On the best constant of Hardy—Sobolev Inequalities
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Abstract

We obtain the sharp constant for the Hardy-Sobolev inequality involving the
distance to the origin. This inequality is equivalent to a limiting Caffarelli-Kohn
—Nirenberg inequality. In three dimensions, in certain cases the sharp constant
coincides with the best Sobolev constant.
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1 Introduction

The standard Hardy inequality involving the distance to the origin, asserts that when
n >3 and u € C§°(IR") one has
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The constant (*5=) is the best possible and remains the same if we replace u €

C§°(IR™) by u € C§°(By1), where By C IR™ is the unit ball centered at zero. Brezis and
Vézquez [BV] have improved it by establishing that for u € C§°(By),
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where pup = 5.783... is the first eigenvalue of the Dirichlet Laplacian of the unit disc
in IR?. We note that p; is the best constant in (1.2) independently of the dimension
n > 3.

When taking distance to the boundary, the following Hardy inequality with best
constant is also well known for n > 2 and u € C3°(B1),

/ \Vul?dz > 1/ v (1.3)
B 4 (-2 '

Similarly to (1.2) this has also been improved by Brezis and Marcus in [BM] by proving

that
/ |Vu|?dz > 1 uizd:c +b ulda (1.4)
B ~4JB (1 - |$|)2 " B ’ '
for some positive constant b,,. This time the best constant b, depends on the space
dimension with b, > p; when n > 4, but in the n = 3 case, one has that b3 = u1, see
[BET].
On the other hand the classical Sobolev inequality

/ \Vu|?dz > S, (/ \u|n2n2dac> " (1.5)
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is valid for any v € C§°(IR") where S,, = mn(n — 2) (F(%)/P(n))% is the best constant,
see [A], [T]. Maz’ya [M] combined both the Hardy and Sobolev term in one inequality
valid in the upper half space. After a conformal transformation it leads to the following
Hardy—Sobolev—Maz’ya inequality

n—2
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valid for any u € C§°(By). Clearly B,, < S,, and it was shown in [TT] that B,, < S,
when n > 4. Again, the case n = 3 turns out to be special. Benguria Frank and
Loss [BFL] have recently established that Bz = S3 = 3(7/2)%/3 (see also Mancini and
Sandeep [MS]).

When distance is taken from the origin the analogue of (1.6) has been established
in [FT] by methods quite different to the ones we use in the present work. To state the
result we first define

Xi(a,s):=(a—Ins)™!, a>0, 0<s<l. (1.7)
We then have:
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We note that one cannot remove the logarithm X; in (1.8) and actually the exponent
% is optimal. Our main concern in this note is to calculate the best constant C),(a)

in (1.8). To this end we have:
Theorem A Let n > 3. The best constant Cy,(a) in (1.8) satisfies
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When restricted to radial functions, the best constant in (1.8) is given by

_2(n-1)

Ch radiai(a) = (n—2)" " n Sy, forall a > 0.

In all cases there is no Hg(By) minimizer.
One easily checks that Cy(a) < S, when n > 4. Surprisingly, in the n = 3 case one
has that C3(a) = S3 = 3(7/2)*3 = Bs, for a > 1, that is, inequalities (1.5), (1.6) and
(1.8) share the same best constant.

Using the change of variables u(z) = ]x\_%v(a;) inequality (1.8) is easily seen to
be equivalent to
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For later use we denote by Wol’Z(Bl; |2|~(»=2)) the completion of C§°(B;) under the

1/2
norm (fBl |1:]_(”_2)|Vv|2da:> / .
Estimate (1.9) is a limiting case of a Caffarelli-Kohn—Nirenberg inequality. Indeed,
for an —"T_Q < b < o0, the following inequality holds:
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see [CKN], Catrina and Wang [CW]. Moreover, for b = —"52 estimate (1.10) fails.
Clearly, estimate (1.9) is the limiting case of (1.10) for b = —252. Thus we have:

Theorem A’ Let n > 3. The best constant Cy(a) in the limiting Caffarelli-Kohn—
Nirenberg inequality (1.9) is given

_2(n-1)
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When restricted to radial functions, the best constant in (1.9) is given by
2(n—1)
Chradiai(a) = (n—2)" " n Sy, forall a>0.
In all cases there is no W01’2(Bl; |z|~("=2)) minimizer.

