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Abstract
We establish Liouville type results for weighted anisotropic elliptic equations in divergence
form in the strip R

N−1 × (−1, 1), N ≥ 2. The weights depend on one variable and they
include the case where they are powers of the distance functions to the boundary of the strip.

Mathematics Subject Classification Primary 35J70 · 35B53; Secondary 35D30 · 35B05

1 Introduction andmain results

In this work our interest is to prove Liouville type results for the anisotropic elliptic operator

Lu = w1�x ′u + ∂λ(w1w2∂λu), (1.1)

where

x = (x ′, λ) ∈ S := R
N−1 × (−1, 1), N ≥ 2,

andwi (λ) = wi (|λ|) for i = 1, 2, are locally positive and bounded weight functions. That is,
we look for conditions on w1, w2 under which the only bounded weak solutions of Lu = 0
are the constant solutions.

Let us recall the uniformly elliptic case

N∑

i, j=1

∂i (ai j (x)∂ j u) = 0,
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with

c1|ξ |2 ≤
N∑

i, j=1

ai j (x)ξiξ j ≤ c2|ξ |2, ∀ξ ∈ R
N , c1, c2 > 0.

The pioneering work of De Giorgi and Moser [6, 20, 21], see also [13], played a crucial
role in establishing many properties of weak solutions such as Harnack inequality, Liouville
type results, Holder continuity etc. Several extensions of these results were made by various
authors in a number of directions, see e.g., [7, 11, 12].

To discuss the nonuniformly elliptic case we denote by a(x) the matrix with entries ai j (x)

and set

κ(x) := inf
ξ∈RN

ξ · a(x)ξ

|ξ |2 , μ(x) := sup
ξ∈RN

|a(x)ξ |2
ξ · a(x)ξ

.

Assume that for p, q ∈ (1,+∞], μ ∈ L p
loc(R

N ), κ−1 ∈ Lq
loc(R

N ), and

lim sup
R→∞

|BR |−
(
1
p + 1

q

)

‖μ‖L p(BR) ‖κ−1‖Lq (BR) < ∞.

Under essentially these assumptions, and provided that

1

p
+ 1

q
<

2

N
,

Trudinger [24], established Harnack inequality and Hölder continuity for nonnegative weak
solutions, see also [22]. Quite recently the same results have been proved by Bella and
Schäffner [2] under the weaker condition

1

p
+ 1

q
<

2

N − 1
.

As a consequence, every bounded weak solution is constant, cf Corollary 4.4 of [2] for the
precise result and the definition of weak solutions.

There is a recent interest in the study of anisotropic operators see e.g. [5, 14, 16, 17]. Our
motivation for studying (1.1) comes from the work of Caffarelli and Cordoba [3] in phase
transition analysis and is a continuation of [9] and [19]. In [9] the aimwas to establish various
Sobolev type inequalities for anisotropic weighted operators whereas in [19], Liouville type
Theorems for (1.1) are presented, for particular choices of the weights.

We first consider the model anisotropic elliptic operator

Lα,νu = (1 − |λ|)α�x ′u + ∂λ((1 − |λ|)α+ν∂λu) (1.2)

for (x ′, λ) ∈ S := R
N−1 × (−1, 1). We focus our attention only in the case α > −1 and we

state the results in three cases, the subcritical one, that is ν < 2 and the critical or supercritical
case corresponding to ν = 2 and ν > 2 respectively (Fig. 1). Then, our first result reads

Theorem 1.1 (Subcritical case) Let α > −1.
(a) If ν < 1 − α then the function

u(λ) =
∫ λ

−1
(1 − |t |)−α−νdt,

is a nonnegative (and bounded) weak solution of Lα,νu = 0 in S.
(b) If 1 − α ≤ ν < 2 then any nonnegative weak solution of Lα,νu = 0 in S is constant.
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Fig. 1 For α > −1, the lines
ν = 1 − α and ν = 2 define three
regions in the plane α–ν. In the
pink region (subcritical) there
exist nonnegative non constant
solutions. In the purple region
(also subcritical) all nonnegative
solutions are constants. Finally in
the green region (supercritical) as
well as in the case ν = 2 (critical)
all bounded solutions are
constants

2 1 1 2 3

1

1

2

3

When ν ≥ 2 our result reads

Theorem 1.2 (Critical and supercritical cases) Let α > −1 and ν ≥ 2. Every bounded weak
solutions of Lα,νu = 0 in S is constant.

The critical case ν = 2 in the case α = 1 was already treated in [19]; in such a case the
validity of a Liouville type result entails a positive answer to De Giorgi conjecture under the
additional assumption that level sets are Lipschitz graphs, see also [1], [3].

An operator like Lα,ν when ν = 2α and 0 < α ≤ 1 (which corresponds to the subcritical
and critical case in the present terminology) is naturally related to the phase transition analysis
in [3].

When 1− α ≤ ν < 2 our result is stronger than establishing that the only bounded weak
solutions are the constant ones and is proved by means of an elliptic Harnack inequality.

We note that our results are outside the range of applicability of the ones by Bella and
Schäffner [2] mentioned above.

Wenext consider themore general elliptic operator (1.1).We assume thatwi (λ) = wi (|λ|),
i = 1, 2, −1 < λ < 1, and wi ∈ L∞

loc(−1, 1). We only consider the case w1 ∈ L1(0, 1) and

we state the results in two cases, the subcritical one, which corresponds to the case w
− 1

2
2 ∈

L1(0, 1) and the critical or supercritical case which corresponds to the casew
− 1

2
2 /∈ L1(0, 1).

Before stating the results we introduce the following two assumptions.

(H1) Suppose w1 ∈ L1(0, 1), (w2)
− 1

2 ∈ L1(0, 1), (w1w2)
−1 /∈ L1(0, 1) and there exists

θ ≥ 1 and constants c1, c2 > 0 such that for any λ ∈ (−1, 1) there holds

c1

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|) ≤ c2

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

.

(H2) Suppose w1 ∈ L1(0, 1) and (w2)
− 1

2 /∈ L1(0, 1) and define

ϕ(λ) = 1 +
∫ |λ|

0
(w1w2)

−1(t)dt . (1.3)

We assume that there exists m > 2 such that ϕ− 1
m w

− 1
2

2 ∈ L1(0, 1) and θ > 0 such that for
some constants c1, c2 > 0 and any λ ∈ (−1, 1) there holds

c1

(∫ 1

|λ|
ϕ− 1

m (t)w
− 1

2
2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|)ϕ 1

m (|λ|) ≤ c2

(∫ 1

|λ|
ϕ− 1

m (t)w
− 1

2
2 (t)dt

)θ

.
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Notice that if w1 ∈ L1(0, 1) and (w2)
− 1

2 /∈ L1(0, 1) then necessarily (w1w2)
−1 /∈

L1(0, 1), as it follows easily from the decomposition w
− 1

2
2 = w

1
2
1 (w1w2)

− 1
2 , whence

ϕ(λ) → +∞ as |λ| → 1.

The results then are the following

Theorem 1.3 (Subcritical case) (a) If w1 ∈ L1(0, 1), (w2)
− 1

2 ∈ L1(0, 1) and (w1w2)
−1 ∈

L1(0, 1) then the function

u(λ) =
∫ λ

−1
(w1w2)

−1(t)dt,

is a nonnegative (and bounded) weak solution of Lu = 0 in S .
(b) If w1, w2 satisfy (H1) for some θ ≥ 1, then any nonnegative weak solution of Lu = 0 in
S is constant.

Also,

Theorem 1.4 (Critical and supercritical cases) If w1, w2 satisfy (H2) for some θ > 0 and
m > 2, then any bounded weak solution of Lu = 0 in S is constant.

The result of Theorem 1.4 is weaker than the one in Theorem 1.3(b). Nevertheless, the
result of Theorem 1.4 is optimal and one can not have a Liouville result similar to Theorem
1.3 for nonnegativeweak solutions. Indeed, ifw1, w2 are as in Theorem 1.4 then the function

ϕ(λ) = 1 +
∫ |λ|

0
(w1w2)

−1(t)dt,

is a nonnegative weak solution of Lu = 0 in S, which is actually unbounded. This function
is in the proper energy space, see Sect. 3. Hence the requirement of boundedness of weak
solutions in Theorem 1.4 cannot be replaced by the nonnegativity of weak solutions.

