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Abstract

We establish Liouville type results for weighted anisotropic elliptic equations in divergence
form in the strip R¥Y~! x (—1,1), N > 2. The weights depend on one variable and they
include the case where they are powers of the distance functions to the boundary of the strip.

Mathematics Subject Classification Primary 35J70 - 35B53; Secondary 35D30 - 35B05

1 Introduction and main results

In this work our interest is to prove Liouville type results for the anisotropic elliptic operator
Lu = wiAyu ~+ 9y (wiwrdyu), (1.1)
where
x=x\ eSS =R"V"Tx(=1,1), N=>2,

and w; (A) = w; (JA|) fori = 1, 2, are locally positive and bounded weight functions. That is,
we look for conditions on wj, wy under which the only bounded weak solutions of Lu = 0
are the constant solutions.

Let us recall the uniformly elliptic case

N
> i(aij(x)dju) =0,

ij=1
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with
N
cal? < Y ajEE <l VEeRY, ¢ e >0.
i,j=1

The pioneering work of De Giorgi and Moser [6, 20, 21], see also [13], played a crucial
role in establishing many properties of weak solutions such as Harnack inequality, Liouville
type results, Holder continuity etc. Several extensions of these results were made by various
authors in a number of directions, see e.g., [7, 11, 12].

To discuss the nonuniformly elliptic case we denote by a(x) the matrix with entries a;; (x)
and set

.. EraW)E _ la(x)E|?
k(x) := inf —_—, w(x) = sup ————.
geRY €] gery & - a(x)é
Assume that for p, g € (1, +ool, u € LI RN), k7' e L] (RV), and

. —(i+1 _
lim sup | Bg| (5+7) Il Le gy I ILacsey < oo.
R—o0

Under essentially these assumptions, and provided that
1 1 2

—+-<

p g N
Trudinger [24], established Harnack inequality and Holder continuity for nonnegative weak
solutions, see also [22]. Quite recently the same results have been proved by Bella and
Schiffner [2] under the weaker condition

I 1 2

» + p < N_1
As a consequence, every bounded weak solution is constant, cf Corollary 4.4 of [2] for the
precise result and the definition of weak solutions.

There is a recent interest in the study of anisotropic operators see e.g. [5, 14, 16, 17]. Our
motivation for studying (1.1) comes from the work of Caffarelli and Cordoba [3] in phase
transition analysis and is a continuation of [9] and [19]. In [9] the aim was to establish various
Sobolev type inequalities for anisotropic weighted operators whereas in [19], Liouville type
Theorems for (1.1) are presented, for particular choices of the weights.

We first consider the model anisotropic elliptic operator

s

Lo = (1 =AD" Agu + 0,((1 = AN ) (1.2)

for (x’, 1) € S := RN~! x (=1, 1). We focus our attention only in the case « > —1 and we
state the results in three cases, the subcritical one, thatis v < 2 and the critical or supercritical
case corresponding to v = 2 and v > 2 respectively (Fig. 1). Then, our first result reads

Theorem 1.1 (Subcritical case) Let o > —1.
(@) If v < 1 — « then the function

A
u@) = f (I — e~ Vdt,
-1

is a nonnegative (and bounded) weak solution of Ly, yu = 0in S.
(b) If 1 — a < v < 2 then any nonnegative weak solution of Ly vu = 0 in S is constant.

@ Springer



Liouville type properties for a class of weighted anisotropic... Page3of27 263

Fig.1 For @ > —1, the lines

v =1 —« and v = 2 define three
regions in the plane a—v. In the
pink region (subcritical) there
exist nonnegative non constant
solutions. In the purple region
(also subcritical) all nonnegative
solutions are constants. Finally in
the green region (supercritical) as
well as in the case v = 2 (critical)
all bounded solutions are
constants

When v > 2 our result reads

Theorem 1.2 (Critical and supercritical cases) Let « > —1 and v > 2. Every bounded weak
solutions of Ly, yu = 0in S is constant.

The critical case v = 2 in the case « = 1 was already treated in [19]; in such a case the
validity of a Liouville type result entails a positive answer to De Giorgi conjecture under the
additional assumption that level sets are Lipschitz graphs, see also [1], [3].

