Correction to: Sharp Trace
 Hardy-Sobolev-Maz'ya Inequalities and the Fractional Laplacian

Stathis Filippas, Luisa Moschini \& Achilles Tertikas
Communicated by F. Lin

Correction to: Arch. Rational Mech. Anal. 208 (2013) 109-161 https://doi.org/10.1007/s00205-012-0594-4

We became aware of a gap in the proof of Theorems 2(iii) and 6(ii) of [1] in the case where $a=1-2 s \in(0,1)$. We thank Arka Mallcik for bringing this to our attention. We used there an L^{1} weighted trace Sobolev inequality, namely the displayed formula below relation (5.10) in page 143, which is valid for $a \in(-1,0]$. We provide a proof for the case $a \in(0,1)$ using instead the following weighted trace inequality:

Theorem 1. Let $a \in(0,1)$ and $1+a<p<n+1$. Then, there exists a positive constant c such that for all $u \in C_{0}^{\infty}\left(\mathbf{R}^{n} \times \mathbf{R}\right)$ with $u(x, 0)=0, x \in \mathbf{R}_{-}^{n}$,

$$
\int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{a}|\nabla u|^{p} \mathrm{~d} x \mathrm{~d} y \geq c\left(\int_{\mathbf{R}_{+}^{n}}|u(x, 0)|^{\frac{p n}{n+1+a-p}} \mathrm{~d} x\right)^{\frac{n+1+a-p}{n}}
$$

Proof. We start with the standard trace inequality

$$
\int_{\mathbf{R}_{+}^{n}}|u(x, 0)| \mathrm{d} x \leq \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}}|\nabla u| \mathrm{d} x \mathrm{~d} y .
$$

For $q:=\frac{p n}{n+1+a-p}>p$, we have

$$
\begin{aligned}
\int_{\mathbf{R}_{+}^{n}}|u(x, 0)|^{q} \mathrm{~d} x \leq & q \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}}|u|^{q-1}|\nabla u| \mathrm{d} x \mathrm{~d} y \\
= & q \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{\frac{a}{p}}|\nabla u| y^{-\frac{a}{p}}|u|^{q-1} \mathrm{~d} x \mathrm{~d} y \\
\leq & q\left(\int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{a}|\nabla u|^{p} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{1}{p}} \\
& \left(\int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{-\frac{a}{p-1}}|u|^{\frac{(q-1) p}{p-1}} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{p-1}{p}} .
\end{aligned}
$$

The result then follows using the Sobolev inequality of Corollary 2, page 139 of [2].

We will also use the following variant of Lemma 11 of [1]:
Lemma 1. Let $A>0, B+1>0$ and $A+B+2>2 \Gamma>0$. Then, there exists a positive constant c such that for all $v \in C_{0}^{\infty}\left(\mathbf{R}^{n} \times \mathbf{R}\right)$ the following inequality holds true:

$$
\begin{equation*}
c \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{A-1} x_{n}^{B}}{\left(x_{n}^{2}+y^{2}\right)^{\Gamma-\frac{1}{2}}}|v| \mathrm{d} x \mathrm{~d} y \leq \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{A} x_{n}^{1+B}}{\left(x_{n}^{2}+y^{2}\right)^{\Gamma}}|\nabla v| \mathrm{d} x \mathrm{~d} y . \tag{1}
\end{equation*}
$$

The same result holds true if we replace \mathbf{R}_{+}^{n} by \mathbf{R}_{-}^{n} with $\left|x_{n}\right|$ in place of x_{n}.
Proof. Using polar coordinates and the fact that, for $\theta \in\left(0, \frac{\pi}{2}\right)$,
$A(\sin \theta)^{A-1}(\cos \theta)^{B}=(1+A+B)(\sin \theta)^{A+1}(\cos \theta)^{B}+\frac{\mathrm{d}}{\mathrm{d} \theta}\left((\sin \theta)^{A}(\cos \theta)^{1+B}\right)$, we get

$$
\begin{align*}
A \int_{0}^{\frac{\pi}{2}}(\sin \theta)^{A-1}(\cos \theta)^{B}|v| \mathrm{d} \theta \leq & (1+A+B) \int_{0}^{\frac{\pi}{2}}(\sin \theta)^{1+A}(\cos \theta)^{B}|v| \mathrm{d} \theta \\
& +\int_{0}^{\frac{\pi}{2}}(\sin \theta)^{A}(\cos \theta)^{1+B}\left|v_{\theta}\right| \mathrm{d} \theta \tag{2}
\end{align*}
$$

