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1. Introduction

In this note we are concerned with the Ruelle rotation number, which is
defined for aC' diffeomorphismh of the 2-torusT™ that is isotopic to

the identity. Intuitively, the Ruelle rotation number is the mean value, with
respect to an-invariant Borel probability measure of the asymptotic rate

at which the derivative of rotates the tangent planes. In order to measure it,
we need to have fixed in advance a trivialization of the tangent bufrifife

of T2. The Ruelle rotation number depends on the trivialization, as well as
on the isotopy fromid to h. As was mentioned by Ruelle in [7], there is an
independence on the isotopy if we take the number #dce. consider the
corresponding point on the unit circle .

In Sect. 4 we clarify the dependence on the trivializatiorif Gf2. It
turns out that the two points ¢! taken starting with two different triv-
ializations of 77T differ by an element of the group IRy (h), where
R,(h) : HY(T?% Z) — S' is thev-rotation number map of. This may
be seen as the discrete analogue of proposition 3.4 in [4]. It follows from
this and the continuity of the Ruelle rotation number with respect t¢the
topology [7], that the differential of the Ruelle rotation in group cohomology

is areal bounded 2-cocycle on the "universal covering” grbup £} (12, v)

of the identity path component of the group of the@reservingC'! diffeo-
morphisms ofl’?, which depends only on and not on the trivialization of
TT?. So it defines an element of the second bounded cohomology with real

coefficients ofDi f f (12, v) made discrete, the Ruelle rotation class. This
remark is perhaps the core of the present paper.
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The Ruelle rotation class belongs to the kernel of the natural homomor-
phism HZ(Dif f&(T%,v); R) — H?*(Dif f&(T2,v); R), which is known
to be injective if Dif f}(T2,v) is uniformly perfect [5]. Thus, it can be

considered as an obstruction to the uniform perfectnedsigff} (12, v).
For instance, it follows from theorem 4.3 in [2] thatifs the Haar measure,

then the Ruelle rotation class is not trivial and so in this dasgf (72, v)
is not uniformly perfect and not amenable. The same is true in the case of a
Dirac point measure also.

2. Preliminaries on rotation vectors in homology

Let X be a compact metrizable space carrying a continuous (#g¥cr .
Let tx denote the translation of the poimtc X along its orbit in time

t € R. For every continuous functiofi : X — S' there is a continuous
functiong : R x X — R, called thecocycleof f such thatf(tz) =
f(z)exp(2mig(t,z)) andg(t + s,x) = g(s,tx) + g(t, z) for everyz € X
andt,s € R. The Ergodic Theorem of Birkhoff implies that for every
¢-invariant Borel probability measugeon X the limit

. . gt o)
g (.T) - tlginoo t

existsy-almost for every: € X and [y g*dp = [y g(1,.)dp. This integral
describes thei-average rotation of points moving along their orbits with
respect to the projectiori. The cocycle property of implies thatg* is

an u-almost everywhere defined measurable flow invariant function, that is
g*(tx) = g*(x) for everyt € R, whenever*(x) is defined.

If f1, fo : X — S' are homotopic continuous functions with cocy-
clesgi, g2, respectively, therfy, gidu = [ g3dp. Since the first integral
Cech cohomology groufi ' (X; Z) is isomorphic to the group of homotopy
classes of continuous functions &fto S!, there is a group homomorphism
A, : HY(X;Z) — R defined by

Aulfl = /XQ(L Ddp

whereg is the cocycle off : X — S! and[f] the homotopy class of.The
homomorphismA,, was defined by S.Schwartzman [8] and is called the
p-asymptotic cyclef the flow. It describes how a-average orbit winds
aroundX. The image of4,, is called theu-winding numbers groupf the
flow ¢ and is denoted by/,,. An exposition of the basic theory of asymptotic
cycles with details is given in [1].
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The suspensions of homeomorphisms is a class of flows whose winding
numbers groups can be computed in terms of initial dataY'Lie¢ a compact
metrizable space and let Y — Y be a homeomorphism. @, 1] x Y we
consider the equivalence relatioh «) ~ (0, h(z)), z € Y. The quotient
spaceX = [0,1] x Y/ ~ is compact metrizable and is called tmapping
torusof h. Let[s, 2] denote the class @&, ) € [0, 1] x Y. The flow onX
defined by

t[s,x] = [t + s — n, h"(x)]

if n <t+s<n+1,is called thesuspensiowf A.

