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We consider the weighted Hardy inequality

∫𝛺
|∇𝑢(𝑥)|2

𝑑𝑠−2(𝑥)
𝑑𝑥 ≥ 𝑐𝑠(𝛺)∫𝛺

𝑢2(𝑥)
𝑑𝑠(𝑥)

𝑑𝑥, ∀𝑢 ∈ 𝐶∞
𝑐 (𝛺).

For 𝑠 > 1, 𝑛 ≥ 2, 𝑠 ≠ 𝑛 we compute the best constant in the case where 𝛺 is either the 
complement of a ball or the complement of a circular cylinder. Typically one is able to compute 
best constants if the domain is weakly mean convex. In our case the domains are not weakly 
mean convex. The best constant depends on the parameter 𝑠 in a surprising way. For instance 
when 𝑛 > 3 then

𝑐𝑠(𝛺) =
(𝑛 − 2)(𝑛 − 𝑠 − 1)(𝑠 − 2)

(𝑛 − 3)2
, if 3𝑛 − 5

𝑛 − 1
< 𝑠 < 𝑛2 − 3𝑛 + 4

𝑛 − 1
,

whereas

𝑐𝑠(𝛺) = min
(

( 𝑠 − 1
2

)2
,
( 𝑛 − 𝑠

2

)2
)

, otherwise.

. Introduction and main result

The classical Hardy inequality involving the distance to the boundary states that for a bounded Lipschitz domain 𝛺 ⊂ R𝑛, 𝑛 ≥ 2
here exists a positive constant 𝑐𝛺 such that 

∫𝛺
|∇𝑢(𝑥)|2 𝑑𝑥 ≥ 𝑐𝛺 ∫𝛺

𝑢2(𝑥)
𝑑2(𝑥)

𝑑𝑥, ∀𝑢 ∈ 𝐶∞
𝑐 (𝛺), (1.1)

here 𝑑(𝑥) = dist(𝑥, 𝜕𝛺).
In general the best constant 𝑐𝛺 depends on 𝛺. However under the assumption of convexity of 𝛺 or even weak mean convexity, 

hat is,

−𝛥𝑑(𝑥) ≥ 0, 𝑥 ∈ 𝛺,

n the distributional sense, one can establish that 𝑐𝛺 = 1
4 , under very mild regularity assumptions on the boundary of 𝛺. We 

mphasize that in this case 𝛺 can be unbounded.
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There are very few examples of non weakly mean convex domains where one can identify the Hardy constant 𝑐𝛺. In the two 
dimensional case see [1–3]. On the other hand when 𝑛 ≥ 3 the only result we are aware of is the complement of a ball, that is 
𝛺 = 𝐵̄𝑐1 in which case 𝑐𝛺 = 1

4 , see [4,5].
More generally, for 𝑠 > 1, one can consider weighted Hardy inequalities of the form

∫𝛺
|∇𝑢(𝑥)|2

𝑑𝑠−2(𝑥)
𝑑𝑥 ≥ 𝑐𝑠(𝛺)∫𝛺

𝑢2(𝑥)
𝑑𝑠(𝑥)

𝑑𝑥, ∀𝑢 ∈ 𝐶∞
𝑐 (𝛺).

By practically the same proof as in the unweighted case, one can show that if 𝛺 is weakly mean convex, then 𝑐𝑠(𝛺) =
(

𝑠−1
2

)2
, under 

very mild regularity assumptions on the boundary of 𝛺 as before.
Let us now consider the case where 𝛺 is such that 𝛺𝑐 is bounded with nonempty interior. Then by testing a function that behaves 

like 𝑑 𝑠−1
2 +𝜀(𝑥) near the boundary of 𝛺 and passing to the limit 𝜀 → 0+, one can easily conclude that 𝑐𝑠(𝛺) ≤

(

𝑠−1
2

)2
. On the other 

hand by testing a function behaving near infinity like 𝑑− 𝑛−𝑠
2 −𝜀(𝑥) and passing to the limit 𝜀 → 0+ one has that 𝑐𝑠(𝛺) ≤

(

𝑛−𝑠
2

)2
. 

Therefore we always have

𝑐𝑠(𝛺) ≤ min
(

( 𝑠 − 1
2

)2
,
( 𝑛 − 𝑠

2

)2
)

.

For 𝑠 = 2 and 𝛺 bounded with smooth boundary, then 𝑐2(𝛺) ≤ 1
4  and the following dichotomy is known. If 𝑐2(𝛺) = 1

4  then there 
is no minimizer, whereas when 𝑐2(𝛺) < 1

4  we have existence of a minimizer, see [5,6]. If on the other hand 𝛺𝑐 is bounded with 
smooth boundary and nonempty interior, the dichotomy now is: when 𝑐2(𝛺) = min

(

1
4 ,

(

𝑛−2
2

)2
)

 there is no minimizer, whereas 

when 𝑐2(𝛺) < min
(

1
4 ,

(

𝑛−2
2

)2
)

 we have existence of a minimizer, see [5,7,8].
One expects that the best constant depends on the geometry of 𝛺. On the other hand in [9], for 𝑠 > 𝑛 and any 𝛺 which is a 

proper subset of R𝑛, the following inequality was established

∫𝛺
|∇𝑢(𝑥)|2

𝑑𝑠−2(𝑥)
𝑑𝑥 ≥

( 𝑛 − 𝑠
2

)2

∫𝛺
𝑢2(𝑥)
𝑑𝑠(𝑥)

𝑑𝑥, ∀𝑢 ∈ 𝐶∞
𝑐 (𝛺).

In case 𝛺𝑐 is bounded, one may use the test functions near infinity, mentioned before, and conclude that in fact the constant 
(

𝑛−𝑠
2

)2

is the best one in the case 𝑠 > 𝑛. We note that 
(

𝑛−𝑠
2

)2
<
(

𝑠−1
2

)2
 if and only if 𝑠 > 𝑛+1

2 .
In this work we initially consider the case 𝛺 = 𝐵̄𝑐1 = {𝑥 ∈ R𝑛 ∶ |𝑥| > 1}, whence 𝑑(𝑥) = |𝑥| − 1. Our first result reads

Theorem 1.1.  Let 𝑛 ≥ 2 and 𝑠 > 1. The best constant of the Hardy inequality,

∫𝐵̄𝑐1

|∇𝑢|2

(|𝑥| − 1)𝑠−2
𝑑𝑥 ≥ 𝑐(𝑛, 𝑠)∫𝐵̄𝑐1

𝑢2

(|𝑥| − 1)𝑠
𝑑𝑥, ∀𝑢 ∈ 𝐶∞

𝑐 (𝐵̄𝑐1),

(i) in the case 𝑛 = 2, 3, and 1 < 𝑠 < 𝑛, is given by

𝑐(𝑛, 𝑠) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑠−1
2

)2
, if 1 < 𝑠 ≤ 𝑛+1

2 ,

(

𝑛−𝑠
2

)2
, if 𝑛+1

2 < 𝑠 < 𝑛.

,

and is not realized in the proper energy space,
(ii) in the case 𝑛 > 3 and 1 < 𝑠 < 𝑛, is given by

𝑐(𝑛, 𝑠) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝑠−1
2

)2
, if 1 < 𝑠 ≤ 3𝑛−5

𝑛−1 ,

(𝑛−2)(𝑛−𝑠−1)(𝑠−2)
(𝑛−3)2 if 3𝑛−5

𝑛−1 < 𝑠 < 𝑛2−3𝑛+4
𝑛−1

(

𝑛−𝑠
2

)2
, if 𝑛2−3𝑛+4

𝑛−1 ≤ 𝑠 < 𝑛.

Moreover, when

𝑛 > 3 and 3𝑛 − 5
𝑛 − 1

< 𝑠 < 𝑛2 − 3𝑛 + 4
𝑛 − 1

,

the best constant is realized by the function

𝑢(𝑥) = |𝑥|2−𝑛(|𝑥| − 1)
(𝑛−2)(𝑠−2)

𝑛−3 , |𝑥| > 1,

whereas in the other cases it is not realized in the proper energy space,
2 
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Fig. 1. Best constant (in red) for 𝑛 > 3, 𝑠 > 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

(iii) in the case 𝑠 > 𝑛, is given by

𝑐(𝑛, 𝑠) =
( 𝑛 − 𝑠

2

)2
,

and is not realized in the proper energy space.

See Fig.  1 for the best constant 𝑐(𝑛, 𝑠).
Next, for 𝑛 ≥ 2, 𝑚 ≥ 1 we consider the complement of a cylinder

𝛺 = {(𝑥, 𝑦) ∈ R𝑛 × R𝑚, |𝑥| > 1, 𝑦 ∈ R𝑚} = 𝐵̄𝑐1 × R𝑚 .

Theorem 1.2.  For 𝑛 ≥ 2, 𝑚 ≥ 1 and 1 < 𝑠 ≠ 𝑛 the following Hardy inequality holds true

∫R𝑚 ∫𝐵̄𝑐1

|∇(𝑥,𝑦)𝑢(𝑥, 𝑦)|
2

(|𝑥| − 1)𝑠−2
𝑑𝑥 𝑑𝑦 ≥ 𝑐(𝑛, 𝑠)∫R𝑚 ∫𝐵̄𝑐1

𝑢2(𝑥, 𝑦)
(|𝑥| − 1)𝑠

𝑑𝑥 𝑑𝑦, ∀𝑢 ∈ 𝐶∞
𝑐 (𝐵̄𝑐1 × R𝑚),

where the constant 𝑐(𝑛, 𝑠) is the one given by Theorem  1.1 and it is sharp. This time however, the best constant is never realized in the proper 
energy space.

To find the best constant 𝑐(𝑛, 𝑠) of Theorem  1.1, we study the existence and the behaviour of positive radial solutions of the 
Euler Lagrange equation

(

𝑟𝑛−1𝜙′(𝑟)
(𝑟 − 1)𝑠−2

)′

+ 𝑐(𝑛, 𝑠) 𝑟𝑛−1

(𝑟 − 1)𝑠
𝜙(𝑟) = 0, 𝑟 > 1.

We make various choices of 𝑐(𝑛, 𝑠) and in each case, with an appropriate change of variables, we reduce the problem to the study 
of existence of connecting orbits of singular first order ODEs. For instance, for 𝑐(𝑛, 𝑠) =

(

𝑠−1
2

)2
 we change variables by

𝑦(𝑥) = 2
𝑠 − 1

(𝑟 − 1)
𝜙′(𝑟)
𝜙(𝑟)

, 𝑥 = 1∕𝑟, 𝑟 > 1,

and 𝑦 satisfies the ODE (2.1), see below. The ODEs thus derived have a surprisingly rich behaviour depending on the values of 𝑛
and 𝑠 and Section 2 is devoted to their detailed study. Finally, in Section 3 we give the proofs of our Theorems.

