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Abstract. We construct examples of volume preserving non-singularC1 vector fields on
closed orientable 3-manifolds, which have cyclic winding numbers groups with respect to
the preserved volume element, but have no periodic orbits.

1. Introduction

A great amount of work in dynamical systems has been oriented towards find-
ing conditions which guarantee the existence of periodic orbits for homeo-
morphisms and flows. The best known condition concerning orientation pre-
serving homeomorphisms of the unit circle is the rationality of the Poincaré
rotation number. A generalization to continuous flows on closed orientable
2-manifolds is given in [2], based on the notions of asymptotic cycle and
winding numbers group of a flow with respect to an invariant Borel probabil-
ity measure. The rational rotation numbers are replaced in the general case
by the cyclic winding numbers groups, i.e. winding numbers groups which
are isomorphic toZ.

In the same paper it is shown that for anyn ≥ 3 there is a smooth flow on
a closed orientablen-manifold which has no singular point or periodic orbit
and has an invariant Borel probability measure with cyclic winding numbers
group. In dimension 3 the invariant measure of the example presented in
[2] is concentrated on two invariant 2-tori. The aim of the present note is
to construct an example of a non-singular flow without periodic orbits on a
closed orientable 3-manifold, which posesses an invariant Borel probability
measure that is positive on non-empty open sets and has cyclic winding num-
bers group. Another source of motivation for constructing such an example
is the Conley-Zehnder-Franks theorem, which in our terminology says that if
a homeomorphismh of the 2-torus is homotopic to the identity, preserves a
Borel probability measure that is positive on non-empty open sets and its sus-
pension flow has cyclic winding numbers group with respect to the induced
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invariant measure, thenh has a periodic point or equivalently the suspension
flow has a periodic orbit [4]. One could ask whether this can be generalized
to any continuous flow on a closed orientable 3-manifold. More precisely,
the question is whether a continuous flow on a closed orientable 3-manifold
which preserves a Borel probability measure that is positive on non-empty
open sets with cyclic winding numbers group has a periodic orbit. Our main
result gives negative answer to this question and can be stated as follows.

Theorem 1.1. There exists a closed orientable 3-manifold with first Betti
number 3 carrying a volume preserving, non-singularC1 flow without peri-
odic orbits and with cyclic winding numbers group.

The construction is given in section 4 and is based on the technique of plug-
ging flows used in G. Kuperberg’s volume preserving counterexample to the
Seifert conjecture [5]. First we construct an example on a closed orientable
3-manifold with first Betti number 1 and then we use this to construct an-
other example on a closed orientable 3-manifold with first Betti number 3.
The latter doubly covers the former.

2. Asymptotic cycles

LetX be a compact metrizable space carrying a continuous flow(φt )t∈R. Let
tx denote the translation of the pointx ∈ X along its orbit in timet ∈ R.
For every continuous functionf : X → S1 there is a unique continuous
function g : R × X → R, called the1-cocycleof f , such thatf (tx) =
f (x) exp(2πig(t, x)) andg(t + s, x) = g(s, tx)+ g(t, x) for everyx ∈ X
and t, s ∈ R. The Ergodic Theorem of Birkhoff implies that for everyφ-
invariant Borel probability measureµ onX the limit

g∗(x) = lim
t→+∞

g(t, x)

t

existsµ-almost for everyx ∈ X. Moreover,g∗ is anµ-almost everywhere
defined measurable flow invariant function, that isg∗(tx) = g∗(x) for every
t ∈ R, wheneverg∗(x) is defined and

∫
X
g∗dµ = ∫

X
g(1, .)dµ. This integral

describes theµ-average rotation of points moving along their orbits with
respect to the projectionf . If the measureµ is ergodic, theng∗ is constant
µ-almost everywhere. In case the flow is uniquely ergodic, theng∗ is an
everywhere defined constant.

If f1, f2 : X → S1 are homotopic continuous functions with cocyclesg1,
g2, respectively, then

∫
X
g∗

1dµ = ∫
X
g∗

2dµ. Since the first Cech cohomology
group with integer coefficientšH 1(X; Z) of X is isomorphic to the group
of homotopy classes of continuous functions ofX to S1, there is a group
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homomorphismAµ : Ȟ 1(X; Z) → R defined by

Aµ[f ] =
∫
X

g(1, .)dµ

whereg is the 1-cocycle off : X → S1 and [f ] the homotopy class of
f . The homomorphismAµ was defined by S.Schwartzman in [8] and is
called theµ-asymptotic cycleof the flow. It describes how aµ-average orbit
homologically winds aroundX. The image ofAµ is called theµ-winding
numbers groupof the flowφ and will be denoted byWµ. An exposition of
the basic theory of asymptotic cycles with details is given in [1].

