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Abstract

We obtain Sobolev inequalities for the Shcrödinger operator �D� V ; where V has critical

behaviour VðxÞ ¼ ððN � 2Þ=2Þ2jxj�2 near the origin. We apply these inequalities to obtain

point-wise estimates on the associated heat kernel, improving upon earlier results.
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1. Introduction

The purpose of this paper is to obtain some new Hardy–Sobolev inequalities and
then use them in order to obtain new heat kernel estimates for the Schrödinger
operator �D� V for positive potentials V with critical singularities, improving upon
analogous estimates of this type.

As a typical example, let us consider the case of a bounded domain OCRN ; NX3;
containing the origin. We obtain upper estimates on the heat kernel of the operator

ARTICLE IN PRESS

�Corresponding author.

E-mail address: gbarbati@cc.uoi.gr (G. Barbatis).

0022-1236/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jfa.2003.10.002



H given formally by

Hu ¼ �Du � l

jxj2
u; uj@O ¼ 0; ð1:1Þ

for various values of the real parameter l (see Section 4 for the precise definition of

H). It is well known that the power jxj�2 is critical for the corresponding linear
parabolic equation, as was shown in the fundamental work of Baras and Goldstein
[BG]; see also the recent works of Goldstein and Zhang [GZ] as well as Vázquez and
Zuazua [VZ].
Indeed, the associated heat kernel exhibits behaviour which is different from that

of the case jxj�g; go2; which is in the Kato class. When g ¼ 2 the semigroup is not

ultracontractive: indeed, for 0oloððN � 2Þ=2Þ2; the heat kernel of (1.1) satisfies

Kðt; x; yÞoct�
N
2 jxj�ajyj�a;

where a denotes the smallest solution of aðN � 2� aÞ ¼ l; see the works of
Liskevich and Sobol [LS] and Milman and Semenov [MS] and references therein.

In Theorem 4.2 we extend this estimate to the critical case l ¼ ððN � 2Þ=2Þ2:
Namely, we prove that the corresponding heat kernel satisfies

Kðt; x; yÞoct�N=2jxj�
N�2
2 jyj�

N�2
2 :

This estimate is sharp as can be seen by comparing with the results in [VZ].

We also consider operators that act on the whole of RN with potentials having the
critical Hardy singularity near zero, of the form

VeðxÞ ¼
N�2
2

� �2jxj�2; jxjo1;

ef ðxÞ; jxj41;

(
ð1:2Þ

under appropriate subcritical assumptions on the positive function f : Thus, in
Theorem 4.3 it is shown that if e40 is small enough then the heat kernel of �D� Ve

satisfies

Kðt; x; yÞoct�N=2 max jxj�
N�2
2 ; 1

� �
max jyj�

N�2
2 ; 1

� �
: ð1:3Þ

We also consider potentials that exhibit the critical behaviour ððN � 2Þ=2Þ2jxj�2
near infinity, that is

V̂eðxÞ ¼
egðxÞ; jxjo1;

N�2
2

� �2jxj�2; jxj41:

(
ð1:4Þ

Under appropriate subcritical assumptions on g we obtain Sobolev estimates for

�D� V̂e for a sharp range of e40: We note here that while the question of Sobolev
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inequalities for �D� V̂e is rather similar to that for �D� Ve; when it comes to heat
kernel estimates essential differences arise. As mentioned earlier, the Sobolev
inequality for �D� Ve yields estimate (1.3) for the corresponding heat kernel. On

the other hand, while the short-time behaviour of the heat kernel of �D� V̂e is
similar to that of the Laplacian, the long-time behaviour is very different. Working
on a Riemannian manifold setting, Zhang [Z] used a parabolic Harnack inequality to
obtain estimates for the heat kernel of �D� V ; when V is equal near infinity to

ldðxÞ�2; loððN � 2Þ=2Þ2; dðxÞ ¼ distðx0; xÞ; however no explicit power of t was
given. This complements earlier estimates given by Davies and Simon [DS] which
involved the correct power of t in the Euclidean case. The corresponding problem for

the critical case l ¼ ððN � 2Þ=2Þ2 remains open.
Going back to bounded OCRN and to the operator H given formally by (1.1), for

the critical case l ¼ ððN � 2Þ=2Þ2 we finally consider additional singularities, that is,
we consider potentials of the form ððN � 2Þ=2Þ2jxj�2 þ V1; where V140 is also
critical; V1 is defined as a series involving iterated logarithms (see definition (5.17))
and is critical in the sense that the following improved Hardy inequality holds

Z
O
jruj2 dx � N � 2

2

� �2Z
O

u2

jxj2
dxX

Z
O

V1u
2 dx; uACN

c ðOÞ; ð1:5Þ

whereas this inequality is no longer true if we replace V1 by ð1þ eÞV1 for any e40: It
is remarkable that the extra potential V1 does not affect the time dependence of
the heat kernel estimates, but only affects the spatial singularity at the origin
(cf. Theorems 4.2 and 5.3). This is in contrast with Proposition 4.1(ii) where, for
lo0; the potential affects the time singularity of the heat kernel as well.
Throughout the paper we study a number of concrete potentials. These are chosen

precisely because they are critical. By simple monotonicity one can then obtain heat
kernel estimates for a whole range of other potentials, including potentials that are
not radially symmetric.
To prove the above heat kernel estimates we first use an appropriate change of

variables, u ¼ fw; by means of which, the problem is reduced to obtaining uniform
estimates on the heat kernel Kfðt; x; yÞ of an auxiliary operator Hf which acts on the

function w; see, e.g., [MS]. Those estimates are in turn proved by means of some new
Hardy–Sobolev inequalities.
As a typical example of such an inequality we mention the following inequality

proved by Brezis and Vázquez [BV]:

Z
O
jruj2 dx � N � 2

2

� �2Z
O

u2

jxj2
dxXK

Z
O
jujp dx

� �2=p

; ð1:6Þ

valid for uAH1
0 ðOÞ and 1opo 2N

N�2; this inequality fails for the critical Sobolev

exponent p ¼ 2N
N�2: To obtain sharp heat kernel estimates one needs to go up to

the critical exponent. In connection with this we mention the following sharp
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Hardy-Sobolev inequality established in [FT]:

Z
O
jruj2 dx � N � 2

2

� �2Z
O

u2

jxj2
dxXc

Z
O
juj

2N
N�2X

1þ N
N�2

1

jxj
D

� �
dx

� �N�2
N

; ð1:7Þ

valid for uAH1
0 ðOÞ; here D ¼ supO jxj and X1ðtÞ ¼ ð1� log tÞ�1; tAð0; 1Þ: In

the present work we derive new Hardy-Sobolev inequalities that involve poten-
tials such as the ones given in (1.2) or (1.4); see Theorems 3.4, 3.5, 5.1 and 5.2.
We should mention that the validity of improved Hardy inequalities is strongly
connected to the existence and large time behaviour of solutions of the heat
equation with singular potential; see, e.g., [BV,CM,DD,GZ] as well as Vázquez
and Zuazua [VZ].
As a byproduct of our approach we establish various results concerning improved

Hardy inequalities with boundary terms. Such inequalities have recently attracted
attention, see the articles by Adimurthi [Ad], Adimurthi and Esteban [AE], Wang
and Zhu [WZ] and references therein.
The structure of the paper is as follows: in Section 2 we present some auxiliary

results concerning improved Hardy inequalities with boundary terms. In Section 3
we prove the Hardy–Sobolev inequalities; in Section 4 we apply them to obtain heat
kernel estimates. Finally, in Section 5 we prove refined Sobolev inequalities and heat
kernel estimates when additional singularities are present.

2. Two minimization problems

Throughout this section, OCRN ; NX3; is a bounded domain containing

the origin with C1 boundary. Also, we always denote by n the outward-pointing
(with respect to O) unit vector on the surface @O: In Section 2.1 we will work on O;
while in Section 2.2 we will work on Oc: The results of this section will be applied in
Section 3.

