INTERFACE LAYER OF A TWO-COMPONENT BOSE-EINSTEIN
CONDENSATE

AMANDINE AFTALION AND CHRISTOS SOURDIS

ABSTRACT. This paper deals with the study of the behaviour of the wave functions of a
two-component Bose-Einstein condensate near the interface, in the case of strong segrega-
tion. This yields a system of two coupled ODE’s for which we want to have estimates on
the asymptotic behaviour, as the strength of the coupling tends to infinity. As in phase
separation models, the leading order profile is a hyperbolic tangent. We construct an ap-
proximate solution and use the properties of the associated linearized operator to perturb
it into a genuine solution for which we have an asymptotic expansion. We prove that the
constructed heteroclinic solutions are linearly nondegenerate, in the natural sense, and that
there is a spectral gap, independent of the large interaction parameter, between the zero
eigenvalue (due to translations) at the bottom of the spectrum and the rest of the spectrum.
Moreover, we prove a uniqueness result which implies that, in fact, the constructed hetero-
clinic is the unique minimizer (modulo translations) of the associated energy, for which we
provide an expansion.

1. INTRODUCTION

1.1. The problem. A two-component condensate is described by two complex valued wave
functions minimizing a Gross-Pitaevskii energy with a coupling term. According to the
magnitude of the coupling parameter, the components can either coexist or segregate.

The segregation behaviour in two-component condensates has been widely studied in the
mathematics literature: regularity of the wave function [13, 14, 30, 34, 35, 39, 40], regu-
larity of the limiting interface [11, 37, 41], asymptotic behaviour near the interface [8, 9],
[-convergence in the case of a trapped problem [2, 19, 20].

This paper deals with the case of segregation, and more precisely, the study of the be-
haviour of the wave functions near the interface. In the physics literature, there is a formal
analysis of this small coexistence region which, at leading order, is given by a hyperbolic
tangent [6, 7, 38]. Here, we want to derive a rigorous asymptotic expansion of this transition
layer, which will be useful in the analysis of more complex patterns.

The aim of this paper is therefore to study the positive solutions of the system

1
—v] + v} — vy + Aviv; =0,

—vl + v — vy + Avivy = 0,

(v1,v9) = (0,1) as z = —o0, (v1,v2) — (1,0) as z — 4o0. (1.2)

The segregation case corresponds to
A>1 (1.3)

and the limit A — oo.
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The Hamiltonian

2 2
1 (1—v?) A
= ZZ1 [§(U§)2 i 5”%”37 (1.4)
is constant along solutions of (1.1)-(1.2) and is equal to
1
H=—-. 1.5
: (15

It is known that solutions of (1.1)-(1.2) are uniformly bounded independently of A > 1
(see (7.3) below). Hence, by the general theory developed in [35] and the references therein,
they are uniformly Lipschitz continuous and converge, uniformly as A — oo, to the merely
Lipschitz continuous pair (X(O,oo)Uly X(_OOVO)UQ), where U; and U; denote the unique solutions
respectively of the following problems:

u' +u—ut=0, 2>0; u0) =0, u(z) = 1asz— +oo, (1.6)
u' tu—ut=0, 2<0; u(z) = 1asz— —oo, u(0) =0, (1.7)
(xr stands for the characteristic function of a set I). In fact, we have the explicit formulas:

U;(z) = tanh (%) , (—1)'2<0, i=1,2.

A crucial observation is that the Hamiltonian structure of (1.6), (1.7) implies the reflection

property
1

7
Of course, this follows at once from the explicit representations of Uy, Us but we would like
to start convincing the reader that the specific form of the nonlinearity in (1.6), (1.7) is not
of essential importance in the proofs. On the one hand, the functions X(0,c0)U1, X(=00,0)U2
do satisfy (1.1)-(1.2) for z # 0. On the other hand, their second derivatives blow-up at the
origin as delta masses. To remedy this, guided by formal matched asymptotics and (1.8)
(see also [38]), we will instead use near the origin an approximate solution with leading term

(A—%v1 (A%z) ATV (A@)) : (1.9)

where the pair (V7, V4) is provided by the following proposition.

U(0) + UL(0) = 0, with 1 = U(0) = (1.8)

Proposition 1.1. [8, 9] There exists a unique solution (Vi,Vy) with positive components to
the system

‘/1// — ‘/22‘/1’
(1.10)
Vy = ViVs,
such that v
;l—mbo and Vo — 0 as x — +o0, (1.11)
where Yy > 0 is as in (1.8), and
Vi(—z) = Va(z), = € R. (1.12)
Moreover,
Vi(z) =or+ K+ O (67@2) and Va(z) = O (efcﬁ) as x — 400, (1.13)
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for some k > 0, and these relations can be differentiated arbitrarily many times. Every other
entire solution of (1.10) with positive components is given by

(Vi (1 — ) , 1Va (i — 1) (1.14)
for some p >0 and h € R.

We emphasize that we will not need the above symmetry and uniqueness properties of the
blow-up profiles, which were shown in [8] and [9] respectively by a nontrivial sliding method.

Our goal is to refine the outer and inner approximate solutions in (1.6)-(1.7) and (1.9)
respectively, carefully glue them together and show that the resulting global approximate
solution can be perturbed to a genuine one.

1.2. Main results. The main result of the paper is the following:

Theorem 1.1. If A > 0 is sufficiently large, problem (1.1)-(1.2) has a solution (vya,va )
such that

ViA(2) >0, vy,(2) <0 for z€R, (1.15)

via(2) = Us (2 = (<) mA7H) .0 (ma)ai) e, (1.16)
uniformly for (—1)*'z > (InA)A™7, as A — oo,

via(z) = A-1V; (A4z> +o( i+ |zy) (1.17)

uniformly on [—(lnA)A’i, (lnA)A’i}, as A — oo, i = 1,2, where Uy, Uy are the unique

solutions of (1.6), (1.7) respectively, (Vi,Va) is the solution of (1.10)-(1.11)-(1.12), and
k>0 s as in (1.13). Furthermore, for any m > 0, we have

vialz) < CA-ie~22% L O(A™), (=1)z € [A*i, (In A)A*ﬂ , (1.18)
and L
via(z) < Amem e MM (i S (InAATE, i=1,2, (1.19)
as A — oco. Moreover,
Vial2) = U7 (2= (=)' kA 7H) + O (I A)A~H) (Js) + A7H) e, (1.20)
uniformly for (—1)*'z > (InA)A™7, as A — oo,
VA (2) =V <A4z> +0 (A—% + |z|2> , (1.21)

uniformly on [—(lnA)A‘i, (lnA)A‘ﬂ ,as A — o0, i =1,2.

We can also show that (vja,v24) is nondegenerate, in the natural sense, and that there
is a spectral gap.

Theorem 1.2. Let (v1,v3) be the heteroclinic solution to (1.1)-(1.2) which is constructed in
Theorem 1.1. Then, if A > 0 is sufficiently large, the spectrum of the linearized operator
©1 —o] + (302 — 1)1 + Av3pr + 2Av10209
M = , (1.22)
2 — @b 4+ (305 — 1)p2 + Avips + 2Av1v201
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in L*(R) x L*(R) with domain H?*(R) x H?(R) is structured as follows:
e 0 is the first eigenvalue and has (v, vy) as the associated eigenfunction,
e the rest of the spectrum is contained in (c,00) for some ¢ > 0.

Furthermore, we have the following uniqueness result.

Theorem 1.3. If A is as in (1.3), there exists at most one solution (modulo translations)
to problem (1.1)-(1.2) with positive components such that one of them is strictly monotone.

An important consequence of the above theorem is that the minimization problem

orn = inf  Ey(vq,v9), (1.23)
(v1,v2)€Y
where ,
1 (1—v2)*| A 1
Ex(vy,v9) = / —(V])? + — | + Sojvs — = pdz, (1.24)
R Zl 2 4 2 172 4
and

Y = {(v1,v2) € H,(R) x Hj,.(R) which sastisfy (1.2)}. (1.25)
has a unique solution (modulo translations), which is that of Theorem 1.1. In fact, this
settles a conjecture from [4, Sec. 5|, in relation to the stability properties of the family of
minimizers of the complex valued version of (1.24) with respect to the associated nonlinear
Schrodinger dynamics. Armed with the estimates provided by our main theorem, we can
give an asymptotic expression for its minimal energy oy:

Corollary 1.1. As A — oo,

e
3

OA

+on-t / Vi (Vi o) dz + O (I APAS)

The minimal energy o, in (1.23) represents the interface tension of the condensate. In
[38, 29], a formal series expansion of o in powers of A1 is given by using matched asymp-
totic analysis. The first term of this series was recovered rigorously in [19] via variational
arguments. In comparison, our Corollary 1.1 recovers rigorously the first three terms of
that prediction together with the correct order of the fourth term, modulo the ’artificial’
logarithmic factor.

1.3. Main steps of the proofs. The idea of the proof of Theorem 1.1 is to construct an
approximate solution and then to perturb it into a genuine solution, using the linearized
operator. This approach has been extensively pursued and thoroughly developed in the
past years for constructing localized solutions to elliptic problems, mainly involving spike-
transition layer or bubbling phenomena. However, as will be apparent, some important
differences occur with respect to the standard technique. This should already be expected
from the irregular form of the singular limit solution of the problem in hand. In particular,
its corner layered structure at the origin forces the corresponding blow-up profiles to be
unbounded, in sharp contrast to the situation in the aforementioned widely studied concen-
tration problems.

Firstly, it is not difficult to construct an outer (exact) solution of (1.1)-(1.2) for |z| >
(In A)A~/*, which satisfies the expected asymptotic behaviour (1.16). We do not prescribe

conditions at the end points, as these will be controlled by the inner solution that we construct
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next. We point out that this construction is possible by the nondegeneracy of the solutions
Uy, Uy of (1.6), (1.7) respectively (see Lemma 2.1 below). Then, we construct an inner
solution for |2| < (InA)A~1 based on the blow-up profile (Vi,V3) of Proposition 1.1 and on
its nondegeneracy (in the natural sense, see Proposition 2.1 below). Actually, by exploiting
the scaling invariance of (1.10), illustrated by the parameter p in (1.14), we can define a
one-parameter family of such inner solutions. Let us note that there is no gain in exploiting
the translation invariance of (1.10) for this purpose, as the whole problem (1.1)-(1.2) is itself
translation invariant. We emphasize that the construction of the inner solution relies heavily
on the study of the linearization of the blow-up problem (1.10) (see Subsection 2.2), which
could also prove useful in other settings. More precisely, the linearized operator of the blow-
up system (1.10) at (V;,V3) contains an element (F4, Fy) with linear growth in its (formal)
kernel, due to the aforementioned invariance of (1.10) under scaling. We can use a constant
multiple of this element as the parameter in the inner solutions. In order to efficiently glue
together the inner and outer approximations, we need to adjust the constant parameters
involved in their separate constructions. For technical reasons, which will be clear from
the proofs, instead of matching these approximations in the C'l-sense over an intermediate
zone, we match them continuously only at the points £(In A)A~'/4. At first sight, this
unconventional argument might look rather counterintuitive, as it would create jumps on
the gradients at the gluing points. But, by choosing the free parameter in the inner solution
so that the Hamiltonian has the same value on each side, it turns out that these jumps on
the gradient are actually transcendentally small. The resulting global approximation fails
to be an exact solution to the problem by essentially just a transcendentally small factor.
Naturally, the first thing that comes to mind is to try to perturb it to a genuine solution
by some type of local inversion argument, through the study of the associated linearized
operator about it. However, the translation invariance of (1.1)-(1.2) implies that the latter
operator is nearly non-invertible, as the derivative of the approximate solution fails to be in
its kernel by at most a transcendentally small factor. Nevertheless, by combining the linear
analysis that we developed separately for the inner and outer problems, we can show that
the global linearized operator does not have other elements in its spectrum tending to zero,
as A — oo, besides the transcendentally small eigenvalue at the bottom. In fact, the latter
eigenvalue turns out to be simple (see Theorem 1.2 and Proposition 6.1). Consequently,
we are led to use a Lyapunov-Schmidt variational reduction method for the perturbation
argument.