To proveTheorem1.3(b)we establish aHarnack inequality for nonnegativeweak solutions
u(x) of

L u = 0, in CR := {|x ′| < R, |λ| < 1}. (1.4)

The Harnack inequality follows once one establishes Poincaré and Sobolev inequalities as
well as a doubling volume growth condition as is shown in [4, 7]. See also [12, 23] for
extensions on complete Riemannian manifolds. In the present work we follow an adaptation
made in [8], cf Theorem 2.11 there. In particular the proper energy space is now given by
the following norm

||u||2H1
w1,w2

(CR)
:=

∫

CR

(
u2 + |∇x ′u|2 + w2(∂λu)2

)
w1dx ′dλ.

To prove Theorem 1.4 we make use of the oscillation decrease method, cf Sect. 4.3 of
[13], as adapted in Theorem 1.4 of [19] to the anisotropic setting. This is done in Sect. 3.

In Sect. 4 we give the proofs of Theorems 1.1 and 1.2. We also discuss various extensions
of our results.
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2 Subcritical case: Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3(b). This will be done by means of an elliptic
Harnack inequality, using the Moser iteration scheme, as adapted to isotropic degenerate
elliptic operators on bounded domains in [8]. There is a difference in the cut off functions
used here as compared to the ones used in [8]. In this work our cut off functions take into
account the geometry of the cylinder and they depend only on x ′. We combine this with a
density argument similar to [8] that takes care of the λ direction.

The three ingredients needed for the scheme to work are the doubling volume-growth
condition, a localweighted Sobolev inequality aswell as a localweighted Poincaré inequality.

The doubling property follows easily from the fact that

V (CR) =
∫

CR

w1dx ′dλ =
(∫

B′
R

dx ′
) ∫ 1

−1
w1dλ = C RN−1, (2.1)

for some uniform constant C (independent from R) and any R > 0. Here we denote with B ′
R

the Euclidean ball of radius R in R
N−1. We also denote the half cylinder,

C+
R = CR ∩ {λ > 0} = {|x ′| < R, 0 < λ < 1}.

For the Moser iteration scheme to work, we will also need the analogue of Theorem 2.11
of [8]. We first introduce the following norm

||u||2H1
w1,w2

(CR)
:=

∫

CR

(
u2 + |∇x ′u|2 + w2(∂λu)2

)
w1dx ′dλ,

and we denote by H1
0,w1,w2

(CR) the completion of C∞
0 ({|x ′| < R}) under the above norm,

whereas H1
00,w1,w2

(CR) is the completion under the same norm, of functions that in addition
have compact support in λ ∈ (−1, 1), that is

H1
00,w1,w2

(CR) = C∞
0 (CR)

||·||
H1

w1,w2 (CR ) .

We then have

Proposition 2.1 (Density) Suppose w1, w2 satisfy (H1). Then

H1
0,w1,w2

(CR) = H1
00,w1,w2

(CR),

that is, we are free from boundary conditions at |λ| = 1.

Proof We change variables by defining

s = s(λ) =
(∫ 1

λ

w
− 1

2
2 (t)dt

) (∫ 1

0
w

− 1
2

2 (t)dt

)−1

, g(x ′, s) = f (x ′, λ), (2.2)

In the new variables, domain C+
R becomes (using calligraphic C)

C+
R = {|x ′| < R, 0 < s < 1}.

We recall that λ = 1 corresponds to s = 0. The norm now takes the form

||u||2
H1(C+

R ,sθ dx ′ds)
:=

∫

C+
R

(
u2 + |∇x ′u|2 + (∂su)2

)
sθ dx ′ds,
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and H1(C+
R , sθ dx ′ds) is the corresponding function space. In addition we denote by

H1
0 (C+

R , sθ dx ′ds) the completion of C∞
0 (|x ′| < R, s > 0) under the above norm We

need to prove that any function in H1(C+
R , sθ dx ′ds) can be approximated by functions in

H1
0 (C+

R , sθ dx ′ds).

By Theorem 7.2 of [15] it is known that the set C∞(C+
R ) is dense in H1(C+

R , sθ dx ′ds).

Hence for any v ∈ H1(C+
R , sθ dx ′ds) and any ε > 0, there exists w ∈ C∞(C+

R ) such that
||v − w||H1 ≤ ε. We then define the function

ϕk(s) =

⎧
⎪⎨

⎪⎩

0 if s ≤ 1
k2

,

1 + ln(ks)
ln(k)

if 1
k2

< s < 1
k ,

1 if s ≥ 1
k

and set

wk := wϕk ∈ C0,1
0 ({s > 0})

∣∣∣C+
R

.

Then,

||w − wk ||2H1 = ||w(1 − ϕk)||2H1

≤ 2
∫

C+
R

(w2 + |∇x ′w|2 + (∂sw)2)(1 − ϕk)
2sθ dx ′ds + 2

∫

C+
R

w2(∂sϕk)
2sθ dx ′ds

≤ 2
∫

{|x ′|<R, 0<s< 1
k }

(w2 + |∇x ′w|2 + (∂sw)2) sθ dx ′ds

+ C RN−1||w||2
L∞(C+

R )

∫

1
k2

<s< 1
k

1

s2(ln(k))2
sθ ds.

For θ > 1 there holds
∫

1
k2

<s< 1
k

1

s2(ln(k))2
sθ ds ≤ 1

θ − 1

(
1

k

)θ−1 1

(ln(k))2

whereas for θ = 1,
∫

1
k2

<s< 1
k

1

s2(ln(k))2
sθ ds = 1

(ln(k))2

∫

1
k2

<s< 1
k

1

s
ds ≤ 1

ln(k)
.

Thus, for θ ≥ 1 and k large enough we have ||v − wk ||H1 ≤ 2ε and the result follows. �

Concerning the local weighted Sobolev inequality we have

Lemma 2.2 (local weighted Sobolev) Suppose w1, w2 satisfy (H1). Then, for q = 2(N+θ)
N−2+θ

there exists a positive constant CS such that for any R ≥ 1 and for all f ∈ C∞
0 ({|x ′| < R})

there holds
(∫

CR

| f |qw1dx ′dλ

) 2
q ≤ CS R2(V (CR))

2
q −1

∫

CR

(|∇x ′ f |2 + w2(∂λ f )2
)
w1dx ′dλ.

(2.3)

Proof It is clear that it is enough to prove the inequality in the half cylinder,

C+
R = CR ∩ {λ > 0} = {|x ′| < R, 0 < λ < 1}.

123
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Thus, we will prove that for any f ∈ C∞
0 ({|x ′| < R})

(∫

C+
R

| f |qw1dx ′dλ

) 2
q

≤ CS R2(V (C+
R ))

2
q −1

∫

C+
R

(|∇x ′ f |2 + w2(∂λ f )2
)
w1dx ′dλ.

(2.4)

We next change variables by (2.2). We recall that domain C+
R becomes

C+
R = {|x ′| < R, 0 < s < 1},

with V (C+
R ) = V (C+

R ) = cN RN−1. Taking into account (H1), inequality (2.4) takes the
following equivalent form

(∫

C+
R

|g|qsθ dx ′ds

) 2
q

≤ CS R2(V (C+
R ))

2
q −1

∫

C+
R

(|∇x ′ g|2 + (∂s g)2
)

sθ dx ′ds. (2.5)

For R = 1 the above inequality is written

(∫

C+
1

|g|qsθ dx ′ds

) 2
q

≤ CS (V (C+
1 ))

2
q −1

∫

C+
1

(|∇x ′ g|2 + (∂s g)2
)

sθ dx ′ds. (2.6)

This is true by Proposition 2.1 of [9] with Q B = 2A = θ there. As a consequence q =
2(N+θ)
N−2+θ

.
To establish (2.5), after a rescaling in the x ′ variables the inequality takes the form

(∫

C+
1

|g|qsθ dx ′ds

) 2
q

≤ CS (V (C+
1 ))

2
q −1

∫

C+
1

(|∇x ′ g|2 + R2 (∂s g)2
)

sθ dx ′ds.

