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Some History

Dynamical Systems is the field of science that studies the evolution with
time of all kind of systems (physical, mathematical, biological,
economical,...). It has empirical roots. A prototypical problem is the study
of the motion of planets around the sun. People have studied this problem
since ancient or even prehistoric times for practical reasons such as
navigation and timekeeping. The many body problem is its mathematical
formulation. The two-body problem has been solved since the 17th
century by Kepler and Newton. In the end of the 19th century Poincaré
took up the study of the three body problem. His study is considered to
be the beginning of the modern theory of dynamical systems. Although his
work had been analyzed by top scientists, such as Birkhoff for instance, his
discovery of the phenomena which are nowdays called ”recurrence” and
”sensitive dependence on initial conditions” was ignored by the great
majority of mathematicians for almost 70 years.
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General methods

”Recurrence” and ”sensitive dependence on initial conditions” are the
main ingredients of ”Chaos”. Although chaotic dynamical systems are
completely deterministic, the most useful description of their properties
can be done using probabilities.
In general, the methods used in the study of dynamical systems are:
• Topological/geometrical (Topological and Differentiable Dynamics)
• Probabilistic (Ergodic Theory)
In both cases we often have to use methods of
• Hard Analysis
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Topological Dynamics

In this lecture I will refer to a classical problem of Topological Dynamics.
An abstract topological dynamical system is defined by the action of a
group or semigroup on a topological space X , the phase space. The
semigroup is taken to be Z, Z+, R or R+.
If V is a smooth vector field on a compact manifold, then the solutions of
the differential equation

dx

dt
= V (x)

define a smooth flow on M, that is a smooth action of the additive group
R on M. In case the manifold is not compact and the solutions are not
defined for all time, they can be reparametrized in a nice way to yield a
flow.
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Topological Equivalence

Two dynamical systems are isomorphic if they are topologically conjugate
as (semi-)group actions. In the case of flows, if we are primarily interested
in qualitative(=geometric) properies of the orbits in the long run of time,
they are preseved under the weaker topological equivalences.
A topological equivalence is a homeomorphism sending time oriented
orbits onto time oriented orbits.
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A strategy to study dynamical systems topologically

The study of compact invariant sets plays a central role in the qualitative
theory of differential equations and dynamical systems. There are basic
difficulties in this study.
• The compact invariant sets are global objects and so one needs to
develope global methods and tools for their study.
• Their structure may be extremely complicated.
• Even in the case of a simple compact invariant set, its structure may
change dramatically under small perturbations of the system.
• The structurally stable dynamical systems are not dense.
In practice, when studying a parametrized family of differential equations
one has to handle all these four problems simultaneously.
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Minimal sets

The simplest compact invariant sets are:
• fixed points and
• periodic orbits.
Periodic orbits are finite sets in the discrete time case and simple closed
curves in the case of flows. They are also the simplest kind of minimal
compact invariant sets.
An invariant set A is called minimal if it is non-empty, closed, invariant
and has no proper subset with these properties. Equivalently, every orbit
passing from a point of A is contained and is dense in A.
Minimal sets are the cornerstones of the phase portrait of a dynamical
system.

Konstantin Athanassopoulos (Univ. of Crete)(Non-)Existence of periodic orbits in dynamical systems June 3, 2014 7 / 29



The Poincaré-Bendixson Theorem

Perhaps the first famous result describing the limit behavior of the orbits
of a flow on the plane R2 (or the 2-sphere S2) is the Poincaré-Bendixson
Theorem.
Let (φt)t∈R be a continuous flow on a separable, locally compact,
metrizable space M. The positive limit set of (the orbit of) x ∈ M is the
closed, invariant set

L+(x) = {y ∈ M : φtn(x) → y for some tn → +∞}.

The orbit of x is called positively recurrent if x ∈ L+(x).

Theorem. Let (φt)t∈R be a flow on R2 (or the 2-sphere S2). If L+(x) is
compact and does not contain fixed points, then it is a periodic orbit.

In particular, every compact minimal set of a plane flow is either a fixed
point or a periodic orbit.
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The Poincaré-Bendixson Theorem on other surfaces

Question: Does the Poincaré-Bendixson Theorem hold for flows on all
surfaces, i.e 2-dimensional manifolds?

