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Abstract. We consider the problem of high-frequency asymptotics for the time-dependent one-
dimensional Schrödinger equation with rapidly oscillating initial data. This problem is commonly
studied via the WKB method. An alternative method is based on the limit Wigner measure. This
approach recovers geometrical optics, but, like the WKB method, it fails at caustics. To remedy this
deficiency we employ the semiclassical Wigner function which is a formal asymptotic approximation
of the scaled Wigner function but also a regularization of the limit Wigner measure. We obtain
Airy-type asymptotics for the semiclassical Wigner function. This representation is shown to be
exact in the context of concrete examples. In these examples we compute both the semiclassical and
the limit Wigner function, as well as the amplitude of the wave field near a fold or a cusp caustic,
which evolve naturally from suitable initial data.
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1. Introduction. We consider the Cauchy problem for the time-dependent one-
dimensional Schrödinger equation with fast space-time scales,

iεψε
t = −ε2

2
ψε
xx + V (x)ψε(x, t) , x ∈ R,(1.1)

and highly oscillatory initial data:

ψε(x, 0) = ψε
0(x) = A0(x) exp

(
iS0(x)/ε

)
.(1.2)

The parameter ε appears in both the equation and the initial data, and it is considered
to be a small parameter. We are interested in the high-frequency limit of (1.1), (1.2),
that is, in the limit of ψε as ε tends to zero.

Apart from quantum mechanics, (1.1), (1.2) arises in many contexts in classi-
cal wave propagation as the paraxial approximation of forward propagating waves
[FLAT]. Thus, it is of practical importance for computing wave intensities in many
applied fields such as radioengineering [FOC], laser optics [TAP1], underwater acous-
tics [TAP2], the investigation of light and sound propagation in turbulent atmosphere
[TAT1], and seismic wave propagation in the earth’s crust [SF], to mention but a
few. In these cases, the potential V is explicitly related to the refraction index of the
propagating medium.

Problems of high-frequency waves such as (1.1), (1.2) have traditionally been
studied via the method of geometrical optics (see, e.g., [BLP], [BB], [KO1]). We
briefly review this method for the problem at hand. The starting point is the WKB
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ansatz according to which the asymptotic solution of (1.1), (1.2) as ε → 0 has the
form

ψε(x, t) = A(x, t) exp
(
iS(x, t)/ε

)
.(1.3)

Substituting (1.3) into (1.1) and retaining terms of order O(1) in ε, we obtain the
following system for the phase S(x, t) and the principal amplitude A(x, t):

St + (Sx)2/2 + V = 0,(1.4)

2At + 2AxSx + ASxx = 0.(1.5)

Introducing the Hamiltonian

H(x, k) = k2/2 + V (x),(1.6)

where k ∈ R is the momentum, we rewrite (1.4) in the standard form of the Hamilton–
Jacobi (eikonal) equation

St + H(x, ∂xS) = 0.(1.7)

The phase function S(x, t) is constructed by the method of characteristics (rays)
as follows. First, we solve the ODEs

dx̄

dt
= Hk = k̄,

dk̄

dt
= −Hx = −V ′(x̄),(1.8)

with initial conditions

x̄(0) = r, k̄(0) = S′
0(r),(1.9)

to obtain the characteristics (x̄(t; r), k̄(t; r)). Then the phase S(x̄(t; r), t) is obtained
by integrating the equation

dS

dt
= St + SxHk = St + k̄ · k̄ = −H + k̄2 =

k̄2

2
− V (x̄),(1.10)

with initial condition S(x, 0) = S0(r), along the rays.
On the other hand, applying the divergence theorem in a ray tube for the transport

equation (1.5) (see [BLP]), we obtain the following formula for the principal amplitude:

A(x̄(t; r), t) = A0(r)J
− 1

2 (t; r),(1.11)

where

J(t; r) =
∂x̄(t; r)

∂r
(1.12)

is the Jacobian of the ray transformation r → x̄(t; r).
Once S(x, t) and A(x, t) have been found, a first approximation of ψε is given

by (1.3). This amounts to a quick review of the WKB method. Since the nonlinear
equation (1.4) for the phase function S(x, t) does not in general have global in time
solutions, the WKB method fails on caustics where it predicts infinite wave ampli-
tudes. From the mathematical point of view, formation of caustics corresponds to
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the multivaluedness of the phase function S(x, t) due to rays crossing. On the other
hand, formation of caustics is a common situation in most wave problems as a result
of multipath propagation from localized sources. Indeed, even in the simplest oceano-
graphic models and geophysical structures (see, e.g., [TC], [CMP]), various types of
caustics occur, depending upon the position of the source and the stratification of the
wave velocities.

Assuming that the multivalued phase function is known, uniform asymptotic for-
mulas for the wave field near the caustics have been constructed using boundary layer
techniques [BAK], [BUK] as well as phase-space techniques, and notably Lagrangian
integrals [LU], [KR], [DUI], [GS], [KO2], and the method of canonical operator [MF],
[VA]. Given the practical importance of the problem, a number of numerical tech-
niques have been proposed in order to compute the multivalued phase functions; see,
e.g., [BEN], [EFO], [ER], [RU] and the references therein.

A relatively new phase-space technique for studying oscillatory solutions of dis-
persive wave equations and the homogenization of energy density ηε(x, t) =| ψε(x, t) |2
is based on the use of the Wigner transform (see, e.g., [GM], [GMMP], [BCKP], [JL]).
The Wigner transform of the wave function ψε converges, as ε goes to zero, to the
so-called limit Wigner measure f0(x, k, t) which solves a Liouville equation in phase
space [LP], [GMMP]. Since the Liouville equation is easily solved, we can obtain f0

for all t ≥ 0 and from this the “homogenized” energy density

η0(x, t) =

∫ ∞

−∞
f0(x, k, t)dk.(1.13)

In particular, for the problem (1.1), (1.2), the initial Wigner measure f0(x, k, t = 0)
is a Dirac mass, and it remains so for all times. Then, for a single-phase wave field,
it follows from (1.13) that η0(x, t) = A2(x, t), the amplitude A given by the solution
(1.11) of the transport equation (1.5). For multiphase fields a similar result arising
from linear superposition holds. For example, assuming a two-phase field (as in the

vicinity of a fold caustic) where WKB method predicts ψε(x, t) = A+(x, t)eiS
+(x,t)/ε+

A−(x, t)eiS
−(x,t)/ε, (1.13) yields

η0(x, t) = A2
+(x, t) + A2

−(x, t),(1.14)

A+, A− being the solutions of the transport equation (1.5) with S = S+ or S = S−,
respectively (cf. [SMM, Thm. 4.2]). Thus, this approach recovers the WKB solution
as long as (x, t) lies in the illuminated zones. However, the Liouville equation fails to
predict the correct multiphase solution either on the caustics, where the limit Wigner
measure f0 is not well defined, or in the shadow zones, where this measure vanishes.
To elucidate this fact we explicitly compute the Wigner function f ε on and away from
the caustics for specific multiphase examples. Thus, for a fold, we find that away from
the caustic and in the illuminated zone, f ε converges weakly to a sum of two Dirac
masses, and one can recover (1.14). On the other hand, on the fold itself, ε1/3f ε

converges to a single Dirac mass, and it follows that ηε(x, t) = O(ε−
1
3 ) as ε goes to

zero. Clearly, the last two estimates (on the fold) cannot be obtained from the limit
Wigner function.

In order to capture the correct field on the caustics and in the shadows, one should
work with the scaled Wigner function f ε instead of f0. The function f ε satisfies the
full Wigner equation (see (2.7) below). This is an infinitely singular (as ε goes to
zero), transport-dispersive integrodifferential equation, and thus many analytical as
well as numerical difficulties are anticipated.
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It is the main objective of this work to construct formal asymptotic approxima-
tions f̃ ε of f ε which are valid even on caustics. To this end the starting point is the
WKB solution. Assuming that 0 ≤ t ≤ T , with T < tc, tc being the first time when a
caustic appears, we show that the Wigner transform W ε(x, k, t) of the WKB solution
is a formal asymptotic solution of the full Wigner equation. Using stationary phase
techniques at each fixed time t, we obtain Airy-type asymptotics of W ε, which we
denote by W̃ ε(x, k, t) and call the semiclassical Wigner function. This semiclassical

object can be thought of as an approximation of f ε(x, k, t). Although W̃ ε is a phase-
space quantity it is not defined on the caustics, since for t = tc the WKB solution
itself fails.

To overcome this difficulty we first consider the special case V (x) = ax2 + bx+ c,
(a, b, c ∈ R). The key observation here is that the evolution of the initial semiclassical

Wigner function W̃ ε(x, k, t = 0) under the Hamiltonian flow is an approximation of

W̃ ε(x, k, t) for 0 ≤ t ≤ T , and in addition it is well defined even for t = tc. This

motivates the definition of f̃ ε as the evolution of the initial semiclassical Wigner
function W̃ ε(x, k, t = 0) under the Hamiltonian flow. A similar construction applies
to the case of more general potentials.

The quantity f̃ ε thus defined converges to the limit Wigner (Dirac) mass away
from caustics, and it satisfies the analogue of (1.13), that is,

ηε(x, t) =

∫ ∞

−∞
f̃ ε(x, k, t)dk + o(1) as ε → 0.

Furthermore, it conveys the appropriate local scales even on caustics so that one can
compute the correct amplitude there.

In our simple examples f̃ ε coincides with f ε, and we find analytic expressions for
both the scaled and the limit Wigner function, as well as for the amplitude of the wave
field near a fold or a cusp caustic, which evolve naturally from suitable initial data.
These expressions reveal the structure of the oscillations of the Wigner function as
well as the way the scaled Wigner converges towards the limit Wigner (Dirac) mass.

The paper is organized as follows:
• Section 2 is devoted to the basics of the Wigner transform and in the construc-

tion of the semiclassical (Airy) Wigner function as a local asymptotic approximation
of the Wigner transform of a WKB function.

• In section 3 we show that the Wigner transform of a single-phase WKB solution
is a formal approximation of the solution of the full Wigner equation. Based on that,
we construct asymptotic approximations of the solution of the full Wigner equation.

• In section 4 we present in detail two specific examples revealing the structure
of the solution of the Wigner equation near fold and cusp caustics generated by the
initial data.

• In the final section we present a review of the main points of this work, along
with some concluding remarks.

2. The Wigner transform.

2.1. The Wigner equation. For any smooth function ψ(x) rapidly decaying
at infinity with respect to x, say, ψ ∈ S(R), the Wigner transform of ψ is defined by
(see, e.g., [LP], [PR], [WIG])

W (x, k) =
1

2π

∫ ∞

−∞
exp(−ikσ)ψ

(
x +

σ

2

)
ψ
(
x− σ

2

)
dσ,(2.1)
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where ψ denotes the complex conjugate of ψ. This is a function defined in phase
space, and it has many important properties. First, it is real and its k-integral is the
modulus square of ψ, ∫

R

W (x, k)dk = |ψ(x)|2.(2.2)

Thus, if ψ is a wave function, we may think of W (x, k) as wave number resolved
energy density. This is not quite precise because W (x, k) is not in general positive
(except when ψ is a Gaussian function; see, e.g., [FOL, p. 62]), but it always becomes
positive in the high frequency limit. Second, the energy flux is expressed through
W (x, k) by

F =
1

2i

(
ψ(x)ψ′(x) − ψ(x)ψ′(x)

)
=

∫
R

kW (x, k)dk.(2.3)

Third, given a wave function of the form ψε(x) = A(x) exp
(
iS(x)/ε

)
, its scaled Wigner

transform

W ε(x, k) =
1

ε
W

(
x,

k

ε

)
(2.4)

has, as a generalized function, the weak limit [LP], [PR]

W ε(x, k) →| A(x) |2 δ(k − S′(x)) , ε → 0.(2.5)

This suggests that the correct scaling for the high-frequency limit for the problem
(1.1) is

W ε(x, k, t) =
1

2π

∫ ∞

−∞
exp(−ikσ)ψε

(
x +

εσ

2
, t
)
ψε

(
x− εσ

2
, t
)
dσ.(2.6)

Using the Wigner transform (2.6) to the Schrödinger equation (1.1), we obtain
the integrodifferential Wigner equation [LP], [PR], [GMMP]

Lε[f ε] = f ε
t (x, k, t) + kf ε

x(x, k, t) + Zεf
ε(x, k, t) = 0,(2.7)

where the operator Zε is defined by the convolution with respect to the momentum
k,

Zεf(x, k, t) = f(x, k, t) ∗k
i

2πε

∫ ∞

−∞
exp(−iky)

(
V
(
x +

ε

2
y
)
− V

(
x− ε

2
y
))

dy.

