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Abstract. Using the notion of rotation set for homomorphisms of compact manifolds, we define
the rotation homomorphism of a connected compact orientable Riemannian manifold and apply it
to prove that the dimension of the isometry group of a connected compact orientable Riemannian 3-
manifold without conjugate points is not greater than its first Betti number. In higher dimensions the
same is true under the additional assumption that the fundamental cohomology class of the manifold
is a cup product of integral one-dimensional classes.
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1. Introduction

A great amount of work in dynamical systems has been oriented towards the prob-
lem of finding conditions which guarantee the existence of periodic orbits for
homeomorphisms and flows. The best known condition concerning orientation pre-
serving homeomorphisms of the unit circle is the rationality of the Poincaré rota-
tion number. A generalization to continuous flows on closed orientable 2-manifolds
is given in [2]. An analogous result for 2-torus homeomorphisms is the Conley—
Zehnder—Franks theorem which says that if a homeomorphisirthe 2-torus is
homotopic to the identity, preserves a Borel probability measutet is positive

on nonempty open sets and has a lift wittmean translation zero, theénhas a

fixed point (see [4] and [5]).

In this paper we clarify first in Section 3 the generalization of the notion of
rotation number given in [8] using the asymptotic cycles of S. Schwartzman which
are reviewed in Section 2. Therotation number map of a homeomorphi&nof
a connected compact manifadd, which is homotopic to the identity, with respect
to anh-invariant Borel probability measune can be viewed as an element of the
groupH1(M; R)/Hy1(M; Z), which is a torus with respect to the weak topology. In
the case of the-torus 7", it is represented by the-mean translation vector of a
lift of &, with respect to the natural basis &8f(7"; R). In Section 4 we prove
that thev-rotation number map of an isometry of a connected compact metric
space is independent of the invariant measuaad derive useful corollaries. The
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connectedness is here essential. This allows us to define the rotation homomor-
phism for a connected compact orientable Riemannian manMgldvhich is a
continuous homomorphismk: I (M) — Hy(M;R)/H1(M;Z), where (M) is

the path component of the identity of the group of isometrieg/ofThe rotation
homomorphism is a tool to finding relations between the isometry groy and

its homology, possibly under additional assumptions. One such relation is found
in Section 5 where we prove that the kernel of the rotation homomorphism of a
connected compact orientable Riemannian 3-manifdldithout conjugate points

is a finite group and therefore diiM) < rankHy(M; Z). In arbitrary dimensions

the same is true under the additional assumption that the fundamental cohomology
class ofM is a cup product of integral one-dimensional classes.

2. Asymptotic Cycles

Let X be a compact metrizable space carrying a continuous @gy.g. Let 7x
denote the translation of the pointe X along its orbit in timer € R. For every
continuous functionf: X — S there is a continuous functiogx RxX — R,
called thel-cocycleof f suchthatf (zx) = f(x) exp2rig(t, x)) andg(t+s, x) =
g(s,tx) + g(t, x) for everyx € X andt, s € R. The Ergodic Theorem of Birkhoff
implies that for everyp-invariant Borel probability measupe on X the limit

g¥(x) = lim 8, %)

t—+400 t

exists -almost for everyx € X and [, g*du = [, g(1,.)du. This integral
describes the.-average rotation of points moving along their orbits with respect to
the projectionf. Moreover, ifg*(x) exists, then
* 1 H 1 — k
gt == lim ~ ;g(r, (@)*(x))
for everyt > 0. So, [, g*du =1 [, g(z,.) dpu.

The cocycle property of implies thatg* is an u-almost everywhere defined
measurable flow invariant function, that g&(rx) = g*(x) for everyt € R,
wheneverg*(x) is defined. So, if the measuye is ergodic, therg* is constant
w-almost everywhere. In case the flow is uniquely ergodic and the unique
¢-invariant Borel probability measure, theti is an everywhere defined constant,
namely [, g(1,.) du.

