Mathematische Zeitschrift © Springer-Verlag 2000

On the Ruelle rotation for torus diffeomorphisms

Konstantin Athanassopoulos

Department of Mathematics, University of Crete, GR-71409 Iraklion, Greece (e-mail: athanako@math.uch.gr)

Received March 22, 1999; in final form May 17, 1999

1. Introduction

In this note we are concerned with the Ruelle rotation number, which is defined for a C^1 diffeomorphism h of the 2-torus T^2 that is isotopic to the identity. Intuitively, the Ruelle rotation number is the mean value, with respect to an h-invariant Borel probability measure ν , of the asymptotic rate at which the derivative of h rotates the tangent planes. In order to measure it, we need to have fixed in advance a trivialization of the tangent bundle TT^2 of T^2 . The Ruelle rotation number depends on the trivialization, as well as on the isotopy from id to h. As was mentioned by Ruelle in [7], there is an independence on the unit circle S^1 .

In Sect. 4 we clarify the dependence on the trivialization of TT^2 . It turns out that the two points of S^1 taken starting with two different trivializations of TT^2 differ by an element of the group $\text{Im}R_{\nu}(h)$, where $R_{\nu}(h) : H^1(T^2; \mathbb{Z}) \to S^1$ is the ν -rotation number map of h. This may be seen as the discrete analogue of proposition 3.4 in [4]. It follows from this and the continuity of the Ruelle rotation number with respect to the C^1 topology [7], that the differential of the Ruelle rotation in group cohomology is a real bounded 2-cocycle on the "universal covering" group $Diff_0^{-1}(T^2, \nu)$ of the identity path component of the group of the ν -preserving C^1 diffeomorphisms of T^2 , which depends only on ν and not on the trivialization of TT^2 . So it defines an element of the second bounded cohomology with real coefficients of $Diff_0^{-1}(T^2, \nu)$ made discrete, the Ruelle rotation class. This remark is perhaps the core of the present paper.

The Ruelle rotation class belongs to the kernel of the natural homomorphism $H_b^2(Diff_0^{-1}(T^2,\nu);\mathbf{R}) \to H^2(Diff_0^{-1}(T^2,\nu);\mathbf{R})$, which is known to be injective if $Diff_0^{-1}(T^2,\nu)$ is uniformly perfect [5]. Thus, it can be considered as an obstruction to the uniform perfectness of $Diff_0^{-1}(T^2,\nu)$. For instance, it follows from theorem 4.3 in [2] that if ν is the Haar measure, then the Ruelle rotation class is not trivial and so in this case $Diff_0^{-1}(T^2,\nu)$ is not uniformly perfect and not amenable. The same is true in the case of a Dirac point measure also.

2. Preliminaries on rotation vectors in homology

Let X be a compact metrizable space carrying a continuous flow $(\phi_t)_{t \in \mathbf{R}}$. Let tx denote the translation of the point $x \in X$ along its orbit in time $t \in \mathbf{R}$. For every continuous function $f : X \to S^1$ there is a continuous function $g : \mathbf{R} \times X \to \mathbf{R}$, called the *cocycle* of f such that $f(tx) = f(x) \exp(2\pi i g(t, x))$ and g(t + s, x) = g(s, tx) + g(t, x) for every $x \in X$ and $t, s \in \mathbf{R}$. The Ergodic Theorem of Birkhoff implies that for every ϕ -invariant Borel probability measure μ on X the limit

$$g^*(x) = \lim_{t \to +\infty} \frac{g(t,x)}{t}$$

exists μ -almost for every $x \in X$ and $\int_X g^* d\mu = \int_X g(1,.)d\mu$. This integral describes the μ -average rotation of points moving along their orbits with respect to the projection f. The cocycle property of g implies that g^* is an μ -almost everywhere defined measurable flow invariant function, that is $g^*(tx) = g^*(x)$ for every $t \in \mathbf{R}$, whenever $g^*(x)$ is defined. If $f_1, f_2 : X \to S^1$ are homotopic continuous functions with cocy-

If $f_1, f_2 : X \to S^1$ are homotopic continuous functions with cocycles g_1, g_2 , respectively, then $\int_X g_1^* d\mu = \int_X g_2^* d\mu$. Since the first integral \check{C} ech cohomology group $\check{H}^1(X; \mathbb{Z})$ is isomorphic to the group of homotopy classes of continuous functions of X to S^1 , there is a group homomorphism $A_\mu : \check{H}^1(X; \mathbb{Z}) \to \mathbb{R}$ defined by

$$A_{\mu}[f] = \int_X g(1,.)d\mu$$

where g is the cocycle of $f: X \to S^1$ and [f] the homotopy class of f. The homomorphism A_{μ} was defined by S.Schwartzman [8] and is called the μ -asymptotic cycle of the flow. It describes how a μ -average orbit winds around X. The image of A_{μ} is called the μ -winding numbers group of the flow ϕ and is denoted by W_{μ} . An exposition of the basic theory of asymptotic cycles with details is given in [1]. Torus diffeomorphisms

The suspensions of homeomorphisms is a class of flows whose winding numbers groups can be computed in terms of initial data. Let Y be a compact metrizable space and let $h: Y \to Y$ be a homeomorphism. On $[0, 1] \times Y$ we consider the equivalence relation $(1, x) \sim (0, h(x)), x \in Y$. The quotient space $X = [0, 1] \times Y / \sim$ is compact metrizable and is called the *mapping torus* of h. Let [s, x] denote the class of $(s, x) \in [0, 1] \times Y$. The flow on X defined by

$$t[s,x] = [t+s-n,h^n(x)]$$

if $n \le t + s < n + 1$, is called the *suspension* of h.