The proof of our uniqueness result rests upon a homotopy argument, taking advantage of
the nondegeneracy property of this type of monotone solutions to (1.1)-(1.2), which holds
for A in the range (1.3).

1.4. Physical motivation and known results. A rotating two-component Bose-Einstein
condensate is described by the ground state of the following energy

2 12 .
E(ur, ug) = Z/ {|V?2Lg| 1 V(|$|)‘uj‘2 It - Qat (z’uj,Vuj)} da
j=1 /R

22 4e2

c c (1.26)
e / i Pty 2 d
252 R2



in the set

H= {(ul,ug) . u; € HY(R% C), / V(|z|)|u,)* doe < oo, |Juj||lre@ey =1, j = 1,2}.
R2

(1.27)
The trapping potential V(|z|) is usually taken to be |z|?, corresponding to the experiments.
The parameters g1, g2, g,€ and €2 are positive: g; is the self-interaction of each component
(intracomponent coupling) while g measures the effect of interaction between the two com-
ponents (intercomponent coupling); €2 is the angular velocity corresponding to the rotation
of the condensate, - = (=3, 2;) and - is the scalar product for vectors, whereas ( , ) is the
complex scalar product, so that we have

wVu —1uVu 10z, U — U0y, U 103, U — U0y, U

xL-(iu,Vu):xL-f:—xg 5 + 2 5

The existence and behaviour of the minimizers in the limit when ¢ is small, describing
strong interactions, is also called the Thomas-Fermi limit. Even though the interaction is
only through the modulus, it can produce effects on the phases of each component, and in
particular on the singularities or vortices. A full phase diagram has been computed in [28].

If the condition ¢ < g, ¢, is satisfied, it means that the two components u; and us of the
minimizers can coexist, as opposed to the segregation case g*> > g,g,. This is discussed and
explained in [1, 28]. The ground state at {2 = 0 in the coexistence case has been studied in
the small € limit in [1, 18].

In the present paper, we are interested in the segregation case. The I' limit of (1.26)-(1.27)
with © = 0 in the case where g% > g1go, g1 = g2 and g = g. — oo has been studied in [2]. A
change of functions is used, namely (v, ), where

2

2 _ 2
uy —u
2 2 _ Uy — U
v® =uj + u; and cosp =

. 1.28
A T limit is obtained on the functional for (v,¢). The limiting problem is given by two
domains D; (for component 1) and D, (for component 2) for which the interface minimizes
a perimeter type problem weighted by the trapping potential.

As conjectured in [8], the minimum of v satisfies

cA™1 < i%fv < C’A_%,

for some constants ¢,C' > 0 independent of large A. Actually, an analogous estimate was
established very recently in [34, 39] for uniformly bounded solutions to a broad class of
elliptic systems. Clearly, the above estimate is a particular consequence of our Theorem 1.1
and the comments preceding Corollary 1.1.

Further T' convergence results for g = g. fixed have been proved by [20], and extended for
g1 # g2 by [19]. In these two papers, near the interface, the interaction between the two
components of the condensate is governed by the system

7 2 2

—uy + gruiuy + guauy = AU,
" 2 2

—Uy + GoUsUs + gUTU = AU,

for some constants A, A2 > 0 corresponding to the Lagrange multipliers of (1.26)-(1.27). In

the case where g = A and g;, A\; are equal to 1, this gives rise to our one dimensional problem
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and they prove that the I' limit of the full 2D problem in a bounded domain is given by the
minimization of oy.

Remark 1.1. In (1.1), we have taken all the constants in front of the non-coupled terms to
be equal to one. However, all of our arguments carry over easily to the positive solutions of

—0 + g1v} — Mvr + Avsu; =0,
(1.29)
— vVl + govs — Agvg + Avivg = 0,

A A
(v1,v9) — (O, g_§> as z = —o0, (v1,v9) — (1 / g—I,O) as z — 400, (1.30)

for values of the parameter

A > v 39192, (131)

assuming that v > 0, and the positive constants g1, ga, A1, Ao satisfy
M_X
g1 92

Thanks to (1.32), all the constants g;, \;, i = 1,2, and v can be scaled out since a solution

s given by
ﬂv iz 21} iz
MWW Ve A\
AoA

where vy, vy satisfy (1.1)-(1.2), while the new coupling constant is A = ik, We point out
that (1.52) is a necessary condition for the existence of solutions to (1.29)-(1.50) since the
corresponding Hamiltonian is conserved and therefore the limit at +/— o0 has to be the same.

Conversely, by means of variational arguments, it was shown recently in [4] and [19] that
condition (1.32) is also sufficient (see also [5, 42]) for the existence of solutions.

(1.32)

The basic interaction of a two component condensate is through a modulus term, but
other interactions include a Rabi coupling or a spin orbit coupling. The precise knowledge
of the interface behaviour will prove useful to analyze more complicated patterns:

e the segregation case in the spin orbit coupling where there are vortex sheets [24],

e in the case of Rabi coupling, a vortex and anti-vortex pair create a vortex molecule,
where two vortices are eventually connected by a domain wall of relative phase [25,
36],

e half vortices, where a vortex in one component corresponds to a peak in the other
component [12].

In order to analyze the singularity patterns in all these cases, one needs to make an energy
expansion in order to determine the energy of the specific configuration. Because of the tran-
sition layer between the two species, one needs to have a precise estimate of the decrease of
the modulus of the wave functions, which is precisely given by our main theorem. Therefore,
what we prove in Theorems 1.1, 1.2 is expected to be extremely useful for the construction

of upper bounds for these patterns.
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1.5. Outline of the paper. In Section 2, we construct our approximate solution to the
problem, in the outer and inner regions separately. Then, in Section 3 we adjust them
further so that they match conveniently for our purposes. In Sections 4 and 5, we perturb
the resulting inner and outer approximations respectively to genuine ones . In Section 6, we
prove Theorems 1.1 and 1.2. In Section 7 we prove Theorem 1.3. Finally, in Section 8 we
show Corollary 1.1.

1.6. Notation. By ¢/C we will denote small/large positive generic constants that are inde-
pendent of large A > 0 and whose value will decrease/increase as the paper moves on. The
value of A > 0 will also increase from line to line so that all the previous relations hold.
According to the Landau notation, a number p will be of order O(A~™) as A — oo, for some
m € R, if [p| < CA™™ for A sufficiently large; a number p will be of order o(A~™) as A — oo,
for some m € R, if A"p — 0 as A — oo; a number p will be of order O(A~>) as A — oo if
p=0O(A™™), for any m > 1, as A — co. We will remove the obvious dependence on A of
various functions.

2. THE APPROXIMATE SOLUTION

In this section, we will construct a sufficiently good approximate solution to problem
(1.1)-(1.2) for large A > 0.

2.1. The outer solution (vy sy, V2 0ut). In this subsection, we will construct an approximate
solution to problem (1.1)-(1.2) except at the origin, where it looses its smoothness.

2.1.1. The outer profiles Uy, Us. The building blocks of this construction will be the unique
solutions Uy, Us of problems (1.6), (1.7) respectively. Actually, we will restrict our attention
to Uy, as the corresponding analysis for U, is completely analogous. For future reference, let
us note that

Uj(z) >0, 2> 0, (2.1)
and
1—Ui(2)+Ui(z) = U (z) < Ce ™, 2> 0. (2.2)

We will also need the following properties for the associated linearized operator, which are
well known and essentially follow from (2.1)-(2.2).

Lemma 2.1. Let ¢ € C?[0,00) be bounded and satisfy

—¢"+ (3U}(z) —1) ¢ =0, z>0. (2.3)
Then, we have that

¢ = cU| for some c € R.

In particular, if $(0) =0, then ¢ = 0.
Proof. The desired assertions of the lemma follow immediately from the observation that,
besides of U], the differential operator in the lefthand side of (2.3) has also an unbounded
function in its two-dimensional kernel. Indeed, otherwise the Wronskian would be zero, by
(2.2) and the fact that bounded elements in the kernel also have bounded derivatives (by a

standard interpolation argument, see for instance (2.38) below). O
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2.1.2. The construction of the outer approximate solution. We can now define our outer
approximate solution as

Viout(2) = Ui(z+ &) + U (2 + &), vaou(z) =0 for z > (In A)A_%, (2.4)

with ) \
£ =OA ) and 7 = O ((m A)A—z) as A — oo, (2.5)

to be determined. Analogously we define it for z < —(In A)A‘i. We point out that the choice
of the power 1/4 in (2.4) is motivated by a formal blow-up analysis (see the next subsection),
whereas the choice of powers in (2.5) is an a-posteriori result of matching considerations (see
Subsection 3.1 below).

2.1.3. The remainder of the outer approximate solution. We note that (v1 out, V2,0ut) satisfies
the desired asymptotic behaviour (1.2) exactly, while it satisfies the system (1.1) approxi-
mately as is shown in the next lemma.

Lemma 2.2. The remainder
" 3 2
U1 out + U out — Ul,0ut + AUZ,outULOUt
R(Ul,outa U2,out) -
" 3 2
— V2 out + V2 out — V2,0ut + Avl,outvlout

that is left by (V1 out, V2.0ut) 0 (1.1) satisfies

@ ((m A)QA*%> e~
R(Ul,outa UQ,out) = ,
0

uniformly for z > (In A)A‘i, as A — oo, and an analogous estimate holds for z < —(In A)A‘i.

Proof. Keeping in mind that v 4, is identically zero, we observe that, by virtue of (1.6), we
have , )
_Ui/,out + viout — Ulout = T13 (U{(Z + 51)) + 37—12(]1 (Z + £1> (U{ (Z + £1>> )

and then use (2.2), (2.5). The proof for z < —(In A)A~7 is analogous. O

2.2. The inner approximate solution (v; ;,,v2,,). In this subsection, we will construct
an approximate solution to the system (1.1) which, however, is effective only in a small
neighborhood of the origin. Nevertheless, it will have the appropriate behaviour so as to be
easily “continued” away from the origin by the outer solution of the previous subsection.

2.2.1. The blow-up profile (V1,V5). Based on a formal blow-up analysis and the behaviour of
the outer approximate solution near the origin, the building blocks will be special solutions
of a limiting problem, described in Proposition 1.1 which is due to [8, 9].

