every m € Z and k € N. This implies that ®(¢,p) = p for every t € R, because
the set of dyadic rational numbers is dense in R. This is equivalent to saying that

X(p)=0.0

Example 5.7.6. Let f : CP™ — CP" be a smooth map, n > 1. Let X € H?(CP")
be a generator so that {1, X, ..., X"} is a basis of H*(CP"), where powers are taken
with respect to the cup product, according to Example 5.4.11. There exists a unique
t € R such that f*(X) =tX. Then, f*(X*) = (f*(X))* =t*X* 0 <k <n, and so
the Lefschetz number of f is

L(f)=14t+- - +1"

If t =1, then L(f) =n+1 and f has at least one fixed point. If ¢ # 1 and n is

even, then
thrl -1

L) =—==70

and f has a fixed point. Thus in any case, if n is even, then every smooth map
f: CP™ — CP" has a fixed point.

5.8 Exercises

1. If 7: §?+1 & CP™, n > 1, is the Hopf map prove that there is no smooth map
s: CP" — §?7*1 such that 7o s = id.

2. Prove that there is no smooth map r : R"*! — S such that r|sn = idgn, n € N.
3. Prove the Fundamental Theorem of Algebra.

4. If n € N is odd, prove that the quotient map 7 : RP"™ — S™ has degree 2.

5. Compute the de Rham cohomology of the real projective spaces RP™, n > 0.

6. Let M be a compact, connected, oriented smooth n-manifold with cohomological
fundamental class opy € H"(M).

(a) Prove that for every non-zero a € H¥(M), 0 < k < n, there exists a unique
non-zero 3 € H"*(M) such that a — 8 = oy;.
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(b) Prove that every non-trivial ideal of the de Rham cohomology algebra H*(M)
of M contains o).

(c) Let N be a smooth manifold and let f : N — M be a smooth map. If f*ops # 0,
prove that the transpose f*: H*(M) — H*(N) is a monomorphism.

7. Let M be a smooth n-manifold, n > 1, and let 6 be a closed differential 1-form
on M. We consider the linear map dy : A*(M) — A*(M) with dp(w) =df — 0 ANw
for every w € A(M).
(a) Prove that dg ody = 0.

We denote by H;(M) the cohomology of the cochain complex (A*(M),dy).
(b) If f € C°°(M), prove that the map F' : (A*(M),dptar) — (A*(M),dy) with
F(w) = e fw is a cochain isomorphism, which therefore induces an isomorphism
Hngdf(M) >~ HE(M) for every k > 0.
(c) If 0 is exact, prove that Hy(M) = H*(M).
(d) If the closed differential 1-form 6 € A'(S') is not exact, prove that HJ(S!) = 0.

8 Let k, I € Nand let o : S' — S' x S! be the smooth map o(z) = (z*, 2!).
Compute the Poincaré dual de Rham cohomology class of the 1-cycle (S!, o) in the
2-torus St x S

9. Let M and N be two compact connected oriented smooth n-manifolds and
f: M — N be a smooth map. Prove that

D (f())(f7(8)) = (deg f) - Dn(a)(B)

for every o € H¥(N), € H**(N) and 0 < k < n. Deduce from this that if
deg f # 0, then f*: H*(N) — H*(M) is a monomorphism.

10. Let M be compact connected oriented smooth n-manifold. If there exists a
smooth map f : S — M such that deg f # 0, prove that H*(M) = {0} for all
0<k<n.

11. Let M be compact connected oriented smooth n-manifold and f : M — M be
a smooth map. If the smooth map I' : M — M x M with I'(p) = (p, f(p)), which
parametrizes the graph I'(M) of f, is transverse to the diagonal A(M) in M x M,
prove that L(f) =T'(M) e A(M).

12. Prove that the Lefschetz number of a smooth map f:.S™ — S™ is
L(f) =1+ (—1)"deg f.
Deduce from this that every orientation preserving diffeomorphism f : S? — S

has at least one fixed point and give an example of an orientation reversing
diffeomorphism of S? with no fixed point.

13. Let f : S — S2 be a smooth map and let w € A?(S?) with / w=1 1If
S2
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6 € AY(S3) is such that f*w = df, prove that the integral

hf)= [ 6Adf
S3

does not depend on the choice of the primitive 6 and it depends only on the
homotopy class of f. This integral is called the Hopf invariant of f.

14. (a) Prove that the differential 2-form
Q———i VARV ( dzg — zpd )/\( dzy — Zpd )
2m (’ZO‘ + ‘2’1’ ) ! ! ! !

on C"*1\ {0} induces a well-defined differential 2-form w on CP?, so that the pull-
back of w under the natural quotient map is 2.

(b) Prove that
/ w=1.
CP?
¢) Let f:S3 — 52 ~ CP! denote the Hopf fibration. Prove that
(c) P

ffw==-d(z'dz?® + z3dz")

3=

where 29 = 2! +i2z? and z; = 2 + iz? for (29,21) € S3.
(d) Compute that the Hopf invariant of the Hopf fibration is equal to 1.



Chapter 6

Cech-de Rham theory

6.1 Generalized Mayer-Vietoris exact sequences

In this section we shall generalize the Mayer-Vietoris argument for the computation
of the de Rham cohomology of a smooth n-manifold M to countable open covers.

Let U = {U; : i € I} be an open cover of M, where we assume that the index
set I is countable and ordered. For simplicity, if k¥ € N and ig,..., i € I we shall
use the notation Uj,..;,, = U;, N---NU;,. The generalized Mayer-Vietoris sequence
corresponding to the open cover U is the following sequence of vector spaces and
linear maps

* T * o * 0 * 1
(M) ——= [[a0) ——= ] AUii) == [ A Uigiri) —— -
el 10<i1 10<i1<i2

where 7(w) = (w|y,)iesr for every w € A*(M) and for every m € Z* and every
W = (Wig- iy )ig<-<im € H A*(Ujy..i,,,) the coordinates of dw are

10<-<im
m+1
k
(5w)io---imim+1 = Z (-1) Wig: g _18k417Im+1"
k=0
We observe that
m+2
k
(6(0w)igimimiz = D (=1 (00)igmiy i1 s
k=0
l+k k+(1—-1
Z (1) - in"'i—lil+1"'likflik+1"'im+2+Z (-1) *H )in"'ik_lik+1“'iz_1iz+1“'im+2 =0.
i<k k<l

Thus, the above generalized Mayer-Vietoris sequence of vector spaces and linear
maps is a cochain complex. If now {f; : ¢ € I} is a smooth partition of unity sub-
ordinated to the open cover U, for each w = (wWiy...i,, Jig<--<ip € H A*(Uiy.iyy)

10 <im

163
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we define the element Lw € H A*(Uiy..s,,_,) with coordinates

10<-<lm—1

(Lw)io---imﬂ = Z fiwiio---z‘m,l-

el

It follows from the definitions that

(5(LW))i0---im = Z Z (_1)kfl'wii0"'ik—lik+1"'im

el k=1

and .
(L) igin = D Fiigmine + D D (= 1F ! fitiigmiyyigsyvim-
i€l i€l k=1
Consequently, §(Lw) + L(dw)) = w, which means that L is a cochain homotopy

between id and 0. This shows that the generalized Mayer-Vietoris sequence is exact.
We consider now the double cochain complex (K™! Ym,iez+, With

E™ = [ AUii)

10<-<im

and differentials 0, d. As it is usual, from this we obtain a cochain complex (K, D),
if we put K° = @ K™ and D = §+(—1)*d on K*. Thus, if § = (6, ..., 0,) € K*,

m+l=s

where 6, € K™*™™, 0 <m < s, then
DO = (dby, 66y — db, ...,005s_1 + (—1)°dbs, 60s).

There is a product —: K x K% — K$1152 g3 59 € ZT, on K defined as
follows. If w € K™t and § € K"“H?, where mq 4+ l1 = s1, my + I = s9, then

)

(w — 9)i0"'im1+m2 = (—1)11l2 (W|Ui0»-»im1 ) A (9|UZ

m1"'im1+m2

=U; NnU; From

on their common domain of definition Uj;...i,,, 1,
this definition and the definition of § we have

0"'im1 ml"'im1+m2'

(5(&) — 9))i0~~~im1+m2+1 = 5((—1)lll2wi0...iml VAN eiml...im1+m2)

k
+(_1)m1 Z (—1) +mlwi0---iml /\aiml"'ik—lik+1"'im1+m2+1

k>m1
= (dw — 9)240_..@-,”1%2+1 + (_1)m1+zlzg(_1)11(12+1)(w _ 59)i0___im1+m2+1
= ((5&) — 9)i0~~'im1+m2+1 + (_1)81 (w — 56)i0~~~im1+m2+1'

Hence
D(w—60)=Dw— 0+ (—1)"'w — DF.
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This implies that there is an induced product on the cohomology H},(K) of K,
which we denote again by —. In this way H},(K) becomes a graded algebra.
Note that
D(r(w)) = (6 + d)(r(w)) = d(r(w)) = r(dw)

for every w € A*(M), which means that r : A*(M) — K is a cochain map and
hence induces an algebra homomorphism r* : H*(M) — H},(K) in cohomology.

Proposition 6.1.1. The map r* : H*(M) — H},(K) is an algebra isomorphism.

Proof. We shall show first that r* is surjective. Let 8 = (fp,...,05) € K*, where
Oy € K™ (0 < m < s, and D = 0. Then, 00, = 0 and by the exactness
of the generalized Mayer-Vietoris sequence there exists v,_; € K* 10 such that
Sths_1 = 0. If u=(0,...,0,9s_1) € K*~1, we have

Du = (0’ ceey 0’ (_1)371d7p871,6¢371) S Ks-
Thus, § — Du and 6 represent the same element of H7, (K) and
0 — Du = (wp, ..., ws—1,0)

for some wy, € K"™*™™ 0 <m < s—1. Since Dw = 0, we have dws_1 = 0. Repeating
the above argument s — 1 times we arrive at an element 7 = (79,0, ...,0) € K*, for
some 19 € K% with Dr = 0, or equivalently 679 = 0 and dry = 0, which is
cohomologous to € in K. Since d7y = 0, the coordinates of 7y are restrictions to the
elements of the open cover U of a differential s-form on M, which we denote again
by 79 and which is closed. Obviously, r*[19] = [7]p = [0]p.

To see that r* is injective, let w € AST1(M) be closed and such that r(w) = D
for some # € K*. Then 6 = (0, ...,05) € K*, for some 6, € K™% ™ 0 <m < s.
Since D € K%' we must have 06, = 0. As above, there exists an element
o = (00,0,...,0) € K* for some gy € K% such that dog = 0 and Do = D6. In other
words, oy defines a differential s-form on M and

r(w) = D = Do = (doy,0, ...,0)
which means that w = dog. [

We denote now by C™(U;R) the kernel of d|gmo : K™ — K™ for m € Z+.
Note that the coordinates of the elements of C™(U; R) are locally constant functions
on the open sets Uj,..i,., io < -+ < 4m,. The cohomology H*(U;R) of the cochain
complex (C*(U;R),§) is called the Cech cohomology of the open coverU of M (with
real coefficients). The restriction of the product — on K restricts to a product of

(C*(U;R), ) defined by

(w—0) -0

iO"'iml-H'mQ = wl)'lml iml"'iml +mo

for w = (Wig-rim, Jig<-<im, a0d 0 = (0.4, Jig<-+-<ipn, - This turns H*(U;R) into a
graded commutative algebra with unity.
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Recall that from Theorem 5.6.5 the set of admissible open covers is non-empty
and cofinal in the directed family of all open covers of M.

Theorem 6.1.2. If U is an admissible open cover of M, then we have algebra

isomorphisms

H*(U;R) = Hy(K) = H*(M).

d d d d
0 —— A2(M) —-— K02 K20 229 .

d d\ d\ d

0 —— ANM) —"— K01 KLl 6 21 8
d d d d

0 —— AO(M) T K00 K10 o L g20 90 .,
inclusion inclusion inclusion

COU;R) —— C'U;R) —2— C2(UR) —2 -

Proof. The rows in the above diagram are the Mayer-Vietoris exact sequences in
the corresponding degrees. If the columns of the augmented double complex are
exact, then the assertion is proved using exactly the same argument of the proof of
Proposition 6.1.1. The obstructions for this are the de Rham cohomologies

H H*(Uio~~~im)7 m e Zv.

1< <im

In case the open cover U is admissible, the open sets Uj,..;,, are contractible and
these de Rham cohomologies are trivial, by Corollary 5.1.7. [J

Corollary 6.1.3. The Cech cohomologies of any two admissible open covers of a
smooth manifold are isomorphic.

6.2 Cech cohomology

Let X be a topological space and R be a commutative ring with unity. A presheaf
of R-modules on X is a contravariant functor I" from the category with objects the
open subsets of X and morphisms the inclusions to the category Mg of R-modules,
which sends the empty subset of X to the trivial R-module. In other words, to each
open set U C X corresponds a R-module I'(U) and to an inclusion U C V' of open
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subsets of X corresponds a morphism pyy : I'(V) — I'(U) of R-modules, which is
usually called restriction, such that pyy = idy and if U C V C W, then

PUW = PUV © PVW -

Examples 6.2.1. (a) If G is a R-module, the constant presheaf, denoted
again by G, sends to every non-empty open set U C X the R-module G and to
every inclusion U C V of open subsets of X the identity map of G, that is pyy = idg.

(b) Let M be a smooth manifold and let GAr denote the category of graded
commutative, associative algebras with unity over R. The contravariant functor
A which to a non-empty open set U C M assigns the exterior algebra A*(U) of
differential forms of U and to an inclusion U C V of open subsets of M assigns the
usual restriction, which is the transpose of the inclusion map, is a presheaf on M,

which is called the de Rham presheaf on M.

A homomorphism of presheaves I' and I on a topological space X is a natural
transformation from I" to I''. This is a family of homomorphisms hy : T'(U) — TV(U)
of R-modules, where U runs over all open subsets of X, such that for each inclusion
U C V of open subsets of X the following diagram commutes.

V) — s (V)

PUVJ Jp’w

Uy —— (V)
Let now I" be a presheaf on a topological space X and let Y = {U; : i € I} be
an open cover of X. For every m € Z* we put

Cm(u; F) = H F(Ulolm)

10,..,im€I

where Uy,...i,, = Uj,N---NU;,, , and define 6 : C™(U;T') — C™T1U;T') by the formula

m+1
(5w)io---im+1 = Z (_1)kpU¢0m¢m+1 Uigwvigg_1igp1 - ima1 (Wio---ik71ik+1"-im+1)

k=0
for w = (wig... iy igi imel € C™(U;T). Then, (C*(U;T),d) is a cochain complex of
R-modules, whose cohomology H *(U;T) is called the Cech cohomology of the open
cover U of X with coefficients in the presheaf I'.

Let now V = {V; : j € J} be an open cover of M which is a refinement of U.

There exists a function ¢ : J — I such that V; C Uy, for every j € J. This gives
a cochain map ¢ : C*(U;T) — C*(V;T) defined by

(8" )ig-minm = Woio)rb(im)

if W= (Wig...im)io....im € C™(U;T). In the above formula the restriction has been
suppressed for notational simplicity. If ¢b : J — [ is another function such that



168 CHAPTER 6. CECH-DE RHAM THEORY

Vi C Uyyj) for every j € J, we obtain a cochain homotopy H between Yf and of, if
we define H : C™(U;T) — C™1(V;T) by

m—1

(HW)jowjmr = >, (=1 Wgi0)d(Gi)pi) 0 Gmr)
k=0

where restrictions have been suppressed again. Indeed, we compute

m

(5(HW))jo---jm = Z (_1)k(Hw)jo---jkﬂjkﬂmjm
k=0
m k—1
k !
=> (-1 [Z(—l) W (j0)-- b)) Gk 1)k 1) (Grm)
k=0 =0

m

l_
+ > (D T W0(0) bl 1) S0t 1) GG b )

I=k+1
and

(H (00))jo.wim = D (= 1) (00) g5 G- i)

=0
m l
! k
= Z(_l) [Z (=1) Yo (jo)--¢(Gk—1)¢(k+1) S (G1)-- % (Gm)
=0 k=0
k
+ D (D g 0). GGG G101 b im)
k=l

Therefore

(6(Hw) + H(6w))jo...jm

k; l k‘ !
= <ZZ DD DRt >%(jo)...¢(jk_1>¢(jk+1>...¢(jl)w(m...w(a‘m>
[=0 k=0 k=0I1=k+1
m k—1 m m
k+l k+l
(Z o Z Z )w¢(jo)---¢(jl)¢(jl)---¢(jk1)¢(jk+1)---1/’(jm)
k=0 [=0 k=0 k=

Z e (r—1) Z Wo(jo).-

Y1) (m)

= Wy(jo).-p(im) — Weljo)...p(im) = (wﬁw - (ﬁﬁw)jo---jm'
This implies that there is a well defined homomorphism ¢f : H*(U;T) — H*(V;T)

of graded R-modules, which does not depend on the choice of the function ¢. It is
obvious now that the family

{H*(U; I') : U open cover of X}
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is a direct system of graded R-modules. The Cech cohomology of the topological
space X with coefficients in the presheaf I' is the graded R-module

H*(X;T') = lim H*(U;T).
—

Especially, if T' is the constant presheaf G' for a R-module G, then H*(X; Q) is the
Cech cohomology of the topological space X with coefficients in the R-module G.

The content of the previous section 6.1 can be encoded in the following which
is known as the Cech-de Rham theorem.

Theorem 6.2.2. For every smooth manifold M there is an isomorphism

H*(M;R) = H*(M).

Proof. Since the countable admissible open covers of M constitute a cofinal subset

of the directed set of open covers of M, by Theorem 5.3.3, we can consider only
this sort of open covers. From Theorem 6.1.2, if I/ is a countable admissible open
cover of M, then H*(U;R) = H*(M) and if V is another countable admissible
open cover of M which refines U, the inclusions iy : C*(U;R) — C*(U; A) and
iy : C*(U;R) — C*(V; A) induce isomorphisms in cohomology so that the following
diagram commutes.

H*(U;R) » H*(V;R)
H}(CU;A)) H;,(C(V; A))
B+ (M)

Since 4;y, 13, r;; and 7}, are isomorphisms by Theorem 6.1.2, it follows that & is an
isomorphism as well. Going to the direct limit the isomorphisms 77; o 7;;, induce the
desired isomorphism H*(M;R) = H*(M). O

It is obvious from the definition that the Cech cohomology with coefficients in
a preasheaf of a topological space is a topological invariant. In particular the Cech
cohomology algebra H*(M;R) with real coefficients of a smooth manifold M is a
purely topological invariant. Thus, the preceding Theorem 6.2.2 has the following
very interesting consequence.

Corollary 6.2.3. The de Rham cohomology algebra H*(M) of a smooth manifold
M depends only on the underlying topology of M and not on the choice of the smooth
structure. [
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6.3 Exercises
1. Ifd = (=1)"d : K™ — K™ prove that

§o(doL) =(doL) 0§~ (doL) ' od
for every integer ¢ > 0.

2. If 9 = (90, ...,95) € K° and D6 = (¢0,...,¢3,¢3+1), so that T,Z)(] = d@o, ¢3+1 = 00
and ¢; =0 +d'0j, 1 < j <s, we define

s s+1

f(o) = Z( oLJH —ZLO OL]+11/}].

7=0

(a) Prove that f(6) defines a differential s-form by showing that 6 f(0) =
(b) Prove that the so defined map f: K — A*(M) is cochain and f o7 = id g«(ap).-
(c) If L' : M® — K51 is defined by L'0 = ((L'0)q, ..., (L'8)s_1), where

ZLO doL) 77719, 0<j<s—1,
i=j+1

prove that idg —ro f = Do L'+ L' o D and therefore the induced algebra ho-
momorphism f* : H})(K) — H*(M) is the inverse of the algebra isomorphism
r*: H*(M) — Hj(K).

(d) If U is an admissible open cover of M and n € C™(U;R) with én = 0, prove
that the closed differential m-form which corresponds to 1 under the isomorphism
AU R) = H(M) is f(1) = (~1)™(d' o )™
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Chapter 7

Vector bundles

7.1 Complex and real vector bundles

A complex, respectively real, vector bundle of rank n is a triple & = (E,p, M),
where F and M are topological spaces and p : E — M is a continuous map such
that for every x € M the level set p~!(z) is a complex, respective;y real, vector
space of dimension n and there exists an open cover U of M together with a family
of homeomorphisms hy : p~1(U) — U x C", respectively hy : p~1(U) — U x R",
U € U, so that hyy maps each level set p~!(x) linearly isomorphically onto {z} x C",
respectively onto {x} x R", for x € U. The homeomorphism hy is called a local
trivialization of the bundle over U. The space E is the total space and M is the
base space of the bundle. The level sets E, = p~!(z), z € M, are called the fibres
of the bundle.

The vector bundle £ = (E,p, M) is smooth, if £ and M are smooth manifolds,
the bundle map p is smooth and it has a family of local trivializations consisting of
smooth diffeomorpisms.

Examples 7.1.1. (a) For every topological space M the projection onto the first
factor pry : M xC"™ — M is a bundle map. The vector bundle et = (M xC", pry, M)
is the complex trivial vector bundle of rank n.

(b) For every smooth n-manifold M its tangent bundle is a smooth real vector
bundle of rank n with total space T M and base space M. In this case the bundle
map p : TM — M is the canonical projection sending each tangent vector to its
point of application.

(c) Let M be a regular m-dimensional submanifold of the euclidean space R™*".
Let

E=J {2} x (T.M)" c M x R™"
zeM
where the orthogonal complements are taken with respect to the euclidean inner
product in R™*". The map p : E — M with p(z,v) = z is a bundle map defining
a real smooth vector bundle over M called the normal bundle of M in R™*". One
way to construct local trivializations of p is the following. Let x¢g € M. There exists
an open neighbourhood U of zy on which there are smooth local coordinates. So,
on U we have smooth basic tangent vector fields Xi,..., X,, to M. Let {v1,...,v,}

173
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be a basis of (T, M)*. There is now an open neighbourhood W C U of zg such
that

det(Xy (), ., Xon (), 01, 0y vn) # 0

for every x € W. Applying Gram-Schmidt orthogonalization to the basis

{X1(z), .o, Xon (), 01, oy Un }

we obtain an orthonormal basis

{X1(2), .oy Xon (), Y1 (2), ..., Yy ()}

such that {X(x), ..., X, (z)} is an orthonormal basis of T, M and {Yi(z), ..., Yy ()}
is an orthonormal ba81s of (T, M)* for every x € W. The map g : WxR" — p~1(W)

defined by
g(@, b1, tn) = Y £;Y5(x)
j=1

1

is a diffeomorphism and h = g~ is a local trivialization of p over W. This shows

that p is a vector bundle map.
(d) Let n € Z* and E,, = S?"*! x C/ ~, where

(20, ooy Zns ) ~ (N2 oy A2y, A 100)

for A € S1. The projection prq : S?"*1 x C — $?"*1 onto the first factor induces a
continuous map q : E,, — CP", which defines a smooth complex bundle of rank 1.
A vector bundle of rank 1 is usually called line bundle.

