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A UNIFIED APPROACH TO IMPROVED Lp HARDY
INEQUALITIES WITH BEST CONSTANTS

G. BARBATIS, S. FILIPPAS, AND A. TERTIKAS

Abstract. We present a unified approach to improved Lp Hardy inequalities
in RN . We consider Hardy potentials that involve either the distance from
a point, or the distance from the boundary, or even the intermediate case
where the distance is taken from a surface of codimension 1 < k < N . In our
main result, we add to the right hand side of the classical Hardy inequality a
weighted Lp norm with optimal weight and best constant. We also prove non-
homogeneous improved Hardy inequalities, where the right hand side involves
weighted Lq norms, q 6= p.

1. Introduction

The classical Hardy inequality asserts that for any p > 1

(1.1)
∫

RN

|∇u|pdx ≥
∣∣∣∣N − pp

∣∣∣∣p ∫
RN

|u|p
|x|p dx, u ∈ C

∞
c (RN \ {0}),

with |N−pp |p the best constant; see for example [HLP], [OK], [DH]. The best con-
stant remains the same if RN is replaced by a domain Ω ⊂ RN containing the
origin. Moreover, if Ω ⊂ RN is a convex domain, possibly unbounded, with smooth
boundary, and d(x) = dist(x, ∂Ω), the Hardy inequality

(1.2)
∫

Ω

|∇u|pdx ≥
(p− 1

p

)p ∫
Ω

|u|p
dp

dx, u ∈ C∞c (Ω),

has recently been established, with (p−1
p )p the best constant; cf. [MS], [MMP].

See [OK] for a comprehensive account of Hardy inequalities and [D] for a review of
recent results.

Recently improved versions of (1.1) and (1.2) have been obtained. In [BV] it is
shown that for a bounded domain Ω ⊂ RN

(1.3)
∫

Ω

|∇u|2dx−
(
N − 2

2

)2 ∫
Ω

u2

|x|2 dx ≥ Λ2(
ωN
|Ω| )

2/N

∫
Ω

u2dx, u ∈ C∞c (Ω),

where Λ2 = 5.783... is the square of the first zero of the Bessel function J0. It was
shown in [FT] that the constant Λ2(ωN/|Ω|)2/N is not optimal unless Ω is a ball
centered at the origin. In [GGM] estimate (1.3) was generalized for 1 < p < N . It
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was shown that

(1.4)
∫

Ω

|∇u|pdx−
(
N − p
p

)p ∫
Ω

|u|p
|x|p dx ≥ CN,p(

ωN
|Ω| )

p/N

∫
Ω

|u|pdx,

for an explicitly given constant CN,p > 0 that satisfies CN,2 = Λ2.
In another direction, in [VZ], Hilbert space methods were used to derive the

following improved Hardy-Poincaré inequality:

(1.5)
∫

Ω

|∇u|2dx−
(
N − 2

2

)2 ∫
Ω

u2

|x|2 dx ≥ c
(∫

Ω

|∇u|qdx
)2/q

, u ∈ C∞c (Ω),

for a bounded domain Ω containing the origin and for any 1 ≤ q < 2.
Analogous results have been obtained in the case of Hardy inequalities with

distance from the boundary. In particular it was proved in [BM] that for bounded
and convex domains

(1.6)
∫

Ω

|∇u|2dx− 1
4

∫
Ω

u2

d2
dx ≥ 1

4L2

∫
Ω

u2dx , u ∈ C∞c (Ω),

and

(1.7)
∫

Ω

|∇u|2dx− 1
4

∫
Ω

u2

d2
dx ≥ 1

4

∫
Ω

u2

d2(1 − log(d/L))2
dx , u ∈ C∞c (Ω),

where L = diam(Ω).
Hardy inequalities as well as their improved versions have various applications in

the theory of partial differential equations and nonlinear analysis. They have been
useful in the study of the stability of solutions of semilinear elliptic and parabolic
equations [PV], [BV], [V] as well as in the existence and asymptotic behavior of
the heat equation with singular potentials (cf. [BC], [CM], [VZ]; see also [GP]
for the p-heat equation). They have also been used to investigate the stability of
eigenvalues in elliptic problems [D, FHT].

In this work we present a general approach to improved Hardy inequalities valid
for any p > 1 and for different choices of the distance function d(x): besides the
two cases above — distance from a point and distance from the boundary — we
consider the more general case where d(x) is the distance of x ∈ Ω from a piecewise
smooth surface K of codimension k, 1 ≤ k ≤ N . In the case k = N we adopt the
convention that K is a point.

In our approach the following geometric assumption on K and Ω is crucial: if
d(x) = dist(x,K), then the following inequality should hold in the weak sense:

(C) p 6= k, ∆pd
p−k
p−1 ≤ 0, in Ω \K.

Here ∆p denotes the usual p-Laplace operator, ∆pw = div(|∇w|p−2∇w). This
condition is analyzed in detail in Section 2. Here we simply note that (C) is always
satisfied when k = N and d(x) measures the distance from a point as well as when
k = 1, Ω is convex and d(x) is the distance from K = ∂Ω. Condition (C) can be
interpreted as a higher-codimension analogue of the usual convexity condition that
appears in Hardy’s inequality when k = 1 and K = ∂Ω; cf. (1.2).

In order to describe our results we introduce the function

X(t) = −1/ log t, t ∈ (0, 1).
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Our first theorem is the following:

Theorem A (Improved Hardy Inequality). Let Ω be a domain in RN and K a
piecewise smooth surface of codimension k, k = 1, . . . , N . Suppose supx∈Ω d(x,K)
<∞ and condition (C) is satisfied. Then

(1) There exists a positive constant D0 = D0(k, p) ≥ supx∈Ω d(x,K) such that
for any D ≥ D0 and all u ∈ W 1,p

0 (Ω \K)

(1.8)
∫

Ω

|∇u|pdx−
∣∣∣∣k − pp

∣∣∣∣p ∫
Ω

|u|p
dp

dx ≥ p− 1
2p

∣∣∣∣k − pp
∣∣∣∣p−2 ∫

Ω

|u|p
dp

X2(d/D)dx.

If in addition 2 ≤ p < k, then we can take D0 = supx∈Ω d(x,K).
(2) Both constants appearing in (1.8) as well as the exponent two in X2 are

optimal in either of the following cases:

(a) k = N and K = {0} ⊂ Ω;
(b) k = 1 and K = ∂Ω;
(c) 2 ≤ k ≤ N − 1 and Ω ∩K 6= ∅.

The optimality of the constants and the exponent is meant in the following sense:∣∣∣∣p− kp
∣∣∣∣p = inf

{∫
Ω

|∇u|pdx,
∫

Ω

|u|p
dp

dx = 1
}
.

Further, if γ < 2, then, no matter how large D is, there is no c > 0 such that∫
Ω

|∇u|pdx−
∣∣∣∣p− kp

∣∣∣∣p ∫
Ω

|u|p
dp

dx ≥ c
∫

Ω

|u|p
dp

Xγ(d/D)dx;

and finally, for any D ≥ D0,

p− 1
2p

∣∣∣∣p− kp
∣∣∣∣p−2

= inf
{∫

Ω

|∇u|pdx−
∣∣∣∣k − pp

∣∣∣∣p ∫
Ω

|u|p
dp

dx,

∫
Ω

|u|p
dp

X2(d/D)dx = 1
}
.

A few remarks are in order:
1. The assumption D ≥ D0 is only necessary in order to obtain the precise

constant (p − 1)/(2p)|(k − p)/p|p−2. We can take any D > supx∈Ω d(x,K) at the
expense of having a smaller constant c = c(p, k,D) in the right hand side of (1.8).

2. The logarithmic correction in the right hand side is independent of p > 1.
Also it is worth pointing out that the constant of the improved Hardy inequality
depends only on p and k and not on K, the dimension N , or Ω. This is in contrast
to the improved Hardy inequalities which involve the unweighted Lp norm in the
right hand side (see e.g. (1.3), (1.6)).

3. A simple density argument shows that if p < k, then W 1,p
0 (Ω\K) = W 1,p

0 (Ω).
4. We only assume that dist(x,K) is bounded on Ω, not that Ω itself is bounded.
In the case p = 2 and k = 1, part (1) of Theorem A has been obtained in [BM] by

a different method. We are aware of very few results in the literature for 1 < k < N ,
concerning even the simple Hardy inequality with best constant; for the case p = 2
see [D, DM], and [M], Section 2.1.6.

We present two different approaches to the improved Hardy inequality. The
first is based on a suitable change of variables [BM, BV, GGM, M]. While this
method does not yield the optimal constant in the right hand side of (1.8), it has
the advantage that it easily leads to nonhomogeneous improved Hardy inequalities.
We note that in this method the arguments used for 1 < p < 2 differ from those
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used for p ≥ 2. The second approach is based on the careful choice of a suitable
vector field and an elementary integral inequality and is the one that gives the
sharp constants. It is remarkable that condition (C) comes up naturally in both
approaches.

