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This paper is concerned with the blowup of solutions of the nonlinear vector-
valued heat equation

U,—AU=\U|""1U,  U0)="U,,

where U(x, 1)=(u{(x,1), ... u,,(x, 1)) is a vector-valued function from R"x (0, T')
to R™ and 1 < p < (3n+ 8)/(3n — 4). Working with the equation in similarity
variables, and using modulation theory and ideas from center manifold theory, we
obtain the asymptotic behavior of U in a backward space—time parabola near any
blowup point. € 1995 Academic Press. Inc.

1. INTRODUCTION

This paper is concerned with the blowup of solutions of the nonlinear
vector-valued heat equation

U—dU=|U|?"'U,  U@©)=U,, (1.1)

where Ulx, t)=(u,(x,t), .., u,,(x,1)) is a vector-valued function from
R"x (0, T) to R™, and p> 1. This equation has some physical interest in
ferromagnetism. Working with the equation in similarity variables, and
using modulation theory and ideas from center manifold theory, we obtain
the asymptotic behavior of U in a backward space-time parabola near any
blowup point.
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Classical theory yields the existence of a regular solution in L™ (R") up
to a time T, which is finite in the case where the initial data satisfy

_ 1 2 1 p+1 .
E(UO)—-EJRn VU, | d.x—ij" U |7+ dx <0,
see, e.g., [15].

In this case, where T < + oo, we say that the solution blow up at time
t=T. We say that b is a blowup point if there exist sequences {x,}, {7,} such
that lim, _, ., x,=5, lim t,=T, and lim [U(x,, t,) = If x4 is
not a blowup point then local regularity theory yields the existence of a
strong limit of U(x, t) as t — T for x near x,. If x, is a blowup point we show
that U(x, 7) develops a singularity in an asymptotically self-similar manner.

Much attention has recently been focussed on the real-valued version of
(1.1), that is the case where m= 1,

n— % n—

u,— Adu=\u|""'u, u(0) = uq, (1.2)

and related equations. We refer to [1, 6, 7, 9-11] for discussions and
bibliographies. We also refer to [2, 4, 5, 8, 16, 12-14, 19, 20] for the most
recent results concerned with Eq. (1.2).

One particularly efficient method for studying the local properties of the
blowing-up solutions of (1.2) is the method developed by Giga and Kohn
[9-11] based on similarity variables. This change of both dependent and
independent variables is defined by

w(y, s)=(T—0)""" ' u(x, 1),
y=(x—-»50)//T—1, s=—In(T—1),

where b is a blowup point and T is the blowup time. If » solves (1.1) then
w exists for all positive times s and solves

(1.3)

1 1
w,=—V(pVw)— i w wj ", (1.4)
P

p —_—
where p=p(y)=e "% Studying the behavior of u near blowup is equiv-
alent to studying the large time behavior of w. It follows from [9-11] that
in the case where n=1, or 1 < p<(3n+8)/(3n—4)

w(y,s)— tKk, as s—x, (1.5)

uniformly on bounded sets |y| < C, where x is the constant nonzero
stationary solution of (1.4), ie, |k|=(p—1)""""~1. We note that (1.5)
has also been established in the case where v >0 and p is subcritical, that
is, n=z2orl<p<(nt+2)(n-2)
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The way w approaches its limit in (1.5) is by now well understood (cf.
[4, 5, 12, 19]). We briefly recall a few facts from [4, 5]. Assuming that w
(or equivalently ) is nonnegative, we linearize equation (1.4) about w =«.
Thus, by setting

v(y, s)=w(y, s)—k, (1.6)

we obtain that v solves the equation

vX=%V(va)+v+f(v), (1.7)
with

f(v)=2£,;v2+g(v), lg(v) <clo]’,

and v — 0 uniformly on compact sets in y.

Let us denote by L2 the space of functions v(y) for which {v?p < + 0
where p=e """ as usual. This is easily seen to be a Hilbert space with
inner product {u, v)=§uvp. We also denote by |jv|| the Lf,-norm of v,
ie, |lo)l=(Jv?p)"* In the case where U= (u,, .., u,), V=_(v,..0,)
are vector-valued functions, we set (U, V>=}:;"=1j' uv,p and |V =
(L Juip)'™

Then, it follows from [4,5] (or [12, 19]) that jv| <c¢/s, for some
positive constant ¢, and that s |v(y, s)| is uniformly bounded on compact
sets | v| < C.

Regarding the vector-valued case, however, less is known. After
introducing similarity variables

W(y,s)=(T—-0'""""U(x,1),
y=(x—b0)/T—1, s=—In(T—1),

we have that W(y,s) is a vector-valued function from (—In 7, oc)x R"
to R”. Moreover it has been shown in [10] that if n=1 or 1< p<
(3n+8)/(3n—4), then W(y,s) stays uniformly bounded in space-time.
The bounded nonzero stationary solutions of (1.4) are now the points
W(x)= W, where

(1.8)

|Wol=k=(p~1)~ "7 (1.9)

Thus, in contrast with the scalar case, where the bounded nonzero
stationary solution of (1.4) is two distinct points (+x), we now have a
whole continuum of stationary points, namely an (m — 1)-dimensional
sphere of radius x; we denote it by S7~ !,
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Due to the fact that the vector-valued case equation (1.4) still retains its
scaling properties as well as its gradient structure, many of the arguments
employed in [9-11] are still valid. In particular, it follows from the work
of Giga and Kohn that

infy, ¢ g {W (3, 5)— Wy| -0 as §— oo, (1.10)

uniformly for | y| < C, and

dist(W(.,s),S:'.'*‘)sinfw(,esgv—xf (W(,s)—Wol’p—>0 as s-—oc.
-
(1.11)

It is to be remarked, however, that the above information does not furnish
the complete analogue of (1.5). A natural question left open is whether the
trajectory W(y, s) approaches a specific point W, on the manifold S7' ';
if not, although it approaches S7~ ' with time, it has no limiting value.