There are local trivializations h; : q_l(Uj) — U; xC, 0 < j <n, of gover the
domains of the canonical atlas {(Uy, ¢0), ..., (Un, ¢n)} given by the formulas

hi([z,ul) = ([2], w).

The inverse of h; is given by

1 z
() = [
for [2] € U;. It is obvious that E, becomes a smooth manifold and ¢ a smooth
vector bundle map. The complex line bundle (E,,, ¢, CP™) is called the tautological
(or canonical) line bundle over the complex projective space CP".

Similarly, there is a tautological real line bundle over the real projective space
RP™, where in this case the total space is S™ x R/ ~, and (z,t) ~ (—z,—t). In
particular, for n = 1 the total space is the Mobius strip and the base space is S!.

u]

Let & = (E1,p1, M1) and § = (FE2,p2, M2) be two complex, respectively real,
vector bundles. A vector bundle morphism from &; to & is a pair ( f.f ') of continuous
maps f: M —> M, and f : Ey — F5 such that pyo f = f op; and f maps linearly
p1 H(x) into py ' (f(x)) for every & € M;. In case the vector bundles are smooth we
say that the morphism is smooth if both f and f are smooth.
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E1#>E2

m| P

M1*>M2

If £ = (E,p, M) is a vector bundle and A C M, then the restriction of p on
p~1(A) is a vector bundle map over A and the pair of the obvious inclusions is a
vector bundle morphism from & to &[4 = (p_l(A),p|p_1(A), A).

Two vector bundles &1 and &; over the same base space M = M; = M, are
called isomorphic if there are vector bundle morphisms ( 1, idyr) from & to & and
(g,idpr) from &, to & such that go f = idg, and fo g = idg,. In the sequel we
shall simply write f instead of (f, idyr) and f: & = & to denote that f is an
isomorphism from &; to &. In the smooth case, & and & are called smoothly
isomorphic if f and § are smooth diffeomorphisms.

Lemma 7.1.2. Let & = (Ei,p1, M) and & = (Fs2,p2, M) be two complex,
respectively real, vector bundles over the space M. If a vector bundle morphism
f : By — E; maps each fiber (p;)~!(x) isomorphically onto the fiber (ps)~!(z),
xr € M, then f 6 2 & If f is smooth, then it is a smooth vector bundle
isomorphism.

Proof. Our assumptions imply that f is a bijection. Thus, we need only show that
f~1is continuous and smooth in the smooth case. If U C M is an open set and
h:(p1) Y (U) = U xC"and g : (p2) 1 (U) — U x C" are local trivializations, then

F=gofoh ' :UxC'—=UxC"

is an isomorphism of trivial vector bundles. Indeed, there is a continuous map
G : U xC" - C" such that F(z,v) = (z,G(z,v)) and G(z,.) € GL(n,C) for
every x € U. Also, taking the inverse in GL(n,C) is a smooth map and G(z,.)™!
depends continuously on x and smoothly in the smooth case. Since continuity and
smoothness are local properties, the conclusion follows. [

Example 7.1.3. Let H, = {({,u) € CP" xC"" : 4w € ¢} and p : H,, — CP"
be the projection onto the first factor. The continuous map f : S?"t! x C — H,,
defined by

F (205 ey 2nyw) = ([204 ey 20], W20, -y W2p)

/

is onto and open. Moreover, f(zo,...,2p,w) = f(2(,..., 25, w') if and only if there

exists some A € C* such that z; = Azj for all 0 < j < n and w' = A\"lw. This
implies that f induces a homeomorphism f : E, — H, such that po f = ¢ and
f(g () = tu {0} c C™t1. Since (E,,q,CP") is a smooth complex line bundle,
the triple (H,, p, CP™) becomes a smooth complex line bundle so that f is a smooth
vector bundle isomorphism. This is an alternative version of the tautological line
bundle over the complex projective space.
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7.2 Direct sums and inner products

Let & = (E1,p1, My) and & = (E2, pa, Ms) be two complex, respectively real, vector
bundles. Then, the triple (£} x Eg,p1 X pa2, M1 X Ms) is a vector bundle with fibres
pl_l(xl) X p2_1($2), (r1,22) € My X My, because if hy : pl_l(Ul) — U x C"™ and
hy : py (Uz) — U x C™ are local trivializations, then h; x hy is local trivialization
of p1 X pg over Uy x Us.

Suppose now that M = My = Ms and § = (E1,p1, M) and & = (Ea, p2, M) are
two vector bundles over the same space M. We put

E1 ® By = {(v1,v2) € E1 X Ea : p1(v1) = pa(v2)}

and let p : By @ E5 — M be defined by p(vi,v2) = pi(vi) = p2(v2). In other
words, p is the restriction of p; X py over the diagonal in M x M. The vector bundle
&1 @& = (By @ Eq,p, M) is called the direct (or Whitney) sum of &; and & and it
has fibres the direct sums of the corresponding fibres of £ and &,.

It is evident that the direct sum of two trivial vector bundles is a trivial vector
bundle. However, the direct sum of two vector bundles neither of which is trivial
may be trivial. For instance, if M C R™"™ is a regular m-dimensional submanifold
with normal bundle v in R, then TM ® v = eﬁ”", the trivial real vector bundle
of rank m 4+ n over M.

An inner product on a complex (or real) vector bundle £ = (E,p, M) is a
continuous function g : E @ E — C (respectively R in the real case) such that its
restriction g, on each fibre E, is a hermitian (respectively euclidean) inner product.

Lemma 7.2.1. If M is a paracompact space, then every vector bundle & = (E,p, M)
of rank n over M admits an inner product.

Proof. Let U be an open cover of M for which there is a family of local trivializations
hy : pi~'(U) — U x C", U € U. Since M is assumed to be paracompact, there
exists a partition of unity {fy : U € U} subordinated to U. For x € M and v,
w € E, the formula

go(v,w) = Y ful@)(hv (v), hy (w))

veu

defines an inner product on &, where (,) is the usual hermitian product on {z} x C™
or the euclidean inner product on {z} x R™ in the real case. [J

As the proof of the preceding lemma shows, if the vector bundle £ = (E,p, M)
over a smooth manifold M is smooth, then it admits a smooth inner product, by
the existence of smooth partitions of unity. A smooth inner product on the tangent
bundle of a smooth manifold M is a Riemannian metric on M.

As an application of the existence of inner products we shall prove that two
isomorphic smooth vector bundles over a compact smooth manifold are smoothly
isomorphic.

A section of a vector bundle £ = (E,p, M) is a continuous map s : M — FE
such that p o s = idyy, that is s(x) € E, for every x € M. The set I'(§) of all
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sections of & becomes a vector space in the obvious way. In the smooth case we shall
denote by Q°(¢) the vector subspace of I'(€) consisting of the smooth sections of €. If
h:p Y (U) — UxC" is alocal trivialization over the open set U C M and {e,...,e,}
is the canonical (or any) basis of C", then the formulas s;(z) = h™!(z,e;), x € U,
1 < j < n, define sections of &|y and {si(x),...,s,(x)} is a basis of E, for every
x € U. The set {s1,...,s,} is called a frame of £ over U. Conversely, each frame
over an open subset U of M gives a trivialization of £ over U. If we have an inner
product on the bundle, then applying the Gram-Schmidt orthogonalization process
we can construct orthonormal sections over U. In the smooth case, the above can
be carried out smoothly.

Let now ¢ = (E',p', M) be a second vector bundle of rank n over M and
f + E — FE’ be a vector bundle morphisms of vector bundles over the same base
space M. If {s1,..., 8, } is a frame of & over U and {s, ..., s, } a frame of ¢ over U,
then f, = f|g, is represented by a n x n matrix. In this way we get a continuous
map ad(f) : U — C™"™ which depends on the choice of the local frames. If
everything is smooth, then ad(f) is also smooth.

Lemma 7.2.2. Let M be a compact space, & = (E,p, M) and ¢ = (E',p',M)
two vector bundles of rank n equipped with inner products. If f : E — E' is a
vector bundle isomorphism, then there exists & > 0 any vector bundle morphism
¢ : E — E' with p' o ¢ = p and such that sup{||fz — ¢z| : © € M} < § is a vector
bundle isomorphism.

Proof. Since M is assumed a compact space, it can be covered by a finite number
of compact subsets over each of which both bundles are trivial. Thus, it suffices
to prove the conclusion only in the case where both bundles are trivial. Choosing
frames, f is represented by a continuous map ad(f) : U — GL(n,C). Since
ad(f)(M) is a compact subset of the open subset GL(n,C) of C™*™, there exists
d > 0 such that the ball of radius 0 around Ad(f)(M) is contained in GL(n,C).
This implies the assertion. [

Proposition 7.2.3. Let £ = (E,p,M) and & = (E',p’, M) be two smooth vector
bundles of rank n over a compact smooth manifold M. If & is isomorphic to &,
then it is smoothly isomorphic.

Proof. Since M is assumed to be compact, there exists a finite open cover
{U1,...,Up} of M and smooth orthonormal frames {s],...,sn} and {t],...,t},} of £
and &', respectively, over Uj, 1 < j < m. A vector bundle isomorphism f : E — E’
gives rise to continuous maps ad(f?) : U; — GL(n,C), where f/ = flo;, 1 <5 <m.
There exists § > 0 as in Lemma 7.2.2. For every 1 < j < m there exists a smooth
map G’ : U; — GL(n C) such that |G7(z) — ad(f7)(z)| < 6 for every x € U;. Let
g’ :p_l(U]) — (p')71(U;) be defined by

f(ZAksf'(x)):Z(ZGm Az)tﬂ 2)
k=1

k=1

or in other words ad(g’) = G’. Obviously, ||f7(z) — ¢/(z)|| < § for every z € Uj.
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Let {¢1,...,%m} be a smooth partition of unity subordinated to the open cover
{U1,...,Upn}. Now we define g : E — E' by

=9lp, = Z%

for every x € M. Then,

Ifo — gmr<2wj =gl <6

7j=1

for every x € M and from Lemma 7.2.2 follows that g is a smooth isomorphism of
vector bundles. [J

7.3 The functors K and KO

As we have already mentioned in the preceding section, the direct sum of two
non-trivial vector bundles can be trivial. Actually, the following general fact holds.

Theorem 7.3.1. If M be a compact space, then for every wvector bundle
&= (E,p, M) over M there exists another vector bundle & such that £ ® & is trivial.

Proof. Since M is compact, there exist a finite open cover {Uy, ..., Uy, } of M and local
trivializations h; : p~1(U;) — U; x C", 1 < j < m. There is also a partition of unity
{41, ..., ¥m } of M subordinated to this open cover. Let f/ = prooh; : p~1(U;) — C",
where pro denotes the projection onto the second factor. Let g : B — M x C™™ be
defined by

9(v) = (p(v), Y1 (P(V)) 1 (V), oo Vi (P(V)) 7 (0)).

It is obvious that ¢ is a vector bundle morphism of vector bundles over M. Moreover,
9lg, : Ex — {z} x C" is a monomorphism of vector spaces for every z € M. We
put

E={(z,0) e M xC" :v € g(E,)"}

where the orthogonal complement is taken with respect to usual hermitian product
on C"". Then, { = (E,pri, M) is a vector bundle (see Example 7.1.1(c)) and
obviously £ ® £ = ™. I

In case M is a smooth manifold and the bundle £ in Theorem 7.3.1 is smooth,
then the vector bundle € can be chosen to be also smooth, by the existence of
smooth partitions of unity. In fact, Theorem 7.3.1 holds also under the assumption
that the base space M is paracompact and has finite covering topological dimension.
In particular, it holds if M is a topological manifold. The proof is an immediate
consequence of the fact that any vector bundle over a paracompact space with finite
covering topological dimension is of finite type.

A vector bundle £ = (E,p, M) is said to be of finite type if M is a normal space
and may be covered by a finite number of open sets over each of which £ is trivial.
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Of course if M is a compact space, then every vector bundle over M is of finite type.

Proposition 7.3.2. If M is a paracompact space of finite covering topological
dimension, then every vector bundle & = (E,p, M) over M is of finite type.

Proof. Let U be an open cover of M such that |y is trivial for every U € U.
Suppose that dim M < m and let V be an open refinement of I/ such that no point
of M is contained in more than m + 1 elements of V. Since M is assumed to be
paracompact, we may take V to be locally finite and there exists a partition of unity
{¢v : V € V} subordinated to V. Let

Ai={aCV:l|a| =i+ 1}
for each i € Z*. For each a € A; with a = {Vp, ..., V;} the set
Wia={z € M : ¢y(xz) < min{oy,(z),...,¢v,(x)} for V #Vp,..,Vi}

is open and contained in Vo N---NV;. So, &|w;,, is trivial. Moreover, if a, b € A;,
then W; , and W, are disjoint. Thus, if we put

X; = U Wia
acA;

then £|x, is trivial as well and it suffices to show that {Xj, ..., X, } is an open cover
of M. Indeed, if a point € M is contained in at most m + 1 of V and so at most
m+ 1 of the functions ¢y, V € V are positive at x. In other words, there exist some
0 <i<mand Vp,..., V; € V such that ¢y, (z) > 0,..., ¢v,(x) > 0 and ¢y (z) = 0 for
V # Vo, ..., V;. This implies that € W; 4, where a = {V}, ..., V;}. This concludes
the proof. I

Corollary 7.3.3. Every (complex or real) vector bundle over a topological manifold
1s of finite type. [

The proof of Theorem 7.3.1 together with Corollary 7.3.3 and Theorem 1.5.4
show that the following holds.

Corollary 7.3.4. If M is a paracompact space of finite covering dimension
and & is a (complex or real) vector bundle over M, then there exists a vector
bundle §~ over M such that §EB§~ is trivial. In particular, this holds if M is a
topological manifold. Moreover, if £ is a smooth vector bundle over a smooth mani-
fold M, then there exists a smooth vector bundle §~ over M such that 5@5 18 trivial. [

For any space M and non-negative integer n we let VectS(M ), respectively
Vectﬂ,f(M ), denote the set of isomorphism classes of complex, respectively real, vector
bundles over M. The direct sum of vector bundles makes

Vect®(M) = H VectS (M)
n>0
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an abelian semigroup whose neutral element is represented by the trivial bundle of
rank 0 with total space M x {0}. Similarly, for Vect®(M).

From any abelian semigroup one can construct an abelian group more or less in
the same way the integers can be contructed from the set of natural numbers. It
is worth to note however that in contrast to the case of the natural numbers the
cancellation law may not hold in the semigroups Vect®(M) and Vect®(M). Indeed,
consider for example the 2-sphere S2. Its normal bundle v in R? is a trivial line
bundle over S? and T'S? & v is also trivial. So, v = ! and

TS?ov=S=dae.
However, T'S? is not trivial, by the Hairy Ball Theorem 5.2.3.

Lemma 7.3.5. (A. Grothendieck) For every abelian semigroup (V,®) there exist
a unique abelian group (K(V),+) and a semigroup homomorphism ~ : V. — K(V)
with the universal property that for every abelian group G and every semigroup
homomorphism f :V — G there is a unique group homomorphism f: K(V)—=G
such that foy =f.

Proof. Let (F(V),+) denote the free abelian group with basis the set V' and let R
be its subgroup which is generated by the elements of V' of the form z &y — x — v,
for z, y € V. We put K(V) = F(V)/R and let v : V. — K(V) be defined by
v(z) = x + R. Then, v(0) = R and

Yoy =(@dy)+R=(x+y)+R=(x+R)+ (y+R)

for every x, y € V, from the choice of R.

Let now G be an abelian group and f : V — G be any semigroup hoomo-
morphism. There is unique linear extension of f to a group homomorphism
f : F(V) — G. Obviously, R is contained in Ker f and so we get an induced group
homomorphism f : K ((V) — G such that fo~ = f. The uniquness of f follows
from the fact that if f o =0, then f(z + R) = 0 for every x € V and since the set
{x+ R :x eV} generates K(V) we must have f = 0. This universal property of
K (V) and ~y implies their uniqueness. [J

The abelian group K (V') is called the Grothendieck group of the semigroup V'
and can be realized as follows. On V' x V we consider the equivalence relation with
(x1,22) ~ (y1,y2) if and only if there exists some z € V such that

Z2Or1 By = 2D Y1 © 2.
On the quotient V =V x V/ ~ we have a well defined addition + if we set
(1, 2] + [a1,a2] = [z1 ® a1, 22 B az).
Note that [z,y] = [x,0] + [0,y] and [0,b] + [b,0] = [b,b] = [0,0]. Thus, (V,+)

is an abelian group with neutral element [0,0]. Also, —[z,y] = [y,z] and every
[z,y] € V has the expression [z,y] = [z,0] — [y,0]. The map v : V — V defined
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by v(z) = [z,0] is obviously a semigroup homomorphism. We shall prove that it
has the universal property. Let G be an abelian group and let f : V — G be a
semigroup homomorphism. We define f : V. — G by flz,y] = f(z) — f(y). The
definition of f is good, because if [x,y] = [a,b], there exists some z € V such that
2@r@b = 2dady and therefore f(z)— f(y) = f(a)— f(b), since G is a group. Also,
f(y(x)) = f(x) = f(0) = f(x) —0 = g(z), because f is a semigroup homomorphism.
Finally, f is unique, because (V) generates V. From the uniqueness of K (V)
follows now that K (V) =V.

Applying Grothendieck’s Lemma, we get for every space M the abelian groups
K(M) = K(Vect®(M)) and KO(M) = K (Vect®(M)). We shall make K and KO

functors describing their effect on continuous and smooth maps.

Proposition 7.3.6. Let f : X — M be a continuous map of topological spaces.
To every vector bundle & = (E,p, M) over M correspond a vector bundle f*§ =
(f*E,q,X) over X and a continuous map f: f*E — E which maps the fibres of
f*& linearly isomorphically onto the fibres of & so that the pair (f, f) is a vector
bundle morphism.

rE L E

)
x s m

Moreover, f*¢ is unique with these properties up to isomorphism of vector
bundles over X.

Proof. Let f*E = {(z,v) € X x E : f(x) = p(v)} and define the continuous
maps ¢ : f*E — X by q(z,v) = z and f : f*E — E by f(z,v) = v. Obviously,
po f = foq. Moreover, if I(f) = {(z, f(z)) : & € X} C X x M is the graph of f,
then ¢ is precisely the composition

FE g & X

and id X p|¢p is a vector bundle map, because (X x E,id x p, X x M) is a vector
bundle. This means that the triple (f*FE, g, X) is a vector bundle. By its definition,
f maps the fibres of ¢ linearly isomorphically onto the fibres of p.

In order to prove that the vector bundle f*¢ = (f*F, ¢, X) is unique with these
properties, suppose that ¢ = (E’, ¢, X) is another such bundle and continuous map
f’. We consider the continuous map F : E' — f*E defined by

From the definitions follows that ¢ o F' = ¢’ and

F((¢) (@) = {(z, ['(w) € [*E: ¢ (u) = a}

for every z € X. Since f' maps the fibres of ¢ linearly isomorphically onto the
fibres of p, it follows from Lemma 7.1.2 that F' is a vector bundle isomorphism of
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vector bundles over X.

The vector bundle f*¢ is called the induced (or pull-back) vector bundle of £ by
f. It is clear from the proof that if £ is a smooth vector bundle and f is a smooth
map, then f*¢ is smooth as well. Also, the induced bundle of £ by the identity map
is € itself and (f o g)*¢ = ¢*(f*¢)). If X € M and f: X — M is the inclusion,
then f*¢ = ¢|x. Finally, the pull-back preserves the direct sums. More precisely,
let & = (F1,p1, M) and & = (Fy,p2, M) be two vector bundles over the same base
space M and let f: X — M be a continuous map. Then,

f*El (&%) f*EQ = {(.%',Ul,.%',?}z) e X xEyxX x Ey :pl(vl) = pg(vg) = f(l‘)}

If g: f*E1 & f*E2 — X is the continuous map defined by q(x,v1,2,v9) = z and

[ B ®© f*Ey — Ey © Ey is defined by f(x,v1,2,v9) = (v1,v), then po f = fogq
and f maps the fibres of ¢ linearly isomorphically onto the fibres of p.

fTEL @ f*Ey AN E,® E,

q lp
}(%M

The uniqueness now implies that f*&; @ f*& = f*(§ @ &2).

Thus, to every continuous map f : X — M corresponds a group homomor-
phism f* : K(M) — K(X) such that idj, = idg( and (f o g)* = g* o f~.
These mean that K is a contravariant functor from the topological category
to the category of abelian groups. In the rest of this section we shall show
that K is actually a homotopy functor (for paracompact spaces) with values in
the category of commutative rings with unity. Similar facts hold for the functor KO.

Lemma 7.3.7. If X is a paracompact space, then for every open cover U of X
there exists a countable open coverV of X consisting of open sets which are disjoint
unions of open sets each of which is contained in some element of U.

Proof. Let U be an open cover of X. Since X is paracompact, there exists a partition
of unity {¢y : U € U} subordinated to U. For each finite set S C U we define

Vs={xeX:oy(x)>ow(x) forall UeS and W el S}

Since for every = € X the set {U € U : ¢y () > 0} is finite, Vg is an open set. Also,
Vs C U for every U € S, because x € Vg implies that ¢y(z) > 0 for U € S. Let
now

Vo=|J{Vs:ScU and |S|=n}

for n € N. This is a disjoint union of open sets. Finally, V = {V,, : n € N} is an
open cover of X, because for every x € X the set S ={U €U : ¢y (z) > 0} is finite
and x € Vg. O
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Theorem 7.3.8. Let & = (E,p, M) be a vector bundle and f, g : X — M be two
continuous maps from a paracompact space X to M. If f ~ g, then f*¢ = g*&.

Proof. 1If H : [0,1] x X — M is a homotopy with H(0,.) = f and H(1,.) = g,
then H*¢|qoyxx = f*§ and H*¢[1cx = g*¢. Thus, it suffices to prove that if
¢ = (E,p,[0,1] x X) is a vector bundle over [0,1] x X and X is a paracompact
space, then &|io1xx = &l1yxx-

We observe that if for some 0 < ¢ < 1 the restrictions [ xx and & jxx are
trivial, then & is trivial. Indeed, let By = p~1([0,¢] x X) and Es = p~1([c, 1] x X),
and suppose that hy : Ey — [0,¢] x X x C" and hg : Ey — [¢,1] x X x C" are
vector bundles isomorphisms. Since hy o hy!: {e} x X x C" = {c} x X x C" is an
isomorphism of trivial vector bundles over {c} x X, there exists a continuous map
p: X — GL(n,C) such that

hio h;l(c,x,v) = (c,v, p(x)(v))

for every x € X, v € C". The map o : [¢,1] X X x C" — [¢,1] x X x C" defined by
o(t,z.v) = (t,v, p(x)(v)) is an isomorphism of trivial vector bundles over [c, 1] x X
and so is 0o hy : Fa — [¢,1] x X x C™. Since hy and o o hy coincide on Ej N Es,
they fit together to a form an isomorphism from £ to the trivial vector bundle over
[0,1] x X.