This is true by (2.6) and the fact that R ≥ 1. This completes the proof. �

We next consider the local weighted Poincare iequality. If

f̄ := 1

V (CR)

∫

CR

f (x ′, λ) w1dx ′dλ

we have

Lemma 2.3 (local weighted Poincare) Suppose w1, w2 satisfy (H1), then there exist positive
constant CP such that for any R ≥ 1 and for all f ∈ C1(CR) there holds

∫

CR

| f − f̄ |2w1dx ′dλ ≤ CP R2
∫

CR

(|∇x ′ f |2 + w2(∂λ f )2
)
w1dx ′dλ, (2.7)

Proof The resultwill followoncewe establish that for any f ∈ C1(CR)wehave the following
inequality in the upper half cylinder C+

R ,
∫

C+
R

| f − ξ |2w1dx ′dλ ≤ CP R2
∫

C+
R

(|∇x ′ f |2 + w2(∂λ f )2
)
w1dx ′dλ (2.8)

for some positive constant CP (independent on R), with the choice

ξ =
∫
|x ′|<R f (x ′, 0)dx ′

ωN−1RN−1 .

123
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A similar inequality will hold in the lower half cylinder C−
R with the same choice of ξ . Then,

since
∫

CR

| f − f̄ |2w1dx ′dλ = min
ξ∈R

∫

CR

| f − ξ |2w1dx ′dλ,

the required inequality in CR will follow.
Making use of the change of variables (2.2) and taking into account (H1) inequality (2.8)

takes the following equivalent form (modulo absolute constants)
∫

{|x ′|<R, 0<s<1}
|g − ξ |2sθ dx ′ds ≤ CP R2

∫

{|x ′|<R, 0<s<1}
(|∇x ′ g|2 + (∂s g)2

)
sθ dx ′ds.

(2.9)

We note that

ξ =
∫
{|x ′|<R} g(x ′, 1)dx ′

ωN−1RN−1 .

Once again it is enough to establish the result for R = 1. The general case then follows by
scaling in x ′ and using the fact that R ≥ 1, as it was done in the proof of (2.5).

For s ∈ [0, 1] we define

ḡ(s) =
∫
{|x ′|<1} g(x ′, s)dx ′

ωN−1
,

and note that ξ = ḡ(1). There holds
∫

{|x ′|<1, 0<s<1}
|g(x ′, s) − ξ |2sθ dx ′ds

≤ 2
∫

{|x ′|<1, 0<s<1}
|g(x ′, s) − ḡ(s)|2sθ dx ′ds + 2

∫

{|x ′|<1, 0<s<1}
|ḡ(s) − ḡ(1)|2sθ dx ′ds.

(2.10)

We next consider the first integral on the right hand side. By Poincaré in the x ′ variables we
have

∫

{|x ′|<1, 0<s<1}
|g(x ′, s) − ḡ(s)|2sθ dx ′ds =

∫ 1

0
sθ

(∫

|x ′|<1
|g(x ′, s) − ḡ(s)|2dx ′

)
ds

≤ C
∫

{|x ′|<1, 0<s<1}
|∇x ′ g(x ′, s)|2sθ dx ′ds.

(2.11)

Concerning the second integral on the right hand side of (2.10) we have the following one
dimensional Poincaré

∫ 1

0
|ḡ(s) − ḡ(1)|2sθ ds =

∫ 1

0
|ḡ(s) − ḡ(1)|2

(
sθ+1

θ + 1

)′

ds

= − 2

θ + 1

∫ 1

0
(ḡ(s) − ḡ(1))ḡ′(s)sθ+1 ds

≤ 2

θ + 1

(∫ 1

0
(ḡ(s) − ḡ(1))2sθ+2 ds

) 1
2
(∫ 1

0
ḡ

′2(s)sθ ds

) 1
2

123
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≤ 2

θ + 1

(∫ 1

0
(ḡ(s) − ḡ(1))2sθ ds

) 1
2
(∫ 1

0
ḡ

′2(s)sθ ds

) 1
2

,

whence,
∫ 1

0
|ḡ(s) − ḡ(1)|2sθ ds ≤ 4

(θ + 1)2

∫ 1

0
ḡ

′2(s)sθ ds,

from which it follows that
∫

{|x ′|<1, 0<s<1}
|ḡ(s) − ḡ(1)|2sθ dx ′ds ≤ 4

(θ + 1)2

∫

{|x ′|<1, 0<s<1}
(∂s g)2sθ dx ′ds.

(2.12)

Combining (2.10), (2.11) and (2.12) we obtain (2.9) with R = 1 and this completes the
proof. �


We are now ready to study positive weak solutions of L u = 0 in the proper energy space
H1

w1,w2
(CR), for all R ≥ 1. In particular, functions u ∈ H1

w1,w2
(CR) satisfy

∫

CR

(w1∇x ′u∇x ′ϕ + w1w2∂λu∂λϕ) dx ′dλ = 0,

for any test function ϕ ∈ H1
00,w1,w2

(CR).

As usually, u ∈ H1
w1,w2

(CR) is a weak subsolution in CR provided that

∫

CR

(w1∇x ′u∇x ′ϕ + w1w2∂λu∂λϕ) dx ′dλ ≤ 0,

for any 0 ≤ ϕ ∈ H1
00,w1,w2

(CR) and similarly for the weak supersolution, reversing the above
inequality.

We note that by Lemma 2.1, under the assumption (H1) of the present section, we have

H1
00,w1,w2

(CR) = H1
0,w1,w2

(CR).

Theorem 1.3 (b) is a consequence of the following Harnack inequality, whose main ingre-
dients are the local weighted Sobolev inequality, the local weighted Poincaré inequality and
the density property stated above.

Theorem 2.4 (Harnack inequality) Let N ≥ 2 and suppose that w1, w2 satisfy (H1). Let
u ∈ H1

w1,w2
(CR) be a nonnegative weak solution of Lu = 0 in CR. Then for any R ≥ 1 and

any 0 < α < 1, there holds

sup
CαR

u ≤ CH inf
CαR

u,

where CH = CH (N , α, θ, c1, c2) is a positive constant.

The proof of this, uses several auxiliary results. We initially consider functions uε =
u + ε ≥ ε > 0, so that negative powers of uε are in the appropriate function spaces. In the
final stage, when proving Theorem 2.4 we will send ε to zero. For simplicity we drop the
subscript ε in the Lemmas that follow.

123
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Lemma 2.5 (Local boundedness) Let N ≥ 2, suppose that w1, w2 satisfy (H1) and u ∈
H1

w1,w2
(CR) be a non negative subsolution of Lu = 0 in CR . Then for any R > 0, α ∈ (0, 1)

and p > 1 there exists a positive constant C = C(N , θ, c1, c2) such that

sup
CαR

u p ≤ C

(
(

p
p−1 )

2 + 1

(1 − α)2α
N−1

κ

) κ
κ−1 (

1

V (CR)

∫

CR

u pw1dx ′dλ

)
, (2.13)

where κ = N+θ
N+θ−2 > 1.

Proof We consider a function ξ(x ′, λ) = ξ(x ′) ≥ 0 such that ξ ∈ C∞
0 (B ′

R), B ′
R = {x ′ ∈

R
N−1 : |x ′| < R}. Then, for β > 0, function ϕ = ξ2uβ ∈ H1

0,w1,w2
(CR) is an admissible

test function. Using the computations

w1∇x ′u∇x ′(ξ2uβ) = βw1ξ
2uβ−1∇x ′u∇x ′u + 2

(√
εw

1
2
1 ξu

β−1
2 ∇x ′u

)(
1√
ε
w

1
2
1 u

β+1
2 ∇x ′ξ

)
,

w1w2∂λu∂λ(ξ
2uβ) = βw1w2ξ

2uβ−1∂λu∂λu

the definition of weak solutions and Young inequality we arrive at

(β − ε)

∫

CR

(
w1|∇x ′u|2 + w1w2(∂λu)2

)
uβ−1ξ2dx ′dλ ≤ 1

ε

∫

CR

w1|∇x ′ξ |2uβ+1dx ′dλ.

We choose ε = β/2 and set v := u
β+1
2 . The previous inequality yields

∫

CR

(|∇x ′(ξv)|2 + w2(∂λ(ξv))2
)
w1dx ′dλ ≤ 2

[(
β + 1

β

)2

+ 1

] ∫

CR

|∇x ′ξ |2v2w1dx ′dλ.

