ON SOME SECOND ORDER SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS WITH NON-DEGENERATE INNER SOLUTIONS

C. SOURDIS

ABSTRACT. In this paper we study an inhomogeneous Allen-Cahn equation where the spatial reaction is positive but vanishes at a point. We also consider Fisher’s equation and the nonlinear Schrödinger equation with critical frequency.

1. Introduction

Throughout this paper we will denote by $c/C, C'$ a small/large positive generic constant independent of ε whose value will change from line to line. Frequently we will not explicitly denote the obvious dependence of functions on ε.

2. Transition layer solutions in an Allen-Cahn equation with non-negative spatial reaction

In [9] the author studied the singularly perturbed boundary value problem

$$
\begin{align*}
\varepsilon^2 u'' + h(x)g(u) &= 0, \quad 0 < x < 1, \\
 u'(0) = 0 &= u'(1),
\end{align*}
$$

under the hypotheses:

- $h \in C[0,1]$ is strictly positive,
- $g \in C^2(\mathbb{R})$ and

$$
\begin{align*}
g &\text{ has precisely three zeros } a_- < 0 < a_+ \\
g_u(a_-) &< 0, \quad g_u(0) > 0, \quad g_u(a_+) < 0 \\
\int_{a_-}^{a_+} g(u)du &= 0 \\
g_u(u) &> g_u(u), \quad u \neq 0.
\end{align*}
$$

Theorem 2.1. [8, 9] Let $\{x_1, x_2, ..., x_m\}$ be an arbitrary subset of the set of local minimum points of h. Then there exists a stable solution of (2.1) which has one layer near each x_k ($k = 1, \cdots, m$) and has no layer in the rest of the interval $(0,1)$.

The inner solution at each x_k is $U \left(\frac{x-x_k}{\varepsilon} \right)$ where

$$
\begin{align*}
U'' + h(x_k)g(u) &= 0, \quad x \in \mathbb{R}, \\
U(x) &\to a_- \text{ as } x \to -\infty, \quad U(x) \to a_+ \text{ as } x \to \infty.
\end{align*}
$$

Partly supported by grant FONDECYT 3085026.
(the layer can also go in the opposite direction and is also stable). The above equation has a unique solution \(U \) (modulo translation) and Theorem 2.1 follows by constructing suitable upper and lower solutions.

Our interest is in the case when \(h \) is strictly positive and has a global minimum at \(x_1 \in (0,1) \) with \(h(x_1) = 0 \). A similar investigation for the nonlinear Schrödinger equation was carried out in [2] (see also Section 4 of the present paper).

We assume that there exists \(A > 0, \alpha > 0 \) such that
\[
h(x) = A|\alpha-x_1|^{\alpha} + O(|x-x_1|^{\alpha+\delta}), \quad x \in [0,1],
\]
for some \(\delta > 0 \) (\(\forall R > 1, |t| \leq R \) we have \(|O(t)| \leq C(R)|t| \)). We consider only odd functions \(g \) and more precisely \(g(u) = u - u^3 \) (i.e., \(a_1 = 1, a_+ = -1 \)) but our approach works for odd functions \(g \) with \(g_u(0) > 0 \), \(g(a_+) = 0 \), \(g_u(a_+) < 0 \) (we don’t need the last assumption in (2.2)).

Equation 2.1 models phase transitions between the two stable states \(a_- \), \(a_+ \) in the spatial domain \((0,1)\). By allowing \(h \) to take the value 0 we can include more general situations.

We will consider the following equation and boundary conditions
\[
\varepsilon^2u'' + h(x)(u-u^3) = 0, \quad x \in (0,1),
\]
\[
u'(0) = 0 = u'(1).
\]

2.1. The inner approximate solution \(u_{in,\varepsilon} \). For every \(u \in C^2[0,1] \), we have
\[
\varepsilon^2u'' + h(x)(u-u^3) = \varepsilon^2u'' + A|x-x_1|^{\alpha}(u-u^3) + O(|x-x_1|^{\alpha+\delta})(u-u^3).
\]
We will search the inner solution \(u_{in,\varepsilon} \) as a suitable solution of
\[
\varepsilon^2u'' + A|x-x_1|^{\alpha}(u-u^3) = 0, \quad x \in \mathbb{R}
\]
and then we will restrict its domain of definition to \([0,1]\). Using the transformation
\[
u(x) = U\left(\frac{x-x_1}{\varepsilon^{\frac{1}{\alpha}}}\right), \quad x \in \mathbb{R}
\]
we see that (2.7) becomes
\[
U''(x) + A|x|^{\alpha} U(x) - U^3(x), \quad x \in \mathbb{R}.
\]
Since \(u \) should be layered, the obvious boundary conditions for \(U \) are
\[
\lim_{x \to -\infty} U(x) = -1 \quad \text{and} \quad \lim_{x \to \infty} U(x) = 1.
\]

Proposition 2.1. There exists an odd solution \(U \) with \(U'(x) > 0, \ x \in \mathbb{R} \) of
\[
u'' = A|x|^{\alpha}(u^3 - u) \quad \text{in} \ \mathbb{R}
\]
satisfying
\[
u(x) \to -1 \quad \text{as} \ x \to -\infty, \quad u(x) \to 1 \quad \text{as} \ x \to +\infty.
\]

Proof. We follow the idea of [4]. Equation (2.10) is equivalent to the non-autonomous system
\[
p' = q,
\]
\[
q' = A|x|^{\alpha}p(p+1)(p-1).
\]
Consider first the aspect of solution curves in \((p,q,x)\)-space with \(x \geq 0 \). Let
\[
W = \{(p,q,x)| \ 0 \leq p \leq 1, \ q \geq 0 \ \text{and} \ x \geq 0\}.
\]
First observe that any positive half orbit \(\{(p(x), q(x), x) \mid x \geq 0\} \) with \(p(0) = 0, q(0) > 0 \) which lies totally in \(W \) gives us a solution that we seek. Indeed, by odd reflection we see that \(p \) satisfies (2.10). Moreover \(p' = q > 0 \) (if \(q(x_0) = 0 \) then \(q \equiv 0 \)). It remains to show that \(p \) satisfies (2.11). \(p(x) \) must increase to some positive limit \(p_\infty \leq 1 \). Also since \(q' = -Ax|q|p(p + 1)(1 - \alpha) < 0, q \) must decrease to some nonnegative limit \(q_\infty \geq 0 \). Now if \(q_\infty > 0 \), then \(p_\infty \) would be \(+\infty \), thus \(q_\infty = 0 \). If \(p_\infty < 1 \), then \(\lim_{x \to +\infty} q'(x) = -\infty \) which implies that \(\lim_{x \to +\infty} q(x) = -\infty \), thus \(q_\infty = 0 \).