It is well known that for k = N (distance from a point) there is no Hardy
inequality if p = N . More generally there is no Hardy inequality if p = k, 1 ≤ k ≤
N . For that case we provide a substitute for Hardy inequality with optimal weight
and best constant; see Theorems 4.2 and 5.4.

We next consider nonhomogeneous improved Hardy inequalities which involve
Lq norms with q 6= p, in the right hand side. In this direction we have the following:

Theorem B (Improved Hardy-Poincaré Inequality). Let Ω be a domain in RN

and K a piecewise smooth surface of codimension k, k = 1, . . . , N . Suppose that
supx∈Ω dist(x,K) <∞ and condition (C) is satisfied. Then

(1) For any D > supx∈Ω dist(x,K), 1 ≤ q < p and β > 1 + q/p there exists a
positive constant c > 0 such that for all u ∈ W 1,p

0 (Ω \K)

(1.9)
∫

Ω

|∇u|pdx−
∣∣∣∣k − pp

∣∣∣∣p ∫
Ω

|u|p
dp

dx ≥ c
(∫

Ω

|∇u|qdk(−1+q/p)Xβ(d/D)dx
)p/q

.

(2) The estimate is sharp in the sense that the exponent of X in the right hand
side of (1.9) cannot be smaller than 1 + q/p, in either of the cases (a), (b), (c) of
part (2) of Theorem A.

For p = 2 and k = N this strengthens inequality (1.5).
We next consider improved Hardy-Sobolev inequalities. Let K = {x ∈ RN |x1 =

x2 = . . . = xk = 0}, 1 ≤ k ≤ N − 1. Then, in [M] the following inequality is
established (see Corollary 3, Section 2.1.6) for any 2 < q ≤ 2N

N−2 :

(1.10)
∫

Ω

|∇u|2dx−
∣∣∣∣k − 2

2

∣∣∣∣2 ∫
Ω

u2

d2
dx ≥ c

(∫
Ω

|u|qd−q−N+Nq/2dx

)2/q

,

for any u ∈ C∞c (RN \ K). The question was posed in [M] whether an analogue
result holds for p 6= 2.

For k = N , that is, K = {0} ⊂ Ω, a bounded domain in RN , an analogous
inequality is shown in [BV], valid for any 2 ≤ q < 2N

N−2 :∫
Ω

|∇u|2dx−
∣∣∣∣N − 2

2

∣∣∣∣2 ∫
Ω

u2

|x|2 dx ≥ c
(∫

Ω

|u|qdx
)2/q

.

Our result reads:

Theorem C (Improved Hardy-Sobolev Inequality). (1) Let K = {x ∈ RN | x1 =
x2 = . . . = xk = 0}, 1 ≤ k ≤ N − 1. Assume that 2 ≤ p < N and p < q ≤
Np/(N−p). Then there exists a constant c > 0 such that for all u ∈W 1,p

0 (RN \K)

(1.11)
∫

RN

|∇u|pdx−
∣∣∣∣k − pp

∣∣∣∣p ∫
RN

|u|p
dp

dx ≥ c
(∫

RN

|u|qd−q−N+Nq/pdx

)p/q
.

(2) Let k = N , that is, K = {0} ⊂ Ω, a bounded domain in RN . Assume that
1 < p < N and p ≤ q < Np/(N − p). Then for any D > supΩ d(x) there exists a
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constant c > 0 such that for all u ∈W 1,p
0 (Ω)

(1.12)∫
Ω

|∇u|pdx−
∣∣∣∣k − pp

∣∣∣∣p ∫
Ω

|u|p
dp

dx ≥ c
(∫

Ω

|u|qd−q−N+Nq/pX1+q/p(d/D)dx
)p/q

.

Inequality (1.12) is optimal in the sense that X1+q/p cannot be replaced by a smaller
power of X.

A simple scaling argument shows that the exponent of d in (1.11) is optimal.
Hence it comes as a remarkable fact that the case k = N is different from the
case k < N . It is an open question whether (1.12) remains true in the critical
case q = Np/(N − p). One can see that for q = Np/(N − p) one cannot have an
inequality (1.12) without the presence of the logarithmic correction. In fact one
cannot even have the weak LNp/(N−p) norm in the right hand side; see Proposition
6.3. On the other hand inequality (1.12) is true in the critical case if we replace
X1+q/p by X2q/p. This last result is contained in Theorem 6.4, where an inequality
weaker than (1.11) and (1.12) is shown for the general case where k ≤ N and K is
nonaffine.

The structure of the paper is as follows: in Section 2 we discuss the geometric
assumptions on Ω and K; in particular we provide specific examples for which
condition (C) is satisfied. Section 3 contains our first approach to improved Hardy
inequalities, whereas Section 4 is devoted to the vector field approach which yields
the best constants. In Section 5 we prove the optimality of the constants involved
in Theorem A. Finally in Section 6, we use the results of Section 3 to obtain
nonhomogeneous inequalities.

2. The geometry of K and Ω

In this section we shall introduce the main geometric assumptions concerning
K and Ω, and we will fix some notational conventions. Throughout this work Ω
is a domain in RN and K is a piecewise smooth closed surface of codimension
k = 2, 3, . . . , N − 1. We also allow for the two extreme cases k = 1 or N , with the
following convention: If k = N then K is reduced to a point, say the origin. If
k = 1, then we take K to be the boundary of Ω, that is, K = ∂Ω.

In all cases we define the distance function d(x) by

d(x) = dist(x,K), x ∈ Ω.

Hence for k = N we have d(x) = |x|, whereas for k = 1, d(x) is the distance from
the boundary of Ω. Let us note that d(x) is a Lipschitz continuous function with
|∇d| = 1 a.e.

We now come to our main geometric assumption on K and Ω, expressed in terms
of the distance function d. We introduce the following geometric condition:

(C) p 6= k and ∆pd
p−k
p−1 ≤ 0 on Ω \K.

Simple calculations give

∆pd
p−k
p−1 =

p− k
p− 1

∣∣∣∣p− kp− 1

∣∣∣∣p−2

d−k(d∆d+ (1 − k)|∇d|2),

so that, since |∇d| = 1 a.e., an equivalent formulation of (C) is

(p− k)(d∆d+ 1− k) ≤ 0 on Ω \K.
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The precise meaning of the above condition is the following: we consider the
linear functional

A[φ] := −
∫

Ω

|∇d|2φdx−
∫

Ω

d∇d · ∇φdx + (1− k)
∫

Ω

φdx

= −
∫

Ω

d∇d · ∇φdx − k
∫

Ω

φdx, φ ∈ C1
c (Ω \K),

and require that for all nonnegative φ ∈ C1
c (Ω \K) we have (p − k)A[φ] ≤ 0. In

this context, and in order to simplify our notation, we shall use the expression∫
Ω

(d∆d+ 1− k)φdx, φ ∈ C1
c (Ω \K),

to denote the functional A[φ]. This allows us to perform formal integrations by
parts as if ∆d were a locally integrable function in Ω. Taking for instance φ = ψ/d
in the definition above we obtain the relation∫

Ω

ψ∆d dx = −
∫

Ω

∇ψ · ∇d dx, ψ ∈ C1
c (Ω \K).

This also justifies the following convention: assuming that (C) is satisfied, we define:∫
Ω

|d∆d + 1− k|φdx =
{

A[φ] if p < k,
−A[φ] if p > k;

this is a positive functional on C1
c (Ω \K) and it is then easily seen that∣∣∣∣∫

Ω

(d∆d+ 1− k)φdx
∣∣∣∣ ≤ ∫

Ω

|d∆d+ 1− k| |φ| dx, φ ∈ C1
c (Ω \K).

We next present some examples in which condition (C) is satisfied. The first two
concern the cases k = 1 and k = N , which are the most popular in the literature.
Then we consider the intermediate cases 2 ≤ k ≤ N − 1. One then is led to rather
special assumptions on K and Ω. This is not due to lack of pairs (K,Ω) that satisfy
(C); indeed, it is easy to see that given any K one can always find an Ω such that
(C) is satisfied: simply take Ω to be any domain contained in the set

{x ∈ RN : d∆d+ 1− k ≥ 0 (or ≤ 0)}.

An analytical description of such sets Ω is possible only after extra assumptions on
K.

Example 1. Let k = N so that K = {0}. Then d(x) = |x| and ∆d2−N = 0 away
from x = 0, hence condition (C) is satisfied for any 1 < p <∞ and any Ω ⊂ RN .