We next choose a function η ∈ C∞(0, 1) such that η(y) = 1 for y ≤ s and η(y) = 0 for

y ≥ t , with 0 < s < t < 1. We take ξ(x ′) = η
( |x ′|

R

)
. Using the local weighted Sobolev

inequality of Lemma 2.2, we get

(∫

Cs R

u(β+1)κ w1dx ′dλ

) 1
κ ≤ CS

C0V
1
κ
−1(Ct R)

(t − s)2

[(
β + 1

β

)2

+ 1

]∫

Ct R

uβ+1 w1dx ′dλ

where C0 is a universal constant and κ = N+θ
N+θ−2 > 1 with θ ≥ 1 as defined in (H1). Making

use of the doubling property, as well as of the fact that V (Cs R) = c(s R)N−1, we deduce
that

(
1

V (Cs R)

∫

Cs R

u(β+1)κ w1dx ′dλ

) 1
κ

≤ C0CS

(t − s)2s
N−1

κ

[(
β + 1

β

)2

+ 1

]
1

V (Ct R)

∫

Ct R

uβ+1 w1dx ′dλ.

For α ∈ (0, 1) and α ≤ s < t ≤ 1 we have

(
1

V (Cs R)

∫

Cs R

u(β+1)κ w1dx ′dλ

) 1
κ

≤ C0CS

(t − s)2α
N−1

κ

[(
β + 1

β

)2

+ 1

]
1

V (Ct R)

∫

Ct R

uβ+1 w1dx ′dλ.
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for a universal constantC0. Taking sm+1 = α+ 1−α
m+2 and tm = α+ 1−α

m+1 = sm ,m = 0, 1, 2, . . .
the above inequality is written as

(
1

V (Csm+1R)

∫

Csm+1R

u(β+1)κ w1dx ′dλ

) 1
κ

≤ Am

(
1

V (Csm R)

∫

Csm R

uβ+1 w1dx ′dλ

)
.

(2.14)

where

Am := (m + 1)2(m + 2)2C0CS

(1 − α)2α
N−1

κ

[(
β + 1

β

)2

+ 1

]
.

We define

I (m) :=
(

1

V (Csm R)

∫

Csm R

uκm (β+1) w1dx ′dλ

) 1
κm

,

so that we rewrite (2.14) as

I (m + 1) ≤ A
1

κm
m I (m), m = 0, 1, 2, . . . .

We next iterate the above inequality to obtain

I (∞) ≤
( ∞∏

m=0

A
1

κm
m

)
I (0).

The infinite product is easily seen to be finite, therefore taking p = β + 1 > 1, we end up
with

sup
CαR

u p ≤ C

(
(

p
p−1 )

2 + 1

(1 − α)2α
N−1

κ

) κ
κ−1 (

1

V (CR)

∫

CR

u pw1dx ′dλ

)
.

�


We next have

Lemma 2.6 Let N ≥ 2 and suppose that w1, w2 satisfy (H1). Let u ∈ H1
w1,w2

(CR) be a non
negative, supersolution in CR. Then for any R > 0, any 0 < α < 1, there exists a positive
constant C = C(N , θ, c1, c2) such that

sup
CαR

u p ≤ C

(
(

p
p−1 )

2 + 1

(1 − α)2α
N−1

κ

) κ
κ−1 (

1

V (CR)

∫

CR

u pw1dx ′dλ

)
, (2.15)

for any 0 < p < 1, and

sup
CαR

u−p ≤ C

(
(

p
p+1 )

2 + 1

(1 − α)2α
N−1

κ

) κ
κ−1 (

1

V (CR)

∫

CR

u−pw1dx ′dλ

)
, (2.16)

for any p > 0, where κ = N+θ
N+θ−2 > 1.
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Proof The proof is similar to the proof of the previous Lemma. We may suppose that u is
bounded below by a positive constant. In particular uβ ∈ H1

w1,w2
(CR) for any β < 0. We

again use ϕ = ξ2uβ ∈ H1
0,w1,w2

(CR) as a test function andwe similarly arrive at the analogue
of (2.14),

(
1

V (Csm+1R)

∫

Csm+1R

u(β+1)κ w1dx ′dλ

) 1
κ

≤ Am

(
1

V (Csm R)

∫

Csm R

uβ+1 w1dx ′dλ

)
.

where

Am := (m + 2)4C0CS

(1 − α)2α
N−1

κ

[(
β + 1

β

)2

+ 1

]
.

In case β > −1, we set p = β + 1 and we conclude the result as before, for the case
0 < p < 1.

In case β < −1, then the iteration takes the form

(
1

V (Csm+1R)

∫

Csm+1R

uκm+1(β+1) w1dx ′dλ

) 1
κm+1

≤ A
1

κm
m

(
1

V (Csm R)

∫

Csm R

uκm (β+1) w1dx ′dλ

) 1
κm

,

with β + 1 = −p and again we conclude as before. �

The following Lemma is an adaptation of a similar result in Theorem 4.15 of [13].

Lemma 2.7 Let N ≥ 2 and suppose that w1, w2 satisfy (H1). Let u ∈ H1
w1,w2

(CR) be a non-
negative supersolution in CR. Then for any α ∈ (0, 1) there exists p0 = p0(α, N , θ, c1, c2) ∈
(0, 1) such that

(∫

CαR

u p0 w1dx ′dλ

) (∫

CαR

u−p0 w1dx ′dλ

)
≤ 4V 2(CαR). (2.17)

Proof We initially consider uε = u + ε ≥ ε > 0. After proving the estimate, we send ε to
zero. For simplicity in what follows we omit the subscript ε.

For some p0 = p0(α, N , θ, c1, c2) > 0 we will establish the following estimate
∫

CαR

ep0|v|w1dx ′dλ ≤ 2 V (CαR), (2.18)

where,

v = ln u − ln L = ln
u

L
, with ln L := V −1(CαR)

∫

CαR

ln u w1dx ′dλ.

Once (2.18) is true for some p0 we may assume that p0 ∈ (0, 1). Since

ep0|v| = 1 + p0|v| + (p0|v|)2
2! + · · · + (p0|v|)n

n! + · · · ,

it is enough to establish
∫

CαR

|v|kw1dx ′dλ ≤ Ck
0ekk! V (CαR), (2.19)
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where C0 = C0(N , θ, c1, c2, α) is a positive constant. Then, (2.18) will follow by choosing
p0 = (2C0e)−1, since

∫

CαR

(p0|v|)k

k! w1dx ′dλ ≤ 1

2k
V (CαR), k = 1, 2, . . . .

To prove (2.19) we take as a test function ϕ = ξ2u−1 in the definition of u as a supersolution,

with ξ(x ′) = η
( |x ′|

R

)
, η ∈ C∞(0, 1), η(y) = 1 for y ≤ α, 0 < α < 1 and η(y) = 0 for

y ≥ 1. We get
∫

CαR

(|∇x ′v|2 + w2(∂λv)2
)
w1dx ′dλ ≤

∫

CR

(|∇x ′v|2 + w2(∂λv)2
)
ξ2w1dx ′dλ

≤ 4
∫

CR

|∇x ′ξ |2w1dx ′dλ. (2.20)

We next use the local weighted Poincaré inequality of Lemma 2.3, to get
∫

CαR

v2w1dx ′dλ ≤ 4CP (αR)2
∫

CR

|∇x ′ξ |2w1dx ′dλ ≤ C

αN−3(1 − α)2
V (CαR),

and by Holder inequality

∫

CαR

|v|w1dx ′dλ ≤ V
1
2 (CαR)

(∫

CαR

v2w1dx ′dλ

) 1
2 ≤ C

α
N−3
2 (1 − α)

V (CαR). (2.21)

These prove (2.19) for k = 1, 2.
It remains to prove it for any integer k ≥ 3. We now use as a test function in the definition

of u as a weak supersolution, the function ϕ = ξ2u−1|vm |2β , for vm = −m if v ≤ −m,
vm = v if |v| < m, and vm = m if v ≥ m. We have ϕ ∈ H1

0,w1,w2
(CR) ∩ L∞(CR) and

∫

CR

ξ2|vm |2β(|∇x ′v|2 + w2(∂λv)2)w1dx ′dλ

≤ (2β)

∫

CR

(∇x ′v∇x ′ |vm | + w2∂λv∂λ|vm |)|vm |2β−1ξ2w1dx ′dλ

+2
∫

CR

ξ∇x ′v∇x ′ξ |vm |2βw1dx ′dλ.

Notice that∇x ′v∇x ′ |vm | = ∇x ′vm∇x ′ |vm | ≤ |∇x ′vm |2 a.e. inCR , and similarly for the partial
derivative with respect to λ. Young’s inequality implies

(2β)|vm |2β−1 ≤ 2β − 1

2β
|vm |2β + 1

2β
(2β)2β =

(
1 − 1

2β

)
|vm |2β + (2β)2β−1.

