On the best constant of Hardy-Sobolev Inequalities

Adimurthi ${ }^{1}$ \& Stathis Filippas ${ }^{2,4}$ \& Achilles Tertikas ${ }^{3,4}$
TIFR center P.O. Box 1234^{1}, Bangalore 560012, India aditi@math.tifrbng.res.in
Department of Applied Mathematics ${ }^{2}$
University of Crete, 71409 Heraklion, Greece filippas@tem.uoc.gr
Department of Mathematics ${ }^{3}$
University of Crete, 71409 Heraklion, Greece tertikas@math.uoc.gr
Institute of Applied and Computational Mathematics ${ }^{4}$, FORTH, 71110 Heraklion, Greece

Abstract

We obtain the sharp constant for the Hardy-Sobolev inequality involving the distance to the origin. This inequality is equivalent to a limiting Caffarelli-Kohn -Nirenberg inequality. In three dimensions, in certain cases the sharp constant coincides with the best Sobolev constant.

AMS Subject Classification: 35J60, 46E35 (26D10, 35J15)
Keywords: Hardy inequality, Sobolev inequality, critical exponent, best constant, Caffarelli-Kohn-Nirenberg inequality.

1 Introduction

The standard Hardy inequality involving the distance to the origin, asserts that when $n \geq 3$ and $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ one has

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x \geq\left(\frac{n-2}{2}\right)^{2} \int_{\mathbb{R}^{n}} \frac{u^{2}}{|x|^{2}} d x . \tag{1.1}
\end{equation*}
$$

The constant $\left(\frac{n-2}{2}\right)^{2}$ is the best possible and remains the same if we replace $u \in$ $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ by $u \in C_{0}^{\infty}\left(B_{1}\right)$, where $B_{1} \subset \mathbb{R}^{n}$ is the unit ball centered at zero. Brezis and Vázquez [BV] have improved it by establishing that for $u \in C_{0}^{\infty}\left(B_{1}\right)$,

$$
\begin{equation*}
\int_{B_{1}}|\nabla u|^{2} d x \geq\left(\frac{n-2}{2}\right)^{2} \int_{B_{1}} \frac{u^{2}}{|x|^{2}} d x+\mu_{1} \int_{B_{1}} u^{2} d x \tag{1.2}
\end{equation*}
$$

where $\mu_{1}=5.783 \ldots$ is the first eigenvalue of the Dirichlet Laplacian of the unit disc in \mathbb{R}^{2}. We note that μ_{1} is the best constant in (1.2) independently of the dimension $n \geq 3$.

When taking distance to the boundary, the following Hardy inequality with best constant is also well known for $n \geq 2$ and $u \in C_{0}^{\infty}\left(B_{1}\right)$,

$$
\begin{equation*}
\int_{B_{1}}|\nabla u|^{2} d x \geq \frac{1}{4} \int_{B_{1}} \frac{u^{2}}{(1-|x|)^{2}} d x . \tag{1.3}
\end{equation*}
$$

Similarly to (1.2) this has also been improved by Brezis and Marcus in [BM] by proving that

$$
\begin{equation*}
\int_{B_{1}}|\nabla u|^{2} d x \geq \frac{1}{4} \int_{B_{1}} \frac{u^{2}}{(1-|x|)^{2}} d x+b_{n} \int_{B_{1}} u^{2} d x, \tag{1.4}
\end{equation*}
$$

for some positive constant b_{n}. This time the best constant b_{n} depends on the space dimension with $b_{n}>\mu_{1}$ when $n \geq 4$, but in the $n=3$ case, one has that $b_{3}=\mu_{1}$, see [BFT].

On the other hand the classical Sobolev inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x \geq S_{n}\left(\int_{\mathbb{R}^{n}}|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} \tag{1.5}
\end{equation*}
$$

is valid for any $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ where $S_{n}=\pi n(n-2)\left(\Gamma\left(\frac{n}{2}\right) / \Gamma(n)\right)^{\frac{2}{n}}$ is the best constant, see $[\mathrm{A}],[\mathrm{T}]$. Maz'ya $[\mathrm{M}]$ combined both the Hardy and Sobolev term in one inequality valid in the upper half space. After a conformal transformation it leads to the following Hardy-Sobolev-Maz'ya inequality

$$
\begin{equation*}
\int_{B_{1}}|\nabla u|^{2} d x \geq \frac{1}{4} \int_{B_{1}} \frac{u^{2}}{(1-|x|)^{2}} d x+B_{n}\left(\int_{B_{1}}|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}, \tag{1.6}
\end{equation*}
$$

valid for any $u \in C_{0}^{\infty}\left(B_{1}\right)$. Clearly $B_{n} \leq S_{n}$ and it was shown in [TT] that $B_{n}<S_{n}$ when $n \geq 4$. Again, the case $n=3$ turns out to be special. Benguria Frank and Loss [BFL] have recently established that $B_{3}=S_{3}=3(\pi / 2)^{4 / 3}$ (see also Mancini and Sandeep [MS]).