Example 2. Suppose that k = 1, so that K = ∂Ω. Then (C) is satisfied for all
1 < p < ∞ provided we make the additional assumption that Ω is convex. To see
this we first claim that d(x), x ∈ Ω, is a concave function. Indeed, let 0 < λ < 1,
and x, y, z = λx + (1 − λ)y be three points contained in Ω. Let z0 ∈ ∂Ω be a
point that realizes the distance for z, that is, d(z) = |z − z0|. We denote by Tz0

the hyperplane that contains z0 and is orthogonal to the vector z − z0. We also let
x0 and y0 be the orthogonal projections of x and y onto Tz0 , respectively. It then
follows by the convexity of Ω and a simple similarity argument that

d(z) = |z − z0| = λ|x− x0|+ (1− λ)|y − y0| ≥ λd(x) + (1− λ)d(y),
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and the claim is proved. Since d(x) is concave, we conclude from Theorem 6.3.2
of [EG] that ∆d is nonpositive in the weak sense; more precisely there exists a
nonnegative Radon measure dµ on Ω satisfying

(2.1)
∫

Ω

∇ψ · ∇d dx =
∫

Ω

ψdµ, ψ ∈ C1
c (Ω).

In particular, taking as test function ψ = φd, we see that A[φ] ≤ 0, that is, condition
(C) is satisfied.

Let us now consider the intermediate cases 2 ≤ k ≤ N − 1.

Example 3. If K is affine, K ≡ RN−k, then condition (C) is satisfied for all
1 < p <∞ without any restriction on Ω.

Indeed, changing coordinates if necessary, we see by a direct computation that

∆pd
p−k
p−1 = 0, x ∈ RN \K.

Further, if p > k and K is the union of affine sets,

K =
⋃
i∈I

Ki,

then (C) is also satisfied, again with no restriction on Ω. To see this consider the
functions di(x) = dist(x,Ki), i ∈ I. We have seen that d(p−k)/(p−1)

i is p-harmonic.
But

d
p−k
p−1 (x) = inf

i∈I
d
p−k
p−1
i (x), x ∈ Ω \K,

and hence d
p−k
p−1 is p-super-harmonic by the comparison principle for the p-Laplacian;

see [HKM]. Alternatively, observing that

∆pd
p−k
p−1 =

p− k
p− 1

∣∣∣∣p− kp− 1

∣∣∣∣p−2 1
2− k∆d2−k,

we may use the corresponding principle for the Laplacian. (When k = 2 we replace
1

2−k∆d2−k by ∆ log d.)

Definition 2.1. Let E ⊂ RN be an affine set of codimension k−1, let V ⊂ E be a
convex domain (i.e. connected and open in the topology of E), and let K = ∂EV .
The cylinder V × E⊥ is called the inner canal of K; the cylinder (E \ V ) × E⊥ is
called the outer canal of K. (See also [S].)

Example 4. (i) If p > k and Ω is contained in the inner canal of K, then (C)
is satisfied; (ii) If p < k and Ω is contained in the outer canal of K, then (C) is
satisfied.

To see (i) let {Ty | y ∈ ∂EV } be the family of hyperplanes in E which are tangent
to K (if K is not smooth, we take the supporting hyperplanes instead). If Ω is
contained in the inner canal of Ω, then

d(x) = inf
y∈∂EV

dist(x, Ty), x ∈ Ω,

and we are back in the situation of Example 3.
To prove (ii) we use a different argument. We write any x ∈ RN as x = (y, z)

with y ∈ E ≡ RN−k+1 and z ∈ Rk−1; that is, the projection of x onto E is the
point (y, 0). We then have

(2.2) d2(x) = d̃2(y) + |z|2, d̃(y) = dist((y, 0),K).
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Differentiating twice with respect to zi, i = 1, 2, . . . , k − 1, and summing up over i
we obtain

(2.3) |∇zd|2 + d∆zd = k − 1.

Differentiating (2.2) with respect to yi, i = 1, 2, . . . , N−k+1, we obtain in a similar
way

(2.4) |∇yd|2 + d∆yd = |∇yd̃|2 + d̃∆y d̃ = 1 + d̃∆yd̃.

Adding (2.3) and (2.4) we conclude that

d∆d+ (1 − k)|∇d|2 = d̃∆yd̃.

Since d̃ is the distance function in E ≡ RN−k+1 and V ⊂ E is a convex domain,
we have, as in Example 2, that ∆yd̃ ≥ 0 if y ∈ V c. Hence (C) is satisfied in this
case.

We point out that if a domain Ω satisfies Ω ∩ K 6= ∅ (so that d−1 is singular
in Ω), then for it to be contained in either the inner or the outer canal of K it is
necessary that K ∩ ∂Ω 6= ∅.

Our fifth example combines ideas from the last two.

Example 5. Assume that p > k and that Ω is contained in the inner canal of
L = ∂V . Let K be a polytope contained in V and having its vertices on L. Then
condition (C) is satisfied. To see this let Fi, i = 1, . . . , L, be the faces of K. Our
assumption on K and Ω imply that the distance of any x ∈ Ω from a face Fi is
realized at a point y ∈ Fi which is on the interior of Fi, that is, the distance is not
realized at vertices, edges, etc. Hence

∆pd
p−k
p−1
i = 0, x ∈ Ω \ Fi, di(x) = dist(x, Fi),

and the comparison argument of Example 3 goes through.

3. The improved Hardy inequality

In this section we give a first proof of the improved Hardy inequality and also
obtain some inequalities which will be of use in Section 6. We start with some
elementary pointwise inequalities.

Lemma 3.1. For any 1 < p < ∞ there exists a constant c = c(p) > 0 such that
for all a, b ∈ RN we have:

(i) if 1 < p < 2, then

|a− b|p − |a|p ≥ c |b|2
(|a|+ |b|)2−p − p|a|

p−2a · b;

(ii) if p ≥ 2, then
(a) |a− b|p − |a|p ≥ c|a|p−2|b|2 − p|a|p−2a · b ;
(b) |a− b|p − |a|p ≥ c|b|p − p|a|p−2a · b .

Proof. Parts (i) and (ii)(b) are contained in Lemma 4.2 of [L]. Hence, we only
prove (ii)(a).
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If |b| ≥ 1
2 |a| the inequality follows from (ii)(b). Suppose now that |b| < 1

2 |a|;
then |a − ξb| ≥ 1

2 |a| for all ξ ∈ (0, 1). Hence, taking the Taylor expansion of
f(t) = |a− bt|p around t = 0 we have,

|a− b|p = |a|p − p|a|p−2a · b+
p(p− 2)

2
|a− ξb|p−4((a− ξb) · b)2 +

+p|a− ξb|p−2|b|2 (some ξ ∈ (0, 1))

≥ |a|p − p|a|p−2a · b+
p

2p−2
|a|p−2|b|2. �

We next prove an auxiliary inequality that will be used in the sequel. Let us
first recall that

X(s) = − 1
log s

, s ∈ (0, 1).

Note that if D > supx∈Ω d(x), then

0 ≤ X(d(x)/D) ≤M, x ∈ Ω,

for a suitable positive constant M = M(D). Furthermore, we shall often use the
relation

(3.1)
d

dr
Xβ = β

Xβ+1

r
,

as well as its integral version

(3.2)
∫ s2

s1

r−1Xβ+1(r)dr =
1
β

[Xβ(s2)−Xβ(s1)].

We next prove the following

Lemma 3.2. Let p > 1 and α ∈ R. Then for any D ≥ supx∈Ω d(x,K) we have(
|α− 1|
p

)p ∫
Ω

|v|pd−kXα(d/D)dx ≤
∫

Ω

|∇v|pdp−kXα−p(d/D)dx

+
(
|α− 1|
p

)p−1 ∫
Ω

|v|pd−k |d∆d+ 1− k|Xα−1(d/D)dx
(3.3)

for all v ∈ C∞c (Ω \K).

Proof. We prove (3.3) for D = 1, the general case following by scaling. For α = 1
(3.3) is trivial, so we assume α 6= 1. Recalling (3.1) we have∫

Ω

|v|pd−kXα(d)dx

=
1

α− 1

∫
Ω

|v|pd1−k∇d · ∇Xα−1(d)dx

= − p

α− 1

∫
Ω

|v|p−2vXα−1(d)d1−k∇v · ∇d dx

− 1
α− 1

∫
Ω

|v|pd−k(d∆d+ (1− k)|∇d|2)Xα−1(d) dx

≤ p

|α− 1|

(∫
Ω

|∇v|pdp−kXα−p(d)dx
)1/p(∫

Ω

|v|pd−kXα(d)dx
)(p−1)/p

+
1

|α− 1|

∫
Ω

|v|pd−k |d∆d+ 1− k|Xα−1(d) dx.
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Hence we have an estimate of the form

B ≤ θB(p−1)/pΓ1/p +A, θ =
p

|α− 1| .

Combining this with the relation

B(p−1)/pΓ1/p ≤ ε(p− 1)
p

B +
ε−(p−1)

p
Γ,

and taking ε = θ−1, we obtain θ−pB ≤ Γ +pθ−pA, which is the required inequality.
�

Throughout the paper we will use the notation

(3.4) I[u] =
∫

Ω

|∇u|pdx−
∣∣∣p− k

p

∣∣∣p ∫
Ω

|u|p
dp

dx, u ∈W 1,p
0 (Ω \K),

and

H =
k − p
p

.

