EXISTENCE AND UNIQUENESS OF ODD INCREASING SOLUTIONS FOR A CLASS OF INHOMOGENEOUS ALLEN-CAHN EQUATIONS IN \mathbb{R}

C. SOURDIS

Abstract. We prove existence and uniqueness of odd increasing solutions to a class of inhomogeneous Allen-Cahn type equations. A typical example is $u'' + |x|^\alpha (u - u^3) = 0$, $\alpha > 0$. We use the fact that this is well known when $\alpha = 0$ and a continuation argument. Our motivation is the study of layered solutions for $\varepsilon^2 u'' + h(x)(u - u^3) = 0$, $h(x) = |x - x_1|^{\alpha} + o(|x - x_1|^\alpha)$, $x \to x_1$, $\varepsilon > 0$ small (see [3]).

1. Introduction and main result

We consider the problem of finding increasing solutions to the problem

$$
\begin{aligned}
&u'' + |x|^\alpha f(u) = 0 \quad x \in \mathbb{R} \\
u(x) \to -1 \text{ as } x \to -\infty \quad u(x) \to 1 \text{ as } x \to \infty,
\end{aligned}
$$

(1.1)

where $\alpha > 0$ and $f \in C^1(\mathbb{R})$ is odd, $f(\pm 1) = 0$, $f_u'(1) < 0$, $f(u) > 0$, $u \in (0, 1)$,

$$
\begin{aligned}
f(\delta u) \geq \delta f(u) \quad \forall u \in (0, 1), \quad \delta \in (0, \delta_0],
\end{aligned}
$$

(1.2)

for some small $\delta_0 > 0$. A typical example is $f(u) = u - u|u|^p$, $p > 0$.

Remark 1.1. In [3] we did not require (1.2) but $f_u'(0) > 0$. Existence and asymptotic stability of a solution were established by topological arguments.

Let u_0 be the unique odd solution of

$$
\begin{aligned}
&u'' + f(u) = 0 \quad x \in \mathbb{R} \\
u(x) \to -1 \text{ as } x \to -\infty \quad u(x) \to 1 \text{ as } x \to \infty,
\end{aligned}
$$

(1.3)

We have $u_0' > 0$.

By odd reflection, (1.1) is equivalent to

$$
\begin{aligned}
&u'' + x^\alpha f(u) = 0 \quad x > 0 \\
u(0) = 0 \quad u(x) \to 1 \text{ as } x \to \infty.
\end{aligned}
$$

(1.4)

Proposition 1.1. There exists a solution u of (1.4) such that $u'(x) > 0$, $x \geq 0$. Partly supported by grant FONDECYT 3085026.
Proof. Note that
\[
(1.5) \quad u_\delta(x) = \begin{cases}
\delta u_0(x - 1) & x \geq 1 \\
0 & 0 \leq x \leq 1,
\end{cases}
\]
\(\delta \geq 0\) is a nontrivial subsolution of (1.4) if \(\delta \in (0, \delta_0]\).
Indeed, in \([0,1)\) we have \(u_\delta = 0\). So,
\[
u_\delta'' + x^\alpha f(u_\delta) = x^\alpha f(0) = 0, \quad x \in [0,1).
\]
In \((1, \infty)\) we have, for small \(\delta \in (0, \delta_0]\),
\[
u_\delta'' + x^\alpha f(u_\delta) \geq \delta \nu_0''(x - 1) + x^\alpha f(u_0(x - 1)) \geq \delta \nu_0''(x - 1) + \delta f(u_0(x - 1)) = 0.
\]
Moreover, \(u_\delta(0) = 0\), \(u_\delta(\infty) = \delta < 1\). Finally, the function \(u_\delta\) is the maximum of two regular sub-solutions, and therefore \(u_\delta\) itself must be a subsolution.