Hence we obtain
∫

CR

ξ2|vm |2β(|∇x ′v|2 + w2(∂λv)2)w1dx ′dλ

≤
(
1 − 1

2β

) ∫

CR

(|∇x ′vm |2 + w2(∂λvm)2)|vm |2βξ2w1dx ′dλ

+(2β)2β−1
∫

CR

(|∇x ′vm |2 + w2(∂λvm)2)ξ2w1dx ′dλ
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+2
∫

CR

ξ∇x ′v∇x ′ξ |vm |2βw1dx ′dλ.

Thus, since ∇x ′v = ∇x ′vm for |v| < m and ∇x ′vm = 0 for |v| > m, and similarly for the
partial derivative with respect to λ, we deduce

∫

CR

ξ2|vm |2β(|∇x ′v|2 + w2(∂λv)2)w1dx ′dλ

≤ (2β)2β
∫

CR

(|∇x ′vm |2 + w2(∂λvm)2)ξ2w1dx ′dλ

+4β
∫

CR

ξ∇x ′v∇x ′ξ |vm |2βw1dx ′dλ.

Therefore by Cauchy inequality on the second term of the right hand side, we obtain that
∫

CR

ξ2|vm |2β(|∇x ′v|2 + w2(∂λv)2)w1dx ′dλ

≤ (2β)2β
∫

CR

(|∇x ′vm |2 + w2(∂λvm)2)ξ2w1dx ′dλ

+β2
∫

CR

|∇x ′ξ |2|vm |2βw1dx ′dλ.

Hence we have
∫

CR

ξ2|vm |2β(|∇x ′vm |2 + w2(∂λvm)2)w1dx ′dλ

≤ (2β)2β
∫

CR

(|∇x ′vm |2 + w2(∂λvm)2)ξ2w1dx ′dλ

+β2
∫

CR

|∇x ′ξ |2|vm |2βw1dx ′dλ.

In the following we write v = vm and then let m → +∞. By (2.20) we deduce that
∫

CR

ξ2|v|2β(|∇x ′v|2 + w2(∂λv)2)w1dx ′dλ

≤ 4(2β)2β
∫

CR

|∇x ′ξ |2w1dx ′dλ + β2
∫

CR

|∇x ′ξ |2|v|2βw1dx ′dλ. (2.22)

We next use Young’s inequality

|∇x ′(ξ |v|β)|2 ≤ 2|∇x ′ξ |2|v|2β + 2β2ξ2|v|2β−2|∇x ′v|2

≤ 2|∇x ′ξ |2|v|2β + 2ξ2|∇x ′v|2
(

β − 1

β
|v|2β + 1

β
β2β

)
,

and

(∂λ(ξ |v|β))2 = β2ξ2|v|2β−2(∂λv)2

≤ ξ2(∂λv)2
(

β − 1

β
|v|2β + 1

β
β2β

)
.

From (2.22) and (2.20),
∫

CR

(|∇x ′(ξ |v|β)|2 + w2(∂λξ |v|β)2)w1dx ′dλ
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≤ C

{
(2β)2β

∫

CR

|∇x ′ξ |2w1dx ′dλ

+β2
∫

CR

|∇x ′ξ |2|v|2βw1dx ′dλ

}
.

Applying the local weighted Sobolev inequality of Lemma 2.2, with κ = N+θ
N+θ−2 we deduce

that
(∫

CR

(ξ |v|β)2κw1dx ′dλ

) 1
κ ≤ CS V (CR)

1
κ
−1R2C

{
(2β)2β

∫

CR

|∇x ′ξ |2w1dx ′dλ

+β2
∫

CR

|∇x ′ξ |2|v|2βw1dx ′dλ

}
.

Choose the cut off function ξ = 1 on Bri R , ξ = 0 on BR \ Bri−1R with ri = τ + 1
2i (τ

′ − τ),

0 < τ < τ ′ < 1, βi = κ i−1 we deduce that

(
V −1(Cri R)

∫

Cri R

|v|2κ i
w1dx ′dλ

) 1
κ

≤ C22(i−1)

(τ ′ − τ)2

{
(2κ i−1)2κ

i−1 + κ2i V −1(Cri−1R)

∫

Cri−1R

|v|2κ i−1
w1dx ′dλ

}
.

Naming Ii to the power 2κ i−1 the left hand side, we have for i = 2, 3, 4, · · · that

Ii = C
i

2κi−1
{
2κ i−1 + Ii−1

}

with C = C(N , θ, c1, c2, τ, τ ′) > 0. Iterating the above inequality and observing that∑∞
i=0

i
κ i < ∞, we obtain

Ii ≤ C
i∑

j=1

κ j−1 + C I0 ≤ Cκ i + C I0.

Now for β ≥ 2 there exists a i such that 2κ i−1 ≤ β < 2κ i . Hence

(
V −1(Cτ R)

∫

Cτ R

|v|βw1dx ′dλ

) 1
β ≤ C Ii ≤ Cκ i + C I0 ≤ Cβ + C I0 ≤ Cβ,

due to (2.21). This is the desired estimate since
∫

Cτ R

|v|βw1dx ′dλ ≤ V (Cτ R)Cβββ ≤ V (Cτ R)Cβeββ!

due to the Sterling formula for integer β. This proves (2.18) with α = τ .

To complete the proof we apply (2.18) to obtain
∫

CαR

ep0vw1dx ′dλ ≤ 2 V (CαR),

∫

CαR

e−p0vw1dx ′dλ ≤ 2 V (CαR).

Multiplying the two and recalling the definition of v the result follows. �

We next have
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Proof of Theorem 2.4 Let p0 ∈ (0, 1) as given by Lemma 2.7. From Lemma 2.6 and for some
constant C1 = C1(α, N , θ, c1, c2),

sup
C

α2R

u−1 = 1

infC
α2R

u
≤ C1

(
1

V (CαR)

∫

CαR

u−p0 w1dx ′dλ

) 1
p0

,

hence,

C−1
1

(
1

V (CαR)

∫

CαR

u−p0 w1dx ′dλ

)− 1
p0 ≤ inf

C
α2R

u,

Similarly we have

sup
C

α2R

u ≤ C2

(
1

V (CαR)

∫

CαR

u p0 w1dx ′dλ

) 1
p0

.

Using Lemma 2.7 we conclude that

sup
C

α2R

u ≤ CH inf
C

α2R

u.

with CH = C1C24
1
p0 independent of R. �


We finally have

Proof of Theorem 1.3 (b): Take instead of u the function v := u − inf S u which is still a
nonnegative solution ofLv = 0 in S, having now inf S v = 0. From the definition of infimum,
for any ε > 0, there exists xε = (x ′

ε, λ) ∈ S such that v(xε) < ε. As a consequence of the
Harnack inequality, Theorem 2.4, for any R ≥ |x ′

ε |/α, we have supCαR
v ≤ CH infCαR v <

CH ε; thus v(x) ≤ CH ε in all CαR for any R big enough, whence 0 ≤ v(x) ≤ CH ε for all
x ∈ S. The claim follows from the arbitrariness of ε. �


3 Critical and supercritical cases: Proof of Theorem 1.4

To obtain the result we make use of the oscillation decrease method, cf Sect. 4.3 of [13], as
adapted in Theorem 1.4 of [19] to the anisotropic setting.

For R ≥ 2 we define

L R := {(x ′, λ) ∈ S : |x ′| < R, ϕ(λ) < Rm}
where

ϕ(λ) = 1 +
∫ |λ|

0
(w1w2)

−1(t)dt . (3.1)

Let us define the notion of weak solutions of L u = 0 that we consider throught this
section. The norm of the energy space is given by

||u||2H1
w1,w2

(L R)
:=

∫

L R

(
u2 + |∇x ′u|2 + w2(∂λu)2

)
w1dx ′dλ.
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Wedefine the space H̊1
w1,w2(L R) is the completion ofC∞

0 (L R) under the above norm. Then,

u is a weak solution if u ∈ H1
w1,w2

(L R) and for any ψ ∈ H̊1
w1,w2(L R) there holds

∫

L R

(w1∇x ′u∇x ′ψ + w1w2∂λu∂λψ) dx ′dλ = 0,

As usually, u ∈ H1
w1,w2

(L R) is a weak subsolution in L R provided that

∫

L R

(w1∇x ′u∇x ′ψ + w1w2∂λu∂λψ) dx ′dλ ≤ 0,

for any 0 ≤ ψ ∈ H̊1
w1,w2(L R) and similarly for the weak supersolution.