(2.8)

Assuming that the potential V is smooth enough, we can expand V (x± ε
2y) into

Taylor series and rewrite (2.7) as a singular equation of infinite order (cf. [TAT2]):

f ε
t + kf ε

x − V ′(x)f ε
k =

∞∑
m=1

αmε2mV (2m+1)(x)∂2m+1
k f ε,(2.9)

where αm = (−1)m

22m(2m+1)! ,m = 0, 1, . . . , and V (2m+1)(x) = d2m+1V (x)
dx2m+1 . Formally speak-

ing, (2.9) is a transport-dispersive equation, since the left-hand side contains a stan-
dard transport (Liouville) operator, while the right-hand side is a dispersive operator
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of infinite order. Since, in general, (2.9) involves infinitely many derivatives of the
unknown function multiplied by powers of the small parameter ε, it can be thought
of as a singular perturbation problem of infinite order.

The initial condition for (2.7) (or (2.9)) is

f ε
0(x, k, t = 0) = W ε

0 (x, k, t = 0),

where W ε
0 is the Wigner transform of the initial datum of (1.2).

In the formal limit ε = 0, the right-hand side of (2.9) is zero, and (2.9) reduces
to the limit Wigner equation

f0
t (x, k, t) + kf0

x(x, k, t) − V ′(x)f0
k (x, k, t) = 0,(2.10)

which is a simple transport equation in the phase space R
2
xk.

Note finally that the limit Wigner transform of the WKB solution (1.3) is given,
according to (2.5), by

f0(x, k, t) = A2(x)δ(k − S′(x, t)).(2.11a)

It is also easily verified, by substituting (2.11a) into (2.10) and using the Hamilton–
Jacobi and transport (1.4) and (1.5), respectively (cf. [PR]), that f0 is a solution of
the Liouville equation (2.10), with initial condition

f0
0 (x, k) = A2

0(x)δ(k − S′
0(x)),(2.11b)

the limit Wigner transform of the initial datum (1.2). A direct solution of (2.10) will
be given in section 3.3 below.

2.2. Asymptotics of the Wigner transform of a WKB function. In this
section we will derive the asymptotics of the Wigner transform of a WKB function.
Our analysis is motivated by the work of Berry [BER1] and Berry and Balazs [BEBA],
who derived Airy-type expansions of the Wigner function corresponding to stationary
solutions of (1.1) in terms of geometric characteristics of the closed fixed-energy curve
(assumed globally convex) in phase space.

The (scaled) Wigner transform of a WKB function

ψε(x) = A(x) exp
(
iS(x)/ε

)
is given by the oscillatory integral

W ε(x, k) =
1

πε

∫ ∞

−∞
D(σ, x) exp

( i
ε
F (σ, x, k)

)
dσ,(2.12)

where

D(σ, x) := A(x + σ)A(x− σ)(2.13)

and

F (σ, x, k) := S(x + σ) − S(x− σ) − 2kσ.(2.14)

Asymptotic expansions of oscillatory integrals as in (2.12) are, in general, con-
structed applying the method of stationary phase; cf. [BOR], [BH]. According to this
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method the main contribution to W ε comes from the stationary points of the Wigner
phase F , that is, the points σ which are roots of the equation

F ′
σ(σ, x, k) = S′(x + σ) + S′(x− σ) − 2k = 0.(2.15)

Clearly, the roots of (2.15) appear in symmetric pairs ±σ0(x, k). The nature of these
roots depends on the position of the point (x, k) relative to the Lagrangian manifold

Λ = {(x, k) | k = S′(x)}

associated with the WKB function ψε(x) (cf. [ARN1], [ARN2]).
We therefore consider the following three cases.
Case 1. ±σ0 �= 0 are simple stationary points. Let us assume that at some point

(x, k) there corresponds two simple stationary points ±σ0(x, k) �= 0. In particular we
have that F ′′

σ (σ0, x, k) = S′′(x+ σ0)− S′′(x− σ0) �= 0. Then the standard stationary
phase formula applies, and it leads to the semiclassical approximation

W ε(x, k) ≈ 4(2πε)−
1
2

D(σ0,x)√
|F ′′

σσ(σ0,x,k)|

× cos
(

1
εF (σ0, x, k) + π

4 sign
(
F ′′
σσ(σ0, x, k)

))
.

(2.16)

Although the first term of (2.16) is of order O(ε−1/2), it is multiplied by a highly
oscillatory factor (cos(F/ε)), and it tends weakly to zero.

To explain this, for fixed x, let us consider the point P = (x, k0) in the concave
side of Λ; see Figure 1. Then σ0(x, k0) is uniquely determined by the endpoints Q and
R of the chord having P as its midpoint (Berry’s chord construction). Clearly, for k
close to k0, F (σ, x, k) has two simple stationary points ±σ0(x, k) �= 0. In particular
(2.16) is valid with σ0 = σ0(x, k). A Taylor expansion about k0 yields

F (σ0(x, k), x, k) = F (σ0(x, k0), x, k0) − 2σ0(x, k0)(k − k0) + O((k − k0)
2).

Using the weak limit ε−m exp(ix/ε) → 0 as ε → 0, m ≥ 0, we see that for k close to
k0, the right-hand side of (2.16) goes to zero as ε → 0.

We note that as P approaches T = (x, S′(x)) ∈ Λ, then both Q and R approach
T , and hence σ0 goes to zero. In this case the two simple stationary points ±σ0

coalesce. We therefore consider the next case.
Case 2. ±σ0 = 0. It must be emphasized σ0 = 0 is a stationary point only

in the case where (x, k) ∈ Λ, that is, k = S′(x); cf. (2.15). Moreover, σ0 = 0 is a
multiple stationary point since F ′

σ(0, x, S′(x)) = F ′′
σσ(0, x, S′(x)) = 0, and (2.16) does

not apply in this case. This multiple stationary point results from the coalescence of
the simple stationary points ±σ0(x, k) �= 0 (of Case 1) which move towards zero as
(x, k) approaches Λ, as shown in Figure 1.

Under the assumption that we have a double stationary point, that is,

F ′′′
σσσ(0, x, S′(x)) = 2S′′′(x) �= 0,

a uniform approximation of the integral (2.12) can be derived by employing the
method of Chester, Friedman, and Ursell [CFU]; see Appendix A. This method
concerns one-parameter phase integrals for which two stationary points coalesce to a
double point as a control parameter, say α, approaches zero.

In order to rigorously apply this method, we first fix x and then take α = k−S′(x)
as the small parameter which controls the distance between the stationary points ±σ0;
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Λ

T

Q

R
P

x x σ+x- σ0 0

Fig. 1. Coalescence mechanism for a double stationary point σ0 = 0.

notice that σ0 → 0 as α → 0. Then the uniform approximation formula (A.3) of
Appendix A (with B0 = 0 due to the symmetry of the stationary points) leads to the
expansion (semiclassical Wigner function)

W ε(x, k) ≈ D
(
−2

1
2

(
k−S′(x)
S′′′(x)

) 1
2

, x
)

× 2
2
3

ε
2
3

(
2

|S′′′(x)|

) 1
3

Ai
(
− 2

ε
2
3

k−S′(x)

(S′′′(x))
1
3

)
+ O(ε

4
3 ).

(2.17a)

This expansion can be also formally constructed as follows. We expand both D and
F in Taylor series about σ = 0,

D(σ, x) = D(0, x) + O(σ), F (σ, x, k) = −2(k − S′(x))σ +
1

3
S′′′(x)σ3 + O(σ5).

Discarding the term O(σ) from D and O(σ5) from F and recalling the integral repre-
sentation of the Airy function (see Appendix B), it follows from (2.12) that

W ε(x, k) ≈ D(0, x)
2

2
3

ε
2
3

( 2

| S′′′(x) |

) 1
3

Ai
(
− 2

ε
2
3

k − S′(x)

(S′′′(x))
1
3

)
.(2.17b)

The apparent difference between the formal expansion (2.17b) and the rigorous
one (2.17a) lies in the approximation of the amplitude D, which in the latter case is
simply D(0, x) = A2(x), while in the former it has a more precise form. Nevertheless,

near the manifold the two formulas are in good agreement. We denote by W̃ ε(x, k)
the approximation

W̃ ε(x, k) :=
2

ε
2
3

A2(x)

| S′′′(x) | 13
Ai

(
− 2

ε
2
3

k − S′(x)

(S′′′(x))
1
3

)
.(2.18)

Taking into account the weak limit

(1/ε)Ai(y/ε) → δ(y), ε → 0,(2.19)

it follows easily that

W̃ ε(x, k) → A2(x)δ(k − S′(x)), ε → 0.(2.20)

Thus, in the classical limit (ε = 0), the right-hand side of (2.17b) recovers the limit
Wigner (Dirac) function; cf. (2.5). In addition, the projection formula (2.2) is satisfied
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if instead of W ε we use the right-hand side of (2.17b). Indeed, using the fact that∫
R
Ai(y)dy = 1, we easily compute that∫

R

W̃ ε(x, k)dk =
2

ε
2
3

A2(x)

| S′′′(x) | 13

∫
R

Ai
(
− 2

ε
2
3

k − S′(x)

(S′′′(x))
1
3

)
dk = A2(x),(2.21)

thus recovering the correct amplitude.
The approximations (2.17a) and (2.17b) are not valid near degenerate points of

Λ, that is, near points where S′′′(x) = 0. If we assume that near such a point
S(2N+1)(x) �= 0 is the first nonzero odd derivative, then, by keeping more terms in
the Taylor expansion of F about σ = 0, we can formally write the following formula:

W ε(x, k) ≈ 1

2π
A2(x)

∫ +∞

−∞
exp

{
i
[
−(k − S′(x))σ +

N∑
m=1

S(2m+1)(x)

(2m + 1)!

ε2m

22m
σ2m+1

]}
dσ.

(2.22)

We note that this approximation satisfies the analogue of (2.20) or (2.21). Indeed, by
setting ε = 0 in (2.22) we recover the Dirac mass, whereas by interchanging the s and
k integration we recover the amplitude via the projection formula (2.2).

Case 3. ±σ0 �= 0 are multiple stationary points. We note that the previous
two cases are only possible in the case where Λ is globally convex or concave. For
arbitrary Λ, however, there will be points (x0, k0) to which there correspond nonzero
multiple stationary points ±σ0. Similarly to Case 1, W ε is highly oscillatory in the
neighborhood of these points, and it tends (weakly) to zero as ε goes to zero.

To see that, we consider the simple (nongeneric) case where ±σ0(x0, k0) �= 0 are
double stationary points, that is, F ′

σ(±σ0, x0, k0) = F ′′
σσ(±σ0, x0, k0) = 0 and

F ′′′
σσσ(±σ0, x0, k0) = S′′′(x0 + σ0) + S′′′(x0 − σ0) �= 0.