We note that the nonexistence of a VVO1 2(By; |&|~™=2) minimizer of Theorem A’ is
stronger than the nonexistence of an H{(B;) minimizer of Theorem A. This is due to
the fact that the existence of an H{(B;) minimizer for (1.8) would imply existence of
a Wol’z(Bl; |2|~(=2)) minimizer for (1.9), sece Lemma 2.1 of [FT].

The above results can be easily transformed to the exterior of the unit ball Bf. For
instance we have:

Corollary Letn > 3. For any u € C§°(BY), there holds

2
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where the best constant Cy(a) is the same as in Theorem A.

Our method can also cover the case of a general bounded domain €2 containing the
origin. In particular we have

Theorem B Letn > 3 and Q2 C IR™ be a bounded domain containing the origin. Set
D :=sup,cq |z|. For any u € C§°(Q2), there holds

n—=2
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where the best constant Cp(a) is independent of Q and is given by
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It follows easily from Theorem A’ that there no minimizers for (1.11) and (1.12) in
the appropriate energetic function space.

We next consider the k—improved Hardy—Sobolev inequality derived in [FT]. Let k
be a fixed positive integer. For X; as in (1.7) we define for s € (0, 1),

XZ‘_:,_l(CL,S) :Xl(a,Xi(a, S)), 1=1,2,...,k. (1.13)

Noting that X;(a, s) is a decreasing function of a we easily check that there exist unique
positive constants 0 < aj < 8, < 1 such that :
(i) The X;(ag,s) are well defined for all « = 1,2...,k+ 1, and all s € (0,1) and
Xg41(ag, 1) = oo. In other words, ay is the minimum value of the constant a so that
the X;’s, i =1,2...,k+ 1, are all well defined in (0, 1).
(11) X1 (ﬂmk, 1)X2(ﬁn,ka 1) .. -Xk+1(5n,k7 1) =n-—2.

For n > 3, k a fixed positive integer and u € C§°(B1) there holds:

—2\?2 a,|z]) ... X2(a,|z|)
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In our next result we calculate the best constant C), (a) in (1.14).

Theorem C Letn >3 and k = 1,2, ... be a fixed positive integer. The best constant
Chi(a) in (1.14) satisfies:

2(n—1)
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(HkH i(a, )) " S, ap < a < Pk
When restricted to radial functions, the best constant of (1.14) is given by

(n—1)
Cn,k,radial(a) = (n — 2)72 n . S, for all a > ay.



Again we notice that C, (a) < Sy, for n > 4 but Csj, = S3 for a > (B3 .

As in Theorem A, one can establish by similar arguments the nonexistence of an
H}(B1) minimizer to (1.14), as well as the analogues of Theorem A’, Corollary and
Theorem B in the case of the k—improved Hardy—Sobolev inequality.

2 The proofs

Theorem A follows from Theorem A’, we therefore prove Theorem A’:
Proof of Theorem A’: At first we will show that

_2(n—1) 1
Cpla)=(n—2)""7n Sy, when a > — (2.1)

We have that
5, |z~ ("2 V| 2da

Cp(a) = inf — . 2.2
( ) veC§°(B1) 2(n—1) on TQ ( )
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We change variables by (r = |z|)
(2) = y(r,0) 1 by, 0= (23)
v(x) = y(7,0), T=———=a—Inr, = —. .
! Xi(a,r) B

This change of variables maps the unit ball By = {x : |z| < 1} to the complement of
the ball of radius a, that is, B¢ = {(1,0) : a < T < +00, 6 € S""'}. Noticing that
X{(ar)

X/ (a,r) d
/ _ _ 1\% __ _ ar
Xila,r) = ==, dr = D = 0 Ve also have

ov\? 1 —a
!Vv|2=<ar> + 5 |Voul* = 27 (2 + [Voy ).