If ν is an *h*-invariant Borel probability measure on *Y* and λ is the Lebesgue measure on [0, 1], then the product measure $\lambda \times \nu$ induces a Borel probability measure on *X* which is invariant by the suspension of *h*. Every invariant by the suspension of *h* Borel probability measure on *X* is of this form.

Let $C(Y, \mathbb{Z})$ be the group of integer valued continuous functions on Y. Let $\gamma : C(Y, \mathbb{Z}) \to \check{H}^1(X; \mathbb{Z})$ be defined by $\gamma(\psi) = [f]$, where $f : X \to S^1$ is the continuous function defined by $f[t, x] = \exp(2\pi i t \psi(x))$ and $j^* : \check{H}^1(X; \mathbb{Z}) \to \check{H}^1(Y; \mathbb{Z})$ be the homomorphism induced by the inclusion $j : Y \to X$ with j(x) = [0, x]. Then one can easily verify that the following sequence is exact.

$$C(Y, \mathbf{Z}) \stackrel{h^* - id}{\longrightarrow} C(Y, \mathbf{Z}) \stackrel{\gamma}{\longrightarrow} \check{H}^1(X; \mathbf{Z}) \stackrel{j^*}{\longrightarrow} \check{H}^1(Y; \mathbf{Z}) \stackrel{h^* - id}{\longrightarrow} \check{H}^1(Y; \mathbf{Z})$$

If ν is an *h*-invariant Borel probability measure on *Y* and μ is the corresponding invariant measure on *X*, then

$$W_{\mu} = \left\{ \int_{Y} \psi d\nu : \psi \in Log(Y, h) \right\}$$

where Log(Y, h) is the set of continuous functions $\psi : Y \to \mathbf{R}$ satisfying $f \circ h = f \exp(2\pi i \psi)$ for some continuous function $f : Y \to S^1$ [1].

Let Y be in addition connected and let $f: Y \to S^1$ be a continuous function such that $[f] \in \operatorname{Ker}(h^* - id)$. There is a continuous function $g: Y \to \mathbf{R}$ such that $f \circ h = f \exp(2\pi ig)$ and any two such functions differ by an integer. One can easily see that there is a well defined group homomorphism $R_{\nu}: \operatorname{Ker}(h^* - id) \to S^1$ with

$$R_{\nu}[f] = \exp\left(2\pi i \int_{Y} g d\nu\right)$$

called the ν -rotation number map of h. The subgroup $\text{Im}R_{\nu}$ of S^1 is called the ν -rotation numbers group of h. We have now the following commutative

diagram.

Thus we arrive at the following.

2.1. Proposition. Let Y be a connected, compact, metrizable space and $h: Y \to Y$ a homeomorphism. Let ν be an h-invariant Borel probability measure on Y. If j^* has a right inverse, then $R_{\nu} \in \text{Im}F$, where

$$F: \operatorname{Hom}(\operatorname{Ker}(h^* - id), \mathbf{R}) \to \operatorname{Hom}(\operatorname{Ker}(h^* - id), S^1)$$

is the homomorphism defined by $F(\alpha) = \exp(2\pi i \alpha)$.

If $h: Y \to Y$ is homotopic to the identity and $\check{H}^1(Y; \mathbf{Z})$ is free, then R_{ν} can be considered an element of $\operatorname{Hom}(\check{H}^1(Y; \mathbf{Z}), \mathbf{R}) / \operatorname{Hom}(\check{H}^1(Y; \mathbf{Z}), \mathbf{Z})$, since Ker $F = \operatorname{Hom}(\check{H}^1(Y; \mathbf{Z}), \mathbf{Z})$, where F is the homomorphism of Proposition 2.1.

If Y is a closed manifold, then $\operatorname{Hom}(\check{H}^1(Y; \mathbf{Z}), \mathbf{R})/\operatorname{Hom}(\check{H}^1(Y; \mathbf{Z}), \mathbf{Z})$ is isomorphic to $H_1(Y; \mathbf{R})/H_1(Y; \mathbf{Z})$, by the Universal Coefficient Theorems (see [9]). Thus for any *h*-invariant Borel probability measure ν on Y, the rotation number map R_{ν} can be considered an element of $H_1(Y; \mathbf{R})/H_1(Y; \mathbf{Z})$. A representative of R_{ν} in $H_1(Y; \mathbf{R})$ is $A_{\mu} \circ r$, where r is a right inverse of j^* . The set $\rho(h) = \{R_{\nu} : \nu \in \mathcal{M}_h(Y)\}$ is the *er*godic rotation set of h, where $\mathcal{M}_h(Y)$ denotes the set of h-invariant Borel probability measures on Y and is weakly compact in $H_1(Y; \mathbf{R})/H_1(Y; \mathbf{Z})$ [6].