We next multiply (2) by $r^{A+B+1-2 \Gamma}$ and then integrate over $(0, \infty)$ to get

$$
\begin{aligned}
& A \int_{0}^{+\infty} \int_{0}^{+\infty} \frac{y^{A-1} x_{n}^{B}}{\left(x_{n}^{2}+y^{2}\right)^{\Gamma-\frac{1}{2}}}|v| \mathrm{d} x_{n} \mathrm{~d} y \\
& \quad \leq(1+A+B) \int_{0}^{+\infty} \int_{0}^{+\infty} \frac{y^{1+A} x_{n}^{B}}{\left(x_{n}^{2}+y^{2}\right)^{\Gamma+\frac{1}{2}}}|v| \mathrm{d} x_{n} \mathrm{~d} y \\
& \quad+\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{y^{A} x_{n}^{1+B}}{\left(x_{n}^{2}+y^{2}\right)^{\Gamma}}|\nabla v| \mathrm{d} x_{n} \mathrm{~d} y
\end{aligned}
$$

We conclude as in the proof of Lemma 11 of [1].

Using the previous lemma with $|v|^{p}$ in place of $|v|$ we easily get
Lemma 2. Let $A>0, B+1>0, A+B+2>2 \Gamma>0$ and $p \geq 1$. Then, there exists a positive constant c such that for all $v \in C_{0}^{\infty}\left(\mathbf{R}^{n} \times \mathbf{R}\right)$ the following inequality holds true:
$\int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{A+p-1} x_{n}^{p+B}}{\left(x_{n}^{2}+y^{2}\right)^{\Gamma+\frac{p-1}{2}}}|\nabla v|^{p} \mathrm{~d} x \mathrm{~d} y \geq c \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{A-1} x_{n}^{B}}{\left(x_{n}^{2}+y^{2}\right)^{\Gamma-\frac{1}{2}}}|v|^{p} \mathrm{~d} x \mathrm{~d} y$.
The same result holds true if we replace \mathbf{R}_{+}^{n} by \mathbf{R}_{-}^{n} with $\left|x_{n}\right|$ in place of x_{n}.
We are now ready to give the proof of Theorem 2 part (iii) in case $a \in(0,1)$.
Proof of Theorem 2(iii). Our aim is to establish

$$
\begin{equation*}
\int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{a} \phi^{2}|\nabla w|^{2} \mathrm{~d} x \mathrm{~d} y \geq c\left(\int_{\mathbf{R}_{+}^{n}}|(\phi w)(x, 0)|^{\frac{2 n}{n+a-1}} \mathrm{~d} x\right)^{\frac{n+a-1}{n}} \tag{3}
\end{equation*}
$$

where ϕ is given by Lemma 2 of [1]. We recall that $\phi(x, 0)=1, x \in \mathbf{R}_{+}^{n}$.
For $a \in(0,1)$ and p such that

$$
1+\frac{a p}{2}<p<2 \quad \Leftrightarrow \quad \frac{2}{2-a}<p<2
$$

Theorem 1 gives

$$
\begin{equation*}
\int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{\frac{a p}{2}}|\nabla u|^{p} \mathrm{~d} x \mathrm{~d} y \geq c\left(\int_{\mathbf{R}_{+}^{n}}|u(x, 0)|^{Q} \mathrm{~d} x\right)^{\frac{p}{Q}} \tag{4}
\end{equation*}
$$

with

$$
Q=\frac{2 p n}{2(n+1)-p(2-a)}>p
$$

We apply (4) to $u=\phi^{\theta} v$, with

$$
\theta=1+\frac{(2-p)(n+1)}{p(n+a-1)}>1
$$

to obtain

$$
\begin{align*}
& \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{\frac{a p}{2}} \phi^{\theta p}|\nabla v|^{p} \mathrm{~d} x \mathrm{~d} y+\theta^{p} \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{\frac{a p}{2}}|\nabla \phi|^{p} \phi^{(\theta-1) p}|v|^{p} \mathrm{~d} x \mathrm{~d} y \\
& \quad \geq c\left(\int_{\mathbf{R}_{+}^{n}}|v(x, 0)|^{Q} \mathrm{~d} x\right)^{\frac{p}{Q}} . \tag{5}
\end{align*}
$$