When distance is taken from the origin the analogue of (1.6) has been established in [FT] by methods quite different to the ones we use in the present work. To state the result we first define

$$
\begin{equation*}
X_{1}(a, s):=(a-\ln s)^{-1}, \quad a>0, \quad 0<s \leq 1 . \tag{1.7}
\end{equation*}
$$

We then have:

$$
\begin{equation*}
\int_{B_{1}}|\nabla u|^{2} d x \geq\left(\frac{n-2}{2}\right)^{2} \int_{B_{1}} \frac{u^{2}}{|x|^{2}} d x+C_{n}(a)\left(\int_{B_{1}} X_{1}^{\frac{2(n-1)}{n-2}}(a,|x|)|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} . \tag{1.8}
\end{equation*}
$$

We note that one cannot remove the logarithm X_{1} in (1.8) and actually the exponent $\frac{2(n-1)}{n-2}$ is optimal. Our main concern in this note is to calculate the best constant $C_{n}(a)$ in (1.8). To this end we have:
Theorem A Let $n \geq 3$. The best constant $C_{n}(a)$ in (1.8) satisfies

$$
C_{n}(a)=\left\{\begin{array}{lr}
(n-2)^{-\frac{2(n-1)}{n}} S_{n}, & a \geq \frac{1}{n-2} \\
a^{\frac{2(n-1)}{n}} S_{n}, & 0<a<\frac{1}{n-2} .
\end{array}\right.
$$

When restricted to radial functions, the best constant in (1.8) is given by

$$
C_{n, \text { radial }}(a)=(n-2)^{-\frac{2(n-1)}{n}} S_{n}, \quad \text { for all } \quad a \geq 0
$$

In all cases there is no $H_{0}^{1}\left(B_{1}\right)$ minimizer.
One easily checks that $C_{n}(a)<S_{n}$ when $n \geq 4$. Surprisingly, in the $n=3$ case one has that $C_{3}(a)=S_{3}=3(\pi / 2)^{4 / 3}=B_{3}$, for $a \geq 1$, that is, inequalities (1.5), (1.6) and (1.8) share the same best constant.

Using the change of variables $u(x)=|x|^{-\frac{n-2}{2}} v(x)$ inequality (1.8) is easily seen to be equivalent to
$\int_{B_{1}}|x|^{-(n-2)}|\nabla v|^{2} d x \geq C_{n}(a)\left(\int_{B_{1}}|x|^{-n} X_{1}^{\frac{2(n-1)}{n-2}}(a,|x|)|v|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}, \quad v \in C_{0}^{\infty}\left(B_{1}\right)$.
For later use we denote by $W_{0}^{1,2}\left(B_{1} ;|x|^{-(n-2)}\right)$ the completion of $C_{0}^{\infty}\left(B_{1}\right)$ under the norm $\left(\int_{B_{1}}|x|^{-(n-2)}|\nabla v|^{2} d x\right)^{1 / 2}$.

Estimate (1.9) is a limiting case of a Caffarelli-Kohn-Nirenberg inequality. Indeed, for any $-\frac{n-2}{2}<b<\infty$, the following inequality holds:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|x|^{2 b}|\nabla v|^{2} d x \geq S(b, n)\left(\int_{\mathbb{R}^{n}}|x|^{\frac{2 b n}{n-2}}|v|^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}}, \quad v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \tag{1.10}
\end{equation*}
$$

see [CKN], Catrina and Wang [CW]. Moreover, for $b=-\frac{n-2}{2}$ estimate (1.10) fails. Clearly, estimate (1.9) is the limiting case of (1.10) for $b=-\frac{n-2}{2}$. Thus we have:
Theorem A' Let $n \geq 3$. The best constant $C_{n}(a)$ in the limiting Caffarelli-KohnNirenberg inequality (1.9) is given

$$
C_{n}(a)=\left\{\begin{array}{lr}
(n-2)^{-\frac{2(n-1)}{n}} S_{n}, & a \geq \frac{1}{n-2} \\
a^{\frac{2(n-1)}{n}} S_{n}, & 0<a<\frac{1}{n-2} .
\end{array}\right.
$$

When restricted to radial functions, the best constant in (1.9) is given by

$$
C_{n, \text { radial }}(a)=(n-2)^{-\frac{2(n-1)}{n}} S_{n}, \quad \text { for all } \quad a \geq 0
$$

In all cases there is no $W_{0}^{1,2}\left(B_{1} ;|x|^{-(n-2)}\right)$ minimizer.
We note that the nonexistence of a $W_{0}^{1,2}\left(B_{1} ;|x|^{-(n-2)}\right)$ minimizer of Theorem A' is stronger than the nonexistence of an $H_{0}^{1}\left(B_{1}\right)$ minimizer of Theorem A. This is due to the fact that the existence of an $H_{0}^{1}\left(B_{1}\right)$ minimizer for (1.8) would imply existence of a $W_{0}^{1,2}\left(B_{1} ;|x|^{-(n-2)}\right)$ minimizer for (1.9), see Lemma 2.1 of $[\mathrm{FT}]$.

