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ARTICLE INFO ABSTRACT
Communicated by Petru Mironescu We consider the weighted Hardy inequality
- v 2 2
MSC: VUl o5 e @) / “O) g Vue Q).
35A23 o d72(x) o d*(x)
35J20 . L
34C37 For s > 1, n > 2, s # n we compute the best constant in the case where 2 is either the
34B16 complement of a ball or the complement of a circular cylinder. Typically one is able to compute
35J75 best constants if the domain is weakly mean convex. In our case the domains are not weakly
26D10 mean convex. The best constant depends on the parameter s in a surprising way. For instance
when n > 3 then
Keywords: 5 1 5 )
Hardy inequality (@) = (n—=2)n—s —2 )(s = )’ if 3n=S g modn+d
Best constant (n—73) n—1 n—1
Exterior of domain whereas

Distance function

¢,(£22) = min <(%)2 R <n ; s >2> , otherwise.

1. Introduction and main result

The classical Hardy inequality involving the distance to the boundary states that for a bounded Lipschitz domain 2 c R”, n > 2
there exists a positive constant c, such that

2 u*(x)
/ |Vu(x)|“dx > cg/ dx, Yu € C2(£), (1.1
Q 2 d*(x)

where d(x) = dist(x, 092).
In general the best constant ¢, depends on Q. However under the assumption of convexity of 2 or even weak mean convexity,
that is,

—Ad(x) >0, X € Q,

in the distributional sense, one can establish that ¢, =
emphasize that in this case £ can be unbounded.

}‘, under very mild regularity assumptions on the boundary of Q. We
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There are very few examples of non weakly mean convex domains where one can identify the Hardy constant cg,. In the two
dimensional case see [1-3]. On the other hand when n > 3 the only result we are aware of is the complement of a ball, that is
Q= Bf in which case ¢, = }‘, see [4,5].

More generally, for s > 1, one can consider weighted Hardy inequalities of the form

2
|;”(2’;)|) > ¢,(Q) / ZSEX; X, VueCr(Q.
Q

2
By practically the same proof as in the unweighted case, one can show that if £ is weakly mean convex, then ¢ () = (%) , under
very mild regularity assumptions on the boundary of 2 as before.

Let us now consider the case where (2 is such that Q¢ is bounded with nonempty interior. Then by testing a function that behaves

2
like d*“(x) near the boundary of 2 and passing to the limit ¢ - 0%, one can easily conclude that ¢ (£2) < ( > ) On the other

2
hand by testing a function behaving near infinity like d~ 2 ~(x) and passing to the limit £¢ — 0% one has that ¢,(2) < (?) .
Therefore we always have

Cs(.Q)Smin<(%)2’ (n;s)2>'

For s =2 and £ bounded with smooth boundary, then ¢,(£2) < % and the following dichotomy is known. If ¢,(2) = j—‘ then there

i we have existence of a minimizer, see [5,6]. If on the other hand Q¢ is bounded with

is no minimizer, whereas when ¢, () <

2
smooth boundary and nonempty interior, the dichotomy now is: when ¢,(£2) = min (i (%) > there is no minimizer, whereas

\ 2
One expects that the best constant depends on the geometry of £2. On the other hand in [9], for s > »n and any £ which is a
proper subset of R”, the following inequality was established

|Vu(ol? n-s\2 [ X ©
e dx 2 ( > ) /st(x) dx,  VYueC®(Q).

2
when ¢,(£2) < min <l, (ﬂ) we have existence of a minimizer, see [5,7,8].

2
In case Q¢ is bounded, one may use the test functions near 1nf1n1ty, mentioned before, and conclude that in fact the constant (%)

is the best one in the case s > n. We note that (%) < (% if and only if s > == "“

In this work we initially consider the case Q = Bf ={xeR": |x|>1}, whence d(x) = |x| — 1. Our first result reads

Theorem 1.1. Let n >2 and s > 1. The best constant of the Hardy inequality,

2 2 —

/ %dx > c(n, s) ﬁdx, Vu € C®(BY),
Be (|x| — 1)~ Be Ux| —

1 1

(i) in the case n =2,3, and 1 < s < n, is given by

2
s—1 - n+l
S=2 <=
( > ) s if I<s o
c(n,s) = ,

2
(%), if "—+]<s<n

and is not realized in the proper energy space,
(ii) in the case n >3 and 1 < s < n, is given by

(=) v

-1

_ (n=2)(n—s—1)(s—2) - 3n=5 n?=3n+4
c(n,s) = e if —— <s<—/——
n—s 2 - n2=3n+4
(=) ¥ =5 ss<n
Moreover, when
3n-5 2 _3n+4
n>3 and L2 <5< w,
n—1 n—1

the best constant is realized by the function

> (1=2)(s-2)
u(x) = |xI7(Ax[ =D = x>

whereas in the other cases it is not realized in the proper energy space,
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c(n, s)

Fig. 1. Best constant (in red) for n > 3, s > 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

(iii) in the case s > n, is given by

o= (52,

and is not realized in the proper energy space.

See Fig. 1 for the best constant c(n, s).
Next, for n > 2, m > 1 we consider the complement of a cylinder

Q={(xy) €eR"XR", |x|>1, yeR"}=B{xR".

Theorem 1.2. Forn>2, m>1and 1 < s # n the following Hardy inequality holds true

IV ey, I 2 _
/ / D2 xdy > cn, s)/ / LD yedy, Yue CR(BXR™),
m Jpe (Jx] = 1) e n J g (IxI=1?

where the constant c(n, s) is the one given by Theorem 1.1 and it is sharp. This time however, the best constant is never realized in the proper
energy space.

To find the best constant c¢(n,s) of Theorem 1.1, we study the existence and the behaviour of positive radial solutions of the
Euler Lagrange equation

r"_1¢/(r) =
<(r—l)S*2> + c(n, s)( 5 d(r) = r>1.

