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1 Introduction.

This work is concerned with positive, blowing-up solutions of the semilinear heat equation
w—Au=v" in R"x(0,T), p>1. (1.1)

Our main contribution is a sort of center manifold analysis, leading to refined asymptotics
for u in a backward space-time parabola near any blowup point. We also explore an apparent
connection between the asymptotics of u and the local geometry of the blowup set.

A lot of work has been done concerning the blowup of solutions of (1.1), and related
equations such as u; — Au = e“. A comprehensive review is beyond the scope of this
introduction; discussions and biblographies will be found in [1,2,8,9,11-13|.

To explain the relevance of center manifold theory, let us briefly review the theory
developed by Giga and Kohn based on similarity variables. This change of both dependent
and independent variables is defined by

w(y,s) = (T - t)7Tu(z, t) (1.2)
y=(z—a)/[VT —t, s=-In(T-1),

where a is a blowup point and T the blowup time. If u solves (1.1) then w solves
LY (pVw) + ——w = P (1.3)
w, — =V - ——w = wP, .
p p—1

where we have set p(y) = e lvl*/4, Studying the behavior of u near blowup is equivalent
to studying the large-time behavior of w. Let us assume that u is nonnegative and p is
“subcritical,” i.e. n = 1,2 0r,if n > 3, p < (n+2)/(n — 2). Then it follows from [12,13]
that

w(y,s) = & as s — 00, (1.4)

uniformly on bounded sets |y| < C, where £ is the constant, stationary solution of (1.3):

k= (p-1)"VF1), (1.5)

To learn more about how w approaches its limit «, it is natural to linearize (1.3) about
this critical point. Setting w = k 4 v, and using Taylor expansion to get

P

wp—ple:v—l-ﬂvz+...,
one can write (1.3) as
v, — lV -(pVv)—v = L2y O(v®). (1.6)
p 2K

Ordinarily quadratic and higher-order terms are ignored in the course of “linearization.”
However, in this case the critical point w = & is not hyperbolic; in other words, the linear
operator %V - (pVv) + v has a nontrivial null-space. Therefore the quadratic term in (1.6)
cannot be ignored. The role of center manifold theory should now be clear: it is the stan-
dard tool (at least in finite dimensions) for studying the solutions of a nonlinear evolution
equation in a neighborhood of a critical point which is not hyperbolic, see e.g. [6, 15, 20].



At the formal level, a center manifold analysis of (1.6) is relatively easy. This might also
be called a “weakly nonlinear stability analysis.” We develop it in Section 2, focussing for
simplicity on space dimensions 1 and 2. The formal argument suggests that generically

K 14, . 1

v(y, s) 2ps(1 =5y ) in R (1.7)
K 1 N . 2

os) ~ 2 (1= Tl n B2, (18)

It also indicates that the blowup set should generically consist of isolated points. Blowup
along a one-dimensional continuum in R? is known to be possible [13]; an asymptotic law
different from (1.8) applies in this case, see (2.33). _

The remaining sections 3-8 are fully rigorous. Their goal is to justify, in so far as possible,
the picture developed in Section 2. This is not an easy task: the methods usually used to
justify center manifold theory in an infinite dimensional setting do not apply in the present
context. (See Section 3 for an explanation why not.) Basically, we get around this problem
by using the special structure of the equation (1.3).

Our rigorous results apply to any nonnegative solution of the Cauchy problem (1.1)
satisfying

| wllz= (&) < O(T - )2/ (1.9)

and having the asymptotic behavior
(T — t)"/®*Vy(a + yVT — t,t) > k as t T T, uniformly for |y| < C. (1.10)

To state them, we must first introduce some notation. Let L2 be the space of functions v(y)

such that [vZpdy < oo, where p = e ¥"/4 as usual. This is a Hilbert space with inner
product (u,v) = [uvpdy. The operator

1
Lv = ;V-(va)-i—v (1.11)

is self-adjoint, with eigenvalues 1,1/2,0,-1/2,-1, .... Let {e'*‘};?=1 be its eigenfunctions
with positive eigenvalues; {e? 7L, its eigenfunctions with eigenvalue zero; and {eJT };’?:1 its
eigenfunctions with negative eigenvalues. (We shall prove in Section 2 that k = n 4+ 1 and

m = n(n+ 1)/2.) We may then expand

k m )
v(y,s) = z_:ﬁj(s)ej(y) + Z aj(s)ej(y) + Z'rj(S)e}(y), (1.12)

where v(y, s) is related to u(z,t) as in (1.2)-(1.6).
Our first main result asserts that the neutral modes are dominant as s — co, unless v
tends to zero exponentially fast:

Theorem A. Fither v — 0 ezponentially fast as s — oo, or else for any ¢ > 0 there is a
time sg such that '

k k

S+ e D alls) for 52 (1.13)
7=1 j=1 j;l



We believe that the situation v — 0 exponentially fast is in some sense exceptional, and
the behavior (1.13) generic. This would be the case in finite dimensions, but we are unable
to prove it in the present context.

Our second main result serves to justify the “equation on the center manifold” which is
the essence of the formal analysis:

Theorem B. Assume that v does not approach 0 exponentially fast. Then the neutral
modes {C\zj};.":1 satisfy

dJ—Eg—w vo)-l—O( Za), (1.14)

where 71'? denotes orthogonal projection onto eg and vy is the neutral component of v,
m
vo =Y aj(s)ed(y). (1.15)
i=1

The error term on the right in (1.14) is small compared to the other one. If we neglect
it, then (1.14) amounts to an m X m system of nonlinear ODE’s for the functions a;(s). We
shall make this system more explicit and study its behavior in Section 2.

Our third main result gives refined asymptotics for the blowup of u, in one space di-
mension:

Theorem C. Assume that the spatial dimension is n = 1, and that v does not approach 0
ezponentially fast. Then for any C > 0 and € > 0 there exists sy such that

S(1- —y )= 0(%) (1.16)

suply|<clv(y,s) — 2ps

when s > sg.

Of course, refined asymptotics for v are equivalent to refined asymptotics for u. Restated
in terms of u, (1.16) becomes

(T - t)l/P—l u(:lt,t) ~ K+ m (1 - ;_:zrf_——(:l—lt)) y (1.17)

in the sense that the difference is o(|In(T —t)|7!) as t T T, uniformly in parabolas |z —a|? <
Cc(T -t).

Our fourth main result concerns the connection between the asymptotics of v and the
character of the blowup set. We shall prove

Theorem D. Assume that the spatial dimension is n = 1 and that v does not approach 0
ezponentially fast . Then the center of scaling is an isolated blowup point.

Chen and Matano have shown that in one space dimension blowup always occurs at
isolated points [5]. Theorem D is weaker than their result, since it has the additional
hypothesis that v does not approach 0 exponentially fast. However, the argument in [5]



is intrinsically one-dimensional. Our Theorem D, by contrast, has a natural extension to
higher dimensions. See the end of Section 7 for further discussion.

After this work was completed we learned that a formal analysis similar to that of
Section 2 has been done simultaneously and independently by Galaktionov, Herrero, and
Velazquez [10]. In addition, rigorous results similar to our Theorems A-D have been proved
simultaneously and independently (but only in one space dimension) by Herrero and Ve-
lazquez [16-18]. Curiously, at the technical level our analysis is quite different from that of
[16-18]. The results of Herrero and Velazquez are in some ways more comprehensive than
ours: they get refined asymptotics for |y|2 ~ s as well as for |y|? < C, and they consider
what happens if v — 0 exponentially fast. On the other hand, they make extensive use
of the maximum principle, whereas we rely instead on weighted energy estimates, so our
approach might extend more easily to systems.

Our results have recently been exploited by Liu [21]. His work includes the analogue of
Theorem C for radial solutions in R™, n > 2. It also includes a proof that the solution of
(1.14) satisfies |a(s)| ~ 2 when n = 2.

Center manifold analysis has also played a major role in the recent work of Bressan
on u; — Au = e* [3,4]. (We presume that something like his analysis could be done for
us — Au = u® ; the analogue of the present work in one space dimension for the exponential
nonlinearity is included in [16].) His approach is quite different from ours, however. For one
thing, Bressan works with z = y/+/s rather than y as the spatial variable; thus he naturally
obtains asymptotics valid in the larger region y? < C's rather than |yj < C. In addition, the
focus of his work is to show the ezistence of solutions with certain asymptotics, while our
goal and that of [16-18] is to describe the asymptotic behavior of any solution. We wonder
whether there might be some way of combining the strengths of both approaches.

Yet another method for analyzing the asymptotics of blowup has recently been explored
by Keller and Lowengrub [19]. They use a change of variable totally different from (1.2): if
u solves (1.1) they work with U = u~(P=1) | which tends to zero linearly as ¢ T 7. This is
useful both for formal asymptotics and for the numerical calculation of u. We are unaware
of any direct connection between their approach and the others discussed above.

ACKNOWLEDGEMENTS. The idea of linearizing (1.3) about x emerged from
discussions with Y. Giga during the spring of 1988. We had fruitful discussions about the
“formal picture” with H. Matano during the fall of 1989. We gratefully acknowledge these
individuals’ influence upon our ideas.