Such a case is shown geometrically in Figure 2. We consider the points (x0, k), where
k is close to k0. Expanding in Taylor series about ±σ0 both D(σ, x0, k) and F (σ, x0, k)
and working as in Case 2, we obtain after some calculations that

W ε(x0, k) ≈ W ε
+(x0, k) + W ε

−(x0, k),(2.23)

with

W ε
±(x0, k) = exp

(
− i

ε

(
±2σ0(k − k0) + F (σ0, x0, k0)

))
D(±σ0, x0)

× 2
2
3

ε
2
3

(
2

|F ′′′
σσσ(±σ0,x0,k0)|

) 1
3

Ai
(
− 2

ε
2
3

k−k0

(F ′′′
σσσ(±σ0,x0,k0))

1
3

)
.

(2.24)

Although the expression in the second line of (2.24) tends to the Dirac mass
δ(k − k0), the right-hand side of (2.24) tends to zero, due to the rapid oscillations of
the exponential factor exp(− i

ε (±2σ0(k − k0) + F (σ0, x0, k0))). Note that this could
not happen in Case 2 considered above, since then σ0 = 0 and F (0, x0, k0) = 0, and
the oscillations in front of the Airy function disappear. Thus, only the asymptotics
coming from the zero stationary points (Case 2) can give nontrivial contributions as
ε tends to zero.

Conclusion. The essential asymptotic contribution to W ε comes from the points
near the Lagrangian manifold Λ, where W ε is generically (i.e., when S′′′(x) �= 0)
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.

.
(x o, ko)

(x o,k)

xoxo +σo xo−σo

Λ

Fig. 2. Coalescence mechanism for a double stationary point σ0 �= 0.

approximated by the standard Airy function, that is,

W ε(x, k) ≈ W̃ ε(x, k) =
2

ε
2
3

A2(x)

| S′′′(x) | 13
Ai

(
− 2

ε
2
3

k − S′(x)

(S′′′(x))
1
3

)
.(2.25)

We have seen that as ε → 0, the right-hand side of (2.25) converges to the correct
limit Wigner (Dirac) function; cf. (2.20). Moreover, its integral with respect to k is
equal to A2(x) (cf. (2.21)) in agreement with the projection formula (2.2).

We recall that to obtain approximation (2.25) we have “thrown away” highly
oscillatory terms that tend weakly to zero. As a consequence, this approximation is
of local nature; that is, it is valid for k close to S′(x). Indeed, for k outside a boundary

layer of thickness of order O(ε
2
3 | S′′′(x) | 13 ) about Λ, both W̃ ε and W ε tend weakly

to zero due to rapid oscillations. Clearly, as we approach a degenerate point, the
thickness of this boundary layer shrinks to zero.

By means of (2.19) we may think of (2.25) as being valid even at degenerate
points, in the sense that if S′′′(x) = 0 we may replace the right-hand side of (2.25) by
A2(x)δ(k−S′(x)). Of course, this is only a matter of convenience, since at degenerate
points the Airy asymptotics are lost, and we simply recover the limit Wigner.

Our formal argument suggests that near degenerate points one should use gener-
alized Airy approximations; cf. (2.22).

3. Single-phase optics. In this section we consider the single-phase case. That
is, our analysis is restricted in the time interval 0 ≤ t ≤ T , with T < tc, where tc is
the first time a caustic appears.

3.1. The WKB solution. We recall the Wigner equation (cf. (2.7))

Lε[f ε] = ∂tf
ε(x, k, t) + k∂xf

ε(x, k, t) + Zεf
ε(x, k, t) = 0.(3.1)

When looking for approximate solutions of (3.1), the most natural candidate is the
Wigner transform of the WKB solution

ψε(x, t) = A(x, t)eiS(x,t)/ε,

where S and A satisfy the eikonal and transport equations (1.4) and (1.5), respectively.
The Wigner function of ψε is given by

W ε(x, k, t) =
1

πε

∫
e

i
ε (S(x+σ,t)−S(x−σ,t)−2kσ)A(x + σ, t)A(x− σ, t)dσ.(3.2)
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We need to clarify in what sense W ε is an approximate solution of the Wigner equa-
tion. To this end we will plug the expression for W ε into (3.1), and we will compute
the left-hand side.

To simplify the calculations we introduce the notation

Φ(σ;x, t) := S(x + σ, t) − S(x− σ, t), F (σ;x, k, t) := Φ − 2kσ,
D(σ;x, t) := A(x + σ, t)A(x− σ, t), Q(σ;x) := V (x + σ) − V (x− σ).

The following relations are immediate:

Φx = Fx = Sx(x + σ, t) − Sx(x− σ, t),
Φσ = Sx(x + σ, t) + Sx(x− σ, t),
Fσ = Φσ − 2k,
Φxσ = Sxx(x + σ, t) + Sxx(x− σ, t),
Sx(x± σ, t) = 1

2 (Φσ ± Φx).

We then rewrite (3.1) as

W ε =
1

πε

∫
e

i
εFDdσ.(3.3)

Using the eikonal and transport equations we derive some helpful relations involving
Φ, D, and Q. The relevant calculations are lengthy but straightforward, and we
therefore omit the details. We write the eikonal equation at the points x + σ and
x− σ, multiply by ψε(x− σ) and ψ̄ε(x+ σ), respectively, take the Fourier transform,
and then subtract the resulting expressions to obtain

(∂t + k∂x)F = (∂t + k∂x)Φ = −1

2
(FσΦx + 2Q).(3.4)

In a similar manner, from the transport equation, we obtain

(∂t + k∂x)D = −1

2
(FσDx + ΦxDσ + DΦxσ).(3.5)

We finally compute the convolution term in (3.1):

ZεW
ε =

i

πε2

∫
e

i
εFDQdσ.(3.6)

Plugging (3.3) in (3.1) and using (3.6), we get

Lε[W ε] = (∂t + k∂x)W ε + ZεW
ε(x, k, t)

=
1

πε

∫
e

i
εF

( i
ε
D(∂t + k∂x)Φ +

i

ε
DQ + (∂t + k∂x)D

)
dσ.

Using (3.4) and (3.5) we have

Lε[W ε] = − 1

2πε

∫ (
e

i
εF

)
σ
ΦxDdσ − 1

2πε

∫
e

i
εF

(
FσDx + ΦxDσ + DΦxσ

)
dσ

= − 1

2πε

∫ (
e

i
εFΦxD

)
σ
dσ − 1

2πε

∫
e

i
εFFσDx dσ

= − 1

2πε

∫
e

i
εFFσDx dσ.
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Integrating the last integral by parts we conclude that

Lε[W ε] =
i

2π

∫
e

i
εFDxσ dσ :=

i

2π
Iε(x, k, t).(3.7)

Hence, W ε as defined in (3.2) is an approximate solution of the Wigner equation as
ε → 0 to the extent that the integral Iε in (3.7) approaches zero as ε → 0.

The oscillatory integral in (3.7) is similar to the oscillatory integral in section 2.2;
cf. (2.12). A similar analysis can be made for Iε; however, since there is an extra
multiplicative ε in Iε (compared to W ε), a rough estimate can be obtained as follows.
According to the stationary phase method, the main contribution to Iε as ε → 0 at
the point (x, k, t) will come from the points σ for which Fσ(σ;x, k, t) = 0. Let σ0

be such a point. Assume that Fσ(σ0) = Fσσ(σ0) = · · · = F
(n−1)
σ (σ0) = 0, whereas

F
(n)
σ (σ0) �= 0. Taking the Taylor expansion of F and Dxσ about σ = σ0, we see that

the contribution from σ0 in Iε is

Iσ0,ε ≈ e
i
εF (σ0)Dxσ(σ0;x, t)

∫
e

i
ε

F
(n)
σ (σ0)

n! (σ−σ0)
n

dσ.

The last integral is easily estimated from above so that

|Iσ0,ε| ≤ Cε1/n.

Assuming, for instance, that A(x, t) has compact support and that S(x, t) is analytic,
it is standard to see that there are only a finite number of such points σ0, and hence

Iε ≈
∑
σ0

Iσ0,ε = O(ε1/n)

for some positive integer n. Hence, we conclude that Iε(x, k, t) tends pointwise to
zero, and consequently W ε defined by (3.2) is a formal approximation of the solution
of (3.1).

In fact, one can prove that f ε and W ε are also close in the L2-sense, that is,

‖f ε −W ε‖L2 ≤ CT tε
1/2, 0 ≤ t ≤ T.(3.8)

For a proof see Appendix C.
By the results of section 2.2 and away from degenerate points (i.e., Sxxx(x, t) �= 0),

f ε(x, k, t) is approximated by W̃ ε, that is,

f ε(x, k, t) ≈ W̃ ε(x, k, t) =
2

ε
2
3

A2(x, t)

| Sxxx(x, t) | 13
Ai

(
− 2

ε
2
3

k − Sx(x, t)

(Sxxx(x, t))
1
3

)
.(3.9)

3.2. Phase-space dynamics. In order to understand how W̃ ε evolves with
time, we must compute how the quantities k − Sx and Sxxx evolve with time.

In the single-phase optics, the initial Lagrangian manifold Λ0 associated with the
initial data (1.2),

Λ0 = {(q, p) : p = S′
0(q)},

evolves with the Hamiltonian flow gt : (q, p) 
→ (x(t; q, p), k(t; q, p)) to the Lagrangian
manifold [ARN1]

Λt = {(x, k) : k = Sx(x, t)},
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where S(x, t) is the (single-valued) solution of the eikonal equation (1.7).
The flow gt is described by the Hamiltonian system

dx

dt
= k,

dk

dt
= −V ′(x),

with initial conditions x(0) = q, k(0) = p; here (q, p) is any initial point in phase
space R

2
xk.

We will derive an ODE for the quantity k(t; q, p) − Sx(x(t; q, p), t). Clearly, for
t = 0 we have

k(0; q, p) − Sx(x(0; q, p), 0) = p− S′
0(q).

Differentiating along the bicharacteristic

Γq,p = {(x, k) | x = x(t; q, p), k = k(t; q, p), t ≥ 0},

we have

d

dt
(k − Sx(x, t)) =

dk

dt
− (∂t + k∂x − V ′(x)∂k)Sx(x, t)

=
dk

dt
− (∂t + k∂x)Sx(x, t) = −V ′(x) − Sxt(x, t) − kSxx(x, t).

(3.10)

We use now the eikonal equation to replace the first two terms of the right-hand side
of (3.10). Taking the ∂x-derivative of the eikonal equation we get

Sxt(x, t) + Sx(x, t)Sxx(x, t) + V ′(x) = 0.

Then from (3.10) we obtain

d

dt
(k − Sx(x, t)) = −Sxx(x, t)(k − Sx(x, t)).

Integrating this equation along the bicharacteristic Γq,p, we find

p− S′
0(q) = exp

(∫ t

0

Sxx(x(τ ; q, p), τ)dτ

)
(k − Sx(x, t)).(3.11)

We next recall the formula [KR], [SMI]

J(t; q) = exp

(∫ t

0

Sxx(x(t; q, S′
0(q)), τ)dτ

)
;(3.12)

for the Jacobian

J(t; q) =
∂x̄

∂q
(t; q),

along the ray x̄(t; q) = x(t; q, S′
0(q)); see AC in Figure 3.

Note that in single-phase optics, for a given (x̄, t), q = q(x̄, t) is uniquely defined.
For p close to S′

0(q) and fixed q, we have that

Sxx(x(τ ; q, p), τ) = Sxx(x̄(τ ; q), τ)) + O
(
|x(τ ; q, p) − x̄(τ ; q)|

)
.(3.13a)
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(x,k)

(q,p)

A

B

D

C

0Λ

Λt

Fig. 3. Evolution of k − Sx(x, t). In the figure are shown the points A = (q, S′
0(q)), B =

(x, Sx(x, t)), C = (x̄, Sx(x̄, t)), and D = (r, S′
0(r)).

On the other hand,

x(τ ; q, p) − x̄(τ ; q) = O(|xp(τ ; q, S′
0(q))|(p− S′

0(q))) = O((p− S′
0(q))).