2. Phase portrait analysis

In this section we will study various singular ODEs that are connected to our problem. Our aim is to establish the existence of 
connecting orbits between two critical points. The choice of the ODE depends on the parameter 𝑠.
3 
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2.1. Case 1

Here we consider the case 1 < 𝑠 < 𝑛 and we will study solutions of the singular ODE, 

𝑑𝑦
𝑑𝑥

=
−(𝑛 − 1)𝑥𝑦 + 𝑠−1

2 [1 + 2(𝑛−𝑠)
𝑠−1 𝑦 + 𝑦2]

𝑥(1 − 𝑥)
, 0 < 𝑥 < 1. (2.1)

For 𝑠 < 𝑛+1
2  we denote by

𝜌2 < − 𝑛 − 𝑠
𝑠 − 1

< 𝜌1 < 0,

the real roots of
𝐻(𝑡) ∶= 1 + 2 𝑛 − 𝑠

𝑠 − 1
𝑡 + 𝑡2.

There are three critical points of the ODE, namely, (1, 1), (0, 𝜌1), (0, 𝜌2) that will be important to our analysis. For 0 < 𝑥 < 𝑛+1−2𝑠
𝑛−1 (< 1), 

there are other critical points, that is, points at which the numerator of the right hand side is zero

−(𝑛 − 1)𝑥𝑦 + 𝑠 − 1
2

[1 +
2(𝑛 − 𝑠)
𝑠 − 1

𝑦 + 𝑦2] = 0.

Equivalently, we can write the above curve as 

𝑥 = 𝑠 − 1
2(𝑛 − 1)

1 + 2(𝑛−𝑠)
𝑠−1 𝑦 + 𝑦2

𝑦
, 𝜌2 < 𝑦 < 𝜌1. (2.2)

If there is a pair (𝑥0, 𝑦0) with 𝑥0 ∈ (0, 𝑛+1−2𝑠𝑛−1 ) and 𝑦0 ∈ (𝜌2, 𝜌1) such that

−(𝑛 − 1)𝑥0𝑦0 +
𝑠 − 1
2

(

1 +
2(𝑛 − 𝑠)
𝑠 − 1

𝑦0 + 𝑦20

)

= 0,

then the solution of the ODE with 𝑦(𝑥0) = 𝑦0 is such that for all 𝑥 ∈ (0, 𝑥0) there holds

−(𝑛 − 1)𝑥𝑦(𝑥) + 𝑠 − 1
2

(

1 +
2(𝑛 − 𝑠)
𝑠 − 1

𝑦(𝑥) + 𝑦2(𝑥)
)

< 0.

Hence 𝑦 is decreasing and 𝑦0 < 𝑦(𝑥) < 𝜌1 for 𝑥 ∈ (0, 𝑥0). Therefore there exists 𝑙 ∈ (𝑦0, 𝜌1] such that lim𝑥→0+ 𝑦(𝑥) = 𝑙. By mean value 
Theorem there exists a point sequence 𝑥𝑗 → 0+ such that 𝑥𝑗𝑦′(𝑥𝑗 ) → 0 as 𝑗 → ∞. We now use the ODE (2.1) to conclude

0 = lim
𝑗→∞

𝑥𝑗𝑦
′(𝑥𝑗 )

= lim
𝑗→∞

−(𝑛 − 1)𝑥𝑗𝑦(𝑥𝑗 ) +
𝑠−1
2 [1 + 2(𝑛−𝑠)

𝑠−1 𝑦(𝑥𝑗 ) + 𝑦2(𝑥𝑗 )]

1 − 𝑥𝑗
,

hence 

0 = 𝑠 − 1
2

[1 +
2(𝑛 − 𝑠)
𝑠 − 1

𝑙 + 𝑙2] = 𝑠 − 1
2

𝐻(𝑙). (2.3)

which implies that 
lim
𝑥→0+

𝑦(𝑥) = 𝜌1. (2.4)

On the other hand for 𝑥 > 𝑥0, 𝑦(𝑥) is increasing for as long as it exists.
Our interest is to find conditions on the parameters, so that there exists an orbit connecting (1, 1) to either (0, 𝜌1) or (0, 𝜌2). To 

this end we first have

Lemma 2.1.  Let 𝑛 ≥ 2, 𝑠 > 1. (a) There exists an analytic solution 𝑦(𝑥) of (2.1) near (𝑥, 𝑦) = (1, 1). Moreover for some 𝜀 > 0 and any 
𝑥 ∈ (1 − 𝜀, 1] there holds

𝑦𝑎(𝑥) = 1 + (𝑛 − 1)(𝑥 − 1) + 𝑛 − 1
2

(

𝑛 − 2 −
(𝑠 − 1)(𝑛 − 1)

2

)

(𝑥 − 1)2 + 𝑂((𝑥 − 1)3).

(b) If for some 𝜀 ∈ (0, 1) there exists a solution 𝑦(𝑥) of (2.1) in (1 − 𝜀, 1) that in addition satisfies
𝑦(𝑥) ≥ 𝑦𝑎(𝑥) for 𝑥 ∈ (1 − 𝜀, 1) and lim𝑥→1−𝑦(𝑥) = 1,

then necessarily 𝑦(𝑥) = 𝑦𝑎(𝑥).

Proof. We write the ODE in the following way

(𝑥 − 1)𝑦′(𝑥) =
(𝑛 − 1)𝑥𝑦 − 𝑠−1

2

[

1 + 2(𝑛−𝑠)
𝑠−1 𝑦 + 𝑦2

]

= 𝑓 (𝑥, 𝑦).

𝑥

4 



S. Filippas and A. Tertikas Nonlinear Analysis 261 (2025) 113885 
We next apply Proposition 1.1.1, p. 261 of [10], in a neighbourhood of the point (𝑥 = 1, 𝑦 = 1) since 𝑓 (1, 1) = 0 and
𝜕𝑓
𝜕𝑦

(1, 1) = 0.

The asymptotics at the point (1, 1) follow easily.
(b) Suppose on the contrary there are two solutions 𝑦(𝑥) > 𝑦𝑎(𝑥) in (1−𝜀, 1) which tend to 1 as 𝑥→ 1−. We define 𝜙(𝑥) = 𝑦(𝑥)−𝑦𝑎(𝑥) >
0. Clearly lim𝑥→1− 𝜙(𝑥) = 0 and is easily seen that 𝜙 satisfies the ODE,

𝜙′(𝑥) =
−(𝑛 − 1)𝑥𝜙(𝑥) + 𝑠−1

2

(

2(𝑛−𝑠)
𝑠−1 + 𝑦(𝑥) + 𝑦𝑎(𝑥)

)

𝜙(𝑥)

𝑥(1 − 𝑥)
, 1 − 𝜀 < 𝑥 < 1.

From this we easily derive

𝜙(𝑥)
𝜙(1 − 𝜀)

= 𝑒∫
𝑥
1−𝜀

−(𝑛−1)𝑡+ 𝑠−12

( 2(𝑛−𝑠)
𝑠−1 +𝑦(𝑡)+𝑦𝑎 (𝑡)

)

𝑡(1−𝑡) 𝑑𝑡 .

Taking the limit 𝑥 → 1− we arrive at a contradiction: the left hand side tends to zero whereas the right hand side is bounded below 
by a positive constant since

∫

𝑥

1−𝜀

−(𝑛 − 1)𝑡 + 𝑠−1
2

(

2(𝑛−𝑠)
𝑠−1 + 𝑦(𝑡) + 𝑦𝑎(𝑡)

)

𝑡(1 − 𝑡)
𝑑𝑡

≥ ∫

𝑥

1−𝜀

−(𝑛 − 1)𝑡 + (𝑠 − 1)
(

𝑛−𝑠
𝑠−1 + 𝑦𝑎(𝑡)

)

𝑡(1 − 𝑡)
𝑑𝑡,

and the right hand side is finite because of the asymptotics of 𝑦𝑎. This completes the proof of part (b). □

Lemma 2.2.  Let 𝑛 ≥ 2 and 1 < 𝑠 < 𝑛+1
2 . Then

(a) there exists an analytic solution 𝑦0(𝑥) near zero that solves ODE (2.1) and such that for some 𝜀 > 0,

𝑦0(𝑥) = 𝜌2 +
(𝑛 − 1)𝜌2

𝑛 − 𝑠 − 1 + (𝑠 − 1)𝜌2
𝑥 + 𝑂(𝑥2), 𝑥 ∈ [0, 𝜀).

(b) If for some 𝜀 ∈ (0, 1), there exists solution 𝑦(𝑥) of the ODE (2.1) in (0, 𝜀) with the property lim𝑥→0+ 𝑦(𝑥) = 𝜌2, then necessarily
𝑦(𝑥) = 𝑦0(𝑥), 𝑥 ∈ [0, 𝜀).

Proof. (a) We write the ODE as

𝑥𝑦′(𝑥) =
−(𝑛 − 1)𝑥𝑦 + 𝑠−1

2 [1 + 2(𝑛−𝑠)
𝑠−1 𝑦 + 𝑦2]

1 − 𝑥
= 𝑓 (𝑥, 𝑦).

We next apply Proposition 1.1.1, p. 261 of [10], in a neighbourhood of the point (𝑥 = 0, 𝑦 = 𝜌2) since 𝑓 (0, 𝜌2) = 0 and
𝜕𝑓
𝜕𝑦

(0, 𝜌2) = (𝑛 − 𝑠) + (𝑠 − 1)𝜌2 < 0.

The asymptotics at the point (0, 𝜌2) follow easily.
(b) Suppose on the contrary there are two solutions 𝑦1(𝑥) > 𝑦2(𝑥) in (0, 𝜀) which tend to 𝜌2 as 𝑥→ 0+. We define 𝜙(𝑥) = 𝑦1(𝑥)−𝑦2(𝑥). 
Clearly lim𝑥→0+ 𝜙(𝑥) = 0 and is easily seen that 𝜙 satisfies the ODE,

𝜙′(𝑥) =
−(𝑛 − 1)𝑥𝜙(𝑥) + 𝑠−1

2

(

2(𝑛−𝑠)
𝑠−1 + 𝑦1(𝑥) + 𝑦2(𝑥)

)

𝜙(𝑥)

𝑥(1 − 𝑥)
, 0 < 𝑥 < 𝜀.

From this we easily derive

𝜙(𝑥)
(1 − 𝑥)𝑛−1

=
𝜙(𝜀)

(1 − 𝜀)𝑛−1
𝑒
𝑠−1
2 ∫ 𝑥𝜀

2(𝑛−𝑠)
𝑠−1 +𝑦1(𝑡)+𝑦2(𝑡)

𝑡(1−𝑡) 𝑑𝑡.

Taking the limit 𝑥 → 0+ we arrive at a contradiction: the left hand side tends to zero whereas the right hand side tends to infinity 
since

lim
𝑡→0+

(

2(𝑛 − 𝑠)
𝑠 − 1

+ 𝑦1(𝑡) + 𝑦2(𝑡)
)

= 2
( 𝑛 − 𝑠
𝑠 − 1

+ 𝜌2
)

< 0.