A second observation is that there exists an open cover of U of X such that
&ljo,1)xw 1s trivial for every U € U. This follows easily from our first observation and
the compactness of [0, 1].

From Lemma 7.3.7 there exists a countable open cover V = {Vj, : k € N} of
X consisting of open sets which are disjoint unions of open sets each of which is
contained in some element of U. Thus, | 1)xy, is trivial for every k € N. Let
{¢r : k € N} be a partition of unity subordinated to V. We set 1)y = 0 and
Y =1+ -+ Y, k € N Let X = {(¢p(2),2) : 2 € X} = X and & = {|x,.
The homeomorphism 7y : X — Xj_1 defined by n(¢r(z),z) = (Yr_1(x),x) can
be lifted to a homeomorphism 7, : p~'(Xy) — p~'(Xj_1) such that 7 = id on
p~H(X3) \ p1([0,1] x V;) and

ik = ity o (id x (k) o hu,

on p~1([0,1] x Vi N X}), where hy : p~1(Vi) — [0,1] x Vi x C" is a trivialization
of € over [0,1] x Vi. So, 7 takes each fiber of & linearly isomorphically onto the
corresponding fiber of &,_1. Now the infinite composition 77 = 7y o7jg 0 - -+ is well
defined, because {supp¢y : k € N} is a locally finite closed cover of X, and is a
vector bundle isomorphism from £|11x to €|y x. O

Corollary 7.3.9. FEvery homotopy equivalence f : X — Y of paracompact spaces
induces an isomorphism f* : K(Y) — K(X) and similarly for the KO groups.
In particular, every vector bundle over a contractible paracompact space is trivial. [

We shall now define a ring structure on K (M) for any space M using the tensor
product of vector bundles in the same way we used the direct sum to define the group



184 CHAPTER 7. VECTOR BUNDLES

structure. Let & = (E1,p1, M) and & = (Eq,p2, M) be two complex (respectively
real) vector bundles over the same base space M. We define

Ei@ By =[] ri'(@) @p; ' (x)
reM

where the tensor product is taken over C (respectively over R in the real case). On
FE1 ® E5 one can define a topology and make it the total space of a vector bundle over
M. Indeed, let V, W C M be two open sets such that V N'W # & for which there
are trivializations h; : p~1(V) = V x C% and g; : p~}(W) — W x C", j = 1,2, for
& and &, respectively. There exist continuous functions G7 : VN W — GL(n;,C)
such that

(95 hyH)(x,v) = (z,G (2)(v))

for j = 1,2. Defining the map

hi ® hy : H pri(x) @ pyt(z) = V x (C™ @ C™)
zcV

by the formula (h1 ® h)(vy ® v2) = (2, h1(v1) @ ha(ve)), for every vy € py'(z) and
vy € py L (z), we see that

(91 ® g2) © (h1 ® ha) ™) (z, w1 ® ua) = (x, (G (2) ® G*(x))(ur ® ua)).

Since G!(x) ® G?(x) is a continuous function of x € V N W, it is a standard fact
that there exists a unique topology on E; ® Fs such that each set of the form

I ri'@) @py'(2)

zeV

as above is open and the maps like hy ® hy are homeomorphisms. It is obvious
now that the triple & ® & = (F1 ® E2,q, M) is a vector bundle over M of rank
nine, where q is the canonical projection, and each map h; ® hy as above is a local
trivialization. The vector bundle & ® & is called the tensor product of the vector
bundles & and &s.

The basic properties of the tensor product of vector spaces carry over immedi-
ately to the case of vector bundles over a space M. So,

(i) if &1 = ¢1 and & = (o, then & ® & = (1 @ (.
i) & ® & = &,
iil) (&1 ®&2) ®& 26 ® (621 8).
iv) E®@el 2 ¢
V)ER (6 BEL)ZEREBERE.

(vi) If f: X — M is a continuous map then f*(& ® &) = f*& @ f*¢,. This
follows from the uniqueness of the induced bundle.

(
(
(
(

The tensor product defines an associative commutative multiplication with unity
on Vect®(M) and on Vect®(M) which is compatible with the direct sum. From this
we get a commutative ring structure on K (M) and KO(M). More abstractly, let V
be an abelian semigroup on which we have a commutative associative multiplication
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with unity which is compatible with the addition. A multiplication on K (V') can be
defined by putting

[a’7 b] ' [1’,:[/] = [ax,ay] - [bl’, by]
for every [a,b], [z,y] € K(V). Indeed, if [a1,b1] = [ag,b2] and [x1,y1] = [x1,92],
there exist ¢, d € V such that c+a1+bs =c+as+by and d+z1+y2 = d+ x2 + y1.
Then, [a121,a1y1] = [a122, a1y2] and [byz1,biy1] = [b1x2, biy2]. On the other hand,

(cxa + cy2) + (a1 + b2)xa + (az + b1)y2 = (cxa + cy2) + (a2 + bi)xe + (a1 + b2)y2

which means that [(a1 + b2)x2, (a1 + b2)y2] = [(az + b1)z2, (a2 + b1)ys2]. This implies
that

[a121, a1y1] — [b121, b1y1] = [a1@e, a1y2] — [bize, biys] = [aaza, agys] — [baxa, baya).

In this way K (V') turns into a commutative ring with unity, called the Grothendieck
ring of V. In particular for every space M we have the Grothendieck ring K (M) of
complex vector bundles over M and the Grothendieck ring KO(M) of real vector
bundles. The unity is represented by €' in both cases.

7.4 The classification of vector bundles

In this section we shall show that the functor Vect®(M) is representable for paracom-
pact spaces by constructing an explicit classifying space. Although we present the
case of complex vector bundles, everything holds verbatim for the functor VectR(M )
also, replacing the unitary groups involved by orthogonal groups and the complex
Grassmannians by the real ones.

Let 1 < k < n be positive integers and let

Vi(C™) = {(v1, -y vr) € (SN (v, 05) =65, 1< 1,5 <k}

be the space of all orthonormal k-frames in C”, where (, ) denotes the usual hermitian
product on C™. Obviously, V;(C") is a compact space and there is a continuous
surjection 7 : U(n) — V;,(C") defined by 0} (A) = (Aeq, ..., Aey). We observe that
if A, B € U(n), then n(A) = n(B) if and only if B~'A € U(n — k), where we
consider the inclusion U(n — k) C U(n) so that each element of U(n — k) fixes e,...,
e in C". This implies that »; induces a homeomorphism

U(n)

M m%Vk(C )-

The inclusion SU(n) < U(n) induces a continuous injection of the homogeneous
space SU(n)/SU(n—k) into U(n)/U(n — k) which is moreover a surjection, because
for every A € U(n) there exists B € SU(n) such that B~*A € U(n — k). Thus,

SU(n) - U(n)
SUn—k) U(n—k)

~ Vk(Cn).

The homogeneous space Vi(C") is called the Stiefel manifold of orthonormal k-
frames in C".
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Each element of Vi (C™) generates a k-dimensional vector subspace of C". Let
Gr(C™) be the space of all k-dimensional vector subspaces of C endowed with the
quotient topology with respect to the natural surjection ¢ : V3(C") — Gi(C"). The
group U (k) acts smoothly on Vj(C") from the right and G (C") is the orbit space
of the action. Here we consider U(k) embedded in U(n) so that each element of
U(k) fixes €g41,...,en, in C™. The right action of U(k) on Vi (C™) is defined by

k k
(vi, .y vk)A = (Z anv, Y azkvl>,
=1 =1

for A = (aj;)1<1j<n € U(k) C U(n), where a;j = 85, 1 <1 <n,k+1<j<n.

If A, B € U(n), then the orthonormal k-frames (Aey, ..., Aey) and (Bey, ..., Bey)
generate the same vector subspace of C" if and only if there exists C € U(k) C U(n)
such that Ae; = BCej for 1 < j < k. Thus, (B~1A)({0} x C* %) = {0} x C"*,
because {0} x C"* = (C* x {0})*. If D € U(n — k) is defined by De; = e; for
1<j<kand De; = (B 1A)e; for k+1 < j <n, then B~'A=CD € U(k). This
implies that the ¢ o 7y induces a homeomorphism

U(n)
U(k) x U(n — k)

~ Gk((C").

The homogeneous space G (C") is called the Grassmann manifold of k-dimensional
vector subspaces of C". Note that G(C") =~ G,,_1(C") and G1(C") = CP" L.
Nowoowe consider the standard inclusions C ¢ C? ¢ C* C --- and the union

C*>® = U C™ = lim C", which is the vector space of all sequences of complex num-
—

n=0
bers with only a finite number of non-zero terms. The hermitian product extends

to C*°. Also, C* becomes a topological space equipped with the weak topology.
Correspondingly, we get a sequence of inclusions

Vi(CF) c Vp(CH Y c - c (T - -

and the space V;(C>) = U Vi(C") equipped with the weak topology.
n=k

Similarly, we construct the infinite Grassmannian G(C*>) = U Gr(C™) en-

n=~k
dowed with the weak topology. In particular we have an infinite complex projective

space CP* = G1(C™) = U cpm.
n=1

There is a canonical smooth vector bundle 7% of rank k over G1(C") with total
space
E(1) ={(V,2) € Gy(C") x C": z € V}.
The bundle map py, 1. : E(7%) — Gi(C™) is the restriction to F(+F) of the projection
onto the first factor. Since p;}g(V) = {V} x V for every V € Gi(C"), the vector

bundle 7% = (E(v%), pn.x, Gx(C")) is called the tautological bundle over G (C"). It
is a generalization of Example 7.1.3. In the sequel we shall prove that 7% is indeed
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a smooth vector bundle.

Lemma 7.4.1. Suppose that (vi,va,...,v), (V],0h,...,v;) € Vi(C") are such that
q(v1,v2, ..., v5) = q(v], V5, ..., v,). Then

k k
2 (e =2 (=
j=1 J=1

for every z € C™.

Proof. There exists some A = (ajj)1<ij<k € U(k) such that (vi,ve,...,vp)A =
(v],vh, ..., v). This means that

k
I __
v = Z U
=1

for every 1 < j < k. Therefore,

k k k k
Z v = E al]am z vl E < al]ar]> z vl Z z vl
=1

Jj=1 7lr=1 =1 Vj=1
—T .
because A = A~1. O

The preceding Lemma 7.4.1 implies that there is a well-defined smooth map
h:Gg(C") x C" — C™ with

k
h(q(v1,ve,...,v Z (z,v5)v

j=1

which is the projection of the vector z € C™ on the vector subspace of C™ spanned
by the orthonormal k-frame (vy,vs, ..., vg).
Also the smooth symmetric function o : G(C") x G (C") — R with

O-((Q(Ul, V2 .-ty vk)’ (Q(vllavé’ ) U;C)) = | det((”b U;'>)1§l,j§k|

is well-defined, because if A, B € U(k) and (v1,v2,...,05)A = (u1,uz,...,ux) and
(v], 0y, ...y vy ) B = (U}, uf, ..., u}), then

| et ((ug, uf) ) 1<t <] = |det(AT - (v, v}))1<rj<k - B)| = [ det((vy, v})) 1<t j<kl-

It is obvious that o((q(vi,v2,...,v), (q(v],v5,...;v)) > 0 if and only if
h(gq(vi,vh, ..., vp),v5), 1 < j < k, are linearly independent and form a basis of
q(vy,v3, ..., vy), because the entries of the [ row of the matrix ({vj, v}))1<1,j<k are the
coordinates of the orthogonal projection of v; on g(v},v5, ...,v},) with respect to its
ordered basis (v}, v5,...,v). In this case, h(g(v],v5,...,v}),.) maps q(vi,vs, ..., Ug)
linearly isomorphically onto g(v},v5, ...,v},).
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For every q(v1,va,...,v;) € Gp(C™) the set

Uq(v1,v2,...,vk) = {Q(U/h?}é? "'7U;c) € Gk((cn) : U((Q(”h”% ---7Uk)7 (Q(U/h?}é? 7”;)) > O}

is an open neighbourhood of g(vy, v, ..., vx) and
Gr(C") = J{Uer : T c {1,2,..,n} with [T|=k},

where CF' = ®jerCe;.

For each T C {1,2,...,n} with |T'| = k let jr : C¥ — CT be the linear isomorphism
which sends e; € CF to ej1) € C", where j(1) = minT" and so on taking into account
the ordering of I'. The map ¢r : Ugr x CF — p~1(Ugr) defined by

is a diffeomorphism which maps {V} x C* linearly isomorphically onto the fibre
p;}g(V) from the above remarks concerning h. This shows that the triple 72 =

(E(%]i),pmk, Gr(C™)) is a smooth complex vector bundle of rank k.
In the same way we have a tautological complex vector bundle of rank k
vk = (BE(YE), puk, Ge(C>®)) over Gi(C*), whose restriction to each Gx(C")) is

-

Definition 7.4.2. Let £ = (E,p, M) be a complex vector bundle of rank k. A
Gauss map of £ is a continuous map g : E — C™ for some £ < n < oo such that
Ilp-1(2) : p~!(z) — C" is a linear monomorphism for every = € M.

For example, the restriction of the projection onto the second factor to E (75),
that is the map g : E(y¥) — C" with g(V, z) = 2, is a Gauss map of the tautological
bundle ¥,

If a complex vector bundle £ = (E,p, M) of rank k admits a continuous Gauss
map g : F — C", then there are two continuous maps f : M — Gy (C") with
f(x) =g(B,) and f : E — E(y}) with f(v) = (f(p(v), g(v)) such that the following
diagram commutes.

E —— E(M

p lpn,k

M L aucm

Thus, the pair (f, f) is a vector bundle morphism, whose restriction on each
fibre is a linear isomorphism. It follows from Proposition 7.3.6 that £ = f*%]j
Conversely, if we start from a vector bundle morphism (f, f) which is a linear
isomorphism on fibres so that the above diagram commutes, then pro f : E — C"
is a Gauss map of . This shows that a complex vector bundle £ = (E,p, M) of
rank k admits a Gauss map g : E — C" for some k < n < oo if and only if there
exists a continuous map f : M — G(C") such that £ = f*yF.



7.4. THE CLASSIFICATION OF VECTOR BUNDLES 189

Theorem 7.4.3. FEvery complex vector bundle & = (E,p, M) of rank k over a
paracompact space M admits a continuous Gauss map g : E — C*. Moreover, if
there exists a finite open cover {Uy,...,Un} of M such that &|y; is trivial for all
1 < j < n, then there exists a continuous Gauss map g : E — CF™ of €.

Proof. Since M is assumed to be paracompact, there exists a countable open cover
{U;j : j € N} of M such that €|y, is trivial for every j € N, by Lemma 7.3.7. Let
¢ p~Y(Uj) = Uj x C* be a trivialization of §lu;- Then pro ¢; : p1(U;) — CF is
a Gauss map for & ]UJ., where pr : U; x CF — CF* is the projection onto the second
factor. Let {f; : j € N} be a partition of unity subordinated to the open cover
{U; : j € N} and for each j € N let g; : E — C* be the continuous map defined by

() = {0, ifve B\p (1),
9 F(p(0) - pr(g;(v)), if z € p=1(U;).

The map

gngﬁE—)@Ck:Cm

jeN jEN

is now continuous. Since each g; maps E, linearly isomorphically onto C* for
fj(x) > 0 and the images of different g;’s belong to different factors of the direct
sum, it follows that g|gz, is a linear monomorphism for every € M. Hence g is a
continuous Gauss map of &. The second assertion is now obvious, because in this
case we begin with the finite open cover {Uy,...,U,} and the direct sum is finite. [J

Corollary 7.4.4. For every complex vector bundle & = (E,p, M) of rank k over a
paracompact space M there exists a continuous map f : M — Gp(C*>) such that
£ f*yfo If M is compact, there exists a continuous map f : M — Gp(C™) for
some large enough n € N such that £ = f*y%. O

Actually, the second part of Corollary 7.4.4 holds under the more general as-
sumption that the base space M is paracompact and has finite covering topological
dimension since any vector bundle over such a space is of finite type.

Corollary 7.4.5. If M is a paracompact space of finite covering dimension and &
1s a complex vector bundle over M, then there exists some n € N and a continuous
map f: M — Gg(C") such that § = f*yﬁ In particular this holds in case M is a
topological manifold. The same is true for real vector bundles if we replace G (C")
with the real Grassmann manifold G (R™). O

The continuous map f in Corollary 7.4.4 is not unique, but its homotopy class
is, as we shall prove shortly. We set

C ={(2n)n>0 € C® : 295,41 =0 forall me 7"},

Co% = {(2p)n>0 € C* : 29, =0 forall m e ZT}
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and consider the homotopies g, g% : [0,1] x C* — C* defined by
9¢° (20,21, 22, ...) = (1 = t) - (20, 21, 22, ...) + (20,0, 21,0, 22, ...),

904 (20, 21, 22, ...) = (1 — t) - (20, 21, 22, ...) + (0, 20,0, 21,0, ....).
The continuous map g7” o pr{ g,k : E(+F) — C? is a Gauss map of v¥ from which

we get a vector bundle morphism (f¢V, f¢¥) from 7* to % . Similarly, we get a
vector bundle morphism (fo%, fgdd) from 72 to 7§n for every 1 < n < oco. Since
fev and f°% are induced by ¢§¥ and ¢¢%¢, the homotopies ¢ and ¢°% induce
homotopies of f¢ and f°% with the canonical inclusion j : G(C") — Gx(C?"),
because gf¥(C") C C?*, g¢44(C™) € C?" and in particular ¢§¥(C") = C?* N C* and
g?dd(cn) = (2" N (codd‘

Proposition 7.4.6. Let 1 <n < oo, k € N and M be a topological space. Let fo,
fi: M — Gi(C") be two continuous maps such that fiyF = fiyk as vector bundles
over M. Then, jo fo ~ jo fi, where j : GL(C") — Gr(C?") is the canonical
inclusion.

Proof. The hypothesis says that there exists a complex vector bundle £ = (E, p, M)
and two vector bundle morphisms (fo, fo) and (f1, f1) from & to 4%, which are linear
isomorphisms of fibres. As before we get two continuous Gauss maps go, g1 : £ — C"
of € as well as two vector bundle morphisms (f¢¥ o fo, f¢ o fo), (f*% o f1, oo f1)
to 7§n and corresponding Gauss maps ¢V o gg : E — C?*, ¢°¥ o g; : E — C?*. The
continuous map h : [0,1] x E — C?" defined by

h(t,v) = (1= 1) - g (90(v)) + tgf*(91(v))

is now a Gauss map of the vector bundle 1 x & = ([0,1] x E,id x p,[0,1] x M)
from which we get a vector bundle morphism (H, H ) from 1 x & to 7§n. The
map H : [0,1] x M — G¢(C?") is a homotopy from f¢ o fy to f°% o f;. Since
f o fo~jo foand fo% o f; ~ jo fi, it follows that jo fo ~ jo fi. O

Combining the above with Theorem 7.3.8 we get a natural one-to-one correspon-
dence of the set of isomorphism classes of complex vector bundles of rank & over
a paracompact space M onto the set of homotopy classes of maps [M, G (C>)].
To every homotopy class [f] € [M, Gr(C>)] corresponds (the isomorphism class of)
f*~% . Thus, the problem of the classification of complex vector bundles of rank k
over a paracompact space M is equivalent to the calculation of the set [M, G (C*)].

Let H be a contravariant functor on a category of spaces and continuous maps
with values in the category of commutative semigroups. A characteristic class of
complex vector bundles with values in H is a natural transformation ® from the
functor Vect® to H. If for each space M in the category of spaces we consider the
image of ®y; : Vect®(M) — H(M) is contained in a subgroup of H (M), then ®
factors through the functor K. In this case we say that the characteristic class is
stable. Let R be a commutative ring with unity. If ® is a natural transformation
from the functor K to the (singular) cohomology functor H*(—; R) with coefficients
in R, then to every continuous map of paracompact spaces f : M — N corresponds
the commutative diagram
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If ¢ = Og, (c=)(7E) € H*(GK(C™); R), then for every complex vector bundle £ of
rank k over the paracompact space M there is a continuous map f : M — G(C>)
such that & = f*y% and ®/(€) = f*(c).

7.5 Operations with vector bundles and their sections

In this section we shall describe some useful constructions using vector bundles and
their sections, which are analogous to the ones in the category of finite dimensional
vector spaces.

As for vector spaces, to every vector bundle £ = (E,p, M) over a space M
corresponds its dual vector bundle £* = (E*,p*, M) over M which is defined in an
analogous way as the cotangent bundle of a smooth manifold. Its total space is the
disjoint union

Er= 1] 0 ()"
zeM
with the obvious topology.

Recall that if V is a finite dimensional vector space then choosing a basis of V'
we have a linear isomorphism V' = V*, but the isomorphism is not natural as it
depends on the initial choice of the basis. If V is real and carries an inner product
(,), then the map which sends v € V' to (.,v) is a natural linear isomorphism of V'
to its dual V*. Since every vector bundle over a paracompact space admits an inner
product, it follows that if £ is a real vector bundle over a paracompact space, then
£=¢"

To every finite dimensional complex vector space V corresponds its conjugate
V with the same additive structure and exterior multiplication sending A € C and
v € V to Av. If (,) is a hermitian inner product on V, then the map which sends
v € V to (.,v) € V* is a linear isomorphism V = V*. To every complex vector
bundle ¢ = (E, p, M) corresponds its conjugate vector bundle ¢ in the obvious way
and if the base space M is paracompact, then £ = £*.

In any case V' is naturally isomorphic to V** and therefore £ = £** for any vector
bundle &.

Let now V and W be two finite dimensional vector spaces (both complex or
real). The linear map p: V* @ W — Hom(V, W) defined by

pla @ w)(v) = a(v)w

for every a € V*, w € W and v € V, is an isomorphism. This carries over to vector
bundles. If & = (Eq,p1, M) and & = (E2,ps, M) are two vector bundles over the
same base space M, there is a vector bundle Hom(§;,&2) and

&1 ® & = Hom (&1, &2).
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If ¢ = (E,p, M) is a real vector bundle, the complex vector bundle {¢ = £ ®r e(lc
is called the complexification of £, where e(%: is the trivial complex line bundle over
M. On the other hand, every complex vector bundle ¢ of rank n can be considered
as a real vector bundle of rank 2n denoted by (g. Now we have

()R 2ERR (D ep) T EQReg DERR g X EDE.

For the converse we have the following.

