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1 Introduction

We shall consider the model problem for the homogeneous heat equation, to find v = wu(x,t) for z €
Q, t = 0, satisfying

ur=Au inQ, u=0 ondQ, fort=0, with u(-,0) =v in , (1.1)

where  is a polygonal domain in R?. The initial values v are thus the only data of the problem, and its
solution may be written u(t) = E(t)v, t > 0, where E(t) = e®! is the solution operator. By the maximum
principle, E(t) is a nonnegative operator, so that

v=0 in implies E(t)v =0 inQ, fort > 0. (1.2)

Our purpose here is to further investigate and extend known results from Thomée and Wahlbin
[14], Schatz, Thomée and Wahlbin [11], and Thomée [13] concerning analogues of this property for
some finite element methods, based on piecewise linear finite elements. We shall study, in particular,
the Standard Galerkin (SG) method, the Lumped Mass (LM) method, and the Finite Volume Element
(FVE) method. For general information about these methods, and especially error estimates, see, e.g.,
Thomeée [12], Chou and Li [4] and Chatzipantelidis, Lazarov and Thomée [2] and [3]. We consider both
spatially semidiscrete and fully discrete methods.

The basis for the methods studied is the variational formulation of the model problem, to find
u=u(-t)e Hy = H}(Q) for t > 0, such that

(ut, 0) + A(u, ) =0, Veoe Hg, fort >0, with u(0) = v, (1.3)

where

(v7w) = (v7w)L2(Q)a A(’Uﬂl)) = (V’U,VIU)
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The finite element methods studied are based on regular triangulations 7, = {K} of Q, with h =
maxy;, diam(K), using the finite element spaces

Sp = {x €C(Q) : x linear on each K € Tp; x =0 on 0Q}.

Following [13], the spatially semidiscrete methods considered here are based on using analogues of (1.3)
restricted to S}, in which the first term (u¢, ) has been modified, or to find uy(t) € Sy for t = 0, such
that

[une, x] + A(up, x) =0, Vxe Sy, fort >0, with up(0) = v, (1.4)

where [-,-] is an inner product in S}, approximating (-,-). The specific choices of [-,:] for the SG, LM
and FVE methods will be reviewed in Section 2.
We now formulate (1.4) in matrix form. Let {PJ}§VZ1 be the interior nodes of T, and {®; };\’:1 c Sh

the corresponding nodal basis, thus with ®;(P;) = d;;. We may then write

N N
up(t) = Z oj(H)®;, with v, = Z ;P
j=1 j=1

The semidiscrete problem (1.4) may then be expressed, with a = (o, .. ., (ch\r)T7 as

Ma' +Sa =0, fort >0, witha(0) =7, (1.5)

where M = (my;), mij = [®;,®;], S = (si5), sij = A(®;,®;), and ¥ = (V1,...,9n)". Here M is the
mass matrix and S the stiffness matrix; they are both symmetric, positive definite. The solution of (1.5)
may be written, with £(¢) the solution matrix,

at) = Et), where E(t)=e ' H=MT'S, fort>0. (1.6)

We note that the semidiscrete solution up(t) is = 0 (> 0) if and only if, elementwise, «(t) = 0 (> 0), and
that this holds for all ¥ if and only if £(t) = 0(> 0) elementwise.

It was proved in [14] that, for the semidiscrete SG method, the discrete analogue of (1.2) is not
valid for all ¢ > 0, and this was generalized in [13] to methods of the form (1.4) with nondiagonal mass
matrices, including the FVE method. However, in the case of the LM method, for which the mass matrix
is diagonal, £(t) = 0 for all ¢ > 0 if and only if the triangulation is of Delaunay type - for triangulations
with all angles < %77 this was shown already in Fujii [6]. When the solution matrix is not nonnegative
for all positive times, the possible nonnegativity of £(t) for larger time was also discussed in [14] and
[13], with to such that £(t) = 0 for t > tg > 0 referred to as a threshold of positivity.

In [11] some analogous results to those for the spatially semidiscrete SG and LM methods were
obtained for one step fully discrete schemes, with time stepping matrices of the form & ~ E(ty), t, = nk,
where &, = r(kH), with 7(§) a rational function and k a time step. Some of these were extended in [13]
to the present generality.

In this work we complement these investigations in a number of ways. After the introductory Sections
1 and 2, we will first discuss, in Section 3, the spatially semidiscrete methods, with a somewhat more
precise study of the positivity threshold than in [14] and [13]. In Section 4, we treat fully discrete
methods, starting with the Backward Euler method, and continuing with more general & = r(kH). We
discuss the existence of a positivity threshold k¢ such that £, = 0 for k > ko, and show that this requires
r(&) = 0 for large £. This is satisfied, e.g., for the (0, 2)-Padé method, which has a positivity threshold,
but, for the #—method, with 7(¢§) = (1 — (1 = 6)£)/(1 + 6£), 0 < 0 < 1, we have r(§) < 0 for large &, and
&: = 0 may then possibly hold in an interval ko < k < k°.

In Section 5 we give concrete examples, using numerical computations in MATLAB to elucidate
our theoretical results. The first example uses uniform triangulations 7; of the unit square, in which
the stiffness matrices correspond to the 5-point finite difference Laplacian. In this case, the semidiscrete
solution has a positivity threshold which decreases with h, and for the BE method, it is bounded
below by ch?, with ¢ > 0. The second example illustrates the case of non-Delaunay triangulations,
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and the BE method then has no positivity threshold, but the semidiscrete and (0,2)-Padé methods
behave reasonably. We finally give some examples using unstructured triangulations based on commercial
software, namely a square, a disk and an L-shaped domain. In all cases, the positivity thresholds decrease
for the semidiscrete method and as ch? for BE, but does not decrease for the (0,2)-Padé. In Section 6,
for further insight, we consider the restriction of our above analysis to the case of a uniformly partition
of the one dimensional interval (0, 1), and the analysis and computations confirm our 2D conclusions.

Our investigations indicate that positivity is preserved for the Backward Euler method in all cases
considered with Delaunay triangulations, even for the SG and FVE spatial discretizations, with all
reasonable choices of the time step. In fact, the positivity thresholds all decrease with h like ch? with
¢ > 0. The behavior is less encouraging for the semidiscrete and other fully discrete methods.

In the final Section 7, we present a simple way to find a nonnegative approximate solution when a
not necessarily nonnegative approximate solution is given, the cutoff method. If up(t) € Sy, is a spatially
semidiscrete approximate solution of (1.1), i.e., the solution of (1.4), then defining u;:' (t) € Sk by using
the pointwise positive parts of the already computed approximate solution uy(¢) at the nodes of Ty, or
u (Pj,t) = max (up (P}, t),0), we have at once

it (P, t) = u(Py, 0)] < lun(Py,t) — u(Py, 0)], for j =1,...,N.

We show how L2 error bounds for uy(t) imply such error bounds for u;(t) This procedure may also be
applied to fully discrete approximate solutions. For another approach in this case, using cutoff at each
time step of the computation, see [10].

2 The spatially semidiscrete methods

We begin our discussion of the semidiscrete problem (1.4), or (1.5), by observing that for the stiffness
matrix § = (si5), with s;; = (V®;, V®;), which is common to all our problems (1.4), simple calculations
show, see, e.g., [5],

Yicen, hicil Kl ifi = j,
sij = | —3cota — ycot f = —gsin(a + B)/(sinasin ), if P;, Pj neighbors, (2.1)
0 if P;, Pj not neighbors,

where II; = supp(®;), hk,; is the height of K with respect to the side opposite P; and a and 3 are the
angles opposite P;Pj, see Fig. 1. We shall assume throughout that S is irreducible.

L

Fig. 1. An interior edge e = P; P; of T},.

We shall now present the three different versions of (1.4) mentioned above, defined by three different
discrete inner products [-, -] on S.
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A
P/

Fig. 2. A triangle K € T}, and a patch II; = supp(®;) around a node P;.

