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Abstract. Using the notion of rotation set for homomorphisms of compact manifolds, we define
the rotation homomorphism of a connected compact orientable Riemannian manifold and apply it
to prove that the dimension of the isometry group of a connected compact orientable Riemannian 3-
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same is true under the additional assumption that the fundamental cohomology class of the manifold
is a cup product of integral one-dimensional classes.
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1. Introduction

A great amount of work in dynamical systems has been oriented towards the prob-
lem of finding conditions which guarantee the existence of periodic orbits for
homeomorphisms and flows. The best known condition concerning orientation pre-
serving homeomorphisms of the unit circle is the rationality of the Poincaré rota-
tion number. A generalization to continuous flows on closed orientable 2-manifolds
is given in [2]. An analogous result for 2-torus homeomorphisms is the Conley–
Zehnder–Franks theorem which says that if a homeomorphismh of the 2-torus is
homotopic to the identity, preserves a Borel probability measureν that is positive
on nonempty open sets and has a lift withν-mean translation zero, thenh has a
fixed point (see [4] and [5]).

In this paper we clarify first in Section 3 the generalization of the notion of
rotation number given in [8] using the asymptotic cycles of S. Schwartzman which
are reviewed in Section 2. Theν-rotation number map of a homeomorphismh of
a connected compact manifoldM, which is homotopic to the identity, with respect
to anh-invariant Borel probability measureν can be viewed as an element of the
groupH1(M;R)/H1(M;Z), which is a torus with respect to the weak topology. In
the case of then-torusT n, it is represented by theν-mean translation vector of a
lift of h, with respect to the natural basis ofH1(T

n;R). In Section 4 we prove
that theν-rotation number map of an isometry of a connected compact metric
space is independent of the invariant measureν and derive useful corollaries. The
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2 KONSTANTIN ATHANASSOPOULOS

connectedness is here essential. This allows us to define the rotation homomor-
phism for a connected compact orientable Riemannian manifoldM, which is a
continuous homomorphismR: I (M) → H1(M;R)/H1(M;Z), whereI (M) is
the path component of the identity of the group of isometries ofM. The rotation
homomorphism is a tool to finding relations between the isometry group ofM and
its homology, possibly under additional assumptions. One such relation is found
in Section 5 where we prove that the kernel of the rotation homomorphism of a
connected compact orientable Riemannian 3-manifoldM without conjugate points
is a finite group and therefore dimI (M) 6 rankH1(M;Z). In arbitrary dimensions
the same is true under the additional assumption that the fundamental cohomology
class ofM is a cup product of integral one-dimensional classes.

2. Asymptotic Cycles

Let X be a compact metrizable space carrying a continuous flow(φt)t∈R. Let tx
denote the translation of the pointx ∈ X along its orbit in timet ∈ R. For every
continuous functionf :X → S1 there is a continuous functiong: R×X → R,
called the1-cocycleof f such thatf (tx) = f (x)exp(2πig(t, x)) andg(t+s, x) =
g(s, tx)+ g(t, x) for everyx ∈ X andt, s ∈ R. The Ergodic Theorem of Birkhoff
implies that for everyφ-invariant Borel probability measureµ onX the limit

g∗(x) = lim
t→+∞

g(t, x)

t

existsµ-almost for everyx ∈ X and
∫
X
g∗ dµ = ∫

X
g(1, .)dµ. This integral

describes theµ-average rotation of points moving along their orbits with respect to
the projectionf . Moreover, ifg∗(x) exists, then

g∗(x) = 1

t
lim

n→+∞
1

n

n−1∑
k=0

g(t, (φt )
k(x))

for everyt > 0. So,
∫
X
g∗ dµ = 1

t

∫
X
g(t, .)dµ.

The cocycle property ofg implies thatg∗ is anµ-almost everywhere defined
measurable flow invariant function, that isg∗(tx) = g∗(x) for every t ∈ R,
wheneverg∗(x) is defined. So, if the measureµ is ergodic, theng∗ is constant
µ-almost everywhere. In case the flow is uniquely ergodic andµ is the unique
φ-invariant Borel probability measure, theng∗ is an everywhere defined constant,
namely

∫
X
g(1, .)dµ.