Lemma 7.5.1. (i) If V is a complex vector space then V @r C =V &V as complex
vector spaces.
(ii) If £ = (E,p, M) is a complex vector bundle over a paracompact space M,

then (§r)c = @&

Proof. Since the exterior multiplication on V ®@gC is defined by A(v®@rz) = v®@g (\2)
for v € V and A, z € C, the formula

o(v @R 2) = (2v,zZv)

defines a C-linear isomorphism V ®g C = V @ V. This proves (i) and (ii) follows
from this choosing a hermitian inner product on £. [

In the rest of this section we shall describe the spaces of smooth sections of
the vector bundles defined above corresponding to a given smooth vector bundle
¢ = (E,p, M) of rank n over a smooth manifold M. The vector space Q2°(¢) of
the smooth sections of £ is a C°°(M)-module. From Corollary 7.3.4 there exists a

smooth vector bundle € over M of some rank m such that £ ®E = "™ and therefore

Q0(6) @ Q°(€) = (e @ ) = Q(M™).

Since Q°(¢"*™) is a finitely generated free C°°(M )-module, we conclude that Q°(¢)
is a finitely generated projective C°°(M )-module.
We shall need the following algebraic lemma.

Lemma 7.5.2. Let R be a commutative ring with unity, A a projective R-module
and B a finitely generated R-module. Then,

Homp(A, R) ®r B = Hompg(A, B).

Proof. Let p : Hompg(A, R) ® g B — Hompg(A, B) be the natural homomorphism
defined by u(f @ b)(a) = f(a)b. If B = R or a finitely generated free R-module,
then p is an isomorphism. If B is a finitely generated R-module, there is a short
exact sequence of R-modules

0O—--K—F—-B—=0

where K and F are free and finitely generated. Since p is natural, we get the
following commutative diagram
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Homp(A,R) g K —— Hompg(A,R) ® g F —— Hompg(A,R) g B —— 0

| 2 |

Homp(A, K) — Homp(A, F) —— Homp(A4,B) —— 0

in which the rows are exact, because A is assumed to be projective and therefore
Homp(A,.) is an exact functor. The assertion follows now from the five lemma. [J

The previous Lemma 7.5.2 is a special case of the more general statement
HOIIlR(A, G) ®Rpr B = HOIIlR(A, G Rp B)

which holds under the same assumptions on A and B for every R-module G. The
isomorphism now is given by u(f ® b)(a) = f(a) ® b and the proof is essentially the
same.

Theorem 7.5.3. If & = (E1,p1, M) and & = (Fa,p2, M) are two smooth vector
bundles over the same smooth manifold M then the following hold.

(i) Q°(Hom(€1, &2)) = Homeoo 4y (2°(61), 2°(62)).-
(ii) Q°(&1 ® &a) = QO(&1) @coo(ar) 2 (62)-
(iii) Q°(€}) = Homeeo(ar) (Q2°(£1), C°°(M)).

Proof. Let
F : Q°(Hom (&1, &) — Homeee () (2°(61), 2°(£2))
o(x

be the C°°(M)-linear map defined by F(¢)(s)(z) = d(x)(s(x)), for every & € M
and ¢ € Q*(Hom(¢1,&)), s € Q0(&).

First, we observe that F' is injective, because if F’ ((5) = 0, then for every z € M
and v € p;!(z) there exists s, € Q0(&) with s,(z) = v and therefore ¢(z)(v) =
P)(s)(@) = 0.

In order to prove that F' is onto let ¢ € Homcoo(M)(QO(&),Qo(gg)). In the
beginning we shall show that if s € Q°(&;) and * € M are such that s(x) = 0,
then ¢(s)(x) = 0. Let s1, So,..., sp, € Q2°(&1) be a local frame of ¢; on some open
neighbourhood U of . Then

ny
slu = Z [i8;
j=1

for some f; € C*°(U), 1 < j < ny. Let g € C°°(M) be such that g(z) = 1 and
suppg C U. Then,

P(s) = ¢((1 — g)s +sg9) = (1 — g)o(s) + ¢(gs)

and
ni

g(slv) = (9f)s;.

Jj=1
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Now each gf; can be extended to a smooth function f; € C°°(M) by setting it zero
outside U. Thus,

d(gs) = > fid(s;) € Q&)
j=1

and ¢(s)(x) = ¢(gs)(z) = 0.

A

We define now ¢ setting ¢(z)(v) = ¢(s,)(x), for every z € M, where s, GAQO(&)

is any with s,(z) = v. From the above, ¢ is well defined and obviously F(¢) = ¢.

This concludes the proof of (i), while (iii) follows as a special case by taking & = €.

The proof of (ii) is the following chain of isomorphisms
V(& @ &) = Q" (Hom(], &)
= Homeeo ) (2(&7), 2°(€2)
2 Homgw (ar) (Homeee (a1 (27 (1) O (M), 2°(&2))
= 0°(&1) ®ow(ar) 2(E2)

where the last isomorphism is given by Lemma 7.5.2. [J
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Characteristic classes

8.1 Connections on vector bundles

Let £ = (E,p, M) be a smooth vector bundle of rank n over a smooth manifold M.
A (linear) connection on ¢ is a linear map

V: Q%) = AN (M) @ceoar) 2°(€)
with the additional property (Leibniz formula)
V(fs)=df ® s+ fVs

for every f € C°(M) and s € Q°(&), where A'(M) denotes the space of differential
1-forms of M. If € is real then linear means R-linear. If £ is a smooth complex
vector bundle, a connection on ¢ is a C-linear map

V006 — AY(M;C) @ oo (M;C) Q%(¢)

satisfying the Leibniz formula for all f € C™(M;C). We will write A¥(M) and
C°(M) in both cases, as the meaning will usually be clear from the context.

Since AY(M) = QYT*M) and AY(M;C) = Q°((T*M)c), from Theorem 7.5.3
we have

AN M) @coo(ary Q2(€) = QUT*M ®€)
=~ Q%(Hom(T'M, €)) = Homeee () (Q0(TM), Q°()).

So a connection on ¢ is a map V : Q°(¢) x QO(TM) — Q°(¢) which is linear with
respect to the factor Q°(¢), is C°°(M)-linear with respect to the factor QO(TM) =
X (M) and if we write Vx = V(., X), then

Vx(fs) = fVxs+(Xf)s

for every X € QY(TM), s € Q&) and f € C°°(M). In other words a connection
on a smooth vector bundle £ is a way to differentiate smooth sections of £ in the
directions of smooth vector fields of M and it generalizes the Definition 3.1.1, which
gives the notion of a connection on T'M.

195



196 CHAPTER 8. CHARACTERISTIC CLASSES

From the above isomorphisms a connection can be thought of as a linear map
V Q&) = QO(Hom(TM, ¢€)), and so the value (Vxs)(z) € B, = p~'(z) depends
only of the vector X(z) € T, M and the values of s on an open neighbourhood of
x € M, because if s|y =0 and U C M is an open neighbourhood of x, there exists
some f € C*°(M) such that f(x) = 1 and suppf C U, and therefore f-s =0 on
M, which gives

0=Vx(fs)(x) = f(2)(Vxs)(x) + (X f)(2)s(x) = (Vxs)(@).

Thus, a connection can be localized to &|¢ for every open set U C M.
Let U C M be an open set over which ¢ is trivial and let {eq, ..., e,} be a smooth
local frame of £ on U. Every element of A'(U) ®cee () 20(€|rr) can be written in a

unique way as
n
Z a; X e;
j=1
for some a; € C>*(U), 1 < j < n. Therefore,

n
Ve = Z Ajk X e
j=1

where A = (A;1) is a n x n matrix of differential 1-forms on U, called the connection
form with respect to the frame {eq,...,e,}. Conversely, for any n x n matrix of
smooth 1-forms on U and any smooth frame {ej,...,e,} of &|y one can define a
connection on {|y by setting

V(Z frex) = dek ®er + Z TrAjr @ €
k=1 k=1 kj=1

for every fi,..., fn € C°(M).

Example 8.1.1. If { = (E,p, M) is a smooth vector bundle of rank n on a smooth
manifold M, there exists a smooth vector bundle §~ of some rank k such that & EB{N =
"tk Let f: E — M x C"t* be the inclusion and ¢ : M x C*** — E the projection.
Let VO be the connection on €*™* with zero connection form. Equivalently, Vo =
d® - ®d,since Q0("F) =2 C®°(M) @ ---C>®(M) n + k times and therefore

ANM) @cooary Q™) = AN M) @ - - @ AT(M)

We have C°(M)-linear maps f, : Q°(&) — QO(e"+*) and g, : QO(e"HF) — QO(¢)
and the composition V = (id ® g«) o Vg o fi

Q0(6) L5500 () Yo AT (M) @ oo gy Q0(HF) 2L AL (M) @ oo (1) 20(€)

is a connection on £. Thus, every (complex or real) smooth vector bundle over a
smooth manifold admits at least one connection.
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In the sequel we denote QF(&) = AF(M) @ceo(ary Q0(€) for every k € ZT and
every smooth vector bundle £ = (E, p, M).

If & = (E1,p1, M) and & = (E3,p2, M) be two smooth vector bundles over the
same smooth manifold M. We define the C*°(M)-bilinear form

QF(€1) ® oo (ary A (E2) Q€ ® &) = AFF(M)) @ oo (ary (Q(E1) R oo (ar) 20(E2))

which sends (w® s) ® (0 ®t) to (wA0) ® (s ®t), where w A 0 is the usual wedge
product of differential forms on M.

Since Q9(ek) = C°(M) and QF(ek) = A¥(M), taking & = €4 and k = 0 the
above bilinear form gives just the C°°(M)-module structure of Q!(&) for a real
vector bundle &. Similarly, Q0(el) & C®(M;C) and QF(el) = A¥(M;C), the
C-valued smooth k-forms on M. Moreover, if & is a complex vector bundle, for
w € A¥(M;C) and s € Q°(&) we have w A s = w ® s, which means that

AF(M;C) @co(arc) Q&) 5 QF(&2) = AF(M;C) ®pw (arc) 2(&2)

is the identity map. Analogously, in case & is real.
Obviously, 1As = sand (WA BO) As = wA (0 As) for every w € A¥(M),
6 c A{(M) and s € (&),

Lemma 8.1.2. If V is a connection on the smooth vector bundle & = (E,p, M),
then there exists a linear map d¥ : QF(€) — QFFY(E) for k € ZF such that

(i) d¥ =V : Q&) — QL&) for k=0 and

(ii) dV (w A s) = dw A s+ (=1)*w A dVs for every w € AF(M) and s € QL&) and
k,leZ*.

Proof. For every w € A¥(M) and s € Q°(¢) we put
dV(w®s) =dw A s+ (=1)Fw A (Vs)
and observe that dV is well defined on QF(¢), because
AV (W@ (fs)) = fdw A s+ (=1D)Fw A (df @ s+ fVs)

= fdoAs+ (~1DFOA fwAVs+ (df Aw)As=dY ((fw) ® s)

for every f € C°°(M). Since dw A s = dw ® s, we have (i).
To prove (ii) suppose that s = § @ t, where § € A'(M) and t € Q°(¢). Then,

dwAs)=dV(wA@Rt)=d (wA8) @)

=dwAB) @t + (—1)*(wAB) A (VE)
= (dw A0+ (~1)fwAd) @t + (=) wA0) A (Vi)
—doN(@@t)+ (—D*wA[dI Dt + (—1)'0 A (VE)]
—dwA@@t)+ (1) wAdY (0 @1t)
—dons+ (-D)*wAads. O
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Thus, for every connection on a smooth vector bundle £ = (E,p, M) we get the
sequence of linear maps

0—00(6)-L01 () 02(6) L .

In the particular case £ = €', it coincides with the de Rham complex of M. However,
as we shall see, this is not a cochain complex in general. In any case, the map
FV =dV oV :Q0%¢) — Q%(¢) is C°°(M)-linear. Indeed, for every f € C°°(M) and
s € Q0(€) we have

AV (V(fs)) =dv(df @ s+ fVs)=d¥ (df As+ fAVs)
= d(df) Ns—df A(Vs)+df A(Vs)+ fdV (Vs) = fdV(Vs)).
On the other hand, from Theorem 7.5.3 we have
Homgoe (a7 (2°(6), % (€)) == Homeoe (1) (2°(€), 2°(€)) @coo a1y A*(M)

= QO(Hom(f, 5)) ®C°°(M) AQ(M) = QZ(HOI’n(é., 5))

Thus, FV is a differential 2-form with values in Hom(&,€) which is called the cur-
vature form of V. For every X, Y € QU(TM) the evaluation at (X,Y) induces
a C°°(M)-linear map from Q2(Hom(¢,€)) to Q°(Hom(¢, €)) which sends FV to an
element F ; y- Because of the C*°(M)-linearity, for every x € M the value F ; v ()
depends only on the values X (z) and Y (x). For every w € A'(M) and s € Q°(¢)
we have

AV (w®s)=dw®s—wAVs

and therefore
0¥ (w® 5)(X,Y) = [Xw(Y) = Ya(X) — w([X,Y])] -5 - [0(X)Vys — w(¥)Vxs]
=Vx(w(Y)s) — Vy(w(X)s) —w([X,Y])s
from which follows the traditional formula of the curvature tensor
FYy(s) =d¥(Vs)(X,Y) = Vx(Vys) — Vy(Vxs) — Vixy]s.

In order to carry out explicit calculations it is useful to have a local formula for
the curvature 2-form. Let A = (A;;) be the connection form with respect to some
local smooth frame {eq, ..., e, }. Then,

dv(VGk) = Z dAjk Xe; — Z Ajk A Ve;
= =1

= dAj e = > Apn (DA @)
j=1 j=1 =1
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= Z <dAlk X e + (Z Alj VAN Ajk) (= el> .

=1 j=1

Thus, in matrix form we have
Fv|locally =dA + ANA

and for every X, Y € QY(TM) the matrix of the linear map F;Y(m) B, — FE,
with respect to the basis {ej(x),...,en(2)} is (dA+ AN A)(X,Y).

Example 8.1.3. Let y; = (H1,p, CP!) be the tautological complex line bundle
over CP! ~ S2. Recall that H; = {(¢,u) € CP! x C? : u € ¢} and let

Hi ={(l,u) e CP xC?:ue ¢t}

with respect to the usual hermitian product on C2. Then, ’Hf is the total space of an
obvious smooth complex vector bundle 77~ over CP! such that v; ®vi = e?c. We shall
compute the connection form and the curvature form of the connection V defined
as in Example 8.1.1. using the same notations. Thus, V = (id ® g.) o (d ® d) o fx,
where f : H; — CP! x C? is the inclusion and g : CP! x C?> — #; is the projection.
If ¢ = [2p, z1], then

9([20, 21], (uo, u1)) = (Zouo + Z1u1) - (20, 21) = (|20|*v0 + Z120u1, Z120u1 + |21[2u1).

Let {(Uo, ¢0), (U1, ¢1)} be the canonical atlas of CP'. Over Uy we have the smooth
section s defined by s([1, z]) = (1, z) and (d®d)s([1, z]) = ([1, 2], (0,dz)). Therefore,

(V)L 2]) = (2], — 04 ——de — =0+ LI
B N T P I TN B I R PR

= <[1,z], (%Wdz) . (1,z)> = (szpdz) ® s.

So, the connection form on Uy with respect to the frame {s} is

z

A= ———dz.
1+ 227

Since AN A =0, we have FV |y, = dA and so

z 1 1
FY g, = d(—2—) Adz = |d(——2)F + ——dz| Ad
= dl ) A [(1+|Z|2)z+1+|z|2 2| A de

d(1+zz) 1 1
= |- z dzZ| Ndz = ————==dz ANdz.
R E D A T e A (R PO
Note that Hom(vi,71) & €k, because it is a complex line bundle and admits the
global smooth section whose value at £ is the identity map of the corresponding

fibre of ;. Thus,

FY € Q*(Hom(y1,m)) & A*(CP') @ (cpry C°(CP'; C) = A*(CP;C)



200 CHAPTER 8. CHARACTERISTIC CLASSES

is indeed a C-valued differential 2-form on CP!.

Example 8.1.4. The normal bundle v of the tangent bundle T'S™ of the n-sphere
S™ n > 2, is trivial and its fibre at any point p € S™ is realized as the orthogonal
complement of the tangent space 7,S™ in TI,R”le ~ R"*! with respect to the
euclidean Riemannian metric (.,.). Also T'S™ @ v =2 "1,

We shall compute the curvature of the connection V on T'S™ defined in Example
811asV = (id®g.) o V0o f«, where VY is the connection on the trivial vector
bundle €"! with zero connection form, f : T'S™ — S™ x R**! is the inclusion and
g:S™ x R — T'8" is the projection

g(p,v) = (p,v — (v, P)p).

If p= (p',...,p"") € S" and s € X(S") = QTS"), X € X(S") and f.s =
(81, ..y Snt+1), suppressing the point of application, we have

n+1
X(p)(s1) = p*>_ X (p)(sr)p"
k=1

If we denote by ¢ : S™ — R the restriction of the projection onto the k-th coordi-
nate, 1 < k < n + 1, the above formula can be rewritten

n+1

X(s1) = ¢1)_ X(sk)én
k=1

It is easy to see now that V is actually the Levi-Civita connection of the standard
Riemannian metric of Example 3.3.3 on S™.

For X, Y € X(S"), a routine calculation shows that the i-th coordinate of
Vg(Vys - V%VXS is equal to

n+1 n+1
X, Y](83) = ¢ > X, Y1(se) + di D (X (sk)Y () — X ()Y (1))
k=1 k=1
n+1 n+1
Y (6i) > X (s6) — X (63) Y dwY (s)-
k=1 o

Thus, if f,X = (X1,..., Xp41) and f.Y = (Y1,..., Y 41), then

n+1 n+1
FYy(5)(p) = (Z p’fX<p><sk>)Y<p> . (Z ka<p><sk>)X<p>.
k=1 k=1
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However, since s € X(S™) we have ¢151 + -+ + dpt+15n+1 = 0 and differentiating

n+1
> (¢rdsk + spdey) = 0.
k=1
Evaluating at X (p) we get
n+1 n+1
> X () (sk) = =Y sk(p)Xi(p) = —(s(p), X (p))
k=1 k=1
and similarly
n+1

> 'Y (p)(sk) = —(s5(p), Y (p)).
k=1
Substituting we arrive at the formula
F)Y,Y(s) - <Sa Y>X - <87 X>Y

for the curvature of the Levi-Civita connection of the standard Riemannian metric
on S™.

So far we have dealt with FV = dY o V. It turns out that in higher degrees the
composition d¥ o d¥ : QF(€) — QFF2(¢) for k > 2 is completely determined by FV.
To see this, we consider the C°°(M)-bilinear map

OF(€) x Hompeo (3 (20(6),Q%(€)) 2+ QFF2(¢)

defined by (w ® s) A G = w A G(s), for every w € AF(M), s € Q°&) and
G ¢ Homcoo(M)(QO(f),QQ(f)), where the wedge in the right hand side is the one
previously defined.

Proposition 8.1.5. (d¥ odV)(t) =t AFY for every t € QF(€).

Proof. Indeed, if t = w ® s € QF(£), we have
(@ odV)(w®s)=dY(dw® s+ (—=1)kw A Vs)

= d(dw) ® s + (=) dw A Vs + (~D)*dw A Vs +w A (dV(Vs)) =wAFV(s). O

8.2 Induced connections

Let f: N — M be a smooth map between smooth manifolds and let £ = (E,p, M)
be a (complex or real) smooth vector bundle of rank n over M. Since the induced
map f*: C®(M) — C*°(N) is a ring homomorphism, every C°°(NN)-module is also
a C*(M)-module. In particular, QV(f*¢) has a C°(M)-module structure and the
map f*: Q(¢) — QU(f*¢) defined by

(f(s)(@) = (2, 5(f())
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for every x € N, is C°°(M)-linear.
Lemma 8.2.1. The well defined C*°(N)-linear map

f5 1 C®(N) ®@cooar) Q°(€) = QU(f7€)
which sends ¢ @ s to ¢ - f*(s) is an isomorphism.

Proof. If £ is trivial, then f*£ is the trivial vector bundle of rank n over N and
Q) 2 C®(M)D---®C®(M) and QU(f*¢) X C®(N)@---®C>®(N), n-times. It
is immediate from the definitions that in this case f* is an isomorphism, essentially
the identity map.

In the general case, there exists a smooth vector bundle §~ = (E, p, M) over M
of some rank m such that £ ® £ = €™, Then, f*¢ @ f* 22 €™ over N and from
the trivial case

F* 2 (C%F(N) @coe(ary 2°(€)) @ (CF(N) @os(ary 2°()) 2 Q(f7€) © Q°(f*€)

where the first factor on the left hand side is send to the first factor on the right
hand side. OJ

It is evident that the C°°(M)-linear map f* : Q&) — QO(f*¢) induces a
C>°(M)-linear map f* : AH(M) ®@ceo(ary 20(€) = AHN) @coo(ny QO(F*€).

Lemma 8.2.2. For every connection V on & and every smooth map f : N — M
there exists a unique connection f*V on f*¢, which makes the following diagram
commautative.

Q0(6) —— QL)

f*l lf*

Q0(r+¢) L5 al(r¢)

Proof. From the preceding Lemma 8.2.1 it follows that we have an C°°(N)-
isomorphism QF(f*¢) = A*(N) ®@coo(ary Q0(€) for every k € Z*. On the other
hand, the pull-back map f*: A¥(M) — A¥(N) induces a C°°(M)-linear map from
C®(N) ®@ceo(ar) AF(M) to A¥(N) which sends ¢ ® w to ¢ - f*(w). Taking tensor
products (over C*°(M)) with Q°(¢) we obtain a C°°(M)-linear map

p: C™(N) @cooar) Q°(€) = AF(N) ®@coo (ary 2°(€).
It suffices now to take
IV =(d@id) + plid ® V) : Q°(f€) = AYN) @coo () Q(F6),
since from Lemma 8.2.1 we have a C°°(V)-isomorphism

F* 1 C®(N) @ceoar) 2°(6) 2 Q°(f7€). O
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Let U C M be an open set over which ¢ is trivial and let {ey,...,e,} be a local
frame of £ on U. Let A be the connection form of a connection V on U with
respect to this frame. Then, {f*(e1),..., f*(en)} is a frame of f*¢ on f~1(U) and
the corresponding connection form of f*V on f~1(U) is f*A. The commutative
diagram of Lemma 8.2.2 extends to the commutative diagram

QL(e) —Z— 0(¢)
f*l lf*
Ql(rre) 5 a2(pe)

from which we get the commutative diagram

Q0(6) — 02(¢)

7

f*l
Q0(f¢) L5 2(fr¢)

Since f*(Hom(&,€)) = Hom(f*¢, f*€), we arrive at f*(FV) = F/'V. This can
also be seen by computing locally

FHEY) = F1dA+ANA) = [H(dA)+ F(AAA) = d(f*(A)+ [ (A)AF7(A) = FIY.

