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Abstract
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–Nirenberg inequality. In three dimensions, in certain cases the sharp constant
coincides with the best Sobolev constant.
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1 Introduction

The standard Hardy inequality involving the distance to the origin, asserts that when
n ≥ 3 and u ∈ C∞

0 (IRn) one has
∫

IRn
|∇u|2dx ≥

(
n− 2

2

)2 ∫

IRn

u2

|x|2 dx. (1.1)

The constant
(

n−2
2

)2
is the best possible and remains the same if we replace u ∈

C∞
0 (IRn) by u ∈ C∞

0 (B1), where B1 ⊂ IRn is the unit ball centered at zero. Brezis and
Vázquez [BV] have improved it by establishing that for u ∈ C∞

0 (B1),
∫

B1

|∇u|2dx ≥
(

n− 2
2

)2 ∫

B1

u2

|x|2 dx + µ1

∫

B1

u2dx, (1.2)
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where µ1 = 5.783... is the first eigenvalue of the Dirichlet Laplacian of the unit disc
in IR2. We note that µ1 is the best constant in (1.2) independently of the dimension
n ≥ 3.

When taking distance to the boundary, the following Hardy inequality with best
constant is also well known for n ≥ 2 and u ∈ C∞

0 (B1),
∫

B1

|∇u|2dx ≥ 1
4

∫

B1

u2

(1− |x|)2 dx. (1.3)

Similarly to (1.2) this has also been improved by Brezis and Marcus in [BM] by proving
that ∫

B1

|∇u|2dx ≥ 1
4

∫

B1

u2

(1− |x|)2 dx + bn

∫

B1

u2dx, (1.4)

for some positive constant bn. This time the best constant bn depends on the space
dimension with bn > µ1 when n ≥ 4, but in the n = 3 case, one has that b3 = µ1, see
[BFT].

On the other hand the classical Sobolev inequality
∫

IRn
|∇u|2dx ≥ Sn

(∫

IRn
|u| 2n

n−2 dx

)n−2
n

, (1.5)

is valid for any u ∈ C∞
0 (IRn) where Sn = πn(n− 2)

(
Γ(n

2 )/Γ(n)
) 2

n is the best constant,
see [A], [T]. Maz’ya [M] combined both the Hardy and Sobolev term in one inequality
valid in the upper half space. After a conformal transformation it leads to the following
Hardy–Sobolev–Maz’ya inequality

∫

B1

|∇u|2dx ≥ 1
4

∫

B1

u2

(1− |x|)2 dx + Bn

(∫

B1

|u| 2n
n−2 dx

)n−2
n

, (1.6)

valid for any u ∈ C∞
0 (B1). Clearly Bn ≤ Sn and it was shown in [TT] that Bn < Sn

when n ≥ 4. Again, the case n = 3 turns out to be special. Benguria Frank and
Loss [BFL] have recently established that B3 = S3 = 3(π/2)4/3 (see also Mancini and
Sandeep [MS]).

When distance is taken from the origin the analogue of (1.6) has been established
in [FT] by methods quite different to the ones we use in the present work. To state the
result we first define

X1(a, s) := (a− ln s)−1, a > 0, 0 < s ≤ 1. (1.7)

We then have:

∫

B1

|∇u|2dx ≥
(

n− 2
2

)2 ∫

B1

u2

|x|2 dx + Cn(a)

(∫

B1

X
2(n−1)

n−2

1 (a, |x|)|u| 2n
n−2 dx

)n−2
n

. (1.8)

We note that one cannot remove the logarithm X1 in (1.8) and actually the exponent
2(n−1)

n−2 is optimal. Our main concern in this note is to calculate the best constant Cn(a)
in (1.8). To this end we have:

Theorem A Let n ≥ 3. The best constant Cn(a) in (1.8) satisfies

Cn(a) =





(n− 2)−
2(n−1)

n Sn, a ≥ 1
n−2

a
2(n−1)

n Sn, 0 < a < 1
n−2 .
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When restricted to radial functions, the best constant in (1.8) is given by

Cn,radial(a) = (n− 2)−
2(n−1)

n Sn, for all a ≥ 0.