If f1, f2:X → S1 are homotopic continuous functions with cocyclesg1, g2,
respectively, then

∫
X
g∗1 dµ = ∫

X
g∗2 dµ. Since the firstČech cohomology group

with integer coefficientsȞ 1(X;Z) of X is isomorphic to the group of homo-
topy classes of continuous functions ofX to S1, there is a group homomorphism
Aµ: Ȟ 1(X;Z)→ R defined by

Aµ[f ] =
∫
X

g(1, .)dµ,

geom1578.tex; 5/08/1996; 7:11; p.2



ROTATION NUMBERS AND ISOMETRIES 3

whereg is the 1-cocycle off :X→ S1 and[f ] the homotopy class off .The homo-
morphismAµ was defined by S. Schwartzman [9] and is called theµ-asymptotic
cycleof the flow. It describes how aµ-average orbit winds aroundX. The image
of Aµ is called theµ-winding numbers groupof the flowφ and will be denoted by
Wµ. An exposition of the basic theory of asymptotic cycles with details is given in
[1].

EXAMPLES 2.1. (a) LetC be a periodic orbit inX of prime periodT > 0 and let
µ be the uniformly distributed Borel probability measure alongC. Then,

Aµ[f ] = 1

T
deg(f | C)

for every continuous functionf :X→ S1. Thus,Aµ = 0, if C is null homologous
inX. Suppose now thatX = S1×S1 the 2-torus and the flow has no singular point.
ThenC is not null homologous. This means that ifl is the longitude andm is the
meridian, thenC is homotopic tola ∗ mb for somea, b ∈ Z not both zero. Letp
andq be the projections onto the longitude and the meridian respectively. Every
continuous functionf : S1×S1→ S1 is homotopic topκqλ for someκ, λ ∈ Z and
we can compute

Aµ[f ] = 1

T
deg(pκqλ | la ∗mb) = 1

T
(κa + λb).

Sincea, b are not both zero, we haveWµ
∼= Z.

(b) Each continuous one-parameter group(φt )t∈R of translations of then-torus
T n has the form

φt ((x1, ..., xn)(modZn)) = (x1+ a1t, ..., xn + ant)(modZn),

for somea1, . . . , an ∈ R and preserves the Haar measureµ of T n. It is uniquely
ergodic if and only ifa1, . . . , an are linearly independent overQ, by Kronecker’s
theorem. The winding numbers group with respect toµ isWµ = a1Z+ · · · + anZ.

The following formula is often useful in the calculation of winding numbers
and is proved using Fubini’s theorem (see [1], Lemma 5.2).

LEMMA 2.2. Letµ be aφ-invariant Borel probability measure onX, f :X→ S1

a continuous function with1-cocycleg andA ⊂ X be a closed set withµ(A) = 0.
We make the following assumptions

(a) The time derivativeg′(0, x) exists for everyx ∈ X \ A and is continuous
and bounded onX \A.

(b) For everyx ∈ X the set of timest ∈ R such thattx ∈ A is discrete.
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4 KONSTANTIN ATHANASSOPOULOS

Then,

Aµ[f ] =
∫
X\A

g′(0, x)dµ.

Let ξ be a smooth vector field on a connected compact smoothn-manifoldX
with flow (φt )t∈R and letµ be aφ-invariant Borel probability measure onX. By de
Rham’s theorem and the Universal Coefficient theorem,H 1

DR(X)
∼= H 1(X;Z)⊗R.

So, there is a basis ofH 1
DR(X) every element of which can be represented by

f ∗(dθ/2π), wheref :X → S1 is a smooth function and dθ/2π is the represen-
tative of the natural generator ofH 1

DR(S
1) ∼= R. We can extendAµ onH 1

DR(X)

linearly in the obvious way.
The 1-cocycleg: R×X→ R of a smooth functionf :X→ S1 is given by

g(t, x) =
∫ t

0
f ∗
(

dθ

2π

)
(ξ(sx))ds.

So, for everyx ∈ X we have

g′(0, x) = f ∗
(

dθ

2π

)
(ξ(x)).

It follows from Lemma 2.2 that

Aµ[f ] =
∫
X

f ∗
(

dθ

2π

)
(ξ)dµ.

Consequently,Aµ[α] =
∫
X
(iξα)dµ for every closed 1-formα onX.