The result then follows from part (a). □

Lemma 2.3.  Let 𝑛 ≥ 2. Then
𝑦(𝑥) = 𝜌2 + (1 − 𝜌2)𝑥, 0 < 𝑥 < 1,

is a supersolution of the ODE (2.1) provided that
5 
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∙ either 2 ≤ 𝑛 ≤ 3 and 1 < 𝑠 ≤ 𝑛+1
2

∙ or 𝑛 > 3 and 1 < 𝑠 ≤ 3𝑛−5
𝑛−1 (< 𝑛+1

2 ).

Proof. For 𝑦 to be a supersolution we should have, for 0 < 𝑥 < 1,

(1 − 𝜌2) ≥
−(𝑛 − 1)𝑥(𝜌2 + (1 − 𝜌2)𝑥)

𝑥(1 − 𝑥)
+

𝑠−1
2

(

1 + 2(𝑛−𝑠)
𝑠−1 (𝜌2 + (1 − 𝜌2)𝑥) + (𝜌2 + (1 − 𝜌2)𝑥)2

)

𝑥(1 − 𝑥)
.

After straightforward calculations this is equivalent to

(𝑠 − 1)𝜌22 + (2𝑛 − 2𝑠 − 1)𝜌2 − (𝑛 − 𝑠 − 1) − (1 − 𝜌2)
(

2 − 𝑛 + 𝑠 − 1
2

(1 − 𝜌2)
)

𝑥 ≥ 0

for 0 < 𝑥 < 1. This is true provided that 
(𝑠 − 1)𝜌22 + (2𝑛 − 2𝑠 − 1)𝜌2 − (𝑛 − 𝑠 − 1) ≥ 0 (2.5)

and 
(𝑠 − 1)𝜌22 + (2𝑛 − 2𝑠 − 1)𝜌2 − (𝑛 − 𝑠 − 1) − (1 − 𝜌2)

(

2 − 𝑛 + 𝑠 − 1
2

(1 − 𝜌2)
)

≥ 0. (2.6)

Using the fact that 𝜌2 satisfies

1 +
2(𝑛 − 𝑠)
𝑠 − 1

𝜌2 + 𝜌22 = 0,

inequality (2.5) is equivalent to 
𝜌2 ≤ −(𝑛 − 2), (2.7)

whereas in (2.6) the left hand side is exactly equal to zero. Hence it remains to establish (2.7). From (2.5) we get that

𝜌2 = −
𝑛 − 𝑠 +

√

(𝑛 + 1 − 2𝑠)(𝑛 − 1)
𝑠 − 1

,

so that (2.7) is equivalent to 
√

(𝑛 + 1 − 2𝑠)(𝑛 − 1) ≥ (𝑠 − 2)(𝑛 − 1). (2.8)

When 2 ≤ 𝑛 < 3 then 𝑠 ≤ 𝑛+1
2 < 2 and we have strict inequality in (2.8). We similarly have strict inequality in case 𝑛 = 3 and 𝑠 < 2. 

Finally, for 𝑛 = 3 and 𝑠 = 2 we have equality and in addition 𝜌1 = 𝜌2 = −1 and 𝑦(𝑥) = −1 + 2𝑥 is in fact solution.
For 𝑛 > 3 and 𝑠 ≤ 2, strict inequality (2.8) is obvious, whereas for 𝑠 > 2 inequality (2.8) is equivalent to

(𝑠 − 1)
(

𝑠 − 3𝑛 − 5
𝑛 − 1

)

≤ 0,

whence the result. We note that 𝜌2 = −(𝑛 − 2) iff 𝑠 = 3𝑛−5
𝑛−1  in which case

𝑦(𝑥) = −(𝑛 − 2) + (𝑛 − 1)𝑥, 0 < 𝑥 < 1,

is a solution of the ODE. □
Theorem 2.4.  (a) If 2 ≤ 𝑛 < 3 and 1 < 𝑠 ≤ 𝑛+1

2  or 𝑛 = 3 and 1 < 𝑠 < 2 then there is a solution 𝑦𝑎(𝑥) analytic at (𝑥, 𝑦) = (1, 1) that is 
defined for all 𝑥 ∈ (0, 1) and in addition lim𝑥→0+ 𝑦𝑎(𝑥) = 𝜌1.
(b) If 𝑛 > 3 and 1 < 𝑠 < 3𝑛−5

𝑛−1  then there is a solution 𝑦𝑎(𝑥) analytic at (𝑥, 𝑦) = (1, 1) that is defined for all 𝑥 ∈ (0, 1) and in addition 
lim𝑥→0+ 𝑦𝑎(𝑥) = 𝜌1.
(c) If 𝑛 ≥ 3 and 𝑠 = 3𝑛−5

𝑛−1  then 𝑦𝑎(𝑥) = −(𝑛 − 2) + (𝑛 − 1)𝑥 is the analytic solution. connecting (0,−(𝑛 − 2)) with (1, 1).
Furthermore,

(d) under the hypothesis of either (a) or (b), the analytic solution 𝑦0 of Lemma  2.2 is defined for all 𝑥 ∈ (0, 1) and connects (0, 𝜌2) with 
(1, 1). In addition, there is a continuum of solutions connecting (0, 𝜌1) with (1, 1). These solutions lie between 𝑦0 and 𝑦𝑎 and these are the 
only bounded solutions of (2.1) in (0, 1).
(e) under the hypothesis of (c), 𝑦𝑎(𝑥) = −(𝑛 − 2) + (𝑛 − 1)𝑥 is the only bounded solution of the ODE.

Proof. Case (c) follows by direct verification. We next consider cases (a) and (b). An easy computation shows that under any of our 
assumptions 

𝜌2 < −(𝑛 − 2) ⇔
(𝑛 − 1)𝜌2

𝑛 − 𝑠 − 1 + (𝑠 − 1)𝜌2
< 1 − 𝜌2. (2.9)

From Lemma  2.3 we have 𝜌2 < −(𝑛−2) whenever 2 ≤ 𝑛 ≤ 3 and 1 < 𝑠 ≤ 𝑛+1
2  with the exception of 𝑛 = 3, 𝑠 = 2 where equality holds. 

We also have 𝜌2 < −(𝑛 − 2) whenever 𝑛 > 3 and 1 < 𝑠 < 3𝑛−5
𝑛−1 . Whenever 𝑛 > 3 and 𝑠 = 3𝑛−5

𝑛−1  equality holds 𝜌2 = −(𝑛 − 2) in which 
case

𝑦 (𝑥) = −(𝑛 − 2) + (𝑛 − 1)𝑥, 0 < 𝑥 < 1,
𝑎

6 
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is a solution of the ODE.
In the sequel we consider the case 𝜌2 < −(𝑛 − 2). From the asymptotics of the analytic at (1, 1) solution, see Lemma  2.1, we 

initially have 𝑦𝑎(𝑥) > 𝜌2 + (1 − 𝜌2)𝑥 = 𝑦(𝑥) for 𝑥 close to 1. We claim that 
𝑦𝑎(𝑥) > 𝜌2 + (1 − 𝜌2)𝑥, ∀𝑥 ∈ (0, 1). (2.10)

Indeed, suppose on the contrary, there exists an 𝑥0 ∈ (0, 1) such that 𝑦𝑎(𝑥0) = 𝑦(𝑥0) and 𝑦𝑎(𝑥) > 𝑦(𝑥) for 𝑥 ∈ (𝑥0, 1). Then, since by 
Lemma  2.3, 𝑦 is a super solution whereas 𝑦𝑎 is a solution standard comparison yields that 𝑦𝑎(𝑥) ≤ 𝑦(𝑥) for 𝑥 ∈ (𝑥0, 1) which is a 
contradiction.

Clearly for 𝑥 close to 1 we have

−(𝑛 − 1)𝑥𝑦𝑎(𝑥) +
𝑠 − 1
2

[

1 +
2(𝑛 − 𝑠)
𝑠 − 1

𝑦𝑎(𝑥) + 𝑦2𝑎(𝑥)
]

= −(𝑛 − 1)𝑥𝑦𝑎(𝑥) +
𝑠 − 1
2

𝐻(𝑦𝑎(𝑥)) > 0, (2.11)

and therefore 𝑦𝑎 is increasing there. We next follow 𝑦𝑎 for 𝑥 ∈ (0, 1) and consider the following two cases:
(i) (2.11) remains true for all 𝑥 ∈ (0, 1).
(ii) there is a point 𝑥0 ∈ (0, 1) such that

−(𝑛 − 1)𝑥𝑦𝑎(𝑥0) +
𝑠 − 1
2

𝐻(𝑦𝑎(𝑥0)) = 0,

whereas for 𝑥 ∈ (𝑥0, 1), (2.11) holds.
Let us first consider case (ii). In this case, it follows from the ODE, that for all 𝑥 ∈ (0, 𝑥0) there holds

−(𝑛 − 1)𝑥𝑦𝑎(𝑥) +
𝑠 − 1
2

𝐻(𝑦𝑎(𝑥)) < 0,

and therefore 𝑦𝑎(𝑥) is decreasing in (0, 𝑥0) and tends to 𝜌1 as 𝑥 → 0+, as in (2.4).
We next consider case (i). In this case the solution is increasing in all (0, 1) and if lim𝑥→0+ 𝑦𝑎(𝑥) = 𝑙, we still have (2.3), and 

therefore 𝑙 is either 𝜌1 or 𝜌2. In fact we will show that 𝑙 = 𝜌1. Suppose, on the contrary, that it tends to 𝜌2. Using the uniqueness of 
Lemma  2.2, 𝑦𝑎(𝑥) should be analytic at (0, 𝜌2). But then, by passing to the limit in (2.10) we would have that

(𝑛 − 1)𝜌2
𝑛 − 𝑠 − 1 + (𝑠 − 1)𝜌2

= 𝑦′𝑎(0) ≥ 1 − 𝜌2,

which contradicts (2.9). This concludes the proof for the cases (a) and (b); see Fig.  2.
(d) We consider two cases depending on whether solution 𝑦𝑎 is increasing in all (0, 1) or else changes monotonicity at the point 𝑥0, 
cf cases (i), (ii) above. In any case, the analytic solution 𝑦0 of Lemma  2.2 stays below 𝑦𝑎 and consequently it tends to (1, 1).

In case 𝑦𝑎 changes monotonicity at the point 𝑥0, the continuum of solutions with the stated property can be constructed by 
considering solutions of the ODE with initial values (𝑥∗, 𝑦∗) on the curve (2.2) with 𝑥∗ ∈ (0, 𝑥0) and 𝑦∗ ∈ (𝜌2, 𝑦𝑎(𝑥0)). Then the 
solution of (2.1) with 𝑦(𝑥∗) = 𝑦∗ satisfies 𝑦0(𝑥) < 𝑦(𝑥) < 𝑦𝑎(𝑥) and lim𝑥→1− 𝑦(𝑥) = 1. By a similar argument as in case (i) or (ii) above 
we also have lim𝑥→0+ 𝑦(𝑥) = 𝜌1.