For systems of the type
iU, —AU=|U|""'U, U0)=U,, (1.12)

with U(x, t)=u,(x, 1)+ iuy(x, t) (that is m = 2), after suitable rescaling, it
has been observed in some cases that the asymptotic shape of the rescaled
function is a periodic nonconstant solution of the type e“*Q(y) (cf. [16]).
It is of interest to know whether the coupling in a system (1.1) is weak
enough so as to expect a scalar behavior as s — <.

For parabolic systems similar to (1.1) under the assumption that the
stationary solutions of the corresponding W-equation are isolated points, it
has been proved that the trajectory W (y, s) “chooses” one of these points
as its limiting value (see [9, Theorem 5]). It is the purpose of the present
work to show that this behavior stays the same, even if the stationary
points form a continuum. More precisely, working with system (1.1) we
will show

THEOREM A. Let W(y,s)e(sy, )X R"— R™ be a bounded solution
of (1.4) for which we know that dist(W(.,s), S7 '}—>0 and
infy, o [ W(y,s)— Wo| >0 as s— oo, uniformly for | y| < C. Then there
exists a W, e S” ' such that

W(y,s)» W, as §s— o, (1.13)

uniformly for | y| < C, and

\Wi,s)—w_1|| -0 as §-— 0. (1.14)
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As a consequence of the above theorem we also have

THEOREM B. We assume thatn=1or 1 < p<(3n+8)/(3n—4). Let b be
a blowup point of (1.1). Then there exists a constant function W € R” such
that |W | =k and

lim,, (T— )P DU+ p(T—0)"2 1)=W,,, (1.15)

uniformiy for | y| < C, for any C>0.

The assumptions of Theorem B on n and p guarantee that the assump-
tions of Theorem A are valid (cf. [10]). Once the assumptions of Theorem
A hold true, (1.15) is nothing but a restatement of (1.13) in the original
variables.

Remark 1. Since equation (1.1) is rotation invariant we also have that
if (b, T)is a blowup point for (1.1} then given any point W __ e R™ such
that | W, | =k there are initial data for which (1.15) holds.

Remark 2. In proving Theorem A we will show in fact that
N\W(-,s)—W. | <c/s and that s |W(y, s)— W_ | is uniformly bounded on
compact sets in y. Thus, the situation is quite similar to that of the scalar
case.

Finally we remark that the same results can be shown in the case of the
equation

U,=d4U+F(|U*) U, (1.16)

where F(|U)?)~|U|” " in a suitable topology as |U| — + .

We close this section by discussing the way the paper is organized. In
order to simplify the presentation in most of the work we concentrate in
the case m = 2. More precisely Sections 2-4 are devoted to the study of the
case m = 2, whereas the appropriate modifications required for the study of
the general case are presented in the last section. In Section 2 we describe
the way we formulate the problem by introducing a suitable parameter. In
Section 3 we present a formal argument by which the desired results are
obtained, while avoiding all technical difficuities. In Section 4 we give the
rigorous proofs for the case m = 2. The general case m > 2 is then discussed
in Section 5.

2. FORMULATION OF THE PROBLEM

In this section we will explain the approach we will follow in proving
Theorem A. In order to simplify the presentation—while keeping all the
essential points—we will assume throughout this section as well as Sections
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3 and 4 that m=2. We note that in this case U= (u,, u,) can also be
thought of as a complex-valued function U(x, t)=u,(x, 1) + iu,(x, t). The
appropriate modifications required for the general case m > 2 will then be
presented in Section 5.

It is convenient (but not necessary) to use complex notation. Thus, for
m =2 we have that S} = {Kk,e”},. s, where ko= (p—1)""%~ 1 and S'is
the 1-dimensional unit sphere. We recall that after introducing similarity
variables, the equation satisfied by W(y, s)=w,(y, s} + iw,(y, s} is

1 1
W,==V(pVW)——— W+ |W["~' W @1
p r—1

A key point in our analysis is the following parametrization of the
problem

W(y, s)=e"(V(ys)+Ke)  Ko=(p—1)7"7"1", (2.2)

where 6 =0(s) is defined for each time s by
[1W(3,5) =" p=minge s [ IW (3, 5)— ol p,  (23)

where | -| represents the complex modulus. Since S’ is a compact set such
a # always exists. We still have to discuss the uniqueness and regularity of
the parameter 0(s) just introduced. It follows from (1.11), (1.12), and (2.2)
that

[V (y,s) —0, as s§s— o0, (2.4)
uniformly for | y| < C, and
[ V] =W —ek,| -0, as s . (2.5)
Moreover, an easy calculation gives
VIR = W= e, )2
=J (IW]>+K3)p— 2K, <cos ijlp+sin Of w2p>. (2.6)
We are now ready to prove

PrOPOSITION 2.1.  The parameter 0(s) introduced in (2.3) is unique and
regular for s> s,, where sy is such that ||V (-, s)||* < (k3/2) j p, for s = s,.
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Proof. By computing the first variation of the functional in (2.3) we
have that

(ie, WY =0, (2.7)

or equivalently,

sinﬁjw,p~cos0{w2p=0. (2.8)

We claim that for s large enough (2.8) always defines two values of 6
(mod 2n) which differ from each other by =. Indeed, if f w,p#0 for i=1,2
then one can solve (2.8) up to a m. The possibility that fw,p=[w,p=0
is ruled out, for s> s, because in such a case the last term in (2.6) would
be zero. But s, is chosen in such a way that the last ter in (2.6) is never
zero for s> 5.