For the Standard Galerkin method we use [,-] = (,-) = (-,)1,(q), and thus the mass matrix is

M=M= (Mij), where

§lsupp(®:)], if i = j,
mij = (®i, ®;) = { 5 |supp(P;®;)|, if P;, P; neighbors, (2.2)
0, if P;, P; not neighbors.

For the Lumped Mass method we employ [, ] = (-, -)n, where the latter is defined by quadrature,

3
@0n= % Quax), with Qualf) = §IKI Y, f(Pr) ~ [ fdo,
KeTh j=1 K
with { Pk ; }?:1 the vertices of the triangle K. In the matrix formulation (1.5) this means that M =D =
(dij), with di; = (P4, ®i)p = % | supp(®;)|, dij = (P4, Pi)n =0 for j # 4, so that D is a diagonal matrix.

To define the Finite Volume Element method, we note that a solution of the differential equation
us = Aw in (1.1) satisfies the local conservation law

f up dx — ou ds=0, fort=0, (2.3)
1% av on

for any V' < Q with piecewise smooth boundary 0V, and n the unit exterior normal to dV. The spatially
semidiscrete FVE method is then to find uy,(t) € Sy, for t = 0, satisfying

fﬁh,tdﬂﬂfj aﬂds:o, forj=1,...,N, t>0, witha,(0)=wvp, (2.4)
V, 0

fi v, on

where the Vj are the so called control volumes, defined as follows, see Fig. 2. Let bx be the barycenter
of K € Tp, and connect by with the midpoints of the edges of K, thus partitioning K into three
quadrilaterals K;, | = j,m,n, if K has vertices Pj, P, Pn. The control volume Vj is then the union
of the subregions K, sharing the vertex P;. The equations (2.4) then preserve (2.3) for any union of
control volumes.

To write (2.4) in weak form, we introduce the finite dimensional space

N
Yo ={ne La: nly, = constant, j =1,...,N; n =0 outside UVJ}

j=1

For n € Y, we multiply (2.4) by n(P;), and sum over j, to obtain the Petrov—Galerkin formulation

(ﬂh,h’n) + ah(ﬁh,n) =0, VneY,, t=0, with ﬂh(O) = vy, (2.5)
where
an(x,n) = = Y, 17(Pj)f —=ds, Vx€Sh neYs. (2.6)
=1 avj on

In order to rephrase this as a Galerkin method, we shall introduce a new inner product on Sp. Let
Jn : C(2) — Y}, be the interpolant defined by (Jpv)(Pj) = v(Pj), j = 1,..., N. The following lemma
then holds, see [4].
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Lemma 2.1. The bilinear form {x,v¥) = (x, Jn¥) is symmetric, positive definite on Sy, and
an(X, Jn) = (Vx, V) = A(x,¢), VX, 9 € Sh.

Setting [x, ] = {x, V), for x, ¥ € Si, the Petrov-Galerkin equation (2.5), (2.6) may then be written as
(1.4), and the mass matrix M in (1.5) is now M= (Mi;) where

51lsupp(®:)], if i = j,
mij = (i, @) = < 1Lz lsupp(®:®;)], if P;, P; neighbors, (2.7)
0, if P;, P; not neighbors.

We note that by (2.2) and (2.7), My = 1—917?11'1', Mij = gﬁzij, i1#7, 1,j=1,...,N. Thus M is more

~

concentrated on the diagonal than M.

3 Positivity preservation in the spatially semidiscrete methods

In this section we consider the general spatially semidiscrete problem (1.4) in the form (1.5). We shall
first recall two results from [13] concerning the positivity of the solution matrices, and then discuss the
positivity of the solution matrices for large ¢. We assume that [-,-] is either such that m;; > 0 for all
neighbors P;, Pj, or such that m;; = 0 for all neighbors P;, P;. In the former case M is a nondiagonal
matrix, and in the latter diagonal.

We first have the following negative result, which was shown in [14] for the SG method, and gen-
eralized in [13] to the present framework. The proof depends on a technical assumption about the
triangulation 7. First, a node of 7}, is said to be strictly interior if all its neighbors are interior nodes,
and then 7j is normal if it has a strictly interior node, P; say, such that any neighbor of P; has a
neighbor which is not a neighbor of P;. This is satisfied, e.g., if all neighbors of P; are strictly interior
and the patch II; defined by P; is convex.

Theorem 3.1. Assume that Tp is normal, and M nondiagonal. Then the solution matriz for (1.5),
E(t) = e M with H = M™S, cannot be nonnegative for all t > 0.

This result thus covers the SG method and the FVE method, but not the LM method. We recall that
an edge e of T is a Delaunay edge if the sum of the angles opposite e is < m, see Fig. 1, and that
Tr, a Delaunay triangulation if all interior edges are Delaunay. Using (2.1) we see that an interior edge
e = P, P; is a Delaunay edge if and only if s;; < 0, and thus the triangulation 7}, is of Delaunay type if and
only if s;; < 0 for all 4 # j, i.e., if and only if the stiffness matrix is a Stieltjes matrix, i.e., a symmetric
positive definite matrix with nonpositive off diagonal elements. We may then cite the following theorem
from [14].

Theorem 3.2. The LM solution matriz £(t) = efﬂa H = D7LS, is nonnegative for all t > 0 if and
only if Ty, is Delaunay.

Recall that, see e.g. [15, Corollary 3.24], if A is a Stieltjes matrix, then its inverse A~! > 0. Further,
if A is also irreducible, then A™! > 0. In particular, if 75 is Delaunay, then, since S is irreducible, we
have that S~ > 0, and hence also G = S~ M > 0. However, 7, Delaunay is not a necessary condition
for S7! > 0.

Since G = 7'M = H ™! is symmetric positive definite with respect to the inner product Muv - w =
Zilil(/\/lv)iwi, it has positive eigenvalues {rx; }§V=1 and orthonormal eigenvectors {¢p; }§V=1 with respect to
this inner product. We shall say that G is eventually positive if k; < k1 for j = 2 and ¢1 > 0. By the
Perron-Frobenius theorem this holds if G > 0, and more generally if G¢ > 0 for some ¢ > 1.
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We now return to the general semidiscrete problem (1.4) in matrix form (1.5), with solution matrix
E(t) = e~ where H = M™'S. We shall see that, if G = H ™! is eventually positive, there exists a
positivity threshold ¢y > 0 such that £(t) > 0 for ¢t > ¢o. Following Horvéith [7] we shall discuss this here
in a somewhat more precise way than in [14] and [13].

Under the above assumptions, any V € RY has the eigenfunction expansion

N
V= Z Ni¥Pij, where ny = MV . PLj, (3.1)
j=1

and the solution of (1.5) with ¥ =V is

N
V= Z e_Ajtnjgoj, where \j = 1/k;.
j=1

We now define the convex cone

= {VeRY; }]Inﬂoj<inlh “*wreoa——supﬂwgﬂ/w10 @i = (i1, PN (3.2)
j=2

Note that since 1 = My; - p; < 07 ./\/lz,pl p1 = 0]2, we have 0; > 1. For V e P it is required that n1 > 0,
and V € P implies V > 0, since

N N N
Vizmerr— D) Inilleial =men— Y, Injloserr = (m = Y, Injloj)ers > 0.
i=2 i=2 i=2
We now show that if the matrix G = H~! = 7' M is eventually positive, then the solution matrix
of (1.5) is positive for large t. A somewhat less precise result was shown in [13].

