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Abstract

We consider problem (1.1), (1.2) below. Using formal arguments based on matched asymp-
totic expansion techniques, we give a detailed description of radially symmetric, sign-changing
solutions, which blow up at x = 0 and t = T < ∞, for space dimension N = 3, 4, 5, 6. These
solutions exhibit fast blow up, that is, they satisfy: limt↑T (T − t)

1
p−1 u(0, t) = ∞. In contrast,

radial solutions that are positive and decreasing behave as in the subcritical case for any N ≥ 3.
This last result is extended in the case of exponential nonlinearity and N = 2.

1 Introduction

The purpose of this work is to describe at a formal level some mechanisms of singularity
formation for the semilinear parabolic equation:

ut = ∆u + |u|p−1u; u(x, 0) = u0(x), x ∈ RN , t > 0, (1.1)

with critical power nonlinearity, that is:

p =
N + 2
N − 2

, N ≥ 3. (1.2)

The unfolding of singularities in solutions of evolution equations is a subject of both
practical and theoretical interest, and has been extensively dealt with in the literature.
References include analysis of high activation energy asymptotics in combustion theory
(Blythe & Crighton 1989, Dold 1985), shrinking of surfaces evolving by mean curvature
flow (Angenent & Velázquez 1995, Gage & Hamilton 1987), aggregation phenomena
in microorganism colonies (Keller & Segel 1970, Herrero & Velázquez 1996), breakup
of free surface flows (Eggers 1997), and pinchoff of droplets under motion by surface
diffusion (Bernoff et al 1998), to mention but a few.

Because of its apparent simplicity, problem (1.1), has been widely considered as a
testfield for methods intended to unravel the behaviour of solutions near singularity
formation. Indeed, it is a well known fact that solutions of (1.1) with p > 1, may blow
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up (i.e. become unbounded) in finite time, even if they start from bounded and smooth
data at t = 0. Currently there exist rather detailed descriptions of the asymptotics of
nonnegative blowing up solutions of (1.1) in the case of subcritical nonlinearities, that
is, when 1 < p < N+2

N−2 if N ≥ 3 or p > 1 if N = 1, 2; cf. Giga & Kohn (1985, 1987),
Filippas & Kohn (1992), Velázquez (1992, 1993). However, little seems to be known
when condition (1.2) holds.

Let us denote by T the time at which the solution becomes unbounded. A crucial
first step towards the study of u(x, t) near blow up is the following estimate that was
derived by Giga & Kohn (1987) for u0(x) ≥ 0 and 1 < p < N+2

N−2 :

|u(x, t)| ≤ C(T − t)−
1

p−1 for some C > 0 and 0 < t < T. (1.3)

Notice that (1.3) is a natural upper bound, since it corresponds to the behaviour
exhibited by solutions of the first order PDE:

ut = |u|p−1u,

that can be explicitly integrated along characteristics. As a matter of fact, it used to
be widely assumed that (1.3) should hold for all solutions of (1.1), regardless of the
precise values of the parameter p > 1 and the space dimension N . It was therefore a
bit surprising to find that (1.3) may actually fail when p and N are large enough and
u0(x) ≥ 0, as shown by Herrero & Velázquez (1994). When (1.3) fails we say that there
is fast blow up.

On the other hand, it is worth to be mentioned that estimate (1.3) has been obtained
by Giga & Kohn (1987), even in the case of sign changing solutions, under the rather
strange restriction that 1 < p < 3N+8

3N−4 if N ≥ 2 or p > 1 if N = 1. Actually, it is
not clear whether there exist sign changing solutions of (1.1) with p > 3N+8

3N−4 , for which
(1.3) fails. The purpose of this work is to show that sign changing solutions of (1.1)
exhibiting fast blow up do exist, if we take p as in (1.2).

More precisely we provide a rather detailed description of special solutions of prob-
lem (1.1), (1.2), for N = 3, 4, 5, 6 that satisfy:

lim
t→T−

(T − t)
1

p−1 u(0, t) = +∞. (1.4)

A remarkable feature of the solutions we construct is that, although they are unbounded
near the singularity as t → T with t < T , they are bounded near the blow up point (in
our case the origin) at t = T .

Since the critical exponent p = N+2
N−2 is not covered by the results of Giga & Kohn

(1987), it is natural to wonder if it would be possible to obtain nonnegative solutions
of (1.1), (1.2) for which (1.3) fails. We provide a (partial) negative answer to this
question, since we prove that nonnegative monotonically decreasing radial solutions of
(1.1), (1.2) satisfy (1.3). Let us note that this is in clear contrast with the situation for
large values of p and N , described by Herrero & Velázquez (1994), where the existence
of radial positive and decreasing fast blowing up solutions is shown. For completeness
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we also show that there is no fast blow up in the two dimensional case, when the power
nonlinearity in (1.1) is replaced by eu.

The method we use is based on matched asymptotic expansions techniques. A
crucial idea consists in deriving a suitable equation for a characteristic length that,
roughly speaking, describes the size of an inner layer where solutions grow unbounded.
Solving this equation eventually allows us to derive the precise asymptotics of solutions
as blow up is approached.

Once the desired behaviours have been identified, a rigorous proof can be provided
by means of suitable topological fixed point arguments. At the technical level, this
last is by no means a simple task (see for instance Herrero & Velázquez (1996, 1997)
for examples of application of this method in other types of problems). To keep this
work within reasonable bounds, we have decided to focus here in the question of de-
riving the most essential information concerning the blow up profiles. A rigorous proof
corresponding to the case N = 3 will appear elsewhere.

We conclude this Introduction by describing the plan of the paper. A few pre-
liminary results are gathered in Section 2 below. Section 3 is then concerned with
describing the blow up mechanism corresponding to space dimension N = 3. The case
N = 4 makes the content of Section 4, whereas dimensions N ≥ 5 are dealt with in
Section 5. The behaviours described in these Sections correspond to solutions which
are radial and exhibit changes of sign. Positive and radially decreasing solutions are
then examined in Section 6. A short Section 7 is then devoted to the case of exponen-
tial nonlinearity appearing in the reaction term. The paper then concludes with three
Appendices: In Appendix A we recall some properties of Laguerre and Hermite poly-
nomials. In Appendix B we derive the asymptotics of an auxiliary function appearing
in Section 3. Finally, some (indicative) drawings of the blow up structures derived in
Sections 3-5 are presented in Appendix C.

Acknowledgements: Work by MAH and JJLV has been supported by DGICYT
grant PB96-0614. SF has been supported by European Union Contract CT941260.
The authors are thankful to Prof. R. V. Kohn for a number of useful suggestions.

2 Preliminaries

In order to study the blowing up solutions of (1.1) we introduce, as usual, similarity
variables as follows:

y = x(T − t)−1/2, τ = − log(T − t), Φ(y, τ) = (T − t)
1

p−1 u(x, t).

In this set of variables Φ exists for all times τ > 0 and satisfies the equation:

Φτ = ∆Φ− y · ∇Φ
2

− Φ
p− 1

+ |Φ|p−1Φ. (2.1)
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The linear operator

A ≡ ∆− y · ∇
2

− I

p− 1
,

has been repeatedly used in the analysis of blowing up solutions of (1.1). It is defined
(and is self-adjoint) in the Hilbert space:

L2
w(IRN ) = {f ∈ L2

loc(IR
N ) : ‖f‖2 =

∫

IRN
|f(y)|2e−|y|2/4dNy < ∞}.