We make various choices of c¢(n, s) and in each case, with an appropriate change of variables, we reduce the problem to the study

2
of existence of connecting orbits of singular first order ODEs. For instance, for c(n, s) = (%) we change variables by

#'(r
()’

and y satisfies the ODE (2.1), see below. The ODEs thus derived have a surprisingly rich behaviour depending on the values of n
and s and Section 2 is devoted to their detailed study. Finally, in Section 3 we give the proofs of our Theorems.

yx) = —( -

x=1/r, r>1,

2. Phase portrait analysis

In this section we will study various singular ODEs that are connected to our problem. Our aim is to establish the existence of
connecting orbits between two critical points. The choice of the ODE depends on the parameter s.
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2.1. Case 1

Here we consider the case 1 < s < n and we will study solutions of the singular ODE,

—1 2(n s)
dy —(=Dxy+S2[1+ 22y 4+ 7]
& _ 2 il , 0<x<l1. 21
dx x(1 = x)

For s < 2L "“ we denote by
n—s
<-———<p; <0,
P2 S_1 4
the real roots of
H() :=1+2"—_ft+t2.
s —

There are three critical points of the ODE, namely, (1, 1), (0, p,), (0, p,) that will be important to our analysis. For 0 < x < % (<1,
there are other critical points, that is, points at which the numerator of the right hand side is zero

209y 0=
s—1

Equivalently, we can write the above curve as

s—1 1+2("1S)y+y
=2(n—1) 5 s pr <y<p;. 2.2)
If there is a pair (x, yp) With x, € (0, "= 2S) and y, € (p,, p;) such that

s—1 2(n—ys)
—(n—l)x0y0+T<l+ ! y0+y§>=0,

then the solution of the ODE with y(x,) = y, is such that for all x € (0, x;) there holds

Ad (1+2(" ) yx) + y (x))

Hence y is decreasing and y, < y(x) < p; for x € (0, x,). Therefore there exists ! € (y,, p;] such that lim,_+ y(x) = . By mean value
Theorem there exists a point sequence x; — 0% such that x | ¥ (x ;) — 0 as j — co. We now use the ODE (2.1) to conclude

T '
0= lerngy (x;)
e Dx;y0x)) + S+ 220 y(0) + 32(x))
- JLI?O 1—x; ’
hence
— 2(n — —
0=3" 142029 o5y, 2.3)
2 s— 1 2
which implies that
li =p,. 2.4
Jim, y(x) = py 2.4

On the other hand for x > x, y(x) is increasing for as long as it exists.
Our interest is to find conditions on the parameters, so that there exists an orbit connecting (1, 1) to either (0, p;) or (0, p,). To
this end we first have

Lemma 2.1. Letn > 2, s > 1. (a) There exists an analytic solution y(x) of (2.1) near (x,y) = (1,1). Moreover for some ¢ > 0 and any
x € (1 — ¢, 1] there holds

Vo(x) = ";1 (n—z—w>(x—1)2+0((x—1)3).

(b) If for some € € (0, 1) there exists a solution y(x) of (2.1) in (1 — ¢, 1) that in addition satisfies

y(x) > y,(x) for xe(l—-¢,1) and lim,_;-y(x) =1,

then necessarily y(x) = y,(x).

Proof. We write the ODE in the following way

(n—1)xy— % [1+ 22" 1A>y+y ]
=1y = = f(x,y).

X
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We next apply Proposition 1.1.1, p. 261 of [10], in a neighbourhood of the point (x = 1,y = 1) since f(1,1) =0 and
af
—(1,1)=0.
ay( )

The asymptotics at the point (1, 1) follow easily.
(b) Suppose on the contrary there are two solutions y(x) > y,(x) in (1—¢, 1) which tend to 1 as x - 1~. We define ¢(x) = y(x)—y,(x) >
0. Clearly lim, _, ;- ¢(x) = 0 and is easily seen that ¢ satisfies the ODE,

(1= D) + 5 (252 4 500 + 3, () ) $)

¢'(x) = (1 —x) s l-e<x<l1.
From this we easily derive
o~ S (282 4,0
$(x) = efl—f . I(Il—t)l di
P(1-¢)

Taking the limit x — 1~ we arrive at a contradiction: the left hand side tends to zero whereas the right hand side is bounded below
by a positive constant since

/x =D+ 5 (252 450+ 3,00)
1

dr
. -0
c=m=Dr+ =D (2 +5,0)
5 dr,
/1_5 Wi-n

and the right hand side is finite because of the asymptotics of y,. This completes the proof of part (b). [

Lemma 2.2. Letn>2and 1 <s< " Then
(a) there exists an analytic solution y,(x) near zero that solves ODE (2.1) and such that for some & > 0,

Yo(x) = py + - (n = Do, x+ 0(x?), x € [0, ¢).

—s=14+(G-Dp,
(b) If for some € € (0, 1), there exists solution y(x) of the ODE (2.1) in (0, €) with the property lim,_ o+ y(x) = p,, then necessarily

¥(x) = yo(x), x € [0, ¢).

Proof. (a) We write the ODE as

—(n=Dxy+ 1+ 2=y 452

xy(x) = I = f(x,)).
- X
We next apply Proposition 1.1.1, p. 261 of [10], in a neighbourhood of the point (x = 0,y = p,) since f(0, p,) = 0 and
af
0_y(0’p2) =(m—-5)+(s—1p, <0.

The asymptotics at the point (0, p,) follow easily.
(b) Suppose on the contrary there are two solutions y;(x) > y,(x) in (0, ¢) which tend to p, as x — 0*. We define ¢(x) = y;(x) — y,(x).
Clearly lim,_,y+ ¢(x) = 0 and is easily seen that ¢ satisfies the ODE,

1= Dxgx) + 5 (252 45,0 + 120 )

P (x) = . | o
From this we easily derive
$) P(e) oo 2 W0
= e e

(I—x)=1  (1=gn!