Theorem 3.3. Let E(t) = e~ ! be the solution matriz for (1.5), and let H™" be eventually positive. Let
Kj, 0j be as above, and \j = 1/k;. Then E(t) > 0 if

N

Z —Ajt 2 —/\1t. (33)

Proof. Let V. = 3 mjp;. fV >0, V # 0, we have 1 = MV - 1 > 0, since MV > 0 and ¢1 > 0.
Further,
;| = MV - pi| < (MV - 1) 05 =m oy, for 2<j < N. (3.4)

Hence (3.3) implies Z;V=2 e Mt njlo; < e iy, and thus E(t)V € P and £(t)V > 0. Hence £(t) > 0. O

. . N (- . S . L
The decreasing function Zj=2 e~ )‘l)taf- — 1 has a unique zero t1, which is > 0 since o; > 1 implies

Z;-VZQ 0]2 > N —1, and (3.3) then holds for ¢ > ¢;. Thus £(¢) > 0 for ¢ > t;. Clearly, t1 > to, the positivity
threshold.

4 Fully discrete methods

In this section we consider time discretization of the semidiscrete problem (1.4), or (1.5). We review re-
sults from [11] and [13] concerning nonnegativity for all positive k of time stepping matrices &, = r(kH),
where r(€) is a bounded rational function for £ > 0 and # = M!S, and then discuss nonnegativity of
such time stepping matrices for large time steps k.

We begin with the Backward Euler method, to find U" € Si,, U™ ~ up(tn), for n = 0, such that

U" — Unfl

[ p x] + AU", x) =0, VYxeSh n=1, withU’=



DE GRUYTER P. Chatzipantelidis, Z. Horvath and V. Thomée , Positivity preservation in FEM == 7

In matrix formulation, with U" = Z;V=1 ai®;, " =(af,..., a?)T | this takes the form

(M+EkS)a™ = Ma"™", or o =&a" !, forn=1, witha’ =2.
This may also be written as o = &} ¥, where & is the solution matrix defined by
Ern=M+ES)'"M=(Z+kH)"", where H=M"'S.

The following time discrete analogue of Theorem 3.1 was shown in [13], [14].

Theorem 4.1. Assume that Tj, is normal and M nondiagonal. Then &, = (T + kH)™' cannot be
nonnegative for small k > 0.

The positivity of & for larger k is related to the positivity of the matrix H ™!, and the following result
was shown in [13].

Theorem 4.2. If &, = (T +kH)"' =0 for k large, then ™' = 0. If H™' > 0, then there exists ko = 0
such that Ex > 0 for k > ko. If £, = 0, then &, = 0 for k = ko.

We refer to the smallest ko such that & > 0 for k > ko as the threshold of positivity for . In view of
the last part of the theorem, in the BE case this is the smallest k for which & > 0. In [13], and [11] in
the case of SG, the following more precise result for values of k for which & > 0 was derived, under a
sharper condition than #~* > 0.

Theorem 4.3. If s;j <0 for all neighbors P;, P;, then &, = 0 if

k>k = mj\f}X(mijASij')v where N' = {(i, j); P;, P; neighbors}. (4.1)

Since m;; = gﬁzij the bound ki in (4.1) is smaller for FVE than for SG. For instance, if the maximal

angle of Ty, is @ < 3, then, for all e = P,P;, |supp(®;, ®;)| < h®sina and |s;j| = cota by (2.1), and
7
108 A
& > 0 for k > ch?, with the appropriate ¢c. When all K € 7T;, are equilateral, we find k; = %hQ and

ki = Sh
For the Backward Euler LM method we have M = D and

hence k1 = maxy (Mmi;/|sij]) < %hQ sin? a/ cos @ and similarly, k1 < h?sin? a/ cos a. In both cases

En=MD+kS) 'D=(Z+kH)", where H=D'S.
In this case we have the following result, analogous to Theorem 3.2 in the semidiscrete case, cf. [11].
Theorem 4.4. &, = 0 for all k > 0 if and only if T, Delaunay.

Note that if S™! > 0 it follows from Theorem 4.2 that &, > 0 for large k.

We now turn to more general time stepping methods and consider a time stepping matrix & =
r(kH), where (&) is a bounded rational function for & > 0, approximating e¢, so that r(£) = 1—£+0(€?)
as £ — 0. We define a single step time discretization £, 9), of (1.5), by

Q" =&y, forn =0, where & =r(kH), H=M"'S.

We recall from [13] that, as in Theorem 4.1, the time stepping matrix & cannot be nonnegative for
small £ when M is nondiagonal.

Theorem 4.5. Assume that Tp, is normal and M nondiagonal. Then &, = r(kH) cannot be nonnegative
for small k.

For the possible nonnegativity of & = r(kH) for larger k, we quote the next theorem from [13].
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Theorem 4.6. Let H™' > 0. Then a necessary condition for &, = r(kH) to be nonnegative for large k
is that (&) = 0 for large &.

A typical and interesting example is the (0, 2)—Padé approximation defined by ro2(§) = 1/(1 + & + %52)
However, the Padé approximations r11(£) = (1 — 3¢)/(1 + 3£) and r12(§) = (1 — 26)/(1 + 3¢ + 1£%), as
well as the #—approximation 79(§) = (1 — (1 —6)£)/(1 + 6¢), with 0 < 6 < 1, are negative for large £, and
hence the corresponding £ cannot be nonnegative for large k.

We assume now that r(c0) = 0 and, more precisely,

r(€) =ct 1+ O(§7q71), as £ > o, withg>1, ¢>0. (4.2)

The following result was shown in [13].

Theorem 4.7. Assume that r(§) satisfies (4.2). Then H™? > 0 is a necessary condition for & =
r(kH) = 0 for large k. If H™? > 0, then &, > 0 for large k.

In particular, & = ro2(kH) > 0 for large k, if 2 > 0. By Theorem 4.5, the positivity threshold ko has
to be strictly positive if M is nondiagonal. However, even for the LM method, with a diagonal mass
matrix, it was shown in [13] that £ cannot be nonnegative for small k if 7, is 4-connected in the sense
of the following definition of p-connected: There exists a path P in the set of nodes of 7}, consisting of p
connected edges P, P, with spy # 0, and such that the endpoints of P cannot be connected by a path
with fewer than p such edges. We now show the following more general result.

Theorem 4.8. Assume that T;, is Delaunay and p-connected, and that & = r(kH) = 0 for small k.
Then (—1)"r(")(0) > 0.

Proof. We have, by Taylor expansion of r(£),
Ex = r(kH) = r(O) + 7' (0) kH + - - + rP(0) KPHP + O(KPT?), as k — 0.

We shall show that if P; P, P, P, | P; is a path P as above, then ((Cjk)z'j < 0 for small k. For this we write
H =D 'S =V - W, where V is a positive diagonal matrix and W has elements wmn = —Smn/dm > 0
when Pp,, P, are neighbors with sy, # 0, with the remaining elements 0. (Recall that since S is Stieltjes,
W = 0.) Tt follows that ((—H));; = DI zp,l(*ﬁi,ll)(*ﬁll,lz) e (fllepihj) and, by our assumption on
the path P connecting P; and P;, none of the nonzero terms have factors from V. Hence ((—H));; >
Wiy, .. -wy, ;5 > 0. In the same way, since P; cannot be reached from P; in less than p steps, (H")i; =0
forl=0,1,...,p— 1. Hence, for k small,

(En)ij = (=1 K (=H)")ij + O(KPTH) = 0,
which implies our claim. ([l

Thus, as a particular case, if T, is Delaunay and 4-connected, then 7o2(kH) cannot be nonnegative for
small k > 0 since 792(§) = 1 -£+ %52 — i§4 +0O(£%) for € small, so T((é)(O) < 0. Note that if the conclusion
of the theorem holds for all p > 1, r(§) is completely monotone for £ = 0.