We denote the inner product in this space by:

< f, g >=
∫

IRN
f(y)g(y)e−|y|

2/4dNy. (2.2)

The Sobolev spaces Hk
w(IRN ), k = 1, 2, . . ., are then defined in the usual way (cf.

Herrero & Velázquez 1997). We restrict our analysis to radial functions, and hence it
is natural to take as domain of the operator A the linear space:

D(A) = {f ∈ L2
w(IRN ) : f(x) = f(|x|) for a.e. x ∈ IRN} ∩H2

w(IRN ).

By standard results it follows easily that A has a discrete sequence of eigenvalues given
by:

λk = −k − 1
p− 1

, k = 0, 1, 2, . . . .

The corresponding eigenfunctions are given by:

φk(y) = Ck,NL
(N−2

N )
k (

y2

4
), k = 0, 1, 2 . . . ,

where L
(a)
k (x) stands for the modified Laguerre polynomials and the constants Ck,N

are so chosen in order to normalize the φk’s, so that ‖φk‖ = 1, for any k; cf Appendix
A.

The key idea in the mechanism of singularity formation that we will describe here
is the following. Whereas for subcritical p (i.e. when 1 < p < N+2

N−2) equation (1.1)
has no positive bounded steady states (cf. Gidas & Spruck 1981), in contrast, for the
critical value p = N+2

N−2 equation (1.1) admits a positive steady solution of the form:

ū(x) =

(
1 +

|x|2
N(N − 2)

)− 2
p−1

=

(
1 +

|x|2
N(N − 2)

)−N−2
2

, (2.3)

and it is possible to obtain a one-parameter family of steady solutions of (1.1) by means
of the rescaling ūλ(x) = λ

− 2
p−1 ūλ(x

λ). Notice that equation (2.1) resembles strongly
the original equation (1.1) if |y| ¿ 1 and Φ is large, as can be seen from dimensional
arguments. The key idea then is to assume that Φ behaves as ūλ(τ)(y) in the region
|y| ¿ 1 for some λ(τ) → 0. We remark that the relation between the upper bound on
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the blowup rate (1.2) and the absence of steady states for (1.1) was already noticed
by Giga & Kohn (1987). On the other hand, the construction in Herrero & Velázquez
(1994) of solutions that blowup with a rate faster than (1.2) for large values of p and
N , was based in an essential way on the existence of stable steady states of (1.1), an
idea which has also been pursued in Herrero & Velázquez (1996).

Consider now the stationary version of (1.1), namely:

∆u + |u|p−1u = 0.

When linearizing in that equation about its solution ū, we obtain:

∆w + pūp−1w = 0. (2.4)

A simple calculation shows that a solution of (2.4) is given by:

φ̄0(x) =
x · ∇ū(x)

2
+

ū(x)
p− 1

.

After a straightforward calculation we find that:

φ̄0(x) =

(
1 +

|x|2
N(N − 2)

)−N
2

(
N − 2

4
− |x|2

4N

)
. (2.5)

From (2.3) and (2.5) we easily derive the following asymptotics:

ū(x) ∼ (N(N − 2))
N−2

2 |x|−(N−2)
(

1 + O(
1
|x|2 )

)
, x → +∞,

φ̄0(x) ∼ −(N(N − 2))
N
2

4N
|x|−(N−2)

(
1 + O(

1
|x|2 )

)
, x → +∞.

We are now ready to begin our study, starting from the case N = 3.

3 Space dimension N=3

Here we will present the arguments leading to the results in the case N = 3. Since
many of the ideas to be described are the same even when N ≥ 4, we will not use the
specific values N = 3, p = 5 until we really need to do so. On the other hand, we shall
only deal with radial solutions. For notational convenience, however, we shall continue
to use the symbols ∆, ∇, . . . instead of their radial counterparts.

As we mentioned earlier, we will assume that Φ is approximated by the solution of
the steady state (cf (2.3)), suitably rescaled, when |y| ¿ 1. Let us denote by ε(τ) a
characteristic length, which is a priori unknown, that will be a measure of the size of
the region where Φ can be approximated in such a way. In order to understand what
happens for |y| ¿ 1, we introduce a new set of variables (inner variables) as follows:

ξ = y/ε(τ), Φ(y, τ) = ε
− 2

p−1 (τ)G(ξ, τ). (3.1)
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Using (3.1) in (2.1), we obtain:

ε2(τ)Gτ = ∆G + |G|p−1G + σ(τ)
(

ξ · ∇G

2
+

G

p− 1

)
, (3.2)

with:
σ(τ) ≡ 2ε(τ)ε̇(τ)− ε2(τ),

and where all spatial derivatives are computed with respect to the new variable ξ.
By assumption ε(τ) → 0 as τ → +∞. We will also assume that |ε̇(τ)| ≤ Cε(τ),

whence σ(τ) → 0, as τ → +∞. It is then natural to expect that solutions of (3.2) will
behave to the lowest order as:

G(ξ, τ) ∼ ū(ξ), as τ → +∞. (3.3)

Notice that in principle we could only expect that G(ξ, τ) would approach to a steady
state of (1.3) (as we have seen in Section 2, there is a one parameter family of them).
It is possible, however, to select the particular function ū(ξ) in (2.3) by changing if
needed the definition of ε(τ). In fact we can assume that ε(τ) is defined by means of
the formula:

Φ(0, τ) = ε
− 2

p−1 (τ). (3.4)

We need to compute the next order correction to G(ξ, τ) (cf (3.3)). To this end we
introduce a new function φ defined by:

φ(ξ, τ) = G(ξ, τ)− ū(ξ). (3.5)

Notice that (3.4) implies that:
φ(0, τ) = 0. (3.6)

On the other hand, formally linearising (3.2) about ū we obtain to the lowest order:

ε2φτ = ∆φ + pūp−1φ + σ(τ)
(

ξ · ∇ū

2
+

ū

p− 1

)
. (3.7)

By assumption |φ| → 0, as τ → +∞. We then expect from (3.7) the following asymp-
totics for φ:

φ(ξ, τ) ∼ σ(τ)H(ξ), as τ → +∞, (3.8)

where H(ξ) solves the equation:

∆H + pūp−1H +
(

ξ · ∇ū

2
+

ū

p− 1

)
= 0, (3.9)

complemented with the following initial conditions:

H(0) = 0, H ′(0) = 0.

The first condition follows from (3.6), whereas the second one is a consequence of the
radial symmetry of the solutions under consideration.
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So far, no choice of the space dimension N has been made. We now make use of the
special values N = 3, p = 5. The reason for doing so, is that the asymptotic behaviour
of H, that will play an important role in the sequel, depends crucially on the dimension
N . In the three dimensional case the asymptotics of H is given by (cf Appendix B):

H(ξ) ∼
√

3
8

ξ + O(1), as |ξ| → +∞.

Taking into account (3.5), (3.8) we obtain the following expansion for G:

G(ξ, τ) ∼ ū(ξ) + σ(τ)H(ξ) + . . . .

Using the asymptotics of ū(ξ) and H(ξ) for |ξ| À 1 we have:

G(ξ, τ) ∼
√

3
|ξ| +

√
3σ(τ)
8

|ξ|+ . . . , as |ξ| → +∞, τ → +∞.