A straightforward calculation shows that for y € C°°([a,0) x S™~!) under Dirichlet
boundary condition on 7 = a we have

faOO fsnfl (yz + ‘VQyP)deT
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Cr(a) = inf
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(2.4)

In the sequel we will relate C),(a) with the best Sobolev constant S,. It is well
known that for any R with 0 < R < oo,

Vul|?dz

S, = Cinf('B ) Ji, [V — (2.5)
ueCs® 2n_ o
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We also know that S, =S, rqdial the latter being the infimum when taken over radial
functions. Changing variables in (2.5) by
u(z) = 2(t,0), t= "D, g= "i' (2.6)
x



it follows that for any R € (0, oo],
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We note that a function v is radial in z if and only if the function z is a function of ¢
only. Looking at (2.4) and (2.7) we have that

_2(n—1)

Cn(a) < Cn,radial(a) = (n - 2) n Sn,radial = (’/Z - 2) n Sn (28)

On the other hand let us take R = a2 (so that @ = R~("=?)) and assume that

> -1 Th 121<1't>>1 d theref
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Combining this with (2.8) we conclude our claim (2.1).
Our next step is to prove the following: For any a > 0 we have that

2(n—1)

Cp(a) <a n Sp. (2.9)
To this end let 0 # xg € B1 and consider the sequence of functions
n—2
Ue(w) = (e + |z — x0|*) ™77 os(|x — o)), (2.10)

where ¢5(t) is a C§° cutoff function which is zero for ¢t > § and equal to one for ¢ < §/2;
J is small enough so that |zg| +J < 1 and therefore U, € C§°(Bs(x)) C C3°(B1).
Then, it is well known, cf [BN], that

IB, VU, |2dx

S, = lim — (2.11)
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From (2.2) we have that for any ¢ > 0 small enough,
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where we used the fact that Xj(a,s) is an increasing function of s. Taking the limit
€ — 0 we conclude:

Cr(a) < ( — .
T _5 2(n—1)
2ol H (@, o] = 8)

|2zo| +5>"2 S,
X

This is true for any § > 0 small enough, therefore

2(n—1)

Cn(a) <Xy " (a]xo]) Sp.

Since |zg| < 1 is arbitrary and X;(a, s) is an increasing function of s, we end up with

_2(n=1) 2(n—1)

Crnla) <Xy ™ (a,1)Sp,=a = Sy, (2.12)

and this proves our claim (2.9).
To complete the calculation of C),(a) we will finally show that

2(n—1)
Cn(a) >a™ = Sy, when 0<a<

(2.13)
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To prove this we will relate the infimum C),(a) to a Caffarelli-Kohn-Nirenberg inequal-
ity. We will need the following result:
Proposition 2.1 Let b > 0 and

Su) = inf  —dm [PPIVulPda

CS° (IR™ 2bn 2n_ n
veCge (R™) (szn |$|j*2|u|n2*2d:p)

— (2.14)

Then S, (b) = S, and this constant is not achieved in the appropriate function space.

This is proved in Theorem 1.1 of [CW].
We change variables in (2.14) by

u(z) = 2(t,0), t=|z|~(D=B g = ’% (2.15)
A straightforward calculation shows that for any R/,
00 2 1 2
(n—1) fR/ fsn—l zy + ﬁ|V02‘ dSdt
(n—2+20) 5 S, < inf ( (n=2+2)7°t7 )M . (2.16)
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Taking R’ = a and comparing (2.16) with (2.4) we have that if

1
1> , for t>a, (2.17)
(n — 2+ 2b)? 2

then
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Cp(a) > (n—2+2b)" Sh. (2.18)



Condition (2.17) is satisfied if we choose b € (0, +00) such that

n_2>a=(n—2+2b)*1>o. (2.19)

For such a b it follows from (2.18) that

2(n—1)

Cp(a) >a  n Sy,

and this proves our claim (2.13).

We finally establish the nonexistence of an energetic minimizer. We will argue by
contradiction. Suppose that v € WOI’Q(Bl; |z|~("=2)) is a minimizer of (2.2). Through
the change of variables (2.3), the quotient in (2.4) admits also a minimizer .

Consider first the case when a > ﬁ Comparing (2.4) and (2.7) with R = a_ﬁ,
we conclude that ¢ is a radial minimizer of (2.7) as well. It then follows that (2.5)
admits a radial H}(Bg) minimizer a(r) = g(t), t = 7~ (™2 which contradicts the fact
that the Sobolev inequality (2.5) has no H minimizers.