If an orbit leaves \(W \) it must do so across one of two faces, namely, \(\{p = 1, q > 0, x > 0\} \) or \(\{q = 0, 0 < p < 1, x > 0\} \). This follows from \(p' = q \geq 0 \) and \(q' = -Ax|q|p(p + 1)(1 - \alpha) \leq 0 \). Furthermore each exit point is a point of strict exit meaning (here) that orbits cross the faces non-tangentially; namely on the first face \(p' > 0 \) and on the second \(q' < 0 \) (note that the faces are “open”). Wazewski’s lemma implies that the map that assigns to each point of \(W \) its point of exit from \(W \) is continuous wherever it is defined. (This is easily proved directly in this simple case).

Consider the line \(S_0^Q = \{(0, q, 0) \mid \delta \leq q \leq Q\} \) where \(\delta, Q > 0 \).

Claim 1: If \(Q > 0 \) is sufficiently large, then the trajectory \(\{(p(x), q(x), x) \mid 0 \leq x < x_{\text{max}}\} \) starting at the upper endpoint \((0, Q, 0)\) of \(S_0^Q \) leaves \(W \) for the first time through the face \(\{p = 1, q > 0, x > 0\} \).

If not, then there exists a first \(0 < x_0 < x_{\text{max}} \) such that
\[
q(x_0) = \frac{Q}{2} \quad \text{and} \quad (p(x), q(x), x) \in W, \ 0 \leq x \leq x_0.
\]

Making use of (2.12) we obtain that \(p(x) \geq \frac{Q}{2} x, x \in [0, x_0] \) and in particular \(x_0 \leq \frac{2}{Q} \).

Also \(-q'(x) \leq 2Ax^\alpha \) in \((0, x_0)\), and by integrating over \((0, x_0)\),
\[
\frac{Q}{2} \leq 2A \frac{x_0^{\alpha+1}}{\alpha+1} \leq 2A \frac{2^{\alpha+1}}{\alpha+1} Q^{\alpha+1}.
\]

This is impossible if \(Q \) is chosen sufficiently large.

Claim 2: If \(\delta > 0 \) is sufficiently small, then the trajectory \(\{(p(x), q(x), x) \mid 0 \leq x < x_{\text{max}}\} \) starting at the lower endpoint \((0, \delta, 0)\) of \(S_0^Q \) leaves \(W \) for the first time through the face \(\{q = 0, 0 < p < 1, x > 0\} \).

Indeed, \(p, q \) are \(O(\delta^3) \) close to \(\bar{p}, \bar{q} \) in compact intervals as \(\delta \to 0 \), where
\[
\bar{p}' = \bar{q}, \quad \bar{q}' = -Ax^\alpha \bar{p},
\]
\[
\bar{p}(0) = 0, \bar{q}(0) = \delta. \quad \text{Note that} \quad \bar{p}(x) = \delta v(x), \bar{q}(x) = \delta v'(x) \quad \text{where}
\]
\[
v'' + Ax^\alpha v = 0, \quad v(0) = 0, \quad v'(0) = 1.
\]

Since \(v \) is oscillatory, \(q \) becomes negative after an \(O(1) \) \(x \)-interval whereas \(0 < p = O(\delta) \) in this interval.

It follows that there exists a point of \(S_0^Q \) whose positive half orbit is contained in \(W \) provided \(Q \) is chosen large and \(\delta > 0 \) small. If not, then the exit curve of \(S_0^Q \) (which would be continuous) would contain a point on the line \(\{(1, 0, x) \mid x > 0\} \) which is not possible.

The proof of the proposition is complete. \(\square \)
Remark 2.1. U is the only odd solution of (2.10), (2.11). Indeed, let us suppose that there exists another odd solution V of (2.10), (2.11). Then it is easy to see that θV, $0 \leq \theta \leq 1$ is a family of subsolutions of (2.10) in $(0, \infty)$ such that $\theta V(0) = U(0)$, $\theta V(\infty) < U(\infty)$, $0 \leq \theta < 1$. Moreover, $\theta V \leq U$ in $(0, \infty)$ when $\theta = 0$. By Serrin’s sweeping technique (see [10]) we get $V \leq U$ in $(0, \infty)$. Similarly, $U \leq V$ in $(0, \infty)$.

Proposition 2.2.

$$0 < 1 - U(x) \leq C x^{-\frac{2}{\alpha}} e^{-\frac{2\sqrt{2}A}{\alpha+2} x^{\frac{\alpha+2}{\alpha+1}}}, \quad x > 0.$$ \hfill (2.13)

Proof. The function $\varphi = 1 - U$ is bounded in $(0, \infty)$ and satisfies

$$-\varphi'' + q(x)\varphi = 0, \quad x > 0,$$

with $q(x) = A|\alpha|U(1 + U)$. The bound now follows from the asymptotic theory of linear equations (see [1]).

We define the inner approximate solution of (2.4) by

$$u_{in, \varepsilon}(x) = U\left(\frac{x - x_1}{\varepsilon^{\frac{2}{\alpha+2}}}\right), \quad x \in [0, 1].$$

Proposition 2.3. For small $\varepsilon > 0$, we have

$$\|\varepsilon^2 u''_{in} + h(x)(u_{in} - u_{in}^3)\|_{L^\infty(0, 1)} \leq C\varepsilon^{\frac{2(\alpha + \delta)}{\alpha+2}}.$$

Proof. Note that, by its construction, $u_{in, \varepsilon}$ satisfies

$$|\varepsilon^2 u''_{in} + h(x)(u_{in} - u_{in}^3)| \leq C|x - x_1|^{\alpha + \delta} \left[1 + U\left(\frac{x - x_1}{\varepsilon^{\frac{2}{\alpha+2}}}\right)\right] \left[1 - U\left(\frac{x - x_1}{\varepsilon^{\frac{2}{\alpha+2}}}\right)\right]$$

$$\leq C\varepsilon^{\frac{2(\alpha + \delta)}{\alpha+2}} \left|\frac{x - x_1}{\varepsilon^{\frac{2}{\alpha+2}}}\right|^{\alpha + \delta} e^{-c \varepsilon |x - x_1|^{\frac{1}{\alpha+2}}},$$

$x \in [0, 1]$. The proof is complete.
2.2. The approximate solution \(u_{ap,\varepsilon} \). The function \(U \left(\frac{x-x_1}{\varepsilon^{1/2}} \right) \) is certainly a good candidate for an approximate transition layer solution to the equation (2.4). However, it does not satisfy the boundary conditions. We, therefore, adjust the approximate solution to

\[
u_{ap,\varepsilon}(x) = \zeta_0(x-x_1)U \left(\frac{x-x_1}{\varepsilon^{1/2}} \right) + \zeta_+(x-x_1), \tag{2.14}\]

where \(\zeta_0, \zeta_+ \) are cutoff functions of class \(C^\infty(\mathbb{R}) \) with

\[
\zeta_0(x) = \begin{cases}
1 & |x| \leq d \\
0 & |x| \geq 2d \\
0 \leq \zeta_0(x) \leq 1 & x \in \mathbb{R},
\end{cases}
\]

for some small fixed \(d > 0 \) (see also [6]).