If f1, f: X — S are homotopic continuous functions with cocyclas g2,
respectively, thery, ¢;du = [, g5 du. Since the firsCech cohomology group

with integer coefficientsH1(X; Z) of X is isomorphic to the group of homo-
topy classes of continuous functions Xfto S1, there is a group homomorphism
A, HY(X; Z) — R defined by

ALf] = / ¢(L ) du,
X
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whereg is the 1-cocycle of : X — S*and[ f]the homotopy class of. The homo-
morphismA, was defined by S. Schwartzman [9] and is called/thesymptotic
cycleof the flow. It describes how a-average orbit winds aroundl. The image

of A, is called theu-winding numbers groupf the flow¢ and will be denoted by
W,.. An exposition of the basic theory of asymptotic cycles with details is given in

[1].

EXAMPLES 2.1. (a) LetC be a periodic orbit inX of prime periodl" > 0 and let
w be the uniformly distributed Borel probability measure alghgrhen,

1
Aulfl= TdGQIf | C)

for every continuous functiorf: X — S*. Thus,A,, = 0, if C is null homologous

in X. Suppose now that = S* x §* the 2-torus and the flow has no singular point.
ThenC is not null homologous. This means that i§ the longitude aneh is the
meridian, thenC is homotopic ta“ x m” for somea, b € Z not both zero. Lep

andq be the projections onto the longitude and the meridian respectively. Every
continuous functiory: St x $* — St is homotopic top*g* for somex, A € Z and

we can compute

1 1
Aulfl= % degp“q” | 1* xm®) = —(ka+2b).

Sincea, b are not both zero, we haw, = Z.
(b) Each continuous one-parameter grégp; g of translations of the-torus
T" has the form

¢ (x4, ..., x,)(MOdZ™)) = (x1 + aat, ..., x,, + a,t)(ModZ"),

for someay, ..., a, € R and preserves the Haar measuref 7". It is uniquely
ergodic if and only ifay, ..., a, are linearly independent ov€), by Kronecker’s
theorem. The winding numbers group with respeqtis W, = a1Z +--- +a,Z.

The following formula is often useful in the calculation of winding numbers
and is proved using Fubini’s theorem (see [1], Lemma 5.2).

LEMMA 2.2. Let u be ag-invariant Borel probability measure ok, f: X — S*
a continuous function witl-cocycleg and A C X be a closed set with(A) = 0.
We make the following assumptions

(a) The time derivative’(0, x) exists for every € X \ A and is continuous
and bounded orX \ A.
(b) For everyx € X the set of times € R such thatx € A is discrete
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Then
A1 = /X RCELE

Let & be a smooth vector field on a connected compact smeoatianifold X
with flow (¢;);cr and letu be ag-invariant Borel probability measure of. By de
Rham's theorem and the Universal Coefficient theorBih, (X) = H(X; Z)®R.

So, there is a basis dff}.(X) every element of which can be represented by
f*(do/2m), where f: X — St is a smooth function andég2r is the represen-
tative of the natural generator &f},(S*) = R. We can extendi,, on H},(X)
linearly in the obvious way.

The 1-cocycleg: Rx X — R of a smooth functiory: X — St is given by

Crdo
g(t,x)z/o f (E) (E(sx)) ds.

So, for everyx € X we have

g'(0,x) = f* (gﬂ—e) ().

It follows from Lemma 2.2 that

do
A#[f]Z/)(f* (E) &) du.

ConsequentlyA, [o] = fX (i) du for every closed 1-fornx on X.

SinceH(X; Z) is a finitely generated free group, so is faevinding numbers
groupW,,. If W, = 0, then¢ is said to beu-homologically trivial. If W, = Z,
thenW, = AZ, for somer > 0, and¢ is said to beu-homologically rational.ln
any other cas&/, = A(Z + ouZ + --- + o Z), for somer > 0 and O< «; < 1,
i =1,2 ...,k such that lay, ..., o are linearly independent ov€) and 1<
k <rankHY(X:;Z) — 1.

Suppose thak is oriented by a volume elementand the flow of¢ preserves
volume. Theng;w = w for everyr € R andizw is a closedn — 1)-form, called
theflux form Sincex A w = 0, for every closed 1-formy, we have

O=is(ad Aw) = (i) — o A (izw)

and therefore

Ayla] =/ (ira)w = / a A (igw).
X X
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This means that the asymptotic cyclg, is the Poincare dual of the de Rham
cohomology class represented by the flux fogm.