The above results can be easily transformed to the exterior of the unit ball B_{1}^{c}. For instance we have:
Corollary Let $n \geq 3$. For any $u \in C_{0}^{\infty}\left(B_{1}^{c}\right)$, there holds

$$
\begin{equation*}
\int_{B_{1}^{c}}|\nabla u|^{2} d x \geq\left(\frac{n-2}{2}\right)^{2} \int_{B_{1}^{c}} \frac{u^{2}}{|x|^{2}} d x+C_{n}(a)\left(\int_{B_{1}^{c}} X_{1}^{\frac{2(n-1)}{n-2}}\left(a, \frac{1}{|x|}\right)|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} \tag{1.11}
\end{equation*}
$$

where the best constant $C_{n}(a)$ is the same as in Theorem A.
Our method can also cover the case of a general bounded domain Ω containing the origin. In particular we have

Theorem B Let $n \geq 3$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded domain containing the origin. Set $D:=\sup _{x \in \Omega}|x|$. For any $u \in C_{0}^{\infty}(\Omega)$, there holds

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} d x \geq\left(\frac{n-2}{2}\right)^{2} \int_{\Omega} \frac{u^{2}}{|x|^{2}} d x+C_{n}(a)\left(\int_{\Omega} X_{1}^{\frac{2(n-1)}{n-2}}\left(a, \frac{|x|}{D}\right)|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} \tag{1.12}
\end{equation*}
$$

where the best constant $C_{n}(a)$ is independent of Ω and is given by

$$
C_{n}(a)=\left\{\begin{array}{lr}
(n-2)^{-\frac{2(n-1)}{n}} S_{n}, & a \geq \frac{1}{n-2} \\
a^{\frac{2(n-1)}{n}} S_{n}, & 0<a<\frac{1}{n-2}
\end{array}\right.
$$

It follows easily from Theorem A' that there no minimizers for (1.11) and (1.12) in the appropriate energetic function space.

We next consider the k-improved Hardy-Sobolev inequality derived in [FT]. Let k be a fixed positive integer. For X_{1} as in (1.7) we define for $s \in(0,1)$,

$$
\begin{equation*}
X_{i+1}(a, s)=X_{1}\left(a, X_{i}(a, s)\right), \quad i=1,2, \ldots, k \tag{1.13}
\end{equation*}
$$

Noting that $X_{i}(a, s)$ is a decreasing function of a we easily check that there exist unique positive constants $0<a_{k}<\beta_{n, k} \leq 1$ such that:
(i) The $X_{i}\left(a_{k}, s\right)$ are well defined for all $i=1,2 \ldots, k+1$, and all $s \in(0,1)$ and $X_{k+1}\left(a_{k}, 1\right)=\infty$. In other words, a_{k} is the minimum value of the constant a so that the X_{i} 's, $i=1,2 \ldots, k+1$, are all well defined in $(0,1)$.
(ii) $X_{1}\left(\beta_{n, k}, 1\right) X_{2}\left(\beta_{n, k}, 1\right) \ldots X_{k+1}\left(\beta_{n, k}, 1\right)=n-2$.

For $n \geq 3, k$ a fixed positive integer and $u \in C_{0}^{\infty}\left(B_{1}\right)$ there holds:

$$
\begin{align*}
\int_{B_{1}}|\nabla u|^{2} d x & \geq\left(\frac{n-2}{2}\right)^{2} \int_{B_{1}} \frac{u^{2}}{|x|^{2}} d x+\frac{1}{4} \sum_{i=1}^{k} \int_{B_{1}} \frac{X_{1}^{2}(a,|x|) \ldots X_{i}^{2}(a,|x|)}{|x|^{2}} u^{2} d x \\
& +C_{n, k}(a)\left(\int_{B_{1}}\left(X_{1}(a,|x|) \ldots X_{k+1}(a,|x|)\right)^{\frac{2(n-1)}{n-2}}|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} \tag{1.14}
\end{align*}
$$

In our next result we calculate the best constant $C_{n, k}(a)$ in (1.14).
Theorem C Let $n \geq 3$ and $k=1,2, \ldots$ be a fixed positive integer. The best constant $C_{n, k}(a)$ in (1.14) satisfies:

$$
C_{n, k}(a)=\left\{\begin{array}{lc}
(n-2)^{-\frac{2(n-1)}{n}} S_{n}, & a \geq \beta_{n, k} \\
\left(\prod_{i=1}^{k+1} X_{i}(a, 1)\right)^{-\frac{2(n-1)}{n}} S_{n}, & a_{k}<a<\beta_{n, k}
\end{array}\right.
$$