In case 𝑦𝑎 is increasing in all (0, 1) then the continuum of solutions with the stated property can be constructed by considering 
solutions of the ODE with initial values (𝑥∗, 𝑦∗) on the curve (2.2) with 𝑥∗ ∈ (0, 𝑛+1−2𝑠𝑛−1 ] and 𝑦∗ ∈ (𝜌2, 𝜌1).
(e) If for some 𝑥1 ∈ (0, 1), 𝑦(𝑥1) < 𝑦𝑎(𝑥1), then lim𝑥→1− 𝑦(𝑥) = 1 and 𝑦 blows up to the left at some 𝑥1 ∈ (0, 𝑥0) due to Lemma  2.2(b). 
Similarly if for some 𝑥1 ∈ (0, 1), 𝑦(𝑥0) > 𝑦𝑎(𝑥0), then this solution tends to −(𝑛− 2) as 𝑥 → 0+ and blows up at some 𝑥2 ∈ (𝑥0, 1), due 
to Lemma  2.1(b). □

2.2. Case 2

Here we will consider the case 𝑛 > 3 and 2 < 𝑠 < 𝑛 − 1. We will study solutions of the singular ODE 

𝑑𝑦
𝑑𝑥

=
−(𝑛 − 1)𝑥𝑦 + (𝑛−2)(𝑠−2)

𝑛−3

[

𝑛−𝑠−1
(𝑛−2)(𝑠−2) +

(𝑛−3)(𝑛−𝑠)
(𝑛−2)(𝑠−2) 𝑦 + 𝑦

2
]

𝑥(1 − 𝑥)
. (2.12)

The roots of
𝑛 − 𝑠 − 1

(𝑛 − 2)(𝑠 − 2)
+

(𝑛 − 3)(𝑛 − 𝑠)
(𝑛 − 2)(𝑠 − 2)

𝑡 + 𝑡2 = 0,

are 𝑡 = − 𝑛−𝑠−1
𝑠−2  and 𝑡 = − 1

𝑛−2 . We note that

− 𝑛 − 𝑠 − 1
𝑠 − 2

< − 1
𝑛 − 2

⇔ 𝑠 < 𝑛2 − 3𝑛 + 4
𝑛 − 1

.

At 𝑥 = 1 the roots of

−(𝑛 − 1)𝑡 +
(𝑛 − 2)(𝑠 − 2)

𝑛 − 3

[

𝑛 − 𝑠 − 1
(𝑛 − 2)(𝑠 − 2)

+
(𝑛 − 3)(𝑛 − 𝑠)
(𝑛 − 2)(𝑠 − 2)

𝑡 + 𝑡2
]

= 0,

or equivalently,
𝑛 − 𝑠 − 1 −

(𝑛 − 3)(𝑠 − 1)
𝑡 + 𝑡2 = 0,
(𝑛 − 2)(𝑠 − 2) (𝑛 − 2)(𝑠 − 2)

7 
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Fig. 2. Either 𝑛 = 2, 3 and 1 < 𝑠 < 𝑛+1
2
 or else 𝑛 > 3 and 1 < 𝑠 < 3𝑛−5

𝑛−1
. Connecting orbits are in blue. Blowing up ones in red. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)

are 𝑡 = 1 and 𝑡 = 𝑛−𝑠−1
(𝑛−2)(𝑠−2) . We note that

1 < 𝑛 − 𝑠 − 1
(𝑛 − 2)(𝑠 − 2)

⇔ 2 < 𝑠 < 3𝑛 − 5
𝑛 − 1

.

The important critical points of the ODE are

(1, 1),
(

1, 𝑛 − 𝑠 − 1
(𝑛 − 2)(𝑠 − 2)

)

, (0, − 𝑛 − 𝑠 − 1
𝑠 − 2

), (0, − 1
𝑛 − 2

).

There are other critical points, that is, points at which the numerator of the right hand side is zero

−(𝑛 − 1)𝑥𝑦 +
(𝑛 − 2)(𝑠 − 2)

𝑛 − 3

[

𝑛 − 𝑠 − 1
(𝑛 − 2)(𝑠 − 2)

+
(𝑛 − 3)(𝑛 − 𝑠)
(𝑛 − 2)(𝑠 − 2)

𝑦 + 𝑦2
]

= 0 0 < 𝑥 < 1.

Clearly, they lie on the curve

𝑥 =
(𝑛 − 2)(𝑠 − 2)
(𝑛 − 3)(𝑛 − 1)

⎡

⎢

⎢

⎣

𝑛−𝑠−1
(𝑛−2)(𝑠−2) +

(𝑛−3)(𝑛−𝑠)
(𝑛−2)(𝑠−2) 𝑦 + 𝑦

2

𝑦

⎤

⎥

⎥

⎦

=∶ 𝑃2(𝑦), 0 < 𝑥 < 1.

Now there are two branches corresponding to 𝑦 > 0 and 𝑦 < 0.
If there is a pair (𝑥0, 𝑦0) on the curve with 𝑥0 ∈ (0, 1) and 𝑦0 < 0, then the solution of the ODE (2.12) is such that for all 𝑥 ∈ (0, 𝑥0)

there holds 

− (𝑛 − 1)𝑥𝑦(𝑥) +
(𝑛 − 2)(𝑠 − 2)

𝑛 − 3

[

𝑛 − 𝑠 − 1
(𝑛 − 2)(𝑠 − 2)

+
(𝑛 − 3)(𝑛 − 𝑠)
(𝑛 − 2)(𝑠 − 2)

𝑦(𝑥) + 𝑦2(𝑥)
]

< 0 . (2.13)

Consequently 𝑦(𝑥) is decreasing in (0, 𝑥0).
Similarly, if there is a pair (𝑥0, 𝑦0) on the curve with 𝑥0 ∈ (0, 1) and 𝑦0 > 0, then the solution of the ODE (2.12) is such that for 

all 𝑥 ∈ (𝑥0, 1) inequality (2.13) holds and therefore 𝑦(𝑥) is decreasing in (𝑥0, 1). Outside these regions the solution is increasing.

Lemma 2.5.  Let 𝑛 > 3 and 2 < 𝑠 < 𝑛 − 1. Then
𝑦𝑎(𝑥) = − 𝑛 − 𝑠 − 1

𝑠 − 2
+ 𝑛 − 3
𝑠 − 2

𝑥, 0 < 𝑥 < 1,

is an analytic solution of the ODE (2.12) connecting (1, 1) to (0,− 𝑛−𝑠−1
𝑠−2 ), whereas

𝑦(𝑥) = − 1 + 𝑛 − 3 𝑥, 0 < 𝑥 < 1,

𝑛 − 2 (𝑛 − 2)(𝑠 − 2)

8 
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is a subsolution.

Proof.  Both statements follow by straightforward calculations. □

Lemma 2.6.  Let 𝑛 > 3. (a) If 3𝑛−5𝑛−1 < 𝑠 < 𝑛 − 1 and for some 𝜀 ∈ (0, 1) there exists solution 𝑦(𝑥) of the ODE (2.12) in (1 − 𝜀, 1) with the 
property lim𝑥→1− 𝑦(𝑥) = 1, then necessarily

𝑦(𝑥) = 𝑦𝑎(𝑥), 𝑥 ∈ (1 − 𝜀, 1).

(b) If 2 < 𝑠 < 𝑛2−3𝑛+4
𝑛−1  and for some 𝜀 ∈ (0, 1) there exists solution 𝑦(𝑥) of the ODE (2.12) in (0, 𝜀) with the property lim𝑥→0+ 𝑦(𝑥) = − 𝑛−𝑠−1

𝑠−2
then necessarily

𝑦(𝑥) = 𝑦𝑎(𝑥), 𝑥 ∈ (0, 𝜀).

Proof. (a) Suppose on the contrary there are two solutions 𝑦1(𝑥) > 𝑦2(𝑥) in (1 − 𝜀, 1) which tend to 1 as 𝑥 → 1−. We define 
𝜙(𝑥) = 𝑦1(𝑥) − 𝑦2(𝑥). Clearly lim𝑥→1− 𝜙(𝑥) = 0 and is easily seen that 𝜙 satisfies the ODE, for 1 − 𝜀 < 𝑥 < 1,

𝜙′(𝑥) =
−(𝑛 − 1)𝑥𝜙(𝑥) + (𝑛−2)(𝑠−2)

𝑛−3

(

(𝑛−3)(𝑛−𝑠)
(𝑛−2)(𝑠−2) + 𝑦1(𝑥) + 𝑦2(𝑥)

)

𝜙(𝑥)

𝑥(1 − 𝑥)
.

From this we easily derive for 1 − 𝜀 < 𝑥 < 1,

𝜙(𝑥) = 𝜙(1 − 𝜀) 𝑒∫
𝑥
1−𝜀

−(𝑛−1)𝑡+ (𝑛−2)(𝑠−2)
𝑛−3

( (𝑛−3)(𝑛−𝑠)
(𝑛−2)(𝑠−2) +𝑦1(𝑡)+𝑦2(𝑡)

)

𝑡(1−𝑡) 𝑑𝑡 .

Taking the limit 𝑥 → 1− we arrive at a contradiction: the left hand side tends to zero whereas the right hand side tends to infinity 
since

lim
𝑡→1−

[

−(𝑛 − 1)𝑡 +
(𝑛 − 2)(𝑠 − 2)

𝑛 − 3

(

(𝑛 − 3)(𝑛 − 𝑠)
(𝑛 − 2)(𝑠 − 2)

+ 𝑦1(𝑡) + 𝑦2(𝑡)
)]

=
(𝑛 − 1)𝑠 − 3𝑛 + 5

𝑛 − 3
> 0.

The proof of part (b) is quite similar. In particular it follows from the fact that

lim
𝑡→0+

[

−(𝑛 − 1)𝑡 +
(𝑛 − 2)(𝑠 − 2)

𝑛 − 3

(

(𝑛 − 3)(𝑛 − 𝑠)
(𝑛 − 2)(𝑠 − 2)

+ 𝑦1(𝑡) + 𝑦2(𝑡)
)]

=
(𝑛 − 1)𝑠 − (𝑛2 − 3𝑛 + 4)

𝑛 − 3
< 0.

We next state two lemmas

Lemma 2.7.  Let 𝑛 > 3 and 2 < 𝑠 < 3𝑛−5
𝑛−1 . Then

(a) there exists an analytic solution 𝑦1(𝑥) near 𝑥 = 1 that solves ODE (2.12) and such that for some 𝜀 > 0 and 𝑥 ∈ [1 − 𝜀, 1)

𝑦1(𝑥) =
𝑛 − 𝑠 − 1

(𝑛 − 2)(𝑠 − 2)
+

(𝑛 − 1)(𝑛 − 3)(𝑛 − 𝑠 − 1)
(𝑛 − 2)(𝑠 − 2)(4(𝑛 − 2) − (𝑛 − 1)𝑠)

(𝑥 − 1) + 𝑂((𝑥 − 1)2).