2 A Formal Analysis.

We have explained that the behavior of u near blowup is encoded in the large-time behavior
of v(y, s). So the essential question is this: given a solution of (1.6) which tends to zero as
s — oo, what is the asymptotic profile of v 7 If (1.6) were a finite dimensional dynamical
system, then answering this question would be a fairly routine matter. The picture that
emerges is presented in this section. Our treatment is “formal” in the sense that we cannot
prove its validity for (1.6); however most of what we do would be rigorously correct for
an analogous finite-dimensional system. (Some of our conclusions will be justified later in

Theorems A-D.)



2.1 The Linear Operator. !

Our first task is to understand the linear operator £, defined by (1.11), viewed as a self-
adjoint operator on Lf,. It is convenient to treat the one-dimensional case first.

Lemma 2.1 In R! the eigenvalues of L are

—k
M= +1,k=0,1,2 ... (2.1)

The associated orthonormal eigenfunctions are

hi(y) = cwHi(y/2) (2.2)

where Hy, is the kP Hermite polynomial and a4, is a normalizing factor. The first few are

1
ho = co, h1 = 1y, hy = C2(§y2 -1) (2.3)

with ¢; = ¢ = %w'l/“ and co = 712=7r

-1/4
Proof. In one space dimension our operator is
Y
Ev—vyy——ivy+v.

Changing variables to z = y/2 and ¢(z) = v(y), we see that Lv = Av if and only if

bes — 22, = 4(A — 1)¢. (2.4)
It is well-known that the eigenfunctions of (2.4) are the Hermite polynomials, defined by
22 dk a2
Hi(z) = (~1)Fe (€ ) k=0,1,2, ..., (2.5)

see e.g. [22]. The eigenvalue associated to ¢ = Hy is 4(Ar — 1) = —2k. Changing variables
back to y, this leads to (2.1)-(2.2).

The Hermite polynomials are known to form an orthogonal basis for L,zy(z) with weight

v(z) = e=*. So {hx(y)}3>, form an orthonormal basis for L.

The values of the first few normalizing constants can easily be calculated by evaluating
the integrals [ pdy, [ y?pdy, etc., leading to (2.3). Alternatively, they can be deduced from
the general rule

ay = (x1/2kH1E)"1/2, (2.6)
which follows from the formula for the normalizing constants of the Hermite polynomials.
O
We note for future reference that
d k
—hi(y) = () s k=1,2,.... :
dy k(y) (2) k l(y), 1527 (2 7)

This is a consequence of the well-known recursion formula H,'c = 2kH}_1, using (2.6) and
change of variables.

In the multidimensional case, the eigenfunctions of £ are products of Hermite polyno-
mials.



Lemma 2.2 In R",n > 2, the eigenvalues of L are still given by (2.1). The corresponding
normalized eigenfunctions are as follows:

for Ao =1, hg

for M1 =1/2, A} 'hi(y:) i= ..

for Ay =0, Ry hy(w) i=1,2,...,n
) . . .

and so forth. In particular, the null space of L has dimenston n + ( 0

n):ﬂ%ﬂ—l.lnthe

special case n = 2, the neutral eigenfunctions are

1 1
Cocz(‘z“y% - 1), 00‘32(’2‘113 - 1), nyly% (2.8)
where ¢; are as in (2.3).

Proof: In one space dimension we have shown that
1 —k
—V - h.) = —h..
pV (pVhy) 5 hi

It follows easily that in several dimensions h = hg, (1) ... hk, (vn) satisfies
1
pv (pVhR) = ——(Zk ).

Thus h is an eigenfunction of £ with eigenvalue 1 — 23" k;. We note moreover that A
is normalized. This construction gives all the eigenvalues and eigenfunctions, since the
products hg, (y1) ... A, (Yn) are easily seen to be dense in Lf,.

The final assertion (2.8) follows from the more general one by means of (2.3).

2.2 Space Dimension One.

When the spatial dimension is n = 1 the eigenspaces of £ are one-dimensional. This makes
the analysis somewhat simpler than in higher dimensions.

Consider a solution v = v(y,s) of (1.6) which tends to zero as s — co. We can deduce
the generic profile of v as follows. First, we drop term of order v® in the equation, since it
is small compared to v? ; our attention is thus on the equation

v, — Lv = £'02.

. (2.9)

Next, we decompose v(y, s) into its various “modes,” using the eigenfunctions of £ :

v = [B1(s)ho(y) + Ba(s)h1(y)] + [a(s)ha(y)] + [11(s)ha(y) + v2(s)haly) + ... (2.10)

Our notation here is consistent with (1.12): 1,82 correspond to the “unstable” modes of
L, a; to the “neutral” one, and 71,72, ... to the “stable” modes.



We assert that the “stable” and “unstable? modes are typically negligible in magnitude,
i.e. that v is well-approximated by the ansatz

v(y, s) ~ a1(s)h2(y). (2.11)

Indeed, if B1(s) or Ba(s) were significantly different from zero they would quickly dominate
(since they grow exponentially), contradicting the assumption that v — 0 as s — oo. If
v; were initially large, it would decay exponentially, eventually becoming small compared
with a1 (s) — which, as we shall see, decays algebraically. (A more analytical justification of
(2.11) will be given below, based on center manifold theory).

If one accepts the ansatz (2.11) then the rest is easy. To get an ODE for a;(s), we
substitute (2.11) into the equation (2.9), then project the result in the direction hy(y). This
yields

The integral is easily computed explicitly, using the relations hyp = —(phl)' and h'2 = h
and integration by parts. The result is

/ hgpdy = dc

with ¢, as in (2.3). Thus a;(s) solves

2
&y = £242, (2.12)
K
The solution is ;
_ 2pc -
ax(s) = o (s0) = B2 - s0)]| (213)

in terms of the value at any fixed time so. We note that aj'(so) must be negative, since
otherwise (2.13) would blowup in finite time. We derived (2.13) from (2.11), which is of
course only approximately valid. So we do not expect (2.13) to be exactly correct. It should,
however, give the correct large-time asymptotics. From (2.13) we get

—K 1

= o(=); . 2.14

ai(s) = s +0(5) (214)
combining this with (2.11) we deduce that

v(y, s —K'—(l E 2 2.15

Y, 5ps 2¥°)- (2.15)

We have thus given a formal justification for (1.7).

Now we explain how the preceding could be made rigorous in a finite-dimensional setting.
There would exist a codimension two, locally defined invariant manifold, the center-stable
manifold. It would be tangent at 0 to the span of the neutral and stable eigenfunctions
of £, and it would contain any trajectory that tends to 0 as s — oco. In particular, 8 =
(B1,B2) in (2.10) would be functions of oy and v = (71,72, ...) with |8] < C(|ea]® +



|7]2). Within the center-stable manifold there would exist a one-dimensional, locally defined
invariant manifold, the center manifold. It would be tangent at 0 to the span of the neutral
eigenfunction h;, and it would attract exponentially any trajectory that tends to 0 as
s — o00. Hence generically solutions would tend to 0 like those on the center manifold. If v
is on the center manifold then ¥ = (y1,72,...) and 8 = (B4, B2) are determined by «;, with
|81+ 7] € Clay|?. In particular, v(y, s) = a1(s)ha(y) + O(a?), justifying (2.11). This would
imply

. 2pc
61 = F2at +0(ad),

which would lead once again to (2.15). This discussion amounts to a summary of center
manifold theory; detailed accounts can be found, for example, in [6,15,20].

We are interested only in solutions v of (1.6) which tend to zero as s — co. Accordingly,
the initial data of v are not arbitrary; rather, they should lie on the center-stable manifold.
This reflects the fact that we fixed two parameters in arriving at (1.6): the blowup time T
and the blowup point a.

The ansatz (2.11) is generically accurate, but there should be exceptional solutions which
behave differently. In the context of center manifold theory these are the solutions on the
stable manifold. They should approach 0 exponentially fast. These are solutions in which
the neutral mode is negligible; they are described by the ansatz

v(y,s) ~v(s)h(y), I > 2. (2.16)

If we assume that v is an even function of y then only even ! can arise in (2.16). (It is
proved in [17] that [ must be even, without any symmetry hypothesis on v.) Only one mode
appears in (2.16) because the eigenspaces of £ are simple: modes higher than ! decay faster,
and so are eventually negligible, while modes lower than [ are absent by hypothesis if (2.16)
applies. If for example I = 4 then

12

v(y,s) ~ 7(s)ha(y) = cav(s) (z -y 4+ 1) ;

with v(s) approaching 0 exponentially fast. This corresponds to a solution of the u equation
with two local mazima which coalesce at blowup.

2.3 Space Dimension Two.

The logic of the preceding discussion applies in any space dimension. However, when n > 2
more analysis is required to determine the generic behavior, since the eigenspaces of L are
multidimensional. We shall discuss only the case n = 2. The neutral eigenfunctions are
then given by (2.8); we label them as follows:

1 1
€2(y) = coca(Gur = 1)s  e3(y) = coca(5¥5 — 1), €3(v) = e (2.17)
The analogue of (2.11) is

v(y, s) ~ cn(s)er(y) + ca(s)er(y) + aa(s)es(y). (2.18)



As before, we ddtermine a system of ODE’s for a;(s) by substituting (2.18) into the equation
(2.9) then projecting the result onto eg, Jj =1,2,3. One computes that

/(e?)spdy = /(eg)3pdy = 4ezc

[0y = [(e87elpy = 2e3co

with ¢; as in (2.3). All other integrals of the form [ ee%e)pdy vanish. We therefore arrive
at the system

Ep‘;(kgcoa% + 2c2c0a§)

Gy = %(4020003 + 2c2c0cx§) (2.19)

&

a3 = %(4c2c0a1a3 + 4cacoazasz).