If v is an h-invariant Borel probability measure ori and X is the
Lebesgue measure df, 1], then the product measure x v induces a
Borel probability measure oA which is invariant by the suspension /of
Every invariant by the suspension Borel probability measure oX is
of this form.

Let C(Y,Z) be the group of integer valued continuous functions’on
Lety : C(Y,Z2)— H'(X;Z) be defined byy(y)) = [f], wheref : X — S!
is the continuous function defined bjt, x] = exp(2mity(z)) and j* :
HY(X;Z) — H'(Y;Z) be the homomorphism induced by the inclusion
j Y — X with j(x) = [0, z]. Then one can easily verify that the following
sequence is exact.

o, 2" o, z) L i x; 2) 2 1y 2) Y (Y Z)

If v is anh-invariant Borel probability measure dhandy is the corre-
sponding invariant measure of, then

W, = {/Ywdyzw ELog(Y,h)}

whereLog(Y, h) is the set of continuous functions: Y — R satisfying
f oh = fexp(2mit) for some continuous functiofi: ¥ — S* [1].

Let Y be in addition connected and I¢t: Y — S be a continuous
function such thaff] € Ker(h* — id). There is a continuous function
g - Y — R such thatf o h = fexp(2mig) and any two such functions
differ by an integer. One can easily see that there is a well defined group
homomorphisnR,, : Ker(h* — id) — S with

R,[f] = exp (27?i/}/gdl/>

called thev-rotation number mapf h. The subgroup I?, of S is called
thev-rotation numbers groupf 4. We have now the following commutative
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diagram.

x;z) -, R

.| [

Ker(h* — id) Ly
Thus we arrive at the following.

2.1. Proposition. LetY be a connected, compact, metrizable space and
h : Y — Y a homeomorphism. Letbe anh-invariant Borel probability
measure ofY. If j* has a right inverse, theR, € ImF’, where

F : Hom(Ker(h* —id),R) — Hom(Ker(h* — id), S*)
is the homomorphism defined By«) = exp(2mic).

If h: Y — Y is homotopic to the identity ant ' (Y'; Z) is free, therR,,
can be considered an elementhfm(H'(Y; Z),R)/Hom(H'(Y;Z), Z),
sinceKer F = Hom(H'(Y;Z),Z), where F is the homomorphism of
Proposition 2.1.

If Y is a closed manifold, thefilom(H'(Y;Z),R)/Hom(H"(Y; Z),
Z) is isomorphic toH;(Y;R)/H,(Y;Z), by the Universal Coefficient
Theorems (see [9]). Thus for aryinvariant Borel probability measure
v onY, the rotation number mag, can be considered an element of
H(Y;R)/H,(Y;Z). Arepresentative o, in H,(Y;R) is A, or, where
r is a right inverse ofi*. The setp(h) = {R, : v € M,(Y)} is theer-
godic rotation seof i, where M, (Y") denotes the set df-invariant Borel
probability measures ori and is weakly compact i/, (Y;R)/H1(Y;Z)
[6].

2.2. Example. Let h : T™ — T™ be a homeomorphism of thetorus
homotopic to the identity. Ip; : 7" — S is the projection onto théth

factor,1 < i < n, then the homotopy classés |, ..., [p,] form a basis
of HY(T™; Z). Let v be ah-invariant Borel probability measure andthe

corresponding measure that is invariant by the suspensibnTdfenR,, is

represented by the vector

(Au(rp1])s o Au(rlpnl))

with respect to the dual basis &f (T™; R).