2.2. Example. Let $h : T^n \to T^n$ be a homeomorphism of the *n*-torus homotopic to the identity. If $p_i : T^n \to S^1$ is the projection onto the *i*-th factor, $1 \le i \le n$, then the homotopy classes $[p_1], ..., [p_n]$ form a basis of $H^1(T^n; \mathbb{Z})$. Let ν be a *h*-invariant Borel probability measure and μ the corresponding measure that is invariant by the suspension of *h*. Then R_{ν} is represented by the vector

$$(A_{\mu}(r[p_1]), ..., A_{\mu}(r[p_n]))$$

with respect to the dual basis of $H_1(T^n; \mathbf{R})$.

Let $\tilde{h} : \mathbf{R}^n \to \mathbf{R}^n$ be a lift of h and $\psi : T^n \to \mathbf{R}^n$ be the continuous function defined by $\psi(x) = \tilde{h}(y) - y$, where $y \in p^{-1}(x)$ and $p : \mathbf{R}^n \to T^n$ is the canonical covering projection. Then,

$$(A_{\mu}(r[p_1]), ..., A_{\mu}(r[p_n])) = \int_{T^n} \psi d\nu \pmod{\mathbf{Z}^n}.$$

228

That is, R_{ν} is represented by the ν -mean translation vector of h. In case ν is ergodic, the Ergodic Theorem of Birkhoff implies that

$$\int_{T^n} \psi d\nu = \lim_{k \to +\infty} \frac{\tilde{h}^k(y) - y}{k}$$

 $p^{-1}\nu$ -almost for every $y \in [0,1)^n$.

2.3. *Remark.* Let H be a homotopy from id to h. We can extend it to $[0, +\infty) \times Y$ by setting inductively $H_t = H_{t-[t]} \circ H_{[t]}$. If $f: Y \to S^1$ is a continuous function, there exists a unique continuous function $g: [0, +\infty) \times Y \to \mathbf{R}$ such that g(0, x) = 0 and

$$\frac{f(H_t(x))}{f(x)} = \exp(2\pi i g(t, x)),$$

for every $t \ge 0$ and $x \in Y$. Then, $g(t, x) = g(t - [t], h^{[t]}(x)) + g([t], x)$ and inductively

$$g(n,x) = \sum_{k=0}^{n-1} g(1,h^k(x))$$

for every $n \in \mathbb{N}$. It follows from the Ergodic Theorem of Birkhoff that for every $\nu \in \mathcal{M}_h(Y)$ the limit

$$g^*(x) = \lim_{t \to +\infty} \frac{g(t,x)}{t} = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} g(1, h^k(x))$$

exists ν -almost for every $x \in Y$, is ν -integrable and

$$R_{\nu}[f] = \exp\Big(2\pi i \int_{Y} g^* d\nu\Big).$$

2.4. Remark. Let h_1 , h_2 be two homeomorphisms of the compact manifold Y, which are homotopic to the identity and preserve the Borel probability measure ν . If $R_{\nu}(h_k)$ is the ν -rotation number map of h_k , k = 1, 2, then

$$R_{\nu}(h_1 \circ h_2) = R_{\nu}(h_1)R_{\nu}(h_2).$$

Indeed, if $f: Y \to S^1$ is a continuous function for which there are continuous functions $g_k: Y \to \mathbf{R}$ such that $f \circ h_k = f \exp(2\pi i g_k)$, k = 1, 2, then

$$f \circ h_1 \circ h_2 = f \exp(2\pi i (g_1 \circ h_2 + g_2)).$$

Since ν is h_2 -invariant, we have

$$R_{\nu}(h_1 \circ h_2)[f] = \exp(2\pi i \int_Y (g_1 \circ h_2 + g_2) d\nu) = R_{\nu}(h_1)[f] R_{\nu}(h_2)[f].$$

3. Rotation number maps and $SL(2, \mathbf{R})$

Every $A \in SL(2, \mathbf{R})$ has a unique decomposition A = US, where $U \in SO(2, \mathbf{R})$ and S is a symmetric, positive definite matrix. This is the *polar decomposition* of A. In this way we get a C^{∞} diffeomorphism $S^1 \times (0, +\infty) \times \mathbf{R} \cong SL(2, \mathbf{R})$. It is easily verified [10] that

$$U = |\det(A + (A^t)^{-1})|^{-1/2} (A + (A^t)^{-1}).$$

If $p : SL(2, \mathbf{R}) \to SL(2, \mathbf{R})$ is the universal covering of $SL(2, \mathbf{R})$, then the preceeding diffeomorphism can be lifted to a C^{∞} diffeomorphism $\mathbf{R} \times (0, +\infty) \times \mathbf{R} \cong \widetilde{SL(2, \mathbf{R})}$. The group of the deck transformations is isomorphic to \mathbf{Z} . Let d be a generator and $D = d(\tilde{I}_2)$, where \tilde{I}_2 is the unit element of $\widetilde{SL(2, \mathbf{R})}$. Since p is a homomorphism, we have $P^{-1}d(P) \in \text{Ker } p$ and $d(P)P^{-1} \in \text{Ker } p$, for every $P \in \widetilde{SL(2, \mathbf{R})}$. The continuity of d, the connectedness of $\widetilde{SL(2, \mathbf{R})}$ and the discreteness of Ker p imply that d(P) = PD = DP for every $P \in \widetilde{SL(2, \mathbf{R})}$.