Taking the limit x — 0" we arrive at a contradiction: the left hand side tends to zero whereas the right hand side tends to infinity
since

lim (2(n _IS) + 30+ y2(t)> =2 (u + pz) <0.
P

-0+ s — 1
The result then follows from part (a). []
Lemma 2.3. Let n > 2. Then

Yx)=py+(1=pyx, 0<x<1,

is a supersolution of the ODE (2.1) provided that
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ceither2<n<3and1<s< ™l

-orn>3and1<s5%(<%).

Proof. For y to be a supersolution we should have, for 0 < x < 1,
s—1 2(n—s) 2
—(n = Dx(py + (1 = pp)x) N 2 (1 + =770+ (1= pp)x) + (pa + (1 = p3)x) )

x(1 —x) x(1—x)

After straightforward calculations this is equivalent to

(1=py) >

(= DR+ @n=25=py = (=5 =)= (1 = p) (2=n+ 521 = pp) ) x2 0

for 0 < x < 1. This is true provided that

(s—1)p§+(2n—25—1)p2—(n—s—1)20 (2.5)
and

(s—Dp2+@n—2s—Dpy—(n—s—1)— (1 —pz)(Z—n+ %(1 —pz)) > 0. (2.6)
Using the fact that p, satisfies

1+¥tﬁﬁ+£=a

inequality (2.5) is equivalent to
pp < —(n=2), (2.7)

whereas in (2.6) the left hand side is exactly equal to zero. Hence it remains to establish (2.7). From (2.5) we get that

n—s+4ym+1-2s)(n—-1)

s—1

py =

’

so that (2.7) is equivalent to

Vo+1-25n-1)> (s —2)n—1). (2.8)

When 2 < n <3 then s < ﬂzl < 2 and we have strict inequality in (2.8). We similarly have strict inequality in case n =3 and s < 2.
Finally, for n =3 and s = 2 we have equality and in addition p, = p, = —1 and y(x) = —1 + 2x is in fact solution.
For n > 3 and s < 2, strict inequality (2.8) is obvious, whereas for s > 2 inequality (2.8) is equivalent to

6-n(s-2=2) <o

whence the result. We note that p, = —(n —2) iff s = % in which case

y(x)=—-(n-2)+ (- 1x, 0<x<l,

is a solution of the ODE. []
Theorem 2.4. (@) If2<n<3and1<s< % orn=3and 1 < s < 2 then there is a solution y,(x) analytic at (x,y) = (1,1) that is
defined for all x € (0,1) and in addition lim,_,q+ y,(x) = p;.
B)Ifn>3and 1 < s < 3:_—15 then there is a solution y,(x) analytic at (x,y) = (1, 1) that is defined for all x € (0,1) and in addition
lim,_ o+ y,(x) = pyg.
(©Ifn>3and s = 3:__]5 then y,(x) = —(n —2) + (n — 1)x is the analytic solution. connecting (0, —(n — 2)) with (1, 1).

Furthermore,
(d) under the hypothesis of either (a) or (b), the analytic solution y, of Lemma 2.2 is defined for all x € (0, 1) and connects (0, p,) with
(1, 1). In addition, there is a continuum of solutions connecting (0, p;) with (1,1). These solutions lie between y, and y, and these are the
only bounded solutions of (2.1) in (0, 1).
(e) under the hypothesis of (c), y,(x) = —(n —2) + (n — 1)x is the only bounded solution of the ODE.

Proof. Case (c) follows by direct verification. We next consider cases (a) and (b). An easy computation shows that under any of our
assumptions

(n—1)p,
<-(n-2) & —————=—— < 1-p,. 2.9
e (o ) n—s—1+(s—=1p, P2 29
From Lemma 2.3 we have p, < —(n—2) whenever 2<n<3and 1 <s < % with the exception of n = 3, s = 2 where equality holds.

3

n"__ls . Whenever n > 3 and s = =2

n—1

We also have p, < —(n—2) whenever n >3 and 1 < s <
case

equality holds p, = —(n — 2) in which

Vox)=—-(m—-2)+ (@ - D)x, 0<x<1,
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is a solution of the ODE.
In the sequel we consider the case p, < —(n — 2). From the asymptotics of the analytic at (1, 1) solution, see Lemma 2.1, we
initially have y,(x) > p, + (1 — py)x = y(x) for x close to 1. We claim that

Ya(x) > py + (1 = py)x, Vx € (0,1). (2.10)

Indeed, suppose on the contrary, there exists an x, € (0, 1) such that y,(xy) = y(x;) and y,(x) > y(x) for x € (x(,1). Then, since by
Lemma 2.3, y is a super solution whereas y, is a solution standard comparison yields that y,(x) < y(x) for x € (x,,1) which is a
contradiction.

Clearly for x close to 1 we have

s—1 1_'_Z(n v)

—(n=Dxy, Ya(0) + 2 ()| = =(n = Dxy,(x) + %H(ya(x» >0, (2.11)

and therefore y, is increasing there. We next follow y, for x € (0, 1) and consider the following two cases:
(i) (2.11) remains true for all x € (0, 1).
(i) there is a point x, € (0, 1) such that

—(n— Dxy,(xq) +1— ) H(ya(xo)) =
whereas for x € (x(, 1), (2.11) holds.
Let us first consider case (ii). In this case, it follows from the ODE, that for all x € (0, x;) there holds

~n= Dy, (0 + 2L H 0 <0,

and therefore y,(x) is decreasing in (0, x,) and tends to p; as x — 0%, as in (2.4).