By the Hamiltonian system it follows that

dxp

dt
= kp,

dkp
dt

= −V ′′(x)xp, xp(0) = 0, kp(0) = 1,

and hence xp ≈ t as t → 0. Therefore, for small times and near the manifold, we
have that x(τ ; q, p)− x̄(τ ; q) = O(τ(p− S′

0(q))). Clearly, this relation is also valid for
0 ≤ τ ≤ T . Hence,

x(τ ; q, p) − x̄(τ ; q) = O(τ(p− S′
0(q))).(3.13b)

Using (3.13a), (3.13b), and (3.12), we end up with

exp

(∫ t

0

Sxx(x(τ ; q, p), τ)

)
= J(x̄, t)

(
1 + O

(
t2
(
p− S′

0(q)
)))

.

It then follows from (3.11) that

p− S′
0(q) = J(t; q) (k(t; q, p) − Sx(x(t; q, p), t)) + O

(
t2
(
k − Sx(x, t)

)2)
.(3.14)

We next derive a formula for Sxxx(x̄(t, q), t) = Sxxx(x(t; q, S′
0(q)), t). Differentia-

tion along the ray

Γ̄q = {x = x(t; q, S′
0(q)) , k = k(t; q, S′

0(q))}

yields

d

dt
Sxxx = Sxxxt + SxSxxxx,(3.15)

since k(t; q, S′
0(q)) = Sx(x(t; q, S′

0(q)), t). On the other hand, taking the ∂3
x-derivative

of the eikonal equation we have

Sxxxt + 3SxxSxxx + SxSxxxx + V
′′′

= 0.
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From the last equation and (3.15) we see that

d

dt
Sxxx = −3SxxSxxx − V

′′′
,

which, by taking into account (3.12), is written as

d

dt
(J3Sxxx) = −J3V

′′′
.

Integrating the last equation along the ray Γ̄q, we conclude that

S′′′
0 (q) = J3(t; q)Sxxx(x̄(t, q), t) +

∫ t

0

J3(τ ; q)V ′′′(x̄(τ, q))dτ,(3.16)

with J(t; q) = ∂x̄
∂q (t; q). Notice that since the Jacobian is calculated along the rays

x̄(t; q) = x(t; q, S′
0(q)), only the rays, and not the bicharacteristics, appear in (3.16).

Since x̄(t; q) is close to x(t; q, p) we have that

Sxxx(x̄(t; q), t) = Sxxx(x(t; q, p), t) + O(|x(t; q, p) − x̄(t; q, p)|)

= Sxxx(x(t; q, p), t) + O
(
t
(
k − Sx(x(t; q, p), t)

))
.

Hence, from (3.16) we obtain

S′′′
0 (q) = J3(t; q)Sxxx(x(t; q, p), t) +

∫ t

0

J3(τ ; q)V ′′′(x̄(τ ; q))dτ(3.17)

+O
(
t
(
k − Sx(x(t; q, p), t)

))
.

In a similar manner we can obtain equations for higher-order derivatives of S.
Remark. When working with the WKB solution, the Jacobian that enters natu-

rally in the computations is not J(τ ; q) but is J(τ ; r) along the ray x̄(τ ; r), 0 ≤ τ ≤ t,
for which x̄(t; r) = x; see DB in Figure 3. Using the estimate

x(τ ; q, p) − x̄(τ ; r) = O
(
(τ − t)(k − Sx(x, t))

)
instead of (3.13b), we can rederive (3.14) and (3.17) with J(τ ; r) in place of J(τ ; q).

3.3. Solution of the limit Wigner equation. Using the evolution formulas
(3.14) and (3.17), we now derive the solution W 0 of the limit Wigner equation

d

dt
f0(x, k, t) = f0

t + kf0
x − V ′(x)f0

k = 0,(3.18)

with initial data (cf. (2.11b))

f0
0 (q, p) = A2

0(q) δ(p− S′
0(q)).(3.19)

Integrating (3.18)–(3.19) we obtain

f0(x, k, t) = f0
0 (q(x, k, t), p(x, k, t)) = A2

0(q(x, k, t)) δ
(
p(x, k, t) − S′

0(q(x, k, t))
)
.

(3.20)
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Using (3.14) and then (1.11), we have

f0(x, k, t) = A2
0(q(x, k, t))J

−1(x, t) δ
(
k − Sx(x, t)

)
= A2(x, t) δ

(
k − Sx(x, t)

)
.

(3.21)

Note that (3.21) coincides with the limit Wigner function of the WKB solution (cf.
(2.11a)). Also (3.20) is valid even in the multiphase case (see, however, section 4).

3.4. Approximate solution of the Wigner equation. Here we proceed to
the construction of asymptotic approximations of the solutions of the (full) Wigner
equation (3.1), which we denote by f̃ ε. We first consider an interesting special case.

The case of nonessential potentials. We say that a potential V (x) is nonessential
if V (x) = ax2 + bx + c, with a, b, c ∈ R. This includes, in particular, the case
of the harmonic oscillator (V (x) = x2). For nonessential potentials, as is easily
seen from (2.9), the Wigner equation coincides with the limit Wigner equation, since
V (2m+1)(x) ≡ 0, m = 1, 2, . . . . Thus, the solution is given by

f ε(x, k, t) = f ε
0(q(x, k, t), p(x, k, t)),(3.22)

where f ε
0 is the Wigner transform of the WKB initial datum (1.2).

The Wigner transform W ε(x, k, t) of the WKB solution is approximated by

W̃ ε(x, k, t) (cf. (3.9)), while the Wigner transform of the initial data is approximated
by

W̃ ε
0 (q, p) =

2

ε
2
3

A2
0(q)

| S′′′
0 (q) | 13

Ai
(
− 2

ε
2
3

p− S′
0(q)

(S′′′
0 (q)) 1

3

)
.(3.23)

We want to compare W̃ ε
0 (q(x, k, t), p(x, k, t)), that is, the evolution of the Airy asymp-

totics of the initial data, with W̃ ε(x, k, t). To this end we will use the evolution
relations (3.14) and (3.17). We recall that according to (3.14) for p close to S′

0(q),

p− S′
0(q) =

(
k − Sx(x, t)

)
J(t; q) + O

(
t2
(
k − Sx

)2)
.

On the other hand, for V ′′′ ≡ 0, (3.17) takes the simple form

S′′′
0 (q) = J3(t; q)Sxxx(x, t) + O

(
t
(
k − Sx(x, t)

))
.(3.24)

It then follows that for p close to S′
0(q)

p− S′
0(q)

(S′′′
0 (q))

1
3

=
k − Sx(x, t)

S
1/3
xxx(x, t)

(
1 + O

(
t
(
k − Sx(x, t)

)))
,

whereas from (1.11) and (3.24) we similarly have that

A2
0(q)

(S′′′
0 (q))

1
3

=
A2(x, t)

S
1/3
xxx(x, t)

(
1 + O

(
t
(
k − Sx(x, t)

)))
.

From the last two relations and (3.23), we have that

W̃ ε
0 (q(x, k, t), p(x, k, t)) = 2

ε
2
3

A2(x,t)

S
1/3
xxx(x,t)

(
1 + O

(
t
(
k − Sx(x, t)

)))
×Ai

(
− 2

ε
2
3

k−Sx(x,t)

S
1/3
xxx(x,t)

(
1 + O

(
t
(
k − Sx(x, t)

))))
.

(3.25)
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It is remarkable that omitting the error terms in the right-hand side of (3.25) we

recover W̃ ε(x, k, t); cf. (3.9). Motivated by this we define

f̃ ε(x, k, t) := W̃ ε
0 (q(x, k, t), p(x, k, t)).(3.26)

An easy analysis shows that f̃ ε(x, k, t) = (1 + o(1))W̃ ε(x, k, t) if (k − Sx) = o(ε
2
3 ),

whereas f̃ ε(x, k, t) = (1+O(1))W̃ ε(x, k, t) if (k−Sx) = O(ε
2
3 ). Hence, the Hamiltonian

flow preserves the Airy asymptotics of the WKB solution locally near the Lagrangian
manifold. In view of this, we may think of f̃ ε as defined in (3.26) as an approximation
of the solution of the Wigner equation.

It is easy to check that as ε → 0

f̃ ε(x, k, t) → A2(x, t)δ(k − Sx(x, t)).(3.27)

Moreover, f̃ ε satisfies approximately the projection formula (2.2). To see this we first
note that for (x, t) fixed and ε small

∫ ∞

−∞
f̃ ε(x, k, t)dk =

∫ ∞

−∞
W̃ ε

0 (q(x, k, t), p(x, k, t))dk ≈
∫ Sx+δ

Sx−δ

W̃ ε
0 (q(x, k, t), p(x, k, t))dk

(3.28)

for some δ small (independent of ε), since the main contribution to the integral will
come from the neighborhood of the point k = Sx. Also, along a vertical line x = const,
0 = dx = xpdp + xqdq, whence dq = −(xp/xq)dp, and using the incompressibility
condition in phase space

xqkp − xpkq = 1,

we obtain that dk = (1/xq)dp. Since for k close to Sx there holds xq ≈ J(t; r), we
have ∫ Sx+δ

Sx−δ

W̃ ε
0dk =

∫ S′
0+δ0

S′
0−δ0

W̃ ε
0

xq
dp ≈ 1

J(t; r)

∫ S′
0+δ0

S′
0−δ0

W̃ ε
0dp

≈ 1

J(t; r)

∫ ∞

−∞
W̃ ε

0dp =
A2

0(q)

J(t; r)
= A2(x, t)

for some δ0 small which is also independent of ε. In conclusion, as ε → 0∫ ∞

−∞
f̃ ε(x, k, t)dk = A2(x, t) + o(1).(3.29)

We point out that in the stream of calculations leading to (3.29), the fact that the
potential is nonessential has not been used. By its definition, f̃ ε is simply transported
as the exact solution, that is,

f̃ ε(x, k, t) = f̃ ε
0(q(x, k, t), p(x, k, t)), f̃ ε

0(q, p) = W̃ ε
0 (q, p).(3.30)

In addition to properties (3.28), (3.29), f̃ ε as given by (3.30) remains meaningful even
at the caustics.

Remark. In our previous calculations we have assumed that we are away from
degenerate points, that is, away from points (q, S′

0(q)) for which S′′′
0 (q) = 0, and
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away from points (x, Sx(x, t)) for which Sxxx(x, t) = 0, with x = x(t; q, S′
0(q)). For

nonessential potentials, degenerate points (q, S′
0(q)) are moved by the Hamiltonian

flow to degenerate points for all times; this can be easily seen from (3.17) (with
V ′′′(x) ≡ 0). By replacing at the degenerate points the Airy function with the Dirac
function, we may think of f̃ ε as being well defined everywhere. In this case, of course,
at the degenerate points we lose the Airy asymptotics, and we simply recover the limit
Wigner function.

The general case. The formula for W̃ ε (cf. (3.9)) as well as for W̃ ε
0 (cf. (3.23))

both remain the same if an “essential potential” V is present in the Wigner equation.
This does not mean, however, that (3.25) is valid anymore, since the simple relation

(3.24) is not true in this case. If we use (3.17) instead of (3.24) we can write W̃ ε
0 (q, p)

in terms of (x, k, t) in the form

W̃ ε
0 (q(x, k, t), p(x, k, t)) = 2

ε2/3

A2(x,t)

(
1+O

(
t
(
k−Sx

)))
|S′′′

xxx+J−3(t;q)
∫ t

0
J3V ′′′dτ |1/3

×Ai

(
− 2

ε2/3

k−Sx(x,t)

(S′′′
xxx+J−3(t;q)

∫ t

0
J3V ′′′dτ)1/3

(
1 + O

(
t
(
k − Sx

))))
,

(3.31)

which is the analogue of (3.25). However, (3.31) is not convenient for the construction
of the approximate solution f̃ ε. For this reason we start from the similar formula

W̃ ε(x, k, t) = 2
ε2/3

A2
0(q)

|S′′′
0 (q)−

∫ t

0
J3V ′′′dτ |1/3

(
1 + O

(
t
(
p− S′

0(q)
)))

×Ai

(
− 2

ε2/3

p−S
′
0(q)

(S
′′′
0 (q)−

∫ t

0
J3V ′′′dτ)1/3

(
1 + O

(
t
(
p− S′

0(q)
))))

,

(3.32)

which is easily derived by solving (3.17) for Sxxx and using (3.14).