A connection V on a smooth vector bundle £ = (F,p, M) induces a connection
on the dual vector bundle £* as follows. We consider the composition

() Qk(g) ® oo (1) Ql(f*)gﬁkﬂ(f ® f*)—>Ak+l(M)

where the second map is induced by the vector bundle morphism £ ®&* — €! defined
by evaluation on the fibres. So,

(W®s,0®s)=s"(s)-wAb

for every w € A¥(M), § € AY(M) and s € Q°(¢), s* € Q(¢&*). Since (.,.) is non-
degenerate for (k,l) = (0,0) and for (k,l) = (0,1), the equation

d(s,s*) = (Vs,s*) + (s, V*s¥)

defines a connection V* on &*.
If & = (Eq1,p1, M) and & = (Es, pa, M) are two smooth vector bundles over the
same smooth manifold M with connections V! and V2, respectively, then the wedge

Q0(&1) @cme(ary 0(E2) Q061 ® &)

coincides with the isomorphism Q°(¢1) Qoo (M) 00(&) = Q¢ ® &) of Theorem
1.5.3(ii), and we can define a connection V on the tensor product £ ® & by the
formula

V(s®t) = (Vis) At +sA (V).
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In particular, this gives a way to define a connection V on Hom(&;,&2) = & ® &
putting
V(s* @t) = (V¥*s*) At + s* A (V).

There is another, perhaps more direct, way to define this connection on Hom(&1, &),
as follows. The evaluation map

0%(&1) x Q°(Hom(¢1, &) — Q°(&)
induces a C°°(M)-bilinear map
(-,) = (&) x ©'(Hom(y, &) = Q"(&)

which for (k,1) = (0,1) is given by the formula (s,w ® ¢) = w ® ¢(s). Thus, it is
non-degenerate and the equation

V3(s,0) = (V's,¢) + (5, V'0)

defines a connection V' on Hom (&1, &2).
We shall prove that the connections V and V' on Hom(¢1, &) coincide through
the isomorphism a : § ® £ = Hom(&1,&2). It suffices to show that

(s,V'a(s* @) = (5,V(s* @ 1))

for every s € Q0(&1), t € Q°(&) and s* € Q°(&}). Indeed, there is a commutative
diagram of vector bundle morphisms

§1 Q& ®& LN Hom (&1, &2)

(.,.)®idl l(.,.)

el ® & &2

where the bottom map is scalar multiplication, because
(s,a(s* ®@1)) = (s,8" - t) = s*(s)t = (s,8%)t.
Thus,
(5,V(s* @1t)) = (s, VIs*) At + (s,5%) V>t

From the definitions now we have
(5, Via(s* @ 1)) = V3(s,a(s* @1)) — (Vls,a(s* @) = V*((s,8")t) — (Vls,s*) At

= d(s, s ) Nt + (5,8 )Vt — (Vs s*) At = (5, V*s*) At + (5,55 )V?t = (sV(s* @ 1)).

Finally, it is easy to check following.

(i) d(s,s*) = (dVs,s*) + (—=1)%(s,dVs*) for every s € QF(¢) and s* € QF(¢¥),
and

(i) dV(s®@t) = (dVs) @t + (=1)Fs @ (dVt),

(i) d(s,0) = (d%5,6) + (~1)*(s,d%6) for every s € Q¥(&), ¢ € OX(&) and
¢ € Q' (Hom(é1,£2)).
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8.3 Invariant complex polynomials

A complex polynomial P in n? variables of degree k is homogeneous if it is the

sum of monomials of the same degree k. Such a polynomial can be considered as a
function P : C"*" — C, by arranging the n? variables in a n x n matrix. So P(A)
is determined as a polynomial function of the entries of the matrix A € C™*" with
the property P(AA) = AFP(A) for every X € C.

A homogeneous polynomial P : C"*™ — C is called invariant if it is an invariant
function under the action of GL(n,C) on C™*" by conjugation, that is

P(gAg") = P(A)

for every g € GL(n,C) and A € C™". In this case, P induces a well defined
function P : Hom(V, V) — C for every complex vector space of dimension n, since
the value P(A) does not depend on the choice of basis.

Examples 8.3.1. (a) For every A € C"*" the ”characteristic polynomial” of —A is

o(t) = det(I, +tA) = Zak

and o0g(A) = 1. Each coefficient oj(A) is obviously an invariant homogeneous poly-
nomial of degree k. Note that 0, (A) = det A.

(b) For every A € C™*™ the trace Tr(A¥) is an invariant homogeneous polynomial
of A of degree k. There is an alternative description which relates this example with
the previous one. Let

d o0
s(t) = —td— log det(Z,, — tA) kzosk

where log is considered as the formal power series

0 —1)k1
log(1+z) = %xk
k=1

d
and T denotes the formal derivative

i (i aktk> = io: /{?aktkfl.
dt k=0 k=0

We shall show that s(A) = Tr(A¥) for every k € N. In the special case of a diagonal
matrix A = diag(\y, ..., A,,) we have

n

d — tAi
:—t—l 1—th) = —t— Y log(l — th,) =
s(t) ogH k) dt; og( k) kzz:l .

YN =Y (Z Ag)ﬁ;
j=0 “k=1

k=1 j=1
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This implies that s;,(A) = Tr(A¥) for every diagonal matrix A € C"*". The general
case is a consequence of continuity and the following.

Lemma 8.3.2. The set of diagonalisable complex n x n matrices is dense in C™*™,

Proof. Let A € C"*" have eigenvalues Aq,..., A; € C with multiplicities ny,..., n;,
respectively. There exists R € GL(n,C) such that R~'AR is upper triangular. Let
€ > 0. We choose any

1
0<p<§min{e,|)\k—)\l|:1§k:7él§j}.

We also choose distinct points 2,..., zﬁk € C of distance at most p from \,. Let T,
be the matrix which results in from R~'AR by replacing the diagonal entries with
the complex numbers

1 1

J
21y ey By oonn B

Then, A. = RT.R~! is diagonalisable, because it has distinct eigenvalues, and
|A = Acll <n|R[[ - |R7Y| - [RTAR = Te| < nl[R|| - IR - p

where ||.|| denotes the maximum norm. O

Note that the preceding Lemma 8.3.2 is not true over the field of real numbers.
For instance the matrix of the rotation R./, by the angle 7/2 has characteristic
polynomial ¢ 4+ 1 which has negative discriminant. Since the discriminant of the
characteristic polynomial is a continuous function of the matrix and the charac-
teristic polynomial of a diagonalisable real 2 x 2 matrix must have non-negative
discriminant, it follows that R;/; cannot be approximated by diagonalisable ele-
ments of R2*2,

The invariant homogeneous polynomials oy (A) and si(A), 0 < k < n are related
through the Newton identities

56(A) = sk1(A)o1(A) + si_a(A)oa(A) + -+ (~1) koy(A) = 0.

To see this, we apply again Lemma 8.3.2, so that it suffices to prove the identities
for diagonal A = diag(\1, ..., A\n). In this case, on the one hand we have

(i(—l)kak(fl)tk> . (i sk(A)t’f> _ <i 1 t_)\g)\J-)'ﬁ (1—tA)

h=0 k=1 Jj=1 j=1
=3 (L= tA) - (1= o) (1 = ) - (1= tA,)
7j=1
- _tdthl(l thj) = tdtkzo( 1)%or(A)t" = k:1( 1) ko (At

and on the other hand

(Z <—1>kak<A>tk) - (i Sk<A>tk) 5 (fj <—1>’“aj<A>sk_j<A))tk,

k=0
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where we have set 01(A) = 0 for k > n and so(A) = 0. Comparing the coefficients
we obtain the Newton identities.

It follows from the Newton identities that sx(A) can be determined inductively
as a polynomial function with integer coefficients of o1(A),..., or(A). Conversely,
ok(A) is a polynomial function with rational coefficients of s;(A),..., sx(A). For
instance, for k =1 we have s1(A) = 01(A) and for k = 2 we have

82(14) = 81(14)0'1(14) — QUQ(A) = (0’1(14))2 — 20’2(14).
For k = 3 we have
Sg(A) = SQ(A)O'l(A) — 81(14)0’2(14) + 30’3(A) = (0’1(14))3 — 301(A)02(A) + 30’3(14)

and so on.
It is immediate from the definitions that si(diag(A1, A2)) = sk(A1)+sk(Az) and

or(diag(Ar, A2)) =D 0;(A1)or—;(As).
§=0
Also, sip(A1 ® Ag) = sp(A1) - sp(A2), since Tr(A; ® Ag) = Tr(A;) - Tr(Az), where
A1 ® Ay denotes the matrix of the tensor product of the linear maps with matrices
A1 and AQ.

The invariant homogeneous polynomials can be described as polynomial func-
tions of the elementary symmetric polynomials. Recall that the elementary sym-
metric polynomials 0;(X1,...,X,), 1 < j < n in n variables are determined from
the identity

n n
[T +X) =D oi(X1, ., Xa)t.
j=1 =0

Obviously, o01(Xy,...,Xn) = X1 + - + X, and 0, (X1,..., X)) = X1 Xo- - X,
Every symmetric complex polynomial of n variables is a polynomial function of
O14.e09 On.

Theorem 8.3.3. For every invariant homogeneous polynomial P : C"*™ — C there
exists a polynomial p of n variables such that P(A) = p(o1(A), ...,0n(A)) for every
AeCmm,

Proof. Let D, C C™*" be the set of all diagonal matrices. By Lemma 8.3.2, the set
U gDngil
geGL(n,C)

is dense in C™*™ and so P is completely determined by its values on D,,. Every
permutation s in n symbols determines an element g € GL(n,C) such that

gdiag()‘l, () )‘n)g_l = diag()‘s(l)’ () )‘s(n))

for every Aq,..., A, € C. Since P is invariant, it follows that P(diag(X7, ..., X)) is
a symmetric polynomial and so there exists a polynomial p of n variables such that

P(diag(Xl, ,Xn)) = p(O‘l(Xl, ...,Xn), veey O'n(Xl, ,Xn))
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The conclusion follows now by continuity. UJ

The set I:(C) of invariant homogeneous polynomials of n? complex variables
equipped with the usual operations is a commutative algebra. Similarly, the set
Sk (C) of all symmetric homogeneous polynomials of n variables is a commutative
algebra and S} (C) = Cloy, ...,0,]. The preceding Theorem 8.3.3 says that the map
p: I'(C) — S} (C) defined by

p(o)(Xq, ..., Xy) = o(diag(X1, ..., Xp))

is an isomorphism.

8.4 Chern classes

Let £ = (E,p, M) be a smooth complex vector bundle of rank n over a smooth
manifold M. Let U C M be an open set over which ¢ is trivial and let {eq,...,e,}
be a frame of & on U. There is a corresponding isomorphism of the restriction
Hom(&, €)|y with the trivial bundle of rank n x n over U. From this we get an
isomorphism

0 (Hom (¢, §)|y) = A*(U;C™") = AX(U; )™,

Thus, every 2-form R on Hom(¢, &) gives a matrix (Ry) € A?(U;C)™*", which
depends on the initial choice of the frame {ey,...,e,}. For every invariant homoge-
neous complex polynomial P of n? variables and degree k& we have a corresponding
element P((Ry;)) € A?*(U;C), because the wedge product of differential forms of
even degree is commutative.

If {¢),...,e},} is another frame on U from which we have a corresponding matrix
(R},) € A*(U;C)™ ™, there exists a smooth function g : U — GL(n,C) such that
(Rit) = g(R,;)g~ 1. Since P is invariant, we have P((Ry)) = P((R};)). This shows
that there is a global well defined complex smooth 2k-form P(R) € A%**(M;C).

In particular, if V is a connection on ¢ with curvature form FV € Q?(Hom(¢, €)),
then for every invariant homogeneous polynomial P : C"*" — C we have a well
defined C-valued smooth 2k-form P(FV) € A% (M:;C).

Lemma 8.4.1. Let P : C"*"™ — C be an invariant homogeneous polynomial. If

8xkl
X e Ccvxm,

P \"
P = < > , where T means transpose, then P'(X)-X = X - P/(X) for every

Proof. Since P is invariant, we have
P((I, +tEy)X) = P(X(I, + tEy))

for every |t| < 1, where E}; is the basic n x n matrix whose (k,)-entry is equal to 1
and has zeros everywhere else. Differentiating at ¢ = 0 for X = (ay;) the left hand
side gives

DP(X)XEy = DP(X) (Z az;‘Ek]) => aij 757 (X)
j=1 j=1
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which is the (I, k)-entry of P'(X)X. Similarly, the right hand side gives
DP(X)EnX = DP(X) <Z1 ajkEjl> = Zl a5 (X)
= j=

which is the (I, k)-entry of X P'(X). O

Proposition 8.4.2. If V is a connection on & with curvature form
FV ¢ Q*Hom(¢,€)), then for every invariant homogeneous polynomial
P :C™"™ — C the complex smooth 2k-form P(FY) € A% (M;C) is closed.

Proof. (J. Milnor and J. Stasheff) It suffices to prove the assertion locally. Let
U C M be an open set over which £ is trivial and let A be the connection form of
V on U with respect to some frame. Then FV|; = dA + A A A and differentiating

dFV |y =FVANA—ANFY.
This is called the (second) Bianchi identity. If FV |y = (Fy;), then

dP(FV)|y = i %(FV) AdFy = Te(P'(FV) AdFY),
k=1
where P’ is defined as in the preceding Lemma 2.4.1, by the use of which we get
dP(FV)|y = Te(P'(FY)AFY AA— P (FY)ANAANFY)
=Tr(FYAP(FY)ANA—-P(FVYYANAANFY) =0,
because if Y = P/(FV) A A = (Yy), then

n
dP(Fv)|U:T1“(Fv/\Y—Y/\FV): Z Fip NYp — Y A By, =0,
k=1

since Fj, is a 2-form. [

Proposition 8.4.3. If P is an invariant homogeneous complex polynomial of n?
variables of degree k, then the cohomology class [P(FV)] € H?*(M;C) does not
depend on the choice of the connection V on &.

Proof. Let V° and V! be two connections on § and let pr: R x M — M denote the
projection. Let VO = pr*V? and V! = pr*V! be the induced connections on pr*¢.
On pr*¢ we consider the connection V defined by

(Vs)(t,z) = (1 —t)(VOs)(t,z) + t(Vis)(t, )

for (t,x) € R x M. From Lemma 8.2.2 we have j(’;@ = V° and ]’f@ = V!, where
Jo, j1: M — R x M are the inclusions jo(z) = (0,x) and ji(x) = (1,x). Moreover,
FV' = Je(FV) and FV' = j¥(FV). Therefore,

[P(FY")) = [ (P(FV)] = G5 [P(FY)] = i [P(FY)] = [ (P(FYV))] = [P(FY)]
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by homotopy invariance. [J

It follows from Propositions 8.4.2 and 8.4.3 that if £ = (E,p, M) is a complex
smooth vector bundle of rank n over a smooth manifold M, then for every invariant
homogeneous complex polynomial P on n? variables of degree k there is a well
defined cohomology class in H?*(M;C). If ¢ = (E',p/, M) is another complex
smooth vector bundle isomorphic to £ and f : E/ — FE is a smooth vector bundle
isomorphism, then for every connection V on & we can choose a connection V' on
& such that the following diagram commutes.

00(¢) s QL(¢)

f*l l 5

Q(¢) —— Q'(¢)

Then, the local matrices of FV and FV' with respect to suitable local frames
coincide and thus P(FV) = P(FV'), since P is invariant. More generally, if f :
N — M is a smooth map and P is an invariant homogeneous polynomial, then
for every connection V on & we have f*(P(FV)) = P(F/"V). This means that the
correspondence which sends each isomorphism class of complex vector bundles over
M to the cohomology class in H*(M;C) defined by P is a natural transformation
from the K-functor to the cohomology functor H*(.; C).

For every k € Z* we define by

-1
o(©) = | (557 ) | e H*0ni0)
the k-Chern class of £ and by

hi(€) = [%k(‘—lﬂ)] & H*(M;C)

27

the k-Chern character of £&. From the above, the definitions are independent of the
choice of the connection V on £. Obviously, ¢o(§) = 1 and chg(§) = n. The Newton
identities imply that chy(§) is a polynomial function of ¢y(§),..., cx(§).

Examples 8.4.4 (a) Let M be a smooth manifold and let £ = (L,p, M) be a
smooth complex line bundle over M. Then, Q?(Hom(¢,€) =2 A%2(M;C). Thus, if V
is a connection on ¢, then FV € A%(M;C) and

sp(FYY=FYA---AFY  k-times.
Since o1 (FY) = FV, it follows that

€)= 1ar (©)F

(b) We shall compute the first Chern class ¢;(71) of the tautological complex
line bundle v; = (H1,p, CP') over CP' ~ S2. Since the integration

/ : H*(CPL;C) = C
cpt
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is an isomorphism, by Poincaré duality, it suffices to calculate the integral

/CP1 c(n)-

We use the connection V of Example 8.1.3 and the calculations therein according
to which if {(Up, ¢0), (U1, 1)} is the canonical atlas of CP!, then

9
! sdr A\ dy

Fv = d_ d — T 5  o\o
oo =1 PR A C B

1
1+ 2%

where z = z + iy. Since CP! \ Up is a singleton, we have

1 27 “+o00 r
FYV =9 —  dxdy =21 ———drdf = 2.
/CPI / It+a2+y22 /0 /0 TS

Since o1 (FV) = FV, it follows that

In particular v; is not trivial.

(c) In the Newton identities we see that the coefficient of oy, in s, is (—1)
Let now ¢ be a smooth complex vector bundle of rank n such that ¢(§) = 0 for
1 <k <n—1. In this case the Newton identities imply that the n-Chern character
of £ is

n—ln.

_1\n—1
chn(€) = (1" mea(€) = T renl©)

nl

In particular this holds for every smooth complex vector bundle £ of rank n over
the 2n-dimensional sphere S2".

The following proposition is useful in calculations.

Proposition 8.4.5. If & and & are two smooth complex vector bundles over a
smooth manifold M, then

(a) chi(§1 @ &2) Zlfhk(&) + chi(&2) and

(b) cr(€1® &) =Y (&) — erj(&a).

J=0

Proof. We take connections V! and V2 on &; and &, respectively. Then,
Viev?: Q&) e %) 2 QG e sh) —» (G eé) 20 (G) e 0% (&%)
is a connection on & @ & with curvature form
FY' o FY" € Q*(Hom(& @ &,6 & &)).

So,

chi (& & &) = [%sk (;—ﬂlidiag(Fvl,FvQ)ﬂ = chi(€1) + chi(&).
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This proves (a) and (b) follows in the same way. O

Let £ = (E,p, M) be a complex smooth vector bundle of rank n over a smooth
manifold M. Let I};(C) be the commutative graded algebra of invariant homoge-
neous complex polynomials. More precisely, we set I2¥71(C) = 0 and let I2*(C) be
the space of invariant homogeneous polynomials of degree k. For each P € I(C)
let ¢¢(P) € H*(M;C) denote the cohomology class defined by P as above choosing
any connection on . In this way we have a well defined homomorphism of graded
algebras ¢¢ : I (C) — H*(M;C), which is called the Chern-Weil homomorphism for
the complex vector bundle £. The subalgebra ¢¢ (1 (C)) of H*(M;C) is called the
Chern algebra of ¢ and is generated (as an algebra) by the set of the Chern classes

ex(€) = <_—1>¢5(0k), kezt

211

of &, by Theorem 8.3.3.

8.5 The Pfaffian polynomial

Let n € N and let so(2n,R) denote the Lie algebra of the special orthogonal group
SO(2n,R), which consists of the skew-symmetric 2n x 2n real matrices. If A =
(Ag) € s0(2n,R), we let

w(A) = Ayer Nef
k<l

where {e?, ...,e3,} is the dual of the canonical basis {e1, ..., €2, } of R*" and define
Pf(A) by the equality
W(A)A - Aw(A) =n!Pf(A) - e] A+ Nej,,.

It is obvious that Pf(A) is a homogeneous polynomial of degree n of the 2n? —n real
variables Ay, 1 < k <1 <n and is called the Pfaffian polynomial. Explicitly,

1
2nn

Pf(A) =

> (s810) Ap1)o(2) Ao @a—1)0(2n)-

g€Say

Example 2.5.1. Let ay,..., a, € R and A € s0(2n,R) be the matrix with the 2 x 2

blocks
0 aq o 0 Qp,
—a; 0)° "\—a, 0
along the diagonal and zeros elsewhere. Then,

w(A) =aje] Nes+ -+ apes, 1 Nes,

and thus
WA)A - ANw(A) =nlay---apne] A+ Nej,.

So in this case Pf(A) = aj - - - a,. Note that (Pf(A))? = det A. We shall generalize
this property of the Pfaffian for every element of so(2n,R). We shall need the
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following,.

Lemma 8.5.2. If A = (Ay) € s50(2n,R) and B € R*"*?" then
Pf(BABT) = Pf(A) - det B.
Proof. Let B = (By;) and let u; = Be;. From the equalities
Z Aguy, ANuj = Z Z By A Bue;, A e; = Z Z (BABT)VMel*, A e; = w(BABT)
k<l k<l pv k<l v<pi

follows that

W(BABT)A - Aw(BABT) = <Z Agug A uf) ARERWA <Z Agug, A uf)
k<l k<l
=n!Pf(A) - uj A--- Auy, =nlPf(A) - (det B) -e] A--- Aep. O

Corollary 8.5.3. The Pffafian polynomial is invariant under the action of
SO(2n,R) by conjugation.

If A € so(2n,R), then A is normal as a complex matrix and by the Spectral
Theorem there exists an orthonormal basis {ey, e, ..., e2,} of C*" with respect to
the usual hermitian product consisting of eigenvectors of A. Let A, Ao,..., Ao, € C
be the corresponding eigenvalues. Since A is real, A1, Ag,..., Ao, are also eigenvalues
with corresponding eigenvectors &y, €o,..., €, and since A is skew-symmetric, A1,
Ao,..., Agp € iR, It is possible to arrange this orthonormal basis so that esr = €9p_1
for all 1 < k < n. This is trivial, if A = 0. If A #% 0 and A1 # 0, we have
Aé; = M\ié; = —\1é; and e;, & are orthogonal. So, we may take Ao = —\; and
ea = &1. Inductively now, if H is the linear subspace of C?" with basis {e1, &}, then
H, H' and H are A-invariant and we can repeat this for the restriction of A on H=.

Theorem 8.5.4. (Pf(A))? = det A for every A € s0(2n,R).

Proof. Since A is skew-symmetric, it has eigenvalues
A, A = —A1, .., Aap_1, Aoy = —Agp_1 €1IR
and corresponding eigenvectors
€1,62 = €1,...,€9_1,€2y — €opn_1 € c?n

which comprise an orthonormal basis of C?". Putting

1 1
v = —(egp_1 + € and wp = —=(egp_1 —€2r), 1<k<n
k \/5( 2k—1 + €2t) k Z,\/5( 2k—1 — €2%) <k<

we get an orthonormal basis of R?®. If a; = —idop_1, then Avy = —apw; and
Awy, = apvg. This means that there exists g € O(2n,R) such that gAg~! is the
matrix with the 2 x 2 blocks

0 a1 0 ap
—a; 0)° "\—a, 0
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along the diagonal and zeros everywhere else. From Example 2.5.1 and Lemma
2.5.2, we have on the one hand

(Pf(gAg™'))? = (a1 ---an)* = det A
and on other other hand
(Pf(gAg™"))* = (P(gAg"))” = (PE(A))*(det A)? = (Pf(4))*. O
If A € su(n,C), then A = ~A" and from it we get an element Ag € so(2n,R).