Examples 2.1. (a) LetC be a periodic orbit inX of prime periodT > 0 and
letµ be the uniformly distributed Borel probability measure alongC. Then,

Aµ[f ] = 1

T
deg(f |C)

for every continuous functionf : X → S1. Thus,Aµ = 0, if C is null
homologous inX or represents a torsion element in homology. Otherwise,
Wµ

∼= Z, in caseX is a compact manifold.
(b) Each continuous one-parameter group(φt )t∈R of translations of the

n-torusT n has the form

φt((x1, ..., xn) (modZn)) = (x1 + a1t, ..., xn + ant) (modZn),

for somea1, ..., an ∈ R and preserves the Haar measureµ of T n. It is
uniquely ergodic if and only ifa1, ..., an are linearly independent overQ,
by Kronecker’s theorem. The winding numbers group with respect toµ is
Wµ = a1Z + ...+ anZ.

3. Winding numbers of volume preserving flows

Let ξ be aCr vector field, 1≤ r ≤ ∞, on a connected compact smooth
n-manifoldM with flow (φt )t∈R and letµ be aφ-invariant Borel probability
measure onM. By de Rham’s theorem and the Universal Coefficient the-
orem,H 1

DR(M)
∼= H 1(M; Z) ⊗ R. So, there is a basis ofH 1

DR(M) every
element of which can be represented byf ∗(dθ/2π), wheref : M → S1 is a
smooth function anddθ/2π is the representative of the natural generator of
H 1
DR(S

1) ∼= R. We can extendAµ toH 1
DR(M) linearly in the obvious way.

It is easy to see that the 1-cocycleg : R×M → R of a smooth function
f : M → S1 is given by

g(t, x) =
∫ t

0
f ∗(

dθ

2π
)(ξ(sx))ds.
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So, by Fubini’s theorem we have

Aµ[f ] =
∫ 1

0

(∫
M

f ∗(
dθ

2π
)(ξ(tx))dµ

)
dt =

∫
M

f ∗(
dθ

2π
)(ξ)dµ.

Consequently,Aµ[α] = ∫
M
(iξα)dµ for every smooth closed 1-formα on

M, whereiξα denotes the interior product ofα with ξ .
SinceH 1(M; Z) is a finitely generated free group, so is theµ-winding

numbers groupWµ. If Wµ = 0, thenξ is said to beµ-homologically trivial.If
Wµ

∼= Z, thenWµ = λZ, for someλ > 0, andξ is said to beµ-homologically
rational. In any other caseWµ = λ(Z+α1Z+...+αkZ), for someλ > 0 and
0 < αi < 1, i = 1, 2, ..., k, such that 1, α1, ..., αk are linearly independent
overQ and 1≤ k ≤ rankH 1(M; Z)− 1.

Suppose thatM is oriented by a volume elementω and the flow ofξ
preserves volume. Then,φ∗

t ω = ω for everyt ∈ R andiξω is aCr closed
(n − 1)-form, called theflux form. The map sendingξ to its flux form is a
linear isomorphism between the space of volume preservingCr vector fields
and the space ofCr closed(n− 1)-forms. Sinceα ∧ω = 0, for every closed
1-formα, we have

0 = iξ (α ∧ ω) = (iξα)ω − α ∧ (iξω)
and therefore

Aω[α] =
∫
M

(iξα)ω =
∫
M

α ∧ (iξω).

So, if everything isC∞, the asymptotic cycleAω is the Poincaŕe dual of the
de Rham cohomology class represented by the flux formiξω.

We shall give now another description of the winding numbers of a volume
preservingC1 flow using submanifolds of codimension 1. The Pontryagin
construction shows that there is a one-to-one correspondence between the
classes inH 1(M; Z) and the framed cobordism classes of framed compact
smooth submanifolds of M of codimension 1. We shall briefly review some
aspects of interest to us. LetS be a compact, smooth submanifold ofM of
codimension 1 with trivial normal bundle and with a fixed normal orientation,
the framing. SoS is also oriented. LetN be a tubular neighbourhood ofS
in M, T : N → R × S be a trivialization compatible with the framing and
B = T −1([0, 1] × S). Let f : M → S1 be the smooth function defined by

f (x) =
{

1, if x /∈ B
exp

(
2πiχ(p(T (x)))

)
, if x ∈ B,

wherep : R × S → R is the projection andχ : R → R is a smooth
function such thatχ−1(0) = (−∞, 0],χ−1(1) = [1,+∞) andχ ′(t) > 0 for
0< t < 1. The homotopy class off does not depend on the particular choice



Volume preserving flows 41

of the tubular neighbourhood and its trivialization (see [7]) and is called the
Pontryagin class ofS with the chosen framing. It can be proved that each
element ofH 1(M; Z) is the Pontryagin class of some compact, smooth,
framed submanifold ofM of codimension 1 and two such submanifolds
define the same Pontryagin class if and only if they are framed cobordant in
M (see [7]).

