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We became aware of a gap in the proof of Theorems 2(iii) and 6(ii) of [1] in
the case where a = 1 − 2s ∈ (0, 1). We thank Arka Mallcik for bringing this to
our attention. We used there an L1 weighted trace Sobolev inequality, namely the
displayed formula below relation (5.10) in page 143, which is valid for a ∈ (−1, 0].
We provide a proof for the case a ∈ (0, 1) using instead the following weighted
trace inequality:

Theorem 1. Let a ∈ (0, 1) and 1 + a < p < n + 1. Then, there exists a positive
constant c such that for all u ∈ C∞

0 (Rn × R) with u(x, 0) = 0, x ∈ Rn−,

∫ +∞

0

∫
Rn+

ya |∇u|pdxdy ≥ c

(∫
Rn+

|u(x, 0)| pn
n+1+a−p dx

) n+1+a−p
n

.

Proof. We start with the standard trace inequality

∫
Rn+

|u(x, 0)|dx ≤
∫ +∞

0

∫
Rn+

|∇u|dxdy.

For q := pn
n+1+a−p > p, we have
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∫
Rn+

|u(x, 0)|qdx ≤ q
∫ +∞

0

∫
Rn+

|u|q−1|∇u|dxdy

= q
∫ +∞

0

∫
Rn+

y
a
p |∇u| y− a

p |u|q−1dxdy

≤ q

(∫ +∞

0

∫
Rn+

ya |∇u|pdxdy
) 1

p

(∫ +∞

0

∫
Rn+

y− a
p−1 |u| (q−1)p

p−1 dxdy

) p−1
p

.

The result then follows using the Sobolev inequality of Corollary 2, page 139 of
[2]. ��

We will also use the following variant of Lemma 11 of [1]:

Lemma 1. Let A > 0, B + 1 > 0 and A + B + 2 > 2Γ > 0. Then, there exists
a positive constant c such that for all v ∈ C∞

0 (Rn × R) the following inequality
holds true:

c
∫ +∞

0

∫
Rn+

yA−1x Bn

(x2n + y2)Γ − 1
2

|v|dxdy ≤
∫ +∞

0

∫
Rn+

yAx1+B
n

(x2n + y2)Γ
|∇v|dxdy. (1)

The same result holds true if we replace Rn+ by Rn− with |xn| in place of xn.
Proof. Using polar coordinates and the fact that, for θ ∈ (0, π

2 ),

A(sin θ)A−1(cos θ)B =(1+ A +B)(sin θ)A+1(cos θ)B+ d

dθ
((sin θ)A(cos θ)1+B),

we get

A
∫ π

2

0
(sin θ)A−1(cos θ)B |v|dθ ≤ (1 + A + B)

∫ π
2

0
(sin θ)1+A(cos θ)B |v|dθ

+
∫ π

2

0
(sin θ)A(cos θ)1+B |vθ |dθ. (2)

We next multiply (2) by r A+B+1−2Γ and then integrate over (0,∞) to get

A
∫ +∞

0

∫ +∞

0

yA−1x Bn

(x2n + y2)Γ − 1
2

|v|dxndy

≤ (1 + A + B)

∫ +∞

0

∫ +∞

0

y1+Ax Bn

(x2n + y2)Γ + 1
2

|v|dxndy

+
∫ +∞

0

∫ +∞

0

yAx1+B
n

(x2n + y2)Γ
|∇v|dxndy.

We conclude as in the proof of Lemma 11 of [1]. ��
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Using the previous lemma with |v|p in place of |v| we easily get

Lemma 2. Let A > 0, B + 1 > 0, A + B + 2 > 2Γ > 0 and p ≥ 1. Then,
there exists a positive constant c such that for all v ∈ C∞

0 (Rn × R) the following
inequality holds true:

∫ +∞

0

∫
Rn+

yA+p−1x p+B
n

(x2n + y2)Γ + p−1
2

|∇v|pdxdy ≥ c
∫ +∞

0

∫
Rn+

yA−1x Bn

(x2n + y2)Γ − 1
2

|v|pdxdy.

The same result holds true if we replace Rn+ by Rn− with |xn| in place of xn.
We are now ready to give the proof of Theorem 2 part (iii) in case a ∈ (0, 1).

Proof of Theorem 2(iii). Our aim is to establish

∫ +∞

0

∫
Rn+

yaφ2|∇w|2dxdy ≥ c

(∫
Rn+

|(φw)(x, 0)| 2n
n+a−1 dx

) n+a−1
n

, (3)

where φ is given by Lemma 2 of [1]. We recall that φ(x, 0) = 1, x ∈ Rn+.
For a ∈ (0, 1) and p such that

1 + ap

2
< p < 2 ⇔ 2

2 − a
< p < 2,

Theorem 1 gives

∫ +∞

0

∫
Rn+

y
ap
2 |∇u|pdxdy ≥ c

(∫
Rn+

|u(x, 0)|Qdx
) p

Q

, (4)

with

Q = 2pn

2(n + 1) − p(2 − a)
> p.