We next consider case (i). In this case the solution is increasing in all (0,1) and if lim,_4+ y,(x) = I, we still have (2.3), and
therefore / is either p, or p,. In fact we will show that / = p,. Suppose, on the contrary, that it tends to p,. Using the uniqueness of
Lemma 2.2, y,(x) should be analytic at (0, p,). But then, by passing to the limit in (2.10) we would have that

(I’l - l)pZ /
s 1+G-Dp V,(0) = 1=py,
which contradicts (2.9). This concludes the proof for the cases (a) and (b); see Fig. 2.
(d) We consider two cases depending on whether solution y, is increasing in all (0, 1) or else changes monotonicity at the point x,
cf cases (i), (ii) above. In any case, the analytic solution y, of Lemma 2.2 stays below y, and consequently it tends to (1, 1).

In case y, changes monotonicity at the point x,, the continuum of solutions with the stated property can be constructed by
considering solutions of the ODE with initial values (x,,y,) on the curve (2.2) with x, € (0,xy) and y, € (p,,y,(xy)). Then the
solution of (2.1) with y(x,) = y, satisfies y,(x) < y(x) < y,(x) and lim,_, ;- y(x) = 1. By a similar argument as in case (i) or (ii) above
we also have lim,_y+ y(x) = p;

In case y, is increasing in all (0, 1) then the continuum of solutions with the stated property can be constructed by considering
solutions of the ODE with initial values (x,, y,) on the curve (2.2) with x, € (0, = 2S] and y, € (py, p))-

(e) If for some x; € (0,1), y(x;) < y,(x}), then lim,_,;- y(x) = 1 and y blows up to the left at some x; € (0, x;) due to Lemma 2.2(b).
Similarly if for some x; € (0, 1), y(xy) > y,(xo), then this solution tends to —(n —2) as x — 0% and blows up at some x, € (x,, 1), due
to Lemma 2.1(b). O

2.2. Case 2

Here we will consider the case n > 3 and 2 < s < n— 1. We will study solutions of the singular ODE

—(l’l— 1)xy+ (n— 2)(v 2) [(nn s—1 (n—3)(n—s)y+y2]

Q 2)(s-2) | (n-2)(s-2)
dx x(1 = x)
The roots of
n—s—1 (n=3)n-ys)
(n=2)(s=2) (n—=2)(s-2)

(2.12)

412 =0,

are t= "1 = —-L. We note that
2 n-2

_n—s—1<_ 1 N S<n2—3n+4
s=2 n—2 n—1 '

At x = 1 the roots of

o (n—2)(s-2) n—s—1 (n—3)n-ys) 2|
=Dt = - 26-2 Tw-2e=2 | 7Y

or equivalently,

n—s—1 n=3)s—-1)

— 2 _
n-26-2 w-2e-2 T ="
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Yo

———————— e ——— =
| —
8

3n-5

Fig. 2. Either n=2,3 and 1 <s< ":r—' orelsen>3and 1 <s< . Connecting orbits are in blue. Blowing up ones in red. (For interpretation of the references

2 —
to colour in this figure legend, the reader is referred to the web version of this article.)

_ _ n—s—1
aret=1andt= 20 We note that
(Pt el SN NP [
n=2)(s—-2) n—1"

The important critical points of the ODE are

n—s—1 n—s—1 1
o (1 ) @1 0ty

There are other critical points, that is, points at which the numerator of the right hand side is zero

n=-2s-2)[ n-s—1 (n=3)(n—ys)
n—-3 (n

2 —
~6-2) (n_2)(s_2)y+y =0 0<x<1.

—(n—xy+

Clearly, they lie on the curve

n—s—1 (n—3)(n—s) 2
(n=2)(s-2) | =262 " w2’ T
= =: Py(y), 0<x<l.
(n=3)(n-1) y

Now there are two branches corresponding to y > 0 and y < 0.

If there is a pair (x,, y;) on the curve with x, € (0, 1) and y, < 0, then the solution of the ODE (2.12) is such that for all x € (0, x()
there holds

n=-2)s-2)[ n-s—1 (n=3)(n-s) 2
-(n—1 0. 2.13
(= Dxy(0) + ——= n-26-2 " (n_z)(s_z)y(XHy ™) < (2.13)

Consequently y(x) is decreasing in (0, x).

Similarly, if there is a pair (x, y;) on the curve with x, € (0,1) and y, > 0, then the solution of the ODE (2.12) is such that for
all x € (xg, 1) inequality (2.13) holds and therefore y(x) is decreasing in (x,, 1). Outside these regions the solution is increasing.

Lemma 2.5. Letn>3and2 < s <n— 1. Then

n—s—1 n-3
ya(X)z_ﬁ—i_mx’ 0<x<l1,

n—

s—1
Y_‘Z ), whereas

is an analytic solution of the ODE (2.12) connecting (1, 1) to (0,—

n—3

L+—x 0<x<l1
n-2 m=-2s-2)" ’

y(x)=—
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is a subsolution.

Proof. Both statements follow by straightforward calculations. []

Lemma 2.6. Letn>3. (a) If =— 3n= 5 < s <n-—1 and for some € € (0, 1) there exists solution y(x) of the ODE (2.12) in (1 — ¢, 1) with the

property lim,_,,- y(x) = 1, then necessan'ly
y(x) = y,(x), xe(l—gl).

—s—1

b)) If2<s < =22 _3"+4 and for some € € (0, 1) there exists solution y(x) of the ODE (2.12) in (0, ¢) with the property lim,_,¢+ y(x) = ===

then necessanly

y(x) = y,(x), x € (0,¢).