To determine the asymptotic profile of v, it remains to study how solutions of (2.19)
behave as they approach 0. We do this in the following

Lemma 2.3 Assume that a is a solution of (2.19) which is not identically zero and which
satisfies a(s) — 0 as s — oo. Then there are two possibilities. Either a — 2aja; never
vanishes, in which case

__—x 1 -2
aa(s) = 2cacop S +0(s7)
aa(s) = =1 1 o(s2 2.20
218 " 2chcop S ™) (2.20)

asg(s)=0(s7%) ;
or else a} — 2a;a, vanishes identically, in which case

2
—ThK

1 -2
oa(s) = 2cqcop S +0(s7)
2
_ ~mk 1 -2
az(s) = Yercop 3 + O(s™%) (2.21)
—h72k 1

as(s) = Taescp s T 0(s™)

for some unit vector n = (n1,m2) in R2.

Proof: As a first step, we observe that a; <0, a; <0, and a7 4+ a2 < 0 for all s. Indeed, if
ai(so) > 0 for some sg then (2.19) would force a; to blowup in finite time, contradicting the
hypothesis that a(s) exists for all s — co. This shows that a; < 0, and the same argument
applies to az. If a1(so) + az(s0) = 0 then a1(se) = az(so) = 0, and it follows from (2.19)
that a(s) = 0. Since by hypothesis « is not identically zero, we conclude that a; + az < 0.

10



Next we make the change of dependent variable !
X:a§—2a1a2,Y:a1—a2,Z:a1+a2. (2.22)

A straightforward calculation using (2.19) and (2.22) gives

X=9X2
Y =4YZ (2.23)
7 = ~ (Z2 + X)

with 4 = 2¢ycop/ k. Since Z # 0, it follows from (2.23) that
v

£(5)-+(3)
is\z)~ "\z (2.24)
#(z) 7))
is\z)~ " "\z)'\zZ)
Solving the first of these equations, we find that either

X=0 (2.25)
or else ¥ ,
X st a) (2.26)

where g is an undetermined constant.
Consider first (2.26). This is the case when X = a2 — 2a;a; never vanishes. Solving

(2.24) yields
X [a2!

Z:7s+po

where y; is another constant of integration. To determine Z, we combine (2.26) and (2.23)

to get
. 7
Z= (22 + ) .
7 s+ Ho

7 - — —(1s+ o)
2(vs+ o) + p2’

where p; is a constant of integration. Since ay = (Z +Y)/2, az = (Z —Y)/2, it follows
from (2.27) and (2.28) that

(2.27)

The solution is

(2.28)

a; = -7 s 4 0(3—2), ag = -—"1s71 4 0(5_2)
Since o = X + 2a10; = X + 1(Z% — Y'?), we also get after some calculation that
ol =0(s™).

Thus if (2.26) holds then the large-time asymptotics of @ are determined by (2.20).

11



Now consider the other case (2.25), when X = a2 — 2aya; = 0. By (2.23) we have

-1
ata=24=— 2.29
P (75 + ko) (2.29)
for some . By (2.24) the ratio Y/Z is constant; we denote its value by p,. Evidently
Qi a
a + ap otl-i—Otz—-#1
a az

9
a1 t+a; o ta

so the ratios ay/(a; + az) and az/(a;y + az) are both constant. Since they lie between 0
and 1, we may choose 7 = (71,72) such that |72 =1 and

(¢35

2

=77%, =132

2.30
a) + as ay + a ( )

Notice that n; and 7, are only determined up to a factor of 1. Since a2 = 2a;a,, we may
choose the signs so that

az = V2mm(aa + a3). (2.31)
Then (2.29)-(2.31) yield

2
1
dp = -2 4 0(s72)

Y S
2
1
Gy = -2 4 0(s72)
v s
2 1
023 — “@;‘FO(S_Z).

Since 4 = 2cacop/ K, this is the same as (2.21).

(]

It is now a simple matter to deduce the asymptotic profile of v : we need only substitute
the behavior of & into (2.17)-(2.18). The generic case is (2.20), since it applies whenever
a? # 20y0;. It yields
K 1
~—(1--]y?), 2.32
o)~ = (1= gloP) (232)
which is the same as (1.8). In this case v is asymptotically radially symmetric with an
isolated maximum at y = 0. This strongly suggests that the center of scaling ¢ = a is an
isolated blowup point for u. We have thus shown (formally) that the blowup set of u should
generically consist of isolated points, in space dimension 2.
If (2.21) applies then we obtain the different asymptotic behavior

o)~ 5 (1= 500 0). (2.33)

In this case v is asymptotically a function of y - 5 only, and it achieves its maximum value
on the line y - 7 = 0. We believe that when (2.33) holds, the associated solution u of (1.1)

12



blows up on a one-dimensional curve passing through the denter of scaling ¢ = a, with its
tangent line orthogonal to 7.

We have shown (formally) that (2.32) and (2.33) are the only possibilities if v tends to
zero at an algebraic rate. As in the one dimensional case, however, it should also be possible
for v to approach 0 exponentially fast. These non-generic solutions would correspond to
trajectories on the stable manifold. It would be interesting to have a classification of their
possible asymptotics, since that would give an indication concerning the possible local
structure of the blowup set. The simplest case would be to consider solutions with the
symmetry v(y1,y2) = v(—¥1,¥2) = v(¥1, —¥2), for which the first stable eigenvalue is -1.
The associated eigenspace is spanned by

e1 (¥) = hoha(v1) , 3 (y) = hoha(y2),

e3 (y) = ha(y1)h2(y2).
The ansatz

v~ 71(s)er (y) + 712(s)e; (y) + 13(s)ez (v)

leads to a system of the form

V1= -7 +ay] + b3
V2= —72+av; + b3 (2.34)
Y3 = —73 + c12 + 2673 (71 + 72),

where a,b, and ¢ are certain (explicitly computable) constants. A natural first step would
be to classify the possible asymptotic behaviors of solutions of (2.34). Some qualitative
results (but not a complete classification) are given in [21].

3 A Program for Rigorous Analysis.

As we have explained, the essential issue is how solutions of

1 _ P 2
v, pV(va) v= v (3.1)

behave as they tend to zero (see (1.6) or (2.9)). Center manifold theory is the standard tool
for addressing such questions. There are infinite dimensional versions of center manifold
theory, see e.g. [6,15,20]. So the question naturally arises whether this theory might apply
directly to (3.1).

Unfortunately, it does not. A “standard” center manifold analysis would begin by
viewing (3.1) as an O.D.E. in a suitably chosen function space X. The solution would be
represented by a version of the variation of parameters integral formula. The space X should
be chosen so that (at the very least) the following two conditions apply: a) ||v(s)||x — 0 as
s — 0o, for the solutions under consideration; and b) ||v?||x < ||v||%, so that the nonlinear
term v? is genuinely quadratic. Condition (a) rules out a translation-invariant space such
as H'(R™): our solutions v(y, s) converge to 0 as s — oo for | y |< C, but they have

limyy L 0v(Y, 8) = limpy|eow(y, ) — £ = —K (3.2)
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for every s < co. (We assume for (3.2) that u, the solution of (1.1), satisfies u(z,t) — 0 as
|z |- 00,0 < ¢t < T.) Condition (a) would hold for a weighted space such as H}, (consisting
of functions with I derivatives in L2). However, it is easy to see that (b) fails for any such

2
space — not only for the exponential weight p(y) = e"Ly?L, but for any weight which decays

to zero as | y |— oo. We doubt the existence of any space satisfying both conditions (a)
and (b).

Thus, it seems that center manifold theory does not apply directly to (3.1). In particular,
we are not able to prove the existence of a center manifold for (3.1).

We can make progress, however, by focussing more sharply on the specific task at
hand. We already have a solution of (3.1) which tends to 0 uniformly on compact sets,
so existence is not at issue. Moreover, (3.1) is a rather special equation, with a great deal
of structure. We shall use the special features of the equation (namely, certain weighted
energy estimates), along with ideas borrowed from center manifold theory, to characterize
the asymptotic behavior of v.

Our method is illustrated by the following 3 x 3 O.D.E. example:

z=z+4 fi(z,y,2) (8.3a)
¢=—(e+y+z2) (3.3b)
?) =Y + f2($, Y, Z)a (33C)

where the f;’s, i=1, 2 are assumed to be quadratic in z, y, z. Suppose we know that there
exists a trajectory (z,y, z) of (3.3) with the properties:

0<z,y,z— 0 as t— oo. (3.4)

Center manifold theory is applicable for this example, and one can use it to get the asymp-
totic behavior of the (z,y, z) trajectory. However, we can avoid the general theory by using
the following elementary O.D.E. Lemma:

Lemma 3.1 Let z(t), y(t), z(t) be absolutely continuous, real valued functions which are
nonnegative and satisfy:

z2>coz—€(z+ y) (3.5a)
|2 | <e(z+y+2) (3.5b)
7 < —coy + €(z + 2), (3.5¢)
z,y,z— 0 as t— oo, (3.5d)

where co is any positive constant and € is a sufficiently small positive constant. Then:

either (i) z,y, z — 0 ezponentially fast
or else, (ii) there exists a time to such that z + y < bex, for t > to, where b
s a positive constant depending only on co.

14



The proof will be given in the hext section.