It is easy to see that it holds for flows on the real projective plane RP2,
since it is doubly covered by S2. The following theorem due to N. Markley
(Trans. Amer. Math. Soc. 135 (1969), 159-165) is much harder to prove.

Theorem. Every positively recurrent point of a flow on the Klein bottle
K 2 is either fixed or periodic.

This strengthens an old result of H. Kneser from 1924 stating that a flow
on K 2 without fixed points always has a periodic orbit (Math. Ann. 91
(1924), 135-154).
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The role of the degree of smoothness

The Poincaré-Bendixson Theorem does not hold on compact surfaces
other than S2, RP2 and K 2. However, A.J. Schwartz proved (Amer. J.
Math. 85 (1963), 453-458) the following:

Theorem. A compact minimal set of a C 2 flow on a smooth 2-manifold
M is either a fixed point, a periodic orbit or M is diffeomorphic to the
2-torus T 2 and the flow is topologically equivalent to a linear flow with
irrational slope.

The degree of smoothnesss in Schwartz’s result cannot be lowered. This
follows from work of A. Denjoy (J. Math. Pures Appl. 11 (1932),
333-375) on the dynamics of orientation preserving C 1 diffeomorphisms of
the circle, which Schwartz actually generalized.
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The mapping torus and suspensions

Counterexamples to Schwartz’s Theorem can be constructed on T 2 from
orientation preserving C 1 diffeomorphisms of the the circle S1 using the
mapping torus construction. Let f : Y → Y be a homeomorphism of the
space Y and X = [0, 1]× Y / ∼, where (1, y) ∼ (0, f (y)). The flow
(φt)t∈R on X defined by

φt [s, y ] = [t + s − n, f n(y)], for n ≤ t + s < n + 1

is called the suspension of f . Obiously, {0}×Y is a global cross section to
this flow and the return map is precisely f . So the dynamics of the
suspension are completely determined by those of f .
In case Y = S1 and f is an orientation preserving homeomorphism of S1,
then X is homeomorphic to T 2, because f is isotopic to the identity. Any
flow on T 2 without fixed points is topologically equivalent to a suspension.
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Homeomorphisms of the circle

His study of the three-body problem led H. Poincaré to search for periodic
orbits of orientation preseving homeomorphisms of S1. He found the
following existence criterion.

Theorem. An orientation preserving homeomorphism f : S1 → S1 has a
periodic orbit if and only if its rotation number ρ(f ) is rational. If ρ(f ) is
irrational, then either every orbit is dense in S1, in which case f is
topologically conjugate to the corresponding irrational rotation, or f has a
unique Cantor minimal set which is the positive and negative limit set of
every orbit.
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The Poincaré rotation number

If f : S1 → S1 be an orientation preserving homeomorphism, there is a
increasing homeomorphism F : R → R, called a lift of f , such that
f (e2πit) = e2πiF (t) for every t ∈ R. Poincaré proved the following:

Proposition. There exists a constant ρ(F ) ∈ R such that

lim
n→+∞

1

n
(F n − id) = ρ(F )

uniformly on R.

The number ρ(f ) = e2πiρ(F ) ∈ S1 does not depend on the choice of the
particular lift F of f . It is called the Poincaré rotation number of f .
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C 1 diffeomorphisms of the circle

Schwartz’s Theorem was inspired by the following theorem of A. Denjoy.

Theorem. Let f : S1 → S1 be an orientation preserving C 1

diffeomorphism with irrational rotation number. If f ′ has bounded
variation, then f is topologically conjugate to the corresponding irrational
rotation.

Denjoy also constructed examples of orientation preserving C 1

diffeomorphism with irrational rotation number having a unique Cantor
minimal set, according to Poincaré’s dichotomy, which are usually called
Denjoy C 1 diffeomorphisms. The suspension of such an example gives a
C 1 vector field on T 2 whose flow has a unique minimal 1-dimensional
continuum, that is not a simple closed curve, i.e. a periodic orbit.
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Asymptotic Cycles

The notion of Poincaré rotation number has been generalized to flows on
compact metric spaces by S. Schwartzman (Ann. of Math. 66 (1957),
270-284). For a flow on a compact manifold M and a flow invariant
probability µ the µ-asymptoric cycle is an element of H1(M; R) and
describes how a µ-average orbit winds around the holes of M. It is useful
if the phase space has sufficiently large first homology group.
Using asymptotic cycles, K. Athanassopoulos generalized the criterion of
Poincaré for the existence of periodic orbits from orientation preserving
homeomorphisms, or equivalently fixed point free flows on T 2, to flows on
arbitrary compact orientable 2-manifolds (J. reine angew. Math. 481
(1996), 207-215).
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The flow around complicated minimal sets

Since complicated non-periodic minimal sets exist, the following question
arises:

Question: How does the complexity of a compact minimal set affects the
behavior of the flow around it.