When restricted to radial functions, the best constant of (1.14) is given by

$$
C_{n, k, \text { radial }}(a)=(n-2)^{-\frac{2(n-1)}{n}} S_{n}, \quad \text { for all } \quad a>a_{k}
$$

Again we notice that $C_{n, k}(a)<S_{n}$ for $n \geq 4$ but $C_{3, k}=S_{3}$ for $a \geq \beta_{3, k}$.
As in Theorem A, one can establish by similar arguments the nonexistence of an $H_{0}^{1}\left(B_{1}\right)$ minimizer to (1.14), as well as the analogues of Theorem A', Corollary and Theorem B in the case of the k-improved Hardy-Sobolev inequality.

2 The proofs

Theorem A follows from Theorem A', we therefore prove Theorem A':
Proof of Theorem A': At first we will show that

$$
\begin{equation*}
C_{n}(a)=(n-2)^{-\frac{2(n-1)}{n}} S_{n}, \quad \text { when } \quad a \geq \frac{1}{n-2} \tag{2.1}
\end{equation*}
$$

We have that

$$
\begin{equation*}
C_{n}(a)=\inf _{v \in C_{0}^{\infty}\left(B_{1}\right)} \frac{\int_{B_{1}}|x|^{-(n-2)}|\nabla v|^{2} d x}{\left(\int_{B_{1}}|x|^{-n} X_{1}^{\frac{2(n-1)}{n-2}}(a,|x|)|v|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}} \tag{2.2}
\end{equation*}
$$

We change variables by $(r=|x|)$

$$
\begin{equation*}
v(x)=y(\tau, \theta), \quad \tau=\frac{1}{X_{1}(a, r)}=a-\ln r, \quad \theta=\frac{x}{|x|} \tag{2.3}
\end{equation*}
$$

This change of variables maps the unit ball $B_{1}=\{x:|x|<1\}$ to the complement of the ball of radius a, that is, $B_{a}^{c}=\left\{(\tau, \theta): a<\tau<+\infty, \quad \theta \in S^{n-1}\right\}$. Noticing that $X_{1}^{\prime}(a, r)=\frac{X_{1}^{2}(a, r)}{r}, d \tau=-\frac{X_{1}^{\prime}(a, r)}{X_{1}^{2}(a, r)}=-\frac{d r}{r}$, we also have

$$
|\nabla v|^{2}=\left(\frac{\partial v}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left|\nabla_{\theta} v\right|^{2}=e^{2(\tau-a)}\left(y_{\tau}^{2}+\left|\nabla_{\theta} y\right|^{2}\right)
$$

A straightforward calculation shows that for $y \in C^{\infty}\left([a, \infty) \times S^{n-1}\right)$ under Dirichlet boundary condition on $\tau=a$ we have

$$
\begin{equation*}
C_{n}(a)=\inf _{y(a, \theta)=0} \frac{\int_{a}^{\infty} \int_{S^{n-1}}\left(y_{\tau}^{2}+\left|\nabla_{\theta} y\right|^{2}\right) d S d \tau}{\left(\int_{a}^{\infty} \int_{S^{n-1}} \tau^{-\frac{2(n-1)}{n-2}}|y|^{\frac{2 n}{n-2}} d S d \tau\right)^{\frac{n-2}{n}}} \tag{2.4}
\end{equation*}
$$

In the sequel we will relate $C_{n}(a)$ with the best Sobolev constant S_{n}. It is well known that for any R with $0<R \leq \infty$,

$$
\begin{equation*}
S_{n}=\inf _{u \in C_{0}^{\infty}\left(B_{R}\right)} \frac{\int_{B_{R}}|\nabla u|^{2} d x}{\left(\int_{B_{R}}|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}} \tag{2.5}
\end{equation*}
$$

We also know that $S_{n}=S_{n, \text { radial }}$ the latter being the infimum when taken over radial functions. Changing variables in (2.5) by

$$
\begin{equation*}
u(x)=z(t, \theta), \quad t=|x|^{-(n-2)}, \quad \theta=\frac{x}{|x|} \tag{2.6}
\end{equation*}
$$

it follows that for any $R \in(0, \infty]$,

$$
\begin{equation*}
(n-2)^{-\frac{2(n-1)}{n}} S_{n}=\inf _{z\left(R^{-(n-2)}, \theta\right)=0} \frac{\int_{R^{-(n-2)}}^{\infty} \int_{S^{n-1}}\left(z_{t}^{2}+\left(\frac{1}{n-2}\right)^{2} \frac{1}{t^{2}}\left|\nabla_{\theta} z\right|^{2}\right) d S d t}{\left(\int_{R^{-(n-2)}}^{\infty} \int_{S^{n-1}} t^{-\frac{2(n-1)}{n-2}}|z|^{\frac{2 n}{n-2}} d S d t\right)^{\frac{n-2}{n}}} \tag{2.7}
\end{equation*}
$$