Returning then to the original variables (cf (3.1)) we obtain the following behaviour:

Φ(y, τ) ∼
√

3ε1/2(τ)
|y| +

√
3σ(τ)

8ε3/2(τ)
|y|+ . . . , as τ → +∞, ε(τ) ¿ |y| ¿ 1. (3.10)

It follows from its definition that σ(τ) is roughly of order ε2(τ). The expansion (3.10)
then suggests that Φ becomes of order ε1/2(τ) in the region |y| ∼ 1, whence it is very
small there. This observation also hints at neglecting the term |Φ|p−1Φ in (2.1) (away
from the origin) since p > 1. It is clear, however, that we cannot discard it in the region
close to ξ = 0. It is then natural to replace |Φ|p−1Φ in (2.1) by a term concentrated
near the origin. More precisely, we set:

|Φ(y, τ)|p−1Φ(y, τ) ∼ c(τ)δ(y), as τ → +∞,

where δ(y) is a Dirac mass located at the origin and c(τ) denotes its strength. This
last is uniquely determined by requiring that:

∫

IRN
|Φ(y, τ)|p−1Φ(y, τ)dNy =

∫

IRN
c(τ)δ(y)dNy = c(τ).

The term in the left hand side can be estimated in the following manner. Taking into
account (3.1), (3.3) and (1.3) we write:

∫

IRN
|Φ(y, τ)|p−1Φ(y, τ)dNy ∼ ε

− 2p
p−1

∫

IRN
ūp(

y

ε
)dNy = ε

N−2
N

∫

IRN
ūp(ξ)dNξ

= −ε
N−2

N lim
R→+∞

∫

|ξ|≤R
∆ū(ξ)dNξ = ε

N−2
N lim

R→+∞
|∇ū(R)|KN−1R

N−1.

where KN−1 = 2πN/2/Γ(N/2) is the area of the unit sphere in IRN , and Γ(z) denotes
here the standard Euler’s function. Since ū is explicit (cf (2.3)) we compute:

|∇ū(R)| ∼ (N − 2)
N
2 N

N−2
2 R−(N−1), R → +∞.
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Thus, we finally have:

c(τ) =
2π

N
2 (N − 2)

N
2 N

N−2
2

Γ(N
2 )

ε
N−2

2 (τ). (3.11)

In the case at hand where N = 3, we readily see that:

c(τ) = 4π
√

3ε1/2(τ).

We are thus led to the following linear approximation of (2.1), valid for regions away
from the origin, that is when |y| À ε(τ):

Φτ = ∆Φ− y · ∇Φ
2

− Φ
4

+ 4π
√

3ε1/2(τ)δ(y), τ À 1. (3.12)

Notice that the approximation (3.12) is rather natural, in the sense that the leading
term in the right hand side of (3.10) clearly indicates the presence of a Dirac mass at
the origin with strength exactly equal to 4π

√
3ε1/2(τ).

We emphasize that we are interested in those solutions of (3.12) which behave as in
(3.10) as |y| → 0. As a matter of fact, (3.10) plays the role of the matching condition
between the inner and outer solutions.

To analyse equation (3.12), we make the following ansatz:

Φ(y, τ) ∼ ε1/2(τ)Q(y), τ → +∞. (3.13)

If we plug this into (3.12) we obtain the following equation for Q:

λQ = ∆Q− y · ∇Q

2
− Q

4
+ 4π

√
3δ(y), (3.14)

where:
λ =

1
2

(
lim

τ→+∞
ε̇(τ)
ε(τ)

)
< 0.

The matching condition (3.10) becomes:

Q(y) =
√

3
|y| − β|y|+ . . . , |y| → 0, (3.15)

where:

β = −
√

3
8

(
lim

τ→+∞
σ(τ)
ε2(τ)

)
=
√

3
8

(1− 4λ).

We need to complement problem (3.14), (3.15) with some growth condition on Q as
|y| → +∞. Equation (3.14) admits two different asymptotics as |y| → +∞. Solutions of
(3.14) have an algebraic growth in the first case, and they grow faster than exponentially
in the second situation. This last behaviour is incompatible with the original function
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u(x, t) being bounded in the region |x| ∼ 1, and for that reason it will be excluded. We
then require:

Q(y) is algebraically bounded for |y| À 1. (3.16)

We thus end up with problem (3.14)-(3.16). We next show that this is an eigenvalue
problem that can be solved only for a particular sequence of values of λ.

Taking into account (3.14) and the radial symmetry of Q we write:

Q′′ +
(

2
y
− y

2

)
Q′ −

(
λ +

1
4

)
= 0, y > 0.

In view of (3.15) we change variables by setting:

Q(y) =
W (y)

y
.

We then obtain the following equation for W:

W ′′ − 1
2
yW ′ +

(
1
4
− λ

)
W = 0, y > 0.

If we make the further change of variables z = y/2 we derive:

W ′′ − 2zW ′ + (1− 4λ)W = 0, y > 0, (3.17)

which is the standard Hermite equation (cf. Szego 1978, p. 106). We then conclude
that W (and therefore Q) has algebraic growth if and only if:

1− 4λ = 2n ⇒ λ =
1
4
− n

2
, n = 0, 1, 2, . . . . (3.18)

For these values of λ the corresponding solutions of (3.17) are given (up to a multi-
plicative constant) by the Hermite polynomials Hn(z). Since however we are interested
in radial solutions of (3.14), we need to exclude the odd values of n. In addition, we
exclude the case n = 0 since it contradicts our basic assumption that ε(τ) decreases to
zero (cf. the definition of λ in (3.14)). Thus, we retain the following solutions of (3.18):

λ =
1
4
− k, Wk(z) = CkH2k(z), k = 1, 2, . . . .

We still need to check the matching condition at the origin (3.15), which in our new
variables is equivalent to:

Wk(z) = CkH2k(z) ∼
√

3− 4
√

3
8

(1− 4λ)z2 =
√

3(1− 2kz2), z → 0. (3.19)

If we compute the first two terms of H2k(z) (cf. Appendix A) we see that:

H2k(z) =
(−1)k(2k)!

k!
(1− 2kz2 + . . .),
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in complete agreement with (3.19) if we choose:

Ck =
(−1)kk!

√
3

(2k)!
, k = 1, 2, . . . . (3.20)

Returning to our original variables, we see that we have found a sequence of λk’s
to each of which there corresponds a solution of the problem (3.14)-(3.16), namely:

λk =
1
4
− k, Qk(y) = Ck

H2k(
y
2 )

y
, k = 1, 2, . . . . (3.21)

From the definition of λ we have that ε̇(τ) ≈ 2λkε(τ) for τ À 1, and consequently:

ε(τ) ∼ Ae(
1
2
−2k)τ , k = 1, 2, . . . , A > 0, τ À 1. (3.22)

It is easy to check that the ε(τ) just found satisfy all our previous assumptions.
Once ε(τ) has been calculated we can obtain a detailed description of the asymp-

totics of u(x, t) near the origin. Thus, for |x| ∼ A(T − t)2k (or, equivalently |y| ∼ ε(τ))
we compute as t → T−:

u(x, t) = (T − t)−1/4Φ(y, τ) = (T − t)−1/4ε−1/2(τ)G(ξ, τ)

∼ A−1/2ekτ ū(ξ) ∼ A−1/2(T − t)−kū

(
x

A(T − t)2k

)
. (3.23)

In particular we have:

u(0, t) ∼ 1√
A

(T − t)−k, k = 1, 2, . . . , t → T−.

Note that this estimate actually shows the occurrence of fast blow up. We next derive
the final time profile of u:

u(x, t) = (T − t)−1/4Φ(y, τ) = eτ/4ε1/2(τ)Qk(y) ∼
√

Ae(
1
2
−k)τQk(xe

τ
2 ).