Let \(\phi_\varepsilon\) solve
\[
\begin{cases}
-\phi_\varepsilon'' - f_u(1)|x|^{\alpha}\phi_\varepsilon = -\phi_\varepsilon & x > \varepsilon^{-\frac{2}{\alpha}} \\
\phi_\varepsilon(\varepsilon^{-\frac{2}{\alpha}}) = 1 - u_0(\varepsilon^{-\frac{2+\alpha}{\alpha}}) > 0 & \phi_\varepsilon'(\varepsilon^{-\frac{2}{\alpha}}) = -\varepsilon^{-1} u_0'(\varepsilon^{-\frac{2+\alpha}{\alpha}}) < 0.
\end{cases}
\]
We have \(\phi_\varepsilon > 0\), \(\phi_\varepsilon' < 0\), \(\phi_\varepsilon'' > 0\), \(x > \varepsilon^{-\frac{2}{\alpha}}\), and a standard barrier argument yields
\[
0 < \phi_\varepsilon(x) \leq C e^{-\frac{1}{C^2 \alpha} e^{-\frac{2}{\alpha}}(x - \varepsilon^{-\frac{2}{\alpha}})}, \quad x > \varepsilon^{-\frac{2}{\alpha}}.
\]
provided \(\varepsilon > 0\) is small (recall that \(f_u(1) < 0\) and \(1 - u_0(x) \leq C e^{-|x|/C}\) for a generic constant \(C\)).

We claim that, for small \(\varepsilon\),
\[
v_\varepsilon(x) = \begin{cases}
1 - \phi_\varepsilon(x) & x > \varepsilon^{-\frac{2}{\alpha}} \\
u_\varepsilon(\varepsilon^{-\frac{2}{\alpha}}) & 0 < x \leq \varepsilon^{-\frac{2}{\alpha}}
\end{cases}
\]
is a supersolution of (1.4). Note that \(v_\varepsilon > u_\delta\) if \(\delta \leq \delta_0\) and \(\varepsilon > 0\) is small. We have \(v_\varepsilon \in C^1(\mathbb{R})\) and \(v_\varepsilon(0) = 0\), \(v_\varepsilon(\infty) = 1\). In \((0, \varepsilon^{-\frac{2}{\alpha}})\),
\[
v_\varepsilon'' + |x|^{\alpha} f(v_\varepsilon) = \left(-\frac{1}{\varepsilon^2} + |x|^\alpha\right) f(v_\varepsilon) \leq 0.
\]
In \((\varepsilon^{-\frac{2}{\alpha}}, \infty)\),

\[v''_\varepsilon + |x|^{\alpha} f(v_\varepsilon) = -\phi'' + |x|^{\alpha} f(1 - \phi) \]

\[= -\phi'' - f_u(1)|x|^\alpha \phi + |x|^\alpha O(\phi^2) \]

\[= (-1 + |x|^\alpha O(|\phi|)) \phi \]

\[\leq \left(-1 + C \left(|x - \varepsilon^{-\frac{2}{\alpha}}|^{\alpha} + \varepsilon^{-2}\right) e^{-\frac{1}{c_\varepsilon} \frac{1}{\varepsilon^2}} e^{-\frac{1}{c_\varepsilon} \frac{1}{\varepsilon^{\frac{\alpha}{2}}}} \right) \phi < 0 \]

if \(\varepsilon \) is small.

Hence, there exists a solution \(u \) of the differential equation of (1.4) such that

\[u_\delta \leq u \leq v_\varepsilon, \quad x \geq 0. \]

It is easy to see that \(u'(x) > 0, \quad x \geq 0 \) and, thus, \(u \) solves (1.4). The proof of the proposition is complete. \[\square \]

Remark 1.2. Alternatively, one can get existence using the continuation argument we will use for uniqueness (starting from \(\alpha = 0 \)).

Lemma 1.1. Every increasing solution \(u \) of (1.4) satisfies

\[u(x) \geq \delta_0 u_0(x - 1), \quad x \geq 1. \]

Proof. We prove the result by using the subsolutions \(u_\delta \) defined in (1.5) and Serrin’s sweeping technique (cf. [2]).

By the proof of Proposition 1.1, \(u_\delta \) is a subsolution of (1.4) if \(\delta \in [0, \delta_0] \). Suppose that \(u \) is an increasing solution of (1.4). Then, if \(\delta = 0 \), \(u \geq u_\delta \) in \((0, \infty)\). By the Serrin sweeping principle, and since \(u(0) = 0, \quad u(\infty) = 1 \) while \(u_\delta(0) = 0, \quad u_\delta(\infty) = \delta < 1, \quad u'_\delta(0) = 0 \), we see that

\[u(x) \geq u_{\delta_0}(x) = \delta_0 u_0(x - 1)_{+} \quad \text{in} \quad (0, \infty). \]

To prove this, we let \(\delta = \sup \{ \delta \in [0, \delta_0] : u \geq u_{\delta} \quad \text{in} \quad (0, \infty) \} \), note that \(u \geq u_{\delta} \) in \((0, \infty)\), and apply the maximum principle to \(u - u_{\delta} \) to deduce that this function has a positive lower bound in \((0, \infty)\). This contradicts the maximality of \(\delta \) if \(\delta < \delta_0 \).