The existence of two different values of 8(s) is of course explained by the
fact that the functional in (2.2) attains not only a minimum but also a
maximum. In order to pick up the right value of 8(s) we demand the last
term in (2.6) to be negative since otherwise (2.5) would not hold. Thus,
0(s) is uniquely defined for s> s,. Finally, by the implicit function theorem
we conclude that it is also regular. |

We now turn our attention to the study of the function V(y, s) defined
by (2.2). Tt follows from (2.2) and (2.7) that for s = s,

VS =0, (2.9)

that is
Jvﬂ3ﬂp=Q (2.10)
Using (2.1) we see that the equation satisfied by V is

1 1
B sV +Ky)+ V3=;V(va)—;—:—1(V+KO)+|V+K0|”" (V+Kg).
(2.11)

We next compute the Taylor expansion of the last term in (2.11). An
easy calculation shows that for all y and s we have

WVt kol” '=((vy+ ko) +03)7 12

1 -2 1
:Kg»-w:v,ﬂz—h?b +-2—b 2+g(V),  (212)
0 0

505/116/1-9
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with |g(V)| < C|V|’, for some constant C depending only on p. Thus, we
can rewrite (2.11) as

| 1
b= =V(pVo, ) 4o, + vl b s vl b4 g, (V) (213)
p 2K, 2Kq
1 1
1;2A,=‘—O—Y7(/)Vv2 ) +;—v,vl—0\.(vl +Ko)+g.(V), (2.14)
Q

where [g,(V)] < C|V]|? for i=1, 2. We next show
PROPOSITION 2.2. For s=s,, 0(s) satisfies the following ODE:
1
e.v(s)q (vl+xo)p>=—jvlv2p+jg2mp. (215)
Ko
Moreover, for s large enough there is a positive constant C such that
0.1 <C [ @3 +03) p=C IV (-, 9] (2.16)
Proof. We multiply (2.14) by p and integrate over all R" to get
1 1
0= [ vap = [ Z9(Ve) o+ [ (Zviva= 0,00 450 ) o+ [ (V)
P Ko

The term in the left hand side is zero because of (2.10). The first term in
the right hand side is easily seen to be zero and (2.15) follows.

Using (2.4) and the fact that [V(y,s)] <M< +oc for all y, s (this
follows from the fact that W is uniformly bounded in space time) we get
that

j(vl‘l-Kg)p—»fKop, as  s— oo,
and
[e20n <[V psmc v,
Finally using Holder’s inequality we get
fvlvaSf(vHv%)p,

and (2.16) follows from (2.15). |
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The usefulness of the parameter 8(s) now becomes clear in the following

Lemma 2.1, If

+ x
[ v srds< +oo, (2.17)

S0
then the conclusions of Theorem A hold.
From (2.17) and (2.16) it follows that
+
f 10, (s)] ds < + 0.

Therefore lim, _, . 8(s)= 0, exists. But then it follows from (2.2), (2.3), and
(2.5) that

|W(y,s)—W_|—0, as s— oo,
uniformly for |y| < C, and
fW(-,s)—W_ |—0, as s— oo,
where
W, =e?k,.

Hence, Theorem A will be proved once we have shown (2.17).

3. THE LINEAR OPERATOR: A FORMAL ANALYSIS

In this section we discuss the properties of the linear operator. We then
present a formal derivation of our main theorem. Throughout the formal
analysis, we assume that n=1 in order to simplify the argument.

As we have explained we would like to know that j';g“ V(- s)*ds<
+ oc where V= (v, v,). Working in this direction we will show

PropoSITION 3.1,  Either |V (-, s)|| tends to zero exponentially fast, or
else for s large enough

C, C,
—<[V(, sl s— (3.1)
N A

for suitable positive constants C,, C,.
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Clearly, Theorem A is a direct consequence of the above proposition and
Lemma 2.1

We postpone the proof of Proposition 3.1 until the Section 4. In the
remainder of this section we will present a formal derivation of (3.1), based
on ideas from center manifold theory.

To begin with, we recall from Section 2 (cf. (2.13), (2.14)) that the
equation satisfied by V= (v, v;) is

1
b1 = Lo+ v 03+ 0,0, + g, (V). (32)
2K, 2Kg
1
v ={(L—F)v, +;‘ v, 0, — 0. (0 + ko) + g2V, (3.3)
0

with |g, (V) <C|V|® for i=1,2. # in (3.3) represents the identity
operator, and the operator & is defined by

1
-‘ff=;V(pr)+f, feL}(R"). (3.4)

We also know that

V{y,s)—0, as §— oo, (3.5)
uniformly for | y| < C,
[V(y,s) <M for all y,s, (3.6)
and
V(- 8] —0, as §— . (3.7)

Equations (3.2) and (3.3) can be written in vector form as

V,=LV+ N(V), (3.8)
where
& 0
L= .
(0 3’—])’ (39)
and
p o, 1, 1 ’
NV)y=|s—vi+z—v3+00,+8,(V),—v,0,—0,(v; + ko) + g2 (V)] -
2K, 2K, Ko

(3.10)



NONLINEAR HEAT EQUATIONS 129

A good understanding of the linear operator defined in (3.4) will be
essential in our analysis. It is easy to see that . is a self-adjoint operator
on L?.