Using the fact that:

Qk(y) = Ck
H2k(

y
2 )

y
∼ Ck|y|2k−1, y → +∞,

and taking the limit as τ → +∞ we eventually obtain:

u(x, T ) ∼ Ck

√
A |x|2k−1, |x| → 0, (3.24)

with Ck as in (3.20). It is interesting to notice that the function u(x, T ) is not singular
at the origin. On the contrary, it has a zero at x = 0. Moreover, if k ≥ 2 the function
u(x, T ) is even differentiable at x = 0. This is a key characteristic feature of this blowup
mechanism: the region where u grows unbounded becomes more and more concentrated
near the origin, and in the limit as t → T− this region disappears. In fact, using our
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previous results we can obtain more precise asymptotics of u(x, t) as t → T−. Indeed,
from (3.23) we easily see that:

∫

IR3
u6(x, t)d3x ≈

∫

IR3
ū6(ξ)d3ξ =

3
√

3π2

4
.

Taking also into account (3.24), the following (weak) convergence result follows:

u6(x, t) ⇀ K1δ(x) + K2|x|6(2k−1), as t → T−,

where:

K1 =
3
√

3π2

4
, K2 = C6

kA3.

We note that because of (3.13), (3.21) and standard properties of the Hermite
polynomials, the solutions just constructed change sign at least once for k ≥ 1. Some
indicative drawings of u(x, t) near blow up for k = 1, 2, 3 are given in Figures 1, 2, 3
respectively in Appendix C.

We conclude this Section with a brief remark on stability. We expect the solutions
just discussed to be unstable. At the formal level, this can be justified as follows. To
begin with, it is readily seen from (3.18) (with n = 0 there) that (3.12) has a solution
which grows exponentially in τ . Such a type of instability can be dispensed with by
means of a change in the corresponding blow up time (actually, this is the rationale
behind our former assumption n ≥ 1 in (3.18)). However, the steady state equation
that describes the inner region turns out to be irremediably unstable. For instance,
this can be seen from the fact that, as τ → +∞, equation (3.7) is dominated by:

ε2φτ = ∆φ + pūp−1φ = Lφ.

The corresponding stationary equation Lφ = 0 has at least one positive eigenvalue,
since the operator L has a zero eigenvalue whose eigenfunctions change sign (these last
are given by ∂ūλ

∂λ , where ūλ is the rescaled function defined right after (2.3)). This
instability cannot be avoided by a shift of the blow up point, because of the radiality
of the problem under consideration.

Note that we have described in detail the behaviour of our blowing up solutions
locally around the origin. To actually obtain these solutions, one should start from
initial values u0(r) which are close to the expected singularity profile near r = 0. The
behaviour of u0(r) for r À 1 is largely irrelevant. For instance requiring u0(r) → 0 as
r → +∞, algebraically, will do. The reader is referred to Herrero & Velázquez 1996 for
details of a similar argument.

4 Space dimension N = 4

The basic strategy remains the same as in the previous Section. As before, we use in
the inner region the approximation:

G(ξ, τ) = ū(ξ) + σ(τ)H(ξ) + . . . .

11



However, a major difference with the three dimensional case stems from the fact that
the asymptotics of the function H(ξ) turns out to be (cf. Appendix B):

H(ξ) = 2 log ξ −
(

10
3

+ log 8
)

+ O(
log2 ξ

ξ2
), ξ → +∞. (4.1)

Using the fact that Φ(y, τ) = ε−1G(ξ, τ), the asymptotics of ū and (4.1), we can write
the analogue of (3.10):

Φ(y, τ) ∼ 8ε(τ)
|y|2 − 2σ(τ) log ε(τ)

ε(τ)
+

2σ(τ) log y

ε(τ)
− σ(τ)

ε(τ)

(
10
3

+ log 8
)

+ . . . , (4.2)

for τ À 1. As in the case N = 3 we deduce that Φ → 0 in the region |y| ∼ 1.
There is however a major difference with the three dimensional case, since it is clear
from (4.2) that the leading term in the region |y| ∼ 1 is −2σ(τ) log ε(τ)

ε(τ) . For this reason
the analysis in this case is rather different from the one performed in the previous
Section. In particular we do not have to consider an eigenvalue problem analogous to
(3.14)-(3.16). Instead, we will use the spectral properties of the operator A discussed
in Section 2.

As we have previously done, we approximate the Φ-equation in the outer region
(that is when |y| À ε(τ)), by the following linear equation:

Φτ = ∆Φ− y · ∇Φ
2

− Φ
2

+ 32π2ε(τ)δ(y) = Aφ + 32π2ε(τ)δ(y), τ À 1. (4.3)

Notice that the strength of the Dirac mass in (4.3) is given by (3.11) since we just use
the same argument. We want to obtain solutions of (4.3) that match with the inner
solution G(ξ, τ), that is, solutions that near the origin behave as in (4.2). To this end
we write:

Φ(y, τ) = a(τ)φl(y) + Ω(y, τ), < φl, Ω >= 0, (4.4)

where φl(y), l = 1, 2, . . ., is one of the eigenfunctions of the linear operator A described
in Section 2, and the inner product < · > has been defined in (2.2). The idea behind
the decomposition (4.4) is the following: we may formally expand the solution of (4.3)
in its Fourier modes as:

Φ(y, τ) =
∞∑

l=0

al(τ)φl(y).

We now make the assumption that the large time behavior of Φ is driven by one of the
eigenvalues of A, say the l-eigenvalue. By distinguishing then the l eigenfunction from
the rest of the terms we arrive at (4.4). We then expect to obtain a matching of the
term a(τ)φl(y) with the term 2σ(τ) log ε(τ)

ε(τ) .
Using (4.3) and (4.4), we easily obtain the following equations for a(τ) and Ω(y, τ)

respectively:

ȧ(τ) = −(l +
1
2
)a + 32π2ε(τ) < δ, φl > . (4.5)

12



Ωτ = ∆Ω− y · ∇Ω
2

− 1
2
Ω + 32π2ε(τ)(δ(y)− φl(y) < δ, φl >). (4.6)

Taking into account the definition of σ(τ), we see that the term 2σ(τ) log ε(τ)
ε(τ) is of or-

der ε log ε. On the other hand, the term a(τ)φl(y) is driven by the l-eigenvalue of A

and therefore behaves like e−(l+ 1
2
)τ with some algebraic corrections (cf. (4.5)). Con-

sequently, if the terms a(τ)φl(y) and 2σ(τ) log ε(τ)
ε(τ) are to match, we should expect that

ε behaves roughly as e−(l+ 1
2
)τ up to some algebraic factors. We then define for conve-

nience:
ε(τ) = e−(l+ 1

2
)τg(τ), (4.7)

where g(τ) is expected to behave algebraically. In addition we assume that |ġ(τ)| ¿
|g(τ)|.

We now compute the asymptotics of Ω. Making the ansatz:

Ω(y, τ) ∼ ε(τ)Q(y), τ → +∞,

and using (4.7), we find that Q satisfies for τ À 1:

−(l +
1
2
)Q = ∆Q− y · ∇Q

2
− 1

2
Q + 32π2(δ(y)− φl(y) < δ, φl >). (4.8)

By Fredholm’s theory, equation (4.8) has a unique solution Q (algebraically bounded
as |y| → +∞) satisfying < Q, φl >= 0. Since < δ, φl >= φl(0), the source term in
(4.8) is equal to 32π2δ(y)− Γφl(y), with:

Γ = 32π2φl(0). (4.9)

We can then compute the asymptotics of Q near y = 0. (We can even write down the
solution of (4.8)). We finally obtain:

Q(y) ∼ 8
y2
− 4(l + 1) log y + Dl + O(1), y → 0, (4.10)

where Dl is a constant uniquely determined by the orthogonality condition < Q,φl >
= 0. Returning now to the Φ function, and taking into account (4.4) and our previous
calculations, we end up with the following behaviour for τ À 1:

Φ(y, τ) ∼ 8ε(τ)
y2

+ a(τ)φl(0)− 4ε(τ)(l + 1) log y + Dlε(τ) + . . . , y → 0. (4.11)

Using (4.7) and the definition of σ we easily see that 2σ(τ)
ε(τ) = 4ε(τ)(l + 1) as τ → +∞.