Our starting point is the following lower estimate on I[u].

Lemma 3.3. Let u ∈ W 1,p
0 (Ω \ K) be given and set v(x) = u(x)dH(x). There

exists a constant c = c(p) > 0 such that: (i) if 1 < p < 2, then

(3.5) I[u] ≥ c
∫

Ω

|∇v|2d2−k

(|Hv|+ |d∇v|)2−p dx+H |H |p−2

∫
Ω

|v|pd−k(d∆d+ 1− k)dx;

(ii) if 2 ≤ p <∞, then

I[u] ≥ c|H |p−2

∫
Ω

|∇v|2|v|p−2d2−k dx+H |H |p−2

∫
Ω

|v|pd−k(d∆d+ 1− k)dx,

(3.6)

I[u] ≥ c

∫
Ω

|∇v|pdp−kdx+H |H |p−2

∫
Ω

|v|pd−k(d∆d+ 1− k)dx.(3.7)

Proof. It is straightforward to see that

|∇u|p − |H |p |u|
p

dp
= d−k (|Hv∇d− d∇v|p − |Hv|p) ;

to estimate the right hand side we use the corresponding inequalities of Lemma 3.1
with a = Hv∇d and b = d∇v. The expression −p

∫
Ω d
−k|a|p−2a · b appears in all

three cases and is equal to H |H |p−2
∫

Ω
|v|pd−k(d∆d + 1 − k)dx as can be seen by

an integration by parts. The stated estimates then follow at once. �

It should be noted that if condition (C) is satisfied, then the common term that
appears in the right hand side of the three inequalities of the last lemma is equal
to

|H |p−1

∫
Ω

|v|pd−k |d∆d+ 1− k| dx,

and, in particular, is nonegative.
We next prove the improved Hardy inequality for 1 < p < 2.
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Proposition 3.4. Let 1 < p < 2. Given u ∈W 1,p
0 (Ω\K) we set v(x) = u(x)dH(x),

H = (k−p)/p. If condition (C) is satisfied, then for any D > supΩ d(x) there exist
constants ci = ci(p, k,D) > 0, i = 1, 2, such that

I[u] ≥ c1

(∫
Ω

|∇v|pdp−kX2−p(d/D) dx+
∫

Ω

|v|pd−k |d∆d+ 1− k| dx
)

≥ c2

∫
Ω

|u|p
dp

X2(d/D) dx.
(3.8)

Proof. We may assume that D = 1, the general case following by scaling. To
simplify the subsequent calculations we set

A1 =
∫

Ω

|∇v|2d2−k

(|Hv|+ |d∇v|)2−p dx, A2 =
∫

Ω

|v|pd−kX2(d/D)dx

A3 =
∫

Ω

|∇v|pdp−kX2−p(d/D)dx, A4 =
∫

Ω

|v|pd−k|d∆d+ 1− k|dx.

Note that all Ai’s are positive and homogeneous of degree p in v. Hölder’s inequality
and elementary estimates yield

A3 =
∫

Ω

|∇v|2dp(2−k)/2

(|Hv|+ |d∇v|)p(2−p)/2
· (|Hv|+ |d∇v|)p(2−p)/2 d−k(2−p)/2X2−pdx

≤ A
p/2
1

(∫
Ω

(|Hv|+ |d∇v|)p d−kX2dx

)(2−p)/2

≤ cA
p/2
1

(∫
Ω

|v|pd−kX2dx+
∫

Ω

|∇v|pdp−kX2dx

)(2−p)/2

≤ cA
p/2
1 (A2 +A3)(2−p)/2,

that is,

(3.9) A1 ≥ c
A

2/p
3

(A2 +A3)(2−p)/p .

Now, it follows from (3.5) that

(3.10) I[u] ≥ c(A1 +A4).

We also have from Lemma 3.2 (with α = 2) that

(3.11) A2 ≤ c(A3 +A4).

Combining (3.9), (3.10) and (3.11) we obtain

I[u] ≥ c

(
A

2/p
3

(A2 +A3)(2−p)/p +A4

)

≥ c

(
A

2/p
3

(A3 +A4)(2−p)/p +A4

)
≥ c(A3 +A4),
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which is the first inequality in (3.8). Using (3.11) once more we have

I[u] ≥ c(A3 +A4) ≥ cA2 = c

∫
Ω

|u|p
dp

X2 dx,

and the proof of (3.8) is complete. �

We now consider the complementary case p ≥ 2.

Proposition 3.5. Let p ≥ 2. Given u ∈ W 1,p
0 (Ω \ K) we set v(x) = u(x)dH ,

H = (k − p)/p. If condition (C) is satisfied, then for any D > supΩ d(x) there
exists a constant c = c(p, k,D) > 0 such that

(3.12) I[u] ≥ c
∫

Ω

|u|p
dp

X2(d/D) dx.

Proof. We will use the additional change of variables w = |v|p/2. It follows from
(3.6) that

I[u] ≥ c

∫
Ω

|∇v|2|v|p−2d2−k dx+ c

∫
Ω

|v|pd−k |d∆d+ 1− k| dx

≥ c

∫
Ω

|∇w|2d2−k dx+ c

∫
Ω

|w|2d−k |d∆d+ 1− k|X(d/D)dx

(by (3.3)) ≥ c

∫
Ω

|w|2d−kX2(d/D)dx

= c

∫
Ω

|u|p
dp

X2(d/D) dx.

�

4. The vector field approach

In this section we provide an alternative proof of the improved Hardy inequality,
based on the appropriate use of a suitable vector field and elementary calculations.
It is essential for this approach that all terms in the improved Hardy inequality
are homogeneous with respect to u. It has the advantage that it allows us to
compute explicit constants for the remainder term. In contrast, it does not work
for nonhomogeneous inequalities. We retain the geometric assumptions introduced
in Section 2. In the theorem that follows we consider the case p 6= k, while Theorem
4.2 below concerns the degenerate case p = k. The optimality of the estimates is
proved in Section 5.

Let us recall the improved Hardy inequality, which we now write in the form

(4.1)
∫

Ω

|∇u|pdx ≥ |H |p
∫

Ω

|u|p
dp

dx+B

∫
Ω

|u|p
dp

X2(d/D)dx.

We then have

Theorem 4.1. Assume that condition (C) is satisfied. Then, there exists a D0 =
D0(k, p) ≥ supΩ d(x) such that for D ≥ D0, inequality (4.1) holds true with

B =
p− 1

2p
|H |p−2.

If in addition 2 ≤ p < k, then we can take D0 = supx∈Ω d(x,K).
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Proof. Let T be a vector field on Ω. For any u ∈ C∞c (Ω \K) we integrate by parts
and use Hölder’s inequality to obtain∫

Ω

divT |u|pdx = −p
∫

Ω

(T · ∇u)|u|p−2udx

≤ p

(∫
Ω

|∇u|pdx
) 1
p
(∫

Ω

|T |
p
p−1 |u|pdx

) p−1
p

≤
∫

Ω

|∇u|pdx+ (p− 1)
∫

Ω

|T |
p
p−1 |u|pdx.

We therefore arrive at

(4.2)
∫

Ω

|∇u|pdx ≥
∫

Ω

(divT − (p− 1)|T |
p
p−1 )|u|pdx.

In view of this and (4.1), the improved Hardy inequality will be proved once we
establish the following pointwise inequality:

(4.3) divT − (p− 1)|T |
p
p−1 ≥ |H |

p

dp

(
1 +

p− 1
2pH2

X2(d/D)
)
, x ∈ Ω.

To proceed we now make a specific choice of T . We take

T (x) = H |H |p−2 ∇d(x)
dp−1(x)

(
1 +

p− 1
pH

X(d(x)/D) + aX2(d(x)/D)
)
,

where a is a free parameter to be chosen later. In any case a will be such that the
quantity 1 + p−1

pH X(d/D) + aX2(d/D) is positive on Ω. Note that T (x) is singular
at x ∈ K, but since u ∈ C∞c (Ω \ K), all previous calculations are legitimate. A
simple computation shows that

divT = H |H |p−2 d∆d− (p− 1)|∇d|2
dp

(
1 +

p− 1
pH

X + aX2(d/D)
)

+H |H |p−2 |∇d|2
dp

(
p− 1
pH

X2(d/D) + 2aX3(d/D)
)

≥ H |H |p−2 k − p
dp

(
1 +

p− 1
pH

X(d/D) + aX2(d/D)
)

+H |H |p−2 1
dp

(
p− 1
pH

X2(d/D) + 2aX3(d/D)
)
,

where in the last inequality we used (C) and the fact that |∇d| = 1. Thus, we have

divT − (p− 1)|T |
p
p−1

≥ H |H |p−2
(k − p)(1 + p−1

pH X(d/D) + aX2(d/D))

dp

+H |H |p−2
(p−1
pH X2(d/D) + 2aX3(d/D))

dp

−(p− 1)|H |p
(1 + p−1

pH X(d/D) + aX2(d/D))
p
p−1

dp
.