The proof of the lemma is complete. \[\square \]

Lemma 1.2. There exists \(\alpha_0 > 0 \) such that (1.4) has a unique increasing solution for each \(0 < \alpha \leq \alpha_0 \).

Proof. The idea is to obtain good asymptotics for the solution and then use this to prove uniqueness.

Step 1 Suppose that \(u_i \) are increasing solutions of (1.4) for \(\alpha_i > 0 \) and \(\alpha_i \to 0 \) as \(i \to \infty \).

We have \(0 < u_i < 1 \) in \((0, \infty)\) and by equation

(1.6) \[u''_i + x^{\alpha_i} f(u_i) = 0, \quad x \in (0, \infty), \]

we see that

(1.7) \[\|u_i\|_{C^2[0,L]} \leq C(L), \quad L > 0, \quad i \geq 1. \]

Using the Arzela-Ascoli theorem and the standard diagonal argument we obtain that, for a subsequence,

\[u_i \to u_* \quad \text{in} \quad C^2_{loc}[0, \infty), \]
for some nondecreasing $0 \leq u_* \leq 1$ bounded solution of
\[u'' + f(u) = 0, \quad x > 0, \quad u(0) = 0, \]

(we also used that $x^\alpha \to 1$ in $C_{loc}(0, \infty)$ as $\alpha \to 0$).

By Lemma 1.1, we also have $u_* \geq \delta_0 u_0(x-1), \quad x \geq 1$, i.e., u_* is nontrivial. Hence, $u_* \equiv u_0$. By the uniqueness of the limit, we conclude that the every subsequence of u_i satisfies
\[u_i \to u_0 \text{ in } C^2_{loc}([0, \infty)) \text{ as } i \to \infty. \]

Step 2 Suppose that the lemma is false and that $u_i, \ v_i$ are two distinct increasing solutions of (1.4) with $\alpha = \alpha_1$ and $\alpha_1 \to 0$ as $i \to \infty$. Let
\[\phi_i = \frac{u_i - v_i}{\|u_i - v_i\|_{L^\infty(0, \infty)}}. \]

Then ϕ_i satisfies
\[\begin{aligned}
\phi_i'' + V_i(x)\phi_i &= 0 \quad x \in (0, \infty) \\
\phi_i(0) &= 0 \quad \|\phi_i\|_{L^\infty(0, \infty)} = 1, \quad \phi_i(\infty) = 0,
\end{aligned} \tag{1.9} \]
where
\[V_i(x) = \begin{cases}
x^\alpha \frac{f(u_i) - f(v_i)}{u_i - v_i} & \text{if } u_i(x) \neq v_i(x) \\
x^\alpha f(u_i) & \text{if } u_i(x) = v_i(x).
\end{cases} \]

which converges in $C_{loc}[0, \infty)$ to $f_u(u_0)$ by Step 1. Using once more the Arzela-Ascoli theorem and the standard diagonal argument we see that, for a subsequence,
\[\phi_i \to \phi_* \text{ in } C^2_{loc}(0, \infty) \text{ as } i \to \infty, \]
where ϕ_* is bounded in $(0, \infty)$ and solves
\[\phi'' + f_u(u_0)\phi = 0, \quad x > 0, \quad u(0) = 0, \]

Hence,
\[\phi_* \equiv 0. \tag{1.11} \]

(To see this note that the boundedness of ϕ and $f_u(1) < 0$ imply that $\phi_* \in H^2(0, \infty)$. So, its odd reflection is in the kernel of the operator $B\phi = \phi'' + f_u(u_0)\phi, \phi \in H^2(\mathbb{R})$. Thus, $\phi_* = \lambda u'_0$, and by setting $x = 0$ we get $\lambda = 0$).