It is easily seen that we have the following volume doubling property, that is, there exists
a positive constant CD (independent of R) such that

V (L2R) ≤ CD V (L R)

for every R ≥ 2, where V (D) := ∫
D w1dx ′dλ. We also note that

∫

L R

(|∇x ′ϕ|2 + w2(∂λϕ)2
)
w1dx ′dλ = ωN−1RN−1(Rm − 1). (3.2)

Our first result reads

Lemma 3.1 (local weighted Sobolev) Suppose w1, w2 satisfy (H2) for some θ > 0 and
m > 2. Then for q = 2(N+θ)

N−2+θ
there exists a positive constant CS such that for any R ≥ 2 and

for all f ∈ C∞
0 (L R) there holds

(∫

L R

| f |qw1dx ′dλ

) 2
q ≤ CS R2(V (L R))

2
q −1

∫

L R

(|∇x ′ f |2 + w2(∂λ f )2
)
w1dx ′dλ. (3.3)

Proof The proof is similar to the proof of Lemma 2.2, we therefore sketch it. By scaling in
the x ′–variables

x ′ = Ry′, g(y′, λ) = f (y′ R, λ) ∈ C∞
0 (|y′| < 1, ϕ < Rm),

estimate (3.3) takes the following equivalent form

(∫

{|y′|<1, ϕ<Rm }
|g|qw1dy′dλ

) 2
q ≤ CS

∫

{|y′|<1, ϕ<Rm }
(|∇y′ g|2 + R2w2(∂λg)2

)
w1dy′dλ;

Since ϕ(λ) < Rm is equivalent to ϕ
2
m (λ) < R2, it is enough to establish

(∫

{|y′|<1, ϕ<Rm }
|g|qw1dy′dλ

) 2
q ≤ CS

∫

{|y′|<1, ϕ<Rm }

(
|∇y′ g|2 + ϕ

2
m w2(∂λg)2

)
w1dy′dλ;

In fact we will prove a stronger inequality, namely for g ∈ C∞
0 (|y′| < 1, |λ| < 1).

(∫

{|y′|<1, |λ|<1}
|g|qw1dy′dλ

) 2
q ≤ CS

∫

{|y′|<1, |λ|<1}

(
|∇y′ g|2 + ϕ

2
m w2(∂λg)2

)
w1dy′dλ.
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It is enough to prove the result in the upper half cylinder, that is for g ∈ C∞
0 (|y′| <

1, |λ| < 1),

(∫

{|y′|<1, 0<λ<1}
|g|qw1dy′dλ

) 2
q ≤CS

∫

{|y′|<1, 0<λ<1}

(
|∇y′ g|2 + ϕ

2
m w2(∂λg)2

)
w1dy′dλ.

(3.4)

To do this we change variables by

s = s(λ) =
(∫ 1

λ

ϕ− 1
m (t)w

− 1
2

2 (t)dt

) (∫ 1

0
ϕ− 1

m (t)w
− 1

2
2 (t)dt

)−1

,

h(y′, s) = g(y′, λ), λ ∈ (0, 1). (3.5)

Taking into account (H2), inequality (3.4) takes the form

(∫

{|y′|<1, 0<s<1}
|h|qsθ dy′ds

) 2
q ≤ CS

∫

{|y′|<1, 0<s<1}
(|∇y′h|2 + (∂sh)2

)
sθ dy′ds,

where h ∈ C∞
0 (|y′| < 1), with h(y′, 0) = 0. This is true by Proposition 2.1 of [9]. �


Next, after recalling that

f̄ := 1

V (L R)

∫

L R

f (x ′, λ) w1dx ′dλ

we have

Lemma 3.2 (local weighted Poincaré) Suppose w1, w2 satisfy (H2) for some θ > 0 and
m > 2. Then, there exists a positive constant CP such that, for every R ≥ 2 and every
f ∈ C1(L R) satisfying f = 0 on {|x ′| ≤ R, ϕ = Rm}, there holds

∫

L R

| f − f̄ |2w1dx ′dλ ≤ CP R2
∫

L R

(|∇x ′ f |2 + w2(∂λ f )2
)
w1dx ′dλ. (3.6)

Moreover, if in addition f is such that

V
({(x ′, λ) ∈ L R : f (x ′, λ) = 0}) ≥ 1

2
V (L R),

then, we also have
∫

L R

f 2(x ′, λ)w1dx ′dλ ≤ CP R2
∫

L R

(|∇x ′ f |2 + w2(∂λ f )2
)
w1dx ′dλ. (3.7)

Proof Assuming that (3.6) has been established, we first show that it implies (3.7). To this
end we show that if f satisfies V ({ f = 0} ∩ L R) ≥ 1

2 V (L R), we then have
∫

L R

f 2w1dx ′dλ ≤ 2
∫

L R

| f − f̄ |2w1dx ′dλ. (3.8)

Indeed (3.8) follows easily from the following computation:
∫

L R

| f − f̄ |2w1dx ′dλ =
∫

L R

f 2w1dx ′dλ − (
∫

L R
f w1dx ′dλ)2

V (L R)

=
∫

L R

f 2w1dx ′dλ − (
∫
{ f �=0}∩L R

f w1dx ′dλ)2

V (L R)
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≥
∫

L R

f 2w1dx ′dλ −
(∫

{ f �=0}∩L R
f 2w1dx ′dλ

)
V ({ f �= 0} ∩ L R)

V (L R)

=
∫

L R

f 2w1dx ′dλ −
(∫

L R
f 2w1dx ′dλ

)
V ({ f �= 0} ∩ L R)

V (L R)

≥ 1

2

∫

L R

f 2w1dx ′dλ,

and (3.8) follows. In the sequel we will give the proof of (3.6).
Since

∫

L R

| f − f̄ |2w1dy′dλ = min
ξ∈R

∫

L R

| f − ξ |2w1dy′dλ,

it is enough to prove that for every f ∈ C1(L R) satisfying f = 0 on {|x ′| ≤ R, ϕ = Rm},
the following inequality holds

∫

L R

| f − ξ |2w1dx ′dλ ≤ CP R2
∫

L R

(|∇x ′ f |2 + w2(∂λ f )2
)
w1dx ′dλ, (3.9)

for a particular choice of the constant ξ that we will specify later.
Once again we rescale by

x ′ = Ry′, g(y′, λ) = f (y′ R, λ),

and (3.9) takes the following equivalent form
∫

{|y′|<1, ϕ<Rm }
|g − ξ |2w1dy′dλ ≤ CP

∫

{|y′|<1, ϕ<Rm }
(|∇y′ g|2 + R2w2(∂λg)2

)
w1dy′dλ

for any g ∈ C1({|y′| < 1, ϕ < Rm}) such that g = 0 on {|y′| ≤ 1, ϕ = Rm}. This inequality
will follow after establishing

∫

{|y′|<1,|λ|<1}
|g − ξ |2w1dy′dλ≤CP

∫

{|y′|<1, |λ|<1}

(
|∇y′ g|2 + ϕ

2
m w2(∂λg)2

)
w1dy′dλ

(3.10)

for any g ∈ C1({|y′| < 1, |λ| < 1}).
To prove (3.10), once again we work in the upper half cylinder and choose

ξ =
∫
|y′|<1 g(y′, 0)dy′

ωN−1
.

We will show that for every g ∈ C1({|y′| < 1, 0 < λ < 1}) there holds
∫

{|y′|<1, 0<λ<1}
|g − ξ |2w1dy′dλ

≤ CP

∫

{|y′|<1, 0<λ<1}

(
|∇y′ g|2 + ϕ

2
m w2(∂λg)2

)
w1dy′dλ, (3.11)

Using (H2) and making the change of variables (3.5) we are lead to prove that for ξ =∫
|y′ |<1 h(y′,1)dy′

ωN−1
and θ > 0 there holds,

∫

{|y′|<1, 0<s<1}
|h − ξ |2sθ dy′ds ≤ CP

∫

{|y′|<1, 0<s<1}
(|∇y′h|2 + (∂sh)2

)
sθ dy′ds,
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taking into account that h(y′, 0) = 0. This inequality is quite similar to (2.9).