It then follows that for (4.3) to hold, it is enough to establish the inequality

(4.4) f(t) ≥ 1 +
p− 1
2pH2

t2, t ∈ [0,M ],
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where M = M(D) := supx∈ΩX(d(x)/D) and

f(t) := p(1 +
p− 1
pH

t+ at2) +
1
H

(
p− 1
pH

t2 + 2at3)− (p− 1)(1 +
p− 1
pH

t+ at2)
p
p−1 .

From Taylor’s formula we have that

(4.5) f(t) = f(0) + f ′(0)t+
1
2
f ′′(ξt)t2, 0 ≤ ξt ≤ t ≤M.

We have f(0) = 1. Moreover,

f ′(t) =
p− 1
H

+ 2apt+
2(p− 1)
pH2

t+
6a
H
t2

−p(1 +
p− 1
pH

t+ at2)
1
p−1 (

p− 1
pH

+ 2at),

f ′′(t) = 2ap+
2(p− 1)
pH2

+
12a
H

t− 2ap(1 +
p− 1
pH

t+ at2)
1
p−1(4.6)

− p

p− 1
(1 +

p− 1
pH

t+ at2)
2−p
p−1 (

p− 1
pH

+ 2at)2,

f ′′′(t) =
12a
H
− 6ap
p− 1

(1 +
p− 1
pH

t+ at2)
2−p
p−1 (

p− 1
pH

+ 2at)

−p(2− p)
(p− 1)2

(1 +
p− 1
pH

t+ at2)
3−2p
p−1 (

p− 1
pH

+ 2at)3,

and in particular

f ′(0) = 0,

f ′′(0) =
p− 1
pH2

,(4.7)

f ′′′(0) =
6a
H
− (2 − p)(p− 1)

p2H3
.

To proceed we distinguish various cases.
(a) 1 < p < 2 ≤ k. In this case H > 0. We now choose a so that f ′′′(0) > 0,

that is, a > 2−p
6(p−1) > 0. Hence f ′′ is an increasing function in some interval of the

form (0,M0). Consequently, for t ∈ (0,M0)

f ′′(ξt) ≥ f ′′(0) =
p− 1
pH2

.

It then follows from (4.5) that

f(t) ≥ 1 +
p− 1
2pH2

t2, t ∈ [0,M0].

Hence (4.4) has been proved in this case.
(b) 2 ≤ p < k. We still have H > 0. We now choose a = 0. It is clear that

f ′′′(0) > 0. Moreover, we compute

f ′′′(t) =
(p− 1)(p− 2)

p2H3
(1 +

p− 1
pH

t)
3−2p
p−1 > 0, for all t > 0.

We then repeat the argument of case (a), taking M0 = +∞.
(c) k = 1 < p < 2. We now have H < 0. We then choose a such that

0 < a < (2−p)(p−1)/(6p2H2), so that f ′′′(0) > 0 and the previous argument goes
through.
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(d) p ≥ 2, p > k. Again H < 0. We now take a < (2 − p)(p − 1)/(6p2H2) < 0
and proceed as before.

It is clear that we can choose an M0 (small enough) that works simultaneously
in all cases, and at the same time (1 + p−1

pH X + aX2) > 0, for 0 < X < M0. We
can even estimate this M0 using (4.6), if needed. Since X(d/D) = − log−1(d/D),
the condition X ≤M0 is equivalent to D ≥ D0 := e1/M0 supx∈Ω d(x). The proof of
the theorem is now complete. �

Remark. The assumption supx∈Ω d(x) < +∞ is only needed in order to obtain
the improved Hardy inequality. For the plain Hardy inequality one can choose the
vector field T (x) = H |H |p−2 ∇d(x)

dp−1(x) , in which case the boundedness of d(x) is not
required.

Clearly the usual Hardy inequality does not hold when p = k. In our next
result we give a substitute for the Hardy inequality in that case. The analogue of
condition (C) is now

(C′) p = k, d∆d+ 1− k ≥ 0.

In Theorem 5.4 we shall prove that estimate (4.8) below is sharp. Our result
reads

Theorem 4.2. Let p = k and assume that d(·) is bounded in Ω. If (C′) is satisfied,
then for any D ≥ supΩ d(x)

(4.8)
∫

Ω

|∇u|pdx ≥
(
p− 1
p

)p ∫
Ω

|u|p
dp

Xp(d/D)dx, u ∈ W 1,p
0 (Ω \K).

Proof. We define the vector field

T (x) =
(
p− 1
p

)p−1
Xp−1(d(x)/D)

dp−1(x)
∇d(x), x ∈ Ω,

and use inequality (4.2). We have

divT = (
p− 1
p

)p−1d−pXp−1(d/D)
(

(p− 1)X(d/D)− p+ 1 + d∆d
)

≥ (
p− 1
p

)p−1(p− 1)d−pXp(d/D),

and hence

divT − (p− 1)|T |
p
p−1 ≥ (

p− 1
p

)pd−pXp(d/D),

which yields (4.8). �

5. Best constants for improved Hardy inequalities

In this section we will prove the optimality of the constants appearing in the
improved Hardy inequalities we derived in Section 4. This will be done by deriving
optimal bounds for all constants appearing in improved Hardy inequalities of the
type we consider in this work. More precisely, recalling that H = (k − p)/p, we
have the following theorem.
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Theorem 5.1. Let Ω be a domain in RN . (i) If 2 ≤ k ≤ N − 1, then we take K
to be a piecewise smooth surface of codimension k and assume K ∩ Ω 6= ∅; (ii) if
k = N , then we take K = {0} ⊂ Ω; (iii) if k = 1, then we take K = ∂Ω. Suppose
that for some constants A > 0, B ≥ 0, γ > 0 and D ≥ supΩ d(x), the following
inequality holds true for all u ∈ C∞c (Ω \K):

(5.1)
∫

Ω

|∇u|pdx ≥ A
∫

Ω

|u|p
dp

dx+B

∫
Ω

|u|p
dp

Xγ(d/D)dx.

Then:
(i) A ≤ |H |p.
(ii) If A = |H |p, and B > 0, then γ ≥ 2.
(iii) If A = |H |p and γ = 2, then B ≤ p−1

2p |H |p−2.

To prove this theorem we will use a minimizing sequence for the improved Hardy
inequality. Without any loss of generality we may assume that 0 ∈ K ∩Ω if k 6= 1,
while 0 ∈ ∂Ω if k = 1. All our analysis will be local, say, in a fixed ball of radius δ
(denoted by Bδ) centered at the origin, for some fixed small δ. We next introduce
the function

(5.2) wε(x) = d−H+ε(x)X−θ(d(x)/D), 1/p < θ < 2/p.

In order to localize it we also define a suitable nonnegative test function φ ∈ C2
c (Bδ)

such that φ(x) = 1 for x ∈ Bδ/2. We then set

(5.3) Uε(x) = φ(x)wε(x), suppUε ⊂ Bδ.
The proof we present works for any k = 1, 2, . . . , N . We note however that

for k = N (distance from a point) the subsequent calculations are substantially
simplified, whereas for k = 1 (distance from the boundary) one should replace
Bδ by Bδ ∩ Ω. This last change entails some minor modifications, the arguments
otherwise being the same.

Throughout the rest of this section we denote by C, c(p), etc., various positive
constants, not necessarily the same in each occurrence, which may depend on δ, p
or k but are independent of ε.

We begin by presenting some lemmas that contain all technical estimates that
we need for the proof of the theorem. For β ∈ R and ε > 0 small we define

(5.4) Jβ(ε) =
∫

Ω

φpd−k+εpX−β(d/D)dx.

Lemma 5.2. For ε small we have

(i) cε−1−β ≤ Jβ(ε) ≤ Cε−1−β , β > −1;

(ii) Jβ(ε) =
pε

β + 1
Jβ+1(ε) +Oε(1), β > −1;

(iii) Jβ(ε) = Oε(1), β < −1.

Proof. Since |∇d| = 1, we have

Jβ(ε) =
∫ δ

0

∫
d=r

φpr−k+εpX−β(r/D)dS dr.

Hence using the fact that 0 ≤ φ ≤ 1 and
∫
{d=r}∩Bδ dS < crk−1, we obtain

Jβ(ε) ≤ c
∫ δ

0

r−1+εpX−β(r/D)dr.
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Recalling (3.2) we see that for β < −1 the integral above has a finite limit as ε→ 0,
hence (iii) follows. To show (i) we use the change of variables r = Ds1/ε to obtain
that

Jβ(ε) ≤ ε−1−βDεp

∫ (δ/D)ε

0

sp−1X−β(s)ds,

and the upper estimate of (i) follows. For the lower estimate we use the fact that
φ = 1 for d ≤ δ/2 and argue similarly.

To prove (ii) we recall (3.1) to write

(β + 1)Jβ(ε) = −
∫

Ω

φpd1−k+εp∇d · ∇X−β−1(d/D)dx.