(b) If for some 𝜀 ∈ (0, 1), there exists solution 𝑦(𝑥) of the ODE (2.12) in (1−𝜀, 1) with the property lim𝑥→1− 𝑦(𝑥) =
𝑛−𝑠−1

(𝑛−2)(𝑠−2) , then necessarily
𝑦(𝑥) = 𝑦1(𝑥), 𝑥 ∈ (1 − 𝜀, 1).

Lemma 2.8.  Let 𝑛 > 3 and 𝑛2−3𝑛+4𝑛−1 < 𝑠 < 𝑛 − 1 Then
(a) there exists an analytic solution 𝑦0(𝑥) near 𝑥 = 0 that solves ODE (2.12) and such that for some 𝜀 > 0 and 𝑥 ∈ (0, 𝜀)

𝑦0(𝑥) = − 1
𝑛 − 2

+
(𝑛 − 1)(𝑛 − 3)

(𝑛 − 2)((𝑛 − 1)𝑠 − (𝑛2 − 3𝑛 + 4) + 𝑛 − 3)
𝑥 + 𝑂(𝑥2).

(b) If for some 𝜀 ∈ (0, 1), there exists solution 𝑦(𝑥) of the ODE (2.12) in (𝜀, 0) with the property lim𝑥→0+ 𝑦(𝑥) = − 1
𝑛−2 , then necessarily

𝑦(𝑥) = 𝑦0(𝑥), 𝑥 ∈ (0, 𝜀).

The proof of the above two Lemmas is quite similar to the proof of Lemma  2.2 or 2.6 and we omit them.

Theorem 2.9.  Let 𝑛 > 3 and 2 < 𝑠 < 𝑛 − 1. We recall that
𝑦𝑎(𝑥) = − 𝑛 − 𝑠 − 1

𝑠 − 2
+ 𝑛 − 3
𝑠 − 2

𝑥.

is an analytic solution of the ODE connecting (0,− 𝑛−𝑠−1
𝑠−2 ) to (1, 1). In addition to 𝑦𝑎,

(a) in case 2 < 𝑠 < 3𝑛−5
𝑛−1  there is a continuum of orbits connecting (0, − 1

𝑛−2 ) with (1, 1) and these are all the bounded solutions in (0, 1),
(b) in case 3𝑛−5𝑛−1 < 𝑠 < 𝑛2−3𝑛+4

𝑛−1  there is no other bounded solution in (0, 1),
(c) in case 𝑛2−3𝑛+4𝑛−1 < 𝑠 < 𝑛−1 there is a continuum of orbits connecting (0,− 𝑛−𝑠−1

𝑠−2 ) to (1, 𝑛−𝑠−1
(𝑛−2)(𝑠−2) ) and these are all the bounded solutions 

in (0, 1).
9 
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Fig. 3. Case 𝑛 > 3 and 2 < 𝑠 < 3𝑛−5
𝑛−1

. Connecting orbits are in blue and blowing up ones in red. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

Proof. We initially observe that the line 𝑦(𝑥) = − 1
𝑛−2 + 𝑛−3

(𝑛−2)(𝑠−2)𝑥 and the curve 𝑥 = 𝑃2(𝑦) have only two points of intersection, 
namely, (0, − 1

𝑛−2 ) and 
(

1, 𝑛−𝑠−1
(𝑛−2)(𝑠−2)

)

.
Similarly the line 𝑦𝑎(𝑥) = − 𝑛−𝑠−1

𝑠−2 + 𝑛−3
𝑠−2 𝑥 and the curve 𝑥 = 𝑃2(𝑦) intersect each other at the points (0, − 𝑛−𝑠−1

𝑠−2 ) and (1, 1).
(𝑎) Let (𝑥0, 𝑦0) a point on the curve 𝑥 = 𝑃2(𝑦) with 1 < 𝑦0 <

𝑛−𝑠−1
(𝑛−2)(𝑠−2) . The solution of the ODE with 𝑦(𝑥0) = 𝑦0 is such that for 

𝑥 ∈ (𝑥0, 1), 𝑦(𝑥) decreases to 1. By comparison 𝑦𝑎(𝑥) < 𝑦(𝑥) < 𝑦(𝑥), and because there is only one solution which tends to − 𝑛−𝑠−1
𝑠−2  as 

𝑥 → 0+, cf Lemma  2.6(b), we conclude that lim𝑥→0+ 𝑦(𝑥) = − 1
𝑛−2 . By a similar argument the analytic solution 𝑦1(𝑥) of Lemma  2.7 

tends as 𝑥 → 0+ to − 1
𝑛−2 .

Any other solution of (2.12) 𝑦(𝑥), which at some point 𝑥0 ∈ (0, 1) is below the analytic, that is,

𝑦0 < 𝑦𝑎(𝑥0) = − 𝑛 − 𝑠 − 1
𝑠 − 2

+ 𝑛 − 3
𝑠 − 2

𝑥0, 𝑦(𝑥0) = 𝑦0,

to the right connects to (1,1) and to the left blows up at some point 𝑥∗ ∈ (0, 1). The last statement follows from Lemma  2.6(b). A 
similar argument shows that if a solution at a certain point is above 𝑦1 then to the left connects to (0, − 1

𝑛−2 ) and to the right blows 
up; see Fig.  3.
(𝑏) In this case using once again Lemma  2.6 we conclude that a solution which is below 𝑦𝑎 connects to 

(

1, 𝑛−𝑠−1
(𝑛−2)(𝑠−2)

)

 and blows up 
to the left and similarly if it is above 𝑦𝑎 then it connect to (0, − 1

𝑛−2 ) and blows up to the right.
(𝑐) It is easy to check that the analytic solution 𝑦0 of Lemma  2.8, satisfies 𝑦0(𝑥) > 𝑦(𝑥), 𝑥 ∈ (0, 1) and connects to 

(

1, 𝑛−𝑠−1
(𝑛−2)(𝑠−2)

)

. 
Let (𝑥0, 𝑦0) be on the curve 𝑥 = 𝑃2(𝑦) with − 1

𝑛−2 < 𝑦 < − 𝑛−𝑠−1
𝑠−2 . Then the solution of (2.12) with 𝑦(𝑥0) = 𝑦0 connects to the left to 

(0, − 1
𝑛−2 ) and to the right to 

(

1, 𝑛−𝑠−1
(𝑛−2)(𝑠−2)

)

. Any solution below 𝑦0(𝑥) or above 𝑦𝑎(𝑥) blows up in a similar fashion as in part (a). □

2.3. Case 3

Here we will consider the case 𝑛 > 3 and 𝑛+12 < 𝑠 < 𝑛 and we will study solutions of the singular ODE 

𝑑𝑦
=

−(𝑛 − 1)𝑥𝑦 + 𝑛−𝑠
2 (1 + 𝑦)2

, 0 < 𝑥 < 1. (2.14)

𝑑𝑥 𝑥(1 − 𝑥)

10 
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At 𝑥 = 1 the roots of the equation

−(𝑛 − 1)𝑦 + 𝑛 − 𝑠
2

(1 + 𝑦)2 = 0, ⇔ 𝑦2 −
2(𝑠 − 1)
𝑛 − 𝑠

𝑦 + 1 = 0,

satisfy

0 < 𝜏2 <
𝑠 − 1
𝑛 − 𝑠

< 1 < 𝜏1.

The important critical points of the ODE are
(0,−1), (1, 𝜏1), (1, 𝜏2) .

There are other critical points that lie on the curve
−(𝑛 − 1)𝑥𝑦 + 𝑛 − 𝑠

2
(1 + 𝑦)2 = 0, 0 < 𝑥 < 1.

If there is a pair (𝑥0, 𝑦0) on the curve with 𝑥0 ∈ (0, 1) then the solution of the ODE with 𝑦(𝑥0) = 𝑦0 is such that for 𝑥 ∈ (𝑥0, 1) satisfies
−(𝑛 − 1)𝑥𝑦(𝑥) + 𝑛 − 𝑠

2
(1 + 𝑦(𝑥))2 = 0, 𝑥0 < 𝑥 < 1,

and it decreases to 𝜏2. For 𝑥 < 𝑥0 we have the opposite sign and the solutions are increasing as long as they exist.

Lemma 2.10.  Let 𝑛 ≥ 2, 1 < 𝑠 < 𝑛. (a) There exists an analytic solution 𝑦(𝑥) of (2.14) near (𝑥, 𝑦) = (0,−1). Moreover for some 𝜀 > 0
and any 𝑥 ∈ [0, 𝜀) there holds

𝑦𝑎(𝑥) = −1 + (𝑛 − 1)𝑥 + 𝑛 − 1
2

(

−(𝑛 − 2) +
(𝑛 − 𝑠)(𝑛 − 1)

2

)

𝑥2 + 𝑂(𝑥3).

(b) If for some 𝜀 ∈ (0, 1) there exists a solution 𝑦(𝑥) of (2.14) in (0, 𝜀) that in addition satisfies
𝑦(𝑥) ≤ 𝑦𝑎(𝑥) for 𝑥 ∈ (0, 𝜀) and lim𝑥→0+𝑦(𝑥) = −1,

then necessarily 𝑦(𝑥) = 𝑦𝑎(𝑥).

Proof. (a) We write the ODE in the following way

𝑥𝑦′(𝑥) =
−(𝑛 − 1)𝑥𝑦 + 𝑛−𝑠

2 (1 + 𝑦)2

(1 − 𝑥)
= 𝑓 (𝑥, 𝑦).

We next apply Proposition 1.1.1. p. 261 of [10], in a neighbourhood of the point (𝑥 = 0, 𝑦 = −1) since 𝑓 (0,−1) = 0 and
𝜕𝑓
𝜕𝑦

(0,−1) = 0.

The asymptotics follow easily.
(b) Suppose on the contrary there are two solutions 𝑦𝑎(𝑥) > 𝑦(𝑥) in (0, 𝜀) which tend to −1 as 𝑥→ 0+. We define 𝜙(𝑥) = 𝑦𝑎(𝑥)−𝑦(𝑥) > 0. 
Clearly lim𝑥→0+ 𝜙(𝑥) = 0 and is easily seen that 𝜙 satisfies the ODE,

𝜙′(𝑥) =
−(𝑛 − 1)𝑥𝜙(𝑥) + 𝑛−𝑠

2

(

2 + 𝑦𝑎(𝑥) + 𝑦(𝑥)
)

𝜙(𝑥)

𝑥(1 − 𝑥)
, 0 < 𝑥 < 𝜀.