Let us at this point introduce the Hermite polynomials defined by
k

~ d )
Ho(x)=(—1)¢" o (e ), k=0,1,.;

see, e.g., [18]. It is well known that the A,’s form an orthogonal basis for
L’ . ,(R) with weight y(x)=e~*. We next define

h(y)=d. H.(y2), for k=0,1,..,

with d, = (n'?2*1k 1)~ 72 One can easily verify that the #.’s form an
orthonormal basis for Lf)(R). In particular

ho=co,  hi=ciy,  hy=c (337 —1), (3.11)
with ¢, =c,=(1/2) n="* and ¢o=(1//2) n =",

Concerning the spectral properties of ¥ we have the following

LEMMA 3.1. In R", n>=1, the eigenvalues of ¥ are given by

k
;.kzl_

= k=0,1,2,..
2

The corresponding normalized eigenfunctions are,
Jor Aig=1, hg,
for i =4, hy " thy(y)), i=1,..,n
for i,=0, eV hy(y,), i=1,..,n,
Ry 2h(yi )y, i#jij=1,..n,
and so forth.

This can be found in [4].
For future reference we note that the null space of & has dimension
n(n+1)/2= N and the (normalized) neutral eigenfunctions are

1 afl
hi(y)=—7= (4m)~"* (‘ vi— 1>, i=1..n,
V2 2
1 : L
h.’j()’)=§ (4m) ="y, i#j,L,j=1,.,n



130 FILIPPAS AND MERLE

We next introduce some notation. We denote by =n, the projection
operator onto the span of the eigenfunctions of . which correspond to the
positive eigenfunctions, and similarly for n, and n_. We also set
Uy =T, U0, Ug=Tol;, v, == v, so that

V=0, +0ptv
and (for n=1)

Uiy =B1(s) ho(¥)+ Brh (),
vio=ols) hy(y),
vy =) () +ya(s) g (y)+ -,

We call the v, ., v,y, and v, the unstable, neutral, and stable components
of v, respectively.

One can define @, to be the projection operator onto the null subspace
of (¥ —.#) and similarly for #_ . Note, however, that condition (2.14) on
V' is nothing but

Uy =R, =0, or v, =7 _U,=0,.
In other words v, is identical to its stable component. We may thus write
va=F1(5) A (¥)+T2(s) p(y )+ oo

We are now ready to give a formal derivation of Proposition 3.1. We
may divide our argumentation into two steps.

Step 1. Reduction to the study of the neutral mode.

The operator L defined in (3.9) is easily seen to be a self-adjoint operator
on (L2(R'))* with eigenvalues i,=1, 4, =1/2, 1,=0, 2;=—1/2, etc. and
eigenfunctions H,=(h,,0)", H,=(h,,0)", H, =(h,,0)", H,=(h,,0)7, or
H;=(0,h, ,)", forj=3,4,..

By the same reasoning as before, we can decompose V as

V=V, +V,+V .
with
V,=1(v1,,0), Vo=1(v0, 0), V. =(, ,v)

We next assert that for s large enough the behavior of V' wiil be
described by the behavior of its neutral part, that is

Viy,sy~a(s) Hy(y)=(a(s) hy(y), 0),
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or equivalently
v;(y, s)~als) hy(y), va(y, ) ~0. (3.12)

Indeed, the unstable modes (f,, f,) should be absent since otherwise
v;, (and consequently V') would grow exponentially fast contradicting the
fact that V' goes to zero with s. On the other hand the stable modes
(715 72 - 715 2, ) Will decay exponentially fast and they will eventually
become negligible compared with the neutral one (), which as we shall see
decays algebraically.

Step 2. Study of the neutral mode.
Substituting (3.12) into Eq. (3.1) and omitting all terms of order
O(1V]?) we obtain
. 14 2
%(s) hz(.v)wz—h_;azh;(.r)-
Projecting the above equation onto /,(y) we get

e P23y
ixg o jhz(})p. (3.13)

After some integration by parts we compute that | 43p = 4c, with the same
¢, as in (3.11), and (3.13) can be written as

2pc,
g 2,2 (3.14)
Ko
Solving (3.14) we find that
2 -1
x(s)z[al(so)— A (s—so)] : (3.15)
0

in terms of the value of x at some previous time s5,. Since a(s) exists for all
times we conclude that a(s,) < 0. Putting together (3.12) and (3.15) we get
that as s — o«

<o ] 2
V(y,s)~(a(s) ha(y), 0) ~ (%}—Y (1 —5)">, 0)- (3.16)

The behavior described in (3.16) should be generically correct but there
should be exceptional solutions which behave differently. In the context of
center manifold theory (see, e.g., [3]) these are solutions on the stable
manifold. For these solutions, which approach zero exponentially fast,
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the neutral mode is negligible. We thus have a formal justification of
Proposition 3.1.

Although a center manifold approach gives the right picture at the for-
mal level, a straightforward application of the theory is not possible in our
problem. The reason for this is that the nonlinear term in (3.10) does not
have required properties in L. We refer to [4] for an extensive discussion
on that.

4. PROOF OF THE MAIN THEOREM FOR m =2

In this section we will give the proof of Theorem A in the case where
m=2. We remind the reader that we are studying a blowing-up solution of
the nonlinear vector-valued heat equation (1.1). We assume that the solu-
tion of (1.1) when written in similarity variables (cf. (1.8)) satisfies:

(i) W is uniformly bounded in space-time,

(i) dist(W (-, s), S!)—0, where S} is the one-dimensional sphere of
radius k =(p—1) Y- Y and

(i) infy c g [W(p, )= Wol >0 as s > oo uniformly for | y| < C.