We now perform an integration by parts and note that no boundary terms appear.
Indeed, if k = 1, then the factor d1−k+εp = dεp guarantees that the integrand
vanishes on K. If 2 ≤ k ≤ N , then we approximate Ω by Ωη := {x ∈ Ω : d(x) > η},
η > 0 small. This yields the boundary term

−
∫
d=η

φpd1−k+εpX−β−1(d/D)∇d · ~n dS,

which vanishes as η → 0. Hence in any case we have

(β + 1)Jβ(ε) =
∫

Ω

div(φpd1−k+εp∇d)X−β−1(d/D)dx

= p

∫
Ω

φp−1d1−k+εpX−β−1(d/D)∇φ · ∇d dx

+(1− k + εp)
∫

Ω

d−k+εpX−β−1(d/D)dx

+
∫

Ω

φpd1−k+ε∆dX−β−1(d/D)dx.

The first integral is easily seen to be of orderOε(1). The other two integrals combine
to give

(5.5) εpJβ+1(ε) +
∫

Ω

φpd−k+εpX−β−1(d/D)(d∆d + 1− k)dx.

But it is a direct consequence of [AS, Theorem 3.2] that

(5.6) d∆d+ 1− k = O(d) as d(x)→ 0;

this implies that the integral in (5.5) is of order Oε(1), and the result follows. �

We next estimate the quantity

I[Uε] =
∫

Ω

|∇Uε|pdx− |H |p
∫

Ω

|Uε|p
dp

dx.

Lemma 5.3. As ε→ 0,

(i) I[Uε] ≤
θ(p− 1)

2
|H |p−2Jpθ−2(ε) +Oε(1);(5.7)

(ii)
∫
Bδ

|∇Uε|pdx ≤ |H |pJpθ(ε) +Oε(ε1−pθ).(5.8)
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Proof. We have ∇Uε = φ∇wε +∇φwε and hence, using the elementary inequality

(5.9) |a+ b|p ≤ |a|p + cp(|a|p−1|b|+ |b|p), a, b ∈ RN , p > 1,

we obtain∫
Ω

|∇Uε|pdx ≤
∫
Bδ

φpd−k+εpX−pθ(d/D) |H − (ε− θX(d/D))|p dx

+cp
∫
Bδ

|∇φ||φ|p−1|∇wε|p−1|wε| dx+ cp

∫
Bδ

|∇φ|p|wε|p dx

=: IA + I2 + I3.(5.10)

We claim that

(5.11) I2, I3 = Oε(1) as ε→ 0.

Let us give the proof for I2. Using the definition of wε and the fact that φ is a nice
function we get

I2 ≤ c
∫
Bδ

d1−k+εpX−pθ(d/D) |H − (ε− θX(d/D))|p−1 dx.

Since (ε− θX(d/D)) is small compared to H we have

I2 ≤ c
∫
Bδ

d1−k+εpX−pθ(d/D)dx

and it is easily seen that the last integral has a finite limit as ε → 0. The integral
I3 is treated in the same way.

From (5.10), (5.11) and the definition of Jβ we easily obtain

I[Uε] =
∫
Bδ

|∇Uε|pdx− |H |pJpθ

≤ IA − |H |pJpθ +Oε(1)(5.12)
= I1 +Oε(1),

where

I1 :=
∫
Bδ

φpd−k+εpX−pθ(d/D)
(∣∣H − (ε− θX(d/D)

)∣∣p − |H |p)dx.
We proceed by estimating I1. Since η := (ε − θX(d/D)) is small compared to H ,
we may use Taylor’s expansion to obtain

|H − η|p − |H |p ≤ −p|H |p−2Hη +
1
2
p(p− 1)|H |p−2η2 + C|η|3.

Using this inequality we can bound I1 by

(5.13) I1 ≤ I11 + I12 + I13,

where

I11 = −p|H |p−2H

∫
Bδ

φpd−k+εpX−pθ(d/D)(ε− θX(d/D))dx,

I12 =
1
2
p(p− 1)|H |p−2

∫
Bδ

φpd−k+εpX−pθ(d/D)
(
ε− θX(d/D)

)2
dx,

I13 = C

∫
Bδ

φpd−k+εpX−pθ(d/D)|ε− θX(d/D)|3dx.
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We shall prove that

(5.14) I11, I13 = Oε(1), ε→ 0.

Indeed, an application of part (ii) of Lemma 5.2 (with β = −1+pθ) gives I11 = Oε(1)
for small ε > 0. Concerning I13 we clearly have

I13 ≤ cε3Jpθ + cJpθ−3.

It follows from Lemma 5.2, parts (i) and (iii), and the fact that 1 < pθ < 2 that
I13 = Oε(1).

To calculate the term I12 we first expand the square in the integrand and then
apply (ii) of Lemma 5.2 twice (with β = −1+pθ the first time and β = −2+pθ > −1
the second time) to conclude that

(5.15) I12 =
θ(p− 1)

2
|H |p−2

∫
Bδ

φpd−k+εpX(d/D)2−pθdx+Oε(1), ε→ 0.

From (5.12), (5.13), (5.14) and (5.15) we derive (5.7). The second inequality of the
lemma follows from the first equality in (5.12), estimate (5.7) and Lemma 5.2. �

We are now ready to give the proof of Theorem 5.1.

Proof of Theorem 5.1. It follows directly from part (i) of Lemma 5.2 that for any
γ ∈ R

(5.16) Rγ [Uε] :=
∫

Ω

|Uε|p
dp

Xγ(d/D)dx = Jpθ−γ(ε).

(i) Since inequality (5.1) holds for every u ∈ W p
0 (Ω \K), we have

A ≤
∫
Bδ
|∇Uε|pdx
R0[Uε]

(by (5.8)) ≤ |H |p(1 +Oε(ε))Jpθ(ε) +Oε(1)
Jpθ(ε)

;

letting ε→ 0 and recalling that Jpθ(ε)→∞ we conclude that A ≤ |H |p.
(ii) Let A = |H |p. Assuming that γ < 2 we will reach a contradiction. Since

pθ − γ > −1, arguing as in (i) we have that

0 < B ≤ I[Uε]
Rγ [Uε]

(by (5.7) and Lemma 5.2 (i)) ≤ cε−pθ+1

cε−1−pθ+γ

= cε2−γ → 0 as ε ↓ 0,

which is a contradiction. Hence γ ≥ 2.
(iii) If A = |H |p and γ = 2, then

B ≤ I[Uε]
R2[Uε]

(by (5.7)) ≤
1
2θ(p− 1)|H |p−2Jpθ−2(ε) +Oε(1)

Jpθ−2(ε)
.

The assumption θ > 1/p implies Jpθ−2 →∞ as ε→ 0 by (i) of Lemma 5.2. Hence
B ≤ θ(p−1)

2 |H |p−2; letting θ → 1/p concludes the proof. �
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We close this section proving the optimality of the estimate in Theorem 4.2.

Theorem 5.4. Let Ω be a domain in RN . (i) If 2 ≤ k ≤ N −1, then we take K to
be a piecewise smooth surface of codimension k and assume that K ∩ Ω 6= ∅; (ii) if
k = N , then we take K = {0} ⊂ Ω. Suppose that p = k and that for some constants
B ≥ 0 and γ > 0 the following inequality holds true for all u ∈ C∞c (Ω \K):

(5.17)
∫

Ω

|∇u|pdx ≥ B
∫

Ω

|u|p
dp

Xγ(d/D)dx.

We then have:
(i) If B > 0, then γ ≥ p.
(ii) If γ = p, then B ≤

(
p−1
p

)p.

Proof. The proof uses an argument similar to that of Theorem 5.1. Without any
loss of generality we assume that 0 ∈ K ∩Ω if 2 ≤ k ≤ N and 0 ∈ ∂Ω = K if k = 1.
As in the last theorem we let φ be a nonnegative, smooth cut-off function supported
in Bδ = {|x| < δ} and equal to one on Bδ/2. For any ε > 0 and θ > (p−1)/p define
wε = dεX−θ(d/D) and Uε = φwε. Using (5.9) we have∫

Ω

|∇Uε|pdx

≤
∫
Bδ

φp|∇wε|pdx+ cp

∫
Bδ

φp−1|∇wε|p−1wε|∇φ|dx + cp

∫
Bδ

wpε |∇φ|pdx

=: IA + I2 + I3.

Arguing as in the proof of the previous theorem we see that

I2, I3 = Oε(1), ε→ 0.