2.1. Bounded domains

For a40 we define

lOðaÞ ¼ inf
H1ðOÞ

R
O jruj2 dx þ a

R
@O

x	n
jxj2u

2 dSR
O

u2

jxj2 dx
: ð2:1Þ

Lemma 2.1. We have:

(i) If 0oapN�2
2 ; then lOðaÞ ¼ aðN � 2� aÞ: Moreover, jxj�aAH1ðOÞ is a minimizer

for 0oaoN�2
2
; whereas for a ¼ N�2

2
there is no H1ðOÞ minimizer.

(ii) If a4N�2
2

and O is starshaped with respect to zero, then lOðaÞ ¼ ðN�2
2
Þ2 and there

is no H1ðOÞ minimizer.
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In case O is not starshaped with respect to zero, concerning the analogue of part
(ii) of the above lemma, we have

Lemma 2.2. Suppose O is not starshaped with respect to zero. Then, there exist finite

constants a�XN � 2 and a�A½N�2
2
; a�Þ depending on O such that:

(i) lOða�Þ ¼ 0; whereas lOðaÞ40 for all N�2
2
oaoa�:

(ii) If N�2
2 papa�; then lOðaÞ ¼ ðN�2

2 Þ2 and there is no H1ðOÞ minimizer.

(iii) If a�oaoa�; then maxð0; aðN � 2� aÞÞplOðaÞoðN�2
2
Þ2; and there exists an

H1ðOÞ minimizer.

Remark. (1) We note in particular that for any O and any a40 there holds

aðN � 2� aÞplOðaÞp
N � 2

2

� �2

: ð2:2Þ

(2) We do not know whether there exists a nonstarshaped domain O with smooth
boundary so that a� ¼ N � 2: Similarly, we do not know whether there exists such an
O for which a� ¼ ðN � 2Þ=2:

Proof of Lemmas 2.1 and 2.2. Let uACNð %OÞ be supported outside a neighbourhood

of zero. For any a40 we set uðxÞ ¼ jxj�a
vðxÞ: A straightforward calculation

shows that

Z
O
jruj2 dx ¼

Z
O
jxj�2ajrvj2 dx þ aðN � 2� aÞ

Z
O

u2

jxj2
dx � a

Z
@O

x 	 n
jxj2

u2 dS; ð2:3Þ

therefore,

Z
O
jruj2 dx þ a

Z
@O

x 	 n
jxj2

u2 dSXaðN � 2� aÞ
Z
O

u2

jxj2
dx: ð2:4Þ

By a simple density argument this inequality is valid for all uAH1ðOÞ: This implies in
particular the lower bound on lOðaÞ in (2.2).

If 0oaoN�2
2
; then jxj�a is in H1ðOÞ and an easy calculation shows that it satisfies

(2.4) as equality, hence it is a minimizer. If a ¼ N�2
2

then the fact that lOðaÞ ¼ ðN�2
2
Þ2

follows by considering the functions ueðxÞ ¼ jxj�
N�2
2

þe in the limit e-0þ:

Using the same functions, ueðxÞ ¼ jxj�
N�2
2

þe; e40; one can show that

ðN�2
2
Þ2XlOðaÞ; for any a40; thus proving the upper bound in (2.2).
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Suppose now that O is starshaped and a4N�2
2 : Then, using first the fact that

x 	 nX0 on the boundary of O; and then (2.4) (with a ¼ N�2
2
)Z

O
jruj2 dx þ a

Z
@O

x 	 n
jxj2

u2 dSX

Z
O
jruj2 dx þ N � 2

2

Z
@O

x 	 n
jxj2

u2 dS

X
N � 2

2

� �2Z
O

u2

jxj2
dx:

Hence, in this case lOðaÞ ¼ N�2
2

� �2
:

We next show that when lOðaÞ ¼ N�2
2

� �2
; there is no H1ðOÞ minimizer. Indeed

assuming that there is one, then it would be a positive H1ðOÞ solution of the Euler–
Lagrange equation

Du þ
N�2
2

� �2
jxj2

u ¼ 0; xAO:

However, by Lemma 2.3 (see below), this equation has no H1ðOÞ positive solutions.
Thus, Lemma 2.1 has been proved.
Suppose now that O is not starshaped with respect to zero. The existence of a�

follows from the continuity of lOðaÞ with respect to a combined with the fact that if
O is not starshaped with respect to zero, then one can easily find test functions
making the surface integral in (2.1) negative. The fact that a�XN � 2 follows from
the lower bound in (2.2).

From Lemma 2.1(i), we have that lOðN�2
2
Þ ¼ ðN�2

2
Þ2: We then define a� as the

supremum of all a for which lOðaÞ ¼ ðN�2
2
Þ2: Assuming that a�4N�2

2
; we will show

that for any N�2
2
oaoa� there holds lOðaÞ ¼ ðN�2

2
Þ2: Indeed, if this is not the case

then there would exist an a in the above interval and fAH1ðOÞ such that

R
O jrfj2 dx þ a

R
@O

x	n
jxj2f

2 dSR
O

f2

jxj2 dx
o

N � 2

2

� �2

ð2:5Þ

On the other hand from Lemma 2.1(i), we have that

R
O jrfj2 dx þ ðN�2

2
Þ
R
@O

x	n
jxj2 f

2 dSR
O

f2

jxj2 dx
X

N � 2

2

� �2

: ð2:6Þ

From the above two inequalities it follows that
R
@O

x	n
jxj2 f

2 dSo0: Using f as a test

function and the fact that a�4a we conclude that lOða�ÞoðN�2
2
Þ2; which is a

contradiction. Thus, the estimates of parts (ii) and (iii) of Lemma 2.2 have been
proved.
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The nonexistence of H1ðOÞ minimizer of part (ii) follows exactly as in Lemma 2.1.
The existence of H1ðOÞ minimizer of part (iii) will follow later from a more general
result; see Proposition 2.6. &

Lemma 2.3. If O contains the origin then there is no H1ðOÞ positive solution of the

equation

Du þ
ðN�2

2
Þ2

jxj2
u ¼ 0; xAO:

Proof. We note that this is a very special case of [FT, Theorem C] (although in this
Theorem Dirichlet condition were imposed, the proof is independent of the
boundary conditions). Since in the present case the argument is simple we sketch the
proof.

Assuming that we have a positive H1ðOÞ solution we will reach a contradiction.
Taking the surface average of u (over @Bð0; rÞÞ

vðrÞ ¼ 1

NoNrN�1

Z
@Br

uðxÞ dS40;

an easy calculation shows that for r near zero,

v00ðrÞ þ N � 1

r
v0ðrÞ þ

ðN�2
2 Þ2

r2
vðrÞ ¼ 0:

Hence, vðrÞ ¼ c1r
� N�2

2 þ c2r
� N�2

2 ln r and the positivity of v implies that

vðrÞXcr�
N�2
2 ; for c40: From this and using Hölder’s inequality we obtain that

for small r; Z
@Br

u
2N

N�2 dSX
c

r
;

from which it follows that
R
O u

2N
N�2 dx ¼ N contradicting the fact that

uAH1ðOÞ: &

2.2. Complement of bounded domains

Here we consider the complement of a bounded domain and we study the
corresponding infimum, that is

mOðaÞ ¼ inf
uACN

c ðRN ÞjOc

R
Oc jruj2 dx � a

R
@O

x	n
jxj2 u2 dSR

Oc
u2

jxj2 dx
: ð2:7Þ
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where O; as before, is a bounded domain containing the origin and n is the outward-
pointing (with respect to O) unit vector on the surface @O: Also, CN

c ðRNÞjOc is the set

of restrictions on Oc of all functions uACN

c ðRNÞ: We also introduce the following

norms:

jjujjD1;2ðOcÞ ¼
Z
Oc

jruj2 dx

� �1=2

þ
Z
Oc

juj
2N

N�2 dx

� �N�2
2N

; ð2:8Þ

jjujjH1ðOcÞ ¼
Z
Oc

jruj2 dx

� �1=2

þ
Z
Oc

juj2

jxj2
dx

 !1=2

; ð2:9Þ

jjujjWðOcÞ ¼
Z
Oc

jruj2 dx

� �1=2

þ
Z
@O

juj
2ðN�1Þ

N�2 dS

� � N�2
2ðN�1Þ

; ð2:10Þ

and we denote by D1;2ðOcÞ; H1ðOcÞ andWðOcÞ the completion of CN

c ðRNÞjOc under

the corresponding norms. The space WðOcÞ is well studied by Maz’ya [M, Section

3.6, Chapter 4]. For our purposes however, the natural spaces to use are D1;2ðOcÞ
and H1ðOcÞ: In the next lemma we show that these three spaces coincide (a trivial
fact if Oc were replaced by O).