Corollary 8.5.5. If A € su(n,C), then Pf(Ar) = i" det A.

Proof. Since A is normal, there exists an orthonormal basis of C" consisting of
eigenvectors of A. Thus, we may assume that A = diag(iay, ..., %a,), for some ay,...,
an € R. Since ia; corresponds to the 2 x 2 block

0 —Qf

ar 0
from Example 8.5.1 we have Pf(Ar) = (—1)"ay - - - a,, and on the other hand det A =
i"ay - - - a,. The conclusion follows now from Lemma 8.5.2. [J

8.6 The Euler class

Let £ = (E,p, M) be a smooth real vector bundle of rank n over a smooth manifold
M. A smooth inner product (,) on & induces a bilinear map

(,) : () x Q&) — A (M)

defined by (w1 ® s1,w2 ® s2) = (81, S2)w1 A wa.
A connection V on ¢ is said to be compatible with the inner product (or a metric
connection with respect to (,)) if

d(s1,s2) = (Vs1,s2) + (s1, Vsa)

for every sy, so € Q0(¢).

Let U C M be an open set over which ¢ is trivial and let {ey,...,e,} be an
orthonormal frame on U. Let A = (Ay;) be the connection form with respect to this
frame. Then,

0=dler,er) = (Y A @ejier) + (en, Y Aj®ej)
j=1 j=1

=D Ajilegien) + ) Ajlens e) = A+ Ap.
p =1

Thus, the connection form A is skew-symmetric and an easy calculation shows that
the converse is also true. More precisely, if the connection form A of V on U with
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respect to an orthonormal frame is skew-symmetric, then the restriction of V on U
is a metric connection. The curvature form FV is also skew-symmetric, since on U
it is given by the formula FV |y = dA + A A A.

We note that if {f; : j € J} is a smooth partition of unity on the base space M
and {V/ : j € J} is a family of connections on ¢, then

V=Y v

jeT

is a connection on &. Moreover, if each V7 is a metric connection with respect to
the same inner product on & for every j € J, then V is also a metric connection.
Using smooth partitions of unity one can construct connections which are com-
patible with a given inner product on . Indeed, let U/ be an open cover of M
consisting of open sets over which ¢ is trivial. For U € U we choose an orthonormal
frame {e1,...,e, } on U. On U we consider the connection VY defined by the formula

vk (Z ¢k€k> = dp(X)e
k=1 k=1

for every smooth vector field X on U. Then, VY is compatible with the inner
product. If {fyy : U € U} is a smooth partition of unity subordinated to U, then

vV=> furvY

veu

is a connection on £ compatible with the inner product.

The real vector bundle £ of rank n is called orientable if there exists an open
cover U of its base space M such that £ is trivial over each element of ¢ and for any
U,V €U such that U NV # & and there are trivializations hy, hy of € over U and
V', respectively, such that

(ho o hy') () = (z, guv (x)v)

for every x € UNV and v € R", where gyy : UNV — SO(n,R) is a smooth map.
Applying the Gram-Schmidt orthogonalization method, it is always possible to find
such an open cover with the corresponding maps gyy taking values in O(n,R). The
bundle is orientable if gy take values in the connected component of the identity
of O(n,R).

We shall assume now that the rank of ¢ is even and equal to 2n. Then, Pf(FV |¢)
is a smooth 2n-form on U, which depends on the choice of the initial orthonormal
frame on U. If we choose another orthonormal frame on U, then the curvature form
with respect to the new frame is B - (FV|y) - B~!, where B : U — O(2n,R) is some
smooth map. It follows from Lemma 8.5.2 that the Pfaffian of the curvature form
with respect to the new frame is +Pf(FV|y), assuming that U is connected. Thus,
in case ¢ is orientable, we have a well defined global smooth 2n-form Pf(FY) on M,
for which the proof of Proposition 8.4.2 works and shows that it is closed. We shall
prove in the sequel that its cohomology class does not depend on the choices of the
metric connection and the initial inner product.
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Lemma 8.6.1. Let jo, j1 : M — R x M be the inclusions with j(z) = (0,z) and
jx) = (1,x) and pr : R x M — M the projection. If go, g1 are two inner products
on & and VO a connection compatible with gy and V' a connection compatible with
g1, then there exists an inner product g on pr*€ and a connection V compatible
with g such that jig = go, j19 = g1 and jiV =V, jiV = V5L

Proof. Let {fo, f1} be smooth partition of unity subordinated to the open cover

{(—o0, %) x M, (i,—i—oo) x M}

of R x M. Then,
g = fopr*go + firr*g1
is an inner product on pr*¢ such that jjg = go and j7g = g1. Now pr*V0 is a connec-

tion which is compatible with g only on (—oo, Z) x M and pr*V! is compatible with

3 -
gon (=,+00) x M. Taking any connection V on M which is compatible with g, we

can glue these three connections using a smooth partition of unity subordinated to

the open cover

{(=00, 3) X M.(5, ) x M.(5,+00) x M)

of R x M with the required properties. [

Corollary 8.6.2. The cohomology class of PE(FV) in H?*"(M) does not depend on
the choices of the inner product and the compatible connection V on &.

Proof. Let gy, VY and g1, V! be two choices of inner products and compatible
connections on £. Applying the preceding Lemma 2.6.1 and using the same
notations, there exists an inner product g on pr*§ and a compatible connection
such that jE(FV) = FV" and j;(FV) = FV'. Hence ji(Pf(FV)) = Pf(FV") and
FH(PE(FY)) = P{(FV"). By homotopy invariance, the cohomology classes of these
two closed 2n-forms coincide. U

If ¢ = (E,p,M) ia a smooth orientable real vector bundle of rank 2n over a
smooth manifold M, then the cohomology class

e(&) = [Pf(i—:ﬂ € H*(M)

is called the Fuler class of &.

The Euler class is natural in the sense that if f : N — M is a smooth map of
smooth manifolds and £ = (F,p, M) is an smooth, orientable real vector bundle of
rank 2n over M, then

e(f*§) = f*(e(§))-
Also, if & = (F1,p1, M) and & = (Eq,p2, M) are two smooth, orientable real
vector bundles of even ranks over M, then

e(§1 @ &2) = e(&1) — e(&2).
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Both assertions are proved in the same way as the corresponding assertions for Chern
classes.

So far in this section we have considered real vector bundles. It is obvious
however that the notion of metric connection or hermitian connection can be defined
on a smooth complex vector bundle equipped with a hermitian inner product. In
the same way as in the real case, it is easy to show that the connection form A of a
hermitian connection with respect to an orthonormal local frame is skew-hermitian,
that is A = — A" .

Let £ = (E,p, M) be a smooth complex vector bundle of rank n over a smooth
manifold M. As a real vector bundle ¢ has rank 2n and is orientable, because
U(n) C SO(2n,R), expanding the entries of U(n) to 2 x 2 real blocks in the usual
way. Let h be a smooth hermitian inner product on £ and let V be a compatible
connection. The underlying real vector bundle &g inherits the real inner product Reh
and a corresponding compatible connection V®. The connection form A of V with
respect to some orthonormal local frame of £ on an open set U C M corresponds
to a connection form Ag of {g. For instance, if € is a complex line bundle, that is
n =1, then A = (iw) € A}(U;C)*! for some differential 1-form w on U and

0 —w
(0 )

In case n = 2, there are differential 1-forms w1, we and A on U such that

o z'w1 0
A= <—§ ’iWQ> ’

0 —wq Ref  Imé

w1 0 —Imé Reb

—Ref Imé 0 —Ww9
—Imé —Rel wo 0

and

Ag =

From Corollary 8.5.5 we have PE(FV") = i" det(FV).

Theorem 8.6.3. If & = (E,p, M) is a smooth complex vector bundle of rank n
over a smooth manifold M, then e(ér) = ¢, (€). In particular c,(¢) € H*(M).

Proof. We compute

1 i\ " A\ -1
P —FV ) = (2 ) det(FV) = (=) 0n(FY)=0on( —FY). O
27 27 27 27
Theorem 8.6.4. Let & = (E,p, M) is a smooth orientable real vector bundle of

rank 2n over a smooth manifold M. If there exists a nowhere vanishing smooth
section of &, then e(§) = 0.

Proof.We choose any smooth inner product on £. Normalising we may assume
that there exists a nowhere vanishing smooth section s of £ of unit length. There
is an open cover U of M consisting of open sets over which £ is trivial. Applying
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the Gram-Schmidt process on each U € U we can construct a smooth local
orthonormal frame {eq,...,e2,} such that e; = s|y. Using a smooth partition of
unity subordinated to U as in the beginning of this section, we can construct a
metric connection V on & such that Vs = 0. The connection form A of V with
respect to the orthonormal frame {ej,...,es,} on U has zeros in the first column.
The same is true for the curvature form FV|y = dA + A A A. This implies that
Pf(FV) = 0 and therefore e(¢) = 0. O

Example 8.6.5. As an illustration we shall compute the Euler class of the tangent
bundle 7'S?" of the 2n-dimensional sphere using the Levi-Civita connection V of the
standard euclidean Riemannian metric (.,.) of Example 3.3.3. As we have computed
in Example 8.1.4, the curvature in given by the formula

FYy(s) = (s,Y)X — (s, X)Y

for every X, Y, s € X(S*) = QY(TS?").

Let {v1,v2,...,v2,} be a positively oriented smooth local orthonormal frame of
TS on U = 52"\ {e,+1} and {v}, v}, ...,v5,} be its dual. For every 1 < j < 2n we
have

2n

FY 3 (07) = (Vo)X — (X,050Y =3 <<X, o) - (Voug) — (Xuy) - (Y, vk>>vk
k=1

2n
=> (W A (X, Y) - g
k=1

Therefore
v
FY¥y = (v /\v;)lgk,jng

and on U the Euler class is represented by the smooth closed 2n-form

FV 1 * * * *
Pf<§> ~ 2nnl(2m)n > (80050 Avgi) A AUy o 1) AUy
g€Son
= Grpl(anyr ULNUR A N Uy Ay

It follows that

\% | | n+1l._n
/ pe FYN (2n)! Vol(§27) — (2n)! 2" _y
g2n 27 2npl(2m)n 2npl2m)» 1-3-5---(2n—1)

which means that e(7'S?") is twice the standard generator of H2"(S?").

8.7 The Gauss-Bonnet formula

A connection V on the cotangent bundle T*M of a smooth manifold M of any
dimension n is said to be symmetric if the composition

QT M) = AN M) 5 QUT*M) = AYM) @ceuny ALM) L5 A2(M)
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coincides with the exterior derivation d. ‘
On a local chart (U;x!,...,2") of M there are smooth functions r,:U—R
such that

V(da?) ZF die* @ da!, 1<j<n,
k=1

which are traditionally called the Christoffel symbols. If V is symmetric, we have

> 1y,dak A dal = d(da?) =0
k=1

and therefore Fil = F{k forall 1 < j,k,1 <n.
More generally, for every f € C°°(M) we can compute on U that

& 0
V(df) =) <axkaxl + Zrizaf >d$k ® da'.

k=1

If V is symmetric, then the coefficient of da* ® da! is symmetric with respect to the
indices k, . The converse is also true.

A Riemannian metric on M gives rise to a natural smooth vector bundle iso-
morphism T*M =2 TM by the use of which we can transfer the inner product to
T*M. According to Theorem 3.4.3, for every Riemannian metric on M there exists
a unique symmetric connection on T*M which is compatible with the Riemannian
metric and is the Levi-Civita connection of the Riemannian metric. This can be
proved in our context alternatively as follows. It suffices to prove that for every
local chart (U;xz!,...,2") of M and every orthonormal frame {61, ...,0,} of T*M on
U there exists a unique skew-symmetric matrix (Ag;) of differential 1-forms on U
such that

del:ZAk‘l/\Hk;, 1<l <n,
k=1

because the local formulas
n
Y zzAka, 1<1<n,
k=1

define a symmetric metric connection on U which is actually defined globally on M
by uniqueness. Indeed, there are smooth functions Ay;; : U — R such that

d@j = Z Akljak A6y
k=1

If we take 1
Byj = §[Akzj + Ay — Ajir — Ajik + Aiji + Agji)

and

1
Crij = §[Aklj — A+ Ajrr — Ajie — Aiji — Arjl]
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then By, is symmetric with respect to k, [ and Cyy; is skew-symmetric with respect
to I, j. Moreover, Ay; = By + Cj; and this decomposition is unique, because if
Ay = B,;lj + C,/glj and B,’glj, Cl/elj have the same symmetry properties as By;; and
Ciij, then Dy = Byij — Byy; = Cry — Cp; s at the same time symmetric with
respect to k, [ and skew-symmetric with respect to [, j, which implies that

Dyj = Digj = —Dyjr, = —Dji, = Djgy = Dyji = —Dyyj

and therefore Dy;; = 0. It follows now that

d@j = Z Ckljé?k N
k=1

and it suffices to take

n
Akl = Z Cjklé?j, 1 < /{?,l <n.
k,l=1
Specializing to the case where M is an oriented compact Riemannian 2-manifold, let
again {01,062} be an orthonormal frame of T7*M on U. Then 6; A 05 is the restriction
to U of the Riemannian volume vol(M). The corresponding connection form of the
Levi-Civita connection is
0 w
A =

where w € AY(U). Also, we have the structure equations
dfy = —wANby, diy =wANb

and the curvature form is

0 dw

Vi _ —

FVlp=dA+ANA= (—dw 0).

Hence, Pf(FV)|y = dw, which is called the Gauss-Bonnet 2-form of M, and there
exists a unique smooth function K : M — R such that Pf(FV) = K - vol(M) which
is called the Gauss curvature of M. Then,

/M Kvol(M) = 2 /M e(T*M).

It follows from the above and Example 8.6.5 that for every Riemannian metric
on S? with Gauss curvature K of the corresponding Levi-Civita connection we have

Kvol(S?) = 277/ e(T*S?) = 4n.
S2 52
This is the Gauss-Bonnet Theorem for the 2-sphere. The Gauss-Bonnet Theorem

for the 2-torus T2 = S! x S! takes the form

Kvol(T?) = 277/ e(T*T?) =0,

T2 T2
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by Theorem 8.6.4, because T2 is parallelizable.

The main purpose of this section is the statement and proof of the Gauss-Bonnet
Theorem for every oriented compact 2-manifold. Let M be an oriented compact
Riemannian 2-manifold with Levi-Civita connection V. We shall use the above
notations. The total space T'M of the unit tangent bundle of M can be identified
with the set L of triples (z,v1,v2), where z € M and (v1,v2) is an ordered positively
oriented orthonormal basis of T, M, through the bijection f : L — T'M with
f(x,v1,v2) = (z,v1). In other words, the unit tangent bundle of M can be identified
with the frame bundle of positively oriented orthonormal frames. There is a natural
smooth action of S* on T'M defined by the diffeomorphisms Ry : T'M — T'M
with

Ry(z,v1,v2) = (x,c08 ¢ - vy +sin¢ - vy, —sing - v1 + cos ¢ - va)

for all ¢ ¢ S*.

Let U C M be an open set which is diffeomorphic to R? and let (eg,es) be an
ordered positively oriented orthonormal frame on U. Let (61, 62) be its dual frame
with respect to the Riemannian metric. If (é1,é3) is a second ordered positively
oriented orthonormal frame on U with dual frame (él,ég), there exists a smooth
function 7 : U — R such that

é1(x) = cosT(x) - e1(x) +sinT(z) - ea(x)

éo(x) = —sin7(z) - e1(x) + cos 7(x) - ea(x)
and correspondingly

01(x) = cosT(x) - O01(x) + sinT(x) - O2(x)

0y(x) = —sin7(x) - 01(x) + cos T(x) - O3(x)

for every x € U. Of course vol(M)|y = 61 A Oy = NS
If A and A are the corresponding connection forms on U and

0 w A 0 w
a=(55) 4-(5% o)

then w = w — d7, by uniqueness, because

A~ ~

d@lz—(w—dT)/\éQ, déQZ(w—dT)/\el.
On T'M we consider the differential 1-forms wy, wy defined by

(wj)(x,vl ,U2) (’U)) = <Uj ) p*($7’l}1,1}2) (’U))>

for w € T(LUI,UQ)TlM, (z,v1,v2) € T'M, j = 1,2, where {,) is the Riemannian
metric on M and p : T*M — M is the unit tangent bundle projection. It is useful
to find local expressions of wy, wy on p~Y(U). The map hy : U x S* — p~1(U)
defined by

hy(z.€?) = (z,cos ¢ - e1(x) +sin g - ex(x), —sin ¢ - e1(x) + cos ¢ - ea(x))
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is a diffeomorphism and pr = po hy : U x S' — U is the projection. It follows from
the definitions that

(hy)*wy = cos ¢ - pr*fy + sin ¢ - pr*bs

(hy)*we = —sin¢ - pr6y + cos ¢ - prrs

and therefore
(hU)*(w1 /\WQ) = p?“*((gl A 62)

or equivalently
w1 A walp-1y = p* (01 A 62) = p*(vol(M)|v).

Since U is an arbitrary open subset of M diffeomorphic to R?, it follows that
w1 Awg = p*(vol(M))

on T1M.

Lemma 8.7.1. There exists a differential 1-form o on T*M such that
(i) dw; = —a Aws and dwy = a A wy,

(ii) doa = p*(Pf(FV)) on T'M and

(ii) o is invariant under the smooth action of S* on T*M.

Proof. Using the above notations, let again U C M be an open set which is diffeo-
morphic to R?. Differentiating we see that

(hy)*(dwy) = —(priw — do) A (hy)*we, (hy)*(dwe) = (priw — do) A (hy) wy.

If hy is taken from another frame (é1,é2) on U, then

(hi' o hu)(@, ') = (2, + (x))
and so d¢ = d + dr, from which follows that
(h[_]1 o iLU)*(pr*w —do) =priw — dqg

since @ = w — d7. This means hat there exists a globally defined differential 1-form
a on T'M such that

aly-1w) = (hy!)* (pr'w = do) = p'w = (hy')" (d9)
for every open set U C M diffeomorphic to R?. Differentiating
daly-1 ) = p*(dw) = p* (PEHFY) ).
Finally, it is evident from the definitions that
(hi' o Rg o hyy)(,€'?) = (a, e (9+h))

from which follows immediately that o is invariant under the action of S*. [J
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The tangent bundle of M is actually a smooth complex line bundle over M,
because U(1) = SO(2,R). In section 9.2 we shall generalize the above construction
of a to any smooth complex line bundle over a smooth manifold.

Let now I C R be an open interval and ¢ : I — M be a smooth curve
parametrized by arclength. For the lifted smooth curve v : I — T'M defined
by v(s) = (o(s),d(s)) we have y*w; = ds and v*wy = 0. There exists a unique
smooth function x : I — R such that

*

v'a = —k(s)ds

which is called the geodesic curvature of o. Locally, on an open set U C M
diffeomorphic to R? with respect to an ordered positively oriented orthonormal
frame (e1,e2), if o(I) C U, there exists a smooth function ¢ : I — R such that
hi' (7(s)) = (c(s),€®®)) for every s € I. The smooth map e*® : I — S is the angle
between e; and ¢ and

—k(s)ds = v*a = (hy' o y)*(priw — d¢) = ¢*w — d¢
as the proof of Lemma 8.7.1 shows.

Theorem 8.7.2. (C.F. Gauss - P.O. Bonnet) If M is an oriented compact Rie-
mannian 2-manifold with Riemannian volume form vol(M) and Gauss curvature
K: M — R, then

/ K -vol(M) = 2mx(M).
M

Proof. The assertion has been proved in case M is the 2-torus T2, by Theorem
8.6.4. Let V = T2 \ D1 U Dy, where Dy, Dy C T? are two disjoint closed discs with
smooth boundary. Since T2 is parallelizable, there exists a global ordered positively
oriented orthonormal frame (e, es) on T2. If ¢; is the angle between e; and 0D;
and k; is the geodesic curvature of D;, j = 1,2, we have

/K-VOI(M):— K -vol(M) = — K-VOI(M)—/ K -vol(M)
\% T2\V D Dy

1
:—/ dw—/ dw:—/ w—/ w
D, Do 0D1 D1

=~ [ o= mends — [ (o ro(s))is

0D>

=2+ / k1(s)ds — 27 + / Ko(s)ds.
0D

0D

Suppose now that the genus of M is ¢ > 1. Then,
M:V()leU"'UVgUVngl

where Vj, V41 are closed discs with smooth boundaries OVy = Cp, 0Vyq1 = Cyy1,
and each Vj is diffeomorphic to V for 1 < j < g with 9V; = C; U C’} so that
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C% = —Cj+1 homologically, 0 < j < g. We have

g+1

/MK-vol(M) :jZ;/VjK-vol(M).

If x; denotes the geodesic curvature of C; and ﬂ;» the geodesic curvature of C]’», we
have

K -vol(M)+ | K -vol(M)
Vo Wi

= 277—/ Ko(s)ds — 47T—|—/ m(s)ds—i—/ Ky (s)ds
Co C1 C

1
=27 — 4w — / Ko(s)ds.
Cs

Similarly,

K -vol(M) + K -vol(M) =27 — 47 + / Kg(s)ds.
Vg Vo+1 Cy

For 2 < j < g — 2 we have

K -vol(M) —i—/ K - vol(M)
Vi Vit
= —4m 4+ / kj(s)ds + / kj(s)ds — 4w + / kj(s)ds + / rkj(s)ds
Cj y Cit1 1

= —4m 4+ / kj(s)ds — 4w + / K5 (s)ds.
J }+1
Consequently,

K -vol(M) = 47 — 47rg = 2wy (M). O
M

In purely topological terms the Gauss-Bonnet Theorem can be stated as follows.

Corollary 8.7.3. If M is an oriented compact 2-manifold, then

/e(T*M):X(M). O
M

8.8 The splitting principle for complex vector bundles

The notion of vector bundle is a special case of the more general notion of fibre
bundle. A fibre bundle is a quadruple (E,p, M,F) where E, M and F are
topological spaces and p : E — M is a continuous onto map such that there exists
an open cover U of M consisting of open sets U C M for each of which there
exists a homeomorphism hy : p~'(U) — U x F such that pr o hy = p, where
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pr: U x F — U is the projection. The space FE is called the total space, the space
M is the base space and F is the fibre. Each homeomorphism like hy is a local
trivialization of the bundle on U. The fibre bundle is said to be smooth if F, B
and F' are smooth manifolds and p : E — M is a smooth map. It is obvious from
the definitions that a vector bundle is fibre bundle with fibre a vector space and
local trivializations which are linear on fibres. The fibre bundle (M x F,pr, M, F)
is the trivial fibre bundle over M with fibre F.