From this we easily derive
𝜙(𝑥)
𝜙(𝜀)

= 𝑒∫
𝑥
𝜀

−(𝑛−1)𝑡+ 𝑛−𝑠2
(

2+𝑦𝑎(𝑡)+𝑦(𝑡)
)

𝑡(1−𝑡) 𝑑𝑡.

Taking the limit 𝑥 → 0+ we arrive at a contradiction: the left hand side tends to zero whereas the right hand side is bounded below 
by a positive constant since

∫

𝑥

𝜀

−(𝑛 − 1)𝑡 + 𝑛−𝑠
2

(

2 + 𝑦𝑎(𝑡) + 𝑦(𝑡)
)

𝑡(1 − 𝑡)
𝑑𝑡 ≥ ∫

𝑥

𝜀

−(𝑛 − 1)𝑡 + (𝑛 − 𝑠)
(

𝑦𝑎(𝑡) + 1
)

𝑡(1 − 𝑡)
𝑑𝑡.

This completes the proof of part (b). □

Lemma 2.11.  Let 𝑛 ≥ 2 and 𝑛+12 < 𝑠 < 𝑛. Then
(a) there exists an analytic solution 𝑦∗(𝑥) near (𝑥, 𝑦) = (1, 𝜏1) that solves ODE (2.14) and such that for some 𝜀 > 0,

𝑦∗(𝑥) = 𝜏1 +
(𝑛 − 1)𝜏1

(𝑛 − 𝑠)𝜏1 − (𝑠 − 2)
(𝑥 − 1) + 𝑂((𝑥 − 1)2), 𝑥 ∈ (1 − 𝜀, 1].

(b) If for some 𝜀 ∈ (0, 1), there exists solution 𝑦(𝑥) of the ODE (2.1) in (1 − 𝜀, 1) with the property lim𝑥→1− 𝑦(𝑥) = 𝜏1, then necessarily
𝑦(𝑥) = 𝑦∗(𝑥), 𝑥 ∈ (1 − 𝜀, 1].
11 
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Proof. (a) We first write the ODE in the following way

(𝑥 − 1)𝑦′(𝑥) =
(𝑛 − 1)𝑥𝑦 − 𝑛−𝑠

2 (1 + 𝑦)2

𝑥
= 𝑓 (𝑥, 𝑦).

We next apply Proposition 1.1.1. p. 261 of [10], in a neighbourhood of the point (𝑥 = 1, 𝑦 = 𝜏1) since 𝑓 (1, 𝜏1) = 0 and
𝜕𝑓
𝜕𝑦

(1, 𝜏1) = (𝑠 − 1) − (𝑛 − 𝑠)𝜏1 < 0.

The asymptotics at the point (1, 𝜏1) follow easily.
(b) Suppose on the contrary there are two such solutions 𝑦1(𝑥) > 𝑦2(𝑥) in (1 − 𝜀, 1). We define 𝜙(𝑥) = 𝑦1(𝑥) − 𝑦2(𝑥). Clearly 
lim𝑥→1− 𝜙(𝑥) = 0 and is easily seen that 𝜙 satisfies the following ODE

𝜙′(𝑥) =
−(𝑛 − 1)𝑥𝜙(𝑥) + 𝑛−𝑠

2 (2 + 𝑦1(𝑥) + 𝑦2(𝑥))𝜙(𝑥)

𝑥(1 − 𝑥)
, 1 − 𝜀 < 𝑥 < 1.

From this we easily derive

𝜙(𝑥) = 𝜙(1 − 𝜀) 𝑒∫
𝑥
1−𝜀

−(𝑛−1)𝑡+ 𝑛−𝑠2 (2+𝑦1(𝑡)+𝑦2(𝑡))
𝑡(1−𝑡) 𝑑𝑡.

Taking the limit 𝑥 → 1− we arrive at a contradiction: the left hand side tends to zero and the right hand side tends to infinity since

lim
𝑡→1−

(

−(𝑛 − 1)𝑡 + 𝑛 − 𝑠
2

(2 + 𝑦1(𝑡) + 𝑦2(𝑡))
)

= −(𝑠 − 1) + (𝑛 − 𝑠)𝜏1 > 0.

Hence, by part (a) the result follows. □

Lemma 2.12.  Let
∙ either 2 ≤ 𝑛 ≤ 3 and 𝑛+12 < 𝑠 < 𝑛
∙ or else 𝑛 > 3 and

𝑛2 − 3𝑛 + 4
𝑛 − 1

< 𝑠 < 𝑛.

Then 𝜏1 > 𝑛 − 2 and in addition
𝑦(𝑥) = −1 + (1 + 𝜏1)𝑥, 0 < 𝑥 < 1,

is a supersolution of the ODE (2.14).

Proof. Inequality 𝜏1 > 𝑛 − 2 is equivalent to 
√

2𝑠 − (𝑛 + 1) >
√

𝑛 − 1 (𝑛 − 1 − 𝑠). (2.15)

In case 2 ≤ 𝑛 ≤ 3, this is clearly true if 𝑛 − 1 ≤ 𝑠 < 𝑛.
Consider now the case 𝑛 > 3. Again, if 𝑛 − 1 ≤ 𝑠 < 𝑛, inequality (2.15) is true. For 𝑛2−3𝑛+4𝑛−1 < 𝑠 < 𝑛 − 1, after squaring, (2.15) is 

equivalent to
(

𝑠 − 𝑛2 − 3𝑛 + 4
𝑛 − 1

)

(𝑠 − 𝑛) < 0,

and the result follows.
For 𝑦 to be a strict supersolution we should have, for 0 < 𝑥 < 1,

(1 + 𝜏1) >
−(𝑛 − 1)𝑥(−1 + (1 + 𝜏1)𝑥) +

𝑛−𝑠
2 (1 + 𝜏1)2𝑥2

𝑥(1 − 𝑥)
.

After straightforward calculations this is equivalent to

𝜏1 − (𝑛 − 2) +
(

(𝑛 − 2)(1 + 𝜏1) −
𝑛 − 𝑠
2

(1 + 𝜏1)2
)

𝑥 > 0, 0 < 𝑥 < 1.

This is true since at 𝑥 = 0, 𝜏1 > 𝑛 − 2, and at 𝑥 = 1, the left hand side is identical equal to zero. □

Theorem 2.13.  Let
∙ either 2 ≤ 𝑛 ≤ 3 and 𝑛+12 < 𝑠 < 𝑛
∙ or else 𝑛 > 3 and

𝑛2 − 3𝑛 + 4
𝑛 − 1

< 𝑠 < 𝑛.

Then (a) there is a solution 𝑦𝑎(𝑥) of (2.14) which is analytic at (𝑥, 𝑦) = (0,−1), is defined for all 𝑥 ∈ (0, 1) and in addition lim𝑥→1− 𝑦𝑎(𝑥) = 𝜏2.
(b) The analytic solution 𝑦∗ of Lemma  2.11 is defined for all 𝑥 ∈ (0, 1) and it connects (0,−1) to (1, 𝜏1).
(c) In addition to the above two analytic solutions, there is a continuum of solutions connecting (0,−1) to (1, 𝜏2), and these are the only 
bounded solutions of (2.14) in (0, 1).
12 
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Proof. (a) Actually, 𝑦𝑎 is the analytic solution of (2.14) near (0,−1) and we will establish that it is defined for all 𝑥 ∈ (0, 1) and it 
has the required properties.

From Lemma 2.10 the analytic solution near 𝑥 = 0 behaves like
𝑦𝑎(𝑥) = −1 + (𝑛 − 1)𝑥 + 𝑂(𝑥2),

therefore for 𝑥 near zero,
𝑦𝑎(𝑥) < 𝑦(𝑥) = −1 + (1 + 𝜏1)𝑥

and then using Lemma  2.12 and comparison arguments we deduce
𝑦𝑎(𝑥) < 𝑦(𝑥) = −1 + (1 + 𝜏1)𝑥, 0 < 𝑥 < 1.

As long as 𝑦𝑎 < 0, 𝑦𝑎 is increasing and we next consider the following two cases:
(i) If for all 𝑥 ∈ (0, 1),

−(𝑛 − 1)𝑥𝑦𝑎(𝑥) +
𝑛 − 𝑠
2

(1 + 𝑦𝑎(𝑥))2 > 0

the solution is monotonic and has a finite limit which is either 𝜏1 or 𝜏2.
(ii) If there is a point 𝑥0 ∈ (0, 1) such that

−(𝑛 − 1)𝑥0𝑦𝑎(𝑥0) +
𝑛 − 𝑠
2

(1 + 𝑦𝑎(𝑥0))2 = 0,

then from the ODE it follows that for all 𝑥 ∈ (𝑥0, 1) there holds
−(𝑛 − 1)𝑥𝑦𝑎(𝑥) +

𝑛 − 𝑠
2

(1 + 𝑦𝑎(𝑥))2 < 0,

and 𝑦𝑎(𝑥) decreases to 𝜏2 as 𝑥→ 1−.
We next return to case (i) and exclude the case lim𝑥→0+ 𝑦𝑎(𝑥) = 𝜏1. Suppose that it tends to 𝜏1. Then by Lemma 2.11 it should be 

the analytic solution at (1, 𝜏1), given by Lemma  2.11, which for 𝑥 close to one behaves like

𝑦𝑎(𝑥) = 𝜏1 +
(𝑛 − 1)𝜏1

(𝑛 − 𝑠)𝜏1 − (𝑠 − 2)
(𝑥 − 1) + 𝑂((𝑥 − 1)2).

Assuming that 𝑦𝑎 is the analytic solution, since
𝑦𝑎(𝑥) < 𝑦(𝑥) = 𝜏1 + (1 + 𝜏1)(𝑥 − 1), 0 < 𝑥 < 1.

one should have
(𝑛 − 1)𝜏1

(𝑛 − 𝑠)𝜏1 − (𝑠 − 2)
= 𝑦′𝑎(1) = 𝑦′(1) ≥ 1 + 𝜏1.

But this is a contradiction since the opposite inequality holds true. Indeed,
(𝑛 − 1)𝜏1

(𝑛 − 𝑠)𝜏1 − (𝑠 − 2)
(𝑥 − 1) < 1 + 𝜏1,

since this is equivalent to
𝜏1 > 𝑛 − 2,

which is true by Lemma  2.12.
(b) Using the asymptotics of 𝑦∗ and comparison it is easy to see that 𝑦∗ has the required property since 𝑦∗(𝑥) > 𝑦(𝑥).
(c) Any solution that for some 𝑥0 ∈ (0, 1) satisfies 𝑦𝑎(𝑥0) < 𝑦(𝑥0) < 𝑦(𝑥0), stays in between for all 𝑥0 ∈ (0, 1) and connects (0,−1) to 
(1, 𝜏2).