There exist $c, d > 0$ such that $f_u(u) < -c$ if $|u - 1| \leq d$. Moreover, there is an $L_0 > 0$ such that $0 < 1 - u_0(x) < d$ if $x \geq L_0$. Since $u_i, \ v_i$ are increasing and converge to u_0 uniformly in compact intervals, we get that $1 - d < u_i(x), \ v_i(x) < 1, \ x \geq L_0$ if i is sufficiently large. By the mean value theorem,
\[V_i(x) = x^\alpha f_u(\theta u_i + (1 - \theta)v_i), \quad \theta \in [0, 1]. \]

Hence,
\[V_i(x) \leq -cx^\alpha, \quad x \geq L_0. \tag{1.12} \]

There exist $x_i > 0$ such that, without loss of generality, $\phi_i(x_i) = 1, \ \phi_i'(x_i) = 0, \ \phi_i''(x_i) \leq 0, \ i \geq 1$. We claim that the sequence $\{x_i\}$ is bounded. Indeed if not, by (1.9), (1.12) we find that $\phi_i''(x_i) \to \infty$ as $i \to \infty$, a contradiction.

By passing to a subsequence we may assume that $x_i \to x_* \geq 0$. In view of (1.10), we get
\[\phi_*(x_*) = 1, \]
which contradicts (1.11). The proof of the lemma is complete. \qed
Lemma 1.3. If \(u \) is an increasing solution of \((1.1)\) then \(u \) is nondegenerate. In particular it is asymptotically stable, i.e., if
\[
-\psi'' - |x|^\alpha f_u(u)\psi = \mu_1 \psi_1 \quad \text{in } \mathbb{R},
\]
\(\psi_1 \in L^2(\mathbb{R}) \), \(\psi_1 > 0 \) in \(\mathbb{R} \), then \(\mu_1 > 0 \).

Proof. We will show that the spectrum, in \(L^2(\mathbb{R}) \), of the operator defined by the left-hand side of \((1.13)\) is strictly positive. Since \(-|x|^\alpha f_u(u) \to \infty \) as \(|x| \to \infty \), its spectrum consists of discrete simple eigenvalues \(\mu_1 < \mu_2 < \cdots \) with \(\mu_i \to \infty \) as \(i \to \infty \) and corresponding eigenfunctions \(\psi_1, \psi_2, \cdots \). Each \(\psi_i, i \geq 1 \) has exactly \(i - 1 \) nodes. Without loss of generality we can assume that \(\psi_1 > 0 \) is an even function of \(x \). It is standard to show that \(1 - u, \psi_1 \) tend to 0 super-exponentially as \(|x| \to \infty \) (see [3]). Note that \(w = u' > 0 \) solves
\[
-\psi'' - |x|^\alpha f_u(u)\psi = \alpha |x|^\alpha - 2 x f(u), \quad x \in \mathbb{R}.
\]

By multiplying \((1.13)\) with \(w \), \((1.14)\) with \(\psi_1 \) and subtracting, we find that
\[
\mu_1 \int_{-\infty}^{\infty} \psi_1 w dx = \alpha \int_{-\infty}^{\infty} |x|^\alpha - 2 x f(u) \psi_1 dx = 2 \alpha \int_{0}^{\infty} x^{\alpha - 1} f(u) \psi_1 dx > 0.
\]
The proof is complete. \(\square \)

Lemma 1.4. If \(U \) is an increasing solution of \((1.1)_A \) (this means \(\alpha = A \)) then there exists a \(\delta > 0 \) and an increasing solution \(u_\alpha \) of \((1.1)_\alpha \) for \(|\alpha - A| \leq \delta \). Moreover,
\[
(1.15) \quad |u_\alpha - u_A|_{L^\infty(0, \infty)} \to 0 \quad \text{as } \alpha \to A.
\]

Proof. We seek a solution \(u \) of \((1.1)\) in the form \(u = u_A + \varphi, \varphi \in H^2(\mathbb{R}) \) odd. In terms of \(\varphi, (1.1)_\alpha \) becomes
\[
L(\varphi) = |x|^\alpha N(\varphi) + E,
\]
where
\[
L(\varphi) = -\varphi'' - |x|^\alpha f_u(U)\varphi
\]
\[
N(\varphi) = f(U + \varphi) - f(U) - f_u(U)\varphi
\]
\[
E = U'' + |x|^\alpha f(U).
\]
We introduce the norm \(\|\varphi\|_w = \|e^{|x|^2}\varphi\|_{L^\infty(\mathbb{R})} \) and the Banach space
\[
X = \{ \varphi : \varphi \text{ is odd, } \|\varphi\|_w < \infty \}.
\]