The map $r : SL(2, \mathbf{R}) \to SO(2, \mathbf{R})$ defined by r(A) = U is a C^{∞} submersion and a strong deformation retraction that can be lifted to a C^{∞} submersion $\Theta : \widetilde{SL(2, \mathbf{R})} \to \mathbf{R}$, which has the following properties :

(i) If P, Q correspond to elements of $\{0\} \times (0, +\infty) \times \mathbf{R}$, then $|\Theta(PQ)| < 1$, and

(ii) $|\Theta(PQ) - \Theta(P) - \Theta(Q)| < 1$ for every $P, Q \in SL(2, \mathbf{R})$. Of course r is not a group homomorphism.

3.1. Lemma. Under the usual multiplication of matrices r is a homomorphism of H-groups.

Proof. Let $A, B \in SL(2, \mathbb{R})$ have polar decompositions A = r(A)s(A) and B = r(B)s(B). Since s(A) is symmetric and positive definite, $s(A)^{\rho}$ is defined for every $\rho \ge 0$. Note that since

$$AB = r(A)r(B)[r(B)^{-1}s(A)r(B)s(B)],$$

by the uniqueness of the polar decomposition we have

$$r(B)^{-1}r(A)^{-1}r(AB) = r(r(B)^{-1}s(A)r(B)s(B)).$$

The function $F: [0,1] \times SL(2,\mathbf{R}) \times SL(2,\mathbf{R}) \rightarrow SO(2,\mathbf{R})$ defined by

$$F(\rho, A, B) = r(A)r(B)r((r(B)^{-1}s(A)r(B))^{1-\rho}s(B)^{1-\rho})$$

is continuous and F(0, A, B) = r(AB), F(1, A, B) = r(A)r(B). Hence r is a homomorphism of H-groups.

Torus diffeomorphisms

Let Y be a compact metrizable space. The set $[Y; SL(2, \mathbf{R})]$ of homotopy classes of continuous functions of Y into $SL(2, \mathbf{R})$ becomes a group in the obvious way, using the group structure of $SL(2, \mathbf{R})$. It follows from Lemma 3.1 that the induced map $r^* : [Y; SL(2, \mathbf{R})] \to \check{H}^1(Y; \mathbf{Z})$ is a group homomorphism. Since r is a strong deformation retraction, r^* is an isomorphism whose inverse is induced by the inclusion $SO(2, \mathbf{R}) \hookrightarrow$ $SL(2, \mathbf{R})$.

Suppose that Y is also connected and $h: Y \to Y$ is a homeomorphism homotopic to the identity. Let $f: Y \to SL(2, \mathbf{R})$ be a continuous function. If H is a homotopy from id to h, then $(f \circ H)f^{-1}$ is a homotopy from I_2 to $(f \circ h)f^{-1}$. We can extend H to $[0, +\infty) \times Y$ inductively, by setting $H_t = H_{t-[t]} \circ H_{[t]}$. By the homotopy lifting property, there is a unique continuous map $G: [0, +\infty) \times Y \to \widetilde{SL(2, \mathbf{R})}$ such that $G(0, x) = \tilde{I_2}$ and

$$p(G(t,x)) = f(H_t(x))f(x)^{-1}$$

for every $t \ge 0$ and $x \in Y$. It follows that

$$f(H_t(x))f(x)^{-1} = p(G(t-[t], h^{[t]}(x))G([t], x).$$

Thus, there exists a function $k : [0, +\infty) \times Y \to \mathbb{Z}$ such that

$$G(t - [t], h^{[t]}(x))G([t], x)G(t, x)^{-1} = D^{k(t,x)}$$

For each $x \in Y$, it is obvious that k(., x) is continuous on $[0, +\infty) \setminus \mathbf{N}$ and continuous from the right on $[0, +\infty)$. Since

$$\lim_{t \neq 1} G(t - [t], h^{[t]}(x)) G([t], x) G(t, x)^{-1} = G(1, x) G(0, x) G(1, x)^{-1}$$
$$= \tilde{I}_2,$$

it follows inductively that k(., x) is everywhere continuous and hence identically zero, by connectedness. Thus,

$$G(t,x) = G(t - [t], h^{[t]}(x))G([t], x)$$

for every $t \ge 0$ and $x \in Y$, and inductively

$$G(n, x) = G(1, h^{n-1}(x))...G(1, h(x))G(1, x)$$

for every $n \in \mathbf{N}$ and $x \in Y$. According to the Ergodic Theorem for $\widetilde{SL(2, \mathbf{R})}$ [7], which is a direct consequence of the almost subadditive ergodic theorem proved in [3], if ν is an *h*-invariant Borel probability measure on *Y*, the limit

$$G^*(x) = \lim_{n \to +\infty} \frac{1}{n} \Theta(G(n, x))$$

exists ν -almost for every $x \in Y$, is *h*-invariant, ν -integrable and

$$\int_Y G^* d\nu = \lim_{n \to +\infty} \frac{1}{n} \int_Y \Theta(G(n, x)) d\nu.$$