In all cases there is no H1
0 (B1) minimizer.

One easily checks that Cn(a) < Sn when n ≥ 4. Surprisingly, in the n = 3 case one
has that C3(a) = S3 = 3(π/2)4/3 = B3, for a ≥ 1, that is, inequalities (1.5), (1.6) and
(1.8) share the same best constant.

Using the change of variables u(x) = |x|−n−2
2 v(x) inequality (1.8) is easily seen to

be equivalent to

∫

B1

|x|−(n−2)|∇v|2dx ≥ Cn(a)

(∫

B1

|x|−nX
2(n−1)

n−2

1 (a, |x|) |v| 2n
n−2 dx

)n−2
n

, v ∈ C∞
0 (B1).

(1.9)
For later use we denote by W 1,2

0 (B1; |x|−(n−2)) the completion of C∞
0 (B1) under the

norm
(∫

B1
|x|−(n−2)|∇v|2dx

)1/2
.

Estimate (1.9) is a limiting case of a Caffarelli–Kohn–Nirenberg inequality. Indeed,
for any −n−2

2 < b < ∞, the following inequality holds:

∫

IRn
|x|2b|∇v|2dx ≥ S(b, n)

(∫

IRn
|x| 2bn

n−2 |v| 2n
n−2

)n−2
n

, v ∈ C∞
0 (IRn); (1.10)

see [CKN], Catrina and Wang [CW]. Moreover, for b = −n−2
2 estimate (1.10) fails.

Clearly, estimate (1.9) is the limiting case of (1.10) for b = −n−2
2 . Thus we have:

Theorem A’ Let n ≥ 3. The best constant Cn(a) in the limiting Caffarelli–Kohn–
Nirenberg inequality (1.9) is given

Cn(a) =





(n− 2)−
2(n−1)

n Sn, a ≥ 1
n−2

a
2(n−1)

n Sn, 0 < a < 1
n−2 .

When restricted to radial functions, the best constant in (1.9) is given by

Cn,radial(a) = (n− 2)−
2(n−1)

n Sn, for all a ≥ 0.

In all cases there is no W 1,2
0 (B1; |x|−(n−2)) minimizer.

We note that the nonexistence of a W 1,2
0 (B1; |x|−(n−2)) minimizer of Theorem A’ is

stronger than the nonexistence of an H1
0 (B1) minimizer of Theorem A. This is due to

the fact that the existence of an H1
0 (B1) minimizer for (1.8) would imply existence of

a W 1,2
0 (B1; |x|−(n−2)) minimizer for (1.9), see Lemma 2.1 of [FT].
The above results can be easily transformed to the exterior of the unit ball Bc

1. For
instance we have:

Corollary Let n ≥ 3. For any u ∈ C∞
0 (Bc

1), there holds

∫

Bc
1

|∇u|2dx ≥
(

n− 2
2

)2 ∫

Bc
1

u2

|x|2 dx + Cn(a)

(∫

Bc
1

X
2(n−1)

n−2

1

(
a,

1
|x|

)
|u| 2n

n−2 dx

)n−2
n

.

(1.11)
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where the best constant Cn(a) is the same as in Theorem A.

Our method can also cover the case of a general bounded domain Ω containing the
origin. In particular we have

Theorem B Let n ≥ 3 and Ω ⊂ IRn be a bounded domain containing the origin. Set
D := supx∈Ω |x|. For any u ∈ C∞

0 (Ω), there holds

∫

Ω
|∇u|2dx ≥

(
n− 2

2

)2 ∫

Ω

u2

|x|2 dx+Cn(a)

(∫

Ω
X

2(n−1)
n−2

1

(
a,
|x|
D

)
|u| 2n

n−2 dx

)n−2
n

, (1.12)

where the best constant Cn(a) is independent of Ω and is given by

Cn(a) =





(n− 2)−
2(n−1)

n Sn, a ≥ 1
n−2

a
2(n−1)

n Sn, 0 < a < 1
n−2 .

It follows easily from Theorem A’ that there no minimizers for (1.11) and (1.12) in
the appropriate energetic function space.