Lemma 2.4. Let O be a bounded domain in RN ; NX3; with C1 boundary, containing

the origin. Then D1;2ðOcÞ ¼ H1ðOcÞ ¼ WðOcÞ:

Proof. We will show that all norms are equivalent. Let uACN

c ðRNÞjOc : Under our

assumptions, it follows easily as in Lemma 2.1 (cf. (2.4) with a ¼ N�2
2
) that

Z
Oc

jruj2 dx � N � 2

2

Z
@O

x 	 n
jxj2

u2 dSX
N � 2

2

� �2Z
Oc

u2

jxj2
dx; ð2:11Þ

whence,

Z
Oc

juj2

jxj2
dxpC

Z
Oc

jruj2 dx þ
Z
@O

juj2 dS

� �

pC

Z
Oc

jruj2 dx þ
Z
@O

juj
2ðN�1Þ

N�2 dS

� � N�2
ðN�1Þ

0
@

1
A:

Hence, jjujjH1ðOcÞpCjjujjWðOcÞ: To obtain the reverse inequality we note

that it follows from the standard trace Theorem (e.g. [A, Theorem 5.22],
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Chapter V)—applied to B\O for some ball B*O—that

Z
@O

juj
2ðN�1Þ

N�2 dS

� � N�2
2ðN�1Þ

pCjjujjH1ðOcÞ;

Z
@O

juj
2ðN�1Þ

N�2 dS

� � N�2
2ðN�1Þ

pCjjujjD1;2ðOcÞ:

From the first one it follows that jjujjWðOcÞpCjjujjH1ðOcÞ; whence H
1ðOcÞ ¼ WðOcÞ:

From the second one it follows that jjujjWðOcÞpCjjujjD1;2ðOcÞ: Thus, it remains

to prove that jjujjD1;2ðOcÞpCjjujjWðOcÞ: This inequality follows from Corollary 1 of

Section 4.11.1 [M, p. 258]. Notice that in the notation of Maz’ya
WðOcÞ ¼ W

2;
2ðN�1Þ

N�2
ðOc; @OÞ: &

An immediate consequence of the above lemma is that the infimum in (2.7) can be

taken over D1;2ðOcÞ; that is

mOðaÞ ¼ inf
uAD1;2ðOcÞ

R
Oc jruj2 dx � a

R
@O

x	n
jxj2 u2 dSR

Oc
u2

jxj2 dx
: ð2:12Þ

We now state the analogue of Lemma 2.1 for exterior domains. We recall that O is a

bounded domain in RN ; NX3; containing the origin.

Lemma 2.5. We have:

(i) If aXN�2
2
; then mOðaÞ ¼ aðN � 2� aÞ: Moreover, jxj�aAD1;2ðOcÞ is a minimizer

for a4N�2
2
; whereas for a ¼ N�2

2
there is no D1;2ðOcÞ minimizer.

(ii) If 0oaoN�2
2
; and O starshaped with respect to zero, then mOðaÞ ¼ ðN�2

2
Þ2 and

there is no D1;2ðOcÞ minimizer.

Proof. The proof is quite similar to the proof of the previous Lemmas 2.1 and 2.2.
An alternative proof can be given using the Kelvin transform; see the Remark that
follows. &

Remark. There is a duality between the minimization problems (2.1) and (2.7).

Indeed, by means of the Kelvin transform, uðxÞ ¼ jyjN�2
vðyÞ; y ¼ x=jxj2; xAOc; the

domain Oc is transformed to a bounded domain containing the origin that we denote

by ðOcÞ�: Denoting by n� the outward pointing normal to @ðOcÞ� a straightforward
calculation shows thatZ

Oc
jrxuj2 dx ¼

Z
ðOcÞ�

jryvj2 dy þ ðN � 2Þ
Z
@ðOcÞ�

y 	 n�

jyj2
v2 dSy:
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Also,

Z
Oc

juj2

jxj2
dx ¼

Z
ðOcÞ�

jvj2

jyj2
dy;Z

Oc
juj

2N
N�2 dx ¼

Z
ðOcÞ�

jvj
2N

N�2 dy:

It can be seen from these relations that uAD1;2ðOcÞ if and only if vAH1ððOcÞ�Þ: It
then follows easily that mOðaÞ ¼ lðOcÞ� ðN � 2� aÞ; and that the existence of a

minimizer for mOðaÞ in D1;2ðOcÞ is equivalent to the existence of a minimizer in

H1ðOÞ for lðOcÞ� ðN � 2� aÞ:

2.3. Existence of minimizers

In this section we establish a sufficient condition for the existence of minimizers.
We recall from Lemma 2.2 that when O is not starshaped with respect to the origin,
a� denotes the first zero of lOðaÞ: We also set a� ¼ N in case O is starshaped with
respect to zero. Thus, in both cases we have lOðaÞ40 for 0oaoa�: Given 0oaoa�;
and a nonnegative measurable potential V we define

lOða;VÞ :¼ inf
uAH1ðOÞR

O Vu2 dx40

R
O jruj2 dx þ a

R
@O

x	n
jxj2 u2 dSR

O Vu2 dx
: ð2:13Þ

Note that with this notation lOðaÞ ¼ lOða; jxj�2Þ: Since the numerator in (2.13) is
always positive and finite when 0oaoa�; we interpret lOða;VÞ ¼ 0 in case there

exists uAH1ðOÞ such that
R
O Vu2 dx ¼ þN: It is worth mentioning that lOða;VÞ is

not monotone with respect to O; unlike the case of Dirichlet boundary conditions.
We denote by BrCO the ball centered at zero with radius r:We have the following

Proposition 2.6. Let O be a bounded domain in RN ; NX3; containing the origin, and

let 0pVAL
N
2
locð %O\f0gÞ: If for some r40

0olOða;VÞolBr
ða;VÞ ð2:14Þ

then (2.13) has an H1ðOÞ minimizer.

Note. It is a consequence of (2.14) that
R
O Vu2 dxoþN for uAH1ðOÞ:

Proof. Let fujgAH1ðOÞ be a minimizing sequence of the Rayleigh quotient in (2.13).
We may normalize it so that

R
O Vu2j dx ¼ 1: We claim that jjujjjH1ðOÞoC: This will
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follow from two inequalities. The first inequality follows from the fact that 0oaoa�

and lOða�Þ ¼ 0 and reads

Z
O
jruj2 dx þ a

Z
@O

x 	 n
jxj2

u2 dSX 1� a
a�

� �Z
O
jruj2 dx: ð2:15Þ

The second one is a consequence of Lemma 2.1 and reads

Z
O
jruj2 dx þ a

Z
@O

x 	 n
jxj2

u2 dSX lOðaÞ
Z
O

u2

jxj2
dx

XKlOðaÞ
Z
O

u2 dx: ð2:16Þ

Thus, we may extract a subsequence such that uj,u0 weakly in H1ðOÞ; and uj-u0

strongly in LpðOÞ; 1opo 2N
N�2: Moreover, since VALN=2ðO\BrÞ; standard results

(see for instance [T]) give

Z
O\Br

Vu2j dx-

Z
O\Br

Vu20 dx: ð2:17Þ

Also by the trace theorem

Z
@O

x 	 n
jxj2

u2j dS-

Z
@O

x 	 n
jxj2

u20 dS: ð2:18Þ

Setting uj ¼ vj þ u0 we easily see that as j-N;