Since for every t > 1 we have

$$|\Theta(G(t,x)) - \Theta(G(t-[t],h^{[t]}(x)) - \Theta(G([t],x))| < 1$$

and by compactness and uniform continuity

$$\lim_{t \to +\infty} \frac{1}{t} \Theta(G(t-[t], h^{[t]}(x)) = 0,$$

we conclude that

$$G^*(x) = \lim_{t \to +\infty} \frac{1}{t} \Theta(G(t, x)).$$

3.2. Lemma. The limit $G^* \pmod{\mathbf{Z}}$ does not depend on the choice of the homotopy H from id to h.

Proof. If $\phi = (f \circ h)f^{-1}$, then G(1, .) is a lift of ϕ and it is sufficient to prove that if $\psi: Y \to SL(2, \mathbf{R})$ is another lift of ϕ and

$$G'(n,x) = \psi(h^{n-1}(x))...\psi(h(x))\psi(x),$$

then

$$\lim_{n \to +\infty} \frac{1}{n} \Theta(G'(n, x)) = \lim_{n \to +\infty} \frac{1}{n} \Theta(G(n, x)).$$

Indeed, there exists $m \in \mathbb{Z}$ such that $\psi(x) = D^m G(1, x)$ for every $x \in Y$, and since D commutes with every element of $SL(2, \mathbb{R})$, we have $G'(n, x) = D^{mn}G(n, x)$. Note that $\Theta(D^{mn}) = mn$, since $D \in \text{Ker } p$. Thus, we have $|\Theta(G'(n, x)) - \Theta(G(n, x)) - mn| < 1$ and the conclusion follows.

3.3. Proposition. If R_{ν} is the rotation number map of h with respect to the h-invariant Borel probability measure ν , then using the above notation,

$$(R_{\nu} \circ r^*)[f] = \exp\left(2\pi i \int_Y G^* d\nu\right).$$

Proof. There exists a unique continuous function $g: [0, +\infty) \times Y \to \mathbf{R}$ such that g(0, x) = 0 and

$$\frac{r(f(H_t(x)))}{r(f(x))} = \exp(2\pi i g(t, x))$$

for every $t \ge 0$ and $x \in Y$. Choose any $Q(x) \in SL(2, \mathbf{R})$ such that p(Q(x)) = f(x). Then, we have

$$\frac{r(f(H_t(x)))}{r(f(x))} = \frac{1}{r(f(x))} r(p(G(t,x)Q(x)))$$

and so there exists $k(t, x) \in \mathbf{Z}$ such that

$$g(t,x) = \Theta(G(t,x)Q(x)) - \Theta(Q(x)) + k(t,x).$$

By continuity with respect to t and connectedness, we get k(t, x) = k(0, x) = 0. Hence

$$g^*(x) = \lim_{t \to +\infty} \frac{g(t,x)}{t} = \lim_{t \to +\infty} \frac{1}{t} \left[\Theta(G(t,x)Q(x)) - \Theta(Q(x)) \right]$$

 ν -almost for every $x \in Y$ and by property (ii) of Θ , we get $g^*(x) = G^*(x)$. This proves the proposition.

4. The Ruelle rotation

Let $h : T^2 \to T^2$ be a C^1 diffeomorphism isotopic to the identity. Let H be an isotopy from id to h. We need not assume that H is C^1 , but merely that $H : [0,1] \times T^2 \to T^2$ is a continuous map such that $H_0 = id$, $H_1 = h$ and $H_t : T^2 \to T^2$, $t \in [0,1]$, is a continuous path of C^1 diffeomorphisms in the C^1 topology. As usual we extend it to $[0, +\infty) \times T^2$ by setting inductively $H_t = H_{t-[t]} \circ H_{[t]}$. Let $\tau : TT^2 \to T^2 \times \mathbf{R}^2$ be a trivialization of the tangent bundle of T^2 , compatible with its usual orientation. Let $\tau_x : T_x T^2 \to \{x\} \times \mathbf{R}^2$ denote the restriction to the fiber. The continuous function $F : [0, +\infty) \times T^2 \to SL(2, \mathbf{R})$ defined by

$$F(t,x) = \frac{\tau_{H(t,x)} \circ DH_t(x) \circ \tau_x^{-1}}{(\det(\tau_{H(t,x)} \circ DH_t(x) \circ \tau_x^{-1}))^{1/2}}$$

can be lifted to a unique continuous function $G : [0, +\infty) \times T^2 \to SL(2, \mathbf{R})$ such that $G(0, x) = \tilde{I}_2$ and p(G(t, x)) = F(t, x), for every $t \ge 0$ and $x \in T^2$. From the chain rule and a same argument used in an analogous situation of Sect. 3 we have $G(t, x) = G(t - [t], h^{[t]}(x))G([t], x)$. So, inductively, $G(n, x) = G(1, h^{n-1}(x))...G(1, h(x))G(1, x)$. According to the Ergodic Theorem for $SL(2, \mathbf{R})$ [7], if ν is an *h*-invariant Borel probability measure, the limit

$$G^*(x) = \lim_{t \to +\infty} \frac{1}{t} \Theta(G(t, x)) = \lim_{n \to +\infty} \frac{1}{n} \Theta(G(n, x))$$

exists ν -almost for every $x \in T^2$, is h-invariant, ν -integrable and

$$\int_{T^2} G^* d\nu = \lim_{n \to +\infty} \frac{1}{n} \int_{T^2} \Theta(G(n, x)) d\nu.$$