We apply (4) to u = φθv, with

θ = 1 + (2 − p)(n + 1)

p(n + a − 1)
> 1,

to obtain
∫ +∞

0

∫
Rn+

y
ap
2 φθp|∇v|pdxdy + θ p

∫ +∞

0

∫
Rn+

y
ap
2 |∇φ|pφ(θ−1)p|v|pdxdy

≥ c

(∫
Rn+

|v(x, 0)|Qdx
) p

Q

. (5)
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We next show that in the above inequality the second term of the left-hand side is
controlled by the first one. Using the asymptotics of φ from Lemma 2 of [1] this is
equivalent to

∫ +∞

0

∫
Rn+

y
ap
2 xθp

n

(x2n + y2)
(2+a)θp

4

|∇v|pdxdy

≥ c
∫ +∞

0

∫
Rn+

y− ap
2 x (θ−1)p

n

(x2n + y2)σ
|v|pdxdy, (6)

withσ = (2−a)p
4 + (2+a)(θ−1)p

4 . To prove thiswe applyLemma2with A = 1− ap
2 >

0, B = (θ − 1)p, and Γ = 1
2 + σ = 1

2 + (2−a)p
4 + (2+a)(θ−1)p

4 , noting that

A + B + 2 − 2Γ = (2 − p)(2 − a)(n − 1)

2(n + a − 1)
> 0.

We thus get

∫ +∞

0

∫
Rn+

y
ap
2 +p(1−a)xθp

n

(x2n + y2)
p
2 (1−a)+ 2+a

4 θp
|∇v|pdxdy

≥ c
∫ +∞

0

∫
Rn+

y− ap
2 x (θ−1)p

n

(x2n + y2)σ
|v|pdxdy,

which implies (6), since y
(y2+x2n )1/2

< 1. From (5) and (6) we have

∫ +∞

0

∫
Rn+

y
ap
2 φθp|∇v|pdxdy ≥ c

(∫
Rn+

|v(x, 0)|Qdx
) p

Q

. (7)

We set v = |w|θ , we note that θQ = 2n
n+a−1 , and then apply Hölder’s inequality to

get

c

(∫
Rn+

|w(x, 0)| 2n
n+a−1 dx

) p
Q

≤
∫ +∞

0

∫
Rn+

y
ap
2 φ p|∇w|p (φ|w|)p(θ−1)dxdy

≤
(∫ +∞

0

∫
Rn+

yaφ2|∇w|2dxdy
) p

2

(∫ +∞

0

∫
Rn+

(φ|w|) 2(n+1)
n+a−1 dxdy

) 2−p
2

.

We conclude using the Sobolev inequality (5.10) of [1]. ��
Similarly, we have
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Proof of Theorem 6(ii). This time our aim is to establish

∫ +∞

0

∫
Rn

yaφ2|∇w|2dxdy ≥ c

(∫
Rn+

|w(x, 0)| 2n
n+a−1 dx

) n+a−1
n

, (8)

where φ is now given by Lemma 4 of [1]. Working as in the previous proof with
the same choices of θ , p and Q we arrive at the analogue of (5), which is

∫ +∞

0

∫
Rn

y
ap
2 φθp|∇v|pdxdy + θ p

∫ +∞

0

∫
Rn

y
ap
2 |∇φ|pφ(θ−1)p|v|pdxdy

≥ c

(∫
Rn+

|v(x, 0)|Qdx
) p

Q

. (9)

We again need to control the second term of the left-hand side by the first one. To
establish this we split the integrals over Rn+ and Rn−. Using the asymptotics of φ

from Lemma 4 of [1], the required inequality on Rn+ reads

∫ +∞

0

∫
Rn+

y
ap
2

(x2n + y2)
aθp
4

|∇v|pdxdy

≥ c
∫ +∞

0

∫
Rn+

y− ap
2

(x2n + y2)σ
|v|pdxdy, (10)

with σ = (2−a)p
4 + a(θ−1)p

4 . To prove this we apply Lemma 2with A = 1− ap
2 > 0,

B = 0, and Γ = 1
2 + σ = 1

2 + (2−a)p
4 + a(θ−1)p

4 , noting that

A + B + 2 − 2Γ = (2 − p)(2 − a)(n − 1)

2(n + a − 1)
> 0.

We thus get

∫ +∞

0

∫
Rn+

y
ap
2 +p(1−a)x p

n

(x2n + y2)
p
2 (1−a)+ p

2 + aθp
4

|∇v|pdxdy

≥ c
∫ +∞

0

∫
Rn+

y− ap
2

(x2n + y2)σ
|v|pdxdy,

which implies (10).
The required inequality over Rn− is equivalent to

∫ +∞

0

∫
Rn−

y
ap
2 +(1−a)θp

(x2n + y2)
(2−a)θp

4

|∇v|pdxdy

≥ c
∫ +∞

0

∫
Rn−

y− ap
2 +(1−a)(θ−1)p

(x2n + y2)
(2−a)θp

4

|v|pdxdy.
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This is provedonce again by applyingLemma2with A = 1− ap
2 +(1−a)(θ−1)p >

0, B = 0, and Γ = 1
2 + (2−a)θp

4 , noting that

A + B + 2 − 2Γ = (2 − p)(2 − a)(n − 1)

2(n + a − 1)
> 0.

To conclude we argue as in the previous case of the Proof of Theorem 2(iii). We
omit further details. ��
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