Arguing as in Lemma 1.2 we see that \(L \) is nonsingular if \(\alpha \) is close to \(A \). By rather standard arguments we see that if \(f \in X \) then there exists a unique \(\varphi \in H^2(\mathbb{R}) \cap X \) such that \(L(\varphi) = f \). Moreover \(\|\varphi\|_w \leq C\|f\|_w \) (\(C \) is a generic constant). Note that \((1 - U \text{ decays super-exponentially}) \). Now the existence of a solution \(u \) of \((1.1)_\alpha \) with \(|\alpha - A| \) small satisfying \((1.15)\) follows from Banach’s fixed point theorem. We can show that \(|u_\alpha(x) - U'(x)| \to 0 \) as \(\alpha \to A \). It follows that \(u \geq 0 \) in \((0, \infty)\) and, thus, \(u' > 0 \) in \(\mathbb{R} \) provided \(\alpha \) is close to \(A \). \(\square \)
Lemma 1.5. If \(u_\alpha \) are increasing solutions of \((1.1)_\alpha\), \(\alpha > \alpha_* \) then there exists \(\delta > 0 \) and increasing solutions \(u_\alpha \) of \((1.1)_\alpha\) for \(\alpha_* - \delta \leq \alpha \leq \alpha_* \). Moreover \(u_\alpha \) are continuous functions of \([\alpha_* - \delta, \alpha]\) to \(L^\infty(\mathbb{R}) \) (assuming that they are for \(\alpha > \alpha_* \)).

Proof. We know that there exists a sequence of increasing solutions \(u_i \) of \((1.1)\) with \(\alpha_i \to \alpha_* \) as \(i \to \infty \) and \(\alpha_i > \alpha_* \). Since \(|u_i| \leq 1 \), we can employ Arzela-Ascoli’s theorem and the standard diagonal argument again to show that there exists a nondecreasing solution \(u_* \) of the equation of \((1.1)\) with \(\alpha = \alpha_* \). By Lemma 1.1 we get that \(u_* \) is nontrivial and, thus, is an increasing solution of \((1.1)\). By the \(C_{loc} \) convergence and the fact that \(u_\alpha \) are increasing we have that the convergence is uniform in \(\mathbb{R} \). This establishes continuity from \([\alpha_* - \delta, \alpha]\) to \(L^\infty(\mathbb{R}) \). By Lemma 1.4 we obtain increasing solutions for \(\alpha_* - \delta \leq \alpha \leq \alpha_* \). The continuity assertion follows by substracting two different equations and working as in the proof of Lemma 1.4. □

Theorem 1.1. If \(\alpha > 0 \) then there exists a unique increasing solution of \((1.1)\).

Proof. Existence was established in Proposition 1.1. For the uniqueness we will argue by contradiction. Suppose that \(u_1, u_2 \) are two distinct increasing solutions of \((1.1)_{\alpha_0}\) for some \(\alpha_0 > 0 \). By Lemmas 1.4, 1.5 we can construct increasing solutions \(u_i(\alpha), i = 1, 2 \) of \((1.1)_\alpha\) for \(0 < \alpha < \alpha_0 \) such that \(u_i : (0, \alpha_0] \to L^\infty(\mathbb{R}) \) is continuous. Lemma 1.2 implies that there exists an \(\alpha_1 \) such that \(u_1(\alpha_1) = u_2(\alpha_1) \). The continuity of the branches yields that the linearization of \((1.1)\) at \(u_1(\alpha_1) \) is singular (as in 1.2). On the other hand, since \(u_1(\alpha_1) \) is increasing, we get a contradiction by Lemma 1.3. Therefore, the proof of Theorem 1.1 is complete. □

Remark 1.3. Our approach for uniqueness is motivated from [1].

Remark 1.4. If instead of \((1.2)\) we had the stronger
\[
 f(\delta u) \geq \delta f(u), \quad u \in [0, 1], \quad \delta \in [0, 1],
\]
as in the case \(f(u) = u - u|u|^p, \ p > 0 \), the uniqueness proof is very simple. Suppose that \(u, v \) are two increasing solutions of \((1.4)\). Then \(\delta u, \ \delta \in [0, 1] \) is a family of subsolutions and \(\delta u \leq v \) in \((0, \infty)\) if \(\delta = 0 \). The Serrin sweeping principle yields \(u \leq v \) in \((0, \infty)\). Similarly, \(v \leq u \) in \((0, \infty)\).

References

C. SOURDIS, DEPARTAMENTO DE INGENIERIA MATEMATICA, UNIVERSIDAD DE CHILE, SANTIAGO, CHILE
E-mail address: schristos@dim.uchile.cl