We next consider the k–improved Hardy–Sobolev inequality derived in [FT]. Let k
be a fixed positive integer. For X1 as in (1.7) we define for s ∈ (0, 1),

Xi+1(a, s) = X1(a, Xi(a, s)), i = 1, 2, . . . , k. (1.13)

Noting that Xi(a, s) is a decreasing function of a we easily check that there exist unique
positive constants 0 < ak < βn,k ≤ 1 such that :
(i) The Xi(ak, s) are well defined for all i = 1, 2 . . . , k + 1, and all s ∈ (0, 1) and
Xk+1(ak, 1) = ∞. In other words, ak is the minimum value of the constant a so that
the Xi’s, i = 1, 2 . . . , k + 1, are all well defined in (0, 1).
(ii) X1(βn,k, 1)X2(βn,k, 1) . . . Xk+1(βn,k, 1) = n− 2.

For n ≥ 3, k a fixed positive integer and u ∈ C∞
0 (B1) there holds:

∫

B1

|∇u|2dx ≥
(

n− 2
2

)2 ∫

B1

u2

|x|2 dx +
1
4

k∑

i=1

∫

B1

X2
1 (a, |x|) . . . X2

i (a, |x|)
|x|2 u2dx

+ Cn,k(a)
(∫

B1

(X1(a, |x|) . . . Xk+1(a, |x|)) 2(n−1)
n−2 |u| 2n

n−2 dx

)n−2
n

. (1.14)

In our next result we calculate the best constant Cn,k(a) in (1.14).

Theorem C Let n ≥ 3 and k = 1, 2, ... be a fixed positive integer. The best constant
Cn,k(a) in (1.14) satisfies:

Cn,k(a) =





(n− 2)−
2(n−1)

n Sn, a ≥ βn,k(∏k+1
i=1 Xi(a, 1)

)− 2(n−1)
n Sn, ak < a < βn,k.

When restricted to radial functions, the best constant of (1.14) is given by

Cn,k,radial(a) = (n− 2)−
2(n−1)

n Sn, for all a > ak.
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Again we notice that Cn,k(a) < Sn for n ≥ 4 but C3,k = S3 for a ≥ β3,k.
As in Theorem A, one can establish by similar arguments the nonexistence of an

H1
0 (B1) minimizer to (1.14), as well as the analogues of Theorem A’, Corollary and

Theorem B in the case of the k–improved Hardy–Sobolev inequality.

2 The proofs

Theorem A follows from Theorem A’, we therefore prove Theorem A’:
Proof of Theorem A’: At first we will show that

Cn(a) = (n− 2)−
2(n−1)

n Sn, when a ≥ 1
n− 2

. (2.1)

We have that

Cn(a) = inf
v∈C∞0 (B1)

∫
B1
|x|−(n−2)|∇v|2dx

(
∫
B1
|x|−nX

2(n−1)
n−2

1 (a, |x|) |v| 2n
n−2 dx

)n−2
n

. (2.2)

We change variables by (r = |x|)

v(x) = y(τ, θ), τ =
1

X1(a, r)
= a− ln r, θ =

x

|x| . (2.3)

This change of variables maps the unit ball B1 = {x : |x| < 1} to the complement of
the ball of radius a, that is, Bc

a = {(τ, θ) : a < τ < +∞, θ ∈ Sn−1}. Noticing that
X ′

1(a, r) = X2
1 (a,r)

r , dτ = −X′
1(a,r)

X2
1 (a,r)

= −dr
r , we also have

|∇v|2 =
(

∂v

∂r

)2

+
1
r2
|∇θv|2 = e2(τ−a)(y2

τ + |∇θy|2).