The method of proof of Lemma 3.2 applies here also to show that $G^* \pmod{\mathbf{Z}}$ is independent on the isotopy H. It does depend however on the trivialization τ of the tangent bundle of T^2 . Let

$$\rho_{\nu}^{\tau}(H) = \int_{T^2} G^* d\nu,$$

and $P_{\nu}^{\tau}(h) = \exp(2\pi i \rho_{\nu}^{\tau}(H)).$

Let now τ_1 and τ_2 be two trivializations of TT^2 compatible with the usual orientation of T^2 and $f: T^2 \to SL(2, \mathbf{R})$ be the continuous function defined by

$$f(x) = \frac{\tau_{1x} \circ \tau_{2x}^{-1}}{(\det(\tau_{1x} \circ \tau_{2x}^{-1}))^{1/2}}.$$

4.1. Proposition. If $R_{\nu}(h)$ is the ν -rotation number map of h, then

$$R_{\nu}(h)(r^*[f]) = P_{\nu}^{\tau_1}(h)P_{\nu}^{\tau_2}(h)^{-1}.$$

Proof. Let F_j , G_j be the functions used in the definition of $\rho_{\nu}^{\tau_j}$ as above, j = 1, 2 and $G : [0, +\infty) \times T^2 \to \widetilde{SL(2, \mathbf{R})}$ be the unique continuous map such that $G(0, x) = \tilde{I}_2$ and $p(G(t, x)) = f(H_t(x))f(x)^{-1}$ for every $t \ge 0$ and $x \in T^2$. It is easy to see that since

$$F_1(t,x) = (f(H_t(x))f(x)^{-1})(f(x)F_2(t,x)f(x)^{-1}),$$

we have $G_1(t, x) = G(t, x)Q(x)G_2(t, x)Q(x)^{-1}$, where p(Q(x)) = f(x). This imlpies that $G_1^* = G^* + G_2^*$, ν -almost everywhere and the conclusion follows from Proposition 3.3.

The preceding Proposition shows that $\rho_{\nu}(h) = P_{\nu}^{\tau}(h) \text{Im} R_{\nu}(h)$ is a well defined element of the quotient group $S^1/\text{Im} R_{\nu}(h)$, independent of the trivialization τ , and is called the *Ruelle rotation* of h with respect to the invariant measure ν .

4.2. *Remark.* For every $x \in T^2$ and $n \in \mathbf{N}$ we have

$$\left|\frac{1}{n}\Theta(G(n,x)) - \frac{1}{n}\sum_{k=0}^{n-1}\Theta(G(1,h^k(x)))\right| < 1.$$

From the Ergodic Theorem of Birkhoff the limit

$$\tilde{G}(t,x) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \Theta(G(1,h^k(x)))$$

exists ν -almost for every $x \in T^2$, is h-invariant, ν -integrable and

$$\int_{T^2} \tilde{G}(1,x) d\nu = \int_{T^2} \Theta(G(1,x)) d\nu.$$

Thus, taking limits and integrating, we get

$$|\rho_{\nu}^{\tau}(H) - \int_{T^2} \Theta(G(1,x)) d\nu| \le 1.$$

Let now ν be a Borel probability measure on T^2 and $Diff_0^1(T^2,\nu)$ be the path component of the identity in the C^1 topology of the group of C^1 diffeomorphisms of T^2 which preserve ν . In the space of continuous paths in $Diff_0^1(T^2,\nu)$ with initial point id endowed with the compactopen topology the relation of homotopy with fixed endpoints is an equivalence relation. Let $Diff_0^1(T^2,\nu)$ be the corresponding quotient space and $q: Diff_0^1(T^2,\nu) \rightarrow Diff_0^1(T^2,\nu)$ be the continuous map $q([H]) = H_1$. If $Diff_0^1(T^2,\nu)$ is locally contractible, then q is its universal covering projection. The space $Diff_0^1(T^2,\nu)$ has a topological group structure, if we define the composition of paths by $(H \circ H')_t = H_t \circ H'_t, t \in [0,1]$, and then q becomes a group homomorphism.

4.3. Lemma. If *H* and *H'* are two homotopic paths with fixed endpoints the initial point being id in $Diff_0^1(T^2, \nu)$, then $\rho_{\nu}^{\tau}(H) = \rho_{\nu}^{\tau}(H')$ for every trivialization τ of TT^2 .

Proof. Let $(H^s)_{s \in [0,1]}$ be a homotopy with fixed endpoints such that $H^0 = H$ and $H^1 = H'$. Let F^s and G^s be the functions as above in the definition of the Ruelle rotation corresponding to H^s . Then, $F^s(n, x) = F^0(n, x)$, for every $x \in T^2$ and $n \in \mathbb{N}$, and $G^s(1, .)$ is a lift of $F^0(1, .)$ for every $s \in [0, 1]$. Thus, there exist $m(s) \in \mathbb{Z}$ such that $G^s(1, .) = G^0(1, x)D^{m(s)}$, for every $x \in T^2$ and $s \in [0, 1]$. By continuity and connectedness, we must have m(s) = m(0) = 0. So, $G^s(1, .) = G^0(1, .)$ for every $s \in [0, 1]$ and the conclusion follows.