Moreover, by the convexity of Vi, Vs, it follows easily that

Vi>0, V<0, z €R. (2.6)
Actually, it is not hard to show that x > 0. Indeed, we observe that the auxiliary function
R(z) = Vi(x) — thoz — Va(x), x>0,

satisfies
R'=WiVa(Va— Vi) <0, x>0,
9



while
R(0) =0, IETOO R(x) = k.

The invariance of system (1.10) under translation and scaling, described in (1.14), implies
that the associated linearized operator

L ®1 o _®&, + ‘/22(b1 + 2‘/1‘/2©2 (2 7)
o, ) T\ —0 4+ V2D, + 211150, '
has
(VI,V5) and (2V) + Vi, 2Vy + V3) (2.8)

amongst its four-dimensional kernel. The next proposition, also proven in [8], will play a key
role in what will follow.

Proposition 2.1. If &, ®, € C*(R) N L>=(R) satisfy
&\ [0
f(n)-(0)

(P, ®2) = A(V], V)

then

for some X € R.

We emphasize that the proof of the above proposition is based on the monotonicity prop-
erty (2.6). In particular, no use is made of the symmetry (1.14) or the uniqueness property
of (V1,V5). In fact, the latter properties are considerably harder to establish.

2.2.2. Construction of the inner approximate solution. Motivated from the above and [8],
we consider the stretched variable
x=phiz (2.9)
with
p=1+0A2)as A - oo (2.10)
to be determined (the last relation is an a-posteriori consequence of matching considerations,
see Subsection 3.1 below). Then, we seek an inner approximate solution (vy i, v2,,) to (1.1)
in the form
Vian(2) = A3 Vi(2) + ®y(x), |2| < InA)A™T, i=1,2, (2.11)
where the functions ®;, P, are also to be determined. Actually, at first, we were tempted
to also exploit the translation invariance of (1.10) by introducing a shift parameter in the
stretched variable x, similarly to (1.14), but then realized that this is not needed as the
problem (1.1)-(1.2) itself is translation invariant. Using (1.10), we find that the remainder
which is left in the first equation of (1.1) by this approximation is

—PAR P PATIVE  ®F + 3pPATR VR 4 3uATIVIRE 4 2 A VP
(2.12)
FUAT B2V, + ADID, + 22NV VoD + 2uA i Vad By — A5V — By,

and an analogous relation holds for the second equation. Hence, we would like for (®;, ®5)
to satisfy



where the linear operator L is as in (2.7), for € R which is the natural domain of definition
for (1)1 and (1)2.

In view of the righthand side of the above equation and the asymptotic behaviour (1.13)
(keep in mind (1.12)), we are naturally led to seek (P, y) as

(q)l, @2) = ,U_lA_%(Zla Z?) + (i)la &)2)7

where 77, Z, are some smooth, fixed functions that satisfy

3 ZEQ

Zy(z) = —1/}0% — R Zy(x) =0, x > 1, and (say) Z1(—x) = Zy(x). (2.13)

Then, the fluctuation (('1:)1, (132) should satisfy

L ( g; ) — A ( % ) (2.14)

for some fixed, smooth pair (Fy, F3) such that
|Fy(z)| + | Fo(z)| < Ce™*", z € R. (2.15)

In the sequel, we will show how the injectivity result in Proposition 2.1 can be used to
establish the existence of solutions with linear growth to the inhomogeneous linear problem:

L(%):(Zi) r € R, (2.16)

with H;, Hs being smooth and decaying exponentially fast. We remark that it is not clear to
us how to use tools from functional analysis to achieve this because, as we expect from the
general theory in [23], the continuous spectrum of L (when defined in the natural Hilbert
space) should be the interval [0,00) (it was also shown in [8] that the whole spectrum of
L is nonnegative). Another obstruction is that, even though we are aware of two elements
in the (formal) kernel of L (recall (2.8)), the remaining two elements or their asymptotic
behaviour are not known to us (in fact, we suspect that the latter should involve a super-
exponential growth which is not useful for matching purposes). Therefore, in contrast to
related scalar second order problems (see for example [21, Lem. 4.1]), it is not clear how
to derive conclusions from the corresponding variations of constants formula. Lastly, in
relation to the cooperative character of L (see [9]), let us mention that we have not been
able to construct appropriate upper and lower solution pairs to (2.16).

Motivated by the existence proof of [8] for the nonlinear problem (1.10), we will first
solve (2.16) in large bounded intervals and then obtain the sought solution via a limiting
procedure. In this direction, we have the following result. Let us point out that the following
estimates for the problems in the bounded intervals do not only serve as stepping stones to

reach this goal but will also play a crucial role in the upcoming singular perturbation analysis
of (1.1)-(1.2).

Proposition 2.2. Given o > 0, there exist My, C' > 0 such that the boundary value problem

I D, _ H, |zl < M, @ (£M) =0, i=1,2, (2.17)
CI)Q H2
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where L is as in (2.7) and Hy, Hy € C[—M, M], has a unique solution such that
2

2
> (19| oo arany + [Pl aran) < CMY e Hy || o ara). (2.18)

i=1 i=1
provided that M > M.
If we further assume one of the following orthogonality conditions:

M M
/ (VIH, + VyHy)dx =0 or / ((2V] + Vi)Hy + (V4 + Va)Hy) dx =0,  (2.19)
-M -M
we get that
2 2
ST U e aran + 1@l aran) < C S e Hy || oo aran. (2.20)

i=1 i=1

Proof. Since the linear operator L is self-adjoint (in the natural Sobolev spaces associated
to the boundary value problem), we only need to verify the validity of the asserted a-priori
estimates. An important role will be played by the 'blow-down’ problem:

(
— Lot L MV (My) o1 + 2M2ViVa (My) o = M2h,

{ —L2 + M2V2 (My) go + 2M2ViVy (My) @1 = M>2hy, (2.21)

| for [y| <15 @i(£1) =0, i=1,2,
where
wi(y) = ®; (My) and hi(y) = H;(My), i=1,2.

Let us start by establishing the a-priori estimate

2 2
S @il o —aran < CM > e Hyl e (ar)- (2.22)
i=1 i=1

Suppose, to the contrary, that the above a-priori estimate were false. Then, there would exist

M, — oo and pairs (p1,, pan) € C*[—1,1] x C?*[—-1,1], (hypn, hay) € Cl—1,1] x C[—1,1],

satisfying (2.21) with M = M,,, which violate it. In fact, there is no loss of generality in

assuming that ||¢1,|lze—11) > ||@2,nllzoo(=1,1). Dividing both equations by ||¢1,n/zee(=1,1)
we may further assume that

lo1nllze-1,0) = 1, |l@2mllzeoiny <1
(2.23)
and M, Z?Zl ||€a|Mny|hi7n||Loo(,1,1) — 0.

Throughout the rest of the proof, ¢\ C' will stand for small\large positive generic constants
that are independent of n. A standard barrier argument yields that

lp1a(y)] < e, —1<y<0; |pon(y) <eM¥ 0<y<1. (2.24)

In view of (2.21), (2.23) and the above relation, by a standard diagonal-compactness argu-
ment, passing to a subsequence if necessary, we find that

Din = Pico in C2_([—1,1]\ {0}), i=1,2, (2.25)
12



where the limiting functions satisfy

d2901,oo
901,00(1/) = 07 ) € [_170)7 dy2 = 07 ) € (Oa 1]7
and ,
d“p2 00
o =0 v ELO; pancly) =0, y € (01
Hence, we get that
O10(y) =a1(y—1), ye (0,1, and po(y) =a2(y+1), ye€[-1,0). (2.26)
We will next show that the convergence in (2.25) can be strengthened to
[Pin(y) = Piso(y)] < Ce M+ o(1), (2.27)

uniformly for (—1)"'y € (0,1], as n — oo, i = 1,2 (keep in mind (2.24) for the remaining
intervals). To this end, let us consider the difference
Vin = Pin — Pico for y e (0,1].
Then, in view of (1.13), (2.21) and (2.23), we find that
d2wi,n d sz n
dy? dy?

Note that we only made mild use of the last assumption in (2.23) at this point (in particular,
there was no need here for the term M, in front of the sum). In turn, integrating twice the
above relation, and making use of (2.25) only at y = 1, yields estimate (2.27) for i = 1. The
case i = 2 is completely analogous. Observe that (2.27) provides useful information only for
lyl > M, "

Actually, there are certain 'reflection laws’ that have to be satisfied by ¢ o and ¢, o at
y = 0. Indeed, by testing (2.21) with (V{ (M,y),Vy (M,y)) and integrating by parts, we
arrive at

> ey ) - LBy )| -

=1
2 1
23" [V 08y hiato)dy
i=1 Y 1

Letting n — oo in the above relation, and using (2.23), (2.25), (2.26), we deduce that

< CMPemMny g € (0,1]. (2.28)

(2.29)

a; +as = 0. (2.30)
Likewise, testing by (M,yV{ (M,y) + Vi (M,y) , M,yVy (M,y) + V2 (M,y)) yields
a; = as. (2.31)
Hence, we get that
a; =az =0. (2.32)

A-posteriori, it turns out that only one of the relations (2.30), (2.31) will be needed to reach
our eventual goal (see (2.35) below). So, with the next assertion of the proposition in our

mind, let us ignore (2.32) and, say, (2.31).
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On the other side, again by the standard diagonal-compactness argument, passing to a
further subsequence if necessary, we find that
(I)iﬂ - (I)i,oo in OZQOC(R) as n — oo, 1= 1727

where @ o, Po o satisty

2
q)l,oo 0
L( D20 ) - ( 0 ) , T€R, and Z @i 00l| Loo(r) < 2. (2.33)

i=1
Note that again we did not use the full strength of the last assumption in (2.23) (this

argument goes through without the factor M, in front of the sum). Thus, by virtue of
Proposition 2.1, we infer that

@in (InA,) '2) = bV/(z) in CL.(R), i=1,2, (2.34)
for some b € R.
In light of (2.24), (2.27) and (2.34), to reach a contradiction, it is enough to show that
a; =as =b=0. (2.35)
For this purpose, we will exploit that (2.27) and (2.34) should match where their domains of
effectiveness overlap. More precisely, we will focus our attention to the points =K M1 in the
latter intermediate zone, where K > 0 is any sufficiently large positive number (independent
of n). On the one hand, relations (2.26) and (2.27) give us that
e1n(KM ") = —a1 + O (e7F) +0(1) as n — .
On the other hand, we obtain from (2.34) that
O1n(KM ) =bV/(K)+o0o(1) as n— oo.
Equating the righthand sides of the above two relations, then letting n — oo and subse-
quently K — oo in the resulting identity, yields that
— Q] = Qﬁob (236)
In the same manner we can see that
a9 — —wob (237)

The desired relation (2.35) now follows at once from (2.30), (2.36) and (2.37). The proof
of the a-priori estimate (2.22) is therefore complete.

We are now in position to establish the validity of the full a-priori estimate (2.17). In view
of (2.17), (2.22), (2.24), and the asymptotic behaviour of V4, V5, we find that

2 2
D Nz arany < CM Y lle Hill - aran.

=1 =1
The desired estimate follows at once by plainly interpolating between (2.22) and the above
estimate, for example using the elementary inequality

||| oo (=aa,00) < 2[| @[ oo (—aa,an) + [|@7]] oo (= a0, (2.38)
(which holds for M > 1).