Proposition 2.4. For small \(\varepsilon > 0 \), we have

\[
\|\varepsilon^2 u_{ap}'' + h(x)(u_{ap} - u_{ap}^3)\|_{L^\infty(0,1)} \leq C \varepsilon^{2(\alpha + \delta)}.
\]

Proof. In the interval \([x_1 - d, x_1 + d]\), \(u_{ap} = u_{in} \) and the bound follows from Proposition 2.3.

In \([0,1]\setminus(x_1 - d, x_1 + d)\) the bound holds as well. In the interval \([x_1 - 2d, x_1 - d]\) we have that \(1 + u_{ap}, |u_{ap}'| \) are transcedentally small in \(\varepsilon \) (note that Proposition 2.2 implies that \(U'(z), U''(z) \) also converge to zero super-exponentially as \(|z| \to \infty \)). In \([x_1 + d, x_1 + 2d]\), \(1 - u_{ap}, |u_{ap}'| \) are transcedentally small in \(\varepsilon \). In \([0, x_1 - 2d]\) we have \(u_{ap} = -1 \) and in \([x_1 + 2d, 1]\), \(u_{ap} = 1 \).

The proof of the proposition is complete. \(\square \)

2.3. Linear analysis: Asymptotic stability of \(U \). In Proposition 2.1 we showed that the limiting problem (2.10), (2.11) has a solution \(U \). In this subsection we show that \(U \) is non-degenerate and actually asymptotically stable.

The spectrum, in \(L^2(\mathbb{R}) \), of the linear operator

\[
M(\varphi) = -\varphi'' + A|x|^\alpha(3U^2 - 1)\varphi,
\tag{2.16}
\]

is discrete and consists of simple eigenvalues \(\mu_1 < \mu_2 < \cdots \) (recall that \(|x|^\alpha(3U^2 - 1) \to \infty \) as \(|x| \to \infty \)). We denote the corresponding \(L^2 \)-normalized eigenfunctions by \(\psi_1, \psi_2, \cdots \). Each \(\psi_i, i \geq 1 \) has exactly \(i - 1 \) zeroes and we may assume that \(\psi_1 > 0 \). Moreover each \(\psi_i \) satisfies the bound (??) (with constants depending on \(i \)). Without loss of generality we can assume that \(\psi_1 > 0 \) is an even function of \(x \).

Proposition 2.5. We have that \(\mu_1 > 0 \).

Proof. We have

\[
-\psi_1'' + A|x|^\alpha(3U^2 - 1)\psi_1 = \mu_1 \psi_1, \quad x \in \mathbb{R}.
\tag{2.17}
\]

Note that \(w = U' > 0 \) solves

\[
-w'' + A|x|^\alpha(3U^2 - 1)w = -\alpha A|x|^{-2}x(U^3 - U), \quad x \in \mathbb{R}.
\tag{2.18}
\]

By multiplying (2.17) with \(w \), (2.18) with \(\psi_1 \) and subtracting, we find that

\[
\mu_1 \int_{-\infty}^{\infty} \psi_1 wd = -\alpha A \int_{-\infty}^{\infty} |x|^{-2}x(U^3 - U)\psi_1 dx = -2\alpha A \int_{0}^{\infty} x^{\alpha - 1}(U^3 - U)\psi_1 dx > 0.
\]

The proof is complete. \(\square \)
2.4. Linear analysis: The linearized operator in a small neighborhood of the approximate solution. In this subsection we will study the linear operator

\[L_{\varepsilon}(\varphi) = -\varepsilon^2 \varphi'' + h(x)(3u_{\varepsilon}^2 - 1)\varphi, \]

with \(\varphi \in H^2(0,1), \varphi'(0) = \varphi'(1) = 0 \) and \(u_{\varepsilon} \in C[0,1] \) satisfying

\[\|u_{\varepsilon} - u_{app}\|_{L^{\infty}(0,1)} \to 0 \quad \text{as} \quad \varepsilon \to 0. \tag{2.19} \]

This operator arises when we linearize (2.4), (2.5) on the approximate solution \(u_{app} \).

Note that there exists a large number \(D > 0 \) such that

\[3u_{\varepsilon}^2(x) - 1 \geq 1, \quad |x - x_1| \geq D\varepsilon^{-\frac{2}{\alpha + 2}}, \tag{2.20} \]

if \(\varepsilon > 0 \) is sufficiently small. Hence,

\[h(x)(3u_{\varepsilon}^2(x) - 1) \geq c|x - x_1|^{\alpha}, \quad |x - x_1| \geq D\varepsilon^{-\frac{2}{\alpha + 2}}, \tag{2.21} \]

for small \(\varepsilon \). Moreover, it is easy to see that

\[h(x)(3u_{\varepsilon}^2(x) - 1) \geq -C\varepsilon^{-\frac{2\alpha}{\alpha + 2}}, \quad x \in [0,1]. \tag{2.22} \]

By (2.3), the definition of \(u_{app} \) and our assumption on \(u_{\varepsilon} \), we have

\[h(x_1 + \varepsilon^{-\frac{2}{\alpha + 2}}x) \left(3u_{\varepsilon}^2(x_1 + \varepsilon^{-\frac{2}{\alpha + 2}}x) - 1 \right) \to A|x|^{\alpha}(3U^2(x) - 1) \quad \text{in} \ C_{loc}(\mathbb{R}) \tag{2.23} \]

as \(\varepsilon \to 0. \)