If on the other hand 𝑦(𝑥0) < 𝑦𝑎(𝑥0) for some 𝑥0 ∈ (0, 1), then lim𝑥→1− 𝑦(𝑥) = 𝜏2 and blows up to the left at some 𝑥1 ∈ (0, 𝑥0) due 
to Lemma  2.10(b). Similarly if for some 𝑥0 ∈ (0, 1), 𝑦(𝑥0) > 𝑦∗(𝑥0), then this solution tends to −1 as 𝑥 → 0+ and blows up at some 
𝑥2 ∈ (𝑥0, 1), due to Lemma  2.11(b); see Fig.  4. □

2.4. Case 4

Here we will consider the case 𝑠 > 𝑛 ≥ 2. We will study solutions of the singular ODE 

𝑑𝑦
𝑑𝑥

=
−(𝑛 − 1)𝑥𝑦 + 𝑠−𝑛

2 (1 − 𝑦)2

𝑥(1 − 𝑥)
, 0 < 𝑥 < 1. (2.16)

At 𝑥 = 1 the roots of the equation

−(𝑛 − 1)𝑦 + 𝑠 − 𝑛 (1 − 𝑦)2 = 0, ⇔ 𝑦2 −
2(𝑠 − 1)

𝑦 + 1 = 0,

2 𝑠 − 𝑛

13 



S. Filippas and A. Tertikas Nonlinear Analysis 261 (2025) 113885 
Fig. 4. Either 𝑛 = 2, 3 and 𝑛+1
2
< 𝑠 < 𝑛 or else 𝑛 > 3 and 𝑛2−3𝑛+4

𝑛−1
< 𝑠 < 𝑛. Connecting orbits are in blue and blowing up in red. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)

satisfy

0 < 𝜏2 < 1 < 𝑠 − 1
𝑠 − 𝑛

< 𝜏1.

Here the important critical points of the ODE are

(0, 1), (1, 𝜏1), (1, 𝜏2) .

There are other critical points that lie on the curve

−(𝑛 − 1)𝑥𝑦 + 𝑛 − 𝑠
2

(1 − 𝑦)2 = 0, 0 < 𝑥 < 1.

The region

−(𝑛 − 1)𝑥𝑦 + 𝑛 − 𝑠
2

(1 − 𝑦)2 < 0, 0 < 𝑥 < 1,

is forward invariant, that is, if there is a pair (𝑥0, 𝑦0) such that

−(𝑛 − 1)𝑥0𝑦0 +
𝑛 − 𝑠
2

(1 − 𝑦0)2 < 0, 0 < 𝑥0 < 1,

then the solution 𝑦(𝑥) of (2.16) that passes through this point is defined for all 𝑥 ∈ (𝑥0, 1) and satisfies

−(𝑛 − 1)𝑥𝑦(𝑥) + 𝑛 − 𝑠
2

(1 − 𝑦(𝑥))2 < 0, 𝑥0 < 𝑥 < 1.

We next have

Theorem 2.14.  Let 𝑠 > 𝑛 ≥ 2. Then there is an analytic solution 𝑦𝑎(𝑥) of (2.16) near (𝑥, 𝑦) = (0, 1), that is defined for all 𝑥 ∈ (0, 1) and 
in addition lim𝑥→1− 𝑦𝑎(𝑥) = 𝜏2.

Proof. The existence of an analytic solution near (𝑥, 𝑦) = (0, 1) follows in a similar manner as before. Near 𝑥 = 0 it behaves as

𝑦𝑎(𝑥) = 1 − (𝑛 − 1)𝑥 + 𝑂(𝑥2) .

As a consequence, for 𝑥 near zero we have that

−(𝑛 − 1)𝑥𝑦𝑎(𝑥) +
𝑛 − 𝑠
2

(1 − 𝑦𝑎(𝑥))2 < 0.

Using the forward invariant of the region we conclude that 𝑦  is defined for all 0 < 𝑥 < 1 and that it decreases to 𝜏 . □
𝑎 2

14 



S. Filippas and A. Tertikas Nonlinear Analysis 261 (2025) 113885 
3. Proof of theorems

In this section using the results of Section 2 we will give the proofs of Theorems  1.1 and 1.2.

Proof of Theorem  1.1. If 𝜙 ∈ 𝐶2(𝐵̄𝑐1), 𝜙 > 0 in 𝐵̄𝑐1 and 𝑢 ∈ 𝐶∞
𝑐 (𝐵̄𝑐1) then by expanding

∫𝐵̄𝑐1

1
(|𝑥| − 1)𝑠−2

|

|

|

|

∇𝑢(𝑥) −
∇𝜙(𝑥)
𝜙(𝑥)

𝑢(𝑥)
|

|

|

|

2
𝑑𝑥 ,

and integrating by parts, one concludes that 

∫𝐵̄𝑐1

|∇𝑢(𝑥)|2

(|𝑥| − 1)𝑠−2
𝑑𝑥 ≥ −∫𝐵̄𝑐1

∇ ⋅
(

∇𝜙(𝑥)
(|𝑥|−1)𝑠−2

)

𝜙
𝑢2 𝑑𝑥, ∀𝑢 ∈ 𝐶∞

𝑐 (𝐵̄𝑐1). (3.17)

In the sequel we will choose appropriate radial functions 𝜙 depending on 𝑠 and 𝑛.
Case (a): Let either 𝑛 = 2, 3 and 1 < 𝑠 ≤ 𝑛+1

2  or else 𝑛 > 3 and 1 < 𝑠 < 3𝑛−5
𝑛−1 .

In this case we use the analytic function 𝑦𝑎(𝑥) given by Theorem  2.4 and set 
2

𝑠 − 1
(𝑟 − 1)

𝜙′(𝑟)
𝜙(𝑟)

= 𝑦𝑎(1∕𝑟), 𝑟 > 1. (3.18)

Solving this, we take 

𝜙(𝑟) = (𝑟 − 1)
𝑠−1
2 exp

⎡

⎢

⎢

⎣

𝑠 − 1
2 ∫

2

𝑟

1 − 𝑦𝑎(
1
𝜎 )

𝜎 − 1
𝑑𝜎

⎤

⎥

⎥

⎦

, 𝑟 > 1. (3.19)

Due to the asymptotics of 𝑦𝑎 near 𝑥 = 1 the limit

lim
𝑟→1+ ∫

2

𝑟

1 − 𝑦𝑎(
1
𝜎 )

𝜎 − 1
𝑑𝜎,

exists and is a finite number. As a consequence the following limit also exists

lim
𝑟→1+

𝜙(𝑟)

(𝑟 − 1)
𝑠−1
2

= exp
⎡

⎢

⎢

⎣

𝑠 − 1
2 ∫

2

1

1 − 𝑦𝑎(
1
𝜎 )

𝜎 − 1
𝑑𝜎

⎤

⎥

⎥

⎦

.

Due to the boundedness of 𝑦𝑎(𝑥) and (3.18) the following estimate is also true, 
|

|

|

|

𝜙′(𝑟)
𝜙(𝑟)

|

|

|

|

≤ 𝑐
𝑟 − 1

, 𝑟 > 1; (3.20)

we will use it later.
A straightforward calculation based on (3.19) and (2.1) shows that 𝜙 satisfies 

(

𝑟𝑛−1𝜙′(𝑟)
(𝑟 − 1)𝑠−2

)′

+

(

𝑠−1
2

)2
𝑟𝑛−1

(𝑟 − 1)𝑠
𝜙(𝑟) = 0, 𝑟 > 1. (3.21)

Hence, using function 𝜙 in (3.17) we obtain that

𝑐(𝑛, 𝑠) =
( 𝑠 − 1

2

)2
,

in this case.
Case (b): Let either 𝑛 = 2, 3 and 𝑛+12 < 𝑠 < 𝑛 or else 𝑛 > 3 and 𝑛2−3𝑛+4𝑛−1 ≤ 𝑠 < 𝑛.

In this case we use the analytic function 𝑦𝑎(𝑥) given by Theorem 2.13 and set 
2

𝑛 − 𝑠
(𝑟 − 1)

𝜙′(𝑟)
𝜙(𝑟)

= 𝑦𝑎(1∕𝑟), 𝑟 > 1. (3.22)

Solving this, we take 

𝜙(𝑟) = (𝑟 − 1)−
𝑛−𝑠
2 exp

⎡

⎢

⎢

⎣

𝑛 − 𝑠
2 ∫

𝑟

2

1 + 𝑦𝑎(
1
𝜎 )

𝜎 − 1
𝑑𝜎

⎤

⎥

⎥

⎦

, 𝑟 > 1. (3.23)

Due to the asymptotics of 𝑦𝑎 near 𝑥 = 0 the limit

lim
𝑟→∞∫

𝑟

2

1 + 𝑦𝑎(
1
𝜎 )

𝜎 − 1
𝑑𝜎,

exists and is a finite number. As a consequence the following limit also exists

lim
𝑟→+∞

(𝑟 − 1)
𝑛−𝑠
2 𝜙(𝑟) = exp

⎡

⎢

⎢

𝑛 − 𝑠
2 ∫

+∞

2

1 + 𝑦𝑎(
1
𝜎 )

𝜎 − 1
𝑑𝜎

⎤

⎥

⎥

.

⎣ ⎦
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Due to the boundedness of 𝑦𝑎(𝑥) and (3.22) the following estimate is also true, 
|

|

|

|

𝜙′(𝑟)
𝜙(𝑟)

|

|

|

|

≤ 𝑐
𝑟 − 1

, 𝑟 > 1; (3.24)

A straightforward calculation based on (3.23) and (2.14) shows that 𝜙 satisfies 

(

𝑟𝑛−1𝜙′(𝑟)
(𝑟 − 1)𝑠−2

)′

+

(

𝑛−𝑠
2

)2
𝑟𝑛−1

(𝑟 − 1)𝑠
𝜙(𝑟) = 0, 𝑟 > 1. (3.25)

Hence, using function 𝜙 in (3.17) we obtain that

𝑐(𝑛, 𝑠) =
( 𝑛 − 𝑠

2

)2
.

Notice that in this case 
(

𝑛−𝑠
2

)2
<
(

𝑠−1
2

)2
.

Case (c): Let 𝑛 > 3 and 3𝑛−5𝑛−1 < 𝑠 < 𝑛2−3𝑛+4
𝑛−1 .

We now take (cf Theorem  2.9) 

𝜙(𝑟) =
(𝑟 − 1)

(𝑛−2)(𝑠−2)
𝑛−3

𝑟𝑛−2
. (3.26)

Again, it satisfies 
|

|

|

|

𝜙′(𝑟)
𝜙(𝑟)

|

|

|

|

≤ 𝑐
𝑟 − 1

, 𝑟 > 1; (3.27)

and solves 
(

𝑟𝑛−1𝜙′(𝑟)
(𝑟 − 1)𝑠−2

)′

+
(𝑛−2)(𝑛−𝑠−1)(𝑠−2)

(𝑛−3)2 𝑟𝑛−1

(𝑟 − 1)𝑠
𝜙(𝑟) = 0, 𝑟 > 1. (3.28)

Using function 𝜙 in (3.17) we obtain

𝑐(𝑛, 𝑠) =
(𝑛 − 2)(𝑛 − 𝑠 − 1)(𝑠 − 2)

(𝑛 − 3)2
.