Z
O
jrujj2 dx ¼

Z
O
jru0j2 dx þ

Z
O
jrvjj2 dx þ oð1Þ ð2:19Þ

and

1 ¼
Z
O

Vu2j dx ¼
Z
O

Vu20 dx þ
Z
O

Vv2j dx þ oð1Þ: ð2:20Þ

It then follows from (2.13) that

lOða;VÞ ¼
Z
O
jrvjj2 dx þ

Z
O
jru0j2 dx þ a

Z
@O

x 	 n
jxj2

u20 dS þ oð1Þ

X

Z
O
jrvjj2 dx þ lOða;VÞ

Z
O

Vu20 dx þ oð1Þ: ð2:21Þ

ARTICLE IN PRESS
G. Barbatis et al. / Journal of Functional Analysis 208 (2004) 1–30 11



We then haveZ
O
jrvjj2 dxX

Z
Br

jrvjj2 dx

X lBr
ða;VÞ

Z
Br

Vv2j dx � a
Z
@Br

x 	 n
jxj2

v2j dS

¼ lBr
ða;VÞ

Z
Br

Vv2j dx þ oð1Þ

¼ lBr
ða;VÞ

Z
O

Vv2j dx þ oð1Þ

¼ lBr
ða;VÞ 1�

Z
O

Vu20 dx

� �
þ oð1Þ ð j-NÞ: ð2:22Þ

Using this and (2.21) we end up with

ðlOða;VÞ � lBr
ða;VÞÞ 1�

Z
O

Vu20 dx

� �
X0; ð2:23Þ

whence, since lOða;VÞolBr
ða;VÞ; it follows that

R
O Vu20 dxX1: By lower semi

continuity we conclude that
R
O Vu20 dx ¼ 1: It then follows that u0 is a minimizer for

(2.13). &

As a consequence we have:
Completion of Proof of Lemma 2.12(iii) (Existence of a minimizer): Since

N�2
2
pa�oaoa� it follows from Lemma 2.2 that 0olOðaÞoðN�2

2
Þ2: If BrCO is a

ball centred at zero it follows by Lemma 2.1 that lBr
ðaÞ ¼ ðN�2

2
Þ2: By Proposition 2.6,

lOðaÞ is attained by an H1ðOÞ function. &

We next state the corresponding result for the exterior of a bounded domain O:
For 0oaoN � 2 we define

mOða;VÞ :¼ inf
uAD1;2ðOcÞR
Oc

Vu2 dx40

R
Oc jruj2 dx � a

R
@O

x	n
jxj2 u2 dSR

Oc Vu2 dx
: ð2:24Þ

We then have

Proposition 2.7. Let O be a bounded domain in RN ; NX3; containing the origin, and

let 0pVAL
N
2
locðO

cÞ: Also let 0oaoN � 2: If for some ball BR*O centered at zero

0omOða;VÞomBR
ða;VÞ; ð2:25Þ

then (2.24) has a D1;2ðOcÞ minimizer.
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The proof is similar to that of the previous proposition.

3. Hardy–Sobolev inequalities

3.1. Auxiliary inequalities

We begin this section with two known Sobolev-type inequalities that will be used
in the sequel. In Theorems 3.4 and 3.5 we then prove two new Sobolev inequalities.
By the classical inequality of Caffarelli–Kohn–Nirenberg [CKN] we have

that

Z
RN

jrwj2jxj�2a dxXc

Z
RN

jwjpjxj�pb
dx

� �2=p

; wACN

c ðRNÞ; ð3:1Þ

with p ¼ 2N=ðN � 2þ 2ðb� aÞÞ; provided aoðN � 2Þ=2 and 0pb� ap1:
At the critical case a ¼ b ¼ ðN � 2Þ=2 inequality (3.1) fails. A sharp substitute for

bounded O was obtained in [FT], where it was shown that, with

X1ðtÞ ¼ ð1� log tÞ�1; tAð0; 1Þ; ð3:2Þ

and D ¼ supO jxj there holds
Z
O
jrwj2jxj2�N

dxXc

Z
O
jwj

2N
N�2jxj�N

X
2N�2
N�2
1

jxj
D

� �
dx

� �ðN�2Þ=N

; ð3:3Þ

for all wACN

c ðOÞ; where the exponent 2N�2
N�2 of X1ðjxj=DÞ is optimal.

In the sequel we will make essential use of the following one-dimensional result,
which is a special case of a more general statement by Maz’ya, cf. [M, Theorem 3,
Section 1.3.1, p. 44]:

Proposition 3.1. Let AðrÞ; BðrÞ nonnegative functions such that 1=AðrÞ and BðrÞ are

integrable in ðr;NÞ and ð0; rÞ; respectively, for all positive roN: Then, for qX2 the

Sobolev inequality

Z
N

0

ðv0ðrÞÞ2AðrÞ drXc

Z
N

0

jvðrÞjqBðrÞ dr

� �2=q

is valid for all vAC1ð0;NÞ that vanish near infinity, if and only if

sup
r40

Z r

0

BðtÞ dt

� � Z
N

r

dt

AðtÞ

� �q=2

oþN:

The above proposition will be applied to higher dimensions by means of the
following
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Lemma 3.2. Let NX2: Suppose that VALN

locðRN
\f0gÞ-L1

locðRNÞ is a radially

symmetric function. We further assume that inequalityZ
RN

jruj2 dx �
Z
RN

Vu2 dxX0; ð3:4Þ

is valid for all radially symmetric functions uACN

c ðRNÞ:
(i) Then, (3.4) is also valid for nonradial functions, that is, for all uACN

c ðRNÞ:
(ii) If, in addition,

0o ess sup
xARN

jxj2VðxÞ ¼ yoN; ð3:5Þ

then the following improved inequality holds:Z
RN

jruj2 dx �
Z
RN

Vu2 dx

X

Z
RN

jru0j2 dx �
Z
RN

Vu20 dx þ N � 1

N � 1þ y

Z
RN

jrðu � u0Þj2 dx; ð3:6Þ

where u0ðrÞ denotes the spherical average of uACN

c ðRNÞ; that is

u0ðrÞ ¼
1

NoNrN�1

Z
@Brð0Þ

uðxÞ dSx; r40: ð3:7Þ

Proof. Let uACN

c ðRNÞ and let

uðxÞ ¼
XN
m¼0

fmðsÞumðrÞ

be its decomposition into spherical harmonics; here fm are orthogonal in L2ðSN�1Þ;
normalized by 1

NoN

R
SN�1 fiðsÞfjðsÞ dS ¼ dij : In particular f0ðsÞ ¼ 1 and the first term

in the above decomposition is given by (3.7). The fm’s are eigenfunctions of the
Laplace–Beltrami operator, with corresponding eigenvalues cm ¼ mðN � 2þ mÞ;
mX0: An easy calculation shows that

Z
RN

ðjruj2 � Vu2Þ dx ¼
XN
m¼0

Z
RN

jrumj2 þ
cm

jxj2
� V

 !
u2m

( )
dx

¼
Z
RN

ðjru0j2 � Vu20Þ dx

þ
XN
m¼1

Z
RN

jrumj2 þ
cm

jxj2
� V

 !
u2m

( )
dx: ð3:8Þ
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Part (i) follows immediately since cm40 and um ¼ umðrÞ; r ¼ jxj: To prove part (ii)
we first observe that

Z
RN

jrðu � u0Þj2 dx ¼
XN
m¼1

Z
RN

jrumj2 þ
cm

jxj2
u2m

( )
dx:

In view of this and (3.8) it is enough to establish that for any mX1; there holds

Z
RN

jrumj2 þ
cm

jxj2
� V

 !
u2m

( )
dxX

N � 1

N � 1þ y

Z
RN

jrumj2 þ
cm

jxj2
u2m

( )
dx ð3:9Þ

or, equivalently,

Z
RN

jrumj2 dxX

Z
RN

u2m
N � 1þ y

y
V � cm

jxj2

( )
dx:

Since cmXc1 ¼ N � 1 it is enough to establish this for cm ¼ N � 1: By the definition
of y; cf. (3.5), it follows easily that

N � 1þ y
y

V � N � 1

jxj2
XV ;

and the result follows from (3.4). &

As a consequence of this we next establish the following result.