We recall that & = r(kH) = 0 for all k > 0 if 7(£) is of positive type, i.e., if 7(z) = SSO g(t) et dt +
r(c0) for Re z = 0, with g(t) = 0, r(c0) > 0, since £(t) = e " > 0 for t > 0, cf. Bolley and Crouzeix [1]
and [11]. This holds for the Backward Euler method, but generally, since r(€) is of positive type if and
only if it is completely monotone, this cannot hold for approximations of higher order than first,

We now apply the technique of Theorem 3.3 to show a sufficient condition for the positivity of
Ex =r(kH).

Theorem 4.9. Let &, = r(kH), where r(§) = 0 and H' > 0. Let Aj and o be as in Section 3. Then
E >0 1if

N

N r(kAj)o} < (k). (4.3)

Jj=2
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Proof. For V of the form (3.1) we have &,V = Z;V=1 r(kXj)nje;. 'V = 0, with V' # 0, then, since
[ni| < moj for j =2 by (3.4), it follows from (4.3) that

N N
S r(kNg) Injlog <m Y r(kg) oF < r(kA)m,
Jj=2

j=2
so that £,V € P. Hence £,V > 0 and thus &, > 0. O

We now use the same technique to demonstrate that, for any given k, the fully discrete solution is
positive after a finite number of steps.

Theorem 4.10. Let &, = r(kH), where (§) is positive and decreasing for &€ = 0, and H~' > 0. Then,
for any k > 0, there exists a no(k) such that £ > 0 for n = no(k).

Proof. Setting p; = r(kX;)/r(kA1) we have p; < p2 <1 for j > 2, and hence
N
r(kA)" oF <r(kA1)"p5 Y. oF <r(kM)", for n = no(k).

2 j=2

=

J

Hence &} satisfies the analogue of (4.3) for large n, and thus & > 0. (|

We close this section with a short discussion of the §—method, thus with the time stepping matrix
Eop =ro(kH) = M+ EIS) ' (M —k(1-6)S), 0<6<1. (4.4)

In this case rg(0) = —(1—6)/0 < 0, and &y i, thus cannot be nonnegative for large k. We will show that
the set of k for which & > 0 is either and interval, possibly just a point, or empty.

Theorem 4.11. Suppose that H~' > 0, and let ko be the positivity threshold for ik =T+ EH)™L.
Then 0(k) := mini<i<n(E1,k)ii 15 a continuous, strictly decreasing function on [0,00) with range (0,1].
With 0 < 0 < 1 we have &g = 0 if and only if Ok = ko and 6(0k) = 1 — 0. If 6(ko) = 1 — 0 this is the
interval 0 ko, 6 1(1 — 0)], and otherwise the empty set.

Proof. We note that for ka > ki1, E15, — E1ky = (k2 — k1)H(Z + kiH) " (Z + k2H) ™!, which is a positive
definite matrix and thus has positive diagonal elements. Hence the diagonal elements of the matrix on
the left are positive and thus those of £ j, strictly decreasing, so that §(k) is strictly decreasing.

We now note that by the identity Org(§) = r1(6€) — (1 — 0) we have 8 &g i, = 1,01 — (1 — 6)Z. Hence
Eo.k = 0 if and only if &1 gr > 0 and, in addition, the diagonal elements of & g are > 1 —6. By Theorem
4.2 the first condition is equivalent to 8k > ko, and the second holds if and only if 6(fk) = 1 — 6, or
0k <6 1(1 —6). where 6! is the inverse function to 4. O

We now show the following result similar to Theorem 4.3.

Theorem 4.12. If s;; < 0 for all neighbors P;, Pj, then Epy = 1o(kH) = 0 if k € [k1, k'], where

k1= 07" max(mij/|siil), k' = (1= 0)" min(mi/|sil), 0<0<1.

Proof. We easily find that if k > ki then m;; + kfs;; < 0 for P;, P; neighbors and = 0 if P;, P; not
neighbors, so that M + kS is a Stieltjes matrix and hence (M + k0S)~! > 0. Also, if k < k', then
M — k(1 —0)S = 0. Thus taking the product we find &, > 0. (|

Note that it could be the case that k1 > k' in which case the interval is empty. This could happen if 0
is small. For the LM method, M = D, and thus k1 = 0, so that > 0 if k < k*. When all K € T}, are
equilateral, we have, s;; = 2v/3 and s;; = —/3/3 for (i, j) € N. For SG we find m;; = i\/ghQ, (1,7) e N,
and m;; = i\/ghQ, and for FVE, m;; = 3—76\/§h2, (1,7) € N, and my; = é—é\/ghQ. Hence for the Crank-
Nicolson SG method, k= k' = ihz, so that the interval reduces to the point k = ihQ. For the CN LM

method the interval becomes [0, 2%1] = [0, %hQ] and for the CN FVE method [gEl, 1_91%1] = [3—76 h?, %hQ]
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5 Numerical examples

In this section we present some numerical examples, illustrating our theoretical results. We first consider
a uniform Delaunay triangulation of standard type of the unit square, where the corresponding stiffness
matrix S and mass matrix M are such that ki in (4.1) is not finite for the SG and FVE methods.
We then consider a non-Delaunay triangulation of the unit square, thus with a corresponding stiffness
matrix S which is not Stieltjes. Finally, we apply a software package to derive unstructured Delaunay
triangulations of the unit square, and also of two other simple domains. We investigate the positivity
of the spatially semidiscrete, the Backward Euler and (0,2)—Padé methods, for the SG, FVE and LM
spatial discretization, and make some remarks about the §—method.

5.1 A standard triangulation of the unit square

1
ho
ho
CS <2
Ym
T2
ho
h
0 3 1
Ym C—l g(] gl
ho
T4 T6
ho s
ho
G o
0 ho ho ho x; ho ho 1 ho T ho

Fig. 3. Left: The unit square 2 with the symmetric triangulation 7;,. Right: The patch IIp around the vertex (.

In this first example we consider the unit square 2 = (0,1) x (0,1) and introduce a uniform trian-
gulation 7, of Q as follows. Let M be a positive integer, ho = 1/(M + 1), and set for j =0,..., M + 1,
x; = y; = jho. This partitions Q into squares (z;,Zj+1) X (Ym,Ym+1), and we define T, by con-
necting the nodes (xj,ym), (Zj+1,Ym—1), see Fig. 3. The number of interior nodes is N = M?, and
h = max7, diam(K) = v/2ho. We note that 73 is a Delaunay triangulation, but since the sum of the
angles opposite a diagonal edge is 7, the corresponding elements s;; of the stiffness matrix vanish.

Let now (o = (zj,ym) be an interior node of 75 and let {Cj}? 1 be the surrounding nodes, see
Fig. 3. Let K; be the triangle with vertices (o, (j, (j+1, where {7 = (1. We then have |Kj| = h2, for
j=1,...,6. It is easy to form the stiffness matrix S and the mass matrices M and M, for the SG and
FVE methods. Indeed, since only the surrounding nodes to (o contribute to the corresponding row of
the matrices, we get for S,

4, j=0,
(VPo, V®;) =4 —1, j=1,2,4,5, (5.1)

0, Jj=3,6,
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and for M and M, using (2.2) and (2.7), and h = v/2 hy,

I
—
o

I

J=0, ,
j=1,...,

| el

o,
J (5.2)
j=1,...,6.

D= =

s = =

) )

ot
S

(@0, ®;) = 1h* { and (Po, ®;) = {5 {

Thus, with Z the identity matrix and (J);; = 1 if P;, P; neighbors and 0 for other 7, j,
M=1p*T+17) and M=Lr*T+ L)

It follows that M = %h21+ %M\ For the LM method the mass matrix is the diagonal matrix D = %hQI.

We note that S is a Stieltjes matrix, so that S7! > 0, and hence the matrices H™' = S7*M > 0
for the SG, FVE and LM methods. Thus the results in Section 4 concerning positivity for large ¢ and &
apply.

In addition to our computational results, we want to study, somewhat more precisely, the Backward
Euler method, and recall that since some s;; = 0 for P;, P; neighbors, Theorem 4.3 does not apply. We
want to show that nevertheless & = (M + kS)"'*M = 0, for A = k/h3 bounded below appropriately.
This follows from the following lemma.