Comparing then (4.11) and (4.2) we see that the first and third terms match. To obtain
then a complete matching we require:

−2σ(τ) log ε(τ)
ε(τ)

− σ(τ)
ε(τ)

(
10
3

+ log 8
)

= a(τ)φl(0) + Dlε(τ). (4.12)
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This equation should be complemented with the equation (4.5) satisfied by a(τ). If we
put:

a(τ) = e−(l+ 1
2
)τh(τ), (4.13)

and take into account (4.7), we can write system (4.5), (4.12) as:

ḣ(τ) = Γg(τ), (4.14)
(
−(1 + 2l)τ + 2 log g +

10
3

+ log 8
)

(ġ − 2(l + 1)g) = −(φl(0)h + Dlg), (4.15)

with Γ as in (4.9). Recalling our assumption |ġ| ¿ |g| as τ → +∞, and keeping the
most important terms in (4.15), we obtain:

g(τ) = − φl(0)
2(1 + 2l)(1 + l)τ

h(τ).

If we plug in this in (4.14) we obtain an ODE for h that we can solve, so that eventually
we deduce:

h(τ) ∼ A

τνl
, τ → +∞, (4.16)

where A is an arbitrary constant, and:

νl =
16π2φ2

l (0)
(1 + 2l)(1 + l)

=
1

1 + 2l
, (4.17)

where in the last equality we used the fact that φ2
l (0) = l+1

16π2 for N = 4; cf. Appendix
A. We then have that:

g(τ) ∼ A

(2l + 1)(2l + 2)
· 1
τνl+1

,

and finally, taking into account (4.7) and (4.16):

ε(τ) ∼ A

(2l + 1)(2l + 2)
e−(l+ 1

2
)τ τ−

2l+2
2l+1 , τ → +∞. (4.18)

We can then go back to the original variables u(x, t) and compute near the origin
(|y| ∼ ε(τ)):

u(x, t) = (T − t)−1/2Φ(y, τ) ∼ (T − t)−1/2ε−1(τ)ū(ξ), τ → +∞.

In particular using our previous results we arrive at:

u(0, t) ∼ (2l + 1)(2l + 2)
A

(T − t)−(l+1) | log(T − t)| 2l+2
2l+1 , l = 0, 1, . . . , t → T−.

We next derive the final time profile. In the region |y| À 1, |y| fixed, τ → +∞, we
have the asymptotics:

Φ(y, τ) ∼ a(τ)φl(y) ∼ −A (−1)l Cl,4 e−(l+ 1
2
)τ

τνl l!

(
y2

4

)l

,
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where we used (4.13), (4.16) and the fact that φl(z) ∼ Cl,4(−1)l

l! zl as z → +∞; cf.
Appendix A. We now argue as in Herrero & Velázquez (1997). Given x close to zero,
let us take t̄ such that |x| = B(T − t̄)1/2, where B is a large enough and fixed number.
We then obtain the approximation:

u(x, t̄) ∼ − A (−1)l Cl,4

| log(T − t̄)|νl

|x|2l

4l l!
,

which is valid in regions |x| ∼ B(T − t̄)1/2 with B > 0 fixed (but large). Since u(x, t)
solves (1.1), and only experiences changes at distances O((T − t̄)1/2) in times of order
O((T − t̄)), u remains basically constant in these regions for subsequent times, and
therefore:

u(x, T ) ∼ −A (−1)l Cl,4

| log( |x|
2

B )|νl

|x|2l

4l l!
, |x| ¿ 1.

Taking the limit as |x| → 0, we can neglect the constant B, and thus deduce the final
profile:

u(x, T ) ∼ −A (−1)l Cl,4

| log(|x|2)|νl

|x|2l

4l l!
, |x| → 0,

or, if we use the values of Cl,4 = 1
4π
√

l+1
and νl (see (4.17)):

u(x, T ) ∼ A(−1)l+1

2
1

2l+1 4l+1 l!π
√

l + 1

|x|2l

| log |x|| 1
2l+1

, |x| → 0.

If l ≥ 1 the profiles just obtained are essentially the same as in the case N = 3,
except for the presence of a logarithmic correction. However the case l = 0 is different,
since it yields a peaked and negative profile at time t = T . This behaviour is shown in
Figure 4, Appendix C.

Finally, we remark that, arguing as in the case N = 3, one readily sees that the
solutions just obtained are expected to be unstable when l ≥ 1. Such arguments,
however, do not apply when l = 0, and this case remains undecided from the point of
view of the stability. A similar situation occurs for the cases N ≥ 5 to be discussed
below.

5 Space dimension N ≥ 5

For dimensions N ≥ 5 the asymptotics of H(ξ) is different from before. Namely (cf.
Appendix B):

H(ξ) =
N(N − 2)BN

4
+ O(

1
ξ
), ξ → +∞, (5.1)

where BN is a positive constant given in (B.4). We then obtain the following inner
matching condition for ε ¿ |y| ¿ 1:

Φ(y, τ) ∼ N(N − 2)BN

4
2εε̇− ε2

ε
N−2

2

+ (N(N − 2))
N−2

2
ε

N−2
2

|y|N−2
+ . . . τ → +∞. (5.2)
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Notice that the leading term now comes from the constant term of H(ξ).
In the region |y| ∼ 1 we can approximate the Φ-equation (2.1) by:

Φτ = ∆Φ− y · ∇Φ
2

− Φ
p− 1

+ c(τ)δ(y), τ → +∞, (5.3)

where c(τ) is given by (3.11).
In view of (5.2) we easily see that in the region |y| ∼ 1, the contribution of the

Dirac mass in (5.3) is negligible to the lowest order. We then expect that the most
important contribution in this region will come from the homogeneous part. As in
the case N = 4, that will be driven by some eigenvalue of the operator A, say the
l-eigenvalue. In conclusion, to the leading order, the asymptotics of Φ in the outer
region is given by:

Φ(y, τ) ∼ −Ae
−(l+ 1

p−1
)τ

φl(y) + . . . , τ → +∞, A > 0. (5.4)

The minus sign has been chosen in order to be in agreement with (5.2) (notice that
φl(0) > 0). Equating then the leading terms of (5.2) and (5.4), we obtain the following
matching condition:

N(N − 2)BN

4
2εε̇− ε2

ε
N−2

2

= −Ae
−(l+ 1

p−1
)τ

φl(0), A > 0. (5.5)

Case N = 5

In the special case N = 5, p = 7/3, we can write (5.5) as:

d

dτ
(ε1/2)− 1

4
ε1/2 = −Aφl(0)

15B5
e−(l+ 3

4
)τ ,

whence:
ε(τ) ∼ Ke−(2l+ 3

2
)τ , τ → +∞,

with:

K =
A2φ2

l (0)
152B2

5(l + 1)2
.

Arguing as in the previous cases, we now obtain:

u(0, t) ∼ K−3/2(T − t)−(l+1), l = 0, 1, . . . , t → T−.