Lemma 3.3. Let NX3: Suppose that VALN

locðRN
\f0gÞ-L1

locðRNÞ is a radially

symmetric function, such that

0o ess sup
xARN

jxj2VðxÞ ¼ yoN;

and WALNðRNÞ is a positive radially symmetric function. We further assume that the

inequality

Z
RN

jruj2 dx �
Z
RN

Vu2 dxXc

Z
RN

juj2N=ðN�2Þ
W dx

� �ðN�2Þ=N

ð3:10Þ

is valid for all radially symmetric functions uACN

c ðRNÞ: Then inequality (3.10) is true

for all uACN

c ðRNÞ (without radial symmetry), provided the constant c is replaced by a

new constant C depending on c; N; y and jjW jjLN :
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Proof. Starting from (3.6) we computeZ
RN

fjruj2 � Vu2g dx

X

Z
RN

ðjru0j2 � Vu20Þ dx þ N � 1

N � 1þ y

Z
RN

jrðu � u0Þj2 dx

Xc

Z
RN

ju0j2N=ðN�2Þ
W dx

� �ðN�2Þ=N

þ c0
Z
RN

ju � u0j2N=ðN�2Þ
dx

� �ðN�2Þ=N

XC

Z
RN

juj2N=ðN�2Þ
W dx

� �ðN�2Þ=N

;

where, for the last inequalities we used the standard Sobolev inequality, the
boundedness of W and the triangle inequality. &

3.2. Hardy–Sobolev inequalities

In this section we prove improved Hardy–Sobolev inequalities for potentials that
are critical either near zero or near infinity. We first consider a potential which is
critical near zero. For e40 we define

VeðxÞ ¼
N�2
2

� �2jxj�2; jxjo1;

ef ðxÞ; jxjX1;

(
ð3:11Þ

where f is a nonnegative, continuous and radially symmetric function on fjxjX1g:
Moreover we assume f to be subcritical, satisfying

f ðxÞpK jxj�2�s; jxjX1; ð3:12Þ

for some s;K40:
Also, for X1 as in (3.2) we define the auxiliary function

X̃1ðjxjÞ ¼
X1ðjxjÞ; jxjo1;

1; jxj41:

�
ð3:13Þ

We shall henceforth denote by B the unit ball in RN centered at zero, by Bc its

complement, and, as before, we denote by CN

c ðRNÞjBc the set of restrictions on Bc of

all functions uACN

c ðRNÞ: We also denote by n the outward-pointing unit vector on
the surface @B: We have the following:

Theorem 3.4. Let

e0 ¼ inf
uAH1ðBcÞ

R
Bc jruj2 dx � N�2

2

R
@B

u2 dSR
Bc fu2 dx

: ð3:14Þ
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Then e040 and for any eAð0; e0Þ there holdsZ
RN

jruj2 dx �
Z
RN

Veu
2 dxXc

Z
RN

juj2N=ðN�2Þ
X̃

ð2N�2Þ=ðN�2Þ
1 ðjxjÞ dx

� �ðN�2Þ=N

;

ð3:15Þ

for all uACN

c ðRNÞ: Moreover, (3.15) fails for e ¼ e0:

Proof. Since f ðxÞpK jxj�2 the positivity of e0 follows from Lemma 2.5 with a ¼ N�2
2 ;

yielding in fact e0XK�1ððN � 2Þ=2Þ2:
Let us now fix eAð0; e0Þ: By Lemma 3.3, it is enough to prove (3.15) in the case

where u is radially symmetric, u ¼ uðrÞ: Now, there exists a radially symmetric and

positive function *c on Bc which solves the Robin problem

D *cþ ef *c ¼ 0; jxj41;

@ *c
@n

¼ � N � 2

2
*c; jxj ¼ 1:

The existence of such a *c can be easily derived, for example, by a shooting argument

from fjxj ¼ 1g: We assume that *c is normalized so that *c ¼ 1 on fjxj ¼ 1g: The
function

cðxÞ ¼ jxj�ðN�2Þ=2; jxjo1;

*cðxÞ; jxj41;

(
ð3:16Þ

then lies in C1ðRN
\f0gÞ; is positive, radially symmetric and satisfies Dcþ Vec ¼ 0 in

RN : Following [FT] we change variables, u ¼ cv; and (3.15) for radially symmetric
functions is then written asZ

N

0

ðv0Þ2c2rN�1 drXc

Z
N

0

jvj2N=ðN�2Þc2N=ðN�2ÞX̃
2ðN�1Þ=ðN�2Þ
1 dr

� �ðN�2Þ=N

: ð3:17Þ

We claim that cðrÞ has a positive limit as r-þN: Indeed, since ðrN�1c0Þ0 ¼
�rN�1Veco0 and c0ð1Þo0; cðrÞ is decreasing on ð1;þNÞ: If the limit limr-þN cðrÞ
were zero it would then follow from [LN, Theorem 2.9] that cðrÞocr2�N near

infinity, which then easily implies cAH1ðBcÞ: Hence c can be taken as a test
function for the infimum in the right-hand side of (3.14), in which case the value of
the Rayleigh quotient is eoe0; contradicting the definition of e0: Hence
limr-þN cðrÞ ¼ l40: Using this we deduce (3.17) from Proposition 3.1. Hence
(3.15) has been proved.
We finally show that (3.15) fails for e ¼ e0: For this we will use Proposition 2.7. Let

BR*B1: Then Ve0ðxÞpe0KR�sjxj�2 on ðBRÞc; hence

mBR
ða;Ve0ÞX

Rs

K
mBR

ðaÞ:
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By Lemma 2.5 (i), for aAð0; N � 2Þ mBR
ðaÞ; is positive and independent of R; taking

R large enough we have mBða;Ve0ÞomBR
ða;Ve0Þ: Hence, by Proposition 2.7—with

a ¼ ðN � 2Þ=2—there exists an H1ðBcÞ-minimizer f to (3.14). It is standard to show
that f is simple, radial and of one sign; we normalize it by fjjxj¼1 ¼ 1 and for y40

we define the function uyAH1ðRNÞ by

uyðxÞ ¼ jxj�
N�2
2

þy; jxjo1;

fðxÞ; jxj41:

(

We then compute the left-hand side of (3.15): in B there holds Duy þ Ve0uy ¼ y2uy;
hence Z

RN

ðjruyj2 � Ve0u
2
yÞ dx

¼ �
Z

B

ðuyDuy þ Ve0u
2
yÞ dx þ

Z
@B

uy
@uy

@n
dS þ

Z
Bc

ðjruyj2 � Ve0u
2
yÞ dx

¼ � y2
Z

B

u2y
r2

dx þ NoN � N � 2

2
þ y

� �
þ N � 2

2

Z
@B

u2y dS

¼ NoNy
2

:

On the other hand for the right-hand side of (3.15) we have

Z
RN

u
2N=ðN�2Þ
y X̃

2N�2
N�2
1 dxX

Z
Bc

u
2N=ðN�2Þ
y dx ¼

Z
Bc

f2N=ðN�2Þ;

the last term being independent of y: Letting y-0 we conclude that (3.15) fails
for e ¼ e0: &

We close this section proving a Sobolev inequality which involves radial potentials

with critical behaviour ððN � 2Þ=2Þ2jxj�2 near infinity. Let g be a nonnegative,
radially symmetric, and continuous in B\f0g function that is subcritical near zero,
satisfying

gðxÞpK jxj�2þs; jxjp1;

for some s; K40: For e40 we define

V̂eðxÞ ¼
egðxÞ; jxjo1;