Leth : R" — R"™ be alift of h andvy : 7" — R" be the continuous
function defined by)(z) = h(y) —y, wherey € p~!(z) andp : R® — T"
is the canonical covering projection. Then,

(Au(rlpr)s ooy Aulrlpnl)) = | v (modZT).
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That is, R, is represented by the-mean translation vector @f. In casev
is ergodic, the Ergodic Theorem of Birkhoff implies that

Sho
pdy = lim WY
Tn k:—)-f—OO k

p~tv-almost for every € [0,1)".

2.3. Remark. Let H be a homotopy fromid to h. We can extend it to
[0, +00) x Y by setting inductively; = H, o Hy. If f: Y — Slisa
continuous function, there exists a unique continuous fungttold, +oo) x
Y — R such thay(0,z) = 0 and

W — exp(2mig(t, z)),

for everyt > 0 andz € Y. Then,g(t,z) = g(t — [t], hl(z)) + g([t], z)
and inductively

n—1
2) =3 g1, 1 (@)
k=0

for everyn € N. It follows from the Ergodic Theorem of Birkhoff that for
everyr € M (Y') the limit

g*(z) = lim gt @ ): lim Zg (1, h* (x

t—+o00 t n—+oo N

existsy-almost for everyr € Y, is u—lntegrable and

R,[f] = exp(2m'/yg*du).

2.4. RemarklLet hy, hy be two homeomorphisms of the compact manifold
Y, which are homotopic to the identity and preserve the Borel probability
measurev. If R, (hy) is thev-rotation number map ofy, £ = 1,2, then

Ry(hfl O h2) = Ry(hl)Ry(hg).

Indeed, iff : Y — S' is a continuous function for which there are contin-
uous functiongy;, : Y — R such thatf o hy = fexp(2migg), k = 1,2,
then

fohiohs = fexp(2mi(g1 o ha + g2)).
Sincev Is ho-invariant, we have

Ry (h1ohy)[f] = eXp(%i/Y (91 © ha + g2)dv) = Ry, (k1) [f1Ry (h2)[f].
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3. Rotation number maps andSL(2, R)

Every A € SL(2,R) has a unique decompositioh = U S, whereU &
SO(2,R) and S is a symmetric, positive definite matrix. This is tpe-
lar decompositiorof A. In this way we get a0 diffeomorphismS?® x
(0,+00) x R = SL(2,R). Itis easily verified [10] that

= [ det(A+ (A) 7|72 A+ (AHT.

If p : SL/(\/Q,R) — SL(2,R) is the universal covering ofL(2,R),
then the preceeding diffeomorphism can be lifted ¢°a diffeomorphism
R x (0,+00) x R = SL(2,R). The group of the deck transformations is
isomorphictdZ. Letd be ageneratorand = d(I3), wherel, is the unitele-
ment of SL(2, R). Sincep is a homomorphism, we have 'd(P) € Kerp
andd(P)P~! € Kerp, for every P € SL(2,R). The continuity ofd,
the connectedness 6fL(2,R) and the discreteness &fer p imply that
d(P) = PD = DP foreveryP € SL(2,R).

The mapr : SL(2,R) — SO(2,R) defined byr(A) = U is aC*>
submersion and a strong deformation retraction that can be liftedfs a
submersior® : SL(2,R) — R, which has the following properties :

() If P,Q correspondto elements ff} x (0, +o0) x R, then|©(PQ)|
< 1,and

(i) |©(PQ) —O(P)—O(Q)| < 1foreveryP, @ € SL(2,R).

Of courser is not a group homomorphism.

3.1. Lemma. Under the usual multiplication of matricesis a homomor-
phism ofH -groups.

Proof. Let A, B € SL(2,R) have polar decomposition$ = r(A)s(A)
andB = r(B)s(B). Sinces(A) is symmetric and positive definite(A)”
is defined for every > 0. Note that since