By omitting the error terms in the right-hand side of (3.32), we define f̃ ε as

f̃ ε(x, k, t) :=
2

ε2/3
A2

0(q)

|S′′′
0 (q) −

∫ t

0
J3V ′′′dτ |1/3

Ai

(
− 2

ε2/3
p− S

′

0(q)

(S
′′′
0 (q) −

∫ t

0
J3V ′′′dτ)1/3

)
.

(3.33)

As in the case of nonessential potentials, an easy analysis shows that f̃ ε(x, k, t) =

(1 + o(1))W̃ ε(x, k, t) if (k − Sx) = o(ε
2
3 ). Moreover, f̃ ε has the correct limiting

behavior; that is, (3.27) holds. Finally, f̃ ε thus defined satisfies (3.29), as it can be

shown by the same argument as before, simply by replacing W̃ ε
0 in (3.28) by the

right-hand side of (3.33).

We next want to find the evolution law of f̃ ε, that is, to find the analogue of
(3.30). To this end we will use the following convolution identity:

1

|b3 − c3|1/3Ai
( x

(b3 − c3)1/3

)
=

∫ +∞

−∞

1

| b |Ai
(x− y

b

) 1

| c |Ai
(
− y

c

)
dy,(3.34)

which is easily derived using the integral representation of the Airy function. By
our usual convention, if some of the denominators in (3.34) are zero, we replace the
corresponding Airy function with the Dirac function.



692 STATHIS FILIPPAS AND GEORGE N. MAKRAKIS

We will take

a = S′
0(q), x = − 2

ε2/3
(p− a), b3 = S

′′′

0 (q),

c3 =

∫ t

0

J3(τ ; q)V
′′′

(x(τ ; q)) dτ =

∫ t

0

J3V
′′′
dτ.

Multiplying both sides of (3.34) by 2
ε2/3A

2
0(q) we have (ξ = ε2/3y/2)

2

ε2/3
A2

0(q)

|b3 − c3|1/3Ai
(
− 2

ε2/3
p− a

(b3 − c3)1/3

)
=

( 2

ε2/3

)2 A2
0(q)

bc

∫ +∞

−∞
Ai

(
− 2

ε2/3
(p− a) − ξ

b

)
Ai

(
− 2

ε2/3
ξ

c

)
dξ

=
2A2

0(q)

ε2/3 | b |Ai
(
− 2

ε2/3
(p− a)

b

)
∗p

2

ε2/3 | c |Ai
(
− 2

ε2/3
p

c

)
.

(3.35)

Then, in view of (3.23) and (3.33), the identity (3.35) is written as

f̃ ε(x, k, t) = f̃ ε
0(q, p) ∗p Gε(q, p, t),(3.36)

with f̃ ε
0(q, p) = W̃ ε

0 (q, p) and

Gε(q, p, t) :=
2

ε2/3
1

|
∫ t

0
J3V ′′′dτ |1/3

Ai
(
− 2

ε2/3
p

(
∫ t

0
J3V ′′′dτ)1/3

)
.(3.37)

Formula (3.36) shows that f̃ ε
0 is not simply transported along the bicharacteristics,

but it is also dispersed in the k-direction. Thus, f̃ ε is made up of two parts. First, the
initial Airy function (f̃ ε

0) is transported by the Hamiltonian flow bringing Λ0 to Λt.
Second, the transported Airy function is “dispersed” as a result of convolution with
a second Airy function (Gε) that reflects the effect of the (“essential” part of the)
potential. This process results in a new Airy function (f̃ ε) which is still concentrated
on Λt, but with modified argument, and with asymptotics which are in agreement
with the WKB solution.

In view of (3.36) we may think of Gε(q, p, t) as the local asymptotic approximation
of the fundamental solution of the Wigner equation (2.9). Notice that if ε → 0, then
Gε(q, p, t) → δ(p). Hence f̃0(q, p) = f̃0

0 (q, p) ∗p δ(p) = f̃0
0 (q, p), thus recovering (3.20).

By the same reasoning, if V ′′′ ≡ 0 we recover (3.30), whereas for t = 0 we find
f̃ ε(x, k, t = 0) = f̃ ε

0(q, p).
As usual, near degenerate points we lose the Airy asymptotics. In contrast with

the case of nonessential potentials, in the general case we have no a priori information
about the position of these points. Near such points, we guess that one should look
for more refined asymptotics in the form of generalized Airy functions; cf. (2.22).

Finally, as in the case of the nonessential potentials, formula (3.36) is meaningful
even at caustics—if these caustics do not correspond to degenerate points. We extend
the definition of degenerate point by saying that a degenerate point is a point where
the curve Λt has zero curvature.

All our analysis so far has been single-valued. In order to get some insight of
what one should expect in the multiphase case we consider in the next section some
concrete multiphase examples.
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4. Multiphase optics: Some case studies. As we have seen in section 3.4,
for V (x) = ax2 + bx+ c the Wigner equation is a Liouville equation that can be easily
solved by characteristics, that is,

f ε(x, k, t) = f ε
0(q(x, k, t), p(x, k, t)).(4.1)

To simplify subsequent calculations we consider the case V (x) ≡ 0. Then the rays
emanating from x̄ = r at t = 0 are given by

x̄(t; r) = x(t; r, S′
0(r)) = S′

0(r)t + r.(4.2)

The Jacobian is

J(t; r) = ∂x̄/∂r = 1 + tS′′
0 (r),(4.3)

where r = r(x̄, t) is found solving (4.2), and consequently the solution of the transport
equation (1.5) is

A(x̄(t; r), t) =
A0(r)√

1 + tS′′
0 (r)

.(4.4)

Moreover, the phase is given by

S(x̄(t; r), t) =
1

2
(S′

0(r))
2t + S0(r).(4.5)

Finally, the bicharacteristic emanating from (q, p) at t = 0 is given by x = q + pt,
k = p, so that

q = x− kt, p = k.(4.6)

Then from (4.1) the solution of the Wigner equation is

f ε(x, k, t) = f ε
0(x− kt, k).(4.7)

Also, the initial Lagrangian manifold Λ0 = {(q, p) : p = S′
0(q)} is moved by the

Hamiltonian flow to the Lagrangian manifold (see section 3.2)

Λt = {(x, k) : k = S′
0(x− kt)}.

The fact that f ε is given by the simple relation (4.7) allows us to treat some examples
in a simple and intuitive way.

4.1. Study of fold. Consider the initial data

S0(q) = −q3

3
, A0(q) ≡ 1.(4.8)

Then the rays are given by x̄(t; r) = −r2t+ r, and the caustic is a global fold in (x, t),
given by the hyperbola xt = 1/4. In the illuminated zone xt ≤ 1, from each point
(x, t) pass two rays, which emanate from the points r = r±(x, t) = (1∓

√
1 − 4xt)/2t.

The corresponding Jacobians are J± := J(t; r±(x, t)) = ±
√

1 − 4xt.
The Wigner transform of the initial data is calculated explicitly in terms of the

Airy function,

f ε
0(q, p) =

1

πε

∫ +∞

−∞
exp

(
i
( 2

3ε

σ3

3
+

2

ε
(p + q2)σ

))
dσ =

2
2
3

ε
2
3

Ai
(2

2
3 (p + q2)

ε
2
3

)
.
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Λ0

Λt

q

p

0

(a)

k

xf
x

(b)

kf

0

Fig. 4. Evolution of the Lagrangian manifold: (a) t = 0, initial position; (b) t > 0, formation
of the fold (xf = 1/4t , kf = 1/4t2).

By means of (4.7) the solution of the Wigner equation at any point (x, k, t) is
given by

f ε(x, k, t) =
2

2
3

ε
2
3

Ai
(2

2
3 (k2t2 + (1 − 2xt)k + x2)

ε
2
3

)
.(4.9)

As ε → 0, we see that f ε is an Airy function “concentrated” on the Lagrangian
manifold

Λt = {(x, k) : k2t2 + (1 − 2xt)k + x2 = 0}.

However, for t > 0, in contrast with the single-phase optics, Λt is no longer the graph
of a single-valued function k = Sx(x, t); see Figure 4(b). Instead, it consists of two
single (real-valued) branches k = S+

x (x, t) and k = S−
x (x, t), both of which exist only

in the illuminated zone (xt < 1/4):

S±
x (x, t) =

−1 + 2xt±
√

1 − 4xt

2t2
.(4.10)

In the shadow zone (xt > 1/4), S±
x are complex-valued. Thus, (4.9) can be written as

f ε(x, k, t) =
2

2
3

ε
2
3

Ai
(2

2
3

ε
2
3

t2(k − S−
x (x, t))(k − S+

x (x, t))
)
.(4.11)

On the caustic xf = 1/4t, we observe that S−
x (xf , t) = S+

x (xf , t) = −1/4t2 ≡ kf ,
and the expression defining Λt becomes a perfect square in k, which is the typical
behavior of Lagrangian manifolds near folds. Clearly, at these points, dx

dk = 0, and
the manifold Λt turns vertically.

The amplitude |ψε(x, t)| is given by (cf. (2.2))

|ψε(x, t)|2 =

∫ +∞

−∞
f ε(x, k, t)dk.(4.12)

This can be explicitly computed by means of the following “projection identity” (Ap-
pendix B, (B.1)):∫ +∞

−∞
Ai(ak2 + bk + c)dk =

2π

2
1
3
√
a
Ai2

(
−b2 − 4ac

45/3a

)
, a > 0.
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Then for f ε as in (4.9) we have that a = ( 2
ε )

2/3t2, b = ( 2
ε )

2/3(1 − 2xt), c = ( 2
ε )

2/3x2,
and the amplitude at any point (x, t) is given by

|ψε(x, t)|2 =
2π

ε1/3t
Ai2

(
− 1

ε2/3t2
(1 − 4xt)

4

)
.(4.13)

We note that in the illuminated zone xt < 1/4, the argument of Ai2(·) in (4.13) is
negative, and therefore |ψε| is oscillatory there, whereas in the shadow zone xt > 1/4,
and |ψε| is exponentially decreasing as ε → 0. Finally, on the caustic xt = 1/4,∣∣∣ψε

( 1

4t
, t
)∣∣∣ =

√
2πAi(0)√
tε1/6

=
Γ(1/3)

31/6
√

2π
√
tε1/6

= O(ε−1/6).

This is the typical picture of a high-frequency wave field (ε → 0) in the region of a
fold [GS, Chap. VII, sect. 6].

The limit Wigner function. We now turn our attention to the limit Wigner
function. We use once more the fact that (1/ε)Ai(y/ε) → δ(y) as ε → 0 to take the
limit in (4.11). It then follows that

f ε(x, k, t) → f0(x, k, t) =
1

t2
δ
(
(k − S−

x )(k − S+
x )

)
.(4.14a)

In the illuminated zone, S−
x �= S+

x and both are real-valued; hence

f0(x, k, t) =
1

t2
δ(k − S+

x ) + δ(k − S−
x )

|S+
x − S−

x |
, xt <

1

4
.

Using (4.10) we see that

t2|S+
x − S−

x | =
√

1 − 4xt = |J±|.

Also,

1

|J±| =
A2

0(r±)

|J±| =: A2
±(x, t).