The proof of the second assertion is completely analogous (recall the comments below

(2.28) and (2.33)). The only essential difference is in (2.29) or the corresponding relation
14



that gives (2.31), where now the respective orthogonality condition in (2.19) implies that the
righthand side is zero. 0

Remark 2.1. An ezxamination of the above proof reveals that the righthand side of (2.18)
may also be replaced by

2
O3 (e Hillzanany + MIHi 2 aran}

=1

Remark 2.2. [t is worth noting that in the proof of the above proposition we could have
also tested (2.21) plainly by (y,y) and, using (2.24), (2.25), (2.26), (2.34) together with
Lebesgue’s dominated convergence theorem, arrive at the relation

CL1+CL2+’¢0()IO.

Remark 2.3. In contrast, the operator L with Neumann boundary conditions at =M becomes
nearly non-invertible as M — oo because (V{,Vy) satisfies these conditions up to an O(e=™M)
small error. Nevertheless, the a-priori estimate (2.20) still holds, provided that we restrict
ourselves within the mirror symmetric class (1.12).

The following simple result will prove extremely useful in the sequel.
Lemma 2.3. Suppose that u,q are smooth and satisfy
—u" + q(x)u = O(e™ ") as ¥ — +oo,

for some constant co > 0. Then, the following properties hold.

e liminf, ,, . q(z) = +o00 and u has at most algebraic growth
= u=0(e"™%) as v — 400,
o ¢ =0(e"“%) as x — +00
— u=a;+bx+0O(e ") as x — +oo for some ay,by € R and any c¢; € (0, cp).

Proof. The first property can be shown as in [15, Lem. 7.3|, while the second as in [3, Lem.
3.2). O

An important consequence of Proposition 2.2 and Lemma 2.3 is the next lemma, which
may be considered as a sort of Fredholm alternative for L.

Lemma 2.4. Assume that the components of (Hy, Hs) € [C’(R)]2 satisfy

|Hy(z)] < Ce ™l 2z eR, i=1,2, (2.39)
for some constants c,C > 0, and one of the orthogonality conditions
/ (VIH, + VJHy)dx =0 or / ((xV{ + V1)Hy + (2V] + V3)Hy) dx = 0. (2.40)

Then, there exists a solution (1, ®,) € [C2(R)]? to (2.16) such that

®y(x) = ay + O(e %), Dy(z) = O(e™") as x — 400;
(2.41)
di(z) = O(e?), y(z) = a_ + O(e*) as r — —oo.
15



for some ay € R such that

1 o0
a;r+a_ = —ﬁ/ ((zV] + Vi) Hy + (V3 + Vo) Hy) dx (2.42)
0 J—-c0

and for any ¢ € (0,c).
Proof. Let us begin by assuming that the first orthogonality condition in (2.40) holds. We

will construct the desired solution through a limiting process. Motivated by the second
assertion of Proposition 2.2, we consider the following sequence of approximate problems:

L ( 21 > _ ( gm ) , v €(—n,n); ®i(£n)=0,i=1,2 n>1, (2.43)
2 2,n
where
Hl,n — Hl ‘/1/ —c|z|
()= (o) a3 )
where
o o (VIH 4 ViH) de
" V)2 4 (V3)?] eclelda
is chosen so that
/ (Hy oV + Hy,Vy) da = 0. (2.44)

We note that (2.39), (2.40) and Lebesgue’s dominated convergence theorem yield that
d, — 0.

By the second assertion of Proposition 2.2, if n is sufficiently large, there exists a solution
(D1, Do) to (2.43) such that

2
D Pl nm + [ ®ialleam} < C,
i=1

for some constant C' > 0 that is independent of n. Hence, thanks again to the standard
diagonal-compactness argument, letting n — oo in (2.43) (along the appropriate subse-
quence) yields a bounded solution to (2.16). The asymptotic behaviour (2.41) is a direct
consequence of Lemma 2.3. Lastly, relation (2.42) follows at once by testing (2.16) with
(aV] + Vi, V) + Vi),

The proof in the case of the second orthogonality condition in (2.40) is completely analo-
gous. 0

We can now establish our main result concerning the solvability properties of (2.16).

Proposition 2.3. Given (Hy, Hy) € [C(R)]? satisfying the exponential decay estimate (2.39),
there exists a solution (B, ®;) € [C2(R)]* to (2.16) such that

i (x) = ay +bxr + O(e™9"), Dy(x) = O(e ") as x — +00;

d,(z) = O(e?), ®y(x) = a_ +br + O(e") as x — —o0,
16



for any ¢ € (0,c), where
1 o0
b=—— VIH, +V,Hy)d
2¢0/—oo< ' e ? 2) o
and ay,a_ satisfy (2.42).

Proof. The main idea is to search for a solution in the form

(o)== %) ()

with B € R and (¥, U5) € [C%(R)]*. The new equation that now needs to be satisfied is

v, \ ([ H 2V, V7
t(u )= (o ) oo ( e )
To conclude, we can apply Lemma 2.4 after making the choice

B__ f_oooo (VIHy + V,H,) dx (Liyaay 10 /OO
C 2 VBV = eVEVde 208 )

(‘/1/[‘[1 + ‘/2/H2> dz.

O

By applying Proposition 2.3 to the case where the righthand side of (2.16) is the pair
(Fy, Fy) (which actually is independent of A and satisfies (2.15)), as defined through (2.14),

we obtain the existence of a solution (®y, @) to the system

P, P
L[ %) = R 2.45
<‘1>2> (F2)’ e (2:45)

such that
Dy () = ay +bx + O(e™P%), dy(z) = O(e D) as x — +00;
(2.46)
,(x) = O(eP?), Oy(r) = a_ + br + O(eP*) as x — —oo,

for some ax,b € R and any D > 0 (the expressions for the sum a4 + a_ and b which are
provided by the aforementioned proposition, with (Hy, Hs) in place of (Fy, F3), will not be
needed). In fact, the above relations can be differentiated arbitrary many times.

This allows us to improve our inner approximate solution (2.11):

Definition 1. We define the inner approzimate solution to (1.1) as (V1n,Va.n), With
viin(2) = AT HVi(@) A | Zi(2) + Bi(@)| + BEi(2), |2 < (M)A, i = 1,2, (247)
where x is the stretched variable (2.9), Vi, Z;, ®, are defined through Proposition 1.1, (2.13),
(2.45)-(2.46) respectively and

is the second element of the kernel of L from (2.8). The constants p and B will be determined
later, subject to the constraints (2.10) and

B = O(A_%) as A — oo, (2.49)

respectively.
17



Remark 2.4. It may appear at first sight that the above inner approzimate solution contains
two free parameters, i and B. However, keep in mind that both are present due to the same
reason, namely the invariance of (1.10) under scaling. So, essentially there is only one free
parameter. An analogous remark applies to the outer approximate solution in (2.4). On the
other hand, we stress that, in principle, all the aforementioned parameters should be present
when carrying out the formal matched asymptotic analysis.

2.2.3. The remainder of the inner approximate solution. In view of (2.9), (2.10), (2.12),
(2.49), and the construction of (P, P5), we have the validity of the following lemma.

Lemma 2.5. In equation (1.1), the remainder
07 i+ VL 4y — V1in + AV3 1,01
R(’Ul,m, Uz,m) =
VY 4y VS 4y — V2m + AVT U2
which is left by the solution (V1 i, v2.n) of Definition 1 satisfies
Aiz® 4+ 1
R(v1,in; V2,in) = O(A™1) ;

1
efDAZz

for any D > 1, uniformly on [O, (In A)A‘i] , as A — co. An analogous estimate holds on

[—(mA)A—i,o .

3. MATCHING THE OUTER AND INNER APPROXIMATE SOLUTIONS

In this section we will "stitch’ together the outer and inner approximate solutions by suit-
ably adjusting the parameters &1, &s, 71, To, i1, B in their definitions (recall (2.4) and (2.47)),
subject to the constraints (2.5), (2.10) and (2.49). Classical singular perturbation theory
dictates that this must be done so that the inner and outer approximations are sufficiently
close in the C'-sense over some intermediate zone satisfying A~7 < |z| < 1 (see the section
on matched asymptotic expansions in any textbook on the subject or the so called exchange
lemmas of the modern geometric singular perturbation theory). This property is of course
already satisfied by the first components of the aforementioned approximations in the neg-
ative part of the intermediate zone, and the analogous property holds in the positive part.
Thus, the task of matching the inner and outer approximate solutions in C* over an inter-
mediate zone amounts to satisfying a total of four algebraic equations (one for each of the
first two terms of the Taylor expansions of the non-trivial outer approximations). However,
in view of Remark 2.4, we essentially have only three free parameters to adjust for this pur-
pose. Fortunately, with some care, this overdetermined issue can be resolved by exploiting
the conservation of the hamiltonian of (1.1). Actually, it is more convenient to match them
continuously as best as possible at just the two boundary points 4(In A)A_%. It turns out
that the algebraic system which arises from these considerations, comprising of three equa-
tions (one at each boundary point together with one from the explotation of the hamiltonian
structure, say at the origin) and containing three unknowns (essentially coming from the
translation and scaling invariances of the outer and inner limit problems respectively), is

solvable for large A thanks to the fact that ¢y # 0. In fact, this type of matching leads
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us naturally to building a solution of (1.1)-(1.2) in the same spirit, that is by constructing
separately inner and outer genuine solutions which match continuously at +(In A)A*% and
share the same hamiltonian constant. In particular, the latter strategy allows us to use
directly the last observation in Lemma 2.1 and Proposition 2.1 for this purpose.

3.1. Matching (v1 out; V2,out) and (vyn,v2.,) continuously at £(InA)A i. In view of

(1.8), (2.4), (2.5) and the facts that
Uy(0) =0, U(0)=—o, U"(0)=0, (3.1)
we find that
1 1 1 3
Vo (AATT) = v (A)AT +6) = 2 (M)A +&)

+0 (mAYPA~F) + 7t + 70 ((In A)2A~E)

as A — oo, where the quantities in the Landau symbols are independent of 71. In turn, by
expanding, we get that

viow ((INA)ATF) = s + Yo(In AJATF + 7ty — 2268 — S (n M)A~ I}
—9(InAPATE — L (InA)ZA3E

+O <(1n A)5A_%> + 710 ((ln A)QA—%>

as A — oo.
On the other side, from (1.13), (2.13), (2.46) and (2.47), we obtain that

V1in ((ln A)A‘i> = 12o(In A)A™T + kAT + Br + 2Biou(In A) + p A~ Gay

Fo(In A)A™T — 0 2(In AYPPA~T — Lrp(In A)2A~T + O(A)

as A — oo.
Given B satisfying (2.49), we take

p=1, & =v;'kxA"1 +2B(InA)+ %(m A)A"3E2, (3.2)

which is indeed possible by the implicit function theorem for A large (we can even find an
explicit formula for &; by solving the above trinomial). In turn, we choose

3
T = % + 1" Br 5 ay A3 4 g b(In A)ATE.

Then, using that
& =15 KATT + O ((ln A)A_%> as A — oo,
it follows readily that

(U100t — V1in) ((m A)A*%) —0 ((lnA)5A*3) as A — oo. (3.3)
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We have
(V2,0ut — V2.in) ((ln A)A_%> = —Ugin ((ln A)A_%> =0 (A_OO) as A — oo. (3.4)

Analogous considerations apply at —(In A)A_%.