We note that a function u is radial in x if and only if the function z is a function of t only. Looking at (2.4) and (2.7) we have that

$$
\begin{equation*}
C_{n}(a) \leq C_{n, \text { radial }}(a)=(n-2)^{-\frac{2(n-1)}{n}} S_{n, \text { radial }}=(n-2)^{-\frac{2(n-1)}{n}} S_{n} . \tag{2.8}
\end{equation*}
$$

On the other hand let us take $R=a^{-\frac{1}{n-2}}$ (so that $a=R^{-(n-2)}$) and assume that $a \geq \frac{1}{n-2}$. Then $\left(\frac{1}{n-2}\right)^{2} \frac{1}{t^{2}} \leq 1$ since $t \geq a \geq \frac{1}{n-2}$, and therefore

$$
C_{n}(a) \geq\left(\frac{1}{n-2}\right)^{\frac{2(n-1)}{n}} S_{n} .
$$

Combining this with (2.8) we conclude our claim (2.1).
Our next step is to prove the following: For any $a>0$ we have that

$$
\begin{equation*}
C_{n}(a) \leq a^{\frac{2(n-1)}{n}} S_{n} . \tag{2.9}
\end{equation*}
$$

To this end let $0 \neq x_{0} \in B_{1}$ and consider the sequence of functions

$$
\begin{equation*}
U_{\varepsilon}(x)=\left(\varepsilon+\left|x-x_{0}\right|^{2}\right)^{-\frac{n-2}{2}} \phi_{\delta}\left(\left|x-x_{0}\right|\right), \tag{2.10}
\end{equation*}
$$

where $\phi_{\delta}(t)$ is a C_{0}^{∞} cutoff function which is zero for $t>\delta$ and equal to one for $t<\delta / 2$; δ is small enough so that $\left|x_{0}\right|+\delta<1$ and therefore $U_{\varepsilon} \in C_{0}^{\infty}\left(B_{\delta}\left(x_{0}\right)\right) \subset C_{0}^{\infty}\left(B_{1}\right)$.

Then, it is well known, cf [BN], that

$$
\begin{equation*}
S_{n}=\lim _{\varepsilon \rightarrow 0} \frac{\int_{B_{1}}\left|\nabla U_{\varepsilon}\right|^{2} d x}{\left(\int_{B_{1}}\left|U_{\varepsilon}\right|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}} . \tag{2.11}
\end{equation*}
$$

From (2.2) we have that for any $\varepsilon>0$ small enough,

$$
\begin{aligned}
C_{n}(a) & =\inf _{v \in C_{0}^{\infty}\left(B_{1}\right)} \frac{\int_{B_{1}}|x|^{-(n-2)}|\nabla v|^{2} d x}{\left(\int_{B_{1}}|x|^{-n} X_{1}^{\frac{2(n-1)}{n-2}}(a,|x|)|v|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}} \\
& \leq \frac{\int_{B_{\delta}\left(x_{0}\right)}|x|^{-(n-2)}\left|\nabla U_{\varepsilon}\right|^{2} d x}{\left(\int_{B_{\delta}\left(x_{0}\right)}|x|^{-n} X_{1}^{\frac{2(n-1)}{n-2}}(a,|x|)\left|U_{\varepsilon}\right|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}} \\
& \leq\left(\frac{\left|x_{0}\right|+\delta}{\left|x_{0}\right|-\delta}\right)^{n-2} \frac{1}{X_{1}^{\frac{2(n-1)}{n}}\left(a,\left|x_{0}\right|-\delta\right)} \frac{\int_{B_{\delta}\left(x_{0}\right)}\left|\nabla U_{\varepsilon}\right|^{2} d x}{\left(\int_{B_{\delta}\left(x_{0}\right)}\left|U_{\varepsilon}\right|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}},}
\end{aligned}
$$

where we used the fact that $X_{1}(a, s)$ is an increasing function of s. Taking the limit $\varepsilon \rightarrow 0$ we conclude:

$$
C_{n}(a) \leq\left(\frac{\left|x_{0}\right|+\delta}{\left|x_{0}\right|-\delta}\right)^{n-2} \frac{S_{n}}{X_{1}^{\frac{2(n-1)}{n}}\left(a,\left|x_{0}\right|-\delta\right)}
$$

This is true for any $\delta>0$ small enough, therefore

$$
C_{n}(a) \leq X_{1}^{-\frac{2(n-1)}{n}}\left(a,\left|x_{0}\right|\right) S_{n}
$$