In this case (𝑛−2)(𝑛−𝑠−1)(𝑠−2)(𝑛−3)2 < min{
(

𝑠−1
2

)2
,
(

𝑛−𝑠
2

)2
}. We also note that 𝜙 is in the proper energy space and realizes the best constant, 

that is

∫𝐵̄𝑐1

|∇𝜙|2

(|𝑥| − 1)𝑠−2
𝑑𝑥 =

(𝑛 − 2)(𝑛 − 𝑠 − 1)(𝑠 − 2)
(𝑛 − 3)2 ∫𝐵̄𝑐1

𝜙2

(|𝑥| − 1)𝑠
𝑑𝑥.

Case (d): Let 𝑠 > 𝑛 ≥ 2  .
We similarly use the analytic function 𝑦𝑎(𝑥) of Theorem  2.14. We take 

𝜙(𝑟) = (𝑟 − 1)
𝑠−𝑛
2 exp

⎡

⎢

⎢

⎣

𝑠 − 𝑛
2 ∫

𝑟

2

𝑦𝑎(
1
𝜎 ) − 1

𝜎 − 1
𝑑𝜎

⎤

⎥

⎥

⎦

, 𝑟 > 1. (3.29)

From the asymptotics of 𝑦𝑎(𝑥) near 𝑥 = 0 we conclude that integral

∫

𝑟

2

𝑦𝑎(
1
𝜎 ) − 1

𝜎 − 1
𝑑𝜎,

exists and is a finite number. As a consequence the following limit also exists

lim
𝑟→+∞

𝜙(𝑟)

(𝑟 − 1)
𝑠−𝑛
2

= exp
⎡

⎢

⎢

⎣

𝑛 − 𝑠
2 ∫

+∞

2

𝑦𝑎(
1
𝜎 ) − 1

𝜎 − 1
𝑑𝜎

⎤

⎥

⎥

⎦

.

Again, the following estimate is true, 
|

|

|

|

𝜙′(𝑟)
𝜙(𝑟)

|

|

|

|

≤ 𝑐
𝑟 − 1

, 𝑟 > 1; (3.30)

Function 𝜙 solves 
(

𝑟𝑛−1𝜙′(𝑟)
(𝑟 − 1)𝑠−2

)′

+

(

𝑛−𝑠
2

)2
𝑟𝑛−1

(𝑟 − 1)𝑠
𝜙(𝑟) = 0, 𝑟 > 1. (3.31)

Hence, using function 𝜙 in (3.17) we obtain that

𝑐(𝑛, 𝑠) =
( 𝑛 − 𝑠

2

)2
.

16 
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Conclusion of the proof. It remains to establish that 𝑐(𝑛, 𝑠) is not realized with the exception of case (c). Suppose on the contrary 
that there exists function 𝜓 that satisfies

∫𝐵̄𝑐1

|∇𝜓|2

(|𝑥| − 1)𝑠−2
𝑑𝑥 = 𝑐(𝑛, 𝑠)∫𝐵̄𝑐1

𝜓2

(|𝑥| − 1)𝑠
𝑑𝑥.

Let 𝜙(𝑥) be the function defined by (3.19) in case (a), by (3.23) in case (b), and by (3.29) in case (d). In all cases we have ||
|

∇𝜙
𝜙
|

|

|

≤ 𝑐
|𝑥|−1

for all |𝑥| > 1 and the following calculations are justified

∫𝐵̄𝑐1

1
(|𝑥| − 1)𝑠−2

|

|

|

|

∇𝜓 −
∇𝜙
𝜙
𝜓
|

|

|

|

2
𝑑𝑥 = ∫𝐵̄𝑐1

|∇𝜓|2

(|𝑥| − 1)𝑠−2
𝑑𝑥 − ∫𝐵̄𝑐1

∇𝜙 ⋅ ∇𝜓2

(|𝑥| − 1)𝑠−2𝜙
𝑑𝑥 + ∫𝐵̄𝑐1

|∇𝜙|2𝜓2

(|𝑥| − 1)𝑠−2𝜙2
𝑑𝑥

= ∫𝐵̄𝑐1

|∇𝜓|2

(|𝑥| − 1)𝑠−2
𝑑𝑥 + ∫𝐵̄𝑐1

∇ ⋅
(

∇𝜙
(|𝑥| − 1)𝑠−2

)

𝜓2

𝜙
𝑑𝑥

= ∫𝐵̄𝑐1

|∇𝜓|2

(|𝑥| − 1)𝑠−2
𝑑𝑥 − 𝑐(𝑛, 𝑠)∫𝐵̄𝑐1

𝜓2

(|𝑥| − 1)𝑠

= 0.

Hence, 𝜓 = 𝑘𝜙 which is a contradiction since 𝜙 is not in the energy space. □

We also have

Proof of Theorem  1.2. Using the results of Theorem  1.1 and integrating in the 𝑦-variables we obtain the stated inequality. We next 
prove the optimality. From Theorem  1.1, given any 𝜀 > 0 there exists 𝜙 ∈ 𝐶∞

𝑐 (𝐵̄𝑐1) such that

𝑐(𝑛, 𝑠) ≤
∫𝐵̄𝑐1

|∇𝜙|2

(|𝑥|−1)𝑠−2 𝑑𝑥

∫𝐵̄𝑐1
𝜙2

(|𝑥|−1)𝑠 𝑑𝑥
≤ 𝑐(𝑛, 𝑠) + 𝜀.

We also consider a function 𝜓 ∈ 𝐶∞
𝑐 (𝐵𝑅), 𝐵𝑅 ⊂ R𝑚. Then 𝜙𝜓 ∈ 𝐶∞

𝑐 (𝐵𝑐1 × 𝐵𝑅) and

∫R𝑚 ∫𝐵̄𝑐1
|∇(𝑥,𝑦)(𝜙𝜓)|2

(|𝑥|−1)𝑠−2 𝑑𝑥 𝑑𝑦

∫R𝑚 ∫𝐵̄𝑐1
(𝜙𝜓)2
(|𝑥|−1)𝑠 𝑑𝑥 𝑑𝑦

=
∫𝐵𝑅 ∫𝐵̄𝑐1

|∇𝑥𝜙(𝑥)|2𝜓2(𝑦)+𝜙2(𝑥)|∇𝑦𝜓(𝑦)|2

(|𝑥|−1)𝑠−2 𝑑𝑥 𝑑𝑦

∫𝐵̄𝑐1
𝜙2(𝑥)

(|𝑥|−1)𝑠 𝑑𝑥 ⋅ ∫𝐵𝑅 𝜓
2(𝑦) 𝑑𝑦

=
∫𝐵̄𝑐1

|∇𝜙|2

(|𝑥|−1)𝑠−2 𝑑𝑥

∫𝐵̄𝑐1
𝜙2

(|𝑥|−1)𝑠 𝑑𝑥
+

∫𝐵̄𝑐1
𝜙2

(|𝑥|−1)𝑠−2 𝑑𝑥

∫𝐵̄𝑐1
𝜙2

(|𝑥|−1)𝑠 𝑑𝑥
⋅
∫𝐵𝑅 |∇𝑦𝜓(𝑦)|

2 𝑑𝑦

∫𝐵𝑅 𝜓
2(𝑦) 𝑑𝑦

< 𝑐(𝑛, 𝑠) + 2𝜀,

by choosing 𝑅 large enough and 𝜓 close to the first Dirichlet eigenfunction in 𝐵𝑅. This establishes the optimality of 𝑐(𝑛, 𝑠).
It remains to show the non existence of minimizers. Suppose on the contrary that there exists 𝑓 (𝑥, 𝑦) that satisfies

∫R𝑚 ∫𝐵̄𝑐1

|∇(𝑥,𝑦)𝑓 |
2

(|𝑥| − 1)𝑠−2
𝑑𝑥 𝑑𝑦 = 𝑐(𝑛, 𝑠)∫R𝑚 ∫𝐵̄𝑐1

𝑓 2

(|𝑥| − 1)𝑠
𝑑𝑥 𝑑𝑦.

In addition it solves the Euler–Lagrange equation, that is, for all 𝜓 ∈ 𝐶∞
𝑐 (𝐵𝑐1 × 𝐵𝑅), satisfies

∫R𝑚 ∫𝐵̄𝑐1

∇(𝑥,𝑦)𝑓 ⋅ ∇(𝑥,𝑦)𝜓

(|𝑥| − 1)𝑠−2
𝑑𝑥 𝑑𝑦 = 𝑐(𝑛, 𝑠)∫R𝑚 ∫𝐵̄𝑐1

𝑓𝜓
(|𝑥| − 1)𝑠

𝑑𝑥 𝑑𝑦.

Let 𝜙(𝑥) be the function defined by (3.19) in case (a), by (3.23) in case (b), by (3.26) in case (c) and by (3.29) in case (d). In all 
cases we have ||

|

∇𝜙
𝜙
|

|

|

≤ 𝑐
|𝑥|−1  for all |𝑥| > 1 and the following calculations are justified

∫R𝑚 ∫𝐵̄𝑐1

1
(|𝑥| − 1)𝑠−2

|

|

|

|

∇(𝑥,𝑦)𝑓 −
(∇𝑥𝜙, 0)

𝜙
𝑓
|

|

|

|

2
= ∫R𝑚 ∫𝐵̄𝑐1

|∇(𝑥,𝑦)𝑓 |
2

(|𝑥| − 1)𝑠−2
− ∫R𝑚 ∫𝐵̄𝑐1

∇𝑥𝜙 ⋅ ∇𝑥𝑓 2

(|𝑥| − 1)𝑠−2𝜙
+ ∫R𝑚 ∫𝐵̄𝑐1

|∇𝑥𝜙|
2𝑓 2

(|𝑥| − 1)𝑠−2𝜙2

= ∫R𝑚 ∫𝐵̄𝑐1

|∇(𝑥,𝑦)𝑓 |
2

(|𝑥| − 1)𝑠−2
+ ∫R𝑚 ∫𝐵̄𝑐1

∇𝑥 ⋅
(

∇𝑥𝜙
(|𝑥| − 1)𝑠−2

)

𝑓 2

𝜙

= ∫R𝑚 ∫𝐵̄𝑐1

|∇(𝑥,𝑦)𝑓 |
2

(|𝑥| − 1)𝑠−2
− 𝑐(𝑛, 𝑠)∫R𝑚 ∫𝐵̄𝑐1

𝑓 2

(|𝑥| − 1)𝑠

= 0.

It follows that 𝑓 (𝑥, 𝑦) = 𝑘𝜙(𝑥) for some constant 𝑘. However, since 𝜙 is independent of 𝑦 it is not in the energy space in 𝐵̄𝑐 ×R𝑚. □
1
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