Proof. (a) Suppose on the contrary there are two solutions y;(x) > »,(x) in (1 — &,1) which tend to 1 as x — 1~. We define
¢(x) = y;(x) — y(x). Clearly lim,_, ;- ¢(x) = 0 and is easily seen that ¢ satisfies the ODE, for | —¢ < x < 1,
~(n = D) + U2 (B0, () 4 3,(0) ) ()

x(1 —x) ’

From this we easily derive for 1 —e <x <1,

¢ (x) =

ey 22D (=Y

n=2)(s=2) +y1(’)+}2(r)) dr

$0) = g(1 — )/~ 0

Taking the limit x — 1~ we arrive at a contradiction: the left hand side tends to zero whereas the right hand side tends to infinity
since

(n—1)s—-3n+5
n—3

> 0.

lim [_(n iyt (n—2)(s—2) <(n -3)(n— s)

3 (n—2)(s—2)+y‘(t)+y2(t)>] -

The proof of part (b) is quite similar. In particular it follows from the fact that

n=2)(s=2) {(n=3)(n-—ys) (n—l)s—(n2—3n+4)<0
-3 (n—=2)(s =2) n—73

tlirgl+ [—(n — Dt + + 30+ yz(ﬂ)] =

We next state two lemmas

Lemma 2.7. Letn>3and?2<s< = 15 Then

(@) there exists an analytic solution y, (x) near x = 1 that solves ODE (2.12) and such that for some ¢ >0 and x € [1 —¢, 1)
n—s—1 n=—1Dmn-=-3)n-s-1) 2
= -1 - 1)).
NN = CT 6= T o6 —@n -2 —=Dy D HOE=DY

(b) If for some € € (0, 1), there exists solution y(x) of the ODE (2.12) in (1—e&, 1) with the property lim_,,- y(x) =

n—s—1

o then necessarily

»(x) =y (x), xe(l—gl).

2
Lemma 2.8. Letn> 3 and % <s<n—1 Then

(a) there exists an analytic solution y,(x) near x = 0 that solves ODE (2.12) and such that for some € > 0 and x € (0, ¢)
1 (n—1)n-3) 5
=——+ + O(x?).
W) = = T — s =2 —ns )tz O™

(b) If for some € € (0, 1), there exists solution y(x) of the ODE (2.12) in (g,0) with the property lim,_ + y(x) = —"172, then necessarily

¥(x) = yo(x), x € (0,¢).
The proof of the above two Lemmas is quite similar to the proof of Lemma 2.2 or 2.6 and we omit them.

Theorem 2.9. Letn >3 and 2 < s < n— 1. We recall that
n—s—1 n-3
Ya) = -

nsl

is an analytic solution of the ODE connecting (0, ——=-) to (1,1). In addition to y,,
(a) in case 2 <s< == 3"’5 there is a continuum of orblts connecting (0, _ﬁ) with (1,1) and these are all the bounded solutions in (0, 1),

(b) in case n=3n+4 ihere is no other bounded solution in 0, 1),
(c) in case ﬂ < s < n—1 there is a continuum of orbits connecting (0, — == 1) to (1, %) and these are all the bounded solutions
in (0, 1).
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—_

Ya

_n—s—1
s—2

________________0__________
8]

Fig. 3. Case n >3 and 2 < s < 3”:15 . Connecting orbits are in blue and blowing up ones in red. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

n=3

Proof. We initially observe that the line y(x) = _anz + e and the curve x = P,(y) have only two points of intersection,
1 n—s—1
namely, (0, _E) and (1, m)
Similarly the line y,(x) = —";:1 + ':T_;x and the curve x = P,(y) intersect each other at the points (0, —”:;] ) and (1, 1).

n—s—1
(n=2)(s=2)"
x € (xg, 1), y(x) decreases to 1. By comparison y,(x) < y(x) < X(x)’ and because there is only one solution which tends to —%

(a) Let (xg,y,) a point on the curve x = P,(y) with 1 < y, < The solution of the ODE with y(x,) = y, is such that for

as

x — 0%, cf Lemma 2.6(b), we conclude that lim,_ g+ y(x) = —ﬁ. By a similar argument the analytic solution y,(x) of Lemma 2.7

tends as x — 0% to ———.

)
Any other solutioﬁ of (2.12) y(x), which at some point x;, € (0, 1) is below the analytic, that is,
n—-s—1 n-3
Yo < Yalxg) = i + Y0 ¥(Xp) = Yo,
to the right connects to (1,1) and to the left blows up at some point x, € (0, 1). The last statement follows from Lemma 2.6(b). A
similar argument shows that if a solution at a certain point is above y, then to the left connects to (0, —"1—2) and to the right blows
up; see Fig. 3.

(b) In this case using once again Lemma 2.6 we conclude that a solution which is below y, connects to (l, ns—l

m) and blows up
to the left and similarly if it is above y, then it connect to (0, —n—iz) and blows up to the right.
(c) It is easy to check that the analytic solution y, of Lemma 2.8, satisfies y,(x) > y(x), x € (0,1) and connects to (1, #(:2))

":Sl. Then the solution of (2.12) with y(x,) = y, connects to the left to
O, —ﬁ) and to the right to (1, #&i% ) Any solution below y,(x) or above y,(x) blows up in a similar fashion as in part (a). [J

Let (xy,y,) be on the curve x = P,(y) with —ﬁ <y<-—

2.3. Case 3

Here we will consider the case n > 3 and % < s < n and we will study solutions of the singular ODE

dy  —(n=Dxy+ 21+ )
dx x(1—x)

R 0<x<l1. (2.14)

10
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At x = 1 the roots of the equation
— 2(s—1
—n-y+ PSP =0, e p-2TDyi o
2 n—s
satisfy
0<‘r2<u<1<‘r1.
n—s
The important critical points of the ODE are
(0,—1)» (15T1)» (I,Tz)-

There are other critical points that lie on the curve

—(n—l)xy+ngs(1+y)2=0, 0<x<l
If there is a pair (xy, y,) on the curve with x, € (0, 1) then the solution of the ODE with y(x,) = y, is such that for x € (x, 1) satisfies
—(n = Dxy(x) + 2 ; 51+ y(x))? =0, Xp<x<1,

and it decreases to 7,. For x < x, we have the opposite sign and the solutions are increasing as long as they exist.