The final time profile is given by:

u(x, T ) ∼ −ACl,N (−1)l

4l l!
|x|2l, |x| → 0.

Of particular interest is the case l = 0, since in the limit, u(x, T ) becomes flat and
negative, see Figure 5, Appendix C.
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Case N = 6

In the special case N = 6, p = 2, if we try to satisfy the matching condition (5.5), we see
that the left hand side is of order one whereas the right hand side decays exponentially
fast for l = 0, 1, 2, . . .. Therefore such a matching is impossible. Let us rewrite (5.2) as
follows:

Φ(y, τ) ∼ 6B6

(
2
ε̇

ε
− 1

)
+ 242 ε2

|y|4 + . . . , τ → +∞. (5.6)

This expansion suggests that in order to obtain a matching, we should look in the outer
region |y| ∼ 1, for a solution of the Φ equation that is of order one (and of negative
sign). We then take as outer solution the constant −(p − 1)−

1
p−1 = −1, which is an

exact solution of the Φ-equation (2.1). The following matching condition follows:

6B6

(
2
ε̇

ε
− 1

)
= −1 ⇒ ε(τ) = Ae

−
(

1
12B6

− 1
2

)
τ
. (5.7)

At this point it is important to know the exact value of the constant B6. Using formula
(B.4) we calculate that B6 = 1/15. Returning now to (5.7) we conclude that:

ε(τ) ∼ Ae−
3
4
τ , A > 0, τ À 1.

As a matter of fact we can obtain a more precise approximation of ε(τ) (including
correction terms) in the following way. Let us recall that in the subcritical case it is
well known that there exist positive and radially symmetric solutions of the Φ-equation,
approaching the constant (p − 1)−

1
p−1 , and for which the following asymptotics hold

(cf. Velázquez 1992 for the exact statement):

Φ(y, τ) ∼ (p− 1)−
1

p−1 +
(p− 1)−

1
p−1

2pτ

(
n− 1

2
|y|2

)
+ o(

1
τ
) = 1 +

1
4τ

(
6− 1

2
|y|2

)
+ o(

1
τ
).

If we then assume that such solutions (with negative sign) continue to exist in our case
as well, we end up with the following matching condition:

6B6

(
2
ε̇

ε
− 1

)
= −1− 3

2τ
+ o(

1
τ
),

from which we obtain:

ε(τ) ∼ Ae−
3
4
ττ−

15
8 , A > 0, τ À 1.

It then follows that:

u(0, t) ∼ A−1(T − t)−1/4| ln(T − t)|−15/8, t → T−,

whereas the final time profile is expected to be the same as in the subcritical case (see
Velázquez 1992 ):

u(x, T ) ∼ −16| ln |x||
|x|2 , |x| → 0.
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Case N ≥ 7

In this case the term (2εε̇−ε2)ε−
N−2

2 (cf. (5.2)) grows with τ . It is not then clear what
an appropriate outer solution might be, that could match with this term. It seems that
new ideas are required in order to understand this situation.

6 Positive and radially decreasing solutions

In this Section we consider blowing up solutions of equation (1.4) that are positive and
radially decreasing. We show that under these assumptions there exists no fast blow
up mechanism. That is, the blow-up rate is the self-similar one:

u(0, t) ≤ C(T − t)−
1

p−1 , C > 0, 0 < t < T. (6.1)

This is done by comparison with suitable self-similar solutions of (1.1) having the same
blowup time T .

To proceed, we set:

y = x(T − t)−1/2, u(x, t) = (T − t)−
1

p−1 Φ(y),

so that Φ satisfies the equation:

∆Φ− y · ∇Φ
2

− Φ
p− 1

+ Φp = 0. (6.2)

Let us denote by Φm the solution of (6.2) satisfying:

Φm(0) = m > 0, Φ
′
m(0) = 0.

We claim that Φm(y) changes sign at a point ym as m → +∞. To see why this happens
let us present a formal argument. To begin with, we change variables by:

ξ = m
p−1
2 y, Φm(y) = mG(y),

so that G satisfies:

∆G−m−(p−1)
(

ξ · ∇G

2
+

G

p− 1

)
+ Gp = 0, G(0) = 1, G′(0) = 0. (6.3)

As m → +∞ we expect that G will approach ū. To obtain a better approximation we
write:

G(ξ) = ū(ξ)−m−(p−1)H(ξ). (6.4)

Plugging this into the G-equation we see that H satisfies to the lowest order:

∆H + pūp−1H + φ̄0 = 0, H(0) = H ′(0) = 0,
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with φ̄0 as in (2.5). Thus, H denotes the same function as in the previous Sections (cf.
(3.8), (4.1),..).

Since the asymptotic behaviour of H depends on the dimension N , let us consider
first the case N = 3. Taking into account (6.4), as well as the asymptotics of ū and H
in the case where N = 3, we readily see that:

G(ξ) ∼
√

3
ξ
−m−4

√
3 ξ

8
, m, ξ → +∞.

Consequently, there exists a point ξm ∼ m2 at which G crosses the ξ -axis. Returning
to the y = m−2ξ variable, we see that Φm(y) crosses the y-axis at a point ym ∼ O(1)
as m → +∞. If we repeat the same argument for N = 4 and N ≥ 5 we see that G(ξ)
and Φm(y) change sign at ξm and ym respectively, where as m → +∞:

ξm = O(m2), ym = O(1), N = 3,

ξm = O(
m√
log m

), ym = O(
1√

log m
), N = 4, (6.5)

ξm = O

(
m

(p−1)2

4

)
, ym = O

(
m

(p−1)(p−3)
4

)
, N ≥ 5.

Notice that when N ≥ 5 we always have that (p− 1)(p− 3) < 0. In conclusion we have
that in all cases Φm(y) crosses the y-axis at a point ym, such that ym < C as m → +∞,
when N = 3, and ym → 0 as m → +∞, for N ≥ 4. Consequently, as m increases, the
function Φm(y) decays very rapidly from the value Φm(0) = m to Φm(ym) = 0.

Returning to the original variables, we have obtained a radially symmetric solution
of (1.1), namely:

um(x, t) = (T − t)−
1

p−1 Φm(y),

such that:
um(0, t) = m(T − t)−

1
p−1 , (6.6)

and um(0, t) crosses the x-axis at ±xm, with xm = ym(T − t)1/2 and ym as in (6.5).
We are now ready to implement the comparison argument. Let u(x, t) be a positive,

radially symmetric and radially decreasing solution of (1.1), which blows up at time T .
By choosing m sufficiently large, we can ensure that um(|x|, t0) (as defined before) and
u(|x|, t0) have exactly two points of intersection in the interval −xm < |x| < xm, at
some fixed time 0 ≤ t0 < T . It then follows by an intersection comparison argument (cf.
for instance, Angenent 1988, Galaktionov & Posashkov 1986) that um(x, t) and u(x, t)
will keep having two points of intersection in (−xm, xm) for all later times t0 ≤ t < T .
In particular it then turns out that:

u(0, t) < um(0, t) = m(T − t)−
1

p−1 , t < T,

which is the upper bound we are looking for.
It is not difficult to make the above result rigorous. As a matter of fact all we need

to prove is that the solution G(ξ,m) of (6.3) does indeed cross the ξ-axis at a point ξm

as given in (6.5). We do this in the following Lemma.
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Lemma 6.1 Let G(ξ, m) be the solution of (6.3). Then, for m large enough, there
exists a point ξm such that G(ξm,m) = 0 and estimates (6.5) hold.