If S is transverse toξ , then we have a framing defined byξ andS is a
local section to the flow. In this case the Pontryagin class coincides with the
flow class of a compact local section defined in [2] and [8].

Let σ ∈ Hn−1(S; Z) be the fundamental class ofS, that isσ is the unique
class such that ∫

σ

ψ =
∫
S

ψ for everyψ ∈ Hn−1
DR (S).

If f : M → S1 is a smooth function, which represents the Pontryagin class of
the compact, smooth, framed submanifoldS andj : S ↪→ M is the inclusion,
thenf ∗(dθ/2π) is Poincaŕe dual toj∗(σ ), that is∫

j∗(σ )
α =

∫
M

f ∗(
dθ

2π
) ∧ α

for everyC1 closed(n− 1)-form α onM. Thus, we arrive at the following.

Proposition 3.1. Let ξ be aC1 vector field on a closed orientable smooth
manifoldM whose flow preserves a volume elementω. Letf : M → S1 be a
continuous function and letS be a compact, smooth, framed submanifold ofM

of codimension 1, whose Pontryagin class is represented byf . If j : S ↪→ M

is the inclusion, then

Aω[f ] =
∫
S

j∗(iξω).

The value of the asymptotic cycleAω of ξ on the Pontryagin class of a
compact, smooth, framed submanifoldS ofM of codimension 1 is called the
flux of the flow ofξ throughS. If we reverse the framing ofS, the flux just
changes sign.

Remark 3.2.If ξ isω-homologically rational, there is someλ > 0 such that
1
λ
Aω is represented by an integral 1-cycleγ . If f : M → S1 represents the

Pontryagin class of some compact smooth, framed submanifoldS of M of
codimension 1, we have

Aω[f ] = λ

∫
γ

f ∗(
dθ

2π
) = λ(intersection number ofS with γ ).
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4. The proof of Theorem 1.1

The technique used to prove theorem 1.1 consists of inserting measured plugs
constructed in [5] into other flows. The reader is refered to [6] and [5] for
detailed background on the technique of plugging flows. According to the
first of the two main constructions described in [5], there exists a measured,
integrally Dehn twistedC∞ plugD with two periodic orbits. More precisely,
D is supported on the solid torus [1, 3]×S1×[−1, 1], with base [1, 3]×S1, is
divergenceless with respect todr∧dθ∧dz anda(m) = m−l homologically,
wherea is the attaching map,m is the meridian andl is the longitude.

On the 3-torusT 3 we consider the uniquely ergodic flow generated by
the one-parameter subgroup with slopesa1, a2 anda3, which are linearly
independent overQ. The Poincaŕe dual of the 2-torusS = S1 × S1 × {1}
is the element ofH 1(T 3; Z) represented by the projection onto the third
factor. So, the flux of the flow throughS is a3. The simple closed curves
γ1 = S1 × {1} × {i} andγ2 = {1} × S1 × {−i} are disjoint, tranverse to the
flow and represent the first two generators ofH1(T

3; Z) ∼= Z ⊕ Z ⊕ Z.
The transversality ofγ1 andγ2 to the flow guarantees that there exist in-

sertion maps of copies ofD into the flow onT 3. Plugging in two (disjoint)
copies ofD using these insertion maps, we get a volume preservingC∞ flow
with exactly four periodic orbits on a closed orientable 3-manifoldM. Topo-
logically,M has been obtained by performing surgery alongγ1 andγ2. Since
γ1 andγ2 generate direct summands ofH1(T

3; Z), we haveH1(M; Z) ∼= Z
andH 1(M; Z) ∼= Z (see [3], Theorem IV.2.13). Of course all these can be
done far away from the 2-torusS, which will still be embedded inM. Note
also that the generator ofH1(M; Z) is represented by an integral 1-cycle
whose intersection number withS is 1. It follows by Poincaŕe duality that
H 1(M; Z) is generated by the Pontryagin class ofS in M. The flow and
the volume element in a sufficiently small tubular neighbourhood ofS in M
have not changed (see section 2.1 in [5]) and the new flux of the flow onM

throughS equals the old one, i.e.a3, by Proposition 3.1. Hence the flow is
homologically rational.