SinceH 1(X;Z) is a finitely generated free group, so is theµ-winding numbers
groupWµ. If Wµ = 0, thenξ is said to beµ-homologically trivial. If Wµ

∼= Z,
thenWµ = λZ, for someλ > 0, andξ is said to beµ-homologically rational.In
any other caseWµ = λ(Z + α1Z + · · · + αkZ), for someλ > 0 and 0< αi < 1,
i = 1,2, . . . , k, such that 1, α1, . . . , αk are linearly independent overQ and 16
k 6 rankH 1(X;Z)− 1.

Suppose thatX is oriented by a volume elementω and the flow ofξ preserves
volume. Then,φ∗t ω = ω for everyt ∈ R andiξω is a closed(n − 1)-form, called
theflux form. Sinceα ∧ ω = 0, for every closed 1-formα, we have

0= iξ (α ∧ ω) = (iξα)ω− α ∧ (iξω)

and therefore

Aω[α] =
∫
X

(iξα)ω =
∫
X

α ∧ (iξω).
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ROTATION NUMBERS AND ISOMETRIES 5

This means that the asymptotic cycleAω is the Poincare dual of the de Rham
cohomology class represented by the flux formiξω.

3. Rotation Number Maps and Rotation Sets of Homeomorphisms

The suspensions of homeomorphisms is a class of flows whose winding numbers
groups can be computed in terms of initial data. LetY be a compact metrizable
space and leth:Y → Y be a homomorphism. On[0,1] × Y we consider the
equivalence relation(1, x) ∼ (0, h(x)), x ∈ Y . The quotient spaceX = [0,1] ×
Y/ ∼ is compact metrizable and is called themapping torusof h. Let [s, x] denote
the class of(s, x) ∈ [0,1] × Y . The flow onX defined by

t[s, x] = [t + s − n, hn(x)]

if n 6 t + s < n+ 1, is called thesuspensionof h.
If ν is anh-invariant Borel probability measure onY andλ is the Lebesgue

measure on[0,1], then the product measureλ × ν induces a Borel probability
measure onX which is invariant by the suspension ofh. It is easy to see that the
converse is true. That is, every invariant by the suspension ofh Borel probability
measure onX is of this form.

In order to compute the winding numbers groups of the suspension ofh we
need to know the relation between the integral firstČech cohomology groups of
Y andX. Let C(Y,Z) be the group of integer valued continuous functions onY .
Let γ :C(Y,Z)→ Ȟ 1(X;Z) be defined byγ (ψ) = [f ], wheref :X → S1 is the
continuous function defined byf [t, x] = exp(2πitψ(x)) and j∗: Ȟ 1(X;Z) →
Ȟ 1(Y ;Z) be the homomorphism induced by the inclusionj :Y → X with j (x) =
[0, x]. Then one can easily verify that the sequence

C(Y,Z)
h∗−id−→C(Y,Z) γ−→Ȟ 1(X;Z) j∗−→Ȟ 1(Y ;Z)h∗−id−→Ȟ 1(Y ;Z)

is exact.
If now ν is anh-invariant Borel probability measure onY andµ is the corre-

sponding invariant measure onX, then

Wµ =
{∫

Y

ψ dν : ψ ∈ Log(Y, h)

}
where Log(Y, h) is the set of continuous functionsψ :Y → R satisfyingf ◦ h =
f exp(2πiψ) for some continuous functionf :Y → S1 [1] or [7], Appendix.

If Y is in addition connected, thenWµ can also be described through the rotation
number map ofh with respect toν. Let f :Y → S1 be a continuous function
such that[f ] ∈ Ker(h∗ − id). There is a continuous functiong:Y → R such
thatf ◦h = f exp(2πig) and any two such functions differ by an integer. One can
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6 KONSTANTIN ATHANASSOPOULOS

easily see that there is a well defined group homomorphismRν:Ker(h∗− id)→ S1

with

Rν[f ] = exp
(
2πi

∫
Y

g dν
)

called theν-rotation number mapof h. The subgroup ImRν of S1 is called the
ν-rotation numbers groupof h. It is clear that we have a commutative diagram

Ȟ 1(X;Z) Aµ
- R

Ker(h∗ − id)

j∗

?

Rν
- S1
?

exp

and thereforeWµ = exp−1(ImRν). Thus we arrive at the following.