Proposition 2.6. The exists \(\varepsilon_0 > 0, C > 0 \) such that, if \(0 < \varepsilon < \varepsilon_0, f \in C[0,1] \) and \(\varphi \in C^2[0,1] \) satisfy

\[
\begin{cases}
L_{\varepsilon}(\varphi) = f & x \in (0,1) \\
\varphi'(0) = \varphi'(1) = 0,
\end{cases}
\]

then

\[\|\varphi\|_{L^{\infty}(0,1)} \leq C\varepsilon^{-\frac{2\alpha}{\alpha + 2}}\|f\|_{L^{\infty}(0,1)}. \]

Proof. We will argue by contradiction. Assuming the opposite means that there are sequences \(\varepsilon_n \to 0, \varphi_n \in C^2[0,1], f_n \in C[0,1] \) such that

\[
\|\varphi_n\|_{L^{\infty}(0,1)} = 1, \quad n \geq 1, \quad \varepsilon_n^{-\frac{2\alpha}{\alpha + 2}}\|f_n\|_{L^{\infty}(0,1)} \to 0 \quad \text{as} \quad n \to \infty, \tag{2.24}
\]

\[
\begin{cases}
-\varepsilon_n^2\varphi''_n + h(x)(3u_{\varepsilon_n}^2 - 1)\varphi_n = f_n & \text{in} \ (0,1), \\
\varphi'_n(0) = \varphi'_n(1) = 0.
\end{cases} \tag{2.25}
\]

In view of the boundary conditions, without loss of generality, we assume that there exist \(\xi_n \in [0,1] \) such that

\[\varphi_n(\xi_n) = 1, \quad \varphi'_n(\xi_n) = 0, \quad \varphi''_n(\xi_n) \leq 0, \quad n \geq 1. \]

We claim that

\[\varepsilon_n^{-\frac{2}{\alpha + 2}}|\xi_n - x_1| \leq C, \quad n \geq 1. \tag{2.26} \]

Indeed, by (2.21), (2.25), we deduce that, for each \(n \geq 1, \)

\[h(\xi_n)(3u_{\varepsilon_n}(\xi_n) - 1) \leq \|f_n\|_{L^{\infty}(0,1)}. \]

Relation (2.26) now follows immediately from (2.21), (2.24).

Let

\[\tilde{\varphi}_n(x) = \varphi_n(x_1 + \varepsilon_n^{-\frac{2}{\alpha + 2}}x), \quad \tilde{f}_n(x) = f_n(x_1 + \varepsilon_n^{-\frac{2}{\alpha + 2}}x), \quad x \in I_n = \left[\frac{x_1}{\varepsilon_n^{-\frac{2}{\alpha + 2}}}, \frac{1 - x_1}{\varepsilon_n^{-\frac{2}{\alpha + 2}}} \right]. \]
We see that
\[
\|\tilde{\varphi}_n\|_{L^\infty(I_n)} = 1, \ n \geq 1, \ \varrho_n \frac{2\varepsilon_n}{n^{\frac{2}{n+2}}} \|\tilde{f}_n\|_{L^\infty(I_n)} \to 0 \quad \text{as} \ n \to \infty, \tag{2.27}
\]
\[
\begin{cases}
-\varrho_n'' + \varepsilon_n \frac{2\varepsilon_n}{n^{\frac{2}{n+2}}} h(x + \varepsilon_n \frac{2\varepsilon_n}{n^{\frac{2}{n+2}}} x) \left(3u_n^2(x + \varepsilon_n \frac{2\varepsilon_n}{n^{\frac{2}{n+2}}} x) - 1\right) \tilde{\varphi}_n = \varepsilon_n \frac{2\varepsilon_n}{n^{\frac{2}{n+2}}} \tilde{f}_n \\
\varphi_n'(0) = \varphi'(1) = 0.
\end{cases}
\tag{2.28}
\]

The above two relations and (2.23) imply that for any $L > 0$ we have
\[
\|\tilde{\varphi}_n\|_{C^2[-L,L]} \leq C(L) \quad \text{if} \ n \geq N(L).
\]
Using the Arzela-Ascoli theorem, (2.23), (2.28) and the standard diagonal argument we obtain that, for a subsequence,
\[
\tilde{\varphi}_n \to \bar{\varphi} \quad \text{as} \ n \to \infty,
\]
where $\bar{\varphi}$ is bounded in \mathbb{R} and satisfies
\[
-\bar{\varphi}'' + A|x|^\alpha \left(3U^2(x) - 1\right) \bar{\varphi} = 0 \quad \text{in} \ \mathbb{R}.
\]
Since $\bar{\varphi} \in L^\infty(\mathbb{R})$ and $A|x|^\alpha (3U^2 - 1) \to \infty$ as $|x| \to \infty$, it is easy to see that $\bar{\varphi} \to 0$ as $|x| \to \infty$ super-exponentially. Hence, by Proposition 2.5,
\[
\bar{\varphi} \equiv 0.
\]

On the other hand, since
\[
\tilde{\varphi}_n \left(\frac{x_n - x}{\varepsilon_n}\right) = 1, \ n \geq 1,
\]
we obtain, via (2.26) and the C^2_{loc} convergence of $\tilde{\varphi}_n$, that $\bar{\varphi}(\bar{x}) = 1$ for some \bar{x}; a contradiction and the proof is complete. \hfill \Box

Proposition 2.7. The exists $\varepsilon_0 > 0$, $C > 0$ such that, if $0 < \varepsilon < \varepsilon_0$, $f \in C[0,1]$ and $\varphi \in C^2[0,1]$ satisfy
\[
\begin{cases}
L_\varepsilon(\varphi) = hf & x \in (0,1) \\
\varphi'(0) = \varphi'(1) = 0,
\end{cases}
\]
then
\[
\|\varphi\|_{L^\infty(0,1)} \leq C\|f\|_{L^\infty(0,1)}.
\]

Proof. We will argue by contradiction. Assuming the opposite means that there are sequences $\varepsilon_n \to 0$, $\varphi_n \in C^2[0,1]$, $f_n \in C[0,1]$ such that
\[
\|\varphi_n\|_{L^\infty(0,1)} = 1, \ n \geq 1, \ \|f_n\|_{L^\infty(0,1)} \to 0 \quad \text{as} \ n \to \infty, \tag{2.29}
\]
\[
\begin{cases}
-\varepsilon_n^2 \varphi_n'' + h(x)(3u_2^2 - 1)\varphi_n = h(x)f_n \quad \text{in} \ (0,1), \\
\varphi_n'(0) = \varphi_n'(1) = 0.
\end{cases}
\tag{2.30}
\]

In view of the boundary conditions, without loss of generality, we assume that there exist $\xi_n \in [0,1]$ such that
\[
\varphi_n(\xi_n) = 1, \ \varphi_n'(\xi_n) = 0, \ \varphi_n''(\xi_n) \leq 0, \ n \geq 1.
\]

We claim that
\[
\varepsilon_n \frac{2\varepsilon_n}{n^{\frac{2}{n+2}}} |\xi_n - x_1| \leq C, \ n \geq 1. \tag{2.31}
\]
Indeed, by (2.30) we deduce that, for each $n \geq 1$,
\[
h(\xi_n) \left(3u_{\varepsilon_n}^2(\xi_n) - 1\right) \leq h(\xi_n)\|f_n\|_{L^\infty(0,1)}.
\]
Relation (2.31) now follows immediately from (2.20).