From the properties (3.4) of the trajectory (z,y,z) and the fact that the f;’s represent
quadratic nonlinearities, we have that for any € > 0, there exists a § > 0 such that for
0<z,y,2<8:

|fi(z,y,2)| < e(z 4+ y + 2), i=1,2,
(:c-l—y-l—z)2 <ez+y+2).

Hence, from (3.3) we obtain:

> (1-€)z—¢(z +y)
|2 |<e(z+y+2z) (3.6)
§< —(1- €y +e(z +2).

Using the O.D.E. Lemma, with say co = 1/2, we conclude:
z 4y < bez,

and from equation (3.3b) we have that:

i=—(14+0()N22 =  a= %+0(§).
Hence to the leading order we get that z decays like %

The O.D.E. Lemma plays a similar role in our analysis, although some extra work is
needed since the nonlinear term of (3.1) is not quadratic in Lf, (i.e. condition (b) stated
above is false in Lf,). To explain more, we now sketch the argument whenn =1,p=2. In
this case the exact equation for v is:

vy = Lv + v (3.7)
Let
7, : orthogonal projection onto the unstable subspace of £,
7o : orthogonal projection onto the null subspace of £,
w_ : orthogonal projection onto the stable subspace of L,
and vy = 740, vg = TV, v— = T_v so that v = vy +vo + v_.

Projecting (3.7) onto 74 L2 we get:
vy = Loy + w40t

Forming the Lf, inner product with v; and using standard inequalities (see Section 4 for
details) we arrive at:

d 1
Sllosll > Sl = 1921
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where || - || denotes the L2 norm. Let z = ||vy|, = ||vo||, ¥ = |Jv—||, N = ||v?||. Working
similarly for vo, v_ we arrive at a system which is roughly analogous to (3.6):

iZ%z——N

3] <N (3.8)
. 1
yS—§y+N-

We would like to know that N < ¢(z + y + z), which is equivalent to

/v4p < 62/‘02[). (3.9)
We could then use the O.D.E. Lemma to conclude that

l[o4]l + llo- | < bellvol- (3.10)

We have already observed that (3.9) is not true for an arbitrary v € L. The idea of
the proof is to use equation (3.7) to show that (3.9) holds for the particular trajectory of
interest. Working in this direction we write:

/v4p = / vip +/ vip, for § > 0. (3.11)
lyl<é—? ly[26-1

Since v(y, s) — 0 uniformly for | y |[< C, as s — oo we have that for any ¢, § > 0, there is

an sg such that:
/ v4p < 62/ vip < ezfvzp for s > sg.
ly|l<6—? ly]<s-1

For the second term of (3.11) we write:
/ v4p§6k/v4|y|kp::6k.72.
ly|26—1

To estimate J we multiply (3.7) by v® | y |* p and integrate by parts. After certain
calculations (see Section 4 for details) we end up with an inequality of the form:

J < —0(k,86)J + € (&,6)(z+ y + 2), (3.12)
where

0 < f(k,8) = 0(1),

0 < €(e8) = o(1).
Inequality (3.12) by itself does not contain enough information to allow us to conclude the
missing estimate (3.9), but we can couple it with system (3.8). Defining a new variable

9 = y+ J, we can now use the O.D.E. Lemma to conclude (3.10). Of course (3.10) is
equivalent to (1.13) (see Theorem A stated in the Introduction).
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In order to get the O.D.E. for the evolution of the neutral mode, recalling that vo(y, s) =
ai(s)ha(y) we project (3.7) onto the neutral subspace of £ (cf (1.14)):

&1 = mo(v?) = mo(vd) + mo(v? — vd). (3.13)

The main ingredient in the proof of Theorem B is to show that the last term of (3.13) is
small compared to the other term. This is done by using (3.10) as well as a new a priori
estimate for the v equation (Lemma 5.1).

For the proof of Theorem C we repeat the argument of Theorem A not in L2 but in H}.
Then, using the Sobolev embedding theorem we conclude that the neutral component of v
dominates its large time behavior in the sup norm. Since (3.13) can be solved explicitly in
the one dimensional case, we are able to write down the exact profile of v(y, s).

Finally, Theorem D is a consequence of Theorem C and a result of Y. Giga and R. Kohn
(see the beginning of Section 7 for more details).

4 Reduction to the Study of the Neutral Modes.

In this section we will give the proof of Theorem A. We recall that we are studying a
nonnegative, blowing-up solution of the semilinear heat equation (1.1). We shall assume
henceforth that when written in similarity variables (see (1.2)), the solution satisfies

(i) w is nonnegative,
(i) w is uniformly bounded in space-time, and
(iii) w(y, s) — K as s — oo, uniformly on compact sets in y.

From (ii) and (iii) we also have that v = w — K — 0 in Lg, by the dominated convergence
theorem. These conditions are known to be valid for any nonnegative solution of the Cauchy
problem (1.1) provided that (a) u is uniformly bounded at infinity (e.g. if v — 0 at infinity);
(b) n < 2or,if n >3, p < 22; and (c) the center of scaling is a blowup point [11-13].

We begin with the proof of the O.D.E. lemma presented in the previous section.

Proof of Lemma 3.1: By rescaling in time, we may assume that ¢ = 1. We divide
the proof into 5 steps: .
step 1 : If it is not true that z, y, 2 — 0 exponentially fast, there will be a time at which
y < 2¢(z + z).

Indeed, if y > 2¢(z + z) for all time then from (3.5¢) we have

§<-yte(ztz)<—y+o=-2
2 2
This implies that y — 0 exponentially fast, and that forces z, z to decay exponentially fast
as well.
step 2 : Let ot) = y — 2¢(z + z). Once the quantity a(t) becomes negative, it will stay
nonpositive thereafter. '
To prove this, we observe first that (3.5) gives

at) >0 = &) <0, (4.1)
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provided e is sufficiently small. Indeed, '
a(t) = 9 —2¢(2 + 2) < —(1 - 4€%)y + (e + 4€”)z — (e — 2€)z.
Using the fact that a(t) > 0 & —y < —2¢(z + z), we see that «(t) > 0 implies
G(t) < —€(1 —4e — 8e*)z — €(3 — 2¢ — 8¢%)2 < 0

for sufficiently small €, and assertion (4.1) has been proved.
Let a4 (t) be the positive part of a(t), i.e.

a(t) ifa

i(t) = { () ifel

t)>0
0 if a(t) < 0.

It is a standard fact that a4 (¢) is an absolutely continous function. Moreover, we have

. ) a(t) ifa(t)>0
"‘+(t)‘{0 ifagt)go

almost everywhere, see e.g [14]. Hence we always have that &, (¢) < 0. Now suppose that
t' is a time at which a(t') < 0. Using the fundamental theorem of calculus we compute for
t2> t:

ar(t) = ar(t) — as () = [ du(s)ds <.

This implies that the positive part of a(t) is necessarily 0 for t > ¢, i.e. a(t) is nonpositive
for t > t'. We have thus shown that

y < 2¢(z + 2z) for ¢ sufficiently large. (4.2)

step 8 : There exists some time at which z < 2¢(z + y).

If not, then (3.5a) forces z to grow exponentially fast, contradicting (3.5d).
step 4 : Let B(t) = z — 2¢(z + y). Once the quantity B(t) becomes negative, it will stay
nonpositive thereafter.

If not, let t* be some time when § > 0 . Then, so long as 3(t) > 0 we compute (as in
step 2):

B(t) = 2 —2e(2 +9) > (1 - 4€?)z — (e + 4e¥)z + (€ — 26*)y >

> ¢(1 - 4e— 8e%)z + ¢(3 — 2¢ — 8¢*)y > 0.

But then, for ¢ > t* we have that 3(t) is a positive quantity with a nonnegative slope,
contradicting the fact that §(t) — 0 as t - co. We conclude that

z < 2¢(z + y), fort sufficiently large. (4.3)

step 5 : Putting together (4.2) and (4.3), and taking ¢ sufficiently small, we get the desired
result.

Examination of the proof shows that we can choose the constant b to be equal to 10 (or
1—09 for ¢o # 1); its exact value is not needed in the proofs to follow.
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0

In order to linearize the w-equation (1.3) about w = k, we set v = w — k and consider
the Taylor expansion of the nonlinear term of (1.3). Since v + x > 0 we have

1
(v+ k) = w7+ pP o+ op(p — 1)(k + §F 707,

where ¢ is between 0 and v. Let

c(¢,p) = 3p(p— 1)(x + 4>
‘We need a bound on ¢(@,p). Using the fact that | v |[< M we show
Lemma 4.1 Foranyp>1
0<c(¢,p)<C,
where C is a constant depending only on M and p.

Proof : Clearly 0 < ¢(#, p). To obtain the upper bound we distinguish 3 cases.
case (i) : p > 2. Since | v |[< M we also have that | ¢ |< M; hence ¢(¢,p) < c(M,p).
case (11): 1 <p<2and|¢|< 5. Then

K

¢4k > =  ($p) < %p(p -1) <—>p~2-

N &

2

case (i) : 1 <p<2and|¢|>%. We have
(¢, p)v? = (v + &)P — kP — prP 1o,
But | v |>]| ¢ [> 5, and therefore
(v+ &P <3 |v|P, pkP v < p2P [u P
It follows that
c(¢,p)v” < (37 +p2°7) [0 [P,
or

-2
e($,p) < (3P +p2°71) v P77 < (37 4 p2°7Y) <§) :

Hence in all cases we have ¢(¢,p) < C with C depending on M and p.
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We also note that ! »
c(0,p) = %" (4'4)

Using the Taylor expansion we can rewrite (1.3) as
1 2
v, = ;V(va) + v+ ¢(¢,p)v?,

or equivalently
v = Lo + (¢, p)v?, (4.5)

where Lv = 1;V(va) + v and “.” denotes the time derivative.