PROPOSITION 3.1.LetY be a connected, compact, metrizable space andh:Y →
Y a homeomorphism. Letµ be an invariant by the suspension ofh Borel probabil-
ity measure on the mapping torusX of h corresponding to theh-invariant Borel
probability measureν onY .

(i) If the ν-rotation numbers group ofh is trivial or is a finite cyclic subgroup
of S1, thenWµ

∼= Z.
(ii) If j∗ has a right inverse, thenRν ∈ ImF , where

F :Hom(Ker(h∗ − id),R)→ Hom(Ker(h∗ − id), S1)

is the homomorphism defined byF(α) = exp(2πiα).

So, if the homeomorphismh:Y → Y is homotopic to the identity anďH 1(Y ;Z)
is free, thenRν can be considered an element of Hom(Ȟ 1(Y ;Z),R)/Hom(Ȟ 1

(Y ;Z),Z), since KerF = Hom(Ȟ 1(Y ;Z),Z), whereF is the homomorphism of
Proposition 3.1.

If Y is a connected compact manifold, then Hom(Ȟ 1(Y ;Z),R)/Hom(Ȟ 1

(Y ;Z),Z) is isomorphic toH1(Y ;R)/H1(Y ;Z), by the Universal Coefficient The-
orems (see [11]). Thus for anyh-invariant Borel probability measureν on Y , the
rotation number mapRν can be considered as an element ofH1(Y ;R)/H1(Y ;Z).
A representative ofRν in H1(Y ;R) isAµ ◦ r, wherer is a right inverse ofj∗. The
setρ(h) = {Rν: ν ∈Mh(Y )} is called therotation setof h, whereMh(Y ) denotes
the set ofh-invariant Borel probability measures onY and is weakly compact in
H1(Y ;R)/H1(Y ;Z).
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ROTATION NUMBERS AND ISOMETRIES 7

EXAMPLE 3.2. Leth: T n→ T n be a homeomorphism of then-torus homotopic to
the identity. Ifpi: T n→ S1 is the projection onto theith factor, 16 i 6 n, then the
homotopy classes[p1], ..., [pn] form a basis ofH 1(T n;Z). Let ν be ah-invariant
Borel probability measure andµ the corresponding measure that is invariant by the
suspension ofh. ThenRν is represented by the vector

(Aµ(r[p1]), . . . , Aµ(r[pn]))
with respect to the dual basis ofH1(T

n;R).
Let h̃:Rn → Rn be a lift of h andψ : T n → Rn be the continuous function

defined byψ(x) = h̃(y)− y, wherey ∈ p−1(x) andp:Rn→ T n is the canonical
covering projection. Then,

(Aµ(r[p1]), . . . , Aµ(r[pn])) =
∫
T n
ψ dν (modZn).

That is,Rν is represented by theν-mean translation vector ofh. In caseν is ergodic,
the Ergodic Theorem of Birkhoff implies that∫

T n
ψ dν = lim

k→+∞
h̃k(y)− y

k

p−1ν-almost for everyy ∈ [0,1)n.
EXAMPLE 3.3. Let(φt)t∈R be a continuous flow on a compact metrizable space
X andµ a φ-invariant Borel probability measure onX. If Rtµ denotes the rota-
tion number map of the homeomorphismφt , thenRtµ = exp(2πitAµ), for every
t > 0. Indeed, for every continuous functionf :X → S1 we havef ◦ φt =
f exp(2πig(t, .)), whereg is the 1-cocycle off with respect to the flow. Thus,

Rtµ[f ] = exp

(
2πi

∫
X

g(t, .)dµ

)
= exp

(
2πit

∫
X

g∗ dµ

)
= exp(2πitAµ[f ]).

4. Isometric Systems

LetX be a compact metrizable space andh:X → X be a homeomorphism. From
any compatible metricd of X, one can define a new metricd∗ by

d∗(x, y) = sup{d(hn(x), hn(y)): n ∈ Z}
for x, y ∈ X, which defines a finer topology onX. Clearly h is a d∗-isometry.
The metricd∗ is compatible with the topology ofX if and only if {hn:n ∈ Z} is a
d-equicontinuous family. Similar considerations hold for continuous flows.
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8 KONSTANTIN ATHANASSOPOULOS

A homeomorphismh:X→ X is calledisometricif there is a compatible metric
d of X such thath is ad-isometry. Analogously, a continuous flow(φt )t∈R onX
is calledisometricif there is a compatible metricd of X such thatφt becomes a
d-isometry for everyt ∈ R.