3. Rotation Number Maps and Rotation Sets of Homeomorphisms

The suspensions of homeomorphisms is a class of flows whose winding numbers
groups can be computed in terms of initial data. Ikebe a compact metrizable
space and let:Y — Y be a homomorphism. OfD, 1] x Y we consider the
equivalence relatioil, x) ~ (0, k(x)), x € Y. The quotient spac& = [0, 1] x

Y/ ~ is compact metrizable and is called tin@pping torusf k. Let[s, x] denote

the class ofs, x) € [0, 1] x Y. The flow onX defined by

tls,x]=[t+s5s —n, h"(x)]

if n <t+s <n+1,is called thesuspensiomf 4.

If v is anh-invariant Borel probability measure dn and 2 is the Lebesgue
measure orj0, 1], then the product measusex v induces a Borel probability
measure orX which is invariant by the suspension flt is easy to see that the
converse is true. That is, every invariant by the suspensiagnBirel probability
measure orX is of this form.

In order to compute the winding numbers groups of the suspensianwe
need to know the relation between the integral f@sth cohomology groups of
Y and X. Let C(Y,Z) be the group of integer valued continuous functionsyon
Lety: C(Y,Z)— H(X;Z) be defined by () = [f], wheref: X — Stis the
continuous function defined by[z, x] = exp(2rity (x)) and j*: HY{(X; Z) —
H(Y:Z) be the homomorphism induced by the inclusjory — X with j(x) =
[0, x]. Then one can easily verify that the sequence

.2y ey, 2) HY (X 2) 25 BNy 22 (v 2)

is exact.
If now v is anh-invariant Borel probability measure dnhandu is the corre-
sponding invariant measure of then

W, = {ftﬁdv: weLog(Y,h)}
Y

where LodY, k) is the set of continuous functions: Y — R satisfyingf oh =
f exp(2riy) for some continuous functiogi: Y — S* [1] or [7], Appendix.

If Y is in addition connected, thé#,, can also be described through the rotation
number map of: with respect tov. Let f:Y — S! be a continuous function
such that[ /] € Ker(h* — id). There is a continuous functiog: Y — R such
that f oh = f exp(2rig) and any two such functions differ by an integer. One can
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easily see that there is a well defined group homomorplisriker(h* —id) — S?*
with

Rv[f]zexp(znifygdv)

called thev-rotation number mamf 4. The subgroup InR, of St is called the
v-rotation numbers groupf 4. It is clear that we have a commutative diagram

Ay

HYX;2) R

3

J exp

Ker(h* — id) —~— %
and thereforé¥,, = exp*(Im R,). Thus we arrive at the following.

PROPOSITION 3.1LetY be a connected, compact, metrizable space/ard—
Y a homeomorphism. Lei be an invariant by the suspension/oBorel probabil-
ity measure on the mapping torus of 4 corresponding to thé-invariant Borel
probability measure onY.

(i) If the v-rotation numbers group df is trivial or is a finite cyclic subgroup
of §, thenw, = Z.
(iiy If j* has aright inverse, theR, € Im F, where

F:Hom(Ker(h* —id), R) — Hom(Ker(h* — id), S*)
is the homomorphism defined byw) = exp(2ria).

So, if the homeomorphisii: Y — Y is homotopic to the identity anﬁl(Y; Z)
is free, thenR, can be considered an element of H@(Y; Z), R)/Hom(l—vl1
(Y:Z),2), since KeF = Hom(H(Y; Z), Z), whereF is the homomorphism of
Proposition 3.1.

If Y is a connected compact manifold, then HEH(Y; Z), R)/Hom(H?
(Y; Z2), Z) isisomorphic toH,(Y; R)/ H1(Y; Z), by the Universal Coefficient The-
orems (see [11]). Thus for ariyinvariant Borel probability measureon Y, the
rotation number magR, can be considered as an elementg{Y; R)/H1(Y; Z).
A representative oR, in Hi(Y; R) is A, o r, wherer is a right inverse ofi*. The
setp(h) = {R,:v € M, (Y)}is called theotation setof i, whereM, (Y) denotes
the set ofa-invariant Borel probability measures ghand is weakly compact in
Hyi(Y; R)/Hy\(Y; 2).
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EXAMPLE 3.2. Leth: T" — T" be a homeomorphism of tletorus homotopic to
the identity. Ifp;: T" — S*is the projection onto thah factor, 1< i < n, then the
homotopy classefgi], ..., [p,] form a basis ofH1(7"; Z). Let v be ah-invariant
Borel probability measure andthe corresponding measure that is invariant by the
suspension ok. ThenR, is represented by the vector

(Au(rlpaD), ... Au(rlpal)

with respect to the dual basis & (7"; R).