Lemma 5.1. We have (M +kS)™! >0 for k > ki ~ 0.46h? and (M +kS)™" >0 for k > k1 ~ 0.38 h>.

Proof. We write J = Jo + J1 where (Jo):j = 1 if P;, P; vertical or horizontal neighbors and 0 for other
i, and (J1)i; = 1 if P;, P; diagonal neighbors and 0 for other ¢,j. Then S = 47 — Jy. We note that
J3 = 2, since J§ has nonzero value m in the line corresponding to P; at nodes P; that can be reached
in m ways from P; in two steps, vertical or horizontal, and a diagonal neighbor can be reached either
by first going vertically and then horizontally, or first horizontally and then vertically.

We want to determine k such that (M + kS)™' = 0, and begin with the SG method. By (2.2) we
now have M = 1h2(AZ + L 7 + L 71). Thus, with A = k/h2, A = 4X + 1,

. - A — & 1
M+ kS = (4k + 10T — (k — Lh*)Jo + Lh2 T = AhQ(Zf 74y —Ajl) (5.3)
A 247
ol 1 4 ) ~ 5
- Ah (I—4(1—6)J0+ 10J1), where § = .

With p = (1 —6) and v = §/10, where § = g, we would thus like to determine § such that

i
T-pTo+vh) =0 (5.4)

We shall first find § so that (Z — u Jo + %I/ JH ™ = 0, using the following lemma, to be shown below.

Lemma 5.2. Let 0 < 2v < p?. Then the zeros x12 of P(x) =1 — px + %Z/xQ are positive, and

1 0

= " 0<z<
) ngownx , for T

. with wy, > 0.

==

Note that 2v < p? is equivalent to §/5 < (1—6)2/16, or 62 —5.26+1 > 0, which is true for 0 < § < 0.2.

Since |Jo| =4 <4/(1 —06) = 1/p, with | - | the matrix maximum-norm, it follows from Lemma 5.2 that
o0

L=T-plo+3vT5) " =) wnds =0. (5.5)
n=0

Further,
.- J- 1 1 1
< "< 4" = = = : .
I£1 ;O””HJOH ;0”” P(A)  1-4u+8v 186 (5:6)

We may write

(T —pTo+vdh)~ = (T —pdo+3vds —3v(Te —200)) " = (@T-N)"' L, N =3vL(T5 —20). (5.7)
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Here N > 0 since J7 — 271 = 0 and £ > 0 by (5.5), and using (5.6), v = §/10, and | J& — 2J1| < 16
IV < 3 (150) (1/1.85) 16 = 5 < 1,

and hence (Z—-N) ! = Z?C;ON 0, which shows (5.4). Since § = 5/(12A)
if A= (/A\ —0.25)/4 = 11/24 ~ 0.458, we have thus Shown M+ kS >0 for k
For the FVE method we have M = 1hQ( HI + 108 T J), and thus, similarly

if A > 5/2.4 and hence
0.46 h*.
5.3), with A\ = k/h?,

<0
=

cﬁ-#)-
/\ZZ

M + kS = (4k + 20T — (k — 575h)To + 55h> T
=7\h2(f—i( )j0+ Jl) WhereA—4>\+§é, 5= T7

This time we would like to determine § so that (5.4) holds when u = %(1 —6) and v = 7§/94, where
§ = 6. Note that 2v < y? now means 786/47 < (1 — 6)?/16, or 62 — (206/47)6 + 1 = 0, which is true for
0 < 0 < 0.2414. The positivity results (5. 5) and (5.7) remain valid. Thus, since § = (47/108)/(4A+33/108),
we find that & is now positive for A > k1 ~ 0.38 hZ. O

1-— i—’;) >E1-1+ ”—”2) = i > 0, where we have used the inequality v/1 —z <1 — %m, for0 <z < 1.
Hence, for x < x2,

Proof of Lemma 5.2. The zeros of P(z) are x12 = £ + q/’:—z - %, so for the smallest zero, z2 = £(1 —

1 2 B 2 1 2 1
Pz) wv(z-— x1)(ac — xz) vea(z1 —x2) 1-— x/xz vei(zr —x2) 1—x/z1
—n 1 —n 1 .
n T, th w, > 0.
Dl —72) g Z w with wy, >
But, by the above, x < 1/u implies < x2, which completes the proof. ([l

In Table 1 we show some computed positivity thresholds to for £(¢), and ko for & = ro1(kH) and
&k = ro2(kH), for the SG, FVE, and in the case of ro2(k#H) also for the LM methods, when M=10, 20,
and 40. The numbers indicate that for spatially semidiscrete problem the positivity thresholds diminish
with h, and are smaller for the FVE than for the SG method. For the BE method the thresholds are
smaller, and the ratio ko/h? is approximately 0.27 for SG and 0.23 for FVE, which is better than the
above theoretical results. For the (0,2)—Padé method the thresholds do not appear to diminish with h,
and are also independent of the choice of the finite element discretization. In Table 2 we exhibit similar
results for &', m = 4, for &, = ro1(kH) and & = ro2(kH), respectively. Comparing with the results for
m = 1 in Table 1 we see that, for the BE method, the improvement in using m = 4 is moderate, but
a little better for the (0,2)—Padé method. The thresholds for BE become smaller with h as in Table 1
whereas this is not the case for the (0,2)—Padé.

e tH ro1(kH) ro2(kH)

ho | A | N[ B | B ko | ko ko | ko | ko
0.100 [ 0.141 [ 81 [ 0.046 | 0.043 | 0.0053 | 0.0045 | 0.025 | 0.024 | 0.020
0.050 | 0.070 | 361 | 0.035 | 0.031 | 0.0013 | 0.0011 | 0.023 | 0.023 | 0.021
0.025 | 0.035 | 1521 | 0.021 | 0.019 | 0.0003 | 0.0003 | 0.022 | 0.022 | 0.022

Table 1. Positivity thresholds in Ex. 5.1, for £(t) = e M and &, = roi(kH), with ¢ = 1,2, for SG, FVE and LM.

We end with a remark about the §—method (4.4), and consider first the SG spatial discretization.
By Lemma 5.1 we have (.//\/\l + k0S)™! = 0 for kO > ki ~ 0.46 h? and clearly M - (1-0)kS = 0 if
(1—6) k sii < my; for all 4, or, since s;; = 4 by (5.1) and my; = % h? by (5.2), if (1 —60) k < 0.06 h?. Thus
Eor = 0for 0.460~ " h> < k < 0.06 (1—60) " h2. Note that this interval is nonempty if 0.46 (1—6) < 0.06 6
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Tol(kH) TQQ(kH)

ho | N ko | ko ko | ko [ ko
0.100 | 81 | 0.0048 | 0.0040 | 0.010 | 0.009 | 0.020
0.050 | 361 | 0.0013 | 0.0011 | 0.009 | 0.008 | 0.021
0.025 | 1521 | 0.0003 | 0.0003 | 0.008 | 0.008 | 0.022

Table 2. Positivity thresholds in Ex. 5.1, for £ = ro; (KH)™, with ¢ = 1,2, m=4, for SG, FVE and LM.

or if § > 0.89. For the FVE method, (M + kS)™! > 0 for k6 > ki ~ 0.38h? and M — (1 — 6)S > 0 for
(1 — )k < 0.07h? so that 59719 > 0 for 0.3807 ' h? < k < 0.07(1 — 0)~* h?, which interval is nonempty
if & > 0.85. The Crank-Nicolson method (6 = %) is not covered in any of these cases, and numerical
calculations show that &) ;, > 0 does not hold for any of our three triangulations.