A straightforward calculation shows that for y ∈ C∞([a,∞) × Sn−1) under Dirichlet
boundary condition on τ = a we have

Cn(a) = inf
y(a,θ)=0

∫∞
a

∫
Sn−1(y2

τ + |∇θy|2)dSdτ
(∫∞

a

∫
Sn−1 τ−

2(n−1)
n−2 |y| 2n

n−2 dSdτ

)n−2
n

. (2.4)

In the sequel we will relate Cn(a) with the best Sobolev constant Sn. It is well
known that for any R with 0 < R ≤ ∞,

Sn = inf
u∈C∞0 (BR)

∫
BR
|∇u|2dx

(∫
BR
|u| 2n

n−2 dx
)n−2

n

. (2.5)

We also know that Sn = Sn,radial the latter being the infimum when taken over radial
functions. Changing variables in (2.5) by

u(x) = z(t, θ), t = |x|−(n−2), θ =
x

|x| , (2.6)
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it follows that for any R ∈ (0,∞],

(n− 2)−
2(n−1)

n Sn = inf
z(R−(n−2),θ)=0

∫∞
R−(n−2)

∫
Sn−1(z2

t +
(

1
n−2

)2
1
t2
|∇θz|2)dSdt

(∫∞
R−(n−2)

∫
Sn−1 t−

2(n−1)
n−2 |z| 2n

n−2 dSdt

)n−2
n

. (2.7)

We note that a function u is radial in x if and only if the function z is a function of t
only. Looking at (2.4) and (2.7) we have that

Cn(a) ≤ Cn,radial(a) = (n− 2)−
2(n−1)

n Sn,radial = (n− 2)−
2(n−1)

n Sn. (2.8)

On the other hand let us take R = a−
1

n−2 (so that a = R−(n−2)) and assume that

a ≥ 1
n−2 . Then

(
1

n−2

)2
1
t2
≤ 1 since t ≥ a ≥ 1

n−2 , and therefore

Cn(a) ≥
(

1
n− 2

) 2(n−1)
n

Sn.

Combining this with (2.8) we conclude our claim (2.1).
Our next step is to prove the following: For any a > 0 we have that

Cn(a) ≤ a
2(n−1)

n Sn. (2.9)

To this end let 0 6= x0 ∈ B1 and consider the sequence of functions

Uε(x) = (ε + |x− x0|2)−
n−2

2 φδ(|x− x0|), (2.10)

where φδ(t) is a C∞
0 cutoff function which is zero for t > δ and equal to one for t < δ/2;

δ is small enough so that |x0|+ δ < 1 and therefore Uε ∈ C∞
0 (Bδ(x0)) ⊂ C∞

0 (B1).
Then, it is well known, cf [BN], that

Sn = lim
ε→0

∫
B1
|∇Uε|2dx

(∫
B1
|Uε|

2n
n−2 dx

)n−2
n

. (2.11)

From (2.2) we have that for any ε > 0 small enough,

Cn(a) = inf
v∈C∞0 (B1)

∫
B1
|x|−(n−2)|∇v|2dx

(
∫
B1
|x|−nX

2(n−1)
n−2

1 (a, |x|)|v| 2n
n−2 dx

)n−2
n

≤
∫
Bδ(x0) |x|−(n−2)|∇Uε|2dx

(
∫
Bδ(x0) |x|−nX

2(n−1)
n−2

1 (a, |x|)|Uε|
2n

n−2 dx

)n−2
n

≤
( |x0|+ δ

|x0| − δ

)n−2 1

X
2(n−1)

n
1 (a, |x0| − δ)

∫
Bδ(x0) |∇Uε|2dx

(∫
Bδ(x0)

|Uε|
2n

n−2 dx
)n−2

n

,
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where we used the fact that X1(a, s) is an increasing function of s. Taking the limit
ε → 0 we conclude:

Cn(a) ≤
( |x0|+ δ

|x0| − δ

)n−2 Sn

X
2(n−1)

n
1 (a, |x0| − δ)

.

This is true for any δ > 0 small enough, therefore

Cn(a) ≤ X
− 2(n−1)

n
1 (a, |x0|) Sn.