The rest of the argument is similar to the one in the proof of Proposition 2.6.

\[\square\]

Similarly we can show (see [13])

Proposition 2.8. For any fixed integer $m \geq 1$ the first m eigenvalues $\lambda_{1,\varepsilon} < \cdots \lambda_{m,\varepsilon}$ and the corresponding L^2-normalized eigenfunctions $\varphi_{i,\varepsilon}$ of L_ε satisfy
\[
e^{-\frac{2\alpha}{\varepsilon^2}}\lambda_{i,\varepsilon} \rightarrow \mu_i
\]
\[
\|\varphi_{i,\varepsilon}(x) - \varepsilon^{-\frac{1}{\alpha+2}}\psi_i \left(\frac{x-x_1}{\varepsilon^{\alpha+2}}\right)\|_{L^2(0,1)} \rightarrow 0
\]
as $\varepsilon \rightarrow 0$, $i = 1, \ldots, k$, where μ_i, ψ_i are as in Section 2.3.

2.5. Existence and stability for the nonlinear problem.

Theorem 2.2. If $\varepsilon > 0$ is sufficiently small, there exists a solution u_ε of (2.4), (2.5) such that
\[
\|u_\varepsilon - u_{ap,\varepsilon}\|_{L^\infty(0,1)} \leq C\varepsilon^{\frac{2\alpha}{\alpha+2}}.
\]
Moreover, the smallest eigenvalue $\lambda_{1,\varepsilon}$ of the eigenvalue problem
\[
\begin{cases}
\varepsilon^{-\frac{2\alpha}{\varepsilon^2}}\lambda_{1,\varepsilon} \rightarrow \mu_1 \\
\varepsilon^{-\frac{1}{\alpha+2}}\lambda_{i,\varepsilon} \rightarrow \mu_i \\
\|\varphi_{i,\varepsilon}(x) - \varepsilon^{-\frac{1}{\alpha+2}}\psi_i \left(\frac{x-x_1}{\varepsilon^{\alpha+2}}\right)\|_{L^2(0,1)} \rightarrow 0
\end{cases}
\]
as $\varepsilon \rightarrow 0$, $i = 1, \ldots, k$, where μ_i, ψ_i are as in Section 2.3.

Proof. We look for a solution to (2.4), (2.5) in the form
\[
u = u_{ap,\varepsilon} + \varphi,
\]
where $\varphi \in C^2[0,1]$ with $\varphi'(0) = \varphi'(1) = 0$ is a small perturbation. Thus the equation for u is equivalent to
\[
\begin{cases}
L_\varepsilon(\varphi) = h(x)N_\varepsilon(\varphi) + E_\varepsilon \quad \text{in} \quad (0,1), \\
\varphi'(0) = \varphi'(1) = 0,
\end{cases}
\]
(2.34)

where
\[
L_\varepsilon(\varphi) = -\varepsilon^2\varphi'' + h(x)(3u_{ap}^2 - 1)\varphi,
\]
\[
N_\varepsilon(\varphi) = -\varphi^3 - 3u_{ap}\varphi^2,
\]
\[
E_\varepsilon = \varepsilon^2u_{ap}' - h(x)(u_{ap}^3 - u_{ap}).
\]

Note that L_ε satisfies the hypotheses of Section 2.4 (see (2.19)).

In view of Proposition 2.6, for small ε, we can define a mapping $T_\varepsilon : C[0,1] \rightarrow C[0,1]$ by the relation
\[
\begin{cases}
L_\varepsilon(T_\varepsilon(\varphi)) = h(x)N_\varepsilon(\varphi) + E_\varepsilon \quad \text{in} \quad (0,1), \\
(T_\varepsilon(\varphi))'(0) = (T_\varepsilon(\varphi))'(1) = 0.
\end{cases}
\]
(2.35)
We will show that we can choose a large M (indep. of ε) such that, for small ε, the nonlinear operator T_ε maps

$$B_{\varepsilon,M} := \{ \varphi \in C[0,1] : \| \varphi \|_{L^{\infty}(0,1)} \leq M \varepsilon^{\frac{2\alpha}{\alpha+2}} \}$$

into itself and is a contraction with respect to the L^∞ norm. If $\varphi \in B_{\varepsilon,M}$, by Propositions 2.4, 2.6, 2.7 we get

$$\| T_\varepsilon(\varphi) \|_{L^{\infty}(0,1)} \leq C \| N_\varepsilon(\varphi) \|_{L^{\infty}(0,1)} + C \varepsilon^{-\frac{2\alpha}{\alpha+2}} \| E_\varepsilon \|_{L^{\infty}(0,1)}$$

provided ε is small (independently of φ, M). (The constant C in the above relation is independent of φ, M). By choosing $M = 2C$ and ε_0 such that $4C^2 \varepsilon_0^{\frac{2\alpha}{\alpha+2}} < 1$ we deduce that $T_\varepsilon(\varphi) \in B_{\varepsilon,M}$ if $0 < \varepsilon < \varepsilon_0$.