Lemma 2.10. Letn > 2, 1 < s < n. (a) There exists an analytic solution y(x) of (2.14) near (x,y) = (0,—1). Moreover for some € > 0
and any x € [0, €) there holds

Ya@) = =1+ (= Dx+ = > L (—(n -2+ W) X2 4005
(b) If for some € € (0, 1) there exists a solution y(x) of (2.14) in (0,¢) that in addition satisfies
Y(x) < y,(x) for x €(0,e) and lim,_ g+ y(x) = -1,

then necessarily y(x) = y,(x).

Proof. (a) We write the ODE in the following way

—(n—Dxy+ %(1 +y)?

/ _ —
xy (x) = ) =f(xy).
We next apply Proposition 1.1.1. p. 261 of [10], in a neighbourhood of the point (x = 0,y = —1) since f(0,—1) =0 and
af
—(0,-1)=0.
ay( )

The asymptotics follow easily.
(b) Suppose on the contrary there are two solutions y,(x) > y(x) in (0, €) which tend to —1 as x — 0*. We define ¢(x) = y,(x)—y(x) > 0.
Clearly lim,_y+ ¢(x) = 0 and is easily seen that ¢ satisfies the ODE,

—(n = Dx¢(x) + 5> (24 y,(x) + ¥(x)) p(x)

s O0<x<e.
x(1—x) x=e

#'(x) =

From this we easily derive
© ~=Di+ 555 (245, (0+3(0)
o) _ S
é(e)

Taking the limit x — 0t we arrive at a contradiction: the left hand side tends to zero whereas the right hand side is bounded below
by a positive constant since

x—(n—1Dt+ =2 (24 y,(0+ y(¢ x —(n—1 - 1
/ (=Dt + 52 (24 y,() y())dtz/ (=it (=) (nO+1)
. t(1—1) . t(1—-1)
This completes the proof of part (b). [

Lemma 2.11. Letn>2 and "' < s < n. Then

(a) there exists an analytic solution y, (x) near (x,y) = (1, ;) that solves ODE (2.14) and such that for some ¢ > 0,
(n—1)7y
(n—s)r; —(s—=2)
(b) If for some € € (0, 1), there exists solution y(x) of the ODE (2.1) in (1 — ¢, 1) with the property lim,_, |- y(x) = 7, then necessarily

V() =71+ (x—1)+0((x— 1)2), x€e(l—-gl].

¥(x) = y.(x), xe(-gll

11
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Proof. (a) We first write the ODE in the following way

(n=Dxy =21 +y)?

x=1Y(x) = . = f(x,¥).
We next apply Proposition 1.1.1. p. 261 of [10], in a neighbourhood of the point (x = 1,y = 7|) since f(1,7;) = 0 and
af

0_y(1’rl) =(6-1)—-(n-97 <0.

The asymptotics at the point (1, 7;) follow easily.
(b) Suppose on the contrary there are two such solutions y;(x) > y,(x) in (I — ¢,1). We define ¢(x) = y;(x) — y,(x). Clearly
lim,_, ;- ¢(x) = 0 and is easily seen that ¢ satisfies the following ODE

—(n = Dx¢(x) + S22 + y(x) + 1, ())p(x)

¢'(x) = e ,

—e<x<l1.

From this we easily derive

—(=D1+ 55 Qo (0495 (0
(n=Dr+ = Y1 O+y2 (1) at

d(x) =Pl —¢) ef'x—‘ =)

Taking the limit x — 1~ we arrive at a contradiction: the left hand side tends to zero and the right hand side tends to infinity since
lim (—(n ~ i+ "T_“(z + )+ yz(t))) =—(s—D+(n—-s5)7 >0

Hence, by part (a) the result follows. []

Lemma 2.12. Let
o either 2 < n <3 and % <s<n
e orelse n >3 and
n?—-3n+4
n—1
Then t, > n — 2 and in addition

<s<n.

Yx)y=-1+1+7)x, 0<x<I,

is a supersolution of the ODE (2.14).

Proof. Inequality 7, > n — 2 is equivalent to

V2s—(m+1)>Vn—-1((m-1-ys). (2.15)

In case 2 < n < 3, this is clearly true if n — 1 < s < n.
2_
Consider now the case n > 3. Again, if n — 1 < s < n, inequality (2.15) is true. For %

equivalent to

< n*—3n+4
g_oonta

< s < n— 1, after squaring, (2.15) is

n—1

> (s —n)<0,
and the result follows.
For y to be a strict supersolution we should have, for 0 < x < 1,
== Dx(=1+ (1 +7)x) + 52 (1 +7)°x?
x(1 —x) ’

After straightforward calculations this is equivalent to

(+1))>

n

‘rl—(n—2)+((n—2)(1+z'l)— ;S(1+r1)2)x>0, 0O<x<l.

This is true since at x =0, r; > n—2, and at x = 1, the left hand side is identical equal to zero. []

Theorem 2.13. Let

o either 2 < n <3 and ”2i1<s<n

e orelse n > 3 and
nt—-3n+4

n—1

Then (a) there is a solution y,(x) of (2.14) which is analytic at (x, y) = (0, —1), is defined for all x € (0, 1) and in addition lim,_, |- y,(x) = 7,.

(b) The analytic solution y, of Lemma 2.11 is defined for all x € (0, 1) and it connects (0,-1) to (1, 7}).

(c) In addition to the above two analytic solutions, there is a continuum of solutions connecting (0,—1) to (1,7,), and these are the only

bounded solutions of (2.14) in (0, 1).

<s<n.

12
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Proof. (a) Actually, y, is the analytic solution of (2.14) near (0,—1) and we will establish that it is defined for all x € (0,1) and it
has the required properties.
From Lemma 2.10 the analytic solution near x = 0 behaves like

Yo (%) = =14 (n— Dx + O(x?),

therefore for x near zero,
Y.(x) <¥x) = =14+ (1 +17))x

and then using Lemma 2.12 and comparison arguments we deduce
V() <y(x) = =14+ (1 +7)x, O0<x<l1.