The isometric homeomorphisms (and flows) satisfy a strong form of the Ergodic
Theorem of Birkhoff. More precisely, ifh:X → X is an isometric homeomor-
phism, then for every continuous functiong:X→ R there is a continuous function
g∗:X→ R such that

g∗ = lim
n→+∞

1

n

n−1∑
k=0

g ◦ hk

uniformly onX (see [6], Theorem 2.6).

THEOREM 4.1.Let X be a compact metrizable space andh:X → X be an
isometric homeomorphism. Iff :X→ S1 is a continuous function for which there
is a continuous functiong:X → R such thatf ◦ h = f exp(2πig), theng∗ is a
locally constant function.

Proof. Let d be a compatible metric ofX such thath is a d-isometry and let
0< ε < 1/3. By uniform continuity, there is aδ > 0 such that

|f (x)− f (y)| < ε

3
and |g(x)− g(y)| < ε

3
,

wheneverx, y ∈ X andd(x, y) < δ. So for everyn ∈ N we have|g(hn(x)) −
g(hn(y))| < ε/3 and∣∣∣∣f (x)f (y)

− exp

(
2πi

n−1∑
k=0

g(hk(y))− g(hk(x))
)∣∣∣∣ = |f (hn(x))− f (hn(y))| < ε

3
.

It follows that∣∣∣∣1− exp

(
2πi

n−1∑
k=0

g(hk(x))− g(hk(y))
)∣∣∣∣ < 2ε

3

and consequently there areλn ∈ Z such that∣∣∣∣λn − n−1∑
k=0

g(hk(x))− g(hk(y))
∣∣∣∣ < 4ε

3

for everyn ∈ N. From this we conclude that

λn+1− 4ε

3
<

n∑
k=0

g(hk(x))− g(hk(y))

<
4ε

3
+ λn + g(hn(x))− g(hn(y)) < λn + 5ε

3
,
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ROTATION NUMBERS AND ISOMETRIES 9

that isλn+1 − λn < 3ε and similarlyλn − λn+1 < 3ε. Henceλn = λ1 for every
n ∈ N. Dividing now byn and taking the limit forn → +∞ we have|g∗(x) −
g∗(y)| = 0 for everyx, y ∈ X with d(x, y) < δ. This shows thatg∗ is locally
constant.

COROLLARY 4.2.LetX be a connected compact metrizable space andh:X →
X be an isometric homeomorphism. If[f ] ∈ Ker(h∗ − id) and g:X → R is a
continuous function such thatf ◦h = f exp(2πig), thenRν[f ] = exp(2πig∗) for
everyν ∈Mh(X). Thus,Rν is independent ofν. In particular, the rotation setρ(h)
is a point, in caseh is homotopic to the identity.

COROLLARY 4.3.LetX be a connected compact metrizable space andh:X→ X

be an isometric homeomorphism. Ifh has a periodic point of periodq, the rotation
numbers group ofh is a subgroup of theqth roots of unity.

Proof. Let x0 be a periodic point ofh of periodq. Note that the rotation num-
ber map ofhq is Rq , whereR is the rotation number map ofh. If f :X → S1

andg:X → R are continuous functions such thatf ◦ hq = f exp(2πig), then
g(x0) ∈ Z. Obviously,g∗ = g(x0), sincehq fixes x0. So we have(R[f ])q =
exp(2πig∗) = 1.

Similar results hold for continuous flows.

THEOREM 4.4.LetX be a connected compact metrizable space and(φt )t∈R be a
continuous flow onX. If the flow is isometric, all its asymptotic cycles coincide.