Proof: We will give the proof in the case N = 3, p = 5, the other cases being quite
similar. We set:

φ(ξ, m) = G(ξ,m)− ū(x) + m−4H(ξ), (6.7)

with ū and H as defined before. We will prove that given any positive constant C we
have that:

|φ(ξ, m)| = o(m−4), as m → +∞, uniformly for |ξ| ≤ Cm2. (6.8)

The desired result then follows from (6.7) and (6.8) if we take into account the asymp-
totics of ū and H. To this end we define:

ξ̃m = sup
0≤ξ<+∞

{ξ : |φ(ξ, m)|+ |ξ φξ(ξ,m)| < δm−4}, (6.9)

where δ is a small positive fixed number. We will show that given any constant C > 0,
we have that:

ξ̃m > Cm2, m → +∞. (6.10)

Estimate (6.8) then follows at once from (6.9) and (6.10). To prove (6.10) we will argue
by contradiction. More precisely, assuming in the rest of the proof that:

ξ̃m ≤ Cm2, (6.11)

for some positive constant C, we will contradict the maximality of ξ̃m, defined in (6.9).
To proceed further, we observe that plugging (6.7) in (6.3), and taking into account

the equations satisfied by ū and H, there holds:

∆φ +
(
(ū + φ−m−4H)5 − ū5 + 5m−4ū4H

)
(6.12)

= m−4
(

ξφξ

2
+

φ

4
−m−4 ξHξ

2
−m−4 H

4

)
, φ(0) = φ′(0) = 0.

Using (6.9) and the properties of H we then obtain that, as m → +∞:

∆φ + Q(ξ, m) = O(m−8), 0 ≤ ξ ≤ ξ̃m ≤ Cm2, (6.13)

with:
Q(ξ, m) = (ū + φ−m−4H)5 − ū5 + 5m−4ū4H.

We next estimate Q. If 0 ≤ ξ ≤ R, for some constant R large enough, we have that:

Q(ξ, m) = 5ū4φ + O(m−8), m → +∞.

On the other hand, if R < ξ ≤ ξ̃m ≤ Cm2, using the asymptotics of ū we deduce that:

Q(ξ, m) = 5ū4φ + O(m−8ξ−1), m, ξ → +∞.
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Thus, for 0 < ξ ≤ ξ̃m ≤ Cm2 we have:

∆φ = 5ū4φ + F (ξ,m), φ(0) = φ′(0) = 0, (6.14)

with:

F (ξ,m) ≤ Cm−8

1 + ξ
, m → +∞.

Equation (6.14) can be integrated to yield:

φ(ξ,m) = φ̄0(ξ)
∫ ξ

0

dη

η2φ̄2
0(η)

∫ η

0
λ2φ̄0(λ)F (λ,m)dλ.

Using the estimates on F , we then obtain:

|φ(ξ, m)|+ |ξ φξ(ξ,m)| ≤ Cm−8

1 + ξ
, when m → +∞.

Recalling our assumption 0 ≤ ξ ≤ ξ̃m ≤ Cm2, we then deduce that for ξ in this range:

|φ(ξ,m)|+ |ξ φξ(ξ, m)| ≤ Cm−8ξ ≤ Cm−6 ¿ δm−4, m → +∞,

which contradicts the maximality of ξ̃m. This completes the proof of the Lemma.

7 Exponential nonlinearity

In this Section we consider the following semilinear heat equation with exponential
nonlinearity in space dimension N = 2:

ut = ∆u + eu, in IR2. (7.1)

We will show that solutions of (7.1) that are radially symmetric and decreasing exhibit
no fast blow-up. That is, we will show that:

u(0, t) ≤ − log(T − t) + C, C > 0. (7.2)

The method we use is the same as in the previous Section, where we show the analogous
result for critical power nonlinearities. We start by introducing similarity variables by:

y = x(T − t)−1/2, u(x, t) = − log(T − t) + Φ(y),

so that Φ satisfies:
∆Φ− y · ∇Φ

2
+ eΦ − 1 = 0. (7.3)

We then look for solutions Φε of (7.3) satisfying:

Φε(0) = −2 log ε, Φ
′
ε(0) = 0,
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for some small positive constant ε. Proceeding as before we introduce new variables by
setting:

ξ = y/ε, Φ = −2 log ε + G(ξ),

so that G satisfies the equation:

∆G + eG − ε2
(

ξ · ∇G

2
+ 1

)
= 0, G(0) = G′(0) = 0. (7.4)

As ε tends to zero we (formally) have that G behaves like ū, where ū now solves the
equation:

ū′′ +
ū′

ξ
+ eū = 0, ū(0) = ū′(0) = 0.

The solution of this is then given by:

ū(ξ) = −2 log

(
ξ2

8
+ 1

)
.

To obtain a better approximation of G we set:

G(ξ) = ū(ξ)− ε2H(ξ),

so that H satisfies (to the lowest order):

∆H + eūH +
ξ · ∇ū

2
+ 1 = 0, H(0) = H ′(0) = 0. (7.5)

Equation (7.5) can be studied as in the previous Sections. Then there holds:

H(ξ) ∼ 1
4
ξ2, ξ → +∞.

Summarizing we have that:

Φε(y) = −2 log ε + G(ξ) ∼ −2 log ε− 2 log

(
ξ2

8
+ 1

)
− ε2

4
ξ2, ξ → +∞.

It then follows that Φε(y) changes sign at a point ξε = O(ε−1/2), or equivalently,
ym = O(ε1/2). The rest of the argument is the same as in the previous Section. A
suitable comparison function is now defined by:

uε(x, t) = − log(T − t) + Φε

(
x

(T − t)1/2

)
.

To make the proof rigorous we only need the analogue of Lemma 6.1:

Lemma 7.1 Let G(ξ, ε) be a solution of (7.4). Then, for ε > 0 small enough, there
exists a point ξε = O(ε−1/2) such that:

−2 log ε + G(ξ, ε) = 0.

The proof is quite similar to that of Lemma 6.1 and we therefore omit it.
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Appendix

A. About Laguerre and Hermite polynomials

In order to derive the spectral properties of the operator A, defined in Section 2, let us
study the following problem:

∆φ− y · ∇φ

2
= λφ. (A.1)

Since we are interested in radial functions only, we rewrite (A.1) as:

φ′′ +
(

N − 1
y

− y

2

)
φ′ − λφ = 0.

We next change variables by setting x = y2/4 so that φ satisfies:

xφ′′ +
(

N

2
− x

)
φ′ − λφ = 0.

This equation admits polynomial solutions if and only if λ = −k, k = 0, 1, 2, . . .; cf.
Szego (1978), p. 100. The corresponding solutions are given (up to a multiplicative

constant) by φk(x) = L
(N−2

2 )
k (x), where L

(N−2
2 )

k (x) denotes the modified Laguerre
polynomials, which are given by:

L
(a)
k (x) = x−aex dk

dxk

(
xa+ke−x

)
, a > −1.

The L
(a)
k ’s given above satisfy the orthogonality conditions:

∫ ∞

0
e−xxaL(a)

n (x)L(a)
m (x)dx =

Γ(a + n + 1)
n!

δn,m, (A.2)

where δn,m = 0 if n 6= m and δn,n = 1, and:

L
(a)
k (0) =

(
k + a

k

)
, L

(a)
k (x) ∼ (−1)k

k!
xk, x → +∞.

The radial eigenfunctions of A are then given by:

φk(y) = Ck,NL
(N−2

2 )
k (

y2

4
), k = 0, 1, . . . .