Since |x0| < 1 is arbitrary and X1(a, s) is an increasing function of s, we end up with

Cn(a) ≤ X
− 2(n−1)

n
1 (a, 1) Sn = a

2(n−1)
n Sn, (2.12)

and this proves our claim (2.9).
To complete the calculation of Cn(a) we will finally show that

Cn(a) ≥ a
2(n−1)

n Sn, when 0 < a <
1

n− 2
. (2.13)

To prove this we will relate the infimum Cn(a) to a Caffarelli–Kohn–Nirenberg inequal-
ity. We will need the following result:

Proposition 2.1 Let b > 0 and

Sn(b) := inf
v∈C∞0 (IRn)

∫
IRn |x|2b|∇u|2dx

(∫
IRn |x|

2bn
n−2 |u| 2n

n−2 dx
)n−2

n

. (2.14)

Then Sn(b) = Sn and this constant is not achieved in the appropriate function space.

This is proved in Theorem 1.1 of [CW].
We change variables in (2.14) by

u(x) = z(t, θ), t = |x|−(n−2)−2b, θ =
x

|x| . (2.15)

A straightforward calculation shows that for any R′,

(n− 2 + 2b)−
2(n−1)

n Sn ≤ inf
z(R′,θ)=0

∫∞
R′

∫
Sn−1

(
z2
t + 1

(n−2+2b)2t2
|∇θz|2

)
dSdt

(∫∞
R′

∫
Sn−1 t−

2(n−1)
n−2 |z| 2n

n−2 dSdt

)n−2
n

. (2.16)

Taking R′ = a and comparing (2.16) with (2.4) we have that if

1 ≥ 1
(n− 2 + 2b)2 t2

, for t ≥ a, (2.17)

then
Cn(a) ≥ (n− 2 + 2b)−

2(n−1)
n Sn. (2.18)
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Condition (2.17) is satisfied if we choose b ∈ (0, +∞) such that

1
n− 2

> a = (n− 2 + 2b)−1 > 0. (2.19)

For such a b it follows from (2.18) that

Cn(a) ≥ a
2(n−1)

n Sn,

and this proves our claim (2.13).
We finally establish the nonexistence of an energetic minimizer. We will argue by

contradiction. Suppose that v̄ ∈ W 1,2
0 (B1; |x|−(n−2)) is a minimizer of (2.2). Through

the change of variables (2.3), the quotient in (2.4) admits also a minimizer ȳ.
Consider first the case when a ≥ 1

n−2 . Comparing (2.4) and (2.7) with R = a−
1

n−2 ,
we conclude that ȳ is a radial minimizer of (2.7) as well. It then follows that (2.5)
admits a radial H1

0 (BR) minimizer ū(r) = ȳ(t), t = r−(n−2), which contradicts the fact
that the Sobolev inequality (2.5) has no H1

0 minimizers.
In the case when 0 < a < 1

n−2 , we use a similar argument comparing (2.4) and
(2.16) to conclude the existence of a radial minimizer to (2.16) with b as in (2.19). This
contradicts the nonexistence of minimizer for (2.14). The proof of Theorem A’ is now
complete.
Proof of Corollary: One can argue in a similar way as in the previous proof, or apply
Kelvin transform to the inequality of Theorem A.
Proof of Theorem B: The lower bound on the best constant follows from Theorem
A, the fact that if u ∈ C∞

0 (Ω) then u ∈ C∞
0 (BD) (since Ω ⊂ BD) and a simple scaling

argument.
To establish the upper bound in the case where 0 < a < 1

n−2 we argue exactly as
in the proof of (2.9) using the test functions (2.10) that concentrate near a point of
the boundary of Ω, that realizes the maxx∈Ω |x|. Let us now consider the case where
a ≥ 1

n−2 . For a > 0 and 0 < ρ < 1, we set

C̃n(a, ρ) := inf
u∈C∞0 (Bρ)

∫
Bρ
|∇u|2dx−

(
n−2

2

)2 ∫
Bρ

u2

|x|2 dx
(

∫
Bρ

X
2(n−1)

n−2

1 (a, |x|)|u| 2n
n−2 dx

)n−2
n

.

A simple scaling argument and Theorem A shows that:

C̃n(a, ρ) = Cn(a− ln ρ).

Thus, for ρ small enough we have that

C̃n(a, ρ) = (n− 2)−
2(n−1)

n Sn.