Proof.Letµ be aφ-invariant Borel probability measure onX and letf :X→ S1

be a continuous function with 1-cocycleg. Then

g∗(x) = lim
n→+∞

g(t, x)

t
= lim

n→+∞
1

n

n−1∑
k=0

g(1, (φ1)
k(x)),

uniformly onX. Sinceφ1 is an isometric homeomorphism andf ◦φ1 = f exp(2πig
(1, .)), by Theorem 4.1,g∗ is constant. HenceAµ[f ] = g∗.
COROLLARY 4.5.LetX be a connected compact metrizable space and(φt)t∈R be
an isometric flow onX. If there is a nonnull homologous periodic orbit of period
T , the winding numbers group is a nontrivial subgroup of1

T
Z.

One case where the converse of Corollary 4.5 holds is the class of Killing vector
fields on connected compact orientable Riemannian 3-manifolds.

PROPOSITION 4.6.Let ξ be a Killing vector field on a connected compact ori-
entable Riemannian 3-manifold. Ifξ is homologically rational, it has at least one
periodic orbit.

Proof. Sinceξ is assumed to be homologically rational it is everywhere non-
zero. So, its orbits are the leaves of a Riemannian foliation in the sense of [3]. Sup-
pose thatξ has no periodic orbit. According to the classification Theorem III.A.1
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10 KONSTANTIN ATHANASSOPOULOS

and Corollary III.B.4 of [3], the flow ofξ is topologically equivalent to one of the
following:

(i) A uniquely ergodic one-parameter group of tranlations of the 3-torusT 3.

(ii) A nonergodic one-parameter group of translations ofT 3 with slopesa1, a2, 0,
wherea1, a2 are linearly independent overQ.

In both cases we do not have homologically rational vector fields.

In arbitrary dimensions we have the following.

PROPOSITION 4.7.Let M be a connected compact orientable Riemanniann-
manifold such that its fundamental cohomology class is a cup product of integral
one-dimensional classes. Then, every homologically rational Killing vector field of
M has periodic flow.

Proof. Let ξ be a homologically rational Killing vector field onM and let
(φt)t∈R be its flow. The closureG of {φt : t ∈ R} in the isometry group ofM is
a k-torus,k > 1, acting effectively and smoothly onM. Moreover,(φt )t∈R is a
uniquely ergodic continuous one-parameter group of translations ofG. The orbit
closures of the points ofM under the flow ofξ are the orbits ofG. So,k = 1 if and
only if the flow of ξ is periodic. Letx ∈M and letfx:G→M be the natural map
with fx(g) = gx. Let ν be the Haar measure onG andµ = (fx)∗ν be the induced
invariant measure onM under the flow ofξ . Then,Aµ = Aν ◦ (fx)∗, whereAν
is the asymptotic cycle of the one-parameter group of translations(φt)t∈R of G.
Our cohomological assumption implies that(fx)∗:H 1(M;Z) → H 1(G;Z) is an
epimorphism, according to Theorem 4 in [10]. Hence,Z ∼= Wµ = Wν

∼= Zk and
we must necessarily havek = 1.

We close this section with a small generalization of the well known fact that
if a parallel vector field of a connected compact orientable Riemannian manifold
vanishes at some point, it vanishes everywhere.

PROPOSITION 4.8.LetM be a connected compact orientable Riemannian man-
ifold. Then, any homologically trivial parallel vector field vanishes identically on
M.

Proof. If ξ is a parallel vector field onM, then it is Killing and its dual 1-formα
with respect to the Riemannian metric is closed. The value of the asymptotic cycle
A of ξ on [α] is

A[α] =
∫
M

(‖ξ‖2)ω = ‖ξ‖2,

whereω is the normalized Riemannian volume element. The conclusion is now
obvious.
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ROTATION NUMBERS AND ISOMETRIES 11

5. The Rotation Homomorphism

Let M be a connected compact orientable Riemannian manifold and letI (M)

denote the path component of the group of isometries ofM, which contains the
identity map, endowed with the compact-open topology. For eachh ∈ I (M) the
rotation number mapR(h) of h can be considered as an element ofH1(M;R)/
H1(M;Z). The map

R: I (M)→ H1(M;R)/H1(M;Z)

defined in this way is a homomorphism and is called therotation homomorphism.
To see thatR is indeed a homomorphism leth1, h2 ∈ I (M) and note that they
both preserve the Borel probability measureν on M defined by the normalized
Riemannian volume. Iff :M → S1 is a continuous function for which there are
continuous functionsgk:M → R such thatf ◦ hk = f exp(2πigk), k = 1,2, then

f ◦ h1 ◦ h2 = f exp(2πi(g1 ◦ h2+ g2)).