So we have a well defined function $\rho_{\nu}^{\tau} : Diff_0^1(T^2, \nu) \to \mathbf{R}$ and the following diagramm commutes.

$$\begin{array}{ccc} \widetilde{Diff_0^1(T^2,\nu)} & \stackrel{\rho_{\nu}^{\tau}}{\longrightarrow} & \mathbf{R} \\ & q \\ & & & \downarrow \exp \\ Diff_0^1(T^2,\nu) & \stackrel{P_{\nu}^{\tau}}{\longrightarrow} & S^1 \end{array}$$

The continuous case of the Ergodic Theorem for $SL(2, \mathbf{R})$ implies also that ρ_{ν}^{τ} is continuous with respect to the C^1 topology in $Diff_0^1(T^2, \nu)$ (see [7]).

It is immediate from the definition that $\rho_{\nu}^{\tau}(H^m) = m \rho_{\nu}^{\tau}(H)$ for every $m \in \mathbb{Z}$. If H and H' are two paths in $Diff_0^1(T^2, \nu)$ with initial point id, then one can easily verify using Remark 4.2 that

$$|\rho_{\nu}^{\tau}(H \circ H') - \rho_{\nu}^{\tau}(H) - \rho_{\nu}^{\tau}(H')| \le 4.$$

Thus, ρ_{ν}^{τ} is a homogeneous quasi-morphism. Using this one can show that P_{ν}^{τ} is constant on conjugancy classes in $Diff_0^1(T^2,\nu)$ (see the remark following proposition 2.8 in [4]).

We recall now the notion of bounded cohomology with real coefficients of a discrete group G. Let $B^n(G)$ be the Banach space of all bounded real functions on G^n , $n \ge 1$. If $d_n : B^n(G) \to B^{n+1}(G)$ is the continuous operator defined by

$$(d_n f)(g_0, ..., g_n) = f(g_1, ..., g_n) + \sum_{k=1}^n (-1)^k f(g_0, ..., g_{k-1}g_k, ..., g_n) + (-1)^{n+1} f(g_0, ..., g_{n-1}),$$

then $d_{n+1} \circ d_n = 0$. The bounded cohomology of G with real coefficients $H_b^*(G; \mathbf{R})$ is the cohomology of the cochain complex of Banach spaces $(B^*(G), d_*)$. It is always true that $H_b^1(G; \mathbf{R}) = 0$.

It follows from the above that $d\rho_{\nu}^{\tau}: Dif f_0^1(T^2, \nu) \times Dif f_0^1(T^2, \nu) \to \mathbf{R}$ defined by $(d\rho_{\nu}^{\tau})(H, H') = \rho_{\nu}^{\tau}(H \circ H') - \rho_{\nu}^{\tau}(H) - \rho_{\nu}^{\tau}(H')$ is a bounded 2-cocycle. If τ_1, τ_2 are two trivializations of TT^2 , it follows from Remark 2.4 and Proposition 4.1 that $d\rho_{\nu}^{\tau_1} - d\rho_{\nu}^{\tau_2}$ takes on integer values. Since $Dif f_0^1(T^2, \nu)$ is connected, and $\rho_{\nu}^{\tau_k}, k = 1, 2$, are continuous, both taking the value zero at id, we conclude that $d\rho_{\nu}^{\tau_1} = d\rho_{\nu}^{\tau_2}$. Thus, in the sequel we shall simply write $d\rho_{\nu}$. We shall call the element $[d\rho_{\nu}]_b$ of the second bounded cohomology with real coefficients of the group $Dif f_0^1(T^2, \nu)$ made discrete, the *Ruelle rotation class*. It belongs to the kernel of the natural homomorphism $H_b^2(Dif f_0^1(T^2, \nu); \mathbf{R}) \to H^2(Dif f_0^1(T^2, \nu); \mathbf{R})$.

4.4. Lemma. If ν is a Borel probability measure on T^2 , then $[d\rho_{\nu}]_b = 0$ if and only if $\rho_{\nu}^{\tau} : Diff_0^1(T^2, \nu) \to \mathbf{R}$ is a group homomorphism for any trivialization τ of TT^2 .

Proof. Suppose that there exists $\sigma \in B^1(Diff_0^1(T^2, \nu))$ such that $d_1\sigma = d\rho_{\nu}^{\tau}$. Then, $\sigma(id) = \rho_{\nu}^{\tau}(id) = 0$. Moreover, it follows inductively that σ is homogeneous, since ρ_{ν}^{τ} is. But then we must have $\sigma = 0$, because σ is bounded. Hence ρ_{ν}^{τ} is a group homomorphism. The converse is trivial.

4.5. Theorem. The Ruelle rotation class with respect to the Haar measure on T^2 is not trivial.

Proof. Let D^2 be the closed unit disc, λ be the normalized Lebesgue measure on D^2 and K be a collar closed neighbourhood of ∂D^2 . The group $Diff^{\infty}(D^2, K, \lambda)$ of λ -preserving diffeomorphisms of D^2 , which are the identity on K, is contractible in the C^{∞} topology. There is a continuous monomorphism $l : Diff^{\infty}(D^2, K, \lambda) \to Diff_0^{\infty}(T^2, \nu)$, where ν is the Haar measure on T^2 . The latter is a locally contractible group in the C^{∞} topology. By contractibility, l is lifted to a continuous homomorphism $\tilde{l} : Diff^{\infty}(D^2, K, \lambda) \to Diff_0^{\infty}(T^2, \nu)$. Let τ be the trivialization of TT^2 defined by the derivative of the universal covering projection $p : \mathbb{R}^2 \to T^2$. According to theorem 4.3 in [2], $\rho_{\nu}^{\tau} \circ \tilde{l}$ is not a group homomorphism. Hence ρ_{ν}^{τ} is not a group homomorphism and $[d\rho_{\nu}]_b$ is not trivial, by Lemma 4.4.