3.2. Adjusting the value of the Hamiltonian on the inner approximate solution
at z = 0. In this subsection, we will choose B, under the constraint (2.49), so that the
value of the Hamiltonian on (vq i, v2,n) at z = 0 is equal to the Hamiltonian constant of the
expected heteroclinic connection, namely —2 /2.

Firstly, from (2.9), (2.47) and (2.49), we note that

[0 (0)]° = O] +2V7(0) [0(A™3) + 2V/(0) BAT| + O(A7), i =12,

as A — oo, with O(A‘é) being independent of B. Furthermore, it is clear that
vk (0) = AT'VA0) + O(A2)B? + 4A VA (0)B + O(A™%) as A — oo,

where O(A™2) is independent of B, and that

1-— U~24 0 2 1 1 1 . 2 1 1
(= vian(®) 4”( ) _ J+O0UH+on % +O(A™2) + O(A™9)B
as A — oo, i = 1,2, where O(A_%) is independent of B. Now, using that V;(0) = V5(0),
V/(0) = —=VJ(0) and the hamiltonian identity
(V1) + (V3)? = VPV5 =4, = €R,
it follows readily that the sought after equality

2
H(Ul,in(0)7 U2,in(0)) = _%

takes the form

(with the obvious notation, keep in mind (1.5), (1.8))

202BAT = O(A™2) + O(A"3)B + O(A™) as A — oo.
The above equation clearly has a unique solution
B=0(A1) as A — oo, (3.5)

as desired (keep in mind that, according to our notation, the term O(A_%) above does not
contain B).

3.3. A refined inner approximate solution (w ;,, ws,). For B € R to be chosen later,
subject to the constraint

B=0O(A") as A — oo, (3.6)
we consider the more refined inner approximate solution (wy in, W2 n)
Wiin(2) = Vi (2) + BEi(2), |2| < (InA)A™H, i = 1,2, (3.7)

where (v1i5, V2, ) is defined in Definition 1 and E; comes from (2.48). Actually, B will turn
out to be chosen much smaller than in (3.6).
It is easy to see that the assertion of Lemma 2.5, concerning the remainder of this refined

inner solution, continues to hold for (w1, wa ).
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4. SOLUTION OF THE INNER PROBLEM

In this section, we will show that the one-parameter family of refined inner approximate
solutions (wy ;n, Wan), described in the previous section (parameterized by B), can be per-
turbed smoothly to a one-parameter family of inner genuine solutions to the system (1.1),
for large A > 0. Then, we will show that there exists at least one value of B, in the range
(3.6), for which the corresponding inner genuine solution to (1.1) has a Hamiltonian constant
equal to —1)3/2.

4.1. The perturbation argument. Given B satisfying (3.6), we seek a solution of system
(1.1) as
1

(Viins Vaiin) = (Wiin, Woin) + (01, 02), [2] < (InA)A77, (4.1)

with
1
; (i(lnA)A*z) —0, i=12

After rearranging terms, we find that (¢1, p2) has to satisfy

L(p1,p2) = —R(wiin, wa,n) — Q(P1,92) — N1, 2),
(4.2)
; (i(lnA)A—%) —0, i=1,2

where ) )

—¢] + A2V (2)p1 + 202 Vi () Va(@)pe

[’(9017 902) - ) . )

—iply + A2 V2 () + 282 V3 (1) Va(2)p1
the term R(wj in, W2,) denotes the remainder which is left by (wy i, w24,) in (1.1) (analo-
gously to Lemma 2.5),

Qp1,92) =

(3w, — D1 + A (wg,m - A‘%I/f) 1+ 2A (wl,mwz,z‘n - A_%Vl‘/2> P2

(SW%,m — D2 + A <w%zn - A_%‘/lz) 2 + 2A (wl,inw2,in - A_%Vﬂ/2> ¥1
and ‘
@3 + 3w1in®t + AWy ings + Apsp1 + 2Awo 01902

N(@h 802) =
O + 3wa ins + Awa it + A3 + 2Aw1 inp1p2

Concerning the linear operator £, we observe that Proposition 2.2, after a simple re-scaling
(recall that 2 = A12), yields the following.

Corollary 4.1. Given o > 0, there exist Ay, C' > 0 such that the boundary value problem

L ( Zil ) _ ( Zl > 2] < InA)A™T; o (i(lnA)A—%) —0,i=12
2 2

where hy, hy € C [—(ln M)A, (In A)A’i], has a unique solution such that

2

2
_1 _liq
> (AT e + loillman ) € CATF Y hallimay,
1 =1
21
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where ) )
In = (—(m M)A, (In A)A‘Z) ,
provided that A > Ay.

On the other side, the remainder R(w; n, w2,,) clearly satisfies the thesis of Lemma 2.5.
Furthermore, using that

[vin(2) < C(INA)A™S, | Ey(w)| < C(InA),
together with the easy to prove estimates

v? (2) — A’%Vf(x) V1 inV2.n(2) — A’%Vlvg(a:)’ < C(In A)4A’%,

2,2M

_|_

for |z| < (InA)A~%, i = 1,2, and (3.6), it follows readily that there exists C' > 0 such that

2 2
D 1Qi(er, e2)llzy < C Y @il (4.3)
i=1 i=1
for any 1, s € C(I,). Moreover, there exists a C' > 0 such that

2

3
IN:(er @)l < €Y {llgillio + AT A illEe + Allgilliellginalie b, (40)
=1

i =1,2, for any 1, py € C(I,) (with the obvious notation), and
S INi(er, 02) — Ni(vhr, o) ||z (1) <

CS L M lpile + 1il) + AS (0 A) (il + 1)1 2)}
X (Z?ﬂ i — %‘HLoo) )

for any @1, s, 91,12 € C(In). )
In view of the above, and paying attention to the dependence on B, a standard application
of the contraction mapping principle yields the following.

Proposition 4.1. Given o € (0, 1), there exists C > 0 such that problem (4.2) has a unique
solution satisfying

2
_1 -
> (A Iy + eillzeay ) < CA7E,

i=1
provided that A is sufficiently large. Moreover, this solution depends continuously, with
respect to the C1(Iy)-norm, on B as in (3.6) (for fived A).

We point out that the aforementioned continuous dependence on B can be proven easily
as follows. Let B, satisfy (3.6), for fixed A as in the above proposition, and B, — B. as
n — 0o. We denote by (01, @2.) and (@100, ©2.00) the solutions of (4.2) corresponding to B,
and Ba, respectively, as provided by the first part of the above proposition. Then, thanks to
Arzela-Ascoli’s theorem, passing to a subsequence if necessary, and utilizing the uniqueness
assertion of the aforementioned proposition, we find that ¢;, — ¢; o in ok (K) as n — oo,
i = 1,2. Finally, by employing once more the uniqueness property of (¢1 00, ¥2.0), we deduce

that the previous convergence holds for the original sequence.
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4.1.1. Some preliminary positivity and monotonicity properties of the inner genuine solu-
tion (V1,in, Vo). It is clear from the construction of the refined inner approximate solution
(W1,in, Wa,n) and Proposition 4.1 that, given any L > 1, there exists ¢;, > 0 such that

Vo in > cLA_% and — V’Zm > c; on [—(ln A)A_%,LA_%] , (4.6)

provided that A > 0 is sufficiently large. On the other side, we observe that v, ;, satisfies a
linear equation of the form

— 0"+ P(2)v=0 with P(z2) >cAz* z¢€ (LA’%, (lnA)A’i) : (4.7)
with ¢ > 0 independent of both A, L. Unfortunately, it is not clear to us how to use the

maximum principle to deduce the positivity and monotonicity of vg;, in this remaining
interval without too much effort. A possible way would be to show that v} ;, ((ln A)A‘i> =

1

wh 4, ((ln A)A 4) < 0. This last task, however, would require us to keep track of the

sharp super-exponential decay of the various functions involved in the construction of ws .
Nevertheless, since

Vain ((m A)A*i> = wam ((m A)A*i> (LI3L246) y 4 (efconA)?) L AO (e PY,
(4.8)
for any D > 0, as A — oo, we deduce by Proposition 4.1 (used mildly only at z = A‘i),
relation (4.7) and a barrier argument that

[Van(2)] £ CAHem2 = 4 O(A™), 2 € [A7H, (InA)A™H]. (4.9)
In turn, by (4.7) and a standard interpolation argument, we can easily infer that
Voo ((MA)ATH) =O(A™™) as A= oc, (4.10)

The above two estimates, and the analogous ones for vy ;,, will play a pivotal role in ’ex-
tending’ (Vyin, V2.in) to a heteroclinic solution to (1.1)-(1.2), which can then easily be shown
to have positive components with the right monotonicity properties.

4.2. Adjusting the Hamiltonian constant of the inner genuine solution. From the
calculations of Subsection 3.2 and Proposition 4.1, it follows that, if « therein is inside
(0,1/4) and B satisfies (3.6), the equation for B such that the Hamiltonian constant of the
exact solution (vy ;, Vo) of the inner problem is equal to —13 /2 has the form

202 BAT + A"h(A, B) = 0,

where the function h is uniformly bounded in A and continuous. Consequently, by the
Bolzano-Weistrass theorem, there exists at least one

B=0 (A%*a) as A — oo, (4.11)

which satisfies the above equation (a € (0,1/4) is still as in Proposition 4.1). Clearly, our

working assumption (3.6) is satisfied for a > 0 sufficiently small.
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5. SOLUTION OF THE OUTER PROBLEM

In this section, we will construct a symmetric solution (v gut, Vo,out) to system (1.1) out-
side of the interval Iy which, however, agrees on I, with the already constructed solution
(V1in, Vo) of the inner problem (in the C? sense) and satisfies the desired asymptotic be-
haviour in (1.2).

5.1. A refined outer approximate solution (w; ut,ws ). We first consider a refine-
ment of the outer approximate solution (vy out, V2 out) that was constructed in Subsection 2.1,
defined as

wl,out(z) - Ul,out(z) + %IU{ (Z + 51)7 w2,out(z> = Vain ((ln A>A_i> <(2)7

for z > (In A)A~7; where

(Ul,out - Vl,in) ((ln A)A_%> q - o
F=— (2.1),(5.,5),P:p.4.1,(4.11) O <(1n A)A7%+O‘) 7

v (mA)AE +6)

as A — oo (a € (0, 1) still as in Proposition 4.1), and ¢ € C§°(R) is a fixed cutoff function

which is equal to one on [—1,1] (in this regard, keep in mind (3.4), (4.10)). Analogously we
define (w1 gyt Wo o) for z < —(In A)A‘i.
By construction, we have

Wiow (FIAAT) = i (FIAAT), =12,
and that the asymptotic behaviour (1.2) is still satisfied.

5.2. The remainder of the refined outer approximate solution. By recalling the proof
of Lemma 2.2 and relations (3.4), (4.10), we find that the assertion of the aforementioned
lemma continues to hold for (w1 eut, W2 eut); €xcept that in the equations which were satisfied
exactly now there is a remainder left, but whose absolute value is bounded by a A™*°-small
number times a fixed, compactly supported function.