The simplest behavior occurs near a stable attractor.
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Stable attractors

Let (φt)t∈R be a continuous flow on a separable, locally compact,
metrizable space M and let A ⊂ M be a compact invariant set. The
invariant set

W +(A) = {x ∈ M : ∅ 6= L+(x) ⊂ A}

is called the region of attraction of A. If W +(A) is an open
neighbourhood of A, then A is called an attractor. A compact invariant
set A is called (positively) Lyapunov stable if every neighbourhood of A
contains a positively invariant open neighbourhood of A.
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Lyapunov functions

If A ⊂ M is a stable attractor, there exists a Lyapunov function for A.
More precisely, there exists a continuous function f : M → [0, 1] such that
(i) f −1(0) = A and f −1(1) = M \W +(A), and
(ii) f (φt(x)) < f (x) for every t > 0 and x ∈ W +(A) \ A.
If 0 < c < 1, for every x ∈ W +(A) \ A there exists a unique τ(x) ∈ R
such that f (φτ(x)(x)) = c . Actually,
τ(x) = sup{t ∈ R : φt(x) ∈ M \ f −1([0, c])}.
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The structure of the region of attraction

The flow in W +(A) can be described as follows:
(a) For every 0 < c < 1, the set f −1([0, c]) is compact and for every open
neighbourhood V of A there exists 0 < c < 1 such that f −1([0, c]) ⊂ V .
(b) If we put τ(A) = −∞, then the function τ : W +(A) → [−∞,+∞) is
continuous. Moreover, τ(φt(x)) = τ(x)− t for every t ∈ R and
x ∈ W +(A) \ A.
(c) The map h : W +(A) \ A → R× f −1(c) defined by

h(x) = (−τ(x), φτ(x)(x))

is a homeomorphism such that h(φt(x)) = (−τ(x) + t, φτ(x)(x)) for every
t ∈ R and x ∈ W +(A) \ A. In other words, h conjugates the restricted
flow on W +(A) \ A with the parallel flow on R× f −1(c).
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Uniformly unbounded Lyapunov function

Note that F : W +(A) → [0,+∞) defined by

F (x) =

{
eτ(x), if x ∈ W +(A) \ A

0, if x ∈ A

is a uniformly unbounded continuous Lyapunov function for A and
F (φt(x)) = e−tF (x) for every t ∈ R and x ∈ W +(A) \ A. Thus,
F−1([0, a]) is homeomorphic to F−1([0, b]) for every a, b > 0, because
φlog(b/a)(F

−1([0, b]) = F−1([0, a]).
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The cohomology of the region of atraction

Also F−1([0, c]) is a deformation retract of W +(A) and the inclusion
i : F−1([0, c]) ↪→ W +(A) induces an isomorphism
i∗ : H̄∗(W +(A); Z) ∼= H̄∗(F−1([0, c]); Z) in Alexander-Spanier cohomology.
Similarly, the inclusion F−1([0, a]) ↪→ F−1([0, b]) induces an isomorphism
H̄∗(F−1([0, b]); Z) ∼= H̄∗(F−1([0, a]); Z) for every 0 < a < b. From the
continuity property of the Alexander-Spanier cohomology follows that

H̄∗(A; Z) ∼= lim
→

H̄∗(F−1([0, c]); Z) ∼= H̄∗(W +(A); Z),

since A =
⋂
c>0

F−1([0, c]) and F−1([0, c]) is compact for every c > 0.

Konstantin Athanassopoulos (Univ. of Crete)(Non-)Existence of periodic orbits in dynamical systems June 3, 2014 21 / 29



Stable attractors of smooth flows

In case M is a smooth manifold and the flow is smooth, there is a smooth
Lyapunov function F for A. From the implicit function theorem follows
that F−1([0, c]) is a compact, smooth submanifold with boundary
∂F−1([0, c]) = F−1(c). Moreover, τ is smooth on W +(A) \ A.
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Minimal sets which are stable attractors

Complicated minimal sets affect to some extent the behavior of the flow
around them. An indication is the following result of G. Allaud and E.S.
Thomas (J. Differential Equations 15 (1974), 158-171).