From corollary 2.11 in [5], we have :

4.6. Corollary. The group $Dif f_0^1(T^2, \nu)$ is not uniformly perfect for the Haar measure ν .

Finally, we shall be concerned with the Ruelle rotation class of a Dirac measure ν at a point $x \in T^2$. In this case $Diff_0^1(T^2, \nu)$ is the path component of the identity in the C^1 topology of the group of C^1 diffeomorphisms that fix x.

If $h: T^2 \to T^2$ is a C^1 diffeomorphism isotopic to the identity that fixes x, then $R_{\nu}(h) = 1$ and $\rho(x, h) = P_{\nu}^{\tau}(h)$ is independent of the trivialization τ of TT^2 , by Proposition 4.1. $\rho(x, h)$ is the *infinitesimal rotation number* of the fixed point x of h. It measures the rate at which the fixed point x is rotating infinitesimally.

If H is an isotopy from id to h and F, G as above, then

$$F(n,x) = \frac{(\tau_x \circ Dh(x) \circ \tau_x^{-1})^n}{(\det(\tau_x \circ Dh(x) \circ \tau_x^{-1}))^{n/2}}$$

for every $n \in \mathbf{N}$ and

$$\rho_{\nu}^{\tau}(H) = \lim_{n \to +\infty} \frac{1}{n} \Theta(G(n, x)).$$

Let $P \in SL(2, \mathbb{R})$. Applying the Ergodic Theorem for $SL(2, \mathbb{R})$ for the trivial one point probability space, we conclude that the limit

$$\Omega(P) = \lim_{n \to +\infty} \frac{1}{n} \Theta(P^n)$$

exists. Since Θ is continuous, $\Omega : SL(2, \mathbf{R}) \to \mathbf{R}$ is a continuous function, which is also constant on conjugancy classes, by property (ii) of Θ . Moreover, we have $|\Theta((D^k P)^n) - \Theta(P^n) - kn| < 1$, from which follows that $\Omega(D^k P) = \Omega(P) + k$. Thus, Ω descends to a continuous function $\omega : SL(2, \mathbf{R}) \to S^1$ defined by $\omega(A) = \exp(2\pi i \Omega(P))$, where P is any lift of A, which is constant on conjugancy classes.

If A is hyperbolic with positive eigenvalues, then $\omega(A) = 1$. If A has negative eigenvalues, then $\omega(A) = -1$. If A is parabolic, then $\omega(A) = 0$. If A is elliptic with eigenvalues $\cos 2\pi\phi \pm i \sin 2\pi\phi$, then $\omega(A) = e^{2\pi i\phi}$.

Let A be a rotation by an angle $2\pi\phi$, with $0 < \phi < 1/4$ and B be diagonal hyperbolic with eigenvalues -4 and -1/4. Then AB is hyperbolic with negative eigenvalues and according to the above we have $\omega(AB) = \omega(B) = -1$ and $\omega(A) = e^{2\pi i\phi}$. Hence ω is not a group homomorphism.

4.7. Theorem. The Ruelle rotation class with respect to a Dirac point measure is not trivial.

Proof. With the above notation we have

$$\rho(x,h) = \omega(Dh(x)/(\det Dh(x))^{1/2}),$$

for every $h \in Diff_0^1(T^2, \nu)$, where ν is the Dirac measure at x. The above remarks imply that $\rho(x, .) : Diff_0^1(T^2, \nu) \to S^1$ is not a group homomorphism and the result follows.

References

- 1. Athanassopoulos, K.: Some aspects of the theory of asymptotic cycles. Expositiones Math. **13**, 321-336 (1995).
- 2. Barge, J., Ghys, E.: Cocycles d' Euler et de Maslov. Math. Ann. 294, 235-265 (1992).
- Derriennic, Y.: Un théoreme ergodic presque sous-additif. Ann. of Probab. 11, 669-677 (1983).
- Gambaudo, J-M., Ghys, E.: Enlacements asymptotiques. Topology 36, 1355-1379 (1997).

- 5. Matsumoto, S., Morita, S.: Bounded cohomology of certain groups of homeomorphisms. Proc. Amer. Math. Soc. **94**, 539-544 (1985).
- Pollicott, M.: Rotation sets for homeomorphisms and homology. Trans. Amer. Math. Soc. 331, 881-894 (1992).
- Ruelle, D.: Rotation numbers for diffeomorphisms and flows. Ann. Inst. H. Poincaré, Physique Theorique 42, 109-115 (1985).
- 8. Schwartzman, S.: Asymptotic cycles. Ann. of Math. 66, 270-284 (1957).
- 9. Spanier, E.H.: Algebraic Topology. New York: McGraw-Hill 1966.
- 10. Uhlig, F.: Explicit polar decomposition and a near-characteristic polynomial: The 2 × 2 case. Linear Algebra Appl. **38**, 239-249 (1981).