We are now ready to give the proof of Theorem A, following the ideas sketched in the
previous section. The only things we will use in the proof are the v-equation (4.5) and
the knowledge that (i) v(y,s) > —« for all (y,s) € R™ x (0, 00), (ii) | v(y, s) |< M for all
(y,s) € R™ x (0,00), and (iii) v exists for all time and v(y,s) — 0 as s — oo, uniformly
on | y |< C. These of course follow immediately from the corresponding hypotheses on w
stated at the beginning of the section.

Proof of Theorem A : Let v, vg, v_ represent the ustable, neutral and stable part
of v as defined in Section 3. Projecting (4.5) onto the unstable subspace of £ we get

i = Loy + 7y [e($p07] (4.6)
Next, we multiply (4.6) by v;p and integrate over R™ to obtain

1d
5T vip = /ﬁv.,. -v+p+/7r+ [c(¢,p)v2] vyp. (4.7)

For the first term of the right hand side we observe that

1
/£v+ Upp 2 E/vip,

since 3 is the smallest positive eigenvalue of £. We can estimate the last term of the right
hand side of (4.7) by

| [re (o) venl< ([ (s )’ o) ([o20) < (/ c2(¢,p)v4p)% ([20)"

Hence we conclude that

L [ oo (o) (f)!

If we set

N
Il
VS
—
(]
+
©
N———"
o=
=
Il
/N
—
<
=
©
N———
o[-
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then the above inequality can be written as:
1 .
5(22) > %zz — CzN.
where we also used the fact that c¢(¢,p) < C. After simplifying we get
1
i> 3z CN. (4.8)

(Notice that on any set where z = 0, Z = 0 a.e.; thus (4.8) is an almost everywhere valid
relation between two measurable functions.) Working similarly for the neutral component
(vo) and the stable component (v_) of v we end up with the system:
. 1
z> EZ - CN
|2 |<CN (4.9)
) 1
Y S - Ey + CN,
1 1
where z = (fv2p)? and y = (fv2p)?. (The auxiliary function y just introduced is not to
be confused with the space variable y of the PDE.) '
As explained in the previous section, if we knew that N < ¢(z +y+2) we could appeal to
the O.D.E. lemma to conclude the desired estimate. Since we do not have such an inequality

we estimate NV as follows. Given any € > 0 and any § > 0 (both will chosen small in the
sequel) there is a time so such that

Nz:/v"p:/ v4p+/ v4p$62/v2p+5"/v4|ylkp, for s> so.
jul <8 ly 261

We use here the fact that v — 0 as s — oo uniformly on the compact set | y |[< §~1. The
exponent k which appears in the last term is a positive integer, otherwise arbitrary (later
on we will impose certain restrictions on k). Let

1
J = (/v4lyl'°p)2,
so that the above estimate can be rewritten as
Nge(:c+y+z)+5§J for s> so. (4.10)

In order to find an estimate for J we multiply equation (4.5) by v® | y |¥ p and then integrate
over R™ to get

1d
ao [P e= [Vevort v+ [ty os [egmi®ly o (a11)

For the first term of the right hand side we integrate by parts to get, after some calculation,

k L,k
/V(va)v3|y|’°= —3/v2IVvlzlylkp+Z(k—2+n)fv4Iylk 2p—g/v“lyl"p-
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For the last term of the right hand side of (4.11), using the fact that ¢(¢,p)v < CM we get

/C(¢,p)v5|ylkpSCM/v4|yl'°p-

Hence, from (4.11) we conclude

1d 4 k 2 2 Ik
- < —
YR vy " p< 3/vIVv||yIp+
k _ k
tqtb=2+4m) [ty 2 p-(5-1-0m) [y (4.12)

Using Schwartz’s inequality we have that

/v4{y|’°‘2ps(/v‘*lylkp)%(/v“lyl’““‘p)%. (4.13)

Omitting the first term of the right hand side of (4.12), which is negative definite, using
1
(4.13) and recalling that J = (f vt |y |k p)2 we obtain

Lie (b E g,
39 <G -1-emnre f-2en) ([t 1y ) (4.14)

Next we estimate the last term of (4.14):

([ 1u1p) s(/ v"lyl"“‘p)
ly|<6-1
3
Séz‘g(/ v4p) +62(/ vy | p
ly|<6-1 ly|>6-1
< 6273 (/ vzp) +5"’</v“|yl'°p>2
lyl<é—?

<6 i(z+y+z)+ 62T, for s> so,

™
D=

+(/ v4ly|'°‘4p)
lyl>6-1

=

where s is the same as in (4.10). Using the above estimate and (4.14) we get

J< 0] +€(z+y+2), (4.15)
with
k k8?2
620(]9,5,1?.)2 Z—2—2CM—7(k+n—2), (4.16)
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o 1
€ =c(6bkn)= Eeﬁz_gk(k +n—2). t4.17)
Up to this point, we have made no assumptions about the choices of k, §, and . We

now put certain restrictions on them in order to finish the proof. By first choosing k large,
then choosing § small, we can always make 6 > 1. Hence from (4.15) we obtain

. 1 )
J < —§J+e (z+y+2). (4.18)

Putting together (4.9), (4.10) and (4.18) we get the system

we
v

1
Ez—eC(z-l—y-i-z)— §30J

12| <eClz+y+2)+85CT
gg—éy+axz+y+zy+ﬁCJ (4.19)
J < —%J+e'(a:+y+z).
Let
§g=y+J, ¢=maz{eC+¢, §3C}.

We can make € arbitrarily small by taking € and § small enough. After adding the last two
inequalities of system (4.19) we can rewrite it as

(582~ &= +1)
dz+7+2) (4.20)

z

v

|2 |

IA

IN

§< (G- itz t2)
Using the O.D.E. lemma, we conclude that
z+ g < béz.
In particular we have that
oz + llo-lizz < béliuollzz, (4.21)

and the conclusion of Theorem A follows.
To avoid any possible confusion, we recapitulate the argument. Suppose we are given
an ¢ > 0. We want to show that there exists a time sg such that:

lvellzz + llv-llzz < €ollvollzz for 52 s0. (4.22)

o We first choose k, from (4.16), such that % —2-2CM >1.
e Then, we choose a § small enough so that
@ Hk+n-2)<,
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(ii) C6% < €ofb.

From requirement (i) we have that 6 > 1/2.

o Next, from (4.17) we choose an € such that Ce + € < ¢ /b.

For these choices of ¢, §, k there exists a time sg, after which all the above calculations

are valid, in particular (4.21) is true. Moreover the way we chose them guarantees that
€ < €o/b, therefore (4.22) follows from (4.21).

5 Evolution of the Neutral Modes.

Theorem A asserts that if v does not tend to zero exponentially fast then the dominant
modes are the neutral ones. Our formal analysis in section 2 was based on a study of the
O.D.E. which is asymptotically satisfied by these neutral modes. The goal of this section is
to prove Theorem B, which asserts the asymptotic validity of this O.D.E.

We shall assume throughout this section that v does not decay exponentially fast. For
such v we prove the following

Lemma 5.1 There ezist §o > 0 and an integer k > 4 with the following property: given
any 0 < § < 8g, there exists a time s* such that

/v2 ly|*p< cO(k)54'k/v§p, for s> (5.1)

where ¢o(k) is a positive constant depending only on k.

Proof : We begin by deriving a differential inequality for the left hand side of (5.1). Recall
that v solves

b= %V(va) vt c(d,p)or. (5.2)

We multiply (5.2) by v | y |F p, where k is any positive integer, and integrate over all R" to
get

d
[ luto= [Vevoplyt+ [yl ot [doortlyls  (53)

For the first term on the right hand side of (5.3) some calculation gives

k _ k
[Vevolyi=SEen-2) [yt oo- 7 [y o

For the last term of the right hand side of (5.3) we use the fact that ¢(¢,p)v < CM. We
thus get

1d k k _
2 1s vzlylkPS—(Z—1—CM)/02lylkl)+§(k+n—2)/vzly|k 2p. (54)

We further estimate the last term of (5.4) by using Schwartz’s inequality:

1/2 1/2
I/vzlyl""’pls </v2|y|kp> </v2|yl"”4p> .
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1/2
Let I = (f v? |y |k p) / . Then from (5.4) we obtain !

. 1/2
IS—(Z—I—C’M)I+g(k+n—2)</v2|y|k"4p> . (5.5)

For the last term of (5.5), and for any § > 0 and k > 4, we have

1/2 . 1/2 1/2
(/vzlyl"“‘p) S(/ v2|y1“4p) +</ vzlyl""‘p)
ly|<6-1 [y[>6-1

1

< §2-% (/ v2p> ’ +8%I < 62_§(.’c +y+2)+ 821 < 26 3¢ + 6%1.
Here we use the notation of the previous sections, namely that
/v2p:mz+y2+zz.