Sinceν is h2-invariant, it follows that

R(h1 ◦ h2)[f ] = exp
(
2πi

∫
M

(g1 ◦ h2+ g2)dν
)

= R(h1)[f ]R(h2)[f ],
LEMMA 5.1. The rotation homomorphism is continuous with respect to the quo-
tient weak topology onH1(M;R)/H1(M;Z).

Proof. Let hn, h ∈ I (M), n ∈ N, be such thathn → h uniformly onM. Let
f :M → S1 be a continuous function and letgn, g:M → R, n ∈ N, be continuous
functions such thatf ◦ hn = f exp(2πign), n ∈ N, andf ◦ h = f exp(2πig). It
suffices to show that

exp
(
2πi

∫
M

gn dν
)
→ exp

(
2πi

∫
M

g dν
)
,

whereν is the Borel probability measure onM defined by the normalized Rie-
mannian volume. Letε > 0 and choose 0< δ < 1/4 such that|exp(2πit) −
exp(2πis)| < ε, whenever|t − s| < δ. Sincef ◦ hn → f ◦ h uniformly onM,
there is somen0 ∈ N such that‖1− exp(2πi(gn − g))‖ < δ/2 for n > n0. Thus,
for everyx ∈ M there is somekn(x) ∈ Z such that|gn(x) − g(x) − kn(x)| < δ.
SinceM is connected andgn−g continuous,kn(x) is a constantkn. Integrating we
get ∣∣∣∫

M

(gn − g)dν − kn
∣∣∣ < δ
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and therefore∣∣∣exp
(
2πi

∫
M

gn dν
)
− exp

(
2πi

∫
M

g dν
)∣∣∣ < ε

for everyn > n0. This proves the Lemma.

Remark5.2. It is not hard to see that the rotation homomorphismR of a con-
nected compact orientable Riemannian manifoldM can be lifted to a continuous
homomorphismR̃:]I (M) → H1(M;R), where]I (M) is the universal covering
space ofI (M). R̃ is called theisometric flow homomorphism.

THEOREM 5.3.If M is a connected compact orientable Riemannian 3-manifold
without conjugate points, then the kernel of the rotation homomorphism is a finite
group consisting of periodic isometries. HencedimI (M) 6 rankH1(M;Z).

Proof. If φ ∈ I (M) is sufficiently close to the identity, there is a Killing vector
field ξ onM such thatφ = φ1, where(φt )t∈R is the flow ofξ . SinceM has no
conjugate points,ξ is parallel [12]. Ifφ ∈ KerR, thenξ is homologically trivial
or rational, more precisely its winding numbers group is a subgroup ofZ. In the
first case we haveφ = id from Proposition 4.8. In the laterξ has a periodic orbit
from Proposition 4.6. However, ifG denotes the closure inI (M) of the group
{φt : t ∈ R}, thenG is a torus acting effectively and smoothly onM. The orbits of
G are exactly the orbit closures of the flow ofξ . The Lie algebra of the isotropy
group of a pointx ∈ M consists of parallel vector fields that vanish atx, hence
vanish everywhere. It follows that every isotropy group is finite and every orbit of
G is a torus of the same dimension asG. Sinceξ has a periodic orbit, we conclude
thatG ∼= S1 and there is aT > 0 such thatφT = id. Moreover,T ∈ Q, since
the winding numbers group ofξ is a nontrivial subgroup ofZ ∩ 1

T
Z. Henceφ is

periodic. So we have shown that the elements of KerR which are sufficiently close
to the identity are periodic. Since by [12]I (M) is a torus, every element of KerR
is periodic. In particular, KerR is a totally disconnected subgroup ofI (M). Since
R is continuous by Lemma 5.1, it is also closed, hence a compact Lie group. It
follows that KerR is finite.

Using Proposition 4.7 instead of Proposition 4.6 in the proof of Theorem 5.3
we have the following.

THEOREM 5.4.LetM be a connected compact orientable Riemanniann-manifold
without conjugate points such that its fundamental cohomology class is a cup
product of integral one-dimensional classes. Then, the kernel of the rotation ho-
momorphism is finite and hencedimI (M) 6 rankH1(M;Z).
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