If $\varphi_1, \varphi_2 \in B_\varepsilon$ (we dropped the subscript M since we fixed it), we have

$$\| T_\varepsilon(\varphi_1) - T_\varepsilon(\varphi_2) \|_{L^{\infty}(0,1)} \leq C \| N_\varepsilon(\varphi_1) - N_\varepsilon(\varphi_2) \|_{L^{\infty}(0,1)}$$

$$\leq C \varepsilon^{\frac{2\alpha}{\alpha+2}} \| \varphi_1 - \varphi_2 \|_{L^{\infty}(0,1)}.$$

It follows that, if ε is sufficiently small, $T_\varepsilon : B_\varepsilon \to B_\varepsilon$ is a contraction. By the Banach fixed point theorem, there exists a unique

$$\varphi_\varepsilon \in B_\varepsilon$$

such that

$$T_\varepsilon(\varphi_\varepsilon) = \varphi_\varepsilon.$$

The function

$$u_\varepsilon := u_{ap,\varepsilon} + \varphi_\varepsilon$$

is a solution of (2.4), (2.5) satisfying estimate (2.32). The principal eigenvalue of the linearized problem (3.3) satisfies the assertion of Proposition 2.8 because u_ε satisfies (2.19). The proof of the theorem is complete. \[\square\]

3. Layered Solutions in a Problem Arising in Population Genetics

We consider the singularly perturbed boundary value problem

$$\begin{cases}
\varepsilon^2 \Delta u + h(x) g(u) = 0, & x \in \Omega, \\
\frac{\partial u}{\partial n} = 0, & x \in \partial \Omega,
\end{cases}$$

(3.1)

where Ω is a smooth domain in \mathbb{R}^N, $h \in C(\Omega)$ and $g \in C^2(\mathbb{R})$ satisfies

$$\begin{cases}
g(0) = 0, & g(1) = 0, \\
g_u(0) > 0, & g_u(1) < 0, \\
g_u > 0, & \forall u \in (0,1).
\end{cases}$$

Note that (3.1) includes the important Fisher’s equation (with $g(u) = u(1-u)$).
This problem was treated in [7] in the context of population genetics. The existence of a family of global minimizers \(u_\varepsilon \) of the corresponding energy functional which develop inner transition layers with a single interface given by

\[
S = \{ x \in \Omega : h(x) = 0 \}
\]

was proved if \(h \) changes sign at \(S \). More precisely, the author assumed that \(h \in L^\infty(\Omega) \), \(h \neq 0 \) a.e., and that the set

\[
P = \{ x \in \Omega : h(x) > 0 \ \text{a.e.} \}
\]

has finite capacity. He showed that any global minimizer \(u_\varepsilon \) satisfies

\[
u_\varepsilon \to \chi_P \quad \text{as} \quad \varepsilon \to 0 \quad \text{in} \quad L^q(\Omega) \quad \forall q < \infty,
\]

(see [7] Chapter 10, Exercise 3).

In the case where the interface \(S \) is smooth, one can apply the arguments of the previous sections and give a perturbation proof which yields fine estimates (the one dimensional profile turns out to be asymptotic stable). For simplicity we focus on the one dimensional case and we assume that \(h \) changes sign only once. We will assume that \(h \in C[0,1] \) satisfies

\[
h(x) < 0, \quad x \in [0,x_1), \quad h(x) > 0, \quad x \in (x_1,1],
\]
 \[h(x) = \text{Sign}(x-x_1)|x-x_1|^\alpha + O(|x-x_1|^\alpha + \delta) \quad \text{as} \quad x \to x_1,
\]

for some \(x_1 \in (0,1) \) and \(A, \alpha, \delta > 0 \).

Theorem 3.1. If \(\varepsilon \) is sufficiently small, there exists a layered solution \(u_\varepsilon \) of

\[
\begin{align*}
\varepsilon^2 u'' + h(x)g(u) &= 0, \quad x \in (0,1), \\
u'(0) &= u'(1) = 0,
\end{align*}
\]

such that

\[
|u_\varepsilon(x) - U\left(\frac{x-x_1}{\varepsilon}\right)| \leq C\varepsilon^{\frac{\alpha}{\alpha+2}}, \quad x \in [0,1],
\]

where \(U \) is the unique monotone solution of

\[
\begin{align*}
\phi'' + \text{Sign}(x)|x|^\alpha g(u) &= 0, \quad x \in \mathbb{R}, \\
u(x) &\to 0 \quad \text{as} \quad x \to -\infty, \quad u(x) \to 1 \quad \text{as} \quad x \to \infty,
\end{align*}
\]

(see [5]). Moreover, the smallest eigenvalue \(\lambda_{1,\varepsilon} \) of the eigenvalue problem

\[
\begin{align*}
-\varepsilon^2 \phi'' + h(x)g_u(u_\varepsilon)\phi &= \lambda \phi \quad \text{in} \quad (0,1), \\
\phi'(0) &= \phi'(1) = 0,
\end{align*}
\]

is positive and satisfies

\[
\varepsilon^{-\frac{\alpha}{\alpha+2}} \lambda_{1,\varepsilon} \to \mu_1 \quad \text{as} \quad \varepsilon \to 0,
\]

where \(\mu_1 > 0 \) is the principal eigenvalue of

\[
-\psi'' - \text{Sign}(x)|x|^\alpha g_u(U)\psi = \mu \psi, \quad \psi \in L^2(\mathbb{R}).
\]

We refer to [5] for the asymptotic stability of \(U \) (we note that \(U' > 0 \)). The proof follows almost word by word the arguments of Sections 2.2, 2.4, 2.5 and, thus, is omitted.
4. Standing waves with critical frequency for the nonlinear Schrödinger equation

In [2] the authors studied the problem

\[
\begin{align*}
\varepsilon^2 \Delta u - V(x)u + u^p &= 0, \quad x \in \mathbb{R}^N, \\
u(x) &\to 0, \quad |x| \to \infty,
\end{align*}
\]

(4.1)

under the hypotheses:

\[
\begin{cases}
V \in C(\mathbb{R}^N) \\
\liminf_{|x| \to \infty} V(x) > 0 \\
\inf_{x \in \mathbb{R}^N} V(x) = 0 \\
1 < p < \frac{N+2}{N-2} \text{ if } N \geq 3, \quad p > 1 \text{ if } N = 1, 2.
\end{cases}
\]

(4.2)

In the case when \(V\) has an isolated minimum at \(x_1 \in \mathbb{R}^N\) such that

\[V(x) = A|x - x_1|^\alpha + o(|x - x_1|^\alpha) \quad \text{as } x \to x_1,\]

for some constants \(A, \alpha > 0\), their general result says that (4.1) has a positive solution \(u_\varepsilon\) such that

\[\varepsilon^{-\frac{2\alpha}{(p-1)(\alpha+2)}} u_\varepsilon(x_1 + \varepsilon^{\frac{2}{\alpha+2}} x) \to U(x) \text{ uniformly in } \mathbb{R}^N \text{ as } \varepsilon \to 0,\]

(4.3)

where \(U\) is the unique positive solution of

\[
\begin{cases}
\Delta u - A|x|^\alpha u + u^p = 0, \quad x \in \mathbb{R}^N, \\
\lim_{|x| \to \infty} u(x) = 0,
\end{cases}
\]

(see [3]). Their approach is variational (equation (4.1) under (4.2) has mountain-pass structure).