As long as y, <0, y, is increasing and we next consider the following two cases:

(i) If for all x € (0, 1),

n—
2

the solution is monotonic and has a finite limit which is either z; or z,.

(ii) If there is a point x;, € (0, 1) such that

—(n= Dxy, )+ 2221 + y,(x))* > 0

~(n = Dxoya(xo) + 52 (143, (x)) =0,
then from the ODE it follows that for all x € (x(, 1) there holds
~(n = Dy, () + "> (1 + y,(0) <0,

and y,(x) decreases to 7, as x > 17.
We next return to case (i) and exclude the case lim,_,+ y,(x) = 7;. Suppose that it tends to ;. Then by Lemma 2.11 it should be
the analytic solution at (1, 7), given by Lemma 2.11, which for x close to one behaves like
(n—-1Dr,
(n—s)r; —(s=2)

Assuming that y, is the analytic solution, since

Yo () =7 + (x =1+ O((x - ).

V() <yx) =1+ +1)(x - 1), 0<x<l1.

one should have
(n—1ry , )
_ow=bn _ . .
(n—s)1—(s=2) Y M=y =1+17
But this is a contradiction since the opposite inequality holds true. Indeed,
(n—1)7
(n—s)71 —(s—2)

since this is equivalent to

x-D<l+1,

T >n—2,

which is true by Lemma 2.12.
(b) Using the asymptotics of y, and comparison it is easy to see that y, has the required property since y,(x) > y(x).
(c) Any solution that for some x, € (0, 1) satisfies y,(xq) < y(xg) < ¥(x,), stays in between for all x, € (0, 1) and connects (0, —1) to
(1, 7).

If on the other hand y(x() < y,(x() for some x, € (0,1), then lim,_,,- y(x) = 7, and blows up to the left at some x; € (0, x;) due
to Lemma 2.10(b). Similarly if for some x, € (0, 1), y(xq) > y.(x(), then this solution tends to —1 as x — 0* and blows up at some
X, € (xg, 1), due to Lemma 2.11(b); see Fig. 4. []

2.4. Case 4

Here we will consider the case s > n > 2. We will study solutions of the singular ODE

s—n 2
dy —(n—Dxy+=(0-9)

= , O0<x<l (2.16)
dx x(1 —x)
At x = 1 the roots of the equation
— 2(s—1
| LT Ry R T S )
2 s—n

13



S. Filippas and A. Tertikas

=

Ya

-1

Fig. 4. Either n=2,3 and ":—' <s<norelse n>3and Z=

satisfy
s—1
0<p<l<——x<r.
S—n
Here the important critical points of the ODE are

0, 1), 1,7y), 1,7) .

There are other critical points that lie on the curve

—(n—l)xy+ngs(l—y)2=0, 0<x<Ll
The region
—(n—l)xy+%(l—y)2<0, O<x<1,

is forward invariant, that is, if there is a pair (x, y,) such that

—(n—l)x0y0+%(l—y0)2 <0, 0<xy<1,

Nonlinear Analysis 261 (2025) 113885

< s < n. Connecting orbits are in blue and blowing up in red. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

then the solution y(x) of (2.16) that passes through this point is defined for all x € (x,, 1) and satisfies

n—

25(1—y(x))2<0, Xp<x<1.

—(n = Dxy(x) +

We next have

Theorem 2.14. Let s > n > 2. Then there is an analytic solution y,(x) of (2.16) near (x,y) = (0, 1), that is defined for all x € (0, 1) and

in addition lim,_, ;- y,(x) = 7,.

Proof. The existence of an analytic solution near (x, y) = (0, 1) follows in a similar manner as before. Near x = 0 it behaves as

Y, () =1=(m—-Dx+0(x>) .

As a consequence, for x near zero we have that

n—

S 2
2 1 =y,x) <0.

—(n— Dxy,(x) +

Using the forward invariant of the region we conclude that y, is defined for all 0 < x < 1 and that it decreases to 7,. []

14
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3. Proof of theorems

In this section using the results of Section 2 we will give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. If ¢ € CZ(BT), ¢ >0in Bf and u € Cc"°(1§f) then by expanding

2

Vo) dx

1
/g; (xl =12 )

and integrating by parts, one concludes that

S
/(|||u()i)>|szd"2‘/ s e CTE),
B (Ix] = 1= B¢

1 1

Vu(x) —

u(x)

In the sequel we will choose appropriate radial functions ¢ depending on s and n.

Case (a): Let either n=2,3and 1 <s < % orelsen>3and 1 <s< #

In this case we use the analytic function y,(x) given by Theorem 2.'2 and set

2 ¢
1

Solving this, we take

- EERER A E)
) =@r-17T exp —Szl/ — 4|, r>1.
r

oc—1

=y, (1/r), r>1.

Due to the asymptotics of y, near x = 1 the limit

1
) 21 =y,(5)
lim ——do,
r=1* J, oc—1

exists and is a finite number. As a consequence the following limit also exists

) so1 [21mr)
11m+ ——— =exp 5 —ldo
r—1 (r _ I)T 1 o —
Due to the boundedness of y,(x) and (3.18) the following estimate is also true,
/
¢ ) < ¢ s r>1;
o(r) r—1

we will use it later.

A straightforward calculation based on (3.19) and (2.1) shows that ¢ satisfies

@d(r) =0, r>1.

2
s—1 n—1
(r"-'¢'<r> )’ . (5)
(r—1)-2 r—=1°
Hence, using function ¢ in (3.17) we obtain that

o= (5

in this case. '
Case (b): Let either n = 2,3 and % <s<norelse n>3and % <s<n.