5.2 A non-Delaunay triangulation of the unit square

In this example we consider again the unit square 2 = (0,1) x (0,1) and introduce a triangulation 7p,
of ) as follows. Let M be a positive integer, ho = 1/(2M), and set x; = jho for j = 0,...,2M, and
Ym = 2mhg for m = 0,..., M. This partitions 2 into rectangles (z;,2;+1) X (Ym,Ym+1), and we now
connect the nodes (2, ym), (€j+1,Ym+1) and (Tj+1,Ym), (T, Ym+1), see Fig. 4. This introduces into Tp,
also the nodes (z;41/2, Ymy1/2), With @110 = (¥; + 2541)/2 and Yy, 1172 = (Ym + Ym+1)/2. The number
of interior nodes is then N = 2M? + (2M — 1)(M — 1), and h = maxy; diam (K) = 2ho. We note that
Tr is not a Delaunay triangulation.

To construct the stiffness matrix S and the mass matrix M we distinguish between two kinds of
patches, Il and ﬁo, centered at (o = (k,ym) and Cvo = (T¢41/2, Ym41/2), respectively. For the patch
IIp we denote by {Cj}§=1 the surrounding nodes, numbered counterclockwise as in the patch of the
previous subsection, starting with ¢1 = (xx + ho,ym). Letting K; be the triangle with vertices (o, (j,
Cj+1, where Co = (1, we then have |K;| = +h3, j = 1,...,8. Similarly, for the patch Tlo, let {(;}i_;
be the surrounding nodes, numbered counterclockwise, starting with 51 = (x¢ + ho,ym). With K ; the
triangle with vertices (o, 5]'7 é_,_l, where (5 = ¢; we have |I?]| = %h%, j=1,...,4. To form § it suffices
to calculate (V®q,V®;), j =0,...,8, and (fo)o, Véj), j=0,...,4, and we obtain easily, using (2.1),

57 .7 = 07
_%a j:175a P-4 P-4 57 .7:07
(Vq)o, Vq)j) = and (Vq)o, Vq)j) =
_%a j:274a678a _%a j:172a374a
%7 .7 = 37 7a
Correspondingly, for the mass matrix /\//\l, for SG,
4 2
3y J= Oa Y X 3y J= Oa
(®o, @) = gho {3 and (o, b)) = $ho < 3
67 ]=1,...,8, 67 ]=1, ,4
Similarly, for ./\71, for FVE, we have
7 =0, % J=0,

(®0,@;) = 3h3 {

_ and (@, d;) = Lhg{ 2
54 J = 17"'787

5l47 .] = 17 A 747
and for the LM diagonal matrix M = D, (®g, ®g); = %h%, (i)o, ff)o)h = %h%.

Since T}, is not Delaunay, the LM solution matrices £(t) and & cannot be nonnegative for all ¢ > 0
and k > 0, respectively, by Theorems 3.2 and 4.4. Further S is not a Stieltjes matrix, and therefore H~*
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may not be nonnegative. Even if this is so, %2 could be positive, and therefore H ™! eventually positive,
so that & = ro1(kH) has no threshold of positivity, but £(t) and & = ro2(kH) do, by Theorems 3.3
and 4.7. In Table 3 we consider the cases M=5, 10, and 20, for the SG, FVE and LM methods. In these
cases the matrices ! are not nonnegative but =2 > 0, and hence the BE matrices have no positivity
threshold, but those for £(t) and ro2(kH) do, and these then diminish slowly with h.

ho he he hy ho ho

2hy

Co

Qh(]

>

Ym+1/2|

ym

CO f Q}LO

Ty Lry1)2

Fig. 4. The non—Delaunay triangulation 7, and patches Iy and ﬁo around ¢p and EO: respectively (M = 3).

e tH ro2(kH)

he | n [ N & | & | % ko | ko | ko
0.100 [ 0.200 | 86 | 0.050 | 0.046 | 0.028 | 0.037 | 0.029 | 0.026
0.050 | 0.100 | 371 | 0.043 | 0.040 | 0.022 | 0.020 | 0.019 | 0.015

0.025 | 0.050 | 1541 | 0.028 | 0.026 | 0.014 | 0.012 | 0.011 | 0.010

Table 3. Positivity thresholds for £(t) = e~*" and &, = ro2(kH), for SG, FVE and LM.

5.3 Unstructured Delaunay triangulations

We consider again the unit square 2 = (0, 1) x (0, 1), which is now partitioned by unstructured Delaunay
triangulations. This was done by means of the commercial software Hypermesh [8], a finite element
preprocessor used in various platforms in industry and research projects. In order to be able to compare
with our earlier computations, we applied its automatic 2D triangular mesh generator, with parameters
chosen to produce three triangulations, with maximal side lengths close to those in the computations in
Section 5.1, i.e. h ~ 0.14, 0.07, and 0.035. The parameters chosen included the maximum and minimum
side lengths and angles, and the resulting triangulations were then modified manually to improve their
quality. In all cases the maximal angle was less than 80.4°. The mass and stiffness matrices corresponding
to the triangulations were then assembled using the MATLAB geometry preprocessing tool [9].

As earlier we then computed positivity thresholds for £(¢) and for & = ro1(kH) and &, = ro2(kH),
for the SG, FVE, and in the case of ro2(kH) also the LM methods. The results are displayed in Table 4.
In addition to the computed values ko for the BE, we also give ki1, computed according to Theorem 4.3.
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Fig. 5. An unstructured Delaunay triangulation for the unit square (N = 295)

e M ro1(kH) ro2(kH)

h | N | & % ko | ko | ke | R ko | ko | o
0.140 [ 65 [ 0.038 [ 0.033 [ 0.0030 | 0.0039 | 0.0024 | 0.0030 | 0.022 [ 0.021 | 0.017
0.068 | 295 | 0.026 | 0.022 | 0.0007 | 0.0008 | 0.0005 | 0.0007 | 0.022 | 0.022 | 0.021
0.035 | 1170 | 0.015 | 0.013 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.022 | 0.022 | 0.022

Table 4. Positivity thresholds for &, (¢) = et and &, = roi(kH), ¢ = 1,2, for SG, FVE and LM on the unit square.

We also study in the same manner two other simple domains, namely a disk with diameter 1, and
an L-shaped domain, the unit square with the bottom right quarter deleted, see Fig. 6. The results
are exhibited in Tables 5 and 6. We see that the numerical experiments show the same behavior of the
positivity thresholds as for structured triangulations.

As in Section 5.1, the Crank-Nicolson method did not have any interval of positivity for the SG and
FVE method, for any of the domains studied.

Fig. 6. Unstructured triangulations for the disk with radius 1/2 (N = 231) and the L-chaped domain (N = 212).
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e_tH 7”01(k?7‘[) TOQ(kH)

h N | % o ko | k| ko | R ko | ko | ko
0.138 [ 50 [0.025 [ 0.022 | 0.0028 | 0.0029 | 0.0022 | 0.0022 | 0.015 | 0.014 | 0.010
0.070 | 231 | 0.018 | 0.015 | 0.0007 | 0.0009 | 0.0006 | 0.0007 | 0.015 | 0.014 | 0.013
0.034 | 1186 | 0.010 | 0.009 | 0.0002 | 0.0004 | 0.0002 | 0.0003 | 0.014 | 0.014 | 0.014

Table 5. Positivity thresholds for &£, (t) = e™t* and &, = ro;(kH), i = 1,2, for SG, FVE and LM on disk with radius 1/2.

e tH ro1(kH) ro2(kH)

h [N W | b ko | k| ke | R ko | ko | ko
0.138 | 56 [ 0.043 [ 0.036 | 0.0029 | 0.0038 | 0.0023 | 0.0029 | 0.022 [ 0.022 | 0.017
0.069 | 212 | 0.026 | 0.022 | 0.0008 | 0.0009 | 0.0006 | 0.0007 | 0.021 | 0.020 | 0.019
0.035 | 992 | 0.014 | 0.012 | 0.0002 | 0.0003 | 0.0002 | 0.0002 | 0.020 | 0.020 | 0.020

Table 6. Positivity thresholds for &, (t) = e~t* and &, = r0;(kH), i = 1,2, for SG, FVE and LM on an L-shaped domain.