5.3. The perturbation argument. We seek a solution of system (1.1) as

(Vl,outyv2,out) - (wl,outa w2,out> + (Qolu 902)7 |Z| 2 (ln A)A_%a
(5.1)
;i (j:(lnA)A_i> =0, lim, ,40pi(2) =0, 1=1,2.

Proceeding as in Subsection 4.1, we find that now the corresponding linear operator is

¥1 _90/1/ + (3w%out - 1)(101 + Aw%,out901 + 2Aw1,outw2,out902
(£L+Q) =
P2 _90/2/ + (3wg,out - 1)902 + Awiouttpg + 2Aw1,outw2,out§01

The invertibility properties of the above operator that we will need are contained in the

following proposition.
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Proposition 5.1. Given m > 1, there exist Ay, C' > 0 such that the boundary value problem

cr(2)=(1) w(mont)=o tmae-0 i-12 62
where f1, fo € C [(ln A)A‘i, oo) decay exponentially fast to zero, has a unique solution such
that

leilloen) + letlloen) < Cllfillzoen) + A" [ f2ll o)
and

1.1 m 9, 1
(In A) T ATT @bl Lo ry) + Nl2llzoegn) < AT fill ooy + C (I A)2ATZ| fol oo ),
where

Jp = ((lnA)A‘i, oo) ,
provided that A > Ay. An analogous estimate holds also in the negative outer region.

Proof. As in Proposition 2.2, it is enough to establish the validity of the asserted a-priori
estimates. We note also that the continuous spectrum of £ + (), when defined naturally
in L2(Jy) x L*(Jy), coincides with the interval [A? — 1,00), see [4] or [23], which does not
include zero by (1.3).

We will first show that there exist constants A;,C' > 0 such that the following a-priori
estimate holds: If ¢ € C?(J,) and f € C(J,) satisfy

_¢H + (3w%,0ut - 1>¢ + Awg,outqb = fa KAS JA7

¢ ((m A)A—%> =0, lim ¢(2) =0,
for A > Ay, then o
1911z (a) + N0 llzoerny < CllFllzoe )
A preliminary observation is that, since
|w2,0ut|| Lo (y) = O(A™™) as A —= oo, (5.3)

it is clearly sufficient to show the a-priori estimate

Dl Loc(gn) < CllflLoe(an)-

To this end, we will argue by contradiction. So, let us suppose that there exist A, — oo,
¢n € C*(Jy,) and f, € C(Jy,) such that

_(bfr; + <3wiout - 1)¢n + Anwg,out(bn = fna KAS JAn’

b ((mAn)Aﬁ) — 0, Tim ¢n(z) =0,

Z—00

while
|Pnllzo(n,) =1 and || fallze(sy,) — O
Let

1

Ou(2) = 6n (2 + ADALT) | Ful2) = fu (2 + (mAn)A;i) 23>0
Then, we have that

—F [3wiout (z + (InAy)As ) - 1} Gn + Aot2 (z + (InAy)AS ) b = fo,
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€ [0,00), ¢n(0) = 0, lim,_o0 Pn(2) = 0, while

[@nllz(000) = 1 and || fullz(0.00) — 0.

Keeping in mind (5.3), thanks again to standard elliptic estimates and the usual diagonal
argument, passing to a subsequence if necessary, and recalling the construction of wy 4y, We

find that ) .
Pn = Poo in C}.[0,00),
for some ¢n satisfying

@ 4+ (3UF(2) = 1) oo =0, 2>0; 0o(0) =0 and | ool r(0,00) < 1.

Moreover, it is easy to see that ¢, is nontrivial since

1
(307 gy — 1+ Aqw o (2 + (InA,) A, 4) — 2, as z — 0o, uniformly in n,

which implies that the points where ]ggn| attains its maximum cannot escape at infinity. On
the other hand, the first case in Lemma 2.1 implies that ¢ is identically equal to zero which
is a contradiction.

Applying the previously proven a-priori estimate to the first equation of (5.2), and recalling
(5.3), we obtain that

11l e n) + @il oen) < Cllfillzoen) + OA) g2l Lo (y)- (5.4)
The situation in the second equation is considerably simpler. Indeed, observing that
Wi out(2) > c(In A)A‘i, 2 € Ja, (5.5)

it follows easily that
(In A) A5 ][0 | oo a) + Nlpall oo an) <
—00 _ _1
OA™ )1l (n) + CInA)2A72 || fol [poo )

The assertion of the proposition, in the case of the positive outer region, now follows
directly by combining (5.4) and the above relation. The corresponding estimate in the
negative outer region follows completely analogously. O

Armed with the above proposition and the observation made in Subsection 5.2, concerning
the remainder left by (w1 out, W2,0ut), We can use the contraction mapping principle to capture
the desired (¢1,¢2) in (5.1) and arrive at the main result of this section.

Proposition 5.2. If A > 0 is sufficiently large, system (1.1), for |z| > (lnA)A’%, has a
solution (Vi out, Voout) of the form (5.1) with

/ 9, _3
HQO:LHLOO((IHA)A7%7OO) + HSOl”LOO((lnA)Aii,oo> S C(IHA) A 2,

/ - —00
Hg02||L°°<(lnA)A_%,oo) + ||g02||L°°<(lnA)A_%7oo) - O<A )7
and the analogous estimate is valid for z < —(In A)A™t.

For future reference, we note that a standard barrier argument yields that

101 . 1
Viouw(2)] < O(A=®)e emMZALEL ()i, > (InA)A™ 1, i=1,2. (5.6)
26



6. EXISTENCE AND NONDEGENERACY OF THE HETEROCLINIC ORBIT: PROOF OF
THEOREMS 1.1 AND 1.2

In this section, we will prove our main result. So far, we have solved exactly the system
(1.1) in the inner zone (—(ln A)A=7, (In A)A_%> by (V1,in, V2.n), and in the outer zone |z| >

(In A)A‘i by its continuous extension (Vi out, Vo,out). Furthermore, the asymptotic behaviour
in (1.2) is satisfied. In other words, the continuous and piecewise smooth pair which is defined

as
vile) = { T

Vi,out(z)a

z| < (InA)A~
z| > (InA)A~

ENE N

Y i=1,2, (6.1)

is an exact solution to problem (1.1)-(1.2) with the exception of the two points = (In A)A™4.
Loosely speaking, the above pair can be considered as a ’caricature’ of the desired solution
to (1.1)-(1.2) for large A. As we will see next, this vague notion can be made precise.

6.1. A gluing argument: The global approximate solution (w4, Wa,,). We recall
that we have constructed the solution (v ;n, Vo) of the inner problem such that its Hamil-
tonian constant is equal to —t2 /2, which clearly is that of the aforementioned solutions of
the outer problems. The main observation is that this implies that the jumps in the deriva-
tives of vy qp, Vo 4y are transcendentally small. Indeed, by the equality of the Hamiltonian

constants at (In A)A‘i, and the fact that v;;, = v, o, ¢ = 1,2, at that point, we have that
[V,l,in}2 + [V/2,inj|2 = |:V/1,out}2 + [Vé,out}Z at (ln A)‘/\ii
In turn, the corresponding estimates to (4.8), (4.10) for vy ;,, and Proposition 5.2, yield that

[Vll,m]z - [Vll,out}Q =0 (A™) at (In A)A_%, as A — oco.

Consequently, since v/ ;, ((ln A)A‘i> > cand Vi, ((ln A)A‘i> > ¢ (keep in mind Propo-

sitions 4.1 and 5.2), we infer that
(Vll,in - Vll,out) ((hl A)A7%> =0 (Aioo) , as A — 00,

as desired. Naturally, the proof of the analogous property for the second components at
—(In A)A*i is completely analogous.

We are now ready to define our global C''-smooth approximate solution to problem (1.1)-
(1.2) as

—Ai(z+(1nA)A—%‘ _A%‘Z—(lnA)A—%‘

Wiap(2) = Viap(2) + (51)-€ + (s1) e : (6.2)

where the numbers
(si)s =0 (A™) as A= o0, i=1,2, (6.3)

are chosen so that w; ., i = 1,2, are C' at £(In A)A‘i. This approximate solution leaves a
remainder in (1.1) which is uniformly of order O (A=) (keep in mind, however, that it may
have finite jump discontinuities at the two gluing points), while the asymptotic behaviour

(1.2) as z — oo is fulfilled exactly.
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6.2. Perturbing the global approximate solution to a genuine one. Even though
(W1,aps Wa,qp) Is an extremely good approximate solution, perturbing it to a genuine one by
some type of local inversion argument is a subtle task. Indeed, the associated linearized
operator

¥1 _90/1/ + (3W%,ap - 1)901 + Awg,apsol + QAWLGPWQ?CLPSDQ
M = (6.4)
09 —ly 4 (3W3 o) — D)o + AWT 09 + 2AW1 4y W2 ap01

is nearly non-invertible because (W} ,,, Wy ) is extremely close to being in the kernel. Nev-
ertheless, we will overcome this difficulty by adapting to our setting a well known variational
Lyapunov-Schmidt method (see [16] and the references therein).

Naturally, we seek a solution of (1.1)-(1.2) in the form

(v1,V2) = (W1 ap, Wa,ap) + (01, P2), (6.5)
with fluctuations satisfying the orthogonality condition
/ (Wi app1 + Wh opp2) dz = 0. (6.6)

The following proposition, concerning the so-called linear projected problem, makes it legiti-
mate to apply the aforementioned Lyapunov-Schmidt method.

Proposition 6.1. Given § > 0, there exist constants A3, C' > 0 such that if A > A3 and
(hi,hy) € L2(R) x L2(R) with ||(hy, hs)||« < 0o, the problem

W(1)-(0)e(E) w

where the linear operator M is as in (6.4), has a unique solution (¢, o) € H*(R) x H?*(R)
and cy € R such that

/ (wi,apcbl + w’gﬂpcbz) dz=10 (6.8)
and
a 5
S 16ill @) < CAZ|| (R, o)l (6.9)
i=1
where || - ||« stands for the weighted norm

2
148
(s h)lle = DI (A (21252 4 1) Doy
=1

Proof. The proof will be divided into three steps.
Step 1. We will first establish the validity of the stronger a-priori estimate

2
D 16illem < CAZ|(ha, ho)ls, (6.10)
=1

when the constant ¢, in (6.7) is equal to zero. To this end, as usual, we will argue by

contradiction. So, as in Proposition 2.2, let us suppose that there are A,, — 00, (@1, P2.,) €
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H?(R) x H*(R), (hin, han) € LA(R) x L*(R) satisfying
- /ll,n + (3Wiap - 1)¢1,n + Anwiapqsl,n + 2Anwl,apw2,ap¢2,n - hl,m

2ER,  (6.11)
o ,2/,71 + (3W§,ap - 1)¢2,n + Anwiap¢2,n + 2Anw1,apw2,ap¢1,n = h2,n7
and o
/ (Wllvapgblvn + W/2,ap¢2,n) dz = 07 (612)
—00
while

1 148
[P1nlloe®) =1, [[Gonllee@ <1, An? Z l (An2 2|22 4 1) Pl oo m)y = 0. (6.13)
i=1
We will first show that

= C (=D > A0, i=1,2. (6.14)
1+ Ap? |22+28

To this end, the main observation is that, owing to the first equation in (6.11), ¢, satisfies
a linear inhomogeneous equation of the form

— ¢+ p(2)pr = f(2), 2<0, (6.15)

with

| 3ol

p(2) = eAi and |f(2)] < C—— ,

1+ Ap? |2[2+28

(as usual, the generic constants ¢, C' > 0 do not depend on n). The above relation follows

readily from the already established properties of Wy ,4p, W4, and (6.13). Let us just point
out that special attention should be paid in showing that

2 <0, (6.16)

+

1 1 1
Y 1 1
|W1,apw2,ap| < CA, 260Anz, z < —An4,

which essentially follows by combining the estimate
AT < Woap(2) < C(ATT + |2]), 2 <0,

with the analog of (4.9) for vy ,,, and (5.6). Analogous considerations apply to ¢ ,. The
desired estimate (6.14) follows from (6.15)-(6.16), the corresponding relations for z > 0, and
a barrier argument (see also [22, pg. 435]).