We next have

Theorem 3.3 (Density Theorem) Suppose w1, w2 satisfy (H2) for some θ > 0 and m > 2.
Let u be a weak subsolution in L R with

0 ≤ u ≤ 2,

and u ∈ H1
w1,w2

(L R) for every R ≥ 2. Suppose in addition that

V ({u ≥ 1} ∩ L R) ≥ 1

2
V (L R).

Then, there exists α ∈ (0, 1) and R0 ≥ 2 such that for any R ≥ R0, there holds

inf
LαR

u ≥ δ.

Constants α, R0, δ depend only on N , θ, m, c1, c2.

Proof For ε > 0 we define uε = u + ε ≥ ε > 0. We will work with uε in place of u so that
all subsequent quantities exist. For convenience we drop the subscript ε.

For α ∈ (0, 1) we define

ψ(x) =
{

u(x) + (
α
2

)m
, AR,

u(x) + ϕ(λ)
Rm , L R − AR

(3.12)

where,

AR =
{
|x ′| < R, ϕ(λ) <

(
αR

2

)m}
.

For β ≥ 0, we also define

φ := (− lnψ − β)+.

Function φ is also a subsolution, since in the region {φ > 0} we have −Lφ ≤ 0. We also
notice thatwhenϕ(λ) = Rm thenψ = u+1 and thereforeφ = 0 there.Wenext test−Lφ ≤ 0
with the function φξ2 where ξ = ξ(x ′) is a standard cut off function in B ′

R = {|x ′| < R}.
We integrate by parts and eventually arrive at

∫

L R

(w1|∇x ′(φξ)|2 + w1w2∂λ(φξ)2)dx ′dλ ≤ C
∫

L R

|∇x ′ξ |2φ2w1dx ′dλ.

Making use of the local weighted Sobolev inequality in Lemma 3.1 we have

(∫

L R

|φξ |qw1dx ′dλ

) 2
q ≤ C R2V

2
q −1

(L R)

∫

L R

|∇x ′ξ |2φ2w1dx ′dλ

for q = 2(N+θ)
N+θ−2 . Holder inequality implies

∫

L R

(φξ)2w1dx ′dλ≤C R2V
2
q −1

(L R)

(∫

L R

|∇x ′ξ |2φ2w1dx ′dλ

)
V 1− 2

q ( supp(φξ) ∩ L R).

(3.13)
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We will use (3.13) for various choices of functions. More precisely, for ηk ∈ C1(0, 1) with

ηk(y) = 1 if y ≤ 1
2 + 1

2k+2 and η(y) = 0 if y ≥ 1
2 + 1

2k+1 , we set ξk(x ′) = ηk

( |x ′|
R

)
and

βk := E(1 − 2−k), φk = (− lnψ − βk)+, for k = 0, 1, . . . ,

for some positive constant E to be made more precise later. We also set

bk := 1

V (L R)

∫

L R

(φkξk)
2w1dx ′dλ,

Using (3.13) as well as the facts that

φk is decreasing in k,

1 ≤ ξk−1 in supp(ξk),

1 ≤ 2k

E φk−1 in supp(ξkφk),

we obtain that, for σ = 1 − 2
q = 2

N+θ
∈ (0, 1), we have,

bk ≤ C

E2σ (22kbk−1)
1+σ , k = 1, 2, . . . .

Choosing E = Db
1
2
0 for appropriately large constant D, as in [19], we inductively prove that

bk ≤ b0

2
2k(1+σ)

σ

, k = 1, 2, . . . .

It follows that limk→+∞ bk = 0 and since limk→+∞ βk = E , we conclude that
supL R

2

(− lnψ − E) ≤ 0. Recalling that φ0 = (− lnψ)+ and the choice of the constant

E , we have

sup
L R

2

φ0 ≤ CV − 1
2 (L R)

(∫

L R

φ2
0w1dx ′dλ

) 1
2

.

Next we will use the local weighted Poincaré inequality (3.7). Note that {φ0 = 0} =
{− lnψ ≤ 0} = {ψ ≥ 1} contains the set {u ≥ 1}. The weighted volume of the latter
set satisfies the assumption of Lemma 3.2, we therefore arrive at

sup
L R

2

φ0 ≤ C RV − 1
2 (L R)

(∫

L R

(w1|∇x ′φ0|2 + w1w2(∂λφ0)
2)dx ′dλ

) 1
2

.

Using the specific form ofψ cf (3.12) and splitting suitably the integral cf (3.12) we estimate
∫

L R

(w1|∇x ′φ0|2 + w1w2(∂λφ0)
2)dx ′dλ

≤ C

R2m

∫

L R

(w1|∇x ′ϕ|2 + w1w2(∂λϕ)2)dx ′dλ + C

R2 V (L R),

Using also the estimate (3.2),
∫

L R

(w1|∇x ′ϕ|2 + w1w2(∂λϕ)2)dx ′dλ ≤ C RN−1+m,
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we eventually conclude

sup
L R

2

φ0 ≤ C RV − 1
2 (L R)R

N−1−m
2 + C = C(R1− m

2 + 1).

Since m > 2 the first term in the right hand side tends to zero as R tends to +∞. Therefore,
there exists R0 > 0 such that supL R

2

φ0 ≤ C , for any R ≥ R0.

Whence in a smaller set {|x ′| < R
2 , ϕ(λ) <

(
α
2 R

)m}, we deduce that e−φ0 ≤ ψ ≤
u + (

α
2

)m . As a consequence for α small enough, there exists δ > 0 such that infL αR
2

u ≥ δ,

for any R ≥ R0 and this completes the proof. �


As usual we define

oscL R u := sup
L R

u − inf
L R

u = MR − m R .

Lemma 3.4 (Oscillation decrease) Suppose w1, w2 satisfy (H2) for some θ > 0 and m > 2.
Let u be a weak solution in L R with

0 ≤ u ≤ 2,

and u ∈ H1
w1,w2

(L R) for every R ≥ 2. Then, there exists α ∈ (0, 1) and R0 ≥ 2 such that

oscLαR u ≤
(
1 − δ

2

)
oscL R u (3.14)

for some δ > 0 and all R ≥ R0. The constants α, R0, δ depend only on the constants of the
problem, that is on N , θ, m, c1, c2.

In fact, the α and δ appearing in the Lemma are the same as the ones given by Theorem
3.3.

Proof In L R we define the following nonnegative solutions

u1 = u − m R

MR − m R
and u2 = MR − u

MR − m R
.

Note that u1 + u2 = 1 and 0 ≤ 2ui ≤ 2, i = 1, 2. Therefore either V ({2u1 ≥ 1} ∩ L R) ≥
1
2V (L R) or else V ({2u2 ≥ 1}∩ L R) ≥ 1

2 V (L R). Suppose the first one is true. We then apply
Theorem 3.3 to 2u1 to deduce that there exists α ∈ (0, 1) and R0 ≥ 2 such that for any
R ≥ R0, there holds

in fLαR2u1 ≥ δ ⇔ in fLαR u1 ≥ δ

2
.

Therefore

ma R − m R

MR − m R
≥ δ

2
⇒ oscLαR u = MαR − mαR ≤

(
1 − δ

2

)
oscL R u.

We argue similarly in the case V ({2u2 ≥ 1} ∩ L R) ≥ 1
2 V (L R). �


We are now ready to give the proof of Theorem 1.4
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Proof of Theorem 1.4 Let u be a bounded solution. We may assume that it is nonnegative and
we consider the function v = 2u

‖u‖L∞(S)
so that 0 ≤ v ≤ 2.

For R large enough we apply iteratively the Lemma 3.4 to obtain

oscL R v ≤
(
1 − δ

2

)k

oscL R
αk

v ≤ 2

(
1 − δ

2

)k

, k = 1, 2, . . . .

Therefore

oscL R u ≤
(
1 − δ

2

)k

||u||L∞(S), k = 1, 2, . . . .

Passing to the limit k → ∞ we conclude that u is constant in L R for any R ≥ R0, hence in
S.

4 The distance function weight and final remarks

In this section we first make specific choices of the weights w1, w2 and give the proof of
Theorems 1.1 and 1.2. We next present some extensions of our results.

We make the following choices

w1(λ) = (1 − |λ|)α and w2(λ) = (1 − |λ|)ν .
Proof of Theorem 1.1 It is a consequence of Theorem 1.3. For part (a) we note that α > −1
is equivalent to w1 ∈ L1(0, 1) and ν < 1 − α is equivalent to (w1w2)

−1 ∈ L1(0, 1). Since

α > −1 and ν < 1 − α it follows that ν < 2, which is equivalent to w
− 1

2
2 ∈ L1(0, 1).