In the last step in the above inequalities, we used (4.22) with o = 1. So from (5.5) we get

I < —6I+ds* 3z, (5.6)
with
k k 2
B:Z—I—CM—E(k+n—2)5, (57)
and
d= k(k +n— 2). (5-8)

From (5.7) it is evident that there exist an integer £ > 4 and a positive number § with the
property that 0 < § < § implies § > 1. Hence, for these choices, we have from (5.6)

I<-I+d6* 2a. (5.9)

The next step is to couple (5.9) with the differential inequality controlling the evolution
of z. From (4.9) we have

|2 |< CN. (5.10)
For N, using the facts that | v |< M and that v — 0 uniformly on compact sets, we write

sz/v4p:/ U4P+/ v4p562/v2p+M2/ vzp
ly|<é—2 ly|>6-1 ly[>6-1

562/v2p+M25k/v2|ylkp-

Thus we have

N§M6§I+e(z+y+z).
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After using (4.22) with € = 1 we end up with

N < M63T + 2ez. (5.11)

Putting together (5.9),(5.10) and (5.11) we arrive at the system:

[<-T+d6 22 (5.12a)
| &| < CM8%T + 2Cex. (5.12b)
To conclude the proof we argue as as in step 2 of the O.D.E. Lemma in section 4.
k
We observe that there is a time s* at which I < 2d§*"zz. (If not, then from (5.12a) I

would tend to zero exponentially fast, and that would force z to decay exponentially fast as

well.) We assert that once the quantity y(s) =TI — 2d§2 3z becomes negative it will stay
nonpositive thereafter. To show this, it is sufficient to prove that

1s)>0 = q(s) <. (5.13)

Indeed, if 4(s) > 0 then arguing as in step 2 of the O.D.E. lemma we end up after some
calculation with

4(s) = I —2d6% 54 < —d823 (1 — 4dCM8? — 4Ce)z < 0,
for suitably small §, e. This proves (5.13). We conclude that v is eventually nonpositive,

i.e.
I<2d8% %z for s> s (5.14)

Clearly, (5.1) follows from (5.14) with

co(k) = 4d® = 4k*(k + n — 2)%.

O
We are now ready to justify the O.D.E. satisfied by the neutral modes.
Proof of Theorem B: Projecting equation (4.5) onto e? we get
. P
&j(s) = 7r;) (c(¢,p)v2) = 7r:? (c(O,p)vS) +E= 2—n1r?v§ + E, (5.15)

where we used (4.4), and

E:=mx} (c(dz,p)v2 - c(O,p)vé) .

Thus the theorem will be proved once we have shown that
| E |§€(/v§p) =€ (Zaf) . (5.16)
=1
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From Lemma 2.2, we see that the'e?’s are either of the form

e?(y):Cl(%yiz—l), i=1,2,...,n,
or else of the form
e?(y):Czylyk, l#k, Lk=1,2,...,n,
where Cp, C; are suitable normalizing constants. In the first case we have
(B 1= [ (c(6,p)0" - c(0,p)0) 2w)p |
<Ol [ (el c0,09) 1+ [ 1 el,00 ~ 021 |1 1

In the second case we have

B =1 [ (c(80p)0% - c(0,9)05) §(w)p 1< Ca [ 1 c(dypo? = c(0,p)e8 ||y 5

Hence, in all cases it is enough to prove

|/ (¢, p)v 7P)Uo) I< E/vgp

[ Vet - 0.0 11y P p<e [ odp.
Proof of (5.17): We have

[ (cteppo? = c(0,2)38) p 1< [ 1 eltrp) = (0,8} [ 67+ c(0.2) | [(0* = )p |

For the second term of the right hand side of (5.19) we have

0.0 [ = |= L ([oto+ [v) <€ 2 [at,

(5.17)

(5.18)

(5.19)

(5.20)

where in the last step we used (4.22). For the first term of the right hand side of (5.19) we

write

[1e@m—c@nivio= [ le6,p)-cl0.p) v

2
+ /|y|26-‘ | e(¢,p) — <(0,p) | v°p.

(5.21)

Since ¢(¢,p) = %p(p — 1)(k + ¢)P~% with ¢ between 0 and v, and v — 0 uniformly on

| y |< &7, we have that

suply<s-1 | ¢(¢,p) — c(0,p) [< €  for s>,
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for sufficiently large s'. Hence, !
/]‘qu_1 | ¢(#,p) — ¢(0,p) | v?p < e'/vzp < 26,/1)(2)p,

where once more we used (4.22). For the second term of (5.21) we write

[ ldan-conlotp<ac [ v
ly[>6-1

ly|>6—1

< 206"/1)2 |y ¥ p< 2Cc0(k)64/v§p,

where we used the fact that ¢(@,p) < C as well as Lemma 5.1.
From (5.19)-(5.23) we conclude

l / (c(4, )02 = c(0,p)03) p |< (6'2% +2¢ + 2Cc0(k)54> /vgp.

Since € and § can be chosen arbitrarily small, (5.17) has been proved.
Proof of (5.18): We have

[ 1@ — 0,98 113 < [1e(6,9) = c0,) |2 [ o

+ 0(0,10)/ |02 =2 ||y > p := I1 + c(0,p)].

We now estimate each of the above terms separately. For I; we have

n:/ | e(¢,p) — c(0,p) | v? |y | p
ly|<6—?

+[ 1) - 0P 9 |y P pi= Tt T
ly|26-1

For I;; we estimate

In<é6? s | (BP) = e(0) ] v’p < 2667 /vép,

where we used (5.22). For I;, we obtain

I, < 20872 /v2 lyl*p< 2CCo(k)52/v§p,
by using Lemma 5.1. Hence, from (5.26), (5.27) we have

I < (26677 4 2Cco(k)8?) / v2p.

We estimate I, similarly:

L[ v -dllyPet [ v -udlly P = It I
ly|<é-1 ly|26-1
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To estimate I,; weé observe that since v = vy + vo + v_, we have
v? — v§ = (vq +v-)? + 2vp(vy + v_).

Hence, we can write

< [ (ot yPes2 [ (o) [y
lyl<6=? ly<s—

1/2 1/2
<67 [orsoypez(fodluite) (o).
Using (4.22) we get |
fou oo oo

Next, we note that since the neutral subspace of £ is finite dimensional, all norms on it are
equivalent; therefore

/v§ lyl*p < C”fvﬁp, (5.30)
for some constant C. We conclude that
Iy < (€672 + 2e'1/2(})/v3p. (5.31)

We finally estimate I5:
IzzS/ v2|y|2p+/ vélylzpsﬁ""Z/vzIyl"p+6k“2/v3Iyl"p
ly|>6-1 ly|>6-1

< co(k)62/v§p+6k"2é(k)/v(2,p, (5.32)

where we used Lemma 5.1 and the equivalence of the norms for vg. From (5.29), (5.31),
(5.32) we get:

I, < (elé_z + 262 4 co(k)8? + ék—zé(k)) /vf,p (5.33)
Putting together (5.24), (5.28) and (5.33) with € and § chosen sufficiently small, we easily
complete the proof of (5.18). Notice that one has to choose § first and then ¢, so that terms

like €62 are also small. This is always possible, since ¢ and § are independent of each
other. The value of k is fixed, being determined by Lemma 5.1.

In the special case n = 1, (5.15) reads:

2
da(s) = —C,:—’iai(s) +0(ea?), s>, (5.34)
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with ¢ = %7:'_1/4. Notice that extcept for the error term, this is the same as (2.12) which
we derived formally in section 2. The solution of (5.34) satisfies

s = (222 4 0(0s - ) + e (s1))

K

Since a;(s) exists for all time we conclude that a;(s;) < 0, and that as s — oo

K

a1(s) = — —— + 0(5).

2¢cyps s

Recalling that vo(y,s) = ai(s)h2(y), with ha(y) = ca(3y? — 1) (see Section 2), we have
proved

Proposition 5.1 Consider the case of one space dimension, and assume that v does not
decay ezponentially fast. Then given any € there exists an sy after which

K

w(n,9) = (5 +0(5)) (- 3. (5.35)

2ps

In space dimension n = 2 , (5.15) reads:

&y = —p—(4c2c0af + 2cac0al) + O(ea? + €l + eal)

2K
Gy = 2—p;(4c2c0a§ + 2cacoal) + O(ea? + eal + ea?) (5.36)
Gs = 2%(4c2c0ala3 + deacoazaz) + O(edd + eal + eal)

Again, (5.36) is to leading order identical to (2.19). A result analogous to Proposition 5.1
for the two-dimensional case will be presented in [7].

6 Center Manifold Analysis in H;.

We have already established the asymptotic behavior of v(y, s) in Lf;. It is natural to ask
also for a result that is uniform in y, at least on compact sets. For this one must work in
a higher Sobolev space: specifically, in R™ one must work in H}, with I > n/2. We discuss
here only n = 1 for which H suffices. Our eventual goal is the proof of Theorem C.

Let us first recall the equation for v:

b = Lv + c(¢, p)v?, (6.1)
or equivalently

. 1d ( d )
v=—-——1|p—v| - B(v+k)+(v+ k)P, 6.2
ody \Pay (v+r)+(vtr) (6.2)
where 8 = 1—,1—1, and k = BP. Differentiating (6.2) with respect to y and defining

d
u(y, )= o(v:),
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we get
‘= i?% (”d%) B %“ — Bu+ p(v+ £ .
Next, computing the Taylor expansion of the nonlinear term, we write
p(v+ &) u = prPut p(p — 1)(k + ¢ P Pvu = (B + L)u+ c'(¢,p)vy,
where ¢ is between 0 and v and

¢(¢,p)=plp—1)(x+¢ )2

Using (6.4) we can rewrite (6.3) as

. 1 ' '
= (L- —2—I)u+c (¢ ,p)vu.
Working exactly as in Lemma 4.1 one can show:

Lemma 6.1 Foranyp>1

’

0<c(¢,p)<C,
where C' is a constant depending only on M and p.
Putting together (6.1) and (6.5) we arrive at the system
b= Lo+ ¢(¢,p)v?,
= (L- %I)u +c'(¢,p)vu.