Denoting by cpi the coefficients of the binomial expansion we have

|∇wε|p = d−k+εpX−pθ(d/D)|ε− θX(d/D)|p

≤ d−k+εpθX−pθ(d/D)(ε + θX(d/D))p

= d−k+εpX−pθ(d/D)
p∑
i=0

cpi ε
p−iθiX i(d/D),

and hence

IA ≤
p∑
i=0

cpi ε
p−iθiJpθ−i(ε),

where the functions Jβ(ε) =
∫

Ω φ
pd−p+εpX−β(d/D) are as in (5.4). Now it follows

from (ii) of Lemma 5.2 and a simple induction argument that

εp−iJpθ−i = (θ − i

p
)(θ − i+ 1

p
) · · · (θ − p− 1

p
)Jpθ−p +Oε(1), i = 0, . . . , p− 1.
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But the fact that θ > (p − 1)/p implies that Jpθ−p(ε) → +∞ as ε → 0, by (i) of
Lemma 5.2. It follows that

B ≤ lim sup
ε→0

∫
Ω |∇Uε|

pdx∫
Ω
Upε
dp X

p(d/D)dx

≤ lim sup
ε→0

(
θp
∑p−1

i=0 c
p
i θ
i(θ − i

p ) · · · (θ − p−1
p )
)
Jpθ−p(ε) +Oε(1)

Jpθ−p(ε)

= θp +
p−1∑
i=0

cpi θ
i(θ − i

p
) · · · (θ − p− 1

p
).

This last expression converges to (p−1
p )p as θ → (p − 1)/p; this completes the

proof. �

6. Nonhomogeneous improved Hardy inequalities

As an application of the results in Section 3 we first prove Theorem B, the
improved Hardy-Poincaré inequality.

Proof of Theorem B. We shall prove that

(6.1) I[u] ≥ c
(∫

Ω

|∇u|qdk(−1+q/p)Xβ(d/D)dx
)p/q

, u ∈W 1,p
0 (Ω \K).

Letting v = ud(k−p)/p we have
(6.2)∫

Ω

|∇u|qdk(−1+q/p)Xβdx ≤ c(q, k)
(∫

Ω

|∇v|qdq−kXβdx+
∫

Ω

|v|qd−kXβdx

)
.

To proceed we will estimate the two integrals in the right hand side of (6.2). We
first consider the case 1 < p < 2. Applying Hölder’s inequality we obtain∫

Ω

|∇v|qdq−kXβdx ≤
(∫

Ω

|∇v|pdp−kX2−pdx

)q/p (∫
Ω

d−kXθdx

)(p−q)/p
,

with θ = (βp−2q+ qp)/(p− q). We next show that the last integral above is finite.
The integrand has a singularity as d → 0. However for d near zero the integral
behaves like∫ ε

0

∫
d=t

d−kXθ

|∇d| dSdt ≤ c
∫ ε

0

∫
d=t

d−kXθdSdt ≤ c
∫ ε

0

t−1Xθ(t)dt.

The last integral is finite iff θ > 1 (cf (3.2)), a condition that is easily seen to be
satisfied under our assumptions on p, q, β. Hence we end up with

(6.3)
(∫

Ω

|∇v|qdq−kXβdx

)p/q
≤ c

∫
Ω

|∇v|pdp−kX2−pdx ≤ cI[u],

where in the last inequality we used (3.8). Applying in a similar fashion Hölder’s in-
equality and then the improved Hardy inequality (3.8), we estimate the last integral
in (6.2),

(6.4)
(∫

Ω

|v|qd−kXβdx

)p/q
≤ c

∫
Ω

|v|pd−kX2dx =
∫

Ω

|u|p
dp

X2dx ≤ cI[u],

and (6.1) follows.
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Consider now the case p ≥ 2. The proof is quite similar. In particular estimate
(6.4) remains valid, whereas the analogue of (6.3) is(∫

Ω

|∇v|qdq−kXβdx

)p/q
≤ c

∫
Ω

|∇v|pdp−kdx ≤ cI[u],

where in the last inequality we used (3.7) and condition (C). The proof of (6.1) is
now complete.

To prove the sharpness of the estimate we consider the functions Uε of Section
5 (see (5.3)). We have already seen that they satisfy I[Uε] ≤ cε1−pθ. Moreover,
simple calculations show that for β > 0 we have∫

Ω

|∇Uε|qdk(−1+q/p)Xβ(d/D)dx ≥ cεβ−θq−1,

for all ε > 0 small enough. Hence (6.1) cannot be true if β < 1 + q/p. �

We now turn our attention to the improved Hardy-Sobolev inequalities. By this
we mean lower estimates on I[u] in terms of weighted Lq norms of the function u,
q > p. It will be seen that there is a difference in the form the estimates take,
depending on whether k = N or k < N . We first consider the case of affine K,
K ≡ RN−k, and take Ω = RN . More precisely, we write points in RN as x = (y, z),
y ∈ RN−k, z ∈ Rk. Under this representation we take

K = {(y, 0) | y ∈ RN−k}

so that d(y, z) = |z|.
Our next two propositions yield Theorem C.

Proposition 6.1. Assume that k < N and that condition (C) is satisfied. Then
for any 2 ≤ p < N and any p < q ≤ Np/(N − p) there exists c > 0 such that

(6.5) I[u] ≥ c
(∫

Ω

|u|q|z|−q−N+Nq/pdx

)p/q
, u ∈ W 1,p

0 (RN \K).

Proof. Let v(y, z) = u(y, z)|z|(k−p)/p. It follows from (3.7) and condition (C) that

I[u] ≥ c
∫

RN

|∇v|p|z|p−kdzdy.

Moreover, Corollary 2 in Section 2.1.6 of [M] gives∫
RN

|∇v|p|z|p−kdzdy

≥ c
(∫

RN

|v|q|z|−N+(N−k)q/pdzdy

)p/q
, v ∈ C∞c (RN \K).

(6.6)

Combining the last two inequalities we obtain (6.5). �

Estimate (6.6) is not valid when k = N and K reduces to the single point 0 ∈ Ω.
Indeed, it is remarkable that (6.5) fails in this case. In our next proposition we use
decreasing rearrangement techniques to obtain a modified version of Proposition
6.1 which involves a logarithmic correction X1+q/p in the right hand side; we then
show that the exponent 1 + q/p is optimal.
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Proposition 6.2. Let 1 < p < N . Let Ω ⊂ RN be bounded containing the origin
and D > supx∈Ω d(x). For any p < q < Np/(N−p), there exists c = c(p, q,D,Ω) >
0 such that

(6.7) I[u] ≥ c
(∫

Ω

|u|q|x|−q−N+Nq/pX1+q/p(|x|/D)dx
)p/q

, u ∈ W 1,p
0 (Ω).

Moreover one cannot replace X1+q/p by a lower power of X.

Proof. We may assume that D = 1. Let u ∈ C∞c (Ω) be given and let u∗ denote
its radially symmetric decreasing rearrangement on the ball Ω∗ having the same
volume as Ω and centered at the origin. It is a standard property of decreasing
rearrangements that

I[u] ≥ I[u∗].

Define
f(r) = r−q−N+Nq/pX1+q/p(r)

and note that this decreases near r = 0. Let f∗ : Ω∗ → [0,∞) be the symmetric
decreasing rearrangement of f(| · |) : Ω → [0,∞). Using Lemma 4.1 of [FT] one
sees that f∗(r) ≤ f(r), near r = 0. Hence, using also the standard relations∫

Ω
fg ≤

∫
Ω∗
f∗g∗ (f, g ≥ 0), and (|u|q)∗ = |u∗|q, we conclude that it is enough

to establish (6.7) in the case where Ω is the unit ball and u = u(r) is a radially
symmetric decreasing function of r = |x|. Assume first that 1 < p < 2 and set
v(r) = u(r)r(N−p)/p. Using first (3.8) (with d = r, k = N) and then Lemma 7.1
(with α = 2− p) we have

I[u] ≥ c

∫ 1

0

|v′|prp−1X2−pdr

≥ c

(∫ 1

0

|v|qr−1X1+q/pdr

)p/q
= c

(∫ 1

0

|u|qr−q−1+Nq/pX1+q/pdr

)p/q
= c

(∫
Ω

|u|q|x|−q−N+Nq/pX1+q/p(|x|)dx
)p/q

.

Suppose now that p ≥ 2. Let w = |v|p/2 with v as above. Using first (3.6) —
with d = r, k = N — and then Lemma 7.1 (see Appendix) — with α = 0 and 2q/p
in the place of q — we have

I[u] ≥ c

∫ 1

0

|v′|2|v|p−2rdr

= c

∫ 1

0

|w′|2rdr

≥ c

(∫ 1

0

|w|2q/pr−1X1+q/pdr

)p/q
= c

(∫
Ω

|u|q|x|−q−N+Nq/pX1+q/p(|x|)dx
)p/q

,

as required.
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To prove that the exponent 1+q/p is optimal we consider once again the functions
Uε of Section 5, Uε(x) = φ(x)|x|ε−(N−p)/pX−θ(|x|/D), ε > 0, θ > 1/p, φ a cut-off.
An argument similar to that used in Section 5 shows the optimality of the exponent
1 + q/p. We omit the details. �

Given that the estimate I[u] ≥ c‖u‖p
LNp/(N−p) is not valid when K = {0} ⊂ Ω,

one may ask whether the next best thing is true, i.e. whether

I[u] ≥ c‖u‖LNp/(N−p),∞, u ∈ W 1,p(Ω),

where in the right hand side we have the weak LNp/(N−p) norm of u,

‖u‖Lq,∞ = sup
E⊂Ω
|E| 1q−1

∫
E

|u|dx, 1 < q <∞.