In this case we use the analytic function y,(x) given by Theorem 2.13 and set

2 ¢
"

Solving this, we take

=y, (1/r), r>1.

g iy
d(r)=(r—-17"72 exp n2s/ s, r> 1.
2 0'—1

Due to the asymptotics of y, near x = 0 the limit

AR )
lim —_—d

o,
r—oo [, o—1

exists and is a finite number. As a consequence the following limit also exists

1
n—s — +oo 14 b2 (_)
lim (r— )7 ¢(r) = exp| 2=2 — s
r—+oo 2 2 oc—1

15
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(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Due to the boundedness of y,(x) and (3.22) the following estimate is also true,

LAGI ’
)|~ r—1

C

r>1;

A straightforward calculation based on (3.23) and (2.14) shows that ¢ satisfies

2
n—-s n—1
(r"-‘¢’(r) > . (%)
(r—1y-2 (r—1°
Hence, using function ¢ in (3.17) we obtain that

c(n,s) = (n;S>2.

@d(r) =0, r>1.

Notice that in this case ( ) (%)
2

3n+
-1

Case (c): Let n > 3 and 2= 15 <s<
We now take (cf Theorem 2.9)

( l) (n=2)(s=2)
r— n-3
o(r) = =
Again, it satisfies
() c
< r>1;
o(r)
and solves

(n=2)(n—s—1)(s=2) n-1

AR W T _
((r— 1)572> + =1y ¢(r) =0, r>1.

Using function ¢ in (3.17) we obtain
n=2)(n—s—1)(s—=2)

c(n,s) = " 3p
. (n=2)(n—s—1)(s=2)
It;ll tth%s case = s
at is
|Ve|? (n=2)(n—s—1)(s—-2) e
dx = - dx
B (x| - 152 (n=3)y7 B (x| = 1)

Case (d): Lets>n>2 .
We similarly use the analytic function y,(x) of Theorem 2.14. We take

s=n s—n ["Ya(5)—1
d(r)=(r—-1)72 exp > / —do|, r>1.
2

oc—1

From the asymptotics of y,(x) near x = 0 we conclude that integral

1
ry(=)—1
/”U_d,;,

2 0'—1

exists and is a finite number. As a consequence the following limit also exists

c

1
_s [rey(5)-1
lim ¢ )” =ex u/ Lol 4
r—>+oo(r_1) 2 2 c—1

Again, the following estimate is true,
/

¢'(r) <

&(r)

Function ¢ solves

c

s r>1;

@(r) =0, r>1.

—s\? e
(r"*'¢’(r)>’+ ()
r— 12 =1y

Hence, using function ¢ in (3.17) we obtain that

c(n,s) = (”;S)z.

16
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(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

2
< min{ ( Sl ) s (%) }. We also note that ¢ is in the proper energy space and realizes the best constant,

(3.29)

(3.30)

(3.31)
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Conclusion of the proof. It remains to establish that c(n, s) is not realized with the exception of case (c). Suppose on the contrary
that there exists function y that satisfies

2 2
/ de=c(n,s) w—wix
5 (= 12 g (X =17

Let ¢(x) be the function defined by (3.19) in case (a), by (3.23) in case (b), and by (3.29) in case (d). In all cases we have ‘7"’| < I— :
for all |x| > 1 and the following calculations are justified

2 2 . 2 2.2
[t e . s
Be (Ix] = 1)s-2 B (Ix[ = 1)s=2 Be (Ix[ = 1)52¢ B (Ix] = 1)s=2¢2
-/ Mm/ V.(L)W_zdx
B (x| = D=2 g \(xI-D2) ¢

[Vy|? w2
= ——— —dx—c(n,s) _—
./Bf (Ix] = 1)5-2 B (Ix[ = 1)

=0.

- —y

¢

Hence, w = k¢ which is a contradiction since ¢ is not in the energy space. []
We also have

Proof of Theorem 1.2. Using the results of Theorem 1.1 and integrating in the y-variables we obtain the stated inequality. We next
prove the optimality. From Theorem 1.1, given any & > 0 there exists ¢ € C:"(Bf) such that

[ae _ V>
BY (Ix|-1)5 T2 4
2

fﬁf <|x|—1>sdx

We also consider a function y € C*(Bg), Bg C R". Then ¢y € Cj"(Bf X By) and

c(n,s) < <c(n,s)+e.

V(e (D)1 IV )Py 1)+ )|V w ()|
Joo Jae S dxdy [y, e B dxdy

($w)? $2(x)
f]R"‘ /B‘ (Jx]=1)s dy /B“ (|X|,l)s dx - /BR WZ(Y) dy
i de Js o I)A T 9% o, Vw0 dy
w?
[s, W) dy

Ji (|x\—1>s dx /B‘ e
< c(n,s)+ 2e,

by choosing R large enough and y close to the first Dirichlet eigenfunction in By. This establishes the optimality of c¢(n, s).
It remains to show the non existence of minimizers. Suppose on the contrary that there exists f(x, y) that satisfies

|V(xy)f| / /
dxdy = d d
/Rm /C (] = D=2 y=c(n,s) o Jae Gl =1 xdy.

In addition it solves the Euler-Lagrange equation, that is, for all y € C(B] X Bg), satisfies

VoanS VeV / /
dxdy = ———dxd
/Rm /B e T Lo T e
Let ¢(x) be the function defined by (3.19) in case (a), by (3.23) in case (b), by (3.26) in case (c) and by (3.29) in case (d). In all
cases we have )
/ / |V<xy>f| / / V-V, [ / / IV, %12
e Jae (X1 = 172 Jeo Jae (x| = 2¢p  Jom Jpe (Ix] = 1242
/ R A ( =) %
w e (x| = =2 m J B (xI-1-2) ¢
/ / Iv(xy)fl _ (n )/ /
o Jae (xl= D52~ Jan Jge Q=17

It follows that f(x, y) = k¢(x) for some constant k. However, since ¢ is independent of y it is not in the energy space in Bf xR™. ]

¢ 1~ Ixl-1

o I =7

Vi =
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