Let i:R" — R" be a lift of h andy: T" — R” be the continuous function
defined byy (x) = h(y) — y, wherey € p~1(x) andp: R* — T" is the canonical
covering projection. Then,

(Au(rlpaD, ..., Au(rlpaD) = | ¥ dv (modZ”).
TV!

Thatis,R, is represented by themean translation vector @f In casev is ergodic,
the Ergodic Theorem of Birkhoff implies that

Ry —y
de_kllm e

n —+00 k

p~tv-almost for every € [0, 1)".

EXAMPLE 3.3. Let(¢,);cr be a continuous flow on a compact metrizable space
X and v a ¢-invariant Borel probability measure aX. If R/ denotes the rota-
tion number map of the homeomorphistn then R, = exp(2ritA,), for every

t > 0. Indeed, for every continuous functioft X — S we havef o ¢, =
fexp2rig(t,.)), whereg is the 1-cocycle off with respect to the flow. Thus,

exp(Zm’/ g(t, .)du) :exp(Zm’t/ g" du>
X X

= exp2ritA,lf]).

RIS

4. Isometric Systems

Let X be a compact metrizable space an& — X be a homeomorphism. From
any compatible metrid of X, one can define a new mete¢ by

d*(x,y) = supd(h"(x),h"(y)):n € Z}

for x, y € X, which defines a finer topology oK. Clearly  is a d*-isometry.
The metricd* is compatible with the topology of if and only if {x":n € Z} is a
d-equicontinuous family. Similar considerations hold for continuous flows.
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A homeomorphisnk: X — X is calledisometricif there is a compatible metric
d of X such that: is ad-isometry. Analogously, a continuous fla@,);cgr on X
is calledisometricif there is a compatible metri¢ of X such thatp, becomes a
d-isometry for every € R.

The isometric homeomorphisms (and flows) satisfy a strong form of the Ergodic
Theorem of Birkhoff. More precisely, it: X — X is an isometric homeomor-
phism, then for every continuous functignX — R there is a continuous function
g*: X — R such that

¢t = k
=0 Z gok
uniformly on X (see [6], Theorem 2.6).

THEOREM 4.1.Let X be a compact metrizable space ahdX — X be an
isometric homeomorphism. ff: X — St is a continuous function for which there
is a continuous functiog: X — R such thatf o h = fexp(2rig), theng* is a
locally constant function.

Proof. Let d be a compatible metric ok such that: is ad-isometry and let
0 < ¢ < 1/3. By uniform continuity, there is & > 0 such that

& &
[f(x) = fOI < 3 and [g(x) —g)| < 3
whenevery, y € X andd(x,y) < 8. So for everyn € N we have|g(h"(x)) —
g(h"(y))| < e/3 and

n—1
% - exp(Zm > g () - g(h"(x)))‘ = |f(h"(x)) = fF(h" ()] < %
=0
It follows that
n—1 2
|1 - exp(zm > g(hf(x) — g(h’%y))) < g
k=0

and consequently there axg € Z such that

n—1 de
= Y g(h*(x)) — g(hk(y»{ <3

k=0

for everyn € N. From this we conclude that
= 2 <Y g @) — g0
n+1 3 P

4e " " 5¢
< §+kn+g(h (x)) —gh"(y) < )“n+§’
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thatisi, 1 — A, < 3¢ and similarlyx,, — A,.1 < 3. Hencex,, = A4 for every
n € N. Dividing now byn and taking the limit fom — +oo we have|g*(x) —
g*(y)| = O for everyx, y € X with d(x,y) < §. This shows thag* is locally
constant.

COROLLARY 4.2.Let X be a connected compact metrizable space /anx —
X be an isometric homeomorphism.[If] € Ker(h* —id) andg: X — Ris a
continuous function such thgto 7 = f exp(2rig), thenR,[f] = exp(2rig*) for
everyv € M, (X). Thus,R, is independent af. In particular, the rotation sep (k)
is a point, in case: is homotopic to the identity.