AB = r(A)r(B)[r(B) " s(A)r(B)s(B)),
by the uniqueness of the polar decomposition we have
r(B) 'r(A) " 'r(AB) = r(r(B) 's(A)r(B)s(B)).
The functionF' : [0, 1] x SL(2,R) x SL(2,R) — SO(2,R) defined by
F(p, A, B) = r(A)r(B)r((r(B)~'s(A)r(B))' " "s(B)' ")

is continuous and’(0, A, B) = r(AB), F(1,A, B) = r(A)r(B). Hence
r is a homomorphism aoff -groups.
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LetY be acompact metrizable space. ThdgetSL(2, R)] of homotopy
classes of continuous functions bf into SL(2,R) becomes a group in
the obvious way, using the group structuref (2, R). It follows from
Lemma 3.1 that the induced map : [Y;SL(2,R)] — HY(Y;Z) is a
group homomorphism. Since is a strong deformation retraction? is
an isomorphism whose inverse is induced by the inclusiof{2,R) —
SL(2,R).

Suppose that” is also connected artd: Y — Y is a homeomorphism
homotopic to the identity. Lef : Y — SL(2, R) be a continuous function.
If H is a homotopy fromid to h, then(f o H) f~! is a homotopy froni,

o (foh)fl. We can extendd to [0, +o0) x Y inductively, by setting
Hy = H,_|;j o Hy;. By the homotopy lifting property, there is a unique

~——

continuous mag: : [0, +00) x Y — SL(2, R) such thatG(0, z) = I, and
p(G(t,x)) = f(He(w)) f(x)™"
for everyt > 0 andx € Y. It follows that
f(Ho(x)) (@)~ = p(G(t = [t], i) (@) G([], ).
Thus, there exists a functidn: [0, +00) x Y — Z such that
G(t = [1], /(@) G([t), )G (¢, 2) " = DB,

For eachr € Y, itis obvious thak(., z) is continuous on0, +oc0) \ N and
continuous from the right oft), +oc). Since

y}q Gt — [t], W (2)G([t], 2)G(t, 2) " = G(1,2)G(0,2)G(1, )"

it follows inductively thatk(., z) is everywhere continuous and hence iden-
tically zero, by connectedness. Thus,

Gt ) = G(t — [1], W (@) G([1], )
for everyt > 0 andz € Y, and inductively
G(n,z) = G(1,h" }(z))..G(1, h(z))G(1, x)

for everyn € N andxz € Y. According to the Ergodic Theorem for

SL(2,R) [7], which is a direct consequence of the almost subadditive er-
godic theorem proved in [3], if is anh-invariant Borel probability measure
onY, the limit

G'z) = lim ~6(G(n,z))

n—+oo n
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existsv-almost for every: € Y, is h-invariant,v-integrable and

/YG*du: lim 1/)/8(G(n,x))dy.

n—+oo n
Since for every > 1 we have
O(G(t,2)) — O(G(t — [t], i) (x)) — O(G([t], 2))| < 1

and by compactness and uniform continuity

we conclude that .
G*(z) = lim -O(G(t,x)).

t—+oo t

3.2. Lemma. The limitG* (modZ) does not depend on the choice of the
homotopyH fromid to h.

Proof. If ¢ = (f o h)f~!, thenG(1,.) is a lift of ¢ and it is sufficient to
prove thatify) : Y — SL(2,R) is another lift of¢ and

G'(n,x) = (" (@) (h(2))(x),
then . .
lim —O(G'(n,z)) = lim —O(G(n,x)).

n—+oo n n—+oo n
Indeed, there exist& € Z such that)(z) = D™G(1,x) for everyz € Y,

and sinceD commutes with every element6f.(2, R), we have?’' (n, x) =
D™G(n, x). Note thato(D™") = mn, sinceD € Ker p. Thus, we have
|©(G'(n,x)) — O(G(n,z)) —mn| < 1 and the conclusion follows.

3.3. Proposition. If R, is the rotation number map a@fwith respect to the
h-invariant Borel probability measure, then using the above notation,

(R, or™)[f] = exp(QWi/}/G*du).

Proof. There exists a unique continuous functign [0, +00) X Y — R
such thay(0,z) = 0 and

W — exp(2mig(t, z))
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—_—~—

for everyt > 0 andx € Y. Choose anyQ(xz) € SL(2,R) such that
p(Q(z)) = f(z). Then, we have

) 1
@) gy P DR

and so there exists(t, z) € Z such that
g(t,x) = O(G(t, 2)Q(x)) — O(Q(x)) + k(t, x).