With this preliminary step, we can now return to showing that a contradiction occurs. Us-
ing (6.11), (6.13), (6.14), together with standard elliptic estimates and the familiar diagonal
argument, passing to a subsequence if necessary, we find that

Gim — Gico in CL.(R\ {0}), (6.17)
where
Gio(2) =0 for (—1)'z >0, (6.18)
while
—¢f o+ (3U2(2) = 1) i =0, (—=1)'2<0, i=1,2.
Since ¢; o is bounded for z # 0, by Lemma 2.1 we must have that

bio(2) = a;Ul(2), (=1)'2<0, i=1,2, (6.19)
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for some aj,as € R (the above ay, as are not related to those in Proposition 2.2). Moreover,
passing to the limit in the orthogonality relation (6.8), with the help of Lebesgue’s dominated
convergence theorem, we obtain that

oo 0
o / (U])2dz + as / (U)2dz = 0. (6.20)
0 —00
Next, motivated by the proof of Proposition 2.2, we wish to show that
C
|Gin — ailUj| < ——5——+o(1), i=1.2, (6.21)
1+ AZ|z|?8

uniformly for 0 < (—=1)*'2 < 1, as n — oo. We will show this only for ¢ = 1, as the case
1 = 2 can be handled similarly. To this end, dropping for the moment some of the subscripts
n to relax the notation, we let

V1= ¢, —a U] =0 in O, (0,00), (6.22)
and observe that
—’QZJI{ -+ (3Wiap — 1)@[)1 + AnW%,apwl = _2Anwl,apw2,ap¢2 + hl - alAnW%apU{

—3ay(wi,, — UP)U1,
for z > 0. It is convenient to write
U1 (2) = 1 (2) + b1 (2) for z € [0,1], (6.23)
where 9, is the unique solution of the following boundary value problem:
b= (3w, — Dy +3a1(wi,, — UD)UL, z€(0,1),

1(0) = ¢n(1) = 0.
Concerning U1, we observe that standard elliptic estimates imply that
1]l 20,0y < ClIBW o = Vs + 3a1(Wh,,, = UP)UL | 2(0.2) = 0,

where the last limit holds by virtue of (6.22), the construction of w;,, and Lebesgue’s
dominated convergence theorem. Therefore,

191l 0,1) — O (6.24)

Thus, in view of (6.22) and (6.24), we get that the function 1y in the decomposition (6.23)
satisfies

~

w1—>0 in C}

loc

(0,1].
Then, since 1&1 satisfies
0 = MW 301+ 200 W1 0y Waap — I+ arhyw) U7, 2 € (0,1),
similarly as in Proposition 2.2 (also keep in mind the derivation of (6.16)), we obtain that
. C
[91(2)] £ ———F5—— +0o(1), uniformly on [0,1], as n — oo.
14+ AZ|2)?8

The desired estimate (6.21) now follows immediately from (6.22), (6.23), (6.24) and the

above relation.
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On the other side, similarly to the proof of Proposition 2.2, passing to a further subsequence
if needed, we get that

&i(Aniz) = bV (z) in C)

loc

(R), i=1,2, (6.25)

for some b € R.
By the same arguments that led to (2.36)-(2.37), we find from (6.21) and (6.25) that

a1 =b, ay=D.
Hence, in view of (6.20), we get that
a;=ay=b=0.
Then, by combining (6.14), (6.17), (6.18), (6.19), (6.21) and (6.25), we obtain that
|imllLe@ — 0, i=1,2,

(note also that, as in Proposition 5.1, the points where |¢;,| achieves its maximum cannot
escape at infinity). The above relation contradicts the first relation in (6.13), and completes
the proof of Step 1.

Step 2. We will show that the a-priori estimate (6.10) holds for the full problem (6.7)-
(6.8). Testing (6.7) by (W} ,,, W5 ,,,) gives that

(e (2)-(V))
P2 W2ap L2(R)x L2(R)

W, | <Ce ¥l 2eR, i=1,2. (6.27)

7’7ap

leal < Cll(hy, ho)ll« + C ) (6.26)

where we also used that

Unfortunately, since w) ,,, w5, are merely in H L(R), we cannot use directly the self-
adjointness of M in the last term of the above relation to exploit that

I (e

W ap > HLI(R\{i(lnA)A_Zl‘f})XLl(R\{i(lnA)A_le}) = O(A™™).

Nevertheless, from (6.2)-(6.3) and the fact that

oy ([20090071]") =t [ ])

(keep in mind (6.1)), we find that the jumps of w”, at £(InA)A~7 are of order O(A~>°)

7,ap
as A — oo, i = 1,2. Hence, splitting the integral under consideration into three parts,

integrating each one by parts using the self-adjointness of M and the previous observation
to estimate the boundary terms, we reach the bound

2
o3} ) ( W >> —o0
M ( 7 /,ap :O(A ) |’¢i||L°°R as A — oo.
< P2 W2,ap L2(R)x L2(R) 121 "

In turn, via (6.26), we obtain that

2
eal < Ol ha)l + OA) S 61l .
=1
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On the other hand, applying the conclusion of Step 1 to (6.7)-(6.8), and keeping in mind
(6.27), we get that

2
>l illzmy < CA7E[|(ha, ha)ll. + CAF|ea].
i=1
The desired a-priori estimate now follows at once by combining the above two relations. We
point out that the main reason for using a power weight instead of the more convenient
exponential one, as in Proposition 2.2 and Corollary 4.1, was in order to get an efficient
estimate in the last term of the above relation.

Step 3. We will establish the existence of a unique solution (¢, ¢2) € H*(R) x H*(R) and
cp € R to problem (6.7)-(6.8), given (hy, hs) as in the assertion of the proposition. Let X
denote the subspace of H?(R) x H%(R) which consists of pairs ® = (¢, ¢») satisfying the or-
thogonality condition (6.8). The problem (6.7)-(6.8) admits the following weak formulation:
find ® € X such that

(M(P), W) romyxremy = (H, V) remywrzw YV EX,
(where H = (hy, ha)). This weak formulation can then be readily put in the operator form
M(®) = H,

where M : X — X is self-adjoint, and Hex depends linearly on H. The a-priori estimate
of Step 2 implies that, for H = 0, there is only the trivial solution. Consequently, by the
self-adjoint property of M, we infer that the above problem has a solution ® € X (see also
[27, Lem. 4.2]), which is clearly unique. This completes the proof of Step 3 and also of the
proposition. [

Armed with the above proposition, we can apply the contraction mapping theorem in
these weighted spaces to show that the nonlinear projected problem

" 3 2 — /
=0y + vy — v + Avguy = AWy,

—vl + V5 — vy + Avivy = CAWY, g
has a solution (vq,vy) and ¢, such that
Vi = Wigp+p; With o € H*(R) and ||¢;]|pe@) = O(A™®) as A — o0, i=1,2. (6.28)
Moreover, the fluctuation (g1, p2) satisfies the orthogonality condition (6.6), while the con-
stant ¢y is of order O(A~>) as A — oo. Then, elliptic regularity theory imply that the
solution is smooth (up to this moment, we know that v}, v, € H*(R)). To this end, testing

the above nonlinear projected problem with (v}, v5), thanks to the gradient structure in the
lefthand side, yields that

0 = CA Z?:l f_oooo |:(W;,ap)2 + Wg,ap%] dz

= ¢ Z?:1 ffooo [(W;ap)? _ Wé’,ap%} dz.

In turn, using the rough estimates

[e.@]
/ (Wiap) dz > ¢, [wi,(2)] < OATe™, z e R, i=1,2,
—00
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and (6.28), we can conclude that ¢y = 0 for A sufficiently large, as desired.
6.3. Proof of Theorem 1.1.

6.3.1. The estimates. The asserted estimates in Theorem 1.1 follow readily by taking into
account the construction of the various approximate solutions, the estimates in Propositions
4.1, 5.2, and (6.28) (the latter relation can be differentiated once in the natural way). In
particular, for the decay estimates (1.18) and (1.19), keep in mind (4.9) and (5.6) respectively.

6.3.2. Positivity, monotonicity and decay properties of the heteroclinic orbit. Armed with the
previously proven C'-uniform estimates for the constructed heteroclinic solution (vy,v;), we
can complete the qualitative analysis of Subsubsection 4.1.1, and thus the proof of Theorem
1.1.

The main observation is that v, satisfies a linear equation of the form

"+ P(z)v =0, z>LA 3,

with

i cA22, z e (LA™1,6),

P(z) =

cA, z€]d,00),
for some fixed small § > 0 (keep in mind (4.7)). Hence, since vy(LA™7) > ¢A~4, vh(LA~1) <
—c for large A (recall (4.6)) and lim,_ o, v2(2) = 0, we deduce by the maximum principle
that
v3>0 and v, <0 on [LA™T,00).

In summary, so far we have shown that
vy >0 and vy <0 on [—(lnA)A‘i, oo> . (6.29)
In fact, by the use of barriers and standard elliptic estimates, it follows readily that

1
va(2) — A7ivl(2) < CA~ e M= 2 > 0. (6.30)

Moreover, the above estimate can be improved for large z: Given any fixed d > 0,
1
vo(z) — A_%Ué(z) < Cog(d)e 2, 2> d.

The previously proven C-uniform estimates for the convergence of v, to U, over (—oo, —(In A)A‘i

guarantee that the same holds on any fixed interval of the form [—M, 00), provided that A
is sufficiently large. In particular, ve(—M) — Us(—M) and vi(—M) — UL(—=M) < 0 as
A — oo. To conclude that vy is still decreasing in (—oo, —M), it is enough to apply the
maximum principle to the linear equation that is satisfied by v}. Indeed, using the analogous
property to (6.29) for vy, and our previous observations at —M, we find that the function
Y = v} satisfies

—¢" 4+ (303 — 14 Avg) ¥ = —2Avpvyv] <0, 2 < —M; P(—o0) =0, »(—M) <0,
with 3v3 — 1+ Av? > 0 on (—oo, —M] (having increased the value of M if necessary).
Analogously we argue for showing that
vy >0 in R
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Remark 6.1. A careful inspection of the proofs reveals that the solution provided by Theorem
1.1 depends smoothly on A since there is a version of the contraction mapping theorem for
operators depending on parameters.