Since $\left|x_{0}\right|<1$ is arbitrary and $X_{1}(a, s)$ is an increasing function of s, we end up with

$$
\begin{equation*}
C_{n}(a) \leq X_{1}^{-\frac{2(n-1)}{n}}(a, 1) S_{n}=a^{\frac{2(n-1)}{n}} S_{n} \tag{2.12}
\end{equation*}
$$

and this proves our claim (2.9).
To complete the calculation of $C_{n}(a)$ we will finally show that

$$
\begin{equation*}
C_{n}(a) \geq a^{\frac{2(n-1)}{n}} S_{n}, \quad \text { when } \quad 0<a<\frac{1}{n-2} \tag{2.13}
\end{equation*}
$$

To prove this we will relate the infimum $C_{n}(a)$ to a Caffarelli-Kohn-Nirenberg inequality. We will need the following result:

Proposition 2.1 Let $b>0$ and

$$
\begin{equation*}
S_{n}(b):=\inf _{v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|x|^{2 b}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{n}}|x|^{\frac{2 b n}{n-2}}|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}} \tag{2.14}
\end{equation*}
$$

Then $S_{n}(b)=S_{n}$ and this constant is not achieved in the appropriate function space.
This is proved in Theorem 1.1 of [CW].
We change variables in (2.14) by

$$
\begin{equation*}
u(x)=z(t, \theta), \quad t=|x|^{-(n-2)-2 b}, \quad \theta=\frac{x}{|x|} \tag{2.15}
\end{equation*}
$$

A straightforward calculation shows that for any R^{\prime},

$$
\begin{equation*}
(n-2+2 b)^{-\frac{2(n-1)}{n}} S_{n} \leq \inf _{z\left(R^{\prime}, \theta\right)=0} \frac{\int_{R^{\prime}}^{\infty} \int_{S^{n-1}}\left(z_{t}^{2}+\frac{1}{(n-2+2 b)^{2} t^{2}}\left|\nabla_{\theta} z\right|^{2}\right) d S d t}{\left(\int_{R^{\prime}}^{\infty} \int_{S^{n-1}} t^{-\frac{2(n-1)}{n-2}}|z|^{\frac{2 n}{n-2}} d S d t\right)^{\frac{n-2}{n}}} \tag{2.16}
\end{equation*}
$$

Taking $R^{\prime}=a$ and comparing (2.16) with (2.4) we have that if

$$
\begin{equation*}
1 \geq \frac{1}{(n-2+2 b)^{2} t^{2}}, \quad \text { for } \quad t \geq a \tag{2.17}
\end{equation*}
$$

then

$$
\begin{equation*}
C_{n}(a) \geq(n-2+2 b)^{-\frac{2(n-1)}{n}} S_{n} \tag{2.18}
\end{equation*}
$$

Condition (2.17) is satisfied if we choose $b \in(0,+\infty)$ such that

$$
\begin{equation*}
\frac{1}{n-2}>a=(n-2+2 b)^{-1}>0 \tag{2.19}
\end{equation*}
$$

For such a b it follows from (2.18) that

$$
C_{n}(a) \geq a^{\frac{2(n-1)}{n}} S_{n}
$$

and this proves our claim (2.13).
We finally establish the nonexistence of an energetic minimizer. We will argue by contradiction. Suppose that $\bar{v} \in W_{0}^{1,2}\left(B_{1} ;|x|^{-(n-2)}\right)$ is a minimizer of (2.2). Through the change of variables (2.3), the quotient in (2.4) admits also a minimizer \bar{y}.

Consider first the case when $a \geq \frac{1}{n-2}$. Comparing (2.4) and (2.7) with $R=a^{-\frac{1}{n-2}}$, we conclude that \bar{y} is a radial minimizer of (2.7) as well. It then follows that (2.5) admits a radial $H_{0}^{1}\left(B_{R}\right)$ minimizer $\bar{u}(r)=\bar{y}(t), t=r^{-(n-2)}$, which contradicts the fact that the Sobolev inequality (2.5) has no H_{0}^{1} minimizers.

In the case when $0<a<\frac{1}{n-2}$, we use a similar argument comparing (2.4) and (2.16) to conclude the existence of a radial minimizer to (2.16) with b as in (2.19). This contradicts the nonexistence of minimizer for (2.14). The proof of Theorem A' is now complete.
Proof of Corollary: One can argue in a similar way as in the previous proof, or apply Kelvin transform to the inequality of Theorem A.
Proof of Theorem B: The lower bound on the best constant follows from Theorem A, the fact that if $u \in C_{0}^{\infty}(\Omega)$ then $u \in C_{0}^{\infty}\left(B_{D}\right)$ (since $\Omega \subset B_{D}$) and a simple scaling argument.