We use now the measuredC1 semi-plug constructed in paragraph 4.3 of [5]
in the same way as in Schweitzer’s counterexample to the Seifert conjecture,
in order to break the four periodic orbits. In doing this, the topology of
M is unchanged. More precisely, there exists a measuredC1 semi-plugE
supported onT 2 × [−1, 1], with baseT 2 and without periodic orbits, which
on the levelT 2 × {0} has a minimal setX× {0}, homeomorphic to a Denjoy
continuum. An orbit passing through a point of(T 2\X)×{0} is an unknotted
segment with two endpoints onT 2 × {−1} ∪ T 2 × {1}. The mirror image
construction applied toE yields a measuredC1 plugF without periodic orbits
supported onT 2 × [−1, 1] with baseT 2. SinceT 2 is closed, it cannot beC1

embedded intoR3 transversely to the vertical lines, and soF is not insertible.
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However, ifN is a sufficiently small invariant tubular neighbourhood of an
unknotted orbit ofF with two endpoints as above, the restrictionR of F to
T 2 × [−1, 1] \ intN is an untwisted measuredC1 plug with base a 2-torus
minus the interior of a disc and is insertible. Taking now four disjoint flow
boxes inM around points of the four periodic orbits and not intersectingS, we
plug in copies ofR to break the periodic orbits. Thus, we get a non-singular,
volume preservingC1 vector fieldζ without periodic orbits onM. The flux
of ζ throughS is againa3, for the same reasons as before, and therefore the
flow is again homologically rational.

FromM we can also construct a closed oriented 3-manifoldP having first
Betti number 3, with a volume element� and carrying a�-homologically
rational volume preserving non-singularC1 vector fieldξ without periodic
orbits. Since the 2-torusS is transverse toζ in M, there existsε > 0 such
thatB = [−ε, ε]S is a tubular neighbourhood ofS in M. If N = M \ intB,
on the disjoint unionN × {0} ∪ N × {1} consider the equivalence relation
(εx, 0) ∼ ((−ε)x,1) and(εx, 1) ∼ ((−ε)x,0). The quotient space defined
by ∼ is a closed orientable 3-manifoldP . In other words,P is obtained by
doublingN interchanging its two boundary components. Note that there is
a fixed point free involutionh : P → P whose orbit space is diffeomorphic
toM. Thus, there is a two-sheeted covering mapq : P → M. The volume
elementω and the vector fieldζ onM constructed above can be uniquely
lifted to the volume element� = q∗ω and to anh-invariant, non-singularC1

vector fieldξ on P which preserves�. By construction,ξ has no periodic
orbit, sinceζ has no periodic orbit.

Using a Mayer–Vietoris exact sequence and Poincaré–Lefschetz duality
we find thatH1(P ; Z) ∼= Z3 andH 1(P ; Z) ∼= Z3. The two boundary compo-
nents ofN correspond to two framed cobordant embedded copies ofS in P ,
which are mapped to each other byh and are transverse toξ . Let them be de-
noted by6 andh(6). Their Pontryagin classes inH 1(P ; Z) coincide. From
the homology exact sequence of the pair(P,6) and Poincaŕe–Lefschetz
duality we obtain the split short exact sequence

0 → H2(6; Z)
δ−→H 1(P ; Z)

j∗
−→H 1(6; Z) → 0,

wherej : 6 ↪→ P is the inclusion andδ sends the fundamental class of6
to its Pontryagin class inP , with respect to the framing defined byξ . This
means that if3 and0 are any two framed closed surfaces inP that intersect
6 transversely, such that3 ∩6 is (homologous in6 to) the longitude of6
and0 ∩ 6 is (homologous in6 to) the meridian of6, then the Pontryagin
classes of6,3 and0 form a basis ofH 1(P ; Z).

Recalling the construction ofM by surgery inT 3, we observe that there
exist two framed double toriL andG inM that intersectS transveresly, and
such thatL∩S consists of two disjoint longitudes ofS andG∩S consists of
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two disjoint meridians. Following the construction ofP we see thatL andG
are lifted inP to framed closed surfaces3 and0, respectively, that intersect
6 transversely, and such that3∩6 consists of two disjoint longitudes of6
and0 ∩6 consists of two disjoint meridians. By construction of the volume
element� and the vector fieldξ on P , if the element [f ] ∈ H 1(P ; Z)
corresponds via the above splitting to the homotopy class of the projection
onto the longitude on6, then

A�[f ] = 1

2
(flux of ξ through0) = flux of ζ throughG,

which is an integer multiple ofa3. Similarly if [f ] corresponds to the homo-
topy class of the projection onto the meridian on6. Since obviously the flux
of ξ through6 is againa3, this shows thatξ is�-homologically rational.
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