In the case when 0 < a < ﬁ, we use a similar argument comparing (2.4) and
(2.16) to conclude the existence of a radial minimizer to (2.16) with b as in (2.19). This
contradicts the nonexistence of minimizer for (2.14). The proof of Theorem A’ is now
complete.

Proof of Corollary: One can argue in a similar way as in the previous proof, or apply
Kelvin transform to the inequality of Theorem A.

Proof of Theorem B: The lower bound on the best constant follows from Theorem
A, the fact that if u € C5°(Q2) then u € C§°(Bp) (since 2 C Bp) and a simple scaling
argument.

To establish the upper bound in the case where 0 < a < ﬁ we argue exactly as
in the proof of (2.9) using the test functions (2.10) that concentrate near a point of
the boundary of €2, that realizes the max,cq |z|. Let us now consider the case where
azﬁ. For a >0 and 0 < p < 1, we set

2 2
- \Vul?dr — (252 yda
Cuap) = it % (%) Jou| e
u€CEe(Bp) ( 2(n—1) n

2n n
Jp, X177 (a, \x|>\u|n—2dx>

A simple scaling argument and Theorem A shows that:

On(aa P) = Cn(a —In p)‘

Thus, for p small enough we have that

~ _2(n-1)

Cnla,p)=(n—2)""n S,.

Since for p small, B, C € the upper bound follows easily in this case as well.

Proof of Theorem C: To simplify the presentation we will write X;(|x|) instead of
Xi(a,|z|). Let k be a fixed positive integer. We first consider the case a > B . We
change variables in (1.14) by

u(z) = || =7 X, P () X5 P () - X P (o (),



to obtain
[ 1D X ) X el Vol
1

n—2

2(n—1)

Crala) ( [ X)) XX <|xr>|v|f"2) L veCE®B). (220)

We further change variables by

1 T
= , 0=— r=lz|).
X () ERER
This change of variables maps the unit ball By = {x : |x| < 1} to the complement of the
ball of radius rg, := X,C__&l(l), that is, By, = {(7,0) : Xk_il(l) <7< 400, 0 S

Note that X!
X X
b M), X)X,
Xk:+1(7“) T
Let us denote by fi(t) the inverse function of X;(t). We also set fi11(t) = fi(fi(t)), i =
1,2,...,k. Consequently, r = fri1(771). Also, X1(r) = fe(r™1), Xao(r) = fr1(77 1Y),
CXe(r) = fi(r7h).
We then find

v(z) =y(r,0), T

S fgnar (2 + (fi(m™Y) oo fu(m 1)) 72 |V92/|2)d5d7'

n—2

Cnyk(a) = inf

Lot (2.21)
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Again, we will relate this with the best Sobolev constant S,,. From (2.7) we have that

- [ [qn-1(22 + S35 |Vz|?)dSdt
(-2 "5, = inf JelTT T o2 i (2.22)
z(rq,0)=0 _2(n=1)  2p_ o
< [ fgnn 70 |z|n—2det>
Comparing this with (2.21) we have that
_2(n-1) _2(n-1)
Cn,k(a) < Cn,k,radial(a) = (n - 2) n Sn,radz'al = (n - 2) n Sp. (2-23)

On the other hand for a > 8, and 7 > r, we have that

(T aE L RE) T 2 (A D)
= (Xi(a,1)... Xp(a, 1) Xpp1(a,1)) 72
1
= o2
therefore L ]
(fl(Tfl)...fk(Tfl)> > m, T> T,

and consequently,
Cpi(a) > (n—2)""n Sp.



From this and (2.23) it follows that

_ 2(n—1)

Crrla) =(n—2)""n Sy, when a > B .

The case where aj, < a < B, is quite similar to the case 0 < a < ﬁ in the proof
of Theorem A’. That is, testing in (2.20) the sequence U, as defined in (2.10), we first
prove that

k1 =0
Cni(a) < (H Xi(a, 1)> Sns
i=1

by an argument quite similar to the one leading to (2.12). Finally, in the case a; <
a < Brn, we obtain the opposite inequality by comparing the infimum in (2.21) with
the infimum in (2.16). This time we take R’ = r, and b > 0 is chosen so that

k+1
I Xi(a,1) =n—2+2b.
=1

We omit further details.
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