All the above conditions are known to be valid for any solution of the
Cauchy problem (1.1) provided that (a) U is uniformly bounded at infinity
(e.g, U—0 at infinity) (b)n=1and p>1, orif n=22, 1 < p<(3n+8)
(3n—4), and (c) the center of scaling is a blowup point (see [9-11]).

As we explained in the Section 3, Theorem A will be proved once we
have shown Proposition 3.1. Qur aim in this section is to give the proof
of Proposition 3.1. For convenience we recall the statement of that
proposition.

PROPOSITION 4.1.  Either |V (-, s)|l goes to zero exponentially fast or else,
for s large enough

C C,
—;'SI! Vil <= (4.1)

for suitable positive constants C,, C,.

If |V (-, s)|| decays exponentially fast, we are done. Assuming throughout
the rest of this section that [V (-, s)|| does not decay exponentially fast we
will prove that (4.1) holds.

We will divide the proof into 3 steps.
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Step 1. Reduction to the study of the neutral modes.

Using the notation of the Section 3 we first show

PropPosITION 4.2, There holds
hoy o L+ 1loy 4+ foall =o(vll), as §s— 0. (4.2)

In other words (if the solution does not decay exponentially fast) the
neutral component of V' dominates its large time behavior.

In proving Proposition 4.2 the following ODE lemma will play an
important role

LemMma 4.1, Ler x(t), y(t), z(t) be absolutely continuous, real-valued
Sfunctions which are nonnegative and satisfy

Zzcgz—elx+yp)
[¥[<e(x+yv+2)
r< —coy+e(x+z),

X, y,z—0, as 11— oo,

where ¢, is any positive constant and ¢ is a sufficiently small positive
constant. Then either

(i} x,y, z—0 exponentially fast or else

(i) there exists a time 1, after which z + y < bex, where b is a positive
constant depending only on c,.

This is Lemma 3.1 in [4]. We are now ready to give the proof of
Proposition 4.1.

Proof of Proposition 4.1. We note that the proof we will present here is
quite similar to the proof of [4, Theorem A] to which we refer for more
details. At the technical level there are two differences between [4] and
here. First, there is one more component here (v,) which is absent in [4]
and second in the equation for V' there are terms involving the factor 6,.
The presence of v, causes no problem since it can be handled in exactly the
same way as v, _. Finally, terms involving 8, can be easily estimated using
Lemma 2.1. With this in mind all the ideas in [4] carry over in the present
situation.
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Let us first introduce some notation. We set

=il x=lowel, yi=le I, ya=lvl,
P, 1,
Ns|z—vi+-—v3+8,0, Vi,
=g a0
1
N,= FUIUZ_BA-(DI+K0)+gl(V)u~
0

Projecting (3.2) onto the unstable subspace of ¥ forming the Lﬁ-inner
product with v,, and using standard inequalities we get

. 1
Z>§Z—N|.

Working similarly with vy, v,_, v, we arrive at the system
(4.3)

From (3.5), (3.7), and the definition of the N/s it follows after some
straightforward calculations that

Ni+Ni<C[ ), (4.4)

for some positive constant C. Thus, it follows from (4.3) that

1

3

CN 4.5)

where
vyt N=[1r (4.6)

If we knew that for s large enough
N<elx+y+z), (4.7)

which is equivalent to [ [F[*p <&’ [ |V|? p, we could use the ODE Lemma
4.1 to conclude (4.2). The meaning of estimate (4.7) is essentially that the
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L’-norm of the quadratic term (| ¥'|?) is small compared to the norm of the
linear term (| V|). However, we do not have this information at this stage.
As a matter of fact (4.7) will follows from the proof of Proposition 4.2
(cf. Corollary 4.1).

We thus estimate N as follows. Given any £> 0 and any 6 > 0 (both will
be chosen small in the sequel) there is a time s, such that for i=1,2

~

[ vito= Vit vrte<a [ty e [ IV,

REYE jpl<é-

for s>s,. (4.8)

Here we use the fact that V(y, s) goes to zero uniformly on the compact
set |y| <8~ ' The exponent k which appears in (4.8) is an arbitrary
positive integer (later we will choose it to be big). We set

7={1vi e,
so that (4.8) can be rewritten as
J’ |V|4p<5kJ2+£2J ViZp, for szs,, i=1,2.  (49)

From (4.6) and (4.9) we get that
N T+e(x+y+2z), for s=s,. (4.10)

We next estimate J. Let ¢ denote a positive constant not necessarily the
same in each occurence. Multiplying (3.2) by v,|V|?|y|* p, and (3.3) by
v5| V)2 | ¥|* p, integrating over all R" we get after some calculations (see
[4] for details)

JS—0J+e(x+y+z)+c(x+y+2)3 (4.11)
where
k ké?
():Z—c——g—(k—kn—Z}, (4.12)
1 ,
s’=§£(52’k"2k(k+n—2). (4.13)

Using the fact that x, y, z— 0 as s > oo we end up with

J< =07 +4e' (x+y+72), (4.14)
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where 6 is still given by (4.12) with a different value of the constant ¢. We
can now finish the proof in exactly the same way as it is done in [4]. If
we choose k large enough (certainly k> 4) then there exists a d*(k)>0
such that for 0 <3 < &* we have that 0> 1. From (4.5), (4.10), and (4.14)
we obtain

where

F=y+J, é=C max(e+ 6% %2 652)

Note that é can be made arbitrarilly small by choosing first é and then ¢
sufficiently small. We are now able to use Lemma 4.1 to conclude that
either x, 7, z to go to zero exponentially fast or else z + J < béx, that is

4y + v+ < béx, (4.15)
or equivalently
o [+ lloy 1+ Nzl < béloo s (4.16)
and Proposition 4.2 has been proved. |