6 A special case in one space dimension

In this section we consider the discretization of the initial-boundary value problem in one space dimen-
sion,

Ut = Ugz, in=(0,1), u(0,t)=u(l,t)=0, fort>0, with u(z,0) = v(z).

We partition Q = (0,1) uniformly into subintervals I; = (x;-1,2;) by «; = jh, 5 = 0,...,N + 1,
h =1/(N + 1), and let S, be the continuous piecewise linear functions x on this partition, with xo =
XN+1 = 0, where x; = x(z;). The basis functions {q)i}ivzl < Sy, are defined by ®;(x;) = d;5.

We consider first the spatially semidiscrete case, and then give some results for fully discrete methods.

6.1 The spatially semidiscrete problem

With [+, -] an appropriate inner product on Sy, and (-, ) = (,")r,(0,1), the spatially semidiscrete problem
is
[unt, x] + (uh,x') =0, VxeSn fort=0, withu(0)=uvy. (6.1)

For the Standard Galerkin method we use [-,:] = (-, ), and for the Lumped Mass method, we approximate
Slj f(x)dx by %h(f(xjfl) + f(z;)) and thus employ

N
[, X] = (¥, x)n = 3k D ¥(=;) x(x;).
j=1

For the Finite Volume Element method the control volumes are now the intervals V; = (z;_1/2,%j11/2), J =
1,...,N, where x4,/ = x; + %h, and the analogue of the FVE equation (2.4) is

JV Up,pdx — (a,h(xj+1/2) - a/h(xj—l/2)) =0, j=1,...,N,

J

or

j ﬂ}htdl} - hAhﬁh(xj) =0, where AhXj = hiQ(XJ#l —2x; + Xj71), j=1,...,N. (6.2)
\%

J



DE GRUYTER P. Chatzipantelidis, Z. Horvath and V. Thomée , Positivity preservation in FEM == 17

For x € Sh, letting Jnx be the piecewise constant function on the V; with (Jpx)(z;) = x(x;), we may
multiply (6.2) by Jix(x;) and sum to obtain, with dx; = (x;j+1 — x;5)/h,

N N
(@n,ts Jnx) = b Y Anlin(x)x(x;) = —h Y, 0tn,; 0xj = —(Uh, X'), VX € Sh,
j=1 §=0
In matrix form, (6.1) may be written as
Ma' +Sa =0, fort >0, with a(0) =7, (6.3)

with the mass matrix M = ([®;, ®;]) and the stiffness matrix S = ((®;, ®})). As in (1.6) the solution
matrixis E(t) = e~ !, with H = M~1S. Here M and S take the form, with 2mi+mo = 1,0 < 2m; < mo,

mo mi 0 ... O 2 -1 0 ... 0
mi Mmoo Mmi ... 0 L -1 2 -1 ... 0
M=h| . . ) and S=h" . L ,

0 0o ... mo 0 0o ... 2

where m1 = my = 1/6 for SG, m1 = m1 = 1/8 for FVE, and m; = m; = 0 for LM. Note that M is more
concentrated on the diagonal than M. The eigenvectors and —values of H are, for j =1,..., N,
. 2 1 —cos(mjh

{os@ly = (V2hsin(ma)}l, and A, = = (w5h) (6.4)

~ hZmo + 2m cos(mjh)’

Analogously to Theorem 3.1 we have the following.

—Ht

Theorem 6.1. If M is nondiagonal (or m1 > 0), then the solution matriz E(t) = e cannot be

nonnegative for small t > 0.

Proof. Assume £(t) = 0 for all t > 0. Then, as in two space dimensions,
EW)=e ™ =T -Ht+ 01> =0, ast—0, withH=M"S,

so that hi; <0, j # 4. Here M = hmo(Z + pnJ), and p = m1/mo < 1/2, where the elements of J are 1
in the two main bidiagonals, with all other elements 0. Thus

o0
M =T mg T4 pd) T = gt Y (1) T
j=0

where the series converges since, in maximum norm, || 7| = 2. Further, J7 only has nonzero elements in
bidiagonals of even order when j is even, and of odd order when j is odd. It follows that the elements of
M~ are positive in bidiagonals of even order and negative in those of odd order. Since S = 2h ™! (I—% ),
the same holds for H = M_lS, in contradiction to h;; < 0 for j # 3. O

For the LM method the situation is more positive.

Theorem 6.2. The LM solution matriz £(t) = e~ is nonnegative fort > 0.

Proof. Since the mass matrix for LM is M = hZ, and thus H = h™'S = 2h"%(Z — 17), we have
tH 2h™2 th™2J 2th=? v 1 27 i
Et)y=e Tt =" e —e D= th T T = 0. O

Note that, since S™* > 0 we have H~! = ST'M > 0. It therefore follows as in Theorem 3.3, since in 1D
the analogues of the o; in (3.2) are bounded by ¢; = max; |sin(jna;)|/sin(rz;) < j, that £(¢) > 0 if

N
2 e N < e M (6.5)
j=2
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Some values of the thresholds to for positivity and the infimum #; of ¢ such that (6.5) holds are given
in Table 7. As in Section 5 the thresholds tg diminish with h, here almost linearly, for both the SG and
FVE methods. However, this is not true for ¢1, which is seen to be a very pessimistic estimate for ¢g.

([ % [ & [ % [ ]
0.020 | 0.0082 | 0.0522 | 0.0067 | 0.0523

0.010 | 0.0044 | 0.0523 | 0.0036 | 0.0524
0.005 | 0.0023 | 0.0523 | 0.0019 | 0.0524

Table 7. Positivity thresholds and smallest ¢; for (6.5) to hold for £(t) = e~**, for SG and FVE.

We end this section with a comment on the relation between nonnegativity and the validity of (6.5).
For the semidiscrete solution matrix £(t) = (e;;(t)) of (6.3) we have by eigenvector expansion

eij(t Z e ’ i(x)pi(x) = 2h Z e sin(iﬂxl)sin(jﬂ'xl).
=1

In particular, since Nwx; = lr — ma;, we have sin(ma;) sin(N7wa;) = (—1) ! sin?(7a;), and hence
N
ein(t) = 2k Y (=) e™ M sin®(imh). (6.6)

There is numerical evidence that the positivity threshold ¢ is the maximal zero of e;n(t). At any rate,
positivity of e;n(t) is necessary for positivity of £(¢). In view of (6.5) and (6.6) we have

sin2(7rh)< Ze Ast 2) < sin®(wh)e Ze At sin® (jrh) (6.7)
j=2
[(N-1)/2]
=@2h) ten(t) -2 Y. e sin®((2j + 1)rh).
j=1

This inequality shows that if (6.5) holds, then ej n(t) is positive. It also shows, through the last positive
sum in (6.7), that (6.5) is a much stronger property than nonnegativity.

6.2 Fully discrete methods.

We consider time stepping matrices & = r(kH) where, as in Section 4, r(£) is a bounded rational
function for &€ > 0 such that 7(£) = 1 — & + O(£?) as € — 0. In the same way as in Theorem 4.5 we have
at once the following.

Theorem 6.3. With r(§) as above and M nondiagonal, £, = r(kH) cannot be nonnegative for small k.

This applies, in particular, to the Backward Euler method,
En=ro(kH) = M +EkS)"'M, H=M'S, (6.8)

with M, S as in (6.3). It also applies to the (0,2)—Padé method, with r(£) = ro2(§). For the LM method
M is diagonal, but in spite of Theorem 6.2 it was shown in [11] that the matrix & = ro2(kH) cannot
be nonnegative for small A = k/h% if N > 4

In order to discuss positivity for larger k, we recall that H~! > 0. Hence, as in Theorem 4.7, we
may show the following result.
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Theorem 6.4. With r(£) as above, if &, = r(kH) = 0 for large k, then r(&) = 0 for large £. If r(o0) =0
and r(&) = 0 for large &, then &, = r(kH) > 0 for large k.