COROLLARY 4.3.LetX be a connected compact metrizable spacerand — X
be an isometric homeomorphismklhas a periodic point of periogl, the rotation
numbers group of is a subgroup of thgth roots of unity.

Proof. Let xg be a periodic point of: of periodq. Note that the rotation num-
ber map ofh¢ is RY, whereR is the rotation number map @f. If f: X — S*
andg: X — R are continuous functions such thato h7 = fexp(2rig), then
g(xg) € Z. Obviously,g* = g(xg), sinceh? fixes xg. SO we have(R[f])? =
expi2rig*) = 1.

Similar results hold for continuous flows.

THEOREM 4.4.Let X be a connected compact metrizable space @nijcr be a
continuous flow orX. If the flow is isometric, all its asymptotic cycles coincide.

Proof.Let 1 be ag-invariant Borel probability measure éhand letf: X — St
be a continuous function with 1-cocygie Then

. ’ . lnfl
¢ = tm L0 _ i S B IENCANEN
k=0

n—400 t n—400

uniformly onX. Sinceg, is an isometric homeomorphism aifid ¢, = f exp2rig
(1, .)), by Theorem 4.1g* is constant. Hencd ,[ f] = g*.

COROLLARY 4.5.Let X be a connected compact metrizable space@nr be
an isometric flow onX. If there is a nonnull homologous periodic orbit of period
T, the winding numbers group is a nontrivial subgroup%df.

One case where the converse of Corollary 4.5 holds is the class of Killing vector
fields on connected compact orientable Riemannian 3-manifolds.

PROPOSITION 4.6Let ¢ be a Killing vector field on a connected compact ori-
entable Riemannian 3-manifold.4fis homologically rational, it has at least one
periodic orbit.

Proof. Since¢ is assumed to be homologically rational it is everywhere non-
zero. So, its orbits are the leaves of a Riemannian foliation in the sense of [3]. Sup-
pose that has no periodic orbit. According to the classification Theorem I11.A.1
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and Corollary I11.B.4 of [3], the flow of is topologically equivalent to one of the
following:

(i) A uniquely ergodic one-parameter group of tranlations of the 3-t6rus

(i) A nonergodic one-parameter group of translationg ®fwith slopesay, az, 0,
whereas, a, are linearly independent ove.

In both cases we do not have homologically rational vector fields.

In arbitrary dimensions we have the following.

PROPOSITION 4.7Let M be a connected compact orientable Riemannian
manifold such that its fundamental cohomology class is a cup product of integral
one-dimensional classes. Then, every homologically rational Killing vector field of
M has periodic flow.

Proof. Let & be a homologically rational Killing vector field o and let
(¢:):er be its flow. The closurés of {¢,:t € R} in the isometry group oM is
a k-torus,k > 1, acting effectively and smoothly alf. Moreover, (¢, );cr iS a
uniquely ergodic continuous one-parameter group of translatioiis dhe orbit
closures of the points d#f under the flow o are the orbits o5. So,k = 1 if and
only if the flow of ¢ is periodic. Letx € M and letf,: G — M be the natural map
with f,(g) = gx. Letv be the Haar measure @ghandu = (f,).v be the induced
invariant measure oM under the flow of. Then,A, = A, o (f,)*, whereA,
is the asymptotic cycle of the one-parameter group of translatigns.r of G.
Our cohomological assumption implies that)*: H*(M;Z) — H(G;Z) is an
epimorphism, according to Theorem 4 in [10]. Hengex= W, = W, = Z* and
we must necessarily hake= 1.

We close this section with a small generalization of the well known fact that
if a parallel vector field of a connected compact orientable Riemannian manifold
vanishes at some point, it vanishes everywhere.

PROPOSITION 4.8Let M be a connected compact orientable Riemannian man-
ifold. Then, any homologically trivial parallel vector field vanishes identically on
M.