As a consequence of (4.15) we also have the following

COROLLARY 4.1. Given any g,> 0 there exists an s, such that for s > s,
4 2 2
[ |p<e(,jump. (4.17)

Proof. Using our previous notation (4.17) is equivalent to
N<egyx. (4.18)
From (4.10), (4.15) we have that
NS T +e(y+z)+ex <02 bhéx + ehéx + ex,

and (4.18) follows. |

Step 2. Derivation of the ODE satisfied by the neutral modes

Here we will obtain an ODE which is satisfied by the neutral modes of
v;. Our main result is
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PROPOSITION 4.3.  The neutral modes {x,}"_ | of v\, satisfy for s large
enough

N
o?,:-p—n?(rfo)+o(z a,) (4.19)

2K, P

where | denotes the orthogonal projection onto the neutral eigenfunction e®
of ¥ and v, is the neutral component of v,,, that is

Al n{n+1)
to= Y #(s)ef(y),  N=———.

=1

(4.20)

The proof of the above proposition is quite similar to the proof of
[4, Theorem B]. We first quote an auxiliary result. By slightly adapting the
arguments in [4, Lemma 5.1 ] we obtain

LEMMA 4.2. There exists 0,>0 and an integer k > 4 with the following
property: given any 0 <0 < d,, there exists a time s* such that

j V121 yl* p<eolk)® "J vi,ps  for s=s*, (4.21)

where ¢, (k) is a positive constant depending only on k.
We are now ready to give the proof of Proposition 4.2.

Proof of Proposition 4.2. Projecting Eq. (3.2) onto ) we get

. _ P SRV 4 22 ! !
1,=X_Un5’(1‘;0)+5—h—bn‘,’(vl—um)+:2h—_0n?(u%)+§h_—09_\.n?(uz)+n}’(g,(V))
P o, P 1
= 0w+ g — 4 8
2;{07”(110)4—21(U l+2h‘0 3t
with

E=n(vi—v}y), &=nl(v3), &=0,7](vy), =7 (g (V).
Thus, (4.19) will be proved once we have shown
éaizo(HUlOH2)’ as §— 30, i=1s233a43

where, of course, ||v,o]|> =", a7. These estimates are quite similar with
each other. Let us give in detail the estimate for & which is the most
technical. Using the identity

2.2 L2 , ,
vy = U=+, )+ 200(v 4 vy )



138 FILIPPAS AND MERLE

and the fact that |e}| < ¢, +c¢,|y|* for suitable constants c,, c, we write
|&|s“(ﬁ—wa)dm|<qf(m++vl)2p+qj(m++vp)ﬂyﬁp

+CIJ|UIO| o), +v,,]p+c2J|vlol log, +v,_| U’|2p
EC]11+C212+C113+C214.

From (4.2) it follows that given any £¢>0

Il <8 (J. U%0p>,

for s sufficiently large. To estimate I, we write for 0 < <, (The same 9§,
as in Lemma 4.2)

L=[ ete Pyt
lvi<dé™

Iy¥i=zd"

‘|U1-010‘2 [y*p
<5 1o, +vl,|2p+25k’2juflyl"p+25k'zjvf0|y|"p
saé'zfuf0p+264”‘6"’2c0(k)_[vfop+25"*chuf0p

= (8324 28%¢o (k) +2¢6* %) [ oo,

where we used (4.2), Lemma 4.2, and the fact that all norms of v, are
equivalent. The exponent k& which appears in the above calculations is the
same as in Lemma 4.2.

Using once more (4.2) and the fact that all norms of v, are equivalent

we get
12 12
TERS (J U%o/’) (J. (v, +v,2) P) <e J CHY 2
12

1,2
L,s(Jv%olyIzp) (f(vl++v.v)2p> Scefvfop-

Thus, by first choosing é and then ¢ sufficiently small we end up with

|£1|=0(”010“2), as 5§ C.
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By arguments quite similar to the ones used above one can show that
&l =0(lviel?),  as s—oc.

for i=2, 3, 4. We simply note that in estimating &; one has to use Lemma 3.2
whereas in estimating &, one has to use (4.17). We omit further details. ||

Step 3. Dynamics of the neutral modes.

Teh final step in studying the ODE system (4.19) satisfied by the neutral
modes. Our goal here is to show

PROPOSITION 4.4.  Assume that the neutral modes of v, satisfy the system
(4.19). Then for s large enought there exist positive constants C,, C, such that

C C
T‘s 1046 ( -, ) <72. (422)

System (4.19) has been studied in detail in [5] from which we now recall
a few results.

We first note that as we explained in Section 3 the neutral eigenfunctions
of & are either of the form

h,—i()‘)=—\}-—2(4n)""‘(%y?—l), i=1,n,
or of the form

hy(y)=3@4n) *"yy,  i#j, Lj=1.,n
We next expand v,,(y, 5),

"

wlr )= % a4y 3wl 42)

i=1 i,__i=_l
with a;(s)=a;(s), and define the coefficient matrix-function A(s) to be

A(s) = (ai,-(S))f_f:x-

In view of (4.20) and (4.23) the «, are equal to either a, or (1/\/5.)%.
(i #J). The reason for introducing A(s) becomes apparent in the following
lemmas. After some rather lenghty (but straightforward) calculations
(cf. [5, Lemma 3.1]) we obtain

LEmMMA 4.3. Let v,y denote the neutral component of v,; then

oy, s)=45(4m)""* (3 yT A(s) y — tr A(s)),
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where A(s) satisfies
A(s)=c, 4 (s)+o(|4()]°), (4.24)
with ¢, =p/k(4n) " and |A|| = I aff)l"‘z.