Theorem. Let M be an orientable, smooth n-manifold carrying a smooth
flow and A ⊂ M be an almost periodic compact minimal set. If A is a
stable attractor, then A is a torus.

This is not true for minimal sets which are not almost periodic, except in
the following case, proved by K. Athanassopoulos (Topol. Methods
Nonlinear Anal. 30 (2007), 397-406).

Theorem. Let M be a locally connected, locally compact, separable,
metric space carrying a continuous flow. If a 1-dimensional, compact
minimal set A is a stable attractor, then A is a periodic orbit.

Konstantin Athanassopoulos (Univ. of Crete)(Non-)Existence of periodic orbits in dynamical systems June 3, 2014 23 / 29



Seifert’s Conjecture

For flows on 3-manifolds or of higher dimension there is no general
Poincaré-Bendixson Theorem. We are usually happy to have a result
confirming the existence of a periodic orbit. One of the very first results
was proved by H. Seifert (Proc. Amer. Math. Soc. 1 (1950), 287-302).

Theorem. If a C 1 vector field on the 3-sphere S3 is sufficiently close to
the vector field whose orbits are the fibers of the Hopf fibration, then it
has a periodic orbit.

Seifert’s Conjecture. A smooth vector field on S3 has either a fixed
point or a periodic orbit.

We know now that Seifert’s Conjecture is false.
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Counterexamples to Seifert’s conjecture

It took more than 20 years for a counterexample to Seifert’s conjecture to
be given. This was done by P. Schweitzer (Ann. of Math. 100 (1974),
396-440), who described a C 1 counterexample. Unfortunately, his example
could not be smoothed, because is was based on the Denjoy C 1

diffeomorphisms. In the mid 80s Jenny Harrison gave a C 2

counterexample (Topology 27 (1988), 249-278). In the early 90s K.
Kuperberg finally gave a smooth counterexample (Ann. of Math. 140
(1994), 723-732) and soon after jointly with G. Kuperberg a real analytic
counterexample (Ann. of Math. 144 (1996), 239-268).
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Hamiltonian Systems

A very inportant class of dynamical systems coming from classical
mechanics are Hamiltonian systems. If (M, ω) is a symplectic 2n-manifold
and H : M → R is a smooth function, the Hamiltonian vector field XH of
H is determined by the equation ω(XH , .) = dH. Obviously, XH preserves
H. This is conservation of energy. So, if c ∈ R is a regular value of H,
then H−1(c) is a (2n − 1)-dimensional submanifold of M and XH is
tangent to H−1(c).

Question: Does a Hamiltonian vector field XH have a periodic orbit on
every regular level set H−1(c)?
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Periodic orbits for Hamiltonian Systems

H. Hofer and E. Zehnder answered this question in case M = R2n with the
standard symplectic structure (Symplectic invariants and Hamiltonian
dynamics, Birkäuser, 1994).

Theorem. If H : R2n → R is a proper smooth function, then the
Hamiltonian vector field XH has a periodic orbit on H−1(c) for almost all
regular values c such that H−1(c) 6= ∅.

The word ”almost” cannot be removed. This is closely related to
Weinstein’s Conjecture.
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Weinstein’s Conjecture

Let M be an smooth oriented (2n − 1)-manifold. A contact form on M is
any smooth 1-form λ such that λ ∧ (dλ)n−1 is a positive volume element.
A contact form λ determines a unique Reeb vector field X defined by the
equations

λ(X ) = 1 and dλ(X , .) = 0.

Every orientable 3-manifold carries at least one contact form.

Weinstein’s Conjecture. If M is a closed oriented odd dimensional
manifold, then the Reeb vector field of any contact form on M must have
a periodic orbit.
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The 3-dimensional case of Weinstein’s Conjecture

The answer to Weinstein’s Conjecture is not known for odd dimensional
manifolds of dimension at least 5. Recently, it has been proved for
3-manifolds by H.C. Taubes (Geometry and Topology 11 (2007),
2117-2202).

Theorem. If M is a closed oriented 3-manifold, then the Reeb vector field
of a contact form on M has a periodic orbit.
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