Similarly, for part (b) when 1− α ≤ ν < 2 then (w1w2)
−1 /∈ L1(0, 1), and (H1) is satisfied

by choosing θ = α+ ν
2

1− ν
2

≥ 1. �


We next have

Proof of Theorem 1.2 It is a consequence of Theorem 1.4. As we have seen, α > −1 is

equivalent to w1 ∈ L1(0, 1). We next note that (w2)
− 1

2 /∈ L1(0, 1) corresponds to ν ≥ 2.
Then,

ϕ(λ) = 1 +
∫ |λ|

0
(w1w2)

−1(t)dt = 1 +
∫ |λ|

0
(1 − |t |)−α−νdt ∼ (1 − |λ|)−(α+ν−1),

for |λ| ∼ 1. When α+ν−1
m − ν

2 + 1 > 0 ⇔ m(ν − 2) < 2(α + ν − 1), then

ϕ− 1
m (λ)w

− 1
2

2 (λ) ∼ (1 − |λ|) α+ν−1
m − ν

2 ∈ L1(0, 1).

Moreover in this case
∫ 1

|λ|
ϕ− 1

m (t)w
− 1

2
2 (t)dt ∼ (1 − |λ|) α+ν−1

m − ν
2+1.

It follows that (H2) holds if we choose θ such that

θ

(
α + ν − 1

m
− ν

2
+ 1

)
= α + ν

2
− α + ν − 1

m
. (4.1)
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If m is such that

α + ν − 1

2
>

α + ν − 1

m
>

ν

2
− 1,

then, since α > −1 and ν ≥ 2we have that α+ν−1
α+ ν

2
< 2 and it follows from (4.1) the positivity

of θ . Hence, all hypothesis of Theorem 1.4 are satisfied and the result follows. �

Wenext give examples ofweightsw1,w2 that satisfy the hypotheses of Theorem1.3(b) and

are not covered byTheorem1.1(b). To this endwe considerweightswhichwhen 1
2 ≤ |λ| < 1,

they behave like

w1(λ) ≈ (1 − |λ|)α(ln(1 − |λ|)−1)β,

w2(λ) ≈ (1 − |λ|)ν(ln(1 − |λ|)−1)μ,

whereas for |λ| ≤ 1
2 both weights are positive, bounded and stay away from zero.

Straightforward elementary calculations show that

Lemma 4.1 All assumptions of Theorem 1.3(b) are satisfied provided that
either α = −1, β < −1, ν = 2, 2 < μ ≤ 1 − β and choosing θ = 2β+μ

2−μ
≥ 1,

or, α > −1, ν = 1 − α, β = −μ, μ ∈ R, and choosing θ = 1,
or, α > −1, 2 > ν > 1 − α, β = −μ(1+α)

2−ν
, μ ∈ R, and choosing θ = 2α+ν

2−ν
≥ 1.

Remark (i) Our Liouville type results in the supercritical case, that is α > −1 and ν > 2 of
Theorem 1.2, can be transformed to Liouville type results for the isotropic equation of the
form

div((1 + |s|)τ∇v(x ′, s)) = 0, in R
N for τ = 2α + ν

2 − ν
; (4.2)

here τ can be any number in the interval (−∞,−1). This can be done via the change of
variables

s =
∫ λ

0
(1 − |t |)− ν

2 dt, v(x ′, s) = u(x, λ).

It follows that every bounded weak solution of (4.2) is constant.

(ii) In the critical case, that is ν = 2, using the same change of variables, one can obtain
Liouville type results for the isotropic equation of the form

div(eτ |s|∇v(x ′, s)) = 0 in R
N , τ = −(1 + α),

here τ can be any number in the interval (−∞, 0).
We note that the above results do not follow by the ones by Bella and Schäffner [2] but

they do follow from Theorem 2.1 in [M1].
(iii) Similarly, in the subcritical case, that is 1−α ≤ ν < 2, one obtains Liouville type results
as in Theorem 1.1(b), for the equation

div((1 − |s|)τ∇v(x ′, s)) = 0, in R
N−1 × (−1, 1), τ = 2α + ν

2 − ν
;

here τ can be any number in the interval [1,+∞).
In an other direction, we note that the same results with Theorems 1.1 and 1.2 hold for

more general operators that can be thought of as perturbations of the operators we considered
so far. More precisely, let

L′
α,ν u := div(Bα,ν(x ′, λ)∇u)

123



Liouville type properties for a class of weighted anisotropic… Page 25 of 27   263 

=
N−1∑

i, j=1

∂

∂xi

(
Ai, j (1 − |λ|)α ∂u

∂x j

)
+ ∂

∂λ

(
AN ,N (1 − |λ|)α+ν ∂u

∂λ

)

+
N−1∑

j=1

∂

∂λ

(
AN , j (1 − |λ|)α+ ν

2
∂u

∂x j

)
+

N−1∑

i=1

∂

∂xi

(
Ai,N (1 − |λ|)α+ ν

2
∂u

∂λ

)
,

(4.3)

in

S = R
N−1 × (−1, 1) N ≥ 2,

where the N × N matrix A = (Ai, j ) has bounded and measurable entries Ai, j = Ai, j (x ′, λ)

for (x ′, λ) ∈ S, and it is symmetric and uniformly elliptic, that is, for some constants 0 < c0 ≤
C0 the following inequalities hold true for any ξ = (ξ ′, ξN ) ∈ R

N−1 × R and (x ′, λ) ∈ S:

c0|ξ |2 ≤
N∑

i, j=1

Ai, j (x ′, λ)ξiξ j ≤ C0|ξ |2.

Equivalently, we have

c0(1 − |λ|)α(|ξ ′|2 + (1 − |λ|)ν |ξN |2)

≤
N∑

i, j=1

(Bα,ν)i, j (x ′, λ)ξiξ j ≤ C0(1 − |λ|)α(|ξ ′|2 + (1 − |λ|)ν |ξN |2).

Clearly, the model operatorLα,ν , defined in (1.2), follows fromL′
α,ν in the special case where

Ai, j = δi, j , that is, when A is the identity matrix. By quite similar arguments one can prove

Theorem 4.2 Let α > −1.
(a) If in addition 1 − α ≤ ν < 2, then any nonnegative weak solution of L′

α,νu = 0 in S is
constant.

(b) If in addition ν ≥ 2 and

Ai,N do not depend on xi , i = 1, 2, . . . , N-1,

AN ,N does not depend on λ,

every bounded weak solutions of L′
α,νu = 0 in S is constant.

We can also consider the more general operator

L′ u := div(B(x ′, λ)∇u)

=
N−1∑

i, j=1

∂

∂xi

(
Ai, jw1

∂u

∂x j

)
+ ∂

∂λ

(
AN ,N w1w2

∂u

∂λ

)

+
N−1∑

j=1

∂

∂λ

(
AN , jw1

√
w2

∂u

∂x j

)
+

N−1∑

i=1

∂

∂xi

(
Ai,N w1

√
w2

∂u

∂λ

)
, (4.4)

in

S = R
N−1 × (−1, 1) N ≥ 2
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where the N × N matrix A = (Ai, j ) has bounded and measurable entries Ai, j = Ai, j (x ′, λ)

for (x ′, λ) ∈ S, and it is symmetric and uniformly elliptic, that is, for some constants 0 <

c0 ≤ C0 the following inequalities hold true for any ξ = (ξ ′, ξN ) ∈ R
N−1 × R and for any

(x ′, λ) ∈ S:

c0|ξ |2 ≤
N∑

i, j=1

Ai, j (x ′, λ)ξiξ j ≤ C0|ξ |2.

Equivalently

c0w1(|ξ ′|2 + w2|ξN |2) ≤
N∑

i, j=1

Bi, j (x ′, λ)ξiξ j ≤ C0w1(|ξ ′|2 + w2|ξN |2).

We recall that wi = wi (|λ|), i = 1, 2. The model operator L in (1.1) follows from L′ in the
special case where A is the N × N identity matrix. By quite similar arguments we have

Theorem 4.3 (a) If w1, w2 satisfy (H1) for some θ ≥ 1, then any nonnegative weak solution
of L′u = 0 in S, is constant.
(b) If w1, w2 satisfy (H2) for some θ > 0 and m > 2 and in addition,

Ai,N do not depend on xi , i = 1, 2, . . . , N-1,

AN ,N does not depend on λ,

then any bounded weak solution of L′u = 0 in S is constant.
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