(6.3)

(6.4)

(6.5)

Our plan is to work with system (6.6) using the techniques of Section 4. Notice that
the linear operator £ — %I of (6.6b) has eigenvalues 1/2, 0, -1/2, -1,... and therefore the
unstable, neutral and stable subspaces are not the same as for the v-equation (6.6a). More
specifically, the unstable subspace is now one dimensional, spanned by hg, the neutral
subspace is spanned by h;, and the stable one is spanned by h, , hs,..., where ho, hy, ho,

... are the eigenfunctions of £ — I (see Section 2).
In analogy with the v-equation (Section 3) we define

74 : orthogonal projection onto the span of hg.
%o : orthogonal projection onto the span of h;.
#_ : orthogonal projection onto the span of hy, hg, ...

The following lemma is a direct consequence of (2.7).

Lemma 6.2 Let f(y) € H}, and let 7, represent w,, 7_ or mo. Then

d - d
3N =7 (57)
d

o1l + 1 (35.7) I3 = w1y
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Préof : We will give the proof for 7_. (The other two cases are similar). Using (2.7) we
write:

oo 1/2
f:Zajhj = —f ZQJ J_Za-’( ) J 1.
7=0

Hence

On the other hand: _
oo 1/2
W_f:Zajhj = —(71' Za, ( ) J -1,
Jj=3

and (6.7) has been proved. Of course (6.8) is a direct consequence of (6.7).

O

Next we prove a result analogous to Theorem A, but with the H} norm replacing the Lf,
norm.

Proposition 6.1 Let v(y, s) be a solution of (6.1) which does not decay exponentially fast.
Then, given any € > 0 there exists an sq such that:

v+ llay + llv-llas < ellvollgy, — for s> so. (6.9)

Proof : The proof is almost identical to that of Theorem A. Therefore we simply outline it,
pointing out the differences.
Let uy = %4u and similarly for uo and u_. Recalling the notation of the previous

sections we have that z = (f vgp)l/z, y = (fvip)l/z, z= (fvip)llz, and N = (fv"p)l/z.
From the L2 theory (Section 4) we have for z that
.1
t> 52— CN. (6.10)
Working similarly with equation (6.6b) we obtain for z; = (f uﬁrp)l/2 that
1 '
2"1 2 521 -C Nl, (611)
with Ny = ([ u?v?p)"/%. Let 2z, = 2+ 2z and Ny = N + Ny. Adding (6.10) and (6.11) we

get )
Zy 2 3%~ C2Na, (6.12)
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where C; = maz(C, C'). By repeating the above calculations for z; = z+2; and y; = y+u;

with z; = (f ugp)l/2 and y; = ([ u2_p)1/2, we arrive at a system which is the analogue of
(4.9):

Z3 2 %Zz - C3N,
| 22 | < C2NN, (6.13)
Y2 < *%yz + C2N,
We now estimate N;. For N we already have (4.10):
Nge(:c+y+z)+6§J, (6.14)

. 1/2 o
with J = (f vty | p) . An argument similar to the proof of (4.10) gives:

1/2
(/u4p> Se(:cl +y1+21)+5§J1, (615)

' 1/2
with J; = (f ut |y |k p) / . We may thus estimate N; as follows:

(o)< () (o)< (o) (1)

Se(e+y+2)+61T +e(z+y+2)+627,

Combining these estimates we conclude:

N2 S 26(2!2 + Y2 + 22) + 2(5-;]2, (6.16)

where J, = J + J;.
We now estimate J,. For J we have (4.18):

. 1 '
J§—§J+e(:c+y+z). (6.17)

For J; we multiply equation (6.6b) by u® | y |¥ p and integrate over all R. We then repeat
step by step the calculations we did for J, from (4.11) through (4.18). (The fact that
u = vy — 0 uniformly for | y |[< C as s — oo follows from [13].) This leads to the estimate

. 1 )
Ji1 < —§J1 + € ($1 + vy + 21). (618)
After adding (6.17) and (6.18) we conclude that

. 1 '
Jy < —§J2 + € (122 + y2 + 22). (619)

The rest of the argument is the same as in the proof of Theorem A. We thus conclude finally
that

23 +ys < €xy, for s> sg. (6.20)
Because of (6.8), (6.20) is equivalent to (6.9) and the Proposition has been proved.
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O

Remark 6.1 Although the above proposition has been proved only for n = 1, an exam-

ination of the proof shows that the argument can be carried out for any space dimension
n > 1 with minor changes.

]
We now give the proof of the uniform estimate.
Proof of Theorem C: Using the Sobolev embedding theorem we have
uppico | 9:9) = 31 = 3911 Ol ) - 5e(1 - 547 <
wi<c | v(y, y ¥>8) =~ 3 ps( = 5¥ Nmy(ui<o) <
C'l|vo(y, s) — -—( - —!/ Masgyi<oy + C'lo+ (¥ )llmyicoy + C'llv-(v, s s)mi<oy <
< K 1, , €,
< Clivoly, ) = 5 (1 = 397y + Celluo(y, s)llay = OC),
where we have used Propositions 5.1 and 6.1.
O

7 A Link Between Center Manifold Analysis and the Ge-
ometry of the Blowup Set.

We suggested in Section 2 that the local profile of the solution near blowup should reflect
the geometry of the blowup set. A first step towards justifying this would be to prove
that if the profile has a strict local maximum at y = 0 then the center of scaling is an
isolated blowup point. We execute this here in the one dimensional case: our precise result
is Theorem D.

Our argument makes use of the following result by Y. Giga and R. Kohn: if

Efw,](so) < E[x] (7.1)

for some time s then a is not a blowup point (see [13]). Here E[w,] denotes the “energy”
functional, defined as follows for a solution of (1.3) rescaled about any point (a,T):

Bluwdl(s) = [ 7% (51 Vel 9) [ + 5050l ) = s 7uE" (0,9 .

We will use this result in the following way. Assume that 0 is a blowup point. Recalling
that v = w — k, for a # 0 we shall obtain an expression of the form

Elwa)(s) = E[x] + R(v)(s)-
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Then, using the asymptotic behavior of v(y, s) , we shall show that there is a time s, after
which R(v)(s) < 0, so that (7.1) holds. It follows that a is not a blowup point.

We now begin the argument in earnest. Suppose that 0 is a blowup point. Setting as
usual

i
T -t

w(y, s) = (T — t)7Tu(z,t), y= s = —In(T - t),

we have that w(y,s) = v(y, s) + &, and the asymptotic behavior of v(y, s) is known from
the previous section. Let a be a point near 0. Rescaling about this point we have:

zT—a

1
a~1 = (T -t)»—1 1), y = )
wa(d, o) = (T - )7 Tula, ), 5= 2

s = —In(T —t).

We observe that we(y,s) = w(y,s) and § =y — \/1(:——t =y -7 withy = 2.

The “energy” functional corresponding to w, is thus

Blun) = [ % (51 Vualins) P+ 55w e) - ot (a9 i =
= /e_@ﬁ (% |AVw(y,s) |2 —I-F(w)) dy,

with F(w) = 2—(;—_—1—)102 - ;hwp“. We next compute the Taylor expansion of F(w) about

w = k. An easy calculation shows F'(k) = 0 and F" (k) = —1; therefore

F(w) = F(k) - —;—(w - k) - %p(p —1)(k + &P (w - k)* = F(k) - %v2 — ¢(p, E)v°,

with ¢(p, &) = $p(p — 1)(k + £)?7? and £ between 0 and v. Moreover by the argument of
Lemma 4.1 we have that 0 < ¢(p,§) < C" with C" depending on M and p. Thus, we have

E[wd(s) = E[x] + -1?: / =T (| Vo |2 —o?)dy — / S . 6%y, (7.2)

Let

1

* K
v*(y,8) = 2—173(1 - 53/2)-

We know that v behaves like v* for large times (in the sense of Theorem C), so we rewrite
(7.2) as
1 )2
Blwa)(s) = Bl + 5 [ 55 ( 90 P —o )y

_)2
%/e—L—L” T (| Vo |2 = | Vo' 2 —v? 4 %2 = 2¢(p, £)v°)dy.
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It follows that ]

1 k2 _(v=1)? 1 (=)
Blun)(s) = Bls] - § 753 [T+ gty + [T by, (19)

with
€@, s) ISC(lv |+ [v" N(lv—o" )+ C(| Vv |+ | V* |)(| Vv - V")

+ C | v |3 = C(gl + 52 + 83), (7.4)
for some positive constant C.
To prove Theorem D we will show:
(I) That the second term of (7.3) is negative (for 7 fixed and different from 0) and therefore

it behaves like —% for suitable constant C = C(y) (depending only on 7) and sufficiently
large time s.

(II) That the last term of (7.3) is of order €/s? for arbitrarily small ¢ and sufficiently large

s, i.e.
\/e—

Once we have shown these, (7.3) will imply that after certain time s,:

ly=~12 €
T E(y,s)ldy < - (7.5)

Elw,](s) < E[x].

ly=vI2

Let p, = e~ 7 . Working towards (I) we show
Lemma 7.1 The function f(v) = [ py(1— 2y* + 1y*)dy satisfies
£(0)=0, and f(1)>0 for 1#0.