We note that if the error term in (4.24) were absent one could solve
(4.24) in an elementary way. The presence of the error term, however,
introduces some technical difficulties.

To complete the proof of Proposition 4.4. we finally quote from [5] (see
Lemma 3.1 there)

LeMMmA 4.4.  For s large enough there exist positive constants C,, C, such
that

C c
—S—'s [A(s)] <TZ. (4.25)

Proposition 4.4 now follows at once from (4.25) and the fact that ||A(s)]|
is an equivalent norm for [v,,(-, 5)]|.

5. THE GENERAL CASE

In this section we will give the proof of Theorem A in the general case,
that is, m = 2. Although at the technical level things here are slightly more
complicated than in the case m = 2, the logic of the previous sections stays
the same. We recall that Eq. (1.1) when written in similarity variables is

1 1
W, ==V(pVW)——— W+ |W|? "' W, (5.1)
p p—1

where W= (w, .., w,, ) satisfies the assumptions of Theorem A.

We remark that all the results presented here have their analogue in
Section 2.

Let us first introduce some notation. We denote by N, the unit vector
along the direction of the i-axis (i=1, 2, ..., m) and by (-, - > z» the usual
Euclidean inner product. We nex set

cosg§, 0 ... —sin@, - 0
0 1 ... 0 .0
R=1sno, 0 .. coso, - 0 (52)

0O 0 ... 0 |
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R, is an m x m orthonormal matrix which rotates the (¥,, N,)-plane by an
angle 0, and leaves all other directions invariant. It is constructed if in the
m x m identity matrix the first and ith row are replaced as shown in (5.2).
We also set

RGER2R3"'R,", (5.3)

where 0= (8,, 05, .., 8,,). Clearly, R, is an m x m orthonormal matrix.
We next introduce m— 1 parameters 8,(s), 0,(s), .., 8,,(s) defined at
each time s by

f [W(-,8)—KoRg N, |2 p=ming, y"--lj [W(-,5)—KkoReN, |2 P (54)

where ko= (p—1)"Y?-Yand N,=(1,0,..,0)7. Since (S')" ! is a com-
pact set the existence of the 6,’s follows at once.

Although the point R,N, € $™ ' is always unique there is more than one
combination of §=(d,, .., 6,,) which represents the same point R,N, on
the sphere. For instance, for m=3 one may choose either (8,, 8,) or
(0, +n, n —0,). For general m ( > 3) there are 2™~ 2 different combinations
of # which yield the same point (R,N,) on the sphere $™ ',

We also note that if cos 6, =0 for some j > 3 then the 6,, .., 6, , can be
chosen arbitrarily. For instance if cos 8,,=0, that is 8,,= +7/2 (mod 2=),
then RyN, = +(0, .., 1)7, no matter what the values of 8,, ..., 0,,_, are.

In any case we have the following

PROPOSITION 5.1. For s large enough RgN(s)= Ry, )N, is unique and
varies smoothly with time. Moreover we can choose the m— 1 parameters
introduced in (5.4) so that 6,(s) (2<i<m) are a.e. differentiable.

Proof. We have that
[IWC5) =Ko Ry Ny 12 p = [ (IW12+13) p = 260 KW, RyN, (5.
Therefore the minimum of the functional in (5.4) is achieved when

WO RN (D = ([ WS p RING)) (53

Rm
achieves its maximum. This happens when RyN,(s) is parallel to

[ W(-,s)p. Clearly for each time s there are two different RyN,(s) with
this property. As in the case m =2 one of them is excluded as yielding the

505.116;1-10
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minimum of (5.5). Finally, since { W(-,s)p is smooth we conclude that
R, N (s) is also smooth.
An easy calculation shows that

RyN,=(cos 8,cos8,---cosf,,,

sin 8,cos 0,---cosb,,, .., sind,,_,cosf,,sinb,, )"

Thus, the angles 6,, 85, ..., 8,, are smoothly defined so long as cos#,,---
cos 0,+#0. In particular 6,, is always smoothly defined.

Suppose now that cos 8,, =0. Then, if this is true along a time interval,
the other angles can be arbitrarily defined so that they are smooth along
this interval. If this is true at isolated point then these points are possibly
points of discontinuity for the other angles. Arguing similarly in the case
where for some other angle we have cos 8;,=0 (j =3, ..., m) we conclude the
proof of the proposition. |}

We next introduce V(y, s}=(v,(, s), ..., v,,,( 1, 5)) as follows:
Wy, s)=Ry,(V(y,s)+ KN ). (5.6)
As in the case m =2 we have that
[V(y s)—0, as §s— o, (5.7)
uniformly for | y| < C, and
(V- ) =IW(,5)—RykoN, | =0, as s — 0. (5.8)

We next show

LemMma 5.1. Let V= (v, .., v,,) be as defined in (5.6). Then for s large
enough we have that

ju,(-,s)p=0, =2, . m. (5.9)

Proof. Computing the first variation of the functional in (5.4) we have

that for i=2, 3, ..., m:
OR,

OR
<R(,V,—-QN1>:O,

Using (5.6) we get that

o0

i
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or, equivalently

(V,A,N,>=0, (5.10)
where
éR
,msRotaf. (5.11)

The matrices A4, can be explicitly calculated. It follows from (5.11) and
straightforward calculations that 4,=(a, 4 )7, _, is antisymmetric (that is
Al'= ~ A,y and that all of its entries are zero except the ith row and ith
column for which we have

a;, y=cosb;---cosb,,

a,pn=a;3=--=4a,;=0,
ai,i[i+l)=_51n0i+l’ (5]2)
4 jiv2y=—sinb; ,cos0,,,,

a; ;= —sinf,cosf,_,---cosB,,,.