Thus, in the illuminated zone, we have that

f0(x, k, t) = A2
+(x, t)δ(k − S+

x ) + A2
−(x, t)δ(k − S−

x ), xt < 1/4.(4.14b)

In the shadow zone, since the argument of the Airy function in (4.11) has no real
roots, we obtain

f0(x, k, t) = 0, xt > 1/4.(4.14c)

By means of (4.12) and with f0 in place of f ε, we can compute the limit amplitude

|ψ0(x, t)|2 =

{
A2

+(x, t) + A2
−(x, t) , xt < 1/4,

0, xt > 1/4,
(4.15)

thus recovering the two-phase geometrical optics; see Appendix D.
Finally, let us see which is the limiting behavior of f ε on the fold. As we mentioned

above, there holds S+
x (xf , t) = S−

x (xf , t) =: kf . Hence, from (4.14a) we formally write

f0(x, k, t) =
1

t2
δ
((

k − kf
)2)

, xt = 1/4, x = xf .(4.16)
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The Dirac function in the right-hand side of (4.16) is not well defined. One can see
this by noting that if φε(x) is a sequence that tends to the Dirac mass (as ε tends to
zero), then the limit of φε(x

2) is not uniquely defined but depends on the sequence
itself. This explains why the limit Wigner function f0 is not well defined on the fold.

We then proceed directly from (4.11) (with S−
x = S+

x = kf ):

f ε(x, k, t) =
2

2
3

ε
2
3

Ai
(2

2
3

ε
2
3

t2
(
k − kf

)2)
, x = xf =

1

4t
.(4.17)

Using the weak limit (see Appendix B, (B.4))

(1/
√
η)Ai(y2/η) → Γ2(1/3)

21/331/32π
δ(y), η → 0,

we obtain that

ε1/3 f ε(x, k, t) → Γ2(1/3)

2πt31/3
δ
(
k − kf

)
, x = xf , ε → 0,

where Γ(·) denotes the gamma function.

The local asymptotics of f ε. Here we compare the exact solution f ε with W̃ ε and
f̃ ε that we defined in section 3 (cf. (3.9), (3.22), (3.26)). The formula (4.11) for f ε

is valid for all (x, k, t) without any smallness assumption on ε. For ε small and x
away from the caustic, we can approximate f ε, say, near the upper branch k ≈ S+

x ,
as follows:

f ε(x, k, t) ≈ 2
2
3

ε
2
3

Ai
(2

2
3

ε
2
3

t2(S+
x − S−

x )(k − S+
x )

)
.

Using (4.10) we have

S+
x − S−

x =
J+

t2
, S+

xxx = − 2

(J+)3
, (A+(x, t))2 =

A2
0(r+)

| J+ | =
| S+

xxx |1/3
21/3

.

In view of these relations, near the upper branch k = S+
x of the manifold Λt, we have

f ε(x, k, t) ≈ 2
2
3

ε
2
3

Ai
(2

2
3

ε
2
3

J+(k − S+
x )

)
=

2

ε
2
3

(A+(x, t))2

| S+
xxx | 13

Ai
( 2

ε
2
3

k − S+
x

(S+
xxx)

1
3

)
.(4.18)

We note that the right-hand side of this is the Airy asymptotics of the WKB solution,
which we denoted by W̃ ε(x, k, t, ); cf. (3.9).

On the other hand, if we recall the definition of f̃ ε (cf. (3.26)) it is easy to see
that f̃ ε(x, k, t) = f ε(x, k, t); that is, in this simple example f̃ ε coincides with the exact
solution.

We finally make some interesting remarks concerning the phase-space formulas
derived in section 3.2. Let x ≤ 1/4t be a point in the physical space. From this point
pass two rays which emanate from the points r±. We consider the points (x, k) in phase
space, and let (q(x, k, t), p(x, k, t)) be given by (4.6). In particular, q(x, S±

x , t) = r±.
An easy calculation shows that

p− S′
0(q) = p + q2 = J+(k − S+

x ) + t2(k − S+
x )2.(4.19)
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x=
bt

1/2a

b/2a x

t

Fig. 5. Geometry of the cusp: 27(x
t
− b)2 = 4( 1

t
− 2a)3.

Formula (4.19) remains true if we replace J+ and S+
x by J− and S−

x , respectively.
This is to be compared with (3.14) along with the remark at the end of section 3.2.
From (4.19) it follows that

f̃ε(x, k, t) =
2

2
3

ε
2
3

Ai
(2

2
3

ε
2
3

(J±(k − S±
x ) + t2(k − S±

x )2)
)
.

Away from the caustic, and for k close to S+
x , J+ �= 0, and the first term J+(k−S+

x )
is dominant. Thus, near the upper branch, we recover (4.18). On the other hand,
at the caustic we have that J± = 0 and S+

x = S−
x = kf , thus recovering (4.17). We

observe that the WKB solution corresponds to the linear term in the argument of
the Airy function. Therefore, geometrical optics follows by a suitable linearization in
phase space near Λt.

4.2. Study of cusp. We now consider the initial data

S0(q) = −q4

4
− aq2 + bq, a > 0, b > 0, A0(q) ≡ 1.(4.20)

Then the rays are given by x̄(t; r) = −r3t+(1−2at)r+ bt, and the caustic is the cusp
27u2 = 4v3, where u = x/t− b and v = 1/t− 2a. The beak u = v = 0 of the cusp is
the point (xb = b/2a, tb = 1/2a); see Figure 5.

The Wigner transform of the initial data is explicitly given by

f ε
0(q, p) =

1

πε

∫ +∞

−∞
exp

(2i

ε

(
qσ3 + (q3 + 2aq + p− b)σ

))
dσ.(4.21)

For q �= 0, it is calculated again in terms of the Airy function,

f ε
0(q, p) =

2
2
3

ε
2
3 | 3q | 13

Ai

(
2

2
3 (q3 + 2aq + p− b)

ε
2
3 (3q)

1
3

)
, q �= 0,(4.22a)

while for q = 0 it is a Dirac mass,

f ε
0(q, p) = δ(p− b), q = 0.(4.22b)

Although q = 0 is a singular point of the initial Wigner function W ε
0 (q, p), using

the formula 1/εAi(y/ε) → δ(y) as ε → 0 we see that

f ε
0(q, p) → f ε

0(0, p), q → 0.
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(a)

p

q

Λ 0

b

b

Λt

(c)

k

B

/2ab
x

k

A1

A2

xx1 2

Λt

x

x

k

Λt

(d)

(b)

Fig. 6. Evolution of the Lagrangian manifold: (a) t = 0, initial position; (b) 0 < t < 1/2a,
formation of cusp: points A1(x1, kf (x1)) and A2(x1, kf (x1)) project onto the fold sides of the cusp;
(c) t = 1/2a, formation of the beak of the cusp; (d) t > 1/2a, single-phase evolution.

By means of (4.7) the Wigner function at any point (x, k, t) is given by

f ε(x, k, t) =
1

πε

∫ +∞

−∞
exp

(2i

ε

(
(x− kt)σ3 + (x− kt)3 + 2a(x− kt) + k − b

)
σ
)
dσ

(4.23a)

or, alternatively, by

f ε(x, k, t) =

⎧⎪⎨⎪⎩
2

2
3

ε
2
3 |3(x−kt)|

1
3
Ai

(
2

2
3 ((x−kt)3+2a(x−kt)+k−b)

ε
2
3 (3(x−kt))

1
3

)
, x �= kt,

δ(k − b), x = kt.

(4.23b)

As ε → 0, f ε is again concentrated on the Lagrangian manifold

Λt = {(x, k) : k3t3 − 3xt2k2 − (1 − 3tx2 − 2at)k − x3 − 2ax + b = 0}.

The evolution of Λt is shown in Figure 6. We note that for 0 < t < 1/2a, there is
a region (x1(t) < x < x2(t)) where this manifold consists of three branches. Notice
that points x1(t) and x2(t) trace the fold sides of the cusp. At t = 1/2a, this region
degenerates to the point B = (x = b/2a, k = b), which is an inflection point of Λt
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with vertical tangent. Point B projects onto the beak of the cusp. For t > 1/2a the
manifold becomes and stays thereafter single-valued.

The amplitude ψε(x, t) at any point is given by the formula (4.12),

|ψε(x, t)|2 =

∫ +∞

−∞
f ε(x, k, t)dk.

This can be again explicitly computed by means of a new“projection identity” (Ap-
pendix B, (B.5)):∫ +∞

−∞

1

| ξ |1/3Ai
( λ

ξ1/3

(
ξ3 − vξ + u

))
dξ =

1

2π

1√
2λ1/4

| P (−V,U) |2, λ > 0,

where P (−U, V ) denotes the Pearcey integral [WO], [KAM]

P (−V,U) =

∫
R

exp

(
i

(
t4

4
− V

t2

2
+ Ut

))
dt,

with

V =
1√
2
λ3/4v, U =

1

23/4
λ9/8u.

Thus, we obtain

|ψε(x, t)|2 = 3−3/4 2π

t

(2

ε

)1/2

| P (−r, s) |2,(4.24)

with r, s defined by

r =
1

31/4ε1/2
v, s =

1

33/8ε3/4
u.(4.25)

We point out that formula (4.24) is valid at any point (x, t) as well as for any ε > 0.
Using the asymptotic expansions of the Pearcey integral [KAM], we find that

|ψε(x, t)| = O(ε−1/4) near the beak, and |ψε(x, t)| = O(ε−1/6) near the fold sides of
the cusp, which is the typical behavior of a wave field near a cusp.

The limit Wigner function. There are three cases to be considered depending on
the roots ki (i = 1, 2, 3) of the equation

k3 − 3x

t
k2 − 1

t3
(1 − 3tx2 − 2at)k +

1

t3
(−x3 − 2ax + b) = 0.(4.26)

Recall that these roots are given by the formulas

k1 = P + T +
x

t
, k2,3 = −1

2
(P + T ) +

x

t
± i

√
3

2
(P − T ),

where

P =
(
R +

√
D
)1/3

, T =
(
R−

√
D
)1/3

,

D = Q3 + R2, Q = −v/3t2, R = u/2t3.
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Note that the discriminant D vanishes on the caustic 27u2 = 4v3. Equation (4.26)
has three distinguished roots for (x, t) inside the cusp; see Figure 5. On the fold sides
of the cusp u �= 0, it has a double root k2 = k3 = kf . In this case

k1(x, t) = 2
u1/3

21/3t
+

x

t
, kf (x, t) = − u1/3

21/3t
+

x

t
.(4.27)

Finally, on the beak u = v = 0, (4.26) has a triple root k1 = k2 = k3 = kb = b.
Therefore, in the three-phase region inside the cusp, the limit Wigner function is

given by

f0(x, k, t) = δ(t3(k − k1)(k − k2)(k − k3)) =
1

t3

∑
i=1,2,3
l �=i,m�=i

δ(k − ki)

| ki − kl || ki − km | ,(4.28)

whereas in the single-phase region outside the cusp, the limit Wigner function consists
of a single Dirac function.

Similar results concerning the recovery of geometric optics, as for the case of the
fold, can be derived for the limit Wigner function. Also, as in the case of the fold, on
the caustic the limit Wigner function becomes singular, and the limiting behavior is
as follows:

(1) On the fold sides of the cusp, 27u2 = 4v3 �= 0, k2 = k3 = kf , and f ε is given
by

f ε(x, k, t) =
22/3

ε2/331/3

1

(x− kt)1/3
Ai

(
− 22/3

ε2/331/3

t3(k − k1)(k − kf )2

(x− kt)1/3

)
.(4.29)

Then, for k ≈ kf , we approximate f ε by

f ε(x, k, t) ≈ 22/3

ε2/331/3

1

(x− kf t)1/3
Ai

(
− 22/3

ε2/331/3

t3(kf − k1)(k − kf )2

(x− kf t)1/3

)
.

Using (4.27) and then (B.4), we find that

ε1/3f ε(x, k, t) → 31/6Γ2(1/3)

2πtv1/3
δ(k − kf ), ε → 0.