By continuity with respect to and connectedness, we @¢ét, x) = k(0, )
= 0. Hence

3 _ . g(t7 x)
g'(x) = tl}g—noo t totoo t

v-almost for every: € Y and by property (ii) oP, we getg* (z) = G*(z).
This proves the proposition.

4. The Ruelle rotation

Let h : T? — T2 be aC' diffeomorphism isotopic to the identity. Let
H be an isotopy fromid to h. We need not assume that is C', but
merely thatH : [0,1] x T? — T2 is a continuous map such thaly, =
id, H, = handH; : T?> — T2, t € [0,1], is a continuous path of'
diffeomorphisms in th€'! topology. As usual we extend it {0, +o0o) x 172
by setting inductivelyH; = H, j o Hy. LetT : TT? — T? x R?
be a trivialization of the tangent bundle @, compatible with its usual
orientation. Letr, : T, 7% — {x} x R? denote the restriction to the fiber.
The continuous functiod : [0, +oco) x T? — SL(2,R) defined by

TH(t7a:) o DHt(.’I}) o 7';1

(det(Tg(t,2) © DHy(z) 0 T2 1))1/2

F(t,z) =

can be lifted to a unique continuous functién [0, +-00) xT? — SL(2,R)

such thatz(0,z) = I, andp(G(t,z)) = F(t,x), for everyt > 0 andz €

T2. From the chain rule and a same argument used in an analogous situation
of Sect. 3 we have&(t,z) = G(t — [t], hY(z))G([t], z). So, inductively,
G(n,r) = G(1,h"Y(2))...G(1, h(x))G(1, z). According to the Ergodic
Theorem forSL(2,R) [7], if v is anh-invariant Borel probability measure,

the limit

G*(z) = lim ~O(G(ta) = lim ~6(G(n,))

t—+oo t n——+oo N
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existsv-almost for every: € T2, is h-invariant,v-integrable and

G*dv = lim ! O(G(n,x))dv.
T2 n—+oo n Jfr2
The method of proof of Lemma 3.2 applies here also to showth&nodZ)
isindependent on the isotoy. It does depend however on the trivialization
7 of the tangent bundle &f?. Let

py(H) = [ G dv,
T2
andP] (h) = exp(2mip],(H)).
Let now; andr, be two trivializations of7'T? compatible with the
usual orientation of? andf : 72 — SL(2, R) be the continuous function
defined by

Tlx OTQ_xl
(det (71, 0 75,1 )) /2

fz) =

4.1. Proposition. If R, (h) is thev-rotation number map of, then

Ry (h)(r*[f]) = P () P2 (h) ™.

Proof. Let F};, G; be the functions used in the definition,d}f as above,

j=1,2andG : [0, +o0) x T? — SL(2, R) be the unique continuous map
such thatG(0, z) = I, andp(G(t,z)) = f(H(z))f(x)~! for everyt > 0
andx € T2. Itis easy to see that since

Fi(t,x) = (f(Hi(x)) f(2) ") (f(2) Fa(t, ) f(2) ),

we haveG(t, z) = G(t,)Q(x)Ga(t, 2)Q(x) ", wherep(Q(z)) = f(z).
This imlpies thatz} = G* + G5, v-almost everywhere and the conclusion
follows from Proposition 3.3.

The preceeding Proposition shows thath) = P (h)ImR,(h) is a
well defined element of the quotient grosp/ImR, (h), independent of
the trivializationr, and is called th&®uelle rotationof i with respect to the
invariant measure.

4.2. Remark.For everyz € T2 andn € N we have

I
—

!%G(G(n,m)) - O(G(1, hF(2)))] < 1.

0

SN
i}
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From the Ergodic Theorem of Birkhoff the limit

G(t, ) lim —Z@ (1,h*(2)))

n—>+oo n
existsv-almost for every: € T2, is h-invariant,v-integrable and

G(1,z)dv = O(G(1,x))dv.
T2 T2

Thus, taking limits and integrating, we get

\p,(H) — /TQ O(G(1,z))dv| < 1.