We next show that in the above inequality the second term of the left-hand side is controlled by the first one. Using the asymptotics of ϕ from Lemma 2 of [1] this is equivalent to

$$
\begin{align*}
& \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{\frac{a p}{2}} x_{n}^{\theta p}}{\left(x_{n}^{2}+y^{2} \frac{(2+a) \theta p}{4}\right.}|\nabla v|^{p} \mathrm{~d} x \mathrm{~d} y \\
& \quad \geq c \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{-\frac{a p}{2}} x_{n}^{(\theta-1) p}}{\left(x_{n}^{2}+y^{2}\right)^{\sigma}}|v|^{p} \mathrm{~d} x \mathrm{~d} y \tag{6}
\end{align*}
$$

with $\sigma=\frac{(2-a) p}{4}+\frac{(2+a)(\theta-1) p}{4}$. To prove this we apply Lemma 2 with $A=1-\frac{a p}{2}>$ $0, B=(\theta-1) p$, and $\Gamma=\frac{1}{2}+\sigma=\frac{1}{2}+\frac{(2-a) p}{4}+\frac{(2+a)(\theta-1) p}{4}$, noting that

$$
A+B+2-2 \Gamma=\frac{(2-p)(2-a)(n-1)}{2(n+a-1)}>0
$$

We thus get

$$
\begin{aligned}
& \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{\frac{a p}{2}+p(1-a)} x_{n}^{\theta p}}{\left(x_{n}^{2}+y^{2}\right)^{\frac{p}{2}(1-a)+\frac{2+a}{4} \theta p}}|\nabla v|^{p} \mathrm{~d} x \mathrm{~d} y \\
& \quad \geq c \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{-\frac{a p}{2}} x_{n}^{(\theta-1) p}}{\left(x_{n}^{2}+y^{2}\right)^{\sigma}}|v|^{p} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

which implies (6), since $\frac{y}{\left(y^{2}+x_{n}^{2}\right)^{1 / 2}}<1$. From (5) and (6) we have

$$
\begin{equation*}
\int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{\frac{a p}{2}} \phi^{\theta p}|\nabla v|^{p} \mathrm{~d} x \mathrm{~d} y \geq c\left(\int_{\mathbf{R}_{+}^{n}}|v(x, 0)|^{Q} \mathrm{~d} x\right)^{\frac{p}{Q}} \tag{7}
\end{equation*}
$$

We set $v=|w|^{\theta}$, we note that $\theta Q=\frac{2 n}{n+a-1}$, and then apply Hölder's inequality to get

$$
\begin{aligned}
c\left(\int_{\mathbf{R}_{+}^{n}} \left\lvert\, w(x, 0)^{\frac{2 n}{n+a-1}} \mathrm{~d} x\right.\right)^{\frac{p}{Q}} \leq & \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{\frac{a p}{2}} \phi^{p}|\nabla w|^{p}(\phi|w|)^{p(\theta-1)} \mathrm{d} x \mathrm{~d} y \\
\leq & \left(\int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} y^{a} \phi^{2}|\nabla w|^{2} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{p}{2}} \\
& \left(\int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}}(\phi|w|)^{\frac{2(n+1)}{n+a-1}} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{2-p}{2}}
\end{aligned}
$$

We conclude using the Sobolev inequality (5.10) of [1].
Similarly, we have

Proof of Theorem 6(ii). This time our aim is to establish

$$
\begin{equation*}
\int_{0}^{+\infty} \int_{\mathbf{R}^{n}} y^{a} \phi^{2}|\nabla w|^{2} \mathrm{~d} x \mathrm{~d} y \geq c\left(\int_{\mathbf{R}_{+}^{n}}|w(x, 0)|^{\frac{2 n}{n+a-1}} \mathrm{~d} x\right)^{\frac{n+a-1}{n}} \tag{8}
\end{equation*}
$$

where ϕ is now given by Lemma 4 of [1]. Working as in the previous proof with the same choices of θ, p and Q we arrive at the analogue of (5), which is

$$
\begin{align*}
& \int_{0}^{+\infty} \int_{\mathbf{R}^{n}} y^{\frac{a p}{2}} \phi^{\theta p}|\nabla v|^{p} \mathrm{~d} x \mathrm{~d} y+\theta^{p} \int_{0}^{+\infty} \int_{\mathbf{R}^{n}} y^{\frac{a p}{2}}|\nabla \phi|^{p} \phi^{(\theta-1) p}|v|^{p} \mathrm{~d} x \mathrm{~d} y \\
& \geq c\left(\int_{\mathbf{R}_{+}^{n}}|v(x, 0)|^{Q} \mathrm{~d} x\right)^{\frac{p}{Q}} \tag{9}
\end{align*}
$$