We next select the normalization constants Ck,N in order to have ‖φk‖ = 1. Namely
we impose:

∫

IRN
C2

k,N

(
L

(N−2
2 )

k

(
y2

4

))2

e−
y2

4 dNy = 1.
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Because of the radial symmetry we write:

dNy = KN−1y
N−1dy, KN−1 =

2πN/2

Γ(N/2)
.

We next change variables by setting x = y2/4, so that yN−1dy = 2(4x)
N−2

2 dx. Thus
we have:

1 = 2KN−1C
2
k,N4

N−2
2

∫ ∞

0
e−xx

N−2
2

(
L

(N−2
2 )

n (x)
)2

dx = 2N−1KN−1C
2
k,N

Γ(N
2 + k)
k!

,

where in the last equality the orthogonality condition (A.2) has been taken into account.
Hence we derive:

C2
k,N =

Γ(N
2 )k!

2NπN/2Γ(N
2 + k)

. (A.3)

It is also easy to compute φk(0):

φk(0) = Ck,NL
(N−2

2 )
n (0) = Ck,N

(
k + N−2

2
k

)
.

We next recall a few things about Hermite polynomials (cf. Szego 1978, p. 106).
Consider the ODE:

W
′′ − 2xW

′
+ 2nW = 0.

This equation admits algebraically bounded solutions if and only if n = 0, 1, 2, . . .
and the corresponding solutions are (up to a multiplicative constant) the Hermite
polynomials denoted by Hn(x). They are given by the formula:

Hn(x) = (−1)nex2 dn

dxn
e−x2

,

or alternatively,
Hn(x)

n!
=

[ν/2]∑

ν=0

(−1)ν

ν!
(2x)n−2ν

(n− 2ν)!
.

Using this second representation we compute the first few terms of H2k(x):

H2k(x) =
(−1)k(2k)!

k!

(
1− 2kx2 +

24k(k − 1)x4

4!
+ . . .

)
. (A.4)

Concerning its behavior at infinity we have that:

Hn(x) ∼ (2x)n, x → +∞.

We finally note for completeness that Hermite polynomials can be reduced to Laguerre
polynomials with the parameter a = ±1

2 .
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B. Asymptotics of H(ξ)

Here we will compute the asymptotics of H(ξ) as ξ → +∞ for several values of the
space dimension N . Let us recall that H(ξ) satisfies equation (3.9), which because of
the radial symmetry is written as:

H
′′
(ξ) +

N − 1
ξ

H
′
(ξ) + pūp−1(ξ)H(ξ) + φ̄0(ξ) = 0, H(0) = H ′(0) = 0.

with φ̄0 defined by (2.5). This equation is a linear nonhomogeneous ODE of which we
know a solution of the corresponding homogeneous part, namely φ̄0(ξ) (cf Section 2).
Consequently we look for H in the form H = φ̄0f . Plugging this into the H-equation
we obtain after some straightforward calculations that f is given by:

H = φ̄0f, f(ξ) = −
∫ ξ

0

dη

ηN−1φ̄2
0(η)

∫ η

0
λN−1φ̄2

0(λ)dλ. (B.1)

We also recall that:

φ̄0(ξ) ∼ −(N(N − 2))
N
2

4N
|ξ|−(N−2)(1 + O(|ξ|−2)), ξ → +∞.

In space dimension N = 3 we just use the asymptotics of φ̄0 and after some easy
calculations we arrive at:

H(ξ) =
√

3
8

ξ + O(1) ξ → +∞, N = 3, (B.2)

and this is enough for our purposes in Section 3.
In space dimension N = 4 we have that:

ū(ξ) =
8

8 + ξ2
, φ̄0(ξ) = −4(ξ2 − 7)

(ξ2 + 8)2
∼ − 4

ξ2

(
1 + O(

1
ξ2

)
)

, ξ → +∞.

Plugging the exact value of φ̄0 in the integral in (B.1) and changing variables to ζ = λ2,
ν = η2, we write:

f(ξ) = −1
4

∫ ξ2

0

(ν + 8)4dν

ν2(ν − 8)2

∫ ν

0

ζ(ζ − 8)2dζ

(ζ + 8)4
.

The second integral is then calculated explicitly:

L(ν) =
∫ ζ

0

ζ(ζ − 8)2dζ

(ζ + 8)4
= log

(
ν + 8

8

)
− 7ν3 + 48ν2 + 192ν

3(ν + 8)3
.

Hence:
L(ν) = log(ν)−

(
7
3

+ log 8
)

+ O(
1
ν

), ν → +∞.
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As to the integrand in the first integral, we write:

(ν + 8)4

ν2(ν − 8)2
= 1 + O(

1
ν

), ν → +∞.

Consequently we have:

f(ξ) ∼ −1
4

∫ ξ2

0

(
log ν −

(
7
3

+ log 8
)

+ O(
log ν

ν
)
)

dν, ξ → +∞,

whence:

f(ξ) = −1
2
ξ2 log ξ +

1
4

(
10
3

+ log 8
)

ξ2 + O(log2 ξ), ξ → +∞.

Using the asymptotics of φ̄0 we finally obtain:

H(ξ) = 2 log ξ −
(

10
3

+ log 8
)

+ O(
log2 ξ

ξ2
), ξ → +∞, N = 4. (B.3)

We next compute the asymptotics of H(ξ) in the case N ≥ 5. Using the asymptotics
of φ̄0 (cf Section 2), we write for the second integral in (B.1):

∫ η

0
λN−1φ̄2

0(λ)dλ =
∫ ∞

0
λN−1φ̄2

0(λ)dλ−
∫ ∞

η
λN−1O(

1
λ2N−4

)dλ

=
∫ ∞

0
λN−1φ̄2

0(λ)dλ + O(
1

ηN−4
), η → +∞.

Taking advantage of the exact value of φ̄0 we compute:

IN =
∫ ∞

0
λN−1φ̄2

0(λ)dλ =
∫ ∞

0

(
N−2

4 − λ2

4N

)2

(
1 + λ2

N(N−2)

)N
λN−1dλ.

Changing variables to λ = (N(N − 2))1/2x, we obtain after some calculations:

IN =
(N − 2)2

16
(N(N − 2))

N
2 BN ,

with:

BN =
∫ ∞

0

(1− x2)2

(1 + x2)N
xN−1dx =

1
2

∫ ∞

0

(1− t)2

(1 + t)N
t

N−1
2 dt. (B.4)

We now return to function f(ξ) in (B.1). Using the asymptotics of φ̄0 and our previous
calculations we may write:

f(ξ) ∼ − 16N2

(N(N − 2))N

∫ ξ

0
ηN−3dη

(
IN + O(

1
ηN−4

)
)

, ξ → +∞.
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Hence:

f(ξ) = − 16N2IN

NN (N − 2)N+1
ξN−2 + O(ξ2), ξ → +∞.

Using again the asymptotics of φ̄0 as well as the value of IN , we finally arrive at:

H(ξ) =
N(N − 2)BN

4
+ O(

1
ξ
), ξ → +∞, N ≥ 5, (B.5)

with BN as given in (B.4).
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C. Some drawings of u(x, t) near blowup

u

x

t=T

u

t<T

x

Figure 1: Case N = 3, k = 1.

x

t=T

uu

t<T

x

Figure 2: Case N = 3, k = 2.
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Figure 3: Case N = 3, k = 3.
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Figure 4: Case N = 4, l = 0.

29



u

t<T

x

t=T

u

x

Figure 5: Case N = 5, l = 0.
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