(2) Finally, on the beak u = v = 0, and ki = kb = b, i = 1, 2, 3. It follows from
(4.23a) that f ε is given by

f ε(x, k, t) =
1

31/3t1/3
22/3

ε2/3
Ai

(
22/3

ε2/3
1

31/3

(
k − kb

)8/3) 1

| k − kb |1/3
.(4.30)

Using formula (B.8) (cf. Appendix B),

1

η1/4

1

| y |1/3Ai
(y8/3

η

)
→ 31/421/2Γ2(1/4)

8π
δ(y), η → 0,

we find

ε1/2f ε(x, k, t) → Γ2(1/4)

4πt1/3
δ(k − kb), ε → 0.
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The local asymptotics of f ε. We first show that away from the caustic f ε is
approximated from W̃ ε. To see this we consider a point (x, k) in the single-phase
region and close to the branch k ≈ k1 = S1,x. Let r1 = r1(x, t) be the (unique) real
root of the equation

r3t− (1 − 2at)r + x− bt = 0,(4.31)

and denote by J1 = ∂x̄
∂r1

the Jacobian of the ray x̄(r1, t). A straightforward calculation
shows that

J(t; r1) = −t3(k1 − k2)(k1 − k3)

and

S1,xxx(x, t) = k1,xx =
6(x− k1t)

t9(k1 − k2)3(k1 − k3)3
.

Then, for ε small, we approximate (4.23b) for x− kt �= 0 as follows:

f ε(x, k, t) ≈ 2
2
3

ε
2
3 |3(x−kt)|

1
3
Ai

(
2

2
3 J1(k−k1)

ε
2
3 (3(x−kt))

1
3

)
= 2

ε
2
3

A2
1(x,t)

|S1,xxx|1/3Ai
(

2

ε
2
3

k−S1,x

(S1,xxx)1/3

)
,

(4.32)

with A2
1(x, t) = 1/J1 = A2

0(r1)/J1. We note that the second line of (4.32) is W̃ ε.
Concerning f̃ε it is easy to see that away from the points x− kt = 0, f̃ε coincides

with f ε. The condition (x−kt) �= 0 is natural since it excludes the degenerate points.
Notice that the inflection point of the initial manifold (q = 0, p = b) propagates to
the inflection point (x = bt, k = b) for t ≥ 0.

Let (x, k) be a point in the single-phase region, and let k − S1,x = k − k1 be its
distance from Λt, with k1 being the (unique) real root of (4.26). A straightforward
calculation shows that

p− S′
0(q) = p + q3 + 2aq − b = J1(k − k1) + 3t2(x− k1t)(k − k1)

2 − t3(k − k1)
3.

(4.33)

Formula (4.33) remains true even in the three-phase region. Moreover, in the three
phase region, (4.33) is still correct if we replace (J1, k1) by either (J2, k2) or (J3,
k3), where ki, i = 1, 2, 3, are the roots of (4.26), and Ji = −3r2

i t + 1 − 2at, with
ri = ri(x, t), i = 1, 2, 3, are the roots of the cubic equation (4.31). Hence, we may
write

(4.34)

f̃ε(x, k, t) =
2

2
3

ε
2
3 | 3q | 13

Ai

(
2

2
3 (p− S′

0(q))

ε
2
3 (3q)

1
3

)

=
2

2
3

ε
2
3 | 3(x− kt) | 13

Ai

(
2

2
3

(
Ji(k − ki) + 3t2(x− kit)(k − ki)

2 − t3(k − ki)
3
)

ε
2
3 (3(x− kt))

1
3

)
.

Away from the caustic and for k close to ki = Si,x we have that Ji �= 0 and the
dominant term in the numerator of the argument of the Airy function in (4.35) is
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the linear one, thus recovering (4.32). On the fold sides of the cusp, we have that
k2 = k3 = kf , J2 = J3 = 0, whereas x − kf t �= 0. Hence the dominant term is the
quadratic one. Using (4.27) we easily see that 3t2(x − kf t) = t3(kf − k1), and thus
we recover (4.29). Finally, on the beak of the cusp only the cubic term survives, and
we recover (4.30) by a suitable limiting argument. Again, the WKB approximation
follows by “linearizing” (4.33).

4.3. Other cases. We close this section by making some comments concerning
initial phases S0(q), which result in either degenerate or “higher-order” caustics.

A quadratic initial phase, e.g., S0(q) = −q2/2, with initial amplitude A0(q) = 1,
yields a focal point (x = 0, t = 1) from which pass all rays emanating from the x-axis
at t = 0 (cf. [SMM, Ex. 1.2]). This degenerate case can be studied in detail. We
note, in particular, that the solution of the Wigner equation is given by

f ε(x, k, t) =
1

| t− 1 |δ
(
k − x

t− 1

)
,(4.35)

which in turn yields the singular wave amplitude ψε(x, t) = 1
|t−1| for any x ∈ R.

One the other hand, one may choose as S0(q) a general polynomial in q of degree
higher than four. In this case a detailed study of the exact solution is not possi-
ble, in general, due to obvious algebraic difficulties. Nevertheless, some interesting
observations can still be made.

(i) The exact Wigner function (f ε) is now given in the form of a generalized Airy
function, that is,

f ε(x, k, t) =
A2(x, t)

2π

∫ +∞

−∞
exp

(
i

N∑
m=0

am(x, k, t)ε2mσ2m+1

)
dσ(4.36)

for suitable coefficients A(x, t), am(x, k, t).
(ii) As in the cases of the fold or the cusp, caustics will again result from points

of the Lagrangian manifold Λt having vertical tangents. There will be, however, some
differences. Notice that near the fold, the manifold Λt is locally a parabola x(k) ∼ k2,
whereas near the cusp Λt is locally cubic, that is, x(k) ∼ k3. In the general case, near
the caustic the manifold will behave as x(k) ∼ kn. It is not difficult to see that for
n ≥ 3, at these points Λt has zero curvature; that is, they are degenerate points. In
particular, the Airy asymptotics (f̃ε) are not valid there.

(iii) Near these “higher-order” caustics, new projection identities hold (cf. [BEW]).
These identities are similar to those in Appendix B, but they involve generalized Airy
functions of the form (4.36). By means of these identities the wave amplitude can be
computed explicitly in terms of suitable phase integrals.

Thus, although the Airy asymptotics of the Wigner function can capture the local
scales near a fold or a cusp, more refined asymptotics are needed when approaching
“higher-order” caustics.

5. Summary and concluding remarks. We summarize the picture that
emerges from our previous analysis.

Given the Wigner transform W ε of a WKB function ψε(x) = A(x) exp
(
iS(x)/ε

)
,

we have defined the semiclassical Wigner function W̃ ε as the Airy approximation of
W ε; cf. (2.25). This approximation is valid away from degenerate points of the La-
grangian manifold Λ = {k = S′(x)}, that is, away from points of Λ of zero curvature.



SEMICLASSICAL WIGNER FUNCTION 703

We have seen that the Wigner transform of the WKB solution of (1.1), (1.2) is
an approximate solution of the (full) Wigner equation (3.1), and therefore at each

time t > 0, in the single-phase case, W̃ ε(x, k, t) is an asymptotic approximation of the
solution of the (full) Wigner equation.

In the special case of nonessential potentials (V ′′′(x) ≡ 0), we have seen that the

Hamiltonian flow preserves the Airy asymptotics W̃ ε, and we defined the asymptotic
approximation (f̃ ε) of the solution of the Wigner equation as the evolution of W̃ ε

0

under the Hamiltonian flow:

f̃ ε(x, k, t) = W̃ ε
0 (q(x, k, t), p(x, k, t)), (V

′′′
(x) = 0).(5.1)

In the general case a similar analysis lead to the following definition of f̃ ε:

f̃ ε(x, k, t) = W̃ ε
0 (q(x, k, t), p(x, k, t)) ∗p Gε(q(x, k, t), p(x, k, t), t),(5.2)

with Gε given by (3.37). Formula (5.2) reduces to (5.1) when V ′′′(x) ≡ 0 and shows
in a clear way the transport-dispersive character of the Wigner equation. By its
construction f̃ ε is in agreement with the Airy asymptotics of the WKB solution; in
addition, the above formulas are meaningful even near caustics (if these caustics do
not correspond to degenerate points of Λt) where the WKB solution fails. The simple
examples of section 4 support the validity of (5.1).

In the classical limit (ε = 0), f ε converges to the limit Wigner function f0.
Initially, f0

0 (q, p) = A2
0(q)δ(p−S′

0(q)) is a Dirac mass concentrated on the Lagrangian
manifold Λ0. Moreover, f0 satisfies a simple transport equation, the limit Wigner
equation (cf. (2.10)), which can be thought of as the zero dispersion limit of the (full)
Wigner equation. The solution of the limit Wigner equation is given by

f0(x, k, t) = A2
0(q(x, k, t))δ(p(x, k, t) − S′

0(q(x, k, t))).(5.3)

Although formula (5.3) is formally valid everywhere, it is not well defined on the
caustics, because, as the examples of section 4 show, the argument of the Dirac
function ceases to have simple roots with respect to k. Thus, with the exception of
caustic points, f0 remains a Dirac mass concentrated on the Lagrangian manifold Λt,
and this recovers the multiphase geometrical optics.

In the examples of section 4, it was found that on the fold, ε1/3f ε tends to a Dirac
mass, whereas on the beak of the cusp, ε1/2f ε tends to a Dirac mass as ε tends to
zero. This singular limiting behavior is, in a sense, expected, since the limit Wigner
function has been designed to capture the oscillations at scale of order O(ε), whereas
on caustics different scales appear. On the other hand, the semiclassical Wigner
function conveys the necessary information and predicts the correct wave amplitude,
even on caustics. This was accomplished by means of the projection formula

|ψε(x, t)|2 =

∫ +∞

−∞
f ε(x, k, t)dk(5.4)

in conjunction with suitable projection identities involving the Airy function (cf. Ap-
pendix B).

Thus, although the limit Wigner function is a simpler object to study, it conveys
no information near caustics, and this motivates the search for asymptotic approxi-
mations of the Wigner function, such as f̃ ε defined above.



704 STATHIS FILIPPAS AND GEORGE N. MAKRAKIS

By the remarks of section 4.3, it turns out that Airy asymptotics, such as f̃ ε, are
not adequate to describe the flow near “higher-order” caustics. More refined asymp-
totics of f ε are required in these cases. Thus we may think of the Airy asymptotics
of (5.1) or (5.2) as the first-order asymptotics that suffice for describing the field near
fold or cusp caustics. In this sense, the limit Wigner function can be thought of as
the zeroth order approximation, which recovers geometrical optics but fails near any
caustic.

On the other hand, folds and cusps are the generic caustics in the one-dimensional
case, in the sense that small perturbations of the Lagrangian manifold can destroy
any caustic but them (cf. [BER2], [FLAN, Chap. 3]). From this point of view, the
Airy asymptotics of f ε provide the semiclassical Wigner function near the generic
caustics.