From [3] we know that \(U\) is non-degenerate, i.e.,

\[
\begin{cases}
\Delta \varphi - A|x|^\alpha \varphi + pU^{p-1}\varphi = 0, \quad x \in \mathbb{R}^N, \\
\lim_{|x| \to \infty} \varphi(x) = 0,
\end{cases}
\]

has only the trivial solution \(\varphi \equiv 0\).

Here we assume that \(V, p \geq 2\) satisfy (4.2),

\[V(x) = A|x - x_1|^\alpha + O(|x - x_1|^\alpha+\delta) \quad \text{as } x \to x_1,\]

for some \(A, \alpha, \delta > 0\) and \(V(x) > 0, x \neq x_1\).

We set

\[u_{ap,\varepsilon}(x) = \varepsilon^{-\frac{2\alpha}{(p-1)(\alpha+2)}} \zeta \left(\frac{x - x_1}{\varepsilon^{\frac{2}{\alpha+2}}} \right) \eta(x - x_1), \quad x \in \mathbb{R}^N,\]

(4.4)

where \(\zeta \in C_0(\mathbb{R}^N)\) is a smooth cut-off (independent of \(\varepsilon\)) such that

\[
\zeta(x) = \begin{cases} 1 & |x| \leq 1 \\ 0 & |x| \geq 2. \end{cases}
\]
We introduce the weighted norm
\[\|u\|_w = \|\exp\left\{\frac{|x-x_1|}{\varepsilon^{\frac{1}{2}\alpha}}\right\} u\|_{L^\infty(\mathbb{R}^N)}, \]
and the Banach space
\[W = \{u \in C(\mathbb{R}^N) : \|u\|_w < \infty\} \]
equipped with this norm.

Proposition 4.1. If \(\varepsilon > 0 \) is sufficiently small,
\[\|\varepsilon^2 \Delta u_{ap} - V(x)u_{ap} + u_{ap}^p\|_w \leq C\varepsilon^{2\alpha p + 2\delta(p-1)}\]

Proof. By the definition of \(U \) and its super-exponential decay, we have
\[|\varepsilon^2 \Delta u_{ap} - A|x-x_1|^\alpha u_{ap} + u_{ap}^p| \leq Ce^{-\frac{2}{\alpha}e^{-\frac{|x-x_1|}{\varepsilon}}} \]
in \(\mathbb{R}^N \). So,
\[|\varepsilon^2 \Delta u_{ap} - V(x)u_{ap} + u_{ap}^p| \leq \|(A|x-x_1|^\alpha - V(x))u_{ap}\| + Ce^{-\frac{2}{\alpha}e^{-\frac{|x-x_1|}{\varepsilon}}} \]
\[\leq C\varepsilon^{2\alpha p + 2\delta(p-1)}\frac{|x-x_1|}{\varepsilon^{\frac{1}{2}\alpha}} \|U\left(\frac{x-x_1}{\varepsilon^{\frac{1}{2}\alpha}}\right)\| + Ce^{-\frac{2}{\alpha}e^{-\frac{|x-x_1|}{\varepsilon}}} \]
\[\leq C\varepsilon^{2\alpha p + 2\delta(p-1)} e^{-\frac{|x-x_1|}{\varepsilon^{\frac{1}{2}\alpha}}}, \]
in \(\mathbb{R}^N \), and the desired bound follows immediately. \(\square \)

Remark 4.1. We used the cut-off in case \(V \) increases exponentially fast at as \(|x| \to \infty \).

Remark 4.2. The estimate \(0 < U(x) \leq Ce^{-2|x|} \) was all that we used.

Let
\[L_\varepsilon(\varphi) = -\varepsilon^2 \Delta \varphi + (V(x) - C\varphi_{ap}^{\nu-1}) \varphi. \]
Note that for some fixed \(D > 1 \) independent of \(\varepsilon \),
\[V(x) - C\varphi_{ap}^{\nu-1} \geq \begin{cases} c|x-x_1|^\alpha - \frac{\varepsilon^{2\alpha}}{2} & D\varepsilon^{\frac{2}{\alpha}+\delta} \leq |x-x_1| \leq 1 \\ c & |x-x_1| \geq 1, \end{cases} \]
\[\varepsilon^{-\frac{2}{\alpha}+\frac{\alpha}{2}} V(x_1 + \varepsilon^{\frac{2}{\alpha}+\delta} x) \to A|x|^\alpha \text{ in } C_{\text{loc}}(\mathbb{R}^N) \]
as \(\varepsilon \to 0 \) (these are the analogs of (2.21), (2.23)).

As in Proposition 2.6, we have

Proposition 4.2. There exist constants \(\varepsilon_0, C > 0 \) such that if \(\varepsilon \in (0, \varepsilon_0), \varphi \in C^2(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N), f \in C(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \) satisfy
\[L_\varepsilon(\varphi) = f \text{ in } \mathbb{R}^N, \]
then
\[\|\varphi\|_{L^\infty(\mathbb{R}^N)} \leq C\varepsilon^{-\frac{\alpha}{\alpha+2}} \|f\|_{L^\infty(\mathbb{R}^N)}. \]
Proposition 4.3. There exist constants ε_0, $C > 0$ such that if $\varepsilon \in (0, \varepsilon_0)$, and $f \in W$, then there exists a unique $\varphi \in W \cap C^2(\mathbb{R}^N)$ such that

$$L_\varepsilon(\varphi) = f \quad \text{in } \mathbb{R}^N.$$

Moreover,

$$\|\varphi\|_W \leq C\varepsilon^{-\frac{2\alpha}{\pi^2}} \|f\|_W.$$

Proof. The existence and uniqueness of φ can be deduced from Proposition 4.3 and a standard barrier argument. We already know that

$$\|\varphi\|_{L^\infty(\mathbb{R}^N)} \leq C\varepsilon^{-\frac{2\alpha}{\pi^2}} \|f\|_W. \quad (4.8)$$

So,

$$\exp\left\{\left[\frac{|x - x_1|}{\varepsilon^\frac{2\alpha}{\pi^2}}\right]\right\} |\varphi(x)| \leq C\varepsilon^{-\frac{2\alpha}{\pi^2}} \|f\|_W \quad \text{if } |x - x_1| \leq D\varepsilon^\frac{2\alpha}{\pi^2},$$