Let now v be a Borel probability measure &Y and Dif f}(T?,v)
be the path component of the identity in thé topology of the group of
C' diffeomorphisms ofl’? which preserve-. In the space of continuous
paths inDif f}(T?,v) with initial point id endowed with the compact-
open topology the rela/ti\@of homotopy with fixed endpoints is an equiva-

lence relation. LeDi f f} (12, v) be the corresponding quotient space and

q: Dif f3(T2,v) — Dif f}(T? v) be the continuous mag([H]) = H;.
If Diff3(T?,v) is locally contractible, then s its universal covering pro-

jection. The spac®i f f}(T2,v) has a topological group structure, if we
define the composition of paths ¥y o H'); = H; o H/, t € [0,1], and
thenqg becomes a group homomorphism.

4.3. Lemma. If H and H' are two homotopic paths with fixed endpoints
the initial point beingid in Dif f3(T?,v), thenpl,(H) = p7,(H') for every
trivialization 7 of 7772.

Proof. Let (H?),c[0,1) be a homotopy with fixed endpoints such thEt =

H andH'! = H'. Let F* andG* be the functions as above in the definition
of the Ruelle rotation corresponding f&°. Then, F*(n,z) = F%(n,z),

for everyx € T? andn € N, andG*(1,.) is a lift of F°(1,.) for every

s € [0, 1]. Thus, there exist(s) € Z such thatG*(1,.) = G°(1,z)D™),

for everyz € T2 ands € [0, 1]. By continuity and connectedness, we must
havem(s) = m(0) = 0. S0,G*(1,.) = G°(1,.) for everys € [0, 1] and
the conclusion follows.
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P

So we have a well defined functigij : Dif fi(T2,v) — R and the
following diagramm commutes.

Dif fi(T2,v) —2 R

q l exXp

Dif f{(12,v) —X st

The continuous case of the Ergodic Theorem¥éx(2, R) implies also that
pT, is continuous with respect to tiie! topology inDi f f3 (T2, v) (see [7]).

It is immediate from the definition that,(H™) = mp],(H) for every
m € Z. If H andH’ are two paths imDif f} (T2, v) with initial point id,
then one can easily verify using Remark 4.2 that

oL (H o H') = p,(H) — p,(H")| < 4.

Thus, p], is a homogeneous quasi-morphism. Using this one can show that
P is constant on conjugancy classeslinif fi(T?2,v) (see the remark
following proposition 2.8 in [4]).

We recall now the notion of bounded cohomology with real coefficients
of a discrete groug-. Let B"(G) be the Banach space of all bounded real
functions onG™, n > 1. If d,, : B"(G) — B"*1(G) is the continuous
operator defined by

(dnf)(90s s 9n) = F(g15 - 9n) + D (=D £ (90, - =198+ -+ In)
k=1

+(_1)n+1f(907 "'7971—1)7

thend,,+1 o d,, = 0. The bounded cohomology ¢f with real coefficients
H;(G;R) is the cohomology of the cochain complex of Banach spaces
(B*(G), dy). Itis always true thatl} (G; R) = 0.

—_—~—

It follows from the above thadp?, : Dif fi(T2,v) x Dif f3(T?,v) —
R defined by(dp])(H,H') = pl,(Ho H')— pL(H) — pL,(H') is a bounded
2-cocycle. Ifr, m are two trivializations of "7, it follows from Remark
2.4 and Proposition 4.1 thalp]' — dp]? takes on integer values. Since

Dif f3(T?,v) is connected, angl*, k = 1, 2, are continuous, both taking
the value zero atd, we conclude thatlp]! = dp]?. Thus, in the sequel
we shall simply writedp,. We shall call the elemertip, ], of the sec-

ond bounded cohomology with real coefficients of the gréxig £ (12, v)
made discrete, thRuelle rotation clasdt belongs to the kernel of the natural

homomorphismH? (Dif f3(T2,v); R) — H*(Dif f(12,v); R).
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4.4, Lemma. If v is a Borel probability measure ofi?, then[dp, ], = 0

if and only if p7, : Dif f}(T%,v) — R is a group homomorphism for any
trivialization 7 of TT72.