Remark 6.2. An effective approach for constructing heteroclinic orbits in singularly per-
turbed systems of ordinary differential equations is to make use of geometric singular per-
turbation theory (see [26] and the references therein). In particular, at least heuristically,
the blow-up problem (1.10) brings to mind the recent blow-up approach to this theory, used to
deal with problems involving loss of normal hyperbolicity (see [32] and the references therein,).
However, we have not been able to put system (1.1) in the slow-fast form that is required
for the aforementioned machinery to apply. In any case, we believe that the approach of the
current paper extends in a natural way to deal with analogous problems in the broader context
of elliptic systems of partial differential equations.

6.4. Nondegeneracy of the heteroclinic: Proof of Theorem 1.2.

Proof of Theorem 1.2. 1t has been shown in [4] that the lowest point in the spectrum of M
is 0 which is a simple eigenvalue with (v}, v}) as the associated eigenfunction. It was also
shown therein that the continuous spectrum of M coincides with the interval [A% — 1, 00).
So, it is enough to show that the second eigenvalue p > 0 of M (should it exist) is bounded
away from 0 independently of large A. To this end, we will argue by contradiction.

Suppose, to the contrary, that there are A,, — oo such that the second eigenvalue p,, > 0
of M exists and satisfies

o, — 0.

Hence, there would exist an associated eigenfunction (1 ,, pa.,) € H*(R) x H*(R) such that

_Splll,n + (30% - 1)901771 + AnU%SOLn + 2Anvlv2¢2,n = UnP1n,
z€eR,
_90/2,,11 + (31]% - 1)(;02,n + AHU%SOZH + 2Anvlv2§01,n = UnP2.n,

[1nllLoe®) + l02mllLe@ =1,
and -

/ (V110 + Vop2n) dz = 0.
Then, by absorbing 1, , in the term (3v2—1); ., i = 1,2, the proof of Step 1 in Proposition
6.1 goes through to provide a contradiction. 0

7. UNIQUENESS OF SOLUTIONS: PROOF OF THEOREM 1.3

In this section, we will prove Theorem 1.3. The main task will be to establish the unique-
ness (modulo translations) of solutions to (1.1)-(1.2), satisfying the natural monotonicity
property

v1(2) >0, vh(2) <0, z€R, (7.1)
for any A in the range (1.3). In particular, the latter monotonicity property is satisfied by
stable solutions with positive components (see [4, Thm. 3.1]), and thus by minimizing ones.
To the best of our knowledge, this type of uniqueness was not previously known, even in
the case of minimizing solutions (see also [4, Rem. 1.2] and [20, Rem. 4.8]). Once the

aforementioned uniqueness property is established, the corresponding assertion of Theorem
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1.3, where only one of the inequalities in (7.1) is assumed, will follow immediately thanks to
Lemma 7.1 below. We point out that system (1.1) is non cooperative, and that in the case
A < 1, uniqueness for a related problem follows from [1].

The main result of this section is the following.

Proposition 7.1. If A > 1, there exists a unique solution (modulo translations) to (1.1)-
(1.2)-(7.1).

Proof. The proof is based on the key observation that uniqueness holds for A = 3 (see [4]
and the references therein) and a continuation argument.
Throughout this proof, we shall assume the ’pinning’ condition:

(%1 (0) = UQ(O). (72)
Firstly, and for future reference, we note that any solution of (1.1)-(1.2) with A > 1
satisfies
v?4vi <1, z€R, (7.3)
(see [4, Thm. 2.4]).
We next claim that the following localization property holds: Let A > 1 and € > 0, then
there exists M > 0 such that any solution of (1.1)-(1.2)-(7.2) with A > X such that

v1(2) >0, vy(2) <0, z€R, (7.4)

satisfies
1 —v(2) +va(z) <e for 2> M, (7.5)
and the analogous relation for z < —M. Indeed, in view of the conservation of the Hamil-
tonian, it is enough to verify that, given € > 0, there exists L > 0 so that any such solution
satisfies
v1(20) — vh(20) < € for some 2z € [0, L].

If not, for any L > 0, there would exist at least one such solution satisfying

v1(2) —vy(2) > € for z € [0, L],
ie.,

Ul(L) — ’UQ(L) 2 EL,

which is clearly not possible for large L by virtue of (7.3) and proves the claim.

In turn, similarly to [10, Thm. 2.8], for any 1 < A < A, there exist constants ¢, C' > 0 such
that any solution of (1.1)-(1.2)-(7.2)-(7.4) with A € A, A] satisfies

2
Z{|U§’]+|U§|+|vi—2—|—i\}SC@’CZ, z> M, (7.6)
i=1

and the analogous estimate for z < —M.

The previous observations have the following interesting implication: Let (v1,,v2,) be a
sequence of solutions of (1.1)-(1.2)-(7.1)-(7.2) with A = A,,, such that

Vim — Vieo — 0in H*(R), i =1,2, and A, — A € (1,00).
Then, the limit (v1 o, V2,00 ) satisfies (1.1)-(1.2)-(7.1)-(7.2) with A = A,. Indeed, since C*(R)
is continuously imbedded into H?(R), without loss of generality, it is enough to exclude the
scenario where

V] o(2:) = 0 for some z, € R. (7.7)
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To this end, we note that p = v| > 0 satisfies
—gp// =+ P(Z)QO = _2Aoovl,oov2,oové,oo > Oa Z € R’

for some smooth function P. Thus, the above scenario (7.7) cannot happen, as it would
violate a version of Hopf’s boundary point lemma (see for example [31, Thm. 2.8.4]).

It follows from [4, Thm. 3.1] that the linearized operator of (1.1) about a solution of
(1.1)-(1.2)-(7.1)-(7.2), that is M in (1.22) with H?*(R) x H?(R) as its domain, has a one-
dimensional kernel spanned by (v}, v5). We also note that this linear operator is self-adjoint
in L2(R) x L*(R), and its continuous spectrum is contained in [A? — 1,00) (see again [4]).
Therefore, by the variational Lyapunov-Schmidt procedure of Proposition 6.1 (in a regular
perturbation setting) or a dynamical systems approach (see [33]), and the observation in
the previous paragraph, we deduce the following: Each solution (vqa,,v2.4,) of (1.1)-(1.2)-
(7.1)-(7.2), for some Ay > 1, is contained in a locally unique and smooth for |[A — Ay
sufficiently small (with respect to variations from (vj ,,v2.4,) in the H*(R) x H*(R)-norm)
branch of solutions of (1.1)-(1.2)-(7.1)-(7.2). In fact, if the aforementioned local uniqueness
property failed, there would be such a solution with the associated linearized operator having
a nontrivial element (71, Z) in its kernel such that Z;(0) = Z5(0), which is impossible by
the opposite sign of v} and v5. We observe next that, thanks to (7.3), (7.5) and (7.6), any
solution to (1.1)-(1.2)-(7.1)-(7.2) with A € [\, \] satisfies

||"01 - U1,Ao||H2(R) + ||Uz - U?,AOHH2(R) <C,

where C depends only on A\, A > 1. Therefore, the aforementioned solution branch of (1.1)-
(1.2)-(7.1)-(7.2) can be extended smoothly and uniquely for all A > 1.

As was mentioned in the beginning of the proof, it has been observed that for A = 3
there exists a unique solution of (1.1)-(1.2)-(7.1)-(7.2); in fact, this solution can be found
explicitly. Indeed, letting u = v; 4 vy yields that

VHu—ut=0 z€R; u—1, z— +oo,

that is u = 1 and the aforementioned uniqueness follows at once. Hence, in the case where
there was non-uniqueness of solutions to (1.1)-(1.2)-(7.1)-(7.2) for some A > 1, we would
have two of the previously described solution branches meeting at some A, > 1. However,
this is not possible from the local uniqueness of the solution branches. O

Remark 7.1. We note that, starting the above continuation argument from A = 3, yields a
non-variational proof of existence of the heteroclinic solution.

Concerning the monotonicity condition (7.1), we have the following interesting property
which is motivated from [17], where the PDE version of system (1.10) was considered and
the concept of half-monotone solutions was introduced.

Lemma 7.1. Assume that (vy,v2) is a solution to (1.1)-(1.2) with positive components.
Then, v{ > 0 implies that vy < 0, and vice versa.

Proof. Let us assume that

v >0, (7.8)
(the other case can be treated completely analogously). We note that, in light of (7.3), there
exist sequences {zF} with 2¥ — 400 such that

vy(25) < 0 for n> 1. (7.9)
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Then, in analogy to [17], we let

A simple computation, using (1.1) and (7.8), gives that

(vic') > 2uyo, z €R.

n n]

n > 1, and the lemma follows. O

Hence, in view of (7.9), we deduce by the maximum principle that ¢ < 0 on [z, 2] for

8. ASYMPTOTIC BEHAVIOUR OF THE ENERGY: PROOF OF COROLLARY 1.1

Proof of Corollary 1.1. In view of (1.15), Theorem 1.3 and the discussion in the beginning
of Section 7, we infer that the solution in Theorem 1.1 is the only minimizer (modulo trans-
lations) with positive components to the problem (1.23). (Actually, a simple reflection
argument, using (|v1|, |v2]) as a competitor in the energy, yields that minimizers necessar-
ily have positive components). Thus, in order to verify the assertion of Corollary 1.1, it
is enough to estimate the energy of the aforementioned solution. For this purpose, a very
helpful observation is that, thanks to the conservation of the hamiltonian, we have

(s, vn) = / [(0})? + (05)?] dz.

Firstly, making use of (1.20), we find that
[ [T i) ds+ 0 ()
(InA)A™ 4 (InA)A™Z 4oy kAT
as A — oo. In turn, exploiting the fact that U](s) = 1y + O(s?) for 0 < s < 1, we can write
/ (v))?dz = / [U!(s)) ds — 12(In M)A — hgrA7T + O ((ln A)3A_%>
(InA)A~ 4 0

as A — 0o. On the other side, we obtain from (1.21) and (1.19) respectively that

(In A)A~ 1  p(na) \
/ (v)%dz = A"S / (V/2dz + O ((m A)3A—z>

(InA)A™4 (InA)
and

—(InA)A™2
/ (v1)’dz = O (A™°) as A — oc.

o0

By adding the above three relations, we arrive at

00 00 _1 nA
S = JE I ds+ A8 (V)P + 7V 107)? — 8] de — o
+0 ((m A)3A*§> .
Obviously, the righthand side increases negligibly if we replace the ends of integration +In A

with +oo respectively (keep in mind that V} is convex and that relation (1.13) can be dif-

ferentiated). The completely analogous relation holds for the second component. Therefore,
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observing that

[ e [T 1oae - )= [T v -

—00

it remains to verify that

[ wierass [Cwieras =22 (51)

—0o0

(recall also the symmetry property (1.12)). This is indeed the case, as one can determine
explicitly the value of each one of the above integrals (in fact, they are equal by symmetry),
thanks to the conservation of the hamiltonian of problems (1.6), (1.7) (see for example [20,
Lem. 4.1]); we leave the details to the reader. O
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