Examples 8.8.1 (a) If ¢ = (F, p, M) is a real vector bundle of rank n equipped with
an inner product (,) and we put S(&) = {v € E : (v,v) = 1}, then (S, p|s, M, S" 1)
is a fibre bundle, which is called the corresponding sphere bundle of £. Indeed,
if U C M is an open set over which £ is trivial, then applying the Gram-Schmidt
orthogonalization process to any local frame of £ on U we obtain a local trivialization
of plg on U.

(b) Let £ = (E,p, M) be a (real or complex) vector bundle of rank n and

PE)={(z,0):ze€M and (€ P(p l(z))}

where P(p~!(z)) denotes the projective space corresponding to the vector space
p~(z). The projection ¢ : P(§) — M with ¢(z,¢) = x is a fibre bundle map. The
total space is P(£), base space M and fibre RP"~! in case ¢ is real or CP" 71 if ¢
is a complex vector bundle. This is the projective vector bundle which corresponds
to £. If the initial vector bundle £ is smooth, then its corresponding projective fibre
bundle is also smooth.

In the case of a vector bundle the total space and the base space have the same
homotopy type and actually (a copy of) the base space is a strong deformation
retract of the total space. This is not the case in general for fibre bundles. If
(E,p, M, F) is a smooth fibre bundle, then on H*(FE) one can define an exterior
multiplication

- H*(M)® H*(E) — H*(E)
by setting a - e = p*(a) — e, for a € H*(M), e € H*(E). In this way the
cohomology algebra H*(E) of the total space becomes a graded module over the
graded cohomology algebra H*(M) of the base space.

Theorem 8.8.2. (J. Leray and G. Hirsch) Let (E,p, M, F) be a smooth fibre bundle.
We assume that H*(F') is a finite dimensional vector space and that there exist ny,...,
ni € N and cohomology classes ej € H" (E), 1 < j < k, such that

{ej|p*1(a:) j = 1,2,...,](5}

is a basis of H*(p~'(x)) = H*(F) for every x € M. Then, H*(E) is the free
H*(M)-module with basis {e1,...,ex}.

Proof. Let V be an open cover of M consisting of open subsets of M over each
of which the fibre bundle is trivial. Let also U/ denote the family of all open sets
U C M such that the assertion is true for |y. By Proposition 5.4.8, it suffices to
prove the following:
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(i) o elU.

(ii) If V. € YV and U C V is an open subset of M diffeomorphic to R™, where
m = dim M, then U € U.

(iii) If Uy, Uy € U are such that Uy NUs € U, then U; UU; € U.

(iv) If {U,, : n € N} is a countable family of mutually disjoint elements of U,

e}

then | J U, €U.
n=1
The first point is trivially true as well as the second, because H*(R™ x F) &
H*(F) is a real vector space, hence a free H*(R™) = R-module. The fourth point
is also clear from the facts

H*(U Un;) = H H*(Un) and H*(Pil(U Un)) = H H*(p~'(Un))
n=1 n=1 n=1

n=1

and our assumption. The non-trivial point of the proof is (iii) which can be proved
using Mayer-Vietoris sequences. For simplicity of notation we denote £y = p~!(Uy),
By = p1(Uy) and E13 = p~1(U; NU3). Let also U = Uy UUs and Ey = p~}(U).

We have the two Mayer-Vietoris long exact sequences
e %qul(Elg)qu(EU)LHq(El) ® Hq(Eg)ﬁ e

S HY UL N Us) 2 HO(U) - HU(Uy) @ HA(Us) L -

k
IfZaj -e; =01in H*(Ey), where a; € H*(U), 1 < j <k, thena; =0,1<j <k,
j=1
because this holds in H*(E;) and H*(E»).
It remains to prove that for every e € H*(Ey ) there exist a; € H*(U), 1 < j <k,
such that e =aj-e1+---+ag-¢ in H*(Ey). If iy : Ey — Ey and iy : F5 — Ey are
the inclusions, then our assumption implies that i](e) and i3(e) can be written as

k k

ij(e) = Zajl- -e; and i5(e) = Za? - €j.

Jj=1 Jj=1

If g1 : E19 — Eq1 and g2 : E19 — Ej, it follows by exactness of the first Mayer-
Vietoris sequence that

and therefore g7 (a;) = g5(a;), 1 < j
sequence, there are a; € H*(U), 1
1 < j <k. Hence

k. By exactness of the second Mayer-Vietoris
J

| < k, such that I(a;) = (a]l,a?) for every

k
I(e—Zaj-ej):O
j=1
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k
and e — Z aj - e; € Imdé*, by exactness. Thus, it suffices to prove the assertion in
j=1
Imod*. This follows from the assumption that it holds on Fq2 and the formula

0" (a-irz(e)) = 0"(a) - e

for every a € H*(U) and e € H*(Ey ), where i12 : E19 — Ey is the inclusion. This
formula follows immediately from the formula giving the connecting homomor-
phism §* using a smooth partition of unity {f1, fo} subordinated to the open cover
{U1,Us} of U and the induced partition of unity {fi o p, f2 o p} subordinated to the
open cover {FE1, Ey} of Ey. O

Of course in the preceding Theorem 8.8.2 we could have used cohomology with
complex coefficients. We recall now that for every n € N the canonical inclu-
sion j : CP! — CP"™ with j[z0,21] = [20,21,0,...,0] induces and isomorphism
§* : H}(CP";,C) — H?(CP';C). Actually, if X generates H*(CP!;C) = C, then
(%)~ 1(X) generates the cohomology algebra of CP". If v, = (H,,p, CP") is the
tautological complex line bundle, then j*v,, = 1. Since the Chern classes are nat-
ural, from Example 8.4.4 we conclude that

7 (ei(m)) = c1(§" ) = ci(m) = =X #0

and hence ¢ (7,) = —(5*)"}(X) # 0.

Let £ = (E,p, M) be a smooth complex vector bundle of rank n + 1 and let
(P(£),q, M,CP"™) be the corresponding projective fibre bundle of Example 8.8.1(b).
There exists a smooth complex line bundle ¢ = (H, 7, P(§)), where

H={(z,l,v): (x,0) € P(§),v €L}

and 7(z,¢,v) = (x,£). In case M is a singleton this is just the tautological complex
line bundle v, over CP™. We consider any smooth hermitian inner product on
&. This induces a smooth hermitian inner product on ¢*¢ and we have a splitting
¢* ¢ = ¢ @ ¢t where the total space of ¢t is HT = {(z,£,v) : (x.£) € P(£),v € £1}.

¢E — > E

| )

P() 25 M

Let e = c1(¢) € H?(P(£);C). Since the restriction of ¢ on a fibre ¢~ () is
isomorphic to the tautological complex line bundle ~,,, we conclude that e ¢(z) 18
(minus) the generator of H?(q~!(z);C). This implies that the set of cohomology
classes

{1,e,...,e"}
in H*(P(£);C), where powers are taken with respect to the cup product, satisfies
the assumptions of Theorem 8.8.2. Thus, H*(P(£);C) is the free H*(M;C)-module
with basis {1,e,...,e"}. In particular, for every a € H*(M;C) we have

¢"(a) =q"(a) = 1=a-1€ H(P(E);C)
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and so ¢* : H*(M;C) — H*(P(£);C) is a injective.

Theorem 8.8.3. (Splitting Principle) If € = (E,p, M) is a smooth complex vector
bundle of rank n, then there exist a smooth manifold N, a proper smooth map
f: N —= M and smooth complez line bundles {; = (Ej,p;, N), 1 < j <n such that
(i) f*: H*(M;C) — H*(N;C) is injective and
(i) fE=Z6 @ @

Proof. Let (P(€),q, M,CP" 1) be the corresponding projective fibre bundle and let
¢ =(H,7,P(§)) be the smooth complex line bundle which was defined above. We
have the commutative diagrams

¢E — E gdHY) — HE
l , lp and ll . lm
PE) — M PH=) — P(¢)

and ¢}¢* is isomorphic to the direct sum of a complex line bundle and another
complex vector bundle (like ¢1). This implies a splitting

(qoq) ¢ @bl

where & = ¢ and & are complex line bundles. Moreover, the homomorphisms
¢+ H*(M;C) — H*(P(£);C) and ¢} : H*(P(£);C) — H*(P(¢1);C) are injective
and hence so is (g o q1)*.

Repeating this construction we get a finite sequence of smooth proper maps

P ™ Zp py = P()-HM
such that each ¢; induces an injective homomorphism in cohomology and
(qoquo- ;)" E=EBEB - BELBE

for 1 < j < n — 1, where &, &,..., {41 are smooth complex line bundles. Setting
f=qoqio--+gu_1 and N = P,_1 the assertion follows. [J

The combination of the preceding Theorem 8.8.3 with Theorem 8.6.3 yields
that the Chern classes of a smooth complex vector bundle are actually real.

Corollary 8.8.4. If & = (E,p,M) is a smooth complex vector bundle over a
smooth manifold M, then c(€) € H**(M) for every k € Z+. O

Corollary 8.8.5. If ¢ = (E,p, M) is a smooth complex vector bundle of rank n,
then ¢ (&) =0 for k >n. O

In particular, for the tautological complex line bundle -, over CP"™ we have
ck(vm) = 0 for k& > 1. From the Splitting Principle we obtain the following
characterization of the Chern classes.
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Theorem 8.8.6. For every smooth manifold M there exists exactly one set con-
sisting of cohomology classes c(€) € H**(M), k € ZF, for each isomorphic class of
smooth complex vector bundles & over M with the following properties:

(i) / c1(71) = =1 and co(vn) =1, ck(vn) =0 for k > 1 and for every n € N.
(i1) f* (ck( €)) = ci(f*(&)) for every smooth map f: N — M.
k

(iii) ex(§1© &) = > cj(61) — crj(&).
§=0
Proof. From what we have proved so far in this and the previous sections only
the uniqueness needs proof. Suppose that we have a set of cohomology classes cg,
k € Z*, with the properties (i), (ii) and (iii). From (i) we have immediately that
¢1(71) is the first Chern class of 7.

Let now £ = (L, p, M) be a smooth complex line bundle over M. There exists a
smooth complex vector bundle £ over M such that & & & = "+1 We consider the
smooth map f : M — CP" with f(z) = pr(L,), where pr : M x Ctl — C*Hl s
the projection. In the commutative diagram

L % Hn

]

M—L s cpr

each f |z, is a linear isomorphism for every x € M, which implies that f*(vy,) = &
and from property (ii) we have ¢1(§) = f*(ci(yn)) and c¢x(§) = 0 for & > 1.
These show that properties (i) and (ii) determine uniquely the Chern classes for
smooth complex line bundles. Using inductively property (iii), it follows that
ci(&1®---®Ey) is uniquely determined from ¢;(§;), 1 < j < k, for every finite family
&1,y €y of smooth complex line bundles. From Theorem 8.8.3 it follows immediately
that ¢ (£), k € Z* is uniquely determined for every smooth complex line bundle £. [J

The total Chern class of a smooth complex vector bundle & = (E,p, M) is by

definition
[oe)

ch EH* )

k=0
In case ¢ is a line bundle, then ¢(§) =1+ ¢1(§). U= & @ -+ D&y, where &q,..., &
are line bundles, then

n

=[]+ ea@) = onlci(&), s c1 (&)
k=1

k=0
and therefore cx (&) = ox(c1(£1), ..., c1(&,)) for every k € Z+.
Analogously, the total Chern character of £ is defined to be

[e.9]

ch(§) = chi(§) € H* (M)

k=0
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and
n

chi() = S eheley) = 3 rer (&)
=0

=0
by Proposition 8.4.5(a) and Example 8.4.4(a). Therefore,

n
ch(&) = @)
j=1
where for a € H?(M;R) we have put

a - 1 *
e :ZEakeH (M).

8.9 Pontryagin classes and applications

Let £ = (E,p, M) be a smooth complex vector bundle of rank n. Recall that from
it we derive its conjugate bundle £ and its dual bundle £* which are isomorphic.
The Chern classes of £ and £* are related as follows.

Proposition 8.9.1. If ¢ = (E,p, M) is a smooth complex vector bundle of rank n,
then cp(€*) = (=1)kc (&) for every k € Z+.

Proof. There exists a hermitian inner product on £ and a compatible connection V,
which is also a connection on . The connection form A of V with respect to an

orthonormal local frame of £ is skew-hermitian, that is A" = —A. The curvature
FY =dA + AN A is also skew-hermitian. An orthonormal local frame of ¢ is also
orthonormal for € and the corresponding connection form of V is A. Thus, the
connection form of FV on £ is FV = —(FV)T. Thus,

-2 - )}

On the other hand, for every B € C™*™ we have

det(I, — tBT) = det(I,, — tB) = i op(B)(—t)*
k=1

which means that oj,(—BT) = (—=1)*o4(B), 1 < k < n. Therefore,

0@ = | (57| = 0 on (77 ) | = (1tate). O

211 211

Let now £ = (E,p, M) be a smooth real vector bundle of rank n and let {c =
£ ®r €t be its complexification. Then,

§

> £ @R b = € O & X &,

a
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because the map f : £ ®g €& — £ @ % defined by f(v ®r z) = v ®g Z is an
isomorphism of complex vector bundles since

fi(v®g2)) = fv@r (i2)) =v Qg (—iZ) =if (v QR 2).

Consequently, (éc)* = ¢ X E®r et X & ®r et = (£)c and it follows from
Proposition 8.9.1 that

cr(éc) = ar((€)c) = ar((&)) = (=1 er(éo).

Hence ¢k (¢c) = 0, if k is odd.
The cohomology classes

(&) = (=1)Fear(éc) € HM(M), ke ZT,

are called the Pontryagin classes of the real vector bundle £. The total Pontryagin
class of ¢ is by definition

p(&) = pr(§) € H*(M).
k=0

If now £ is a smooth complex vector bundle, then the Pontryagin classes of the
underlying real vector bundle and its Chern classes satisfy certain quadratic poly-
nomial equations. To see this, let pr, = pi({r) and ¢, = cx(€). Then, ({r)c = B EF,
by Lemma 7.5.1, and so

2k

pr= (—DFen(€ @) = (~1)F Y (=1 ¢;(6) — car—y(6)-

§=0
If we consider the total classes, we have
l—=pr4+p—+(=D)"pn=0Q4c1+coa+-4cp) — (1—c1+ca—-+(=1)"¢c,).

Specifically, p1 = ¢ — 2c2, p2 = 3 — 2c1c3 + 2¢4, etc, where the powers are taken
with respect to the cup product. These polynomial equations can serve as ob-
structions for a smooth real vector bundle of even rank to admit a complex structure.

Example 8.9.2. We shall calculate the Chern classes of the tangent bundle of the
n-dimensional complex projective space CP™, which is a complex manifold and so
its tangent bundle TCP" (when CP" is considered as a real smooth 2n-manifold)
is a smooth complex vector bundle of rank n. We shall need a generalization of
the canonical atlas of CP". With the term line we mean a 1-dimensional (complex)
linear subspace of C"*1. For each line £ let g, : Hom(¢, #+) — CP™ be the map which
sends ¢ € Hom(/, /1) to its graph. The orthogonal complement ¢ is considered
with respect to the usual hermitian inner product and Hom = Hom¢. Obviously,
g¢(0) = £. For instance, if ¢ is the line which is generated by (1,0,...,0), then
¢+ = {(0,21,...,20) : 21, ..., 2z, € C} and the map which sends ¢ € Hom(/,¢*) to
#(1,0, ...,0) establishes an isomorphism Hom(¢, /) 22 C". Using this identification,
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we have gy(¢) = [1,uq,...,u,], where ¢(1,0,...,0) = (0,uq,...,u,). Similarly, if ¢ is
generated by (0, ...,0, 1,0, ...,0), using an analogous identification we have
9o(@) = [ug, ..oy 1, ooyt

where ¢((0,...,0,1,0,...,0) = (u1,...,0,...,u,). The image of gy is the set Uy of
points in CP", which as lines in C"*! are not orthogonal to £. The pair (Up, ;) is
a holomorphic chart of CP™.

Let y;- = (H,-, p~, CP") be the smooth complex vector bundle with total space

HE={(l,u) e CP" x C""! e )

and pT the obvious projection. Then, v, @ 7# s e%“ i E<1C PP e(lc. Moreover,

Hom(7y,,7;5) = TCP™. Such a vector bundle isomorphism is for instance the map
which restricted on the fibre over £ € CP"™ is the complex derivative of gy, at 0. We
recall also that Hom (7, 75,) = e(lc, since vy, is a line bundle. Now we have

TCP" @ e(lc o~ Hom(*yn,'yfl‘) @ Hom (v, ) = Hom(’yn,'yfl‘ @ v,) = Hom (v, 68“'1)
= Hom(yp, €¢ @ - - @ €¢) = Hom (7, €¢) @ - - & Hom(yp, €¢) Z v @ - B ;.
According to Proposition 8.9.1, the total Chern class of TCP™ is
n+1 n+ 1
{TCP") = (TCP" o) = o)™ = (1=ea))™* = Y- (-1F (1) caton)t
k=0
where powers are considered with respect to the cup product. Hence

e (TCP) = (~1)* (n;g 1) )t £0, 0<k<n.

Example 8.9.3. We can use the calculation of the preceding Example 8.9.2 in order
to prove that CP?" is not the boundary of a relatively compact domain with smooth
boundary in any smooth (4n+ 1)-manifold for all n € N. Suppose that there exists a
relatively compact domain with smooth boundary D in a smooth (4n 4 1)-manifold
M with 0D = CP?" and let j : CP?™ — M be the inclusion. From the existence of
collar along 0D we conclude that

TOD @ ey, = j*(TM).
Complexifying, it follows that
(TCP*Mg)c @ e¢ = j*((TM)c).
From Lemma 7.5.1 and the calculations of Example 8.9.2 we have
(TCP*™)r)c ® et = (TCP™ @ ) ® (TCP™")" @ eg)

25 @ DY © Y20 D - B Yan
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The total Chern class is

(TCP*™)r)c) = (1 = e1(y2a))" 1 — (L4 e1(720)*" ™ = (1 = (c1(720)*)*"

2n+1
= (1 <2n/: 1> (e1(720))*".

k=0
If w € A (M) represents ca,((T'M)c), then

2n+1
n

57w] = (e (TM)e)) = ean(i*(TM)e) = (~1)" ( ) (e1(r2n))?" # 0.

It follows now from Stokes’ formula that

O:/dw:/ j w # 0.
D oD

This contradiction proves the assertion.

Example 8.9.4. The non-triviality of the Chern or the Pontryagin classes can be
used as obstruction to embedding smooth manifolds into euclidean spaces. As an
illustration, we consider CP*. Let X denote the standard generator of H?(CP%).
The calculation of the preceding Example 8.9.3 gives

(((TCPYHR)e) = (1 — X?)° =1 -5X% + 10X

in the deRham cohomology algebra H*(CP*).
Suppose that CP* can be smoothly embedded in R™, where n > 9 is a positive
integer. There is a normal bundle ¢ over CP* such that

(TCPHR @ € =2 TR |cps = €f.

From Proposition 8.4.5(b) we obtain c¢(((TCP*)r)c) — c(éc) = 1 and therefore

1
= =1+ 5X? + 15X
C(&C) (1 — X2)5 + +
in H*(CP*). Since 5X2 and 15X* are non-zero in H*(CP?*) and HS8(CP?),
respectively, this implies that & must be of rank at least 4. In other words, CP*
cannot be embedded in R!.

Example 8.9.5. If ¢ = (E,p, M) is an orientable real smooth vector bundle of rank
2n, then from the definitions and Theorem 2.6.4 we have

Pa(€) = can(éc) = e((éc)r) = (@ €) = e(€)”.

Example 8.9.6. A (complex or real) vector bundle ¢ of rank n is said to be
stably trivial, if there exists k € N such that £ @ €* = €'k, For instance the
tangent bundle T'S™ of the n-sphere is stably trivial for every n € N, because
the normal bundle of S in R"t! is trivial and so T'S" & ¢! = €"t!. From



234 CHAPTER 8. CHARACTERISTIC CLASSES

Proposition 2.4.5(b) follows that the Chern classes of a stably trivial smooth com-
plex vector bundle are trivial. Similarly, the Pontryagin classes of a stably trivial
real vector bundle are trivial. In particular, the Pontryagin classes of T'S™ are trivial.

Example 8.9.7. Using characteristic classes we can prove that the 4k-dimensional
sphere S* k € N, does not admit any almost complex structure. We recall that
an almost complex structure on a smooth manifold M is a smooth vector bundle
endomorphism J : TM — TM such that J? = —id. If M admits an almost complex
structure J, then each tangent space T, M, x € M, becomes a complex vector space
and M must be even dimensional. Also, J extends to a smooth vector bundle
endomorphism of (TM)c = TM ®g €t and there exists a smooth complex vector
bundle £ over M such that (T'M)c = €D E*. Actually, € is the i-eigenspace of J and
&* is the (—i)-eigenspace of J. Note that &g = T'M.

In case M = S* the rank of ¢ is 2k and from the previous Example 8.9.6 we

have
2k

0= (=1)*pe(TS™) = con(§ @) = () — ean(€7)
=0
= con(€) + (&) = (1) o (&) + can(§) = 2c91(€) = 2e(T'S™),

by Theorem 8.6.3. Thus, e(T'S*¥) = 0, which contradicts the fact that e(7.S*) is
twice the standard generator of H**(S%), as we have calculated in Example 8.6.5.



Chapter 9

Prequantization

9.1 Classification of complex line bundles

In this section we shall describe the smooth complex line bundles over a smooth
manifold M in terms of the cohomology of M. Let & = (L,p, M) be a smooth
complex line bundle and let &/ be an open cover of M consisting of open sets U
over each of which there is a trivialization hy : p~1(U) - U x Cof £&. IfU, V €U
are such that U NV # @, there exists a smooth map gyy : UNV — C*, called
transition function, such that

(hy o h‘_,l)(x, z) = (z, guv(x)z)

for every z € UNV and z € CX, where C* = C\ {0}. It is obvious that gyr = gy,
and gyw = guvgvw, fUNV NW # @.

We can change the local trivializations hy, U € U to new ones hy on each U so
that the new corresponding transition functions take values in S and are

quv
lguv |

quv =

Indeed, sy : U — L defined by sy(z) = hl}l(:v, 1) is a smooth local section and
guvsu(xz) = sy(x) for every x € U N V. Choosing any hermitian inner product on
¢ and defining hy : p~1(U) — U x C by

: su ()

hur <27> = (z,2)
s ()]

for every z € C, we have

(hy o by )z, 2) = hy <ZL> = hy (z guv(x) _ su ) - <x Mz).