To establish the upper bound in the case where $0<a<\frac{1}{n-2}$ we argue exactly as in the proof of (2.9) using the test functions (2.10) that concentrate near a point of the boundary of Ω, that realizes the $\max _{x \in \Omega}|x|$. Let us now consider the case where $a \geq \frac{1}{n-2}$. For $a>0$ and $0<\rho<1$, we set

$$
\tilde{C}_{n}(a, \rho):=\inf _{u \in C_{0}^{\infty}\left(B_{\rho}\right)} \frac{\int_{B_{\rho}}|\nabla u|^{2} d x-\left(\frac{n-2}{2}\right)^{2} \int_{B_{\rho}} \frac{u^{2}}{|x|^{2}} d x}{\left(\int_{B_{\rho}} X_{1}^{\frac{2(n-1)}{n-2}}(a,|x|)|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}}
$$

A simple scaling argument and Theorem A shows that:

$$
\tilde{C}_{n}(a, \rho)=C_{n}(a-\ln \rho)
$$

Thus, for ρ small enough we have that

$$
\tilde{C}_{n}(a, \rho)=(n-2)^{-\frac{2(n-1)}{n}} S_{n} .
$$

Since for ρ small, $B_{\rho} \subset \Omega$ the upper bound follows easily in this case as well.
Proof of Theorem C: To simplify the presentation we will write $X_{i}(|x|)$ instead of $X_{i}(a,|x|)$. Let k be a fixed positive integer. We first consider the case $a \geq \beta_{k, n}$. We change variables in (1.14) by

$$
u(x)=|x|^{-\frac{n-2}{2}} X_{1}^{-1 / 2}(|x|) X_{2}^{-1 / 2}(|x|) \ldots X_{k}^{-1 / 2}(|x|) v(x)
$$

to obtain

$$
\begin{gather*}
\int_{B_{1}}|x|^{-(n-2)} X_{1}^{-1}(|x|) \ldots X_{k}^{-1}(|x|)|\nabla v|^{2} d x \geq \\
C_{n, k}(a)\left(\int_{B_{1}}|x|^{-n} X_{1}(|x|) \ldots X_{k}(|x|) X_{k+1}^{\frac{2(n-1)}{n-2}}(|x|)|v|^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}}, \quad v \in C_{0}^{\infty}\left(B_{1}\right) \tag{2.20}
\end{gather*}
$$

We further change variables by

$$
v(x)=y(\tau, \theta), \quad \tau=\frac{1}{X_{k+1}(r)}, \quad \theta=\frac{x}{|x|} \quad(r=|x|)
$$

This change of variables maps the unit ball $B_{1}=\{x:|x|<1\}$ to the complement of the ball of radius $r_{a}:=X_{k+1}^{-1}(1)$, that is, $B_{r_{a}}^{c}=\left\{(\tau, \theta): X_{k+1}^{-1}(1)<\tau<+\infty, \quad \theta \in S^{n-1}\right\}$. Note that

$$
d \tau=-\frac{X_{k+1}^{\prime}(r)}{X_{k+1}^{2}(r)} d r=-\frac{X_{1}(r) \ldots X_{k}(r)}{r} d r
$$

Let us denote by $f_{1}(t)$ the inverse function of $X_{1}(t)$. We also set $f_{i+1}(t)=f_{1}\left(f_{i}(t)\right), i=$ $1,2, \ldots, k$. Consequently, $r=f_{k+1}\left(\tau^{-1}\right)$. Also, $X_{1}(r)=f_{k}\left(\tau^{-1}\right), X_{2}(r)=f_{k-1}\left(\tau^{-1}\right)$, $\ldots X_{k}(r)=f_{1}\left(\tau^{-1}\right)$.

We then find

$$
\begin{equation*}
C_{n, k}(a)=\inf _{y\left(r_{a}, \theta\right)=0} \frac{\int_{r_{a}}^{\infty} \int_{S^{n-1}}\left(y_{\tau}^{2}+\left(f_{1}\left(\tau^{-1}\right) \ldots f_{k}\left(\tau^{-1}\right)\right)^{-2}\left|\nabla_{\theta} y\right|^{2}\right) d S d \tau}{\left(\int_{r_{a}}^{\infty} \int_{S^{n-1}} \tau^{-\frac{2(n-1)}{n-2}}|y|^{\frac{2 n}{n-2}} d S d \tau\right)^{\frac{n-2}{n}}} \tag{2.21}
\end{equation*}
$$

Again, we will relate this with the best Sobolev constant S_{n}. From (2.7) we have that

$$
\begin{equation*}
(n-2)^{-\frac{2(n-1)}{n}} S_{n}=\inf _{z\left(r_{a}, \theta\right)=0} \frac{\int_{r_{a}}^{\infty} \int_{S^{n-1}}\left(z_{t}^{2}+\frac{1}{(n-2)^{2} t^{2}}\left|\nabla_{\theta} z\right|^{2}\right) d S d t}{\left(\int_{r_{a}}^{\infty} \int_{S^{n-1}} t^{-\frac{2(n-1)}{n-2}}|z|^{\frac{2 n}{n-2}} d S d t\right)^{\frac{n-2}{n}}} \tag{2.22}
\end{equation*}
$$