Appendix A. The Airy-type uniform stationary phase expansion. In
this appendix we recall the uniform stationary phase formula developed by Chester,
Friedman and Ursell [CFU] (see also [BOR, sect. 2.3]). We consider the integral

I(λ, a) =

∫ ∞

−∞
exp

(
iλφ(x, a)

)
f(x)dx, α > 0,(A.1)

with smooth f , for the case when the phase function φ ∈ C∞ has two station-
ary points, x1(a) and x2(a), which approach the same limit x0 when a → 0. Let
φ′′
xx(x1, a) < 0 and φ′′

xx(x2, a)) > 0.
Assume also that

φ′′′
xxx �= 0, φ′

x = φ′′
xx = 0, φ′′

xa �= 0(A.2)

at x = x0, a = 0. Then, for large λ,

I(λ, a) = exp
(
iλφ0

)(
2A0πλ

−1/3Ai
(
−λ2/3ξ

)
− 2B0πiλ

−2/3Ai′
(
−λ2/3ξ

))
+ O

(
λ−4/3

)
,

(A.3)

where

φ0 = 1
2

(
φ(x1, a) + φ(x2, a)

)
≈ φ(x0, 0) + O(a2), a → 0,

(A.4a)

ξ =

(
(3/4)

(
φ(x1, a) − φ(x2, a)

))2/3

≈ aφ′′
xa(x0, 0)

(
φ′′′
xxx(x0, 0)/2

)−1/3

+ O(a2), a → 0,

(A.4b)

Ai(·) denotes the Airy function, and the constants A0, B0 are given by

A0 = 2−1/2ξ1/4

(
f(x2)√
φ′′
xx(x2, a)

+
f(x1)√

| φ′′
xx(x1, a) |

)
,(A.5a)

B0 = 2−1/2ξ−1/4

(
f(x1)√

| φ′′
xx(x1, a) |

− f(x2)√
| φ′′

xx(x2, a) |

)
.(A.5b)
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Note that by using the asymptotics of the Airy function (see Appendix B), for fixed
a > 0, as λ → ∞, from (A.3) we obtain the formula

I(λ, a) =
√

(2π)/λ

(
f(x2) exp

(
iλφ(x2,a)+iπ/4

)
√

φ′′
xx(x2,a)

+
f(x1) exp

(
iλφ(x1,a)−iπ/4

)
√

|φ′′
xx(x1,a)|

)
+ O

(
λ−1

)
, λ → ∞,

(A.6)

which is also obtained by summing the standard stationary phase contributions of the
stationary points x1 and x2, considered separately.

Appendix B. Properties of Airy functions. The Airy function is a C∞

function defined by the integral [HO]

Ai(x) =
1

2π

∫ ∞

−∞
exp

(
i
(ζ3

3
+ ζx

))
dζ, x ∈ R,

and it can be extended to an entire analytic function for x ∈ C. It satisfies the Airy
differential equation

A′′(x) − xAi(x) = 0,

and for x = 0,

Ai(0) = 3−1/6Γ(1/3)/2π = 3−2/3/Γ(2/3).

The asymptotics of Ai(x) for large |x| are given by

Ai(x) ≈ 1

2
√
π
x−1/4e−2/3x3/2

, x → +∞,

Ai(−x) ≈ 1√
π
x−1/4 cos

(2

3
x3/2 − π

4

)
, x → +∞.

In what follows we will also use the formulas [OLV, pp. 434, 338]∫ ∞

−∞
Ai(t)dt = 1,

∫ ∞

0

Ai(t)ta−1dt =
Γ(a)

3(a+2)/3Γ((a + 2)/3)
, �(a) > 0.

B.1. Formulas related to the fold. We first derive the following “projection
identity”: ∫ +∞

−∞
Ai(ak2 + bk + c)dk =

2π√
a

1

21/3
Ai2

(
−b2 − 4ac

45/3a

)
, a > 0,(B.1)

related to the amplitude of the solution at the fold. This has been derived by Berry
[BER1, App. E] (see also [BEW] for similar identities corresponding to more general
diffraction catastrophes). Changing variables by u =

√
ak + b/(2

√
a), we have∫ +∞

−∞
Ai(ak2 + bk + c)dk =

2√
a

∫ ∞

0

Ai(u2 − λ)du,(B.2)
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where λ = 1
4a (b2 − 4ac). Then we rewrite the right-hand side of (B.2) in the form∫ ∞

0

Ai(u2−λ)du =
1

2

∫ ∞

−∞
Ai(u2−λ)du =

1

4π

∫ +∞

−∞
dξ

∫ +∞

−∞
dη exp

(
i
(η3

3
+(ξ2−λ)η

))
,

and using the change of variables

ξ = (Y −X)/2
2
3 , η = (Y + X)/2

2
3

in the double integral, we obtain

1

4π

∫ +∞

−∞
dξ

∫ +∞

−∞
dη exp

(
i
(η3

3
+ (ξ2 − λ)η

))
=

1

4π

1

21/3

∫ +∞

−∞
dX

∫ +∞

−∞
dY exp

(
i
(X3

3
+

Y 3

3
− λ

22/3
(X + Y )

))
= π

1

21/3
Ai2

(
− λ

22/3

)
,

(B.3)

which gives (B.1).
We next prove the limit

1
√
η
Ai

(y2

η

)
→ Γ2(1/3)

21/331/32π
δ(y), η → 0+.(B.4)

For some φ ∈ C∞
0 (R), we have∫ ∞

−∞

1
√
η
Ai

(y2

η

)
φ(y)dy =

∫ ∞

0

1
√
η
Ai

(y2

η

)(
φ(y) + φ(−y)

)
dy

=
1

2

∫ ∞

0

t−1/2Ai(t)
(
φ(
√
ηt) + φ(−√

ηt
)
dt.

As η → 0+, the last integral converges to

φ(0)

∫ ∞

0

t−1/2Ai(t)dt = φ(0)
Γ2(1/3)

21/331/32π
,

which proves (B.4).

B.2. Formulas related to the cusp. Here we derive the “projection identity”

∫ +∞

−∞

1

| ξ |1/3Ai
( λ

ξ1/3

(
ξ3 − vξ + u

))
dξ =

1

2π

1√
2λ1/4

| P (−V,U) |2, λ > 0,

(B.5)

related to the amplitude of the wave field at the cusp. Here

P (−V,U) =

∫
R

exp

(
i

(
t4

4
− V

t2

2
+ Ut

))
dt(B.6a)

is the Pearcey integral, with arguments

V =
1√
2
λ3/4v, U =

1

23/4
λ9/8u.(B.6b)
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By the integral representation of the Airy function, and using subsequently the trans-
formations

ξ = θ, ρ = θ1/3τ,

and

2
3
4λ

3
8 θ = t + s, 2

3
4λ− 1

8 τ = t− s,

we have

∫ +∞

−∞

1

| ξ |1/3Ai
( λ

ξ1/3

(
ξ3 − vξ + u

))
dξ

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
exp

(
i
ρ3

3
+ iλ

ρ

ξ1/3

(
ξ3 − vξ + u

))
dξdρ

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
exp

(
i
(1

3
τ3θ + λτθ3 − vλτθ + uλτ

))
dτdθ

=
1

2π

1√
2λ1/4

∫ +∞

−∞

∫ +∞

−∞
exp

(
i
( t4

4
− V

t2

2
+ Ut

))
exp

(
−i

(s4

4
− V

s2

2
+ Us

))
dtds

=
1

2π

1√
2λ1/4

| P (−V,U) |2 .

(B.7)

We close this appendix with the derivation of the limit

1

η1/4

1

| y |1/3Ai
(y8/3

η

)
→ 31/421/2Γ2(1/4)

8π
δ(y), η → 0+.(B.8)

For some φ ∈ C∞
0 (R), we have

1

η1/4

∫ +∞

−∞

1

| y |1/3Ai
(y8/3

η

)
φ(y)dy =

1

η1/4

∫ +∞

0

1

| y |1/3Ai
(y8/3

η

)(
φ(y) +φ(−y)

)
dy.

Changing variables to t = y8/3/η, we see that the last integral, as η → 0+, converges
to

3

4

∫ +∞

0

t−3/4Ai(t)dt φ(0) =
31/421/2Γ2(1/4)

8π
φ(0),

which proves (B.8).

Appendix C. Some L2-estimates. Here we present estimates of the L2-norms
of W ε, f ε, and W ε − f ε, and in particular we will prove estimate (3.8) that we
mentioned in section 3.1. We recall that we denote by f ε the exact solution of the
Wigner equation (3.1) and by W ε the Wigner transform of the WKB solution (cf.
(3.2)). All subsequent calculations are valid in [0, T ], T < tc.

Assuming for simplicity that the amplitude A(x, t) has initially (t = 0) compact
support, it will keep having compact support for 0 ≤ t ≤ T . We next compute the
L2-norm of W ε. Using (3.2), we have

‖W ε‖2
L2(Rx×Rk) =

∫ ∞

−∞

∫ ∞

−∞
W ε(x, k, t)W ε(x, k, t)dxdk

=

∫ ∞

−∞

∫ ∞

−∞

1

πε

∫ ∞

−∞
D(σ;x, t)e

i
εF (σ;x,k,t)dσ

1

πε

∫ ∞

−∞
D(ρ;x, t)e−

i
εF (ρ,x,k)dρdxdk.
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Interchanging the order of integration and performing first the k-integration and then
the ρ-integration, we find that

‖W ε‖2
L2(Rx×Rk) =

1

πε

∫ ∞

−∞

∫ ∞

−∞
A2(x + σ, t)A2(x− σ, t)dxdσ.

Finally, changing variables by x + σ = ξ, x− σ = η, we obtain

‖W ε‖2
L2(Rx×Rk) =

1

2πε
‖A(·, t)‖4

L2(R) =
1

2πε
‖A0‖4

L2(R).(C.1)

A similar calculation shows that

‖f ε‖2
L2(Rx×Rk) =

1

2πε
‖ψε

0‖4
L2(Rx) =

1

2πε
‖A0‖4

L2(Rx)

(cf. [LP, p. 605]). Thus the L2-norms of f ε and W ε are equal to each other and
constant in time. Clearly, f ε(x, k, t = 0) = W ε(x, k, t = 0). We next show that

‖f ε −W ε‖L2(Rx×Rk) ≤ CT tε
1/2 , 0 ≤ t ≤ T.(C.2)

Since the main ideas are in [LP], we will mainly sketch the proof of it. Setting
gε = f ε −W ε and plugging gε into the Wigner equation (2.7), we have by (3.7) that

Lε[gε] = − i

2π
Iε(x, k, t) , gε |t=0= 0.(C.3)

Recall that

Iε(x, k, t) =

∫
e

i
εF (A(x + σ, t)A(x− σ, t))xσ dσ.

A calculation similar to the one leading to (C.1) yields

‖Iε‖2
L2(Rx×Rk) = πε

(
‖Axx‖2

L2‖A‖2
L2 − ‖Ax‖4

L2

)
≤ 16π2C2

T ε,(C.4)

where C2
T = 1

16π sup{0≤t≤T}(‖Axx‖2
L2‖A‖2

L2 − ‖Ax‖4
L2). Multiplying (C.3) by gε and

integrating over Rx × Rk, we end up with (cf. [LP, p. 607])

d

dt
‖gε‖2

L2 ≤ 1

2π

∫ ∞

−∞

∫ ∞

−∞
Iε(x, k, t)g

ε(x, k, t)dxdk ≤ 1

2π
‖gε‖L2‖Iε‖L2 .

From this and (C.4) we get that

d

dt
‖gε‖L2 ≤ CT ε

1/2, 0 ≤ t ≤ T,

from which (C.2) follows upon integration.

Appendix D. Two-phase geometrical optics. Near the fold, classical geo-
metric optics predicts the field [BB], [LU], [KR]

ψε(x, t) = A+(x, t) exp
( i
ε
S+(x, t)

)
exp

( iπ
2

)
+ A−(x, t) exp

( i
ε
S−(x, t)

)
,(D.1)

Here A±(x, t) = A0(r±)√
|J±(x,t)|

, with r± the points from where the two rays arriving at

(x, t) emanate, J± the Jacobian and S±(x, t) the solutions of the Hamilton–Jacobi
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equation (1.7) computed along these two rays. Note that the superscript −/+ corre-
sponds to the ray which arrives at (x, t) before/after hitting the caustic, respectively,
and the factor exp(iπ/2) takes account of the phase shift as the second ray passes
from the caustic. Then, with A±(x, t) = A±, we have

| ψε(x, t) |2= A2
+ + A2

− + 2A+A− sin
(1

ε

(
S+(x, t) − S−(x, t)

))
.(D.2)

The last term in (D.2) is (classically) negligible as ε → 0, thanks to the fact that
xm exp( ixε ) → 0, as ε → 0, for any m ≥ 0, as a generalized function in D′, and
therefore

| ψε(x, t) |2→ A2
+(x, t) + A2

−(x, t), ε → 0.(D.3)
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