[sv (@) lguv ()] Isu(@)]] guv (z)|

On the set of isomorphism classes of complex line bundles over a given smooth
manifold M, one can define a group structure induced by the tensor product of
complex line bundles. The inverse of the isomorphism class of the complex line
bundle ¢ = (L,p, M) is represented by its dual bundle &* = &, Indeed, there
exists an open cover U of M over the elements of which ¢ is trivial such that the

235
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corresponding transitions functions gyy for U, V € U with U NV # & take values
in S'. Then, £*|y is also trivial for every U € U and the corresponding transition
functions are gyy. Since the transition functions for the tensor product £ ® £* are
guvgoy = 1, it follows that € ® £* 2 el. We shall denote by Pic® (M) the group of
smooth complex line bundles over a smooth manifold M.

If now € = (L, p, M) is a smooth complex line bundle and ¢/ is an admissible open
cover of M, then |y is trivial for every U € Y. If U, V € U are such that UNV # &
with transition function gy : U NV — S', there exists a smooth function fyy :
UNV — R such that gyy = €>™/vv | because UNV is contractible. If UNVNW # @,
then the relation gyw = guvgyvw implies that aypvw = fyw — fuw + fuv € Z,
since U NV N W is contractible, hence arcwise connected. Moreover, if U, V', W,
Y €U are such that UNV NW NY # &, then

ayvwy — aywy + ayvy — agvw = 0.

This means that a = (agyw) is a Cech 2-cocycle with respect to the open cover U
with integer coefficients and so defines a Cech cohomology class

o] € H*(U;2) = H*(M; Z),

since U is an admissible open cover of M.
If f;,y :UNV — R is another set of smooth functions such that
quv = 627TifUV _ eQﬂif{]V7
then nyy = fuv — fi;y € Z. If = (ayvw) is the corresponding Cech 2-cocycle,
we see that
aryw = ayyw + nuv — nuw + nyw.

Thus, a = @’ +0n, where n = (nyy) and d is the coboundary operator in Cech coho-
mology. Hence, the Cech class [a] does not depend on the choice of the logarithms
of the transition functions.

In the sequel we shall show that actually [a] € H?(M;Z) depends only on the
isomorphic class of the line bundle. Suppose that &' = (L', ¢, M) is a smooth complex
line bundle and h : L — L’ be a smooth isomorphism of complex vector bundles
over M. If U is an admissible open cover of M and hy are local trivializations for of
€|y and U € U with transition functions gy, then hy o h~! are local trivializations
of ¢|y with the same transition functions. Thus, it suffices to prove that if hy,
and hy;, U € U, are two sets of local trivializations with corresponding transition
functions gyy and gg;y,, then they define the same element of H?(U;7Z). The smooth
map hj; o hy : U x C— U x C is of the form

(h/U o hU)(l', Z) = (.%', BU('%')Z)
for some smooth function 8y : U — C* and for every x € U NV we have
(@, guv (2)By ()2) = (hyohy')(z, 2) = (hyyohy' ) (@, guv (2)z) = (2, By (z)guv (x)2).

Thus, fuguv = gy on UNV. Since U is contractible, there exists a smooth
function py : U — R such that Sy = €20, There exist myy € Z such that
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fovuu = f(le+MV+mUV7 where gbv = e?mifuv . If now abvw = f\l/w_f[/Jw‘i‘f(ij
then

auvw — agyw = myw — myw -+ myv
which means that a = a’ + ém, if m = (myy). Hence [a] = [d'] € H*(M;Z).
Since the transition functions of the tensor product of two complex line bundles

over M are the products of the transition functions of the line bundles, we obtain a
well defined group homomorphism

c: Pic®(M) — H*(M;Z).
Theorem 9.1.1. c is an isomorphism of abelian groups.

Proof. Let U be an admissible open cover of M and let {¢yy : U € U} be a smooth
partition of unity subordinated to /. In order to prove that c is injective, we need
to show that if £ = (L,p, M) is a smooth complex line bundle and ¢(§) = [a] = 0,
then ¢ is trivial. For this it suffices to construct a nowhere vanishing smooth global
section of . For each U € U let hy be a trivialization of &|y and let gyy be the
corresponding transition functions. Since [a] = 0, there exists o € C'(U;Z) such
that a = do, that is

fvw — fuow + fuv = avvw = ovw — ouw + ouv

on UNV NW and using the same notation as above. Since oyy, oyw, oyy € Z

and (fyw — ovw) — (fuw — ouw) + (fuv — ouy) = 0, we may assume from the
very beginning that ayyw = 0 for every U, V, W € U such that UNV NW # &.
Let

dv =Y v fuv

Veu

for U € U. Then, ¢y — ¢y = fyy for every U, V € U such that UNV # &, because
agpyvw = 0 for every U, V., W € U such that UNV NW # @. Further, if we set
Bu = €2™%U  then By = gyv Py on U N V. This implies that the formula

s(z) = hy'(z, Bu(x)), forx €U,
defines a nowhere vanishing smooth global section s : M — L, because
(hy © hy ') (2, By (2)) = (2, B ()

for € U NV. This shows that £ & e(lc.
In order to show that c is surjective, let a € C?(U;Z) be a 2-cocycle. For each
pair U, V € U with U NV # & we define the smooth function

fov =" avywiw : UNV = R.
Weu

Then,

fow—fowtfov =Y dyv(avwy — avwy +avyy) = (Z ¢Y> agvw = ayvw € Z
Yeu Yeu
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on UNV NW. If we define
gy =™V . unv — S

then gy gvw = guw on U NV NW. Since a is a 2-cocycle, taking U =V we have
aywy — oauywy +ayuy —ayyw =0 for all U, W, Y € U such that UNW NY # &,
which implies that
fov = avuyty = aypu € Z
Yeu

and therefore gyy = 1 for every U € U. There exists now a complex line bundle
over M having transition functions gyy, for U, V € U with U NV # &. For this it

suffices to take
L=JJux <c/~
Ueld

where (z, z) ~ (z, guv(z)z), if (z,2) € (UNV) x C, and take as vector bundle map
p: L — M the obvious projection. This concludes the proof. [J

9.2 Connections on complex line bundles

Let £ = (L,p, M) be a smooth complex line bundle over a smooth manifold M and
V : Q%) = AN (M;C) @coearicy °(€)

be a connection. Let U be an open cover of M consisting of open sets over each of
which £ is trivial. On each U € U there exists a nowhere vanishing smooth section
ey : U — Landif gyy : UNV — C* are the corresponding transition functions,
then gyyvey = ey on UNV.

For each U € U we have a connection form wy € A'(U;C) which by definition
satisfies Ve = wy ® ey. Thus,

guvwy ey =wy ®ey = Vey = V(guver) = dguv ® ey + guvwy @ ey
and therefore on U NV we have

_dguv
wy — Wy = .
guv

Conversely, given a set of differential 1-forms wy € AY(U;C), U € U, which
satisfies the above condition for every U, V € U with U NV # &, we can define a
connection on £ by setting

Vs =dfy ® ey + fuwu ® ey

on U, where s € Q(¢) and fy € C®(U;C) is the unique function such that s|y =
fueu. Indeed, on U NV we have gyv fiy = fu, because

fueu = slunv = fvev = fvguveu,

and therefore
V(fvey) =dfy ® ey + frwy @ ey
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d
= guvdfv @ ey + fvguvwy ® ey + fv - % ® (guvev)

= guvdfyv @ ey + fowy ® ey + fvdguv ® ey
=d(fvguv) ® ev + fuwy @ ey
= dfy ®@ ey + fuwy ® ey = V(fuev).

A connection on a smooth complex line bundle £ = (L, p, M) can be described
though a connection form on its associated principal C*-bundle (or circle bundle).
Let Lo = {v € L : v # 0}. The multiplicative group C* acts freely on Ly by scalar
multiplication and the orbit space of this action is M. Thus, F(&) = (Lo, p, M,C*)
is a fibre bundle from which £ can be recovered as follows. The multiplicative group
C* acts on Ly x C by

A (v, 2) = (Ao, A\2)

and the map f: Ly x C — L with f(v,z) = zv is constant on orbits. So we get a
smooth diffeomorphism f : Ly Xcx € — L, where Ly X¢cx C denotes the orbit space.
If g[v, z] = p(v), then (Ly Xcx C,q, M) is a smooth complex line bundle and fisa
vector bundle isomorphism.

The correspondence of F(§) = (Lg,p, M,C*) to £ is a functor F from the cate-
gory Lps of complex line bundles over M to the category of principle C*-bundles
Pur over M. In both categories the morphisms are the bundle isomorphisms over
M. Trivially, if f is a vector bundle isomorphism from £ to some complex line
bundle &', then F(f) = f|L, is a fibre bundle isomorphism.

Proposition 9.2.1. The functor F is an equivalence of categories.

Proof. We need to show that every object of Pys comes from Ly and if &, £ are
two objects of Ly, then the corresponding map

Homyg,, (€,¢") — Homp,, (F(§), F(£'))

is bijective. The first assertion has already been shown above. For the second
assertion, it is easy to see that if two principle C*-bundles over M with total spaces
Ly and Lj, are isomorphic and f : Ly — Lo is such an isomorphism, then the map
f:Loxcx C— Liyxcx C with f[v, 2] = [f(v), 2] is a vector bundle isomorphism. []

According to Proposition 9.2.1, no piece of information is lost if instead of the
smooth complex line bundle £ we consider its associated principle C*-bundle F(§).
In order to describe a connection on & in terms of F(£), we note first that the
C-valued differential 1-form

dz 1

— = 2—2d(r2) +idf = d(logr) +idf, (in polar coodinates (r,0))

z r
remains invariant under scalar multiplication with non-zero complex numbers. This
implies that there exists a unique invariant C-valued differential 1-form S, on each
fibre p~1(x)N Lg for x € M, such that if 7 : C* — p~!(2)N Lg is any C*-equivariant
smooth map, we have

dz

z

7 (Be)
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where the action of C* on itself is the scalar multiplication, because if we have two
such C*-equivariant smooth maps 71, 7o : C* — p~!(z) N Ly and X = 1, ' (r2(1)),

d d
then m5(z) = 11(Az) for every z € C*. Thus, 71 (5,) = i implies that 75 (5,) = il
z z

A connection form on F(§) is a C-valued differential 1-form a on Lo which is
invariant under the action of C* and al,-1(z)nz, = Bz for every x € M.

Let now U C M be an open set for which there exists a nowhere vanishing
smooth section s : U — Lg of £&. Let o : U x C — p~}(U) be the corresponding
parametrization o(x,z) = z-s(x), so that h = o~ ! is a trivialization of ¢|;;. Suppose
that a is a connection form on F(§). For every z € U we have

dz

*
g a’{x}XCX =

because 0|1 cx is C*-equivariant. On the other hand, for every z € C* we have
0*alyx{z} = s*a, because a is C*-invariant. Consequently,

z
oc*a=s"a+ —.
z
Let ¢t : U — Lo be another nowhere vanishing section of £ on U and 7(x, z) = z-t(z)
be the corresponding parametrization of p~!(U). There exists a unique smooth
function g : U — C* such that

-1

(07" o7)(x,2) = (2, 9(x)2)

for every x € U and z € C*. In other words, 7 = o o p, where p(z, 2z) = (z,g(x)z),
and p p
z
T*a = p*(c*a) = p*(s*a,0) + p*(0, ;) =o*a+ ?g
These remarks imply that if we choose an open cover U of M consisting of open sets
U over which there exist a trivializations hy of |y with transition functions gyy,

then
dguv

quv

(hy')*a = (hy')"a+
and therefore there exists a unique connection on £ such that Vey = (h&l)*a R ey,
for every U € U, where ey = hy;' (., 1).

Conversely, if we start with a connection V on &, using the same notation, we

put
. dz
ay = hU Wy —|— ;

on every p~1(U) N Lg. A similar computation as above gives

dgyy  dz dz

hit *ay = wy +
) guv

and thus ay = ay on p~1(U N V)N Ly. This means that we have a well defined
connection form a on F(&) such that

d
(h&l)*a =wy + ?z
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which is unique with the property wy = ef;a for every U € U.

The curvature form FV of a connection V on the smooth complex line bundle
&= (L,p,M) is a C-valued differential 2-form on M, because Hom(¢, §) is trivial.
Taking an open cover U of M as above we have

FV|U = dwy — wy AN wy = dwy.
If a is the corresponding connection form on F (), it follows immediately that

da = (p|r,)"(FY)

and FV is unique with this property, since p|z, : Lo — M is a submersion.

9.3 Hermitian connections

Let & = (L,p, M) be a smooth complex line bundle over a smooth manifold M.
Since M is paracompact, there exists a smooth hermitian inner product h on &.
Given such a hermitian inner product, we recall that a connection V on £ is called
hermitian (or the other way round h is called invariant under V) if it is compatible
with A, that is

dh(s,t) = h(Vs,t) + h(s, Vi)

for every s, t € Q0(¢), where h(0 ® s,t) = 0 - h(s,t) and h(s,0 @ t) = 0 - h(s,t) for
0 € AY(M;C).

The curvature form FV is then skew-hermitian and actually if ¢/ is an open cover
of M over each element U of which there exists a nowhere vanishing smooth section
ey : U — L and Vey = wy ® ey, we have

dh(ev,ev) = h(wy ® ey, ev) + hler,wy @ ey) = (wu +wu)h(eu, ev)
and so wy + wy = d(log h(ey, er)). Therefore,

FV + FY = dwy +dwg =0

1
on U. In other words —FV is a real closed differential 2-form on M, which

represents —cq (§).
Let hy : p~1(U) — U x C be the trivialization of ¢|;y such that ey = hy' (., 1). If
a is the connection 1-form on the associated principal C*-bundle F (&) = (Lo, p, M)

defined by V, then
. dz
aly = hyy <wU + 7>,

as we saw in the previous section and so
alu +alg = hiy(d(log (e, €}))) + d(log|=[2)) = d(log |H[?)
where |H|? : p~1(U) N Ly — [0, +00) is the smooth function defined by

|H[*(hyy (2, 2)) = h(zey (z), zeu (2)) = h(hy' (2, 2), (hy' (2, 2)).
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In other words, |H|? is the quadratic form defined by the hermitian inner product
h, which is defined everywhere on Ly. Hence

a+a=d(log|H|?), on Ly
and since L is connected, |H|? is unique with this property, up to a constant.

Proposition 9.3.1. Given a connection V on & with corresponding connection
1-form a on the associated principle C*-bundle F(§), there exists an invariant
hermitian inner product h on £ if and only if a + @ is exact. In this case, the
mvariant hermitian inner product is unique, up to a constant.

Proof. The above considerations show that only the converse needs proof. Thus,
suppose that there exists some smooth function ¥ : Ly — R such that a +a = d.
Putting ¢ = ¥ we have

d
a-+a= f, on Ly
and J .
f =a+a= h}}(wU—i-W—i- Wd(]z\2)>

on p~1(U) N Lg. If we fix a point € U and let x : C* — (0, +00) be the smooth
function defined by x(z) = ¢(hy'(z, 2)), it follows that

do, _ (=)
o) " TP

X ((huly )™
or equivalently d(log x) = d(log(|z|?)) on C*. Integrating, we conclude
log x(A2) — log x(2) = log [Az|* — log |2*
or equivalently x(\z) = |A\|?x(z) for every A € C* and z € C*. Thus,
(W) = APg(v)

for every A € C* and v € Ly.

For every u, v € p~!(z) N Lo there exists a unique A € C* such that u = \v. We
set then h(u,v) = Ap(v). If either u = 0 or v = 0, we set h(u,v) = 0. It is easy to
see now that h is a smooth hermitian inner product on &.

On U € U we have

2
d(log h(ey,er)) = ey (%) = (ef; o hi;) (wU + wy + d(||j|2 ))
B *< _ d(\212)> _ —
=pr*|wy + Wy + =wy +wu

|22

and thus

dh(ev,ey) = wuhley, ev) +@uhley,ev) = h(Vey,er) + hiey, Vey).
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Finally, if fi, fo : U — C are two smooth functions we compute
MV (fiev), faev) + h(freu, V(f2ev))

= h(df1 ® ev, faev) + h(f1Veuv, feer) + h(frev, dfs ® ev)) + h(fiev, f2Vev)
= foh(eu, eu)dfi + fifah(Veu,ev) + fih(eu,ev)dfs + fifeh(ev, Ver)
= fifah(eu,ev) + hleu, ev)d(fif2) = dh(fiey, faer). O

It is evident from the above that given a hermitian inner product A on the
complex line bundle &, then a connection V on £ is hermitian if and only if locally

wy + @y = d(log h(eu, ev))

on every U € U. If we choose unit local sections, that is h(ey,ey) = 1 on U, then
wy +wy = 0 and wy is purely imaginary. If Ly = {v € L : h(v,v) = 1}, then
(L1,p|L,, M, S') is the associated principle circle bundle to & and this is equivalent
to saying that the corresponding connection 1-form a on L; is purely imaginary.

9.4 Integer cohomology classes in degree 2

Let M be a smooth manifold and € A%(M) be a (real) closed differential 2-form.
In this section we shall be concerned with the problem of finding necessary and
sufficient conditions in order the cohomology class [2] € H?(M) to be equal to ¢;(£)
for some smooth complex line bundle & over M. We recall from Chapter 6 the
Cech-deRham isomorphism

H*(U;R) = H*(M;R) = H*(M)

in degree 2 for an admissible open cover U of M.

Since each U € U is contractible and € is closed, there exists wyy € A'(U) such
that Q|y = dwy. If U, V € U are such that U NV # &, there is a smooth function
fuv : UNV — R such that dfyy = wy —wy on U NV, because dwy = dwy on
U NV and the latter is contractible. If now W e Yf and UNV NW # &, then

dfvw — dfuw +dfyy =0, onUNVNW
and from the connectivity of U NV N W there exists ayyw € R such that

fvw — fow + fuv = apvw, onUNVNW.

It is obvious that a = (agyw) € C?(U;R) is a Cech 2-cocycle. In this way one
constructs the Cech-deRham isomorphism H?(M) = H?(U;R), which sends [©] to
[a]. Tt is well defined because if Q' is another representative of [{1], there exists
some differential 1-form 7 such that Q' = Q + dn. If f];;, are the smooth functions
corresponding to ¥, there are gy € C*°(U) such that w}; — wy = 1+ dgy and
therefore

dfiry = dfuv +dgy —dgy, onUNV,
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Thus, Byy = ff]V — fuv + gu — gv is a constant on U N V. Consequently,

agyw — avvw = Bvw — Buw + Buv, on UNVNW,

which means that o’ — a = 63, where 8 = (Byvw) € CL(U;R).

The inclusion € : Z — R induces a homomorphism €2 : H?(U;Z) — H*(U;R)
(and in any other degree). We say that the cohomology class [2] € H?(M) is integer
if there exists some admissible open cover U of M such that its corresponding Cech
class [a] € H?(U;R) under the Cech-deRham isomorphism belongs to the image of
€2, which is equivalent to fyw — fow + fuv € Z for every U, V, W € U such that
UNnvnw #£o.

Proposition 9.4.1. The Chern class c1(§) of a smooth complex line bundle
¢ = (L,p, M) over M is integer and actually c1(&) = —e?(c(€)).

Proof. Let V be any connection on £. Let U be an admissible open cover of M.
For each U € U let ey : U — L be a nowhere vanishing smooth section of £ and
corresponding transition functions gy : UNV — S'. Let also wy be the connection
form of V on U with respect to ey. Then,

d
wy —wy = gUV, onUNV

qguv

and FV|y = dwy. From Theorem 8.6.3, the Chern class

(€)= [%FV]

is real. Hence there exists a real closed differential 2-form F' € A?(M) and a C-
valued differential 1-form 1 on M such that

1
—FY = F+dn.
2mi
Since each U € U is contractible, there exists Fyy € AY(U) such that dfy = Fly. If
now gy = e2mfuv on U NV, then
L dguv

1
Fy— Fy = —(wy — -
v = Fy =gy —wr) = oo P

= dfuv

on UNV. From the constructions of the Cech-deRham isomorphism and the
isomorphism ¢ : Pic® (M) = H?(U;7Z) follows immediately that c;(¢) = —e2(c(€)).
O

The preceding Proposition 9.4.1 combined with the Splitting Principle for
complex vector bundles implies the following corollary.

Corollary 9.4.2. If £ = (E,p,M) is a smooth complex vector bundle over a
smooth manifold M, then the Chern classes c(£), k € Z, of & are integer. O
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Corollary 9.4.3. If &1 and & are two smooth complex line bundles over the same
smooth manifold, then c1(&1 ® &) = c1(&1) + ¢1(&2). O

A combination of the Splitting Principle and Proposition 9.4.1 also gives the
following important property of the total Chern character which says that it is a
ring homomorphism from the K-ring of a smooth manifold to its cohomology ring
with rational coefficients.

Corollary 9.4.4. If £ and ( are two smooth complex vector bundles over the
smooth manifold M, then ch(§{ @ () = ch(§) — ch(().

Proof. If £ has rank n and ¢ has rank m, then there are smooth complex line bundles
&, ..,60,(1y ooy G over M such that E 26 B - D&, and (=2 G D - D (. Thus,

(¢ P& ® G and

k.l

Ch(§ ® C) _ Z fk ® Cl Z eCl (€x®¢1)
k,l

k7l k)

eC1(Er)+e1(Q) — <Z €1 (Ex) > (Z ec1(Q1) > _ Ch g) — ch(C)
k,l
from Proposition 8.4.5(a) and Corollary 9.4.3. [J

The converse of Proposition 9.4.1 also holds.

Theorem 9.4.5. (B. Kostant) Let M be a smooth manifold and Q € A%(M) a real
closed differential 2-form on M. The cohomology class [Q)] is integer if and only if
27iS) is the curvature form of a hermitian connection on some smooth complex line
bundle over M.

Proof. Only the direct assertion needs proof, as the converse is Proposition 9.4.1.
So, let [©2] be integer. Using the same notation as in the beginning of this section
with respect to an admissible open cover U of M, we have

fvw — fuw + fuv €Z, onUNVNW.

Putting gy = e*™/vv, for U, V € U with UNV # @, we have gyy = g‘;(l], since
fuu € Z, and gyvgyw = guw- As in the last part of the proof of Theorem 3.1.1,
there exists a smooth complex line bundle £ = (L, p, M) with transition functions
guy with respect to . Since

L dguv

wv—wU:dev=2—m.' o

there exists a connection V on £ with curvature form 27i€). It remains to show that
there is an invariant hermitian inner product on £. We consider the hermitian inner
product h defined by

h(h[_]1 (x,21), hEl (x,29)) = 2122
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where hy is a trivialization of {|y;. This defines h globally, because |gyy| = 1. In
order to show that V is hermitian with respect to h, it suffices to check that

2miwy + 2miwy = d(log h(ey, ey))

where ey = hl}l(., 1) for every U € U. But this is trivial since both sides are equal
to zero, the left hand side of this equality being zero because wy = Q|y is real. O
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