N�2
2

� �2jxj�2; jxj41:

(
ð3:18Þ
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We also set

Ỹ1ðjxjÞ ¼
1; jxjo1;

ð1þ lnjxjÞ�1; jxj41:

(

We then have

Theorem 3.5. Let

%e0 ¼ inf
uAH1ðBÞ

R
B
jruj2 dx þ N�2

2

R
@B

u2 dSR
B

gu2 dx
:

Then %e040 and for any eAð0; %e0Þ there holds

Z
RN

jruj2 dx �
Z
RN

V̂eu
2 dxXc

Z
RN

juj2N=ðN�2Þ
Ỹ
2ðN�1Þ=ðN�2Þ
1 ðjxjÞ dx

� �ðN�2Þ=N

;

ð3:19Þ

for all uACN

c ðRNÞ: Moreover, (3.19) fails for e ¼ %e0:

Proof. The proof of (3.19) follows closely that of Theorem 3.4, reversing essentially
the role of B and Bc while making the necessary adjustments; in particular, we now
use Lemma 2.1 instead of Lemma 2.5. In fact, an alternative and simpler proof
consists in simply taking the Kelvin transform of (3.15). The optimality of %e0 is also
proven analogously; we omit the details. &

4. Heat kernel estimates

In this section we shall apply the Sobolev inequalities of Section 3 to obtain heat
kernel estimates for the Schrödinger operator

Hu ¼ �Du � Vu; uj@O ¼ 0;

for various critical potentials V : We still assume that OCRN ; NX3; is a domain
containing the origin and we will consider the case of bounded O as well as the case

O ¼ RN : The operator H is defined via quadratic forms, with initial domain

C1
c ðO\f0gÞ; it will always be the case that HX0: Note that, equivalently, we could

have set C1
c ðOÞ as the initial domain.

We shall use the standard technique of transference to a weighted L2 space,

which we now describe briefly. Let fAC1ðO\f0gÞ be positive and such that

DfAL1
locðO\f0gÞ: The unitary map

L2ðOÞ{u/w ¼ u

f
AL2

f :¼ L2ðO;f2 dxÞ ð4:1Þ
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satisfies Z
O
ðjruj2 � Vu2Þ dx ¼

Z
O

jrwj2 � Vw2 � Df
f

w2

� �
f2 dx ð4:2Þ

for all uAC1
c ðO\f0gÞ: Hence, if in addition f satisfies Dfþ Vf ¼ 0 (weakly) on

O\f0g; then
Z
O
ðjruj2 � Vu2Þ dx ¼

Z
O
jrwj2f2 dx ð4:3Þ

for all uAC1
c ðO\f0gÞ: Hence H is unitarily equivalent via (4.1) to the self-adjoint

operator Hf on L2
f; defined initially on C1

c ðO\f0gÞ and given formally by

Hfw ¼ � 1

f2
divðf2rwÞ; wj@O ¼ 0:

The space C1
c ðO\f0gÞ is invariant under multiplication by either f or 1=f and hence

it is a form core also for Hf: Moreover, a Sobolev inequality of the form

Z
O
ðjruj2 � Vu2Þ dxXc

Z
O
jujqW dx

� �2=q

is valid for all uAC1
c ðO\f0gÞ if and only if

Z
O
jrwj2f2 dxXc

Z
O
jwjqfqW dx

� �2=q

for all wAC1
c ðO\f0gÞ: Finally, the heat kernels of H and Hf are related by

Kðt; x; yÞ ¼ fðxÞfðyÞKfðt; x; yÞ; t40; x; yAO; ð4:4Þ

and hence one can obtain estimates on Kðt; x; yÞ via estimates on Kfðt; x; yÞ:

Example. As a typical example let us consider the case of a bounded domain

O in RN ; NX3; and let VðxÞ ¼ ljxj�2; lpððN � 2Þ=2Þ2: Let fðxÞ ¼ jxj�a; a being
the smallest solution of aðN � 2� aÞ ¼ l: Then Dfþ Vf ¼ 0 on O\f0g and
therefore

Z
O
ðjruj2 � l

u2

jxj2
Þ dx ¼

Z
O
jrwj2jxj�2a dx ð4:5Þ
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for all uAC1
c ðO\f0gÞ or, equivalently, for all wAC1

c ðO\f0gÞ: Moreover, the heat

kernel of H ¼ �D� V is related to the heat kernel of Hf by

Kðt; x; yÞ ¼ jxj�ajyj�a
Kfðt; x; yÞ:

We note here that a simple approximation argument shows that for loððN � 2Þ=2Þ2

the form domain of H is H1
0 ðOÞ; but at the critical case l ¼ ððN � 2Þ=2Þ2 the form

domain is strictly larger than H1
0 ðOÞ; see also [FT].

Sobolev inequalities are related to heat kernel estimates by the following standard
result [D, Theorem 2.4.2]: for any q42;

the upper bound

Kfðt; x; yÞoct�q=2; t40; x; yAO

is equivalent to the Sobolev inequality

R
O jrwj2f2 dxXc

R
O jwj

2q
q�2f2 dx

� �ðq�2Þ=q

; wAC1
c ðO\f0gÞ:

8>>>>>><
>>>>>>:

ð4:6Þ

In the rest of this section we shall apply the Hardy–Sobolev inequalities of Section
3 in order to obtain upper estimates on the heat kernel Kðt; x; yÞ of the operator
�D� V for critical and subcritical potentials V : For this we shall use (4.4) for
appropriate functions f; together with uniform estimates on Kfðt; x; yÞ; obtained by

means of (4.6). We initially present on-diagonal estimates, and add the Gaussian
factor in Proposition 4.4.

We assume that O is a domain in RN ; NX3: We retain the notation introduced

in the last example, and, in particular, we have H ¼ �D� ljxj�2; subject to
Dirichlet boundary conditions on @O: We first consider the subcritical case.
Although the result is known, see [LS,MS], we include the proof for the sake of
completeness.

Proposition 4.1 (Subcritical case). Let Kðt; x; yÞ be the heat kernel of H ¼ �D�

l 1

jxj2; subject to Dirichlet boundary conditions on @O: For loððN � 2Þ=2Þ2; let a be the

smallest solution of aðN � 2� aÞ ¼ l:

(i) If O is bounded and 0ploððN � 2Þ=2Þ2 then

Kðt; x; yÞoct�N=2jxj�ajyj�a; t40; x; yAO: ð4:7Þ

(ii) For any OCRN (bounded or unbounded) and lp0 there holds

Kðt; x; yÞoct�N=2 min 1;
jxj
t1=2

� ��a� �
min 1;

jyj
t1=2

� ��a� �
; t40; x; yAO:

ð4:8Þ
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Proof. (i) The boundedness of O together with (3.1) imply

Z
O
jrwj2jxj�2a dxXc

Z
O
jwj

2N
N�2jxj�2a dx

� �ðN�2Þ=N

; wACN

c ðOÞ: ð4:9Þ

By (4.6) this implies Kfðt; x; yÞoct�N=2; from which (4.7) follows using (4.4).

(ii) Comparison with the Laplacian implies that Kðt; x; yÞoct�N=2: Moreover,
inequality (3.1) for bp ¼ 2a reads

Z
O
jrwj2jxj�2a dxXc

Z
O
jwj

2ðN�2aÞ
N�2�2ajxj�2a dx

� �N�2�2a
N�2a

:

By means of (4.6) we deduce that Kfðt; x; yÞoct�N=2þa; t40; x; yAO: Hence

Kðt; x; yÞoct�N=2min 1;
jxj
t1=2

� ��a jyj
t1=2

� ��a� �
; t40; x; yAO: ð4:10Þ

This proves (4.8) when x ¼ y: The general case follows from the semigroup property
since

Kðt;x; yÞ ¼
Z
O

Kðt=2; x; zÞKðt=2; z; yÞdz

p
Z
O

Kðt=2; x; zÞ2dz

� �1=2 Z
O

Kðt=2; z; yÞ2dz

� �1=2

¼Kðt; x; xÞ1=2Kðt; y; yÞ1=2: &

We now consider the critical case.