(D is as in (4.7)). Let

$$\psi_M(x) = M\varepsilon^{-\frac{2\alpha}{\pi^2}} \|f\|_W \exp\left\{\left[-\frac{|x - x_1|}{\varepsilon^\frac{2\alpha}{\pi^2}}\right]\right\}, \quad |x - x_1| \geq D\varepsilon^\frac{2\alpha}{\pi^2}.$$

In view of (4.7), (4.8) it is easy to check that

$$L_\varepsilon(\psi_M) \geq f \quad |x - x_1| \geq D\varepsilon^\frac{2\alpha}{\pi^2}$$

$$\psi_M = \varphi \quad |x - x_1| = D\varepsilon^\frac{2\alpha}{\pi^2},$$

provide ε is small and M is large (indep. of ε). By the maximum principle (recall also that φ, ψ_M vanish at infinity) we deduce that

$$\varphi(x) \leq M\varepsilon^{-\frac{2\alpha}{\pi^2}} \|f\|_W \exp\left\{\left[-\frac{|x - x_1|}{\varepsilon^\frac{2\alpha}{\pi^2}}\right]\right\}.$$

Doing the same for $-\varphi$ yields

$$\exp\left\{\left[\frac{|x - x_1|}{\varepsilon^\frac{2\alpha}{\pi^2}}\right]\right\} \|\varphi(x)| \leq C\varepsilon^{-\frac{2\alpha}{\pi^2}} \|f\|_W,$$

and the proof is complete. \qed

Remark 4.3. As in Section 2.4, the above two propositions also hold true when we linearize on functions u_ε satisfying $\varepsilon^{-\frac{2\alpha}{\pi^2}} \|u_\varepsilon - u_{ap}\|_{L^\infty(\mathbb{R}^N)} \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Theorem 4.1. If $\varepsilon > 0$ is sufficiently small, there exists a positive solution $u_\varepsilon > 0$ of (4.1) such that

$$\|u_\varepsilon - u_{ap, \varepsilon}\|_W \leq C\varepsilon^{\frac{2\alpha + 2(1 - p)}{(p - 1)(p + \alpha)}} \varepsilon^{\frac{1}{2}},$$

(4.9)

or equivalently

$$\left|\varepsilon^{-\frac{2\alpha}{(p - 1)(p + \alpha)}} u_\varepsilon(x_1 + \varepsilon^\frac{1}{p + \alpha} x) - U(x)\right| \leq C\varepsilon^{\frac{1}{2(p + \alpha)}} \varepsilon^{-\frac{1}{2}} \varepsilon^{-\frac{1}{2}}, \quad x \in \mathbb{R}^N. \quad (4.10)$$

Proof. We consider the equation

$$\varepsilon^2 \Delta u - V(x)u + |u|^p = 0 \quad \text{in } \mathbb{R}^N. \quad (4.11)$$

We search for a solution u of (4.11) in the form $u = u_{ap, \varepsilon} + \varphi$. In terms of φ equation (4.11) becomes

$$L_\varepsilon(\varphi) = N_\varepsilon(\varphi) + E_\varepsilon,$$

where

$$N_\varepsilon(\varphi) = |u_{ap} + \varphi|^p - u_{ap}^p - pu_{ap}^{p-1} \varphi,$$

$$E_\varepsilon = \varepsilon^2 \Delta u_{ap} - V(x)u_{ap} + u_{ap}^p.$$
Since $p \geq 2$, there exists a $C > 0$ such that

$$\|y + y_0\|^p - |y_0|^p - p \text{sign}(y_0)|y_0|^{p-1}y| \leq C(|y| + |y_0|)^{p-2}y^2, \quad \forall y, y_0 \in [-1, 1].$$

(4.12)

In view of Propositions 4.1, 4.3 and (4.12), we can define a mapping $T_\varepsilon : W \to W$ by the relation

$$L_\varepsilon (T_\varepsilon (\varphi)) = N_\varepsilon (\varphi) + E_\varepsilon.$$

Let,

$$B_{\varepsilon,M} := \{ \varphi \in W : \| \varphi \|_W \leq M \varepsilon^{\frac{2\alpha + 2d(p-1)}{(p-1)(\alpha + 1)}} \}$$

where $M > 0$ is to be chosen independently of $\varepsilon > 0$ small. Note that, via (4.12), for every $\varphi \in B_{\varepsilon,M}$ we have

$$\|N_\varepsilon (\varphi)\|_W \leq C \varepsilon^{\frac{2\alpha(p-2)}{(p-1)(\alpha + 1)}} \|\varphi\|_W^2$$

with C independent of ε, M, φ provided ε is small. We leave it to the interested reader to check that we can fix a large $M > 0$ such that, if $\varepsilon > 0$ is sufficiently small, T_ε maps B_ε into itself and is a contraction with respect to the norm of W (see also the proof of Theorem 2.2). Hence, T_ε has a unique fixed point φ_ε in B_ε. Then $u_\varepsilon := u_{ap} + \varphi_\varepsilon$ solves equation (4.11) and satisfies estimates (4.9), (4.10). To conclude it remains to show that u_ε is positive in \mathbb{R}^N (so that it solves (4.1)). By (4.9) we see that for every $L > 0$ independent of ε,

$$u_\varepsilon (x) > 0, \quad |x| \leq L \varepsilon^{\frac{2}{\alpha + 2}},$$

provided $0 < \varepsilon < \varepsilon(L)$. Note that u_ε satisfies

$$-\varepsilon^2 \Delta u_\varepsilon + (V(x) - \text{sign}(u_\varepsilon)|u_\varepsilon|^{p-1}) u_\varepsilon = 0, \quad x \in \mathbb{R}^N,$$

and

$$V(x) - \text{sign}(u_\varepsilon)|u_\varepsilon|^{p-1} \geq c L^0 \varepsilon^{\frac{2\alpha}{\alpha + 2}} - C \varepsilon^{\frac{2\alpha}{\alpha + 2}}, \quad |x| \geq L \varepsilon^{\frac{2}{\alpha + 2}},$$

provided $0 < \varepsilon < \varepsilon_1(L)$ (c, C independent of ε, L). By fixing a large $L > c^{-1}C^{\frac{1}{2}}$, we conclude by the maximum principle that

$$u_\varepsilon (x) > 0, \quad |x| \geq L \varepsilon^{\frac{2}{\alpha + 2}},$$

and the proof is complete.

References

C. SOURDIS, DEPARTAMENTO DE INGENIERIA MATEMATICA, UNIVERSIDAD DE CHILE, SANTIAGO, CHILE

E-mail address: schristos@dim.uchile.cl