Since for ρ small, Bρ ⊂ Ω the upper bound follows easily in this case as well.
Proof of Theorem C: To simplify the presentation we will write Xi(|x|) instead of
Xi(a, |x|). Let k be a fixed positive integer. We first consider the case a ≥ βk,n. We
change variables in (1.14) by

u(x) = |x|−n−2
2 X

−1/2
1 (|x|)X−1/2

2 (|x|) . . . X
−1/2
k (|x|)v(x),

8



to obtain ∫

B1

|x|−(n−2)X−1
1 (|x|) . . . X−1

k (|x|)|∇v|2dx ≥

Cn,k(a)

(∫

B1

|x|−nX1(|x|) . . . Xk(|x|)X
2(n−1)

n−2

k+1 (|x|)|v| 2n
n−2

)n−2
n

, v ∈ C∞
0 (B1). (2.20)

We further change variables by

v(x) = y(τ, θ), τ =
1

Xk+1(r)
, θ =

x

|x| (r = |x|).

This change of variables maps the unit ball B1 = {x : |x| < 1} to the complement of the
ball of radius ra := X−1

k+1(1), that is, Bc
ra

= {(τ, θ) : X−1
k+1(1) < τ < +∞, θ ∈ Sn−1}.

Note that

dτ = −X ′
k+1(r)

X2
k+1(r)

dr = −X1(r) . . . Xk(r)
r

dr.

Let us denote by f1(t) the inverse function of X1(t). We also set fi+1(t) = f1(fi(t)), i =
1, 2, . . . , k. Consequently, r = fk+1(τ−1). Also, X1(r) = fk(τ−1), X2(r) = fk−1(τ−1),
. . . Xk(r) = f1(τ−1).

We then find

Cn,k(a) = inf
y(ra,θ)=0

∫∞
ra

∫
Sn−1(y2

τ +
(
f1(τ−1) . . . fk(τ−1)

)−2 |∇θy|2)dSdτ
(∫∞

ra

∫
Sn−1 τ−

2(n−1)
n−2 |y| 2n

n−2 dSdτ

)n−2
n

. (2.21)

Again, we will relate this with the best Sobolev constant Sn. From (2.7) we have that

(n− 2)−
2(n−1)

n Sn = inf
z(ra,θ)=0

∫∞
ra

∫
Sn−1(z2

t + 1
(n−2)2t2

|∇θz|2)dSdt
(∫∞

ra

∫
Sn−1 t−

2(n−1)
n−2 |z| 2n

n−2 dSdt

)n−2
n

. (2.22)

Comparing this with (2.21) we have that

Cn,k(a) ≤ Cn,k,radial(a) = (n− 2)−
2(n−1)

n Sn,radial = (n− 2)−
2(n−1)

n Sn. (2.23)

On the other hand for a ≥ βk,n and τ ≥ ra we have that

(
τ−1f1(τ−1) . . . fk(τ−1)

)−2 ≥
(
r−1
a f1(r−1

a ) . . . fk(r−1
a )

)−2

= (X1(a, 1) . . . Xk(a, 1)Xk+1(a, 1))−2

≥ 1
(n− 2)2

,

therefore (
f1(τ−1) . . . fk(τ−1)

)−2 ≥ 1
(n− 2)2τ2

, τ ≥ ra,

and consequently,
Cn,k(a) ≥ (n− 2)−

2(n−1)
n Sn.
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From this and (2.23) it follows that

Cn,k(a) = (n− 2)−
2(n−1)

n Sn, when a ≥ βk,n.

The case where ak < a < βk,n is quite similar to the case 0 < a < 1
n−2 in the proof

of Theorem A’. That is, testing in (2.20) the sequence Uε as defined in (2.10), we first
prove that

Cn,k(a) ≤
(

k+1∏

i=1

Xi(a, 1)

)−2(n−1)
n

Sn,

by an argument quite similar to the one leading to (2.12). Finally, in the case ak <
a < βk,n, we obtain the opposite inequality by comparing the infimum in (2.21) with
the infimum in (2.16). This time we take R′ = ra and b > 0 is chosen so that

k+1∏

i=1

Xi(a, 1) = n− 2 + 2b.

We omit further details.
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