Proof. 1If & = 0 for large k, then Exp1 = r(kA1)@1 = 0 for large k, and since ¢1 > 0, we have (kA1) = 0
for large k, which shows the first part of the theorem.

If 7(o0) = 0 and 7(¢) > 0 for large £, then (&) = c£~7 + O(£7971) for large £, with ¢ > 0, ¢ > 1. We
then have & = k™% (¢H ™7+ O(k™')), and hence, since H~? > 0 we conclude &, > 0 for large k. (|

In particular, this shows the nonnegativity for large k of & = ro1(kH) and &, = ro2(kH). In the same
way as in Theorem 4.9 we find, more precisely, that & = r(kH) > 0 if

N
ek < r(k). (6.9)
j=2

This was used in [11] to show that for the SG method, & = ro2(kH) > 0 for k > 0.5, independently of
h. We remark that the lower bound k; for k for (6.9) to hold is very pessimistic, as can be seen in Table
8. We also note that this condition will not be useful for the BE method. In fact, since A1, A2 are close
to the first two eigenvalues in the continuous case, 72 and 472, even for the first term in (6.9) we have
approximately 4r(kdn?)/r(kn®) = 4(1 + kr?)/(1 + kdn?) > 1.

We now show a precise result concerning the nonnegativity for large k& for the BE method as in
(6.8). We note that, with \ = k/h?,

m17)\

M + kS = (moh + 2k/h)L + (m1ih — k/h)J = h(mo + 2)\)(Z + &J), withe = ————.
mo + 2

Theorem 6.5. For &, defined in (6.8), we have & = 0 if and only if A = m;.

Proof. We first show the analogue of Theorem 4.2 in this 1D case, i.e., that the set of k with & > 0
is an interval [ko, o). If this is not so, there is a largest k1 = ko such that &, = 0, or, equivalently, a
smallest £1 > 0 such that (k1Z + H) ™' = 0. With x = k1 — § < K1, we may write

KI+H) ' =T +H-0D) = (I +H) " T-K)", where K=68rZ+H) "

Here K > 0, by assumption, and, if § is so small that || = 6|(koZ + H) ' < 1, then (T — K)™* =
Z;io K7 > 0, and therefore (kZ + H)™! = 0. Since k < k1 this is in contradiction to the definition of ;.

For A > m; we have ¢ < 0 and hence, since |g|] < 1/2, Z + £J is a Stieltjes matrix, so that
(M +EkS)™ = 0. Since M > 0 it follows from (6.8) that & > 0.

On the other hand, if A < m1, then € > 0 and the elements in the first bidiagonals of (Z + J) "
are —e + O(£?) and those in the ;' bidiagonals are of order O(e?) for j > 1. Hence, the elements of the
second bidiagonal of (Z + £J) ' M are —mie + O(e?), and thus, by (6.8), the corresponding elements
of & negative for € > 0 small. The above therefore shows that ko = m1h? and completes the proof. [

The positivity threshold is thus ko = m1h%. We note that since m; > iy > 0, the condition in Theorem
6.5 is weaker for FVE than for SG, and that since m; = 0, the LM Backward Euler solution matrix &
is nonnegative for k > 0. This is illustrated in Table 8.

We observe the following 1D analogue of Theorem 4.10, showing the positivity of the discrete solution
operator for any k, after a finite number of steps.

Theorem 6.6. Let & = r(kH), with r(€) as above, and positive and decreasing for & = 0. Then, for
any k > 0, there exists a no(k) such that &' = 0 for n = no(k).

We close this section by noting that as in Theorem 4.12 one may show the following result for the
f—method, thus with

Eop =ro(kH) = M+ EkOS) ' (M —k(1-6)S), 0<6<1.
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Tol(kH) TQQ(kH)

h ko | ko ko | B | ko [ ki | ko | R
0.020 | 0.000067 | 0.000050 | 0.017 | 0.30 | 0.017 | 0.35 | 0.016 | 0.44
0.010 | 0.000017 | 0.000013 | 0.017 | 0.34 | 0.017 | 0.37 | 0.017 | 0.41
0.005 | 0.000005 | 0.000004 | 0.017 | 0.36 | 0.017 | 0.38 | 0.017 | 0.40

Table 8. Positivity thresholds for ro1(kH) for SG, FVE and lower bound ki for (6.9) for ro2(k#), for SG, FVE, LM.

Theorem 6.7. We have &, >0 if k e [Gflml h%, (1 — 9)71%m0 hQ].

For the Crank-Nicolson method (0 = %) this gives the nonnegativity interval [% h?, % h?] for SG and
(4 k%, 2 h?] for FVE.

7 The cutoff method

Consider first the spatially semidiscrete problem (1.4), with ¥ > 0. The cutoff method then defines the
approximate nonnegative solution u,‘f(t) € Sp, for t = 0 by taking for its nodal values the nonnegative
parts of those of uy(t), or u; (P}, t) = max(up(P;,t),0), for j = 1,..., N. Since the exact solution u(t)
of (1.1) is nonnegative, we have

it (P, t) — w(Py, 6)] < Jun(Pj,t) — w(Pj,t)], for j = 1,...,N. (7.1)

We shall see that, as a result of (7.1), an error bound in |- || = |- |1, (q) for ux(t) implies an error bound
in | - || for u) (t).

Similarly, for a fully discrete solution U" € Sj,, for n > 0, we define the nonnegative cutoff solution
(U™t e S, by (U")T(P;) = max(U™(P;),0), for j = 1,..., N, and now find

(U™ (B, t) —u(Py, )] < |U™(P;) —u(Py)|, for j =1,...,N.
We first show the following lemma.

Lemma 7.1. Let x,v € S, and |x(Pj)| < |¥(F;)| for j =1,...,N. Then |x| < 2|[¢].

Proof. We have for any K € Tj, with vertices Pg , and setting x; = x(Px,1), | =1,2,3,

1 X1+ X2\2 X2 + X3\2 X3 + X142
X0y = IEIN(F52) "+ (557) + (F5) ]

One easily shows
XE+ X543 < (a+x2)” + O +x)” + (s +x1)? <40d + X3 + X3)-
Hence 1 1
IXIZa ) < IEIOG + X3 +X3) < gIKI@WT + 93 +93) < 49l 7,00

Summation over K € Tp, implies our claim. ([l

Let I, : C(2) — Si be defined by Ipv(P;) = v(P;) for j = 1,..., N. Application of the lemma with

X = uf (t) — Iyu(t), ¥ = un(t) — Inu(t), together with the triangle inequality, and correspondingly for

the fully discrete solution immediately shows the following result.
Theorem 7.1. We have, for the semidiscrete and fully discrete cutoff solutions of (1.4),
g, (8) = w(®)]| < 2|un(t) — u(t)] + 3[Inu(t) —u(t)], fort >0,
U™ = ultn)] < 20U = ultn)| + 3| Tnultn) — u(ta)], for tn = 0.
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As an application, let U™ be the fully discrete (0,2)—Padé approximation of the solution of (1.1), with
discrete initial data P,v where Py, : Lo(2) — S}, is the La—projection. Then

U™ —ulta)| < C (Rt " + K°6,2)|v], for t, = nk > 0, (7.2)
see, e.g., [12], Theorem 7.7. Since
| Thu(tn) = u(tn)| < Ch? |ultn)|g2(o) < Ch?t; ' |v], for t, > 0,

Theorem 7.1 shows that the error bound (7.2) holds also with U™ replaced by the nonnegative cutoff
solution (U™)™.
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