Theorem 4.2 (Critical case). Let O be a bounded domain and Kðt; x; yÞ be the

heat kernel of H ¼ �D� ðN�2
2
Þ2 1

jxj2; subject to Dirichlet boundary conditions on @O:

Then

Kðt;x; yÞoct�
N
2 jxj�

N�2
2 jyj�

N�2
2 ; t40; x; yAO: ð4:11Þ

Proof. Estimate (3.3) implies the weaker inequality

Z
O
jrwj2jxj2�N

dxXc

Z
O
jwj

2N
N�2jxj2�N

dx

� �ðN�2Þ=N

: ð4:12Þ

Hence Kfðt; x; yÞoct�
N
2 and (4.11) follows. &

ARTICLE IN PRESS
G. Barbatis et al. / Journal of Functional Analysis 208 (2004) 1–3022



We next consider the case where O ¼ RN and the potential is critical at zero. More
precisely, we consider the potential Ve defined by (3.11), that is

VeðxÞ ¼
N�2
2

� �2jxj�2; jxjo1;

ef ðxÞ; jxjX1;

(

where f is a nonnegative, continuous and radially symmetric function on fjxjX1g:
Moreover we assume f to be subcritical, that is it satisfies (3.12)

f ðxÞpK jxj�2�s; jxjX1;

for some s;K40:
We retain the notation of Section 3.1, and in particular we recall definition (3.14)

of e0: We have

Theorem 4.3 (The operator �D� Ve on RN ). For any eAð0; e0Þ the heat kernel of the

operator �D� Ve satisfies

Kðt; x; yÞoct�N=2 maxfjxj�
N�2
2 ; 1gmaxfjyj�

N�2
2 ; 1g; t40; x; yARN : ð4:13Þ

Proof. Let cðxÞ be as in the proof of Theorem 3.4, cf (3.16). It follows from (3.15)
that

Z
RN

jrvj2c2 dxXc

Z
RN

jvj2N=ðN�2Þc2N=ðN�2ÞX̃
ð2N�2Þ=ðN�2Þ
1 dx

� �ðN�2Þ=N

; ð4:14Þ

for all vAC1
c ðRN

\f0gÞ: Since c2N=ðN�2ÞX̃
ð2N�2Þ=ðN�2Þ
1 Xcc2 and C1

c ðRN
\f0gÞ is a form

core for Hc and we conclude that Kcðt; x; yÞoct�N=2 whence,

Kðt; x; yÞoct�N=2cðxÞcðyÞ:

The required estimate on Kðt; x; yÞ follows if we note that

c1 maxfjxj�ðN�2Þ=2; 1gpcðxÞpc2 maxfjxj�ðN�2Þ=2; 1g; xARN : &

It is well known that the estimates of the above theorems can be improved to yield
Gaussian decay of the heat kernel. We have

Proposition 4.4. Proposition 4.1 as well as Theorems 4.2 and 4.3 can be improved by

adding a factor cd expf�jx � yj2=ðð4þ dÞtÞg to the corresponding right-hand sides.
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Proof. The proof is standard. One can use Grigoryan’s argument [G] or Davies’s
method of exponential perturbation [D] as adapted in [S-C, Section 4.2]. Note that
the argument is applied to the operator Hf—not to H: We omit the proof since it

follows exactly the proof in [S-C]. &

5. Logarithmic refinements

Our aim in this section is to obtain refined versions of the improved Hardy–
Sobolev inequalities of Section 3. As an application, we prove heat kernel estimates
for H ¼ �D� V � V1 where V is one of the potentials studied in Section 4 (that is,

VðxÞ ¼ ððN � 2Þ=2Þ2jxj�2 near zero) but V140 is also critical. The criticality of V1 is
meant in the sense that the following improved Hardy inequality holds:Z

O
jruj2 dx �

Z
O

Vu2 dxX

Z
O

V1u
2 dx; uACN

c ðOÞ;

whereas this inequality is no longer true if we replace V1 by ð1þ eÞV1: Of course, V1

is of lower order with respect to jxj�2 (near x ¼ 0) since ððN � 2Þ=2Þ2jxj�2 is already
critical for the validity of the (simple) Hardy inequality. It is remarkable that the
addition of the extra potential V1 does not affect the time dependence of the heat
kernel estimates, but only affects the spatial singularity at the origin, which is
increased by a logarithmic factor; see Theorems 5.3 and 5.4.

More precisely, recalling that X1ðtÞ ¼ ð1� log tÞ�1; let us introduce the functions

Xkþ1ðtÞ ¼ X1ðXkðtÞÞ; k ¼ 1; 2;y; tAð0; 1Þ: ð5:15Þ

These are iterated logarithmic functions that vanish at an increasingly slow rate at
t ¼ 0 and are equal to one at t ¼ 1: In [FT] the following improved Hardy inequality
was obtained for a bounded domain O with D ¼ supO jxj:

Z
O

jruj2 � N � 2

2

� �2
u2

jxj2
� u2

4jxj2
Xk

i¼1
X 2
1

jxj
D

� �
yX 2

i

jxj
D

� �( )
dx

X
1

4

Z
O

u2

jxj2
X 2
1

jxj
D

� �
yX 2

kþ1
jxj
D

� �
dx; uACN

c ðOÞ: ð5:16Þ

The potentials in the left-hand side of (5.16) are critical for each k; in the sense that

(5.16) is sharp: the term X 2
kþ1 cannot be replaced by ceX

2�e
kþ1 for any e40; and the

constant 1=4 in the right-hand side is also optimal. In Theorem 5.3 and for bounded
O we obtain upper estimates on the heat kernel of the operator

H ¼ �D� N � 2

2

� �2
1

jxj2
� 1

4jxj2
Xk�1
i¼1

X 2
1yX 2

i � m

jxj2
X 2
1yX 2

k ð5:17Þ
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for m41=4; as well as for the critical case m ¼ 1=4; for this we use results obtained in

[FT]. For the critical case m ¼ 1=4 we also consider operators defined on RN ; in
analogy to the operator �D� Ve of Theorem 4.3; for this we use Theorem 5.1 below,
and the corresponding heat kernel estimate is given in Theorem 5.4.

5.1. Refined Hardy–Sobolev inequalities

In this subsection we prove two theorems that are refined versions of Theorems 3.4
and 3.5 correspondingly. We recall definition (5.15) and set

X̃kðjxjÞ ¼
XkðjxjÞ; jxjo1;

1; jxj41;

�

YkðjxjÞ ¼ Xkð1=jxjÞ; jxj41;

ỸkðjxjÞ ¼ X̃kð1=jxjÞ; jxj40:

�

We point out the differentiation rules for XkðrÞ and YkðrÞ:

d

dr
X a

k ¼ a

r
X1yXk�1X

aþ1
k ;

d

dr
Y a

k ¼ � a

r
Y1Y2yYk�1Y

aþ1
k ; r ¼ jxj; ð5:18Þ

valid for 0oro1 and r41; respectively, which are easily proved by induction.
As in Theorem 3.4, we assume that f is a nonnegative, continuous and radially

symmetric function on Bc satisfying (3.12), that is,

f ðxÞpK jxj�2�s; jxjX1;

for some s;K40: For e40 we also define

Vk;eðxÞ ¼
N � 2

2

� �2

jxj�2 þ 1

4
jxj�2

Pk
i¼1

X 2
1 ðjxjÞyX 2

i ðjxjÞ; jxjo1;

ef ðxÞ; jxj41:

8><
>: ð5:19Þ

We then have

Theorem 5.1. Assume that koN � 2 and define

ek;0 ¼ inf
uAH1ðBcÞ

R
Bc jruj2 dx � N�2þk

2

R
@B

u2 dSR
Bc fu2 dx

: ð5:20Þ

Then ek;040 and for eAð0; ek;0Þ there holds

Z
RN

jruj2 dx �
Z
RN

Vk;eu
2 dxXc

Z
RN

juj2N=ðN�2ÞðX̃1yX̃kþ1Þ
2N�2
N�2 dx

� �ðN�2Þ=N

; ð5:21Þ

for all uACN

c ðRNÞ:
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Remark. The constant ek;0 is optimal in the sense that inequality (5.21) fails for

e ¼ ek;0: Also the exponent ð2N � 2Þ=ðN � 2Þ in (5.21) is sharp in the sense that it

cannot be replaced by a smaller exponent. The proof of these two facts is rather
involved; see [FT] for similar arguments. We do not use these facts in the sequel.