Comparing this with (2.21) we have that

$$
\begin{equation*}
C_{n, k}(a) \leq C_{n, k, \text { radial }}(a)=(n-2)^{-\frac{2(n-1)}{n}} S_{n, \text { radial }}=(n-2)^{-\frac{2(n-1)}{n}} S_{n} . \tag{2.23}
\end{equation*}
$$

On the other hand for $a \geq \beta_{k, n}$ and $\tau \geq r_{a}$ we have that

$$
\begin{aligned}
\left(\tau^{-1} f_{1}\left(\tau^{-1}\right) \ldots f_{k}\left(\tau^{-1}\right)\right)^{-2} & \geq\left(r_{a}^{-1} f_{1}\left(r_{a}^{-1}\right) \ldots f_{k}\left(r_{a}^{-1}\right)\right)^{-2} \\
& =\left(X_{1}(a, 1) \ldots X_{k}(a, 1) X_{k+1}(a, 1)\right)^{-2} \\
& \geq \frac{1}{(n-2)^{2}}
\end{aligned}
$$

therefore

$$
\left(f_{1}\left(\tau^{-1}\right) \ldots f_{k}\left(\tau^{-1}\right)\right)^{-2} \geq \frac{1}{(n-2)^{2} \tau^{2}}, \quad \tau \geq r_{a}
$$

and consequently,

$$
C_{n, k}(a) \geq(n-2)^{-\frac{2(n-1)}{n}} S_{n}
$$

From this and (2.23) it follows that

$$
C_{n, k}(a)=(n-2)^{-\frac{2(n-1)}{n}} S_{n}, \quad \text { when } \quad a \geq \beta_{k, n}
$$

The case where $a_{k}<a<\beta_{k, n}$ is quite similar to the case $0<a<\frac{1}{n-2}$ in the proof of Theorem A'. That is, testing in (2.20) the sequence U_{ε} as defined in (2.10), we first prove that

$$
C_{n, k}(a) \leq\left(\prod_{i=1}^{k+1} X_{i}(a, 1)\right)^{\frac{-2(n-1)}{n}} S_{n}
$$

by an argument quite similar to the one leading to (2.12). Finally, in the case $a_{k}<$ $a<\beta_{k, n}$, we obtain the opposite inequality by comparing the infimum in (2.21) with the infimum in (2.16). This time we take $R^{\prime}=r_{a}$ and $b>0$ is chosen so that

$$
\prod_{i=1}^{k+1} X_{i}(a, 1)=n-2+2 b
$$

We omit further details.
Acknowledgments Adimurthi is thanking the Departments of Mathematics and Applied Mathematics of University of Crete for the invitation as well as the warm hospitality.

References

[A] Aubin, T., Probléme isopérimétric et espace de Sobolev, J. Differential Geometry, 11, (1976), 573-598.
[BFL] Benguria R. D., Frank R. L. and Loss M., The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half space, Math. Res. Lett., 15, (2008), 613-622.
[BFT] Barbatis G., Filippas S. and Tertikas A., Refined geometric L^{p} Hardy inequalities, Comm. Cont. Math., 5, (2003), 869-881.
[BM] Brezis H. and Marcus M., Hardy's inequality revisited, Ann. Sc. Norm. Pisa, 25, (1997), 217-237.
[BN] Brezis H. and Nirenberg L., Positive solutions of nonlinear elliptic problems involving critical exponents, Comm. Pure Appl. Math., 36, (1983), 437-477.
[BV] Brezis H. and Vázquez J.L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Comp. Madrid, 10, (1997), 443-469.
[CKN] Caffarelli, L., Kohn, R. and Nirenberg, L. First order interpolation inequalities with weights. Compositio Math., 53 (1984), no. 3, 259-275.
[CW] Catrina F. and Wang Z.-Q., On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence) and symmetry of extremal functions. Comm. Pure Appl. Math., LIV, (2001), 229-258.
[FT] Filippas S. and Tertikas A., Optimizing Improved Hardy inequalities. J. Funct. Anal., 192, (2002), 186-233; Corrigendum, J. Funct. Anal. to appear (2008).
[MS] Mancini G. and Sandeep K., On a semilinear elliptic equation in \mathbb{H}^{n}, preprint.
[M] V. G. Maz'ya, Sobolev spaces, Springer-Verlag, 1985.
[T] Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., (4), 110, (1976), 353-372.
[TT] Tertikas A. and Tintarev K., On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality. Ann. Mat. Pura Appl.(4), 186(4) (2007), 645-662.