An easy computation shows that (5.10) is equivalent to
Jvmp=0

Cos gm UmA 1p 20

cosB,,cos B, ,---cos 63fuzp=0.

Thus, if cos 85cos 8, ---cos 8,,# 0 then (5.9) follows.

We next show that even if some of the cos 0;'s are zero (5.9) still holds
true. To see this suppose that cos 8, =0, that is 0,,= +7/2 (mod 2n). Let
us assume for definiteness that 8, =n/2. Then RygN, =N, =(0,0,..,1)7
and the minimum of

IW =k RoN 112 = [ (W17 +50) p— 260 KW, RN, D,



144 FILIPPAS AND MERLE

or equivalently, the maximum of
< W’ R()Nl >’
is achieved when R ,N,=N,,. For i=1, .., m— 1, consider the vector P;=
0, ..,0,sing;, 0, ., 0, cos ¢,)"e S” ! which lies on the (N,, N,,)-plane.
We then have that
(W, P,;>=sin ¢,~J W;p + Ccos ¢, f W, p

attains its maximum when ¢, =0 (in which case P,=N,,). Computing the
first derivative (w.r.t. ¢,) of (W, P,> and setting ¢,=0 we get

jw,.p=o, i=1, ., m—1. (5.13)
It then follows from (5.6) and (5.13) that

R, f Vp =f Wp~N,, _[ p =multiple of N,,=c¢N,,,
and

f Vp=cR,'N,, =cN,.

In particular we get

f v;p=0, ji=2,..,m

Arguing similarly in the case where some of the other angles is zero we
conclude the proof. |

We next find the equation satisfied by V. From (5.7) we get that

(5.14)
Computing the Taylor expansion of the nonlinear term we get
[V +KkoN 77 (V+KoN,)
, 1 , p m ,
U1+KQ+K6’7 |25} zvl'l'zzvj
p—1,, i=2
Kkl v, 1
= ) 4+ — Uy U, +G(V), (5.15)
. Ko :
kg e,

U, Um
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with [G(V)| < C|V|*. From (5.15), (5.14), and (2.1) we get

1 m
v, —vf-l—l—J Y vl
o) 1|2 A=
V.=(L—-F)V+| . |+— U0
. KO :
0 :
vlvm
v, +Kq
m v
- 0,4, >+, (5.16)
i=2 .
vm

where the matrices A; are defined in (5.11), (5.12).
We next show the analogue of Proposition 2.2.

ProrosiTion 5.2, For s sufficiently large 0,(s) (j=2, .., m) satisfy the
following ODE’s.

db, (s) 1
AN N ([0 x01p ) == [riopt [, p. (517)
Moreover, there is a positive constant C such that

d“ <CIV( 92 (5.18)

Nl >Rm

Jj’

or, equivalently (if we make explicit the left hand side of (5.18))

SCHV( 9%

do,,,(s)
ds

cos 0, <C V(- 93

(5.19)

dom—l(s)
ds

cos 8,,cosf, ,---cost,|<C|V(-s)%

db,(s)
ds
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Proof. Forming the Lf,-inner product of N; and V, (cf. (5.16)) we have
1
():Jujspzf(,f—f)vjp-%;_;fulujp

=3 0, KAV 5N N+ [,00)p. (5.20)
i=2

The term on the right hand side is zero because of (5.9). The first term on
the left hand side is easily seen to be zero. For the third term of the left
hand side we note that since [ Vp =N, jv, p (this is a consequence of (5.9))
we can write

CAAV + 10N ), N> = KAV N+ CANG N o [ 0p

([0 tx0) ) AN N e

Because of the special structure of 4, we also have that
(AN, N, D pn=0, for i+#},
and (5.17) follows from (5.20).

The second part of the statement is proved in exactly the same way as
in the case m=2. |

We next have

PROPOSITION 5.3.  Either ||V (-, )|l goes to zero exponentially fast or else
Jor s large enough there are positive constants C,, C, such that

C C
=< V(- 0l <=
S )

Proof. The proof is the same as the proof of Proposition 4.2 with minor
changes. |

To complete the proof of Theorem A we finally have

LEMMA 5.2. As s— oo we have that

Ry Ny~ Ry, N eS™ L. (5.21)
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Proof. From (5.19) and Proposition 5.3 we have that

‘d(),,,(s) o5’

Therefore lim, _, . 6,,(s)=0,,,. exists. We distinguish two cases.

Assume first that 0, = +7/2 (mod 2zn). Then, Ry, N, —»> Ry N, =
+ N,., and (5.21) has been proved.

Suppose now that 6, # +n/2 (mod 2xn). Then, for s large enough we
will have that |cos 8,,(s)| is bounded away from zero. In particular 8,, _,(s)
is now smoothly defined for all s large enough. It follows from (5.19) and
Proposition 5.3 that

dGm —1 (S)
ds

' <c/sh,

and therefore im, , 6, ,(s)=0,,_,,, exists. We now arguec as before,
that is, if

{(m—1}x

6 - ig (mod 27), (5.22)

then (5.21) is true with Ry N, = Ry N, =(0, .., 0, +cos @, ., sinf,, )
If (5.22) is not the case we repeat the previous argument with 6, _,(s) and
soon. |

From (5.6)-(5.8) and (5.21) we have that
[W(y,s)-W,|—-0, as s— o,
uniformly for | y| < C, and
I1Wi(,s)—W_I| -0, as §— oo,
with
W, =KkoRy Ny,

and Theorem A has been proved.
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