We again need to control the second term of the left-hand side by the first one. To establish this we split the integrals over \mathbf{R}_{+}^{n} and \mathbf{R}_{-}^{n}. Using the asymptotics of ϕ from Lemma 4 of [1], the required inequality on \mathbf{R}_{+}^{n} reads

$$
\begin{align*}
& \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{\frac{a p}{2}}}{\left(x_{n}^{2}+y^{2}\right)^{\frac{a \theta p}{4}}}|\nabla v|^{p} \mathrm{~d} x \mathrm{~d} y \\
& \quad \geq c \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{-\frac{a p}{2}}}{\left(x_{n}^{2}+y^{2}\right)^{\sigma}}|v|^{p} \mathrm{~d} x \mathrm{~d} y \tag{10}
\end{align*}
$$

with $\sigma=\frac{(2-a) p}{4}+\frac{a(\theta-1) p}{4}$. To prove this we apply Lemma 2 with $A=1-\frac{a p}{2}>0$, $B=0$, and $\Gamma=\frac{1}{2}+\sigma=\frac{1}{2}+\frac{(2-a) p}{4}+\frac{a(\theta-1) p}{4}$, noting that

$$
A+B+2-2 \Gamma=\frac{(2-p)(2-a)(n-1)}{2(n+a-1)}>0
$$

We thus get

$$
\begin{aligned}
& \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{\frac{a p}{2}+p(1-a)} x_{n}^{p}}{\left(x_{n}^{2}+y^{2}\right)^{\frac{p}{2}(1-a)+\frac{p}{2}+\frac{a \theta p}{4}}|\nabla v|^{p} \mathrm{~d} x \mathrm{~d} y} \\
& \geq c \int_{0}^{+\infty} \int_{\mathbf{R}_{+}^{n}} \frac{y^{-\frac{a p}{2}}}{\left(x_{n}^{2}+y^{2}\right)^{\sigma}}|v|^{p} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

which implies (10).
The required inequality over \mathbf{R}_{-}^{n} is equivalent to

$$
\begin{aligned}
& \int_{0}^{+\infty} \int_{\mathbf{R}_{-}^{n}} \frac{y^{\frac{a p}{2}+(1-a) \theta p}}{\left(x_{n}^{2}+y^{2}\right)^{\frac{(2-a) \theta p}{4}}}|\nabla v|^{p} \mathrm{~d} x \mathrm{~d} y \\
& \quad \geq c \int_{0}^{+\infty} \int_{\mathbf{R}_{-}^{n}} \frac{y^{-\frac{a p}{2}+(1-a)(\theta-1) p}}{\left(x_{n}^{2}+y^{2}\right)^{\frac{(2-a) \theta p}{4}}}|v|^{p} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

This is proved once again by applying Lemma 2 with $A=1-\frac{a p}{2}+(1-a)(\theta-1) p>$ $0, B=0$, and $\Gamma=\frac{1}{2}+\frac{(2-a) \theta p}{4}$, noting that

$$
A+B+2-2 \Gamma=\frac{(2-p)(2-a)(n-1)}{2(n+a-1)}>0
$$

To conclude we argue as in the previous case of the Proof of Theorem 2(iii). We omit further details.

References

1. Filippas, S., Moschini, L., Tertikas, A.: Sharp trace Hardy-Sobolev-Maz'ya inequalities and the fractional Laplacian. Arch. Ration. Mech. Anal. 208, 109-161 (2013)
2. Maz'ya, V.: Sobolev spaces with pplications to elliptic partial differential equations, second, revised and augmented edition. Springer, Heidelberg, 2011

> STATHIS FiLIPPAS
> Department of Mathematics and Applied Mathematics,
> University of Crete, 71409 Heraklion, Greece. e-mail: filippas@uoc.gr
> and
> LuISA Moschini
> Dipartimento di Scienze di Base ed Applicate per 1’Ingegneria,
> University of Rome "La Sapienza",
> 00185 Rome, Italy.
> e-mail: luisa.moschini@ @bai.uniroma1.it
> and
> AchiLLEs TERTIKAS
> Department of Mathematics and Applied Mathematics,
> University of Crete,
> 71409 Heraklion, Greece.
> e-mail: tertikas@uoc.gr
(Received December 6, 2017 / Accepted May 19, 2018)
Published online June 8, 2018
© Springer-Verlag GmbH Germany, part of Springer Nature (2018)