This question was risen in a different context in [BL], where the improved Sobolev
inequalities are considered. In that paper the authors obtain lower estimates on

J [u] :=
∫

Ω

|∇u|2dx− c∗
(∫

Ω

|u|2N/(N−2)dx

)(N−2)/N

, u ∈ W 1,2
0 (Ω),

where c∗ is the best Sobolev constant. It is shown in [BL] that J [u] ≥ c‖u‖2q, c > 0,
when q < N/(N − 2). This of course fails for the critical value q = N/(N − 2), but
it is shown instead that

J [u] ≥ c‖u‖LN/(N−2),∞, u ∈W 1,2
0 (Ω).

In our case there is no room even for such a weak norm as the following proposition
shows.

Proposition 6.3. Let 1 < p < N and K = {0} ⊂ Ω. There does not exist c > 0
such that

(6.8) I[u] ≥ c‖u‖
L
Np
N−p ,∞

, u ∈W 1,p
0 (Ω).

Proof. We may assume for simplicity that {|x| < 2} ⊂ Ω. Let Uε be the functions
introduced in (5.3) for D = 1 and assume that 1/p < θ < 1/(p− 1). We claim that

(6.9) ‖Uε‖
L

Np
N−p ,∞(B1)

≥ cε−θ, small ε > 0.

Let Bρ denote the ball of radius ρ centered at the origin. We then have that

‖Uε‖
L
Np
N−p ,∞(B1)

≥ sup
0<ρ<1

|Bρ|−
Np−N+p

Np

∫
Bρ

|Uε|dx.

Also, using the explicit expression of Uε and integrating once by parts we get∫
Bρ

|Uε|dx ≥ C

∫ ρ

0

rN−
N
p +εX−θ(r)dr

= C

(
ρN−

N
p +ε+1X−θ(ρ) +

∫ ρ

0

rN−
N
p +εX−θ+1(r)dr

)
≥ CρN−

N
p +ε+1X−θ(ρ).

Hence, we arrive at

‖Uε‖
L
Np
N−p ,∞(B1)

≥ C sup
0<ρ<1

ρε(− log ρ)θ.

It is easy to check that max0<ρ<1 ρ
ε(− log ρ)θ = (θ/e)θε−θ and (6.9) follows.
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On the other hand, we have seen in Section 5 that for small ε

(6.10) I[Uε] ≤ cε1−pθ.
Combining (6.9) and (6.10) we obtain the stated result. �

We close this section presenting an improved Hardy-Sobolev inequality that is
valid for all k ≤ N without assuming that K is affine. The estimate obtained is
weaker than that of Theorem C.

Theorem 6.4. Let k ≤ N and 1 < p < N . Let D > supx∈Ω d(x,K), and
assume condition (C) is satisfied. For any p < q ≤ Np/(N − p) there exists
c = c(p, q,D,Ω,K) > 0 such that

(6.11) I[u] ≥ c
(∫

Ω

|u|qd−q−N+Nq/pX2q/p(d/D)dx
)p/q

,

for all u ∈W 1,p
0 (Ω \K).

Proof. We may assume as usual that D = 1. Once more we set u = vd−H , H =
(k − p)/p. Applying Lemma 7.2 for α = 2 (see the Appendix) we have∫

Ω

|u|qd−q−N+Nq/pX2q/pdx =
∫

Ω

|v|qd−N+(N−k)q/pX2q/pdx

≤ c
(∫

Ω

|∇v|pdp−kX2dx+
∫

Ω

|v|pd−kX2dx

)q/p
.

(6.12)

The last integral in (6.12) is easily estimated by the improved Hardy inequality

(6.13)
∫

Ω

|v|pd−kX2dx =
∫

Ω

|u|p
dp

X2 dx ≤ cI[u].

To estimate the other integral, suppose first that 1 < p < 2. Using the fact that
X2 ≤ cX2−p and (3.8) we have

(6.14)
∫

Ω

|∇v|pdp−kX2dx ≤ c
∫

Ω

|∇v|pdp−kX2−pdx ≤ cI[u],

and (6.11) follows from (6.12), (6.13), (6.14).
Consider now the case p ≥ 2. Using the fact that X ≤ 1 and (3.7) we obtain in

a similar fashion

(6.15)
∫

Ω

|∇v|pdp−kX2dx ≤
∫

Ω

|∇v|pdp−kdx ≤ cI[u],

and (6.11) follows from (6.12), (6.13), (6.15). �

7. Appendix

Here we present the two auxiliary lemmas that were used in Section 6. The first
is a one-dimensional Hardy type inequality.

Lemma 7.1. Let p ∈ (1,∞) and q ≥ p be given. For any α > −(p−1) there exists
c > 0 such that

(7.1)
∫ 1

0

|v′|prp−1Xαdr ≥ c
(∫ 1

0

|v|qr−1X1+(α+p−1)q/pdr

)p/q
,

for all v ∈ C∞c (0, 1).



2194 G. BARBATIS, S. FILIPPAS, AND A. TERTIKAS

Proof. Apply [M, Theorem 3, p. 44] with dµ = r−1X1+(α+p−1)q/pχ[0,1]dr and dν =
rp−1Xαχ[0,1]dr. �

The second lemma is a weighted Sobolev inequality.

Lemma 7.2. Let D > supx∈Ω d(x,K). Given 1 < p < N , p < q ≤ Np/(N − p)
and a ∈ R, there exists c = C(p, q,D,Ω) > 0 such that for all v ∈ C∞c (Ω \K)∫

Ω

|v|qd−N+(N−k)q/pXαq/p(d/D)dx

≤ c
(∫

Ω

|∇v|pdp−kXα(d/D)dx +
∫

Ω

|v|pd−kXα(d/D)dx
)q/p

.

(7.2)

When d is the distance from the boundary ∂Ω (that is, k = 1), the above result
is given in [OK]; see Example 18.16 on p. 264 there. Since for the general case we
have not found a reference, we present a proof.

Proof. Once again it suffices to consider the case D = 1, the general case following
by scaling. We shall make use of the standard Sobolev inequality
(7.3)∫
B(r)

|v|qdx ≤ crN+q−Nq/p

(
r−p

∫
B(r)

|v|pdx+
∫
B(r)

|∇v|pdx
)q/p

, v ∈W 1,p(B(r)),

where B(r) is any ball of radius r and the constant is independent of r. Now, it
follows from the Besicovich covering lemma (see [M]) that there exists a sequence
(xm) of points in Ω with the following properties: defining, say, rm = d(xm)/10,
the balls

Bm := B(xm, rm), m = 1, 2, . . . ,

satisfy

(i) Ω ⊂
⋃
mBm;

(ii) there exists a number M depending only on the dimension N

such that each x ∈ Ω belongs to at most M of the Bm’s.

It follows from the choice of the radii rm that there exist constants ci, c′i such that

(7.4)
{
c1rm ≤ d(x) ≤ c2rm,
c′1X(rm) ≤ X(d(x)) ≤ c′2X(rm) x ∈ B(xm, rm), m = 1, 2, . . . .

This implies in particular that for any fixed θ, η ∈ R we have

c′′1r
θ
mX

η(rm)
∫
Bm

|u|pdx ≤
∫
Bm

|u|pdθXη(d)dx ≤ c′′2rθmXη(rm)
∫
Bm

|u|pdx,
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for all m = 1, 2, . . . and u ∈W 1,p(Bm). Hence∫
Ω

|v|qd−N+(N−k)q/pXαq/p(d)dx

≤
∞∑
m=1

∫
Bm

|v|qd−N+(N−k)q/pXαq/p(d)dx

≤ c

∞∑
m=1

r−N+(N−k)q/p
m Xαq/p(rm)

∫
Bm

|v|qdx

≤ c

∞∑
m=1

(∫
Bm

|∇v|prp−km Xα(rm)dx+
∫
Bm

|v|pr−km Xα(rm)dx
)q/p

≤ c

∞∑
m=1

(∫
Bm

|∇v|pd(x)p−kXα(d(x))dx +
∫
Bm

|v|pd(x)−kXα(d(x))dx
)q/p

≤ c

( ∞∑
m=1

∫
Bm

|∇v|pd(x)p−kXα(d(x))dx +
∞∑
m=1

∫
Bm

|v|pd(x)−kXα(d(x))dx

)q/p

≤ c

(∫
Ω

|∇v|pd(x)p−kXα(d(x))dx +
∫

Ω

|v|pd(x)−kXα(d(x))dx
)q/p

,

since by (ii) we have
∑

m

∫
Bm

f ≤M
∫

Ω
f for any nonnegative function f on Ω. �
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