Proof. The proof follows closely that of Theorem 3.4, so we only give a sketch of it.

The positivity of ek;0 follows from Lemma 2.5(i), yielding ek;0XK�1mBððN � 2þ
kÞ=2Þ: Now let eAð0; ek;0Þ be fixed and let *c be the radially symmetric solution to the

problem

D *cþ Vk;e
*c ¼ 0; jxj41;

@ *c
@n

¼ � N � 2þ k

2
*c; jxj ¼ 1;

normalized so that *c ¼ 1 on fjxj ¼ 1g: The function

cðxÞ ¼ jxj�ðN�2Þ=2
X

�1=2
1 yX

�1=2
k ; jxjo1;

*cðxÞ; jxj41

(
ð5:22Þ

is then C1; radially symmetric and a direct computation which uses (5.18) shows that

Dcþ Vk;ec ¼ 0 in RN : Exactly as in Theorem 3.4, c is positive, radially symmetric

and has a positive limit as r-þN: We then prove (5.21) in the case where u is
radially symmetric, using once again Proposition 3.1. The validity of (5.21) for

general uACN

c ðRNÞ follows from Lemma 3.3. &

We finally prove a refined version of Theorem 3.5. Let us fix a nonnegative,
continuous and radially symmetric function g on B ¼ fjxjo1g; such that

gðxÞpK jxj�2þs; jxjo1;

for some s;K40: Further for e40 we define

V̂k;eðxÞ ¼
egðxÞ; jxjo1;

N�2
2

� �2jxj�2 þ 1

4jxj2
Pk

i¼1 Y 2
1 ðjxjÞyY 2

i ðjxjÞ; jxj41:

(

We then have

Theorem 5.2. Assume that koN � 2 and define

%ek;0 ¼ inf
uAH1ðBÞ

R
B
jruj2 dx þ N�2�k

2

R
@B

u2 dSR
B

gu2 dx
:
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Then %ek;040 and for eAð0; %ek;0Þ there holds

Z
RN

jruj2 dx �
Z
RN

V̂k;eu
2 dxXc

Z
RN

juj2N=ðN�2ÞðỸ1yỸkþ1Þ
2N�2
N�2 dx

� �ðN�2Þ=N

;

ð5:23Þ

for all uACN

c ðRNÞ:

Proof. We omit the proof, which is similar to that of Theorem 3.5. &

5.2. Refined heat kernel estimates

In Theorems 4.2 and 4.3 we obtained heat kernel estimates for operators �D� V

where VðxÞ ¼ ððN � 2Þ=2Þ2jxj�2 near the origin. We shall now prove estimates for
�D� V � V1; with V1 also critical near the origin. In Theorems 5.3 and 5.4 we

consider the cases O bounded and O ¼ RN ; respectively.
For kX1 and mp1=4 we define

V
m
k ðxÞ ¼

N�2
2

� �2
jxj2

þ 1

4jxj2
Xk�1
i¼1

X 2
1yX 2

i þ m

jxj2
X 2
1yX 2

k ; xAO ð5:24Þ

ðXi ¼ Xiðjxj=DÞ; D ¼ supO jxjÞ and consider the operator H ¼ �D� V
m
k subject to

Dirichlet boundary conditions on @O: In [FT, Proposition 7.2] the Hardy–Sobolev
inequality

Z
O
ðjruj2 � V

1=4
k u2Þ dx

Xc

Z
O
juj2N=ðN�2ÞðX1yXkþ1Þ

2N�2
N�2 dx

� �ðN�2Þ=N

; uACN

c ðOÞ; ð5:25Þ

was obtained. Let b be the largest solution of bð1� bÞ ¼ m and define

fk;bðxÞ ¼ jxj�
N�2
2 X

�1=2
1 yX

�1=2
k�1 X

�b
k : ð5:26Þ

Using (5.18) we verify that Dfk;b þ V
m
k fk;b ¼ 0 and hence the change of variables

u ¼ fk;bw yields

Z
O
ðjruj2 � V

m
k u2Þ dx ¼

Z
O
jrwj2f2

k;b dx ð5:27Þ

for all wACN

c ðOÞ: We have
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Theorem 5.3. Let O be bounded, 1pkoN � 2; and 0omp1=4: The heat kernel of

H ¼ �D� V
m
k satisfies the estimate

Kðt; x; yÞoct�N=2fk;bðxÞfk;bðyÞ; t40; x; yAO; ð5:28Þ

here V
m
k is given by (5.24) and fk;bðxÞ by (5.26).

Proof. For the proof we distinguish two cases.
(1) Case mo1=4: For wACN

c ðOÞ we have

Z
O
jrwj2f2

k;b dx ¼
Z
O
jruj2 dx �

Z
O

V
m
k u2 dx

X c

Z
O
ðjruj2 � V

1=4
k�1u

2Þ dx

� �
ðby ð5:16ÞÞ

X c

Z
O
juj2N=ðN�2ÞðX1yXkÞ

2N�2
N�2 dx

� �ðN�2Þ=N

ðby ð5:25ÞÞ

¼ c

Z
O
jwj2N=ðN�2Þjxj�NðX1yXk�1ÞX

2N�2�2Nb
N�2

k dx

 !ðN�2Þ=N

X c

Z
O
jwj2N=ðN�2Þf2

k;b dx

� �ðN�2Þ=N

:

This implies that Kfk;b
ðt; x; yÞoct�N=2 and (5.28) follows.

(2) Case m ¼ 1=4: By [FT, Lemma 7.5] the following Sobolev inequality
holds:

Z
O
jrwj2jxj2�N

X�1
1 yX�1

k dx

Xc

Z
O
jwj

2N
N�2jxj�N

X1yXkX
2N�2
N�2

kþ1 dx

� �ðN�2Þ=N

; wACN

c ðOÞ:

This implies in particular

Z
O
jrwj2f2

k;b dxXc

Z
O
jwj

2N
N�2f2

k;b dx

� �ðN�2Þ=N

; wACN

c ðOÞ

and hence we have the uniform estimate Kfk;b
ðt; x; yÞoct�N=2 as required. &

We finally have the following consequence of Theorem 5.1, where we retain the
notation of that theorem:
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Theorem 5.4. Let 1pkoN � 2; and eAð0; ek;0Þ with ek;0 given by (5.20). the heat

kernel of the operator �D� Vk;e satisfies

Kðt; x; yÞoct�N=2cðxÞcðyÞ; t40; x; yARN ;

here Vk;e is given by (5.19) and cðxÞ by (5.22).

Proof. The result follows directly from Theorem 5.1 by means of (4.6). &

Acknowledgments

We thank the referee for useful comments and suggestions. We acknowledge
partial support by the RTN European network Fronts–Singularities, HPRN-CT-
2002-00274.

References

[A] R.A. Adams, Sobolev spaces, Academic Press, New York, 1975.

[Ad] Adimurthi, Hardy–Sobolev inequality in H1ðOÞ and its applications, Comm. Contemp. Math.

4 (2002) 409–434.

[AE] Adimurthi, M.J. Esteban, An improved Hardy-Sobolev inequality in W 1;p and its application to

Schrödinger operator, Nonlinear Differential Equations Appl., to appear.

[BG] P. Baras, J. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284

(1984) 121–139.

[BV] H. Brezis, J.-L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ.

Comp. Madrid 10 (1997) 443–469.
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