Proof. If ¢ is a parallel vector field oi, then it is Killing and its dual 1-forna
with respect to the Riemannian metric is closed. The value of the asymptotic cycle
Aof&onfa]is

Ale] =/ (E1Pw = £
M

wherew is the normalized Riemannian volume element. The conclusion is now
obvious.
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5. The Rotation Homomorphism

Let M be a connected compact orientable Riemannian manifold anzi( M)
denote the path component of the group of isometriedZpfvhich contains the
identity map, endowed with the compact-open topology. For éaehl (M) the
rotation number magR (k) of 4 can be considered as an elementthiM; R)/
Hy(M;Z). The map

R:I(M) — H1(M; R)/H1(M; Z)

defined in this way is a homomorphism and is calledrdtation homomorphism.
To see thatR is indeed a homomorphism lét, 4, € I(M) and note that they
both preserve the Borel probability measwren M defined by the normalized
Riemannian volume. Iff: M — S is a continuous function for which there are
continuous functiong,: M — R such thatf o h, = fexp2rigy), k = 1, 2, then

fohiohy= fexp2ri(gLohz+ g2).

Sincev is ho-invariant, it follows that
R(hiohp)[f] = exp(Zm' / (g10h2 + g2) dV)
M

= R(h)[fIR(h2)[f],

LEMMA 5.1. The rotation homomorphism is continuous with respect to the quo-
tient weak topology oty (M; R)/Hi(M; Z).

Proof. Let h,, h € I(M), n € N, be such thak, — & uniformly on M. Let
f: M — S*be a continuous function and lgt, g: M — R, n € N, be continuous
functions such thaf o h, = fexp2rig,),n € N,andf oh = fexp2rig). It
suffices to show that

exp(eri/Mgn dv) — exp(eri/Mgdv),

wherev is the Borel probability measure ovf defined by the normalized Rie-
mannian volume. Let > 0 and choose O< § < 1/4 such that exp(2rir) —
exp(2ris)| < &, wheneverr — s| < é. Sincef o h, — f o h uniformly on M,
there is someg € N such that|1l — exp(2ri(g, — g))| < 8/2 forn > no. Thus,
for everyx € M there is somé, (x) € Z such thatig, (x) — g(x) — k,(x)| < 8.
SinceM is connected ang, — g continuousk, (x) is a constant,,. Integrating we
get

[ @-od—k|<s
M
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and therefore

‘exp(Zm‘/Mgn dv)—exp(Zm’/Mgva <e€

for everyn > ng. This proves the Lemma.

Remark5.2. It is not hard to see that the rotation homomorphirof a con-
nected compact orientable Riemannian manifdccan be lifted to a continuous
homomorphisml?:lf(vzlfl) — H{(M;R), WhereI/(VM) is the universal covering
space off (M). R is called thasometric flow homomorphism.

THEOREM 5.3.If M is a connected compact orientable Riemannian 3-manifold
without conjugate points, then the kernel of the rotation homomorphism is a finite
group consisting of periodic isometries. Herdien I (M) < rankH,(M; Z).

Proof.If ¢ € I(M) is sufficiently close to the identity, there is a Killing vector
field £ on M such thatp = ¢, where(¢,),cr is the flow of&. SinceM has no
conjugate pointss is parallel [12]. If¢ € Ker R, thené is homologically trivial
or rational, more precisely its winding humbers group is a subgrouf ¢f the
first case we have = id from Proposition 4.8. In the latér has a periodic orbit
from Proposition 4.6. However, i; denotes the closure ih(M) of the group
{¢,:t € R}, thenG is a torus acting effectively and smoothly #h. The orbits of
G are exactly the orbit closures of the flow &f The Lie algebra of the isotropy
group of a pointt € M consists of parallel vector fields that vanishxathence
vanish everywhere. It follows that every isotropy group is finite and every orbit of
G is a torus of the same dimension@sSince¢ has a periodic orbit, we conclude
that G = S* and there is & > 0 such thaip; = id. Moreover,T € Q, since
the winding numbers group df is a nontrivial subgroup oZ N %Z. Henceg is
periodic. So we have shown that the elements of Kerich are sufficiently close
to the identity are periodic. Since by [12{M) is a torus, every element of K&r
is periodic. In particular, Ker is a totally disconnected subgroup afM). Since
R is continuous by Lemma 5.1, it is also closed, hence a compact Lie group. It
follows that KerR is finite.

Using Proposition 4.7 instead of Proposition 4.6 in the proof of Theorem 5.3
we have the following.

THEOREM 5.4 et M be a connected compact orientable Riemanniananifold
without conjugate points such that its fundamental cohomology class is a cup
product of integral one-dimensional classes. Then, the kernel of the rotation ho-
momorphism is finite and hendem I (M) < rankH1(M; Z).
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