——~—

Proof. Suppose that there existse B(Dif f}(12,v)) such thatd;o =
dp],. Then,o(id) = p7(id) = 0. Moreover, it follows inductively that
is homogeneous, singg, is. But then we must have = 0, becauser is
bounded. Hencg], is a group homomorphism. The converse is trivial.

4.5. Theorem. The Ruelle rotation class with respect to the Haar measure
onT? is not trivial.

Proof. Let D? be the closed unit dise, be the normalized Lebesgue mea-
sure onD? and K be a collar closed neighbourhood @D?. The group
Dif f>(D? K, \) of A\-preserving diffeomorphisms db?, which are the
identity on K, is contractible in theC'* topology. There is a continu-
ous monomorphisni : Dif f*°(D? K,\) — Diff$°(T? v), wherev

is the Haar measure df?. The latter is a locally contractible group in the
C*° topology. By contractibility/ is lifted to a continuous homomorphism
[: Dif f~(D? K,\) — Dif f3°(T?,v). Letr be the trivialization of T
defined by the derivative of the universal covering projectioR? — T72.
According to theorem 4.3 in [2}] o[ is not a group homomorphism. Hence
p7, is not a group homomorphism afp, | is not trivial, by Lemma 4.4.

From corollary 2.11 in [5], we have :

4.6. Corollary. The groupDi f f3(T2,v) is not uniformly perfect for the
Haar measurev.

Finally, we shall be concerned with the Ruelle rotation class of a Dirac
measure at a pointr € T2. In this caseDif f3 (T2, v) is the path compo-
nent of the identity in th€’! topology of the group of’! diffeomorphisms
that fix x.

If h: T? — T?isaC" diffeomorphism isotopic to the identity that fixes
z,thenR,(h) = 1andp(z, h) = P](h) is independent of the trivialization
7 of TT?, by Proposition 4.1p(x, h) is theinfinitesimal rotation number
of the fixed pointx of h. It measures the rate at which the fixed pairis
rotating infinitesimally.

If H is an isotopy fromid to h andF’, GG as above, then

(2 © Dh(z) o 77 )"
(det(7 o Dh(z) o 75 ))n/2

F(n,z) =
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for everyn € N and

pT(H) = lim 20(G(n,z)).

n—+oo n

Let P € SL(2,R). Applying the Ergodic Theorem fa$L(2, R) for
the trivial one point probability space, we conclude that the limit
Q(P) = lim ~o(P")

n—+oo N

exists. Sinced is continuous? : SL(2,R) — R is a continuous func-
tion, which is also constant on conjugancy classes, by property (#).of
Moreover, we havéd ((D*P)") — O(P") — kn| < 1, from which follows
that 2(D*P) = 2(P) + k. Thus, (2 descends to a continuous function
w: SL(2,R) — S! defined byw(A) = exp(27if2(P)), whereP is any
lift of A, which is constant on conjugancy classes.

If A is hyperbolic with positive eigenvalues, theiid) = 1. If A has
negative eigenvalues, thaer{A) = —1. If A is parabolic, thew(A) = 0.

If Ais elliptic with eigenvaluesos 27¢ + i sin 27, thenw(A) = 2™,

Let A be a rotation by an anglgr¢, with 0 < ¢ < 1/4 and B be
diagonal hyperbolic with eigenvaluest and—1/4. ThenAB is hyperbolic
with negative eigenvalues and according to the above we bédd?) =
w(B) = —1 andw(A) = ¢*¢. Hencew is not a group homomorphism.

4.7. Theorem. The Ruelle rotation class with respect to a Dirac point
measure is not trivial.

Proof. With the above notation we have
p(x, h) = w(Dh(x)/(det Dh(x))"/?),

for everyh € Dif f3(T?,v), wherev is the Dirac measure at The above
remarks imply thap(z,.) : Dif f3(T?,v) — S! is not a group homomor-
phism and the result follows.
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