Proof : Clearly f(v) = f(—7). By a simple integration by parts we find that f(0) = 0. An
elementary calculation gives

F=[el-ty+)ay,  F0)=0,
f=[e-a43t),  FO=2[se>0,

F'm=6few  fO=0,

and finally f""(y) = 6  p, > 0. We conclude that '), £ () £ (), £(7), are all positive
for v > 0.

0
The following lemma will be useful for establishing (II). (We state it here but postpone
the proof until later.)
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Lemma 7.2 In one space dimension (n = 1), given any Y # 0 and k> 2, for sufficiently
large time we have

v (y - 9)Fp,dy < C* /s 7
/y«y)O (y ) y= /5 ? ( ‘6)
wlth C* = O*( y,k) dependzng on « and k.

To prove (II) we now examine the large time behavior of each of the J €ip separately.
We start with [ &;p, :

Jawaas (f(o1+ 19 Poa) " (fo-vrem)”. @

Clearly

/vtzp"/ S 0/521

whereas fixing some p > 0 we have that

-1 2
2. _ 2 2 E__ 1 2 2 2 2 9
vp—/ vp+/ vipy < ez 4/v+ / v (y- <=
/ T Sy T Sz T PEE ] o (¥-7) Py <

where we used Lemma 7.2. Thus we have

1/2
(favt+1o pea) " <cys (1.8)
We still have to show that
Jw=vre <, (7.9)

and this is the most technical estimate. To show that (7.9) is true we write (for any § > 0):

Jo-vPo <[ w-vVer2[ a2 v, (110)
ly|<6—1 ly[>6-? ly[>6—1

For the first term of (7.10) we have that

[ w-ve<o®) [ -vies S,
ly|<6-?

lvl<é-? s?
using Theorem C. For the second term of (7.10) we write, for any p > 0:

2

= 2 v

v? —/ vep +/
/l‘yIZ*S”1 Pr {ly|>6-1}n{yv<p—1} K {ly[>6-1}n{yv>p~1}

*

C
< C(u)5'°/v2 ly ¥ p+ #"/ L VW) ey < Clu)eo(k)* /v§p+ W
yr> ,
In the above estimates we used Lemmas 5.1 and 7.2. We thus have

1
2p, < t 4 uker) S .
AylZ&“ vip, < (C(/,L)co(k)ﬁ +p°C ) a (7.11)
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Finally, for the last term of (7.10) , using the fact that all dorms of v* are equivalent we get

*2 < 6k/ *2 k < 6km
/lylza-*v Py < vy " py < o
Combining the above we end up with
. : ) 1
J=9)0, < (£C(0) + Cleo(W)s* + €' (k,7) + 4C7) 5,
and assertion (7.9) follows by making a suitable choice of g, § and €. Notice that one has

to choose y first, then § , and finally € . From (7.7)-(7.9) we conclude that given any € there
exists a time s; after which

/e"ﬁ?ﬁgl(y, s)dy < ;% (7.12)

Estimating £, in exactly the same way we conclude that after certain time s, we have
/e—g:?lﬁé'z(y, s)dy < siz | (7.13)

To show (7.13> one needs the analogues of Lemmas 5.1 and 7.2 for Vv. The proofs of these

are the same as for v.
We finally estimate the term [ €3p., as follows:

3 — 3 3 < 3 2
J1vE e, LmthM+Amdwlm_ﬂ®wmqhﬂp+Mwwqwlm,

where we used the fact that | v |< M. Recalling that v — 0 uniformly on compact sets and
using (7.11) we have

, a1
/MﬁmseﬂﬂﬁwqMWP+MEWM@W+MC);

, . C a1
<EC(O)G+M (C(w)co(k)6* + w*C) -

By choosing y, 4, ¢ suitably we can arrange that after certain time s3
/e_(lalﬁé'g(y,s)dy < siz' (7.14)
Thus, we have shown that after s, = maz{sy, sz, 53}
[ e 1ay < 5. (7.15)
It follows using (7.3) that after s,

Elwd](s) < E[s]. (7.16)
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We conclude that a is not a blowup point. Since a = y/T —tand T -t — 0 as s — oo ,
the possible values of a fill out a whole neighborhood of 0. The proof of Theorem D is now
complete.

We have yet to give the proof of Lemma 7.2. It is a consequence of the following

_ly=vl?

result, which holds in any space dimension n > 1. For v € R", we set py(y) = e 1
H,={y-v>0}and

)

L(s) = /H v*(y-v)*p,dy.

¥

Lemma 7.3 For any vy # 0 and k > 2 there exists a time sy after which

() S ~L(5) + Cln k) [ v, (117)

where C(7, k) is a positive constant depending only on v and k.

Proof : We calculate %L, using equation (4.5) for v. Multiplying (4.5) with v(y-7)*p, and
integrating over H., we get

L / V(pVo)Eo(y - 7)* +/ v(y 7)oy + / (6,2)0°(y-7)"py.  (7.18)
2ds”  Ju p H, T Un, K

~

Integration by parts in the first term (we choose k > 2 so that all boundary terms cancel
in the integration by parts) gives, after some calculation,

k . _ 1 .
| vev02aty- )t < 5 [ divlorty- 1)+ g [ dinonly- 1ot
Hy P 2 Ju, 4 Jm,
Now,

|y |?

) et [y P (k= D) s

, _ 1
div (py(y-1)F 1) = —5 () ey +
and

. 1 |7 [? -
div (py(y-1)*7) = =511 oy + (N et |7 [P Ry 1) s

Therefore, we conclude that

/ V(va)&v(y-'y)kS/ v2Sp.,, (7.19)
~ P H,
with
1 2k k|2 . k(k=1)]7|? ~
S=-gly-7)+ (-—st' - Z) (y~7)k+—‘27| gyt 4 HEZ DT 2)1 E gy,
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The last two terms of (7.18) are dominated by (1 + CM)I, since ¢(¢,p)v < CM. Thus,
from (7.18) we have

d k
d—s/m v*(y-7) pydy < /H o [25+(2+ 20M)(y - 7)*] pydy. (7.20)

¥

Now, if y -7 >> 1 then the term —(y -7)*+1 dominates in S and 2S5 + (2+2CM)(y-v)* <
—(y - 7)*. Thus there is a constant c; = ¢5(y, k) such that

d
—IL, <-I.+C 2
ds™” ! 0<y-v<e2 Y

for some constant C' depending on 4 and k. Since

P

py<eT T p, - for y-y<ecs,
we finally conclude that
d
EI.Y <-I,+ C(7,k)/v2p,
and assertion (7.17) has been proved.

O

We now give the proof of Lemma 7.2. In the one dimensional case we know that for
sufficiently large s

/vzp < C/s?,

for some C. Therefore from (7.17) we have

d
sl s+ C/s*. (7.21)
Integrating (7.21) from (some fixed time) s; to s we obtain
s esl—s ,
I,(s) < I(s1)e™ + c/ Eds (7.22)
o
Since [, e;,;’ ds' < C'/s?, for suitable constant C', Lemma 7.2 has been proved.

O

Remark 7.1 . A two dimensional generalization of Theorem D will be presented in
[7]. We indicate briefly the nature of this extension. The first step is to justify the formal
analysis of Section 2, leading to the conclusion that either

K 1
v(y,s)~ (1~ 719%) (7.23)
or else . 1 )
v(y,s) ~ 51-);(1 =5 -n)7). (7.24)

The second step is an argument similar to the one presented in this section. When (7.23)
holds, it shows that the center of scaling is an isolated blowup point. When (7.24) holds, it
shows instead that the blowup set lies inside a cone of arbitrarily small aperture, based at
the center of scaling and containing the line orthogonal to 7.
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8 Future Directions

We close by discussing the current state of this theory, taking into account the results
in [16-18, 23] as well as those presented here.

Space Dimension One

Our analysis depends on the hypothesis that v does not tend to zero expomentially
fast. Formally, this is the generic case: it should be true so long as the initial data avoid
a manifold in function space of codimension 1. The only rigorous result concerning this
hypothesis is due to Herrero and Velazquez: they prove that it holds whenever the initial
condition is unimodal [16]. '

We noted in Section 2 that if v tends to zero exponentially fast, then its profile should
resemble one of the higher eigenfunctions h3(y), ha(y),.... Herrero and Velazquez prove in
[17] that only the even eigenfunctions hax(y) can occur, and they show that hy does occur.
One expects that solutions should exist with profile hyk(y) for any k = 2,3,4,..., but this
remains open. :

Higher Space Dimensions

In space dimension two, the next task is to justify rigorously the formal results (2.32),
(2.33). This has been accomplished, and will be presented in [7].

Even the formal picture is incomplete in higher space dimensions. An analysis similar
to Lemma 2.3 has not been done for space dimensions n > 3. The situation when v — 0
exponentially fast is unclear even for n = 2 (see the remarks at the end of Section 2).

We believe that the local character of the blowup set is determined by the asymptotic
profile of v. The method of Section 7 shows, roughly speaking, that if v does not tend to
zero exponentially fast, then there can be no blowup where v(y, s) << —%. The full power
of the method remains unclear. Perhaps it could be used to prove that the blowup set has
Hausdorff dimension at most » — 1 in R™ . Thus far there is no known restriction on the
size of the blowup set.
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