An operator like £, , when v = 2« and 0 < o < 1 (which corresponds to the subcritical
and critical case in the present terminology) is naturally related to the phase transition analysis
in [3].

When 1 —a < v < 2 our result is stronger than establishing that the only bounded weak
solutions are the constant ones and is proved by means of an elliptic Harnack inequality.

We note that our results are outside the range of applicability of the ones by Bella and
Schiffner [2] mentioned above.

We next consider the more general elliptic operator (1.1). We assume that w; (A) = w; (|A]),

i=1,2—-1<XA<l,andw; € L?z?c(_l’ 1). We only consider the case w; € LI(O, 1) and
_1
we state the results in two cases, the subcritical one, which corresponds to the case w, 2 e
1

L'(0, 1) and the critical or supercritical case which corresponds to the case w; 2 ¢ LY0,1).
Before stating the results we introduce the following two assumptions.
1

(H1) Suppose w; € L'(0, 1), (w2)"2 € L'(0, 1), (wiw2)~! ¢ L'(0, 1) and there exists
6 > 1 and constants ¢y, ¢, > 0 such that for any A € (—1, 1) there holds

bl ¢ 1 o 0
‘1 (/l;l w, 20)5”) < wi(ADwy (IAD) <2 </kl w, 2(;)d;> )

(H2) Suppose wi € L'(0, 1) and (w2)~2 ¢ L'(0, 1) and define

[A]
o) =1+ [ (wiwy) " (1)dr. (1.3)
0

_1
We assume that there exists m > 2 such that qf% W, 2 ¢ LY0,1) and 6 > 0 such that for
some constants ¢y, ¢ > 0 and any A € (—1, 1) there holds
0 1

1 1 1
c </| </f$(t)w2 2(t)dt> < wl(lkl)wé(lkl)ﬁ(lkl) <o (/|

0
o (1w %)dr) .
Al Al
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Notice that if w; € L'(0,1) and (wz)’% ¢ L0, 1) then necessarily (wiwp)™ ' ¢
1 1

L0, 1), as it follows easily from the decomposition wz_ 2 = wl7 (wlwz)_% , whence
o) > +oo as |A] — 1.

The results then are the following
Theorem 1.3 (Subcritical case) () If wy € L'(0, 1), (w2)~2 € L'(0, 1) and (wiwn)~! €
L0, 1) then the function

A
u(h) = / (wiwz) N (n)dt,
-1

is a nonnegative (and bounded) weak solution of Lu = 0in S .
(b) If wy, wy satisfy (HI) for some 6 > 1, then any nonnegative weak solution of Lu = 0 in
S is constant.

Also,

Theorem 1.4 (Critical and supercritical cases) If wi, wy satisfy (H2) for some 0 > 0 and
m > 2, then any bounded weak solution of Lu = 0 in S is constant.

The result of Theorem 1.4 is weaker than the one in Theorem 1.3(b). Nevertheless, the
result of Theorem 1.4 is optimal and one can not have a Liouville result similar to Theorem
1.3 for nonnegative weak solutions. Indeed, if w, w, are as in Theorem 1.4 then the function

o) =1+ [ (wiwy) N (0)dt,
0

is a nonnegative weak solution of Lu = 0 in S, which is actually unbounded. This function
is in the proper energy space, see Sect. 3. Hence the requirement of boundedness of weak
solutions in Theorem 1.4 cannot be replaced by the nonnegativity of weak solutions.

To prove Theorem 1.3(b) we establish a Harnack inequality for nonnegative weak solutions
u(x) of

Lu=0, inCg:={x'| <R, |x <1} (1.4)

The Harnack inequality follows once one establishes Poincaré and Sobolev inequalities as
well as a doubling volume growth condition as is shown in [4, 7]. See also [12, 23] for
extensions on complete Riemannian manifolds. In the present work we follow an adaptation
made in [8], cf Theorem 2.11 there. In particular the proper energy space is now given by
the following norm

2 P 2 2 2 /
Il = [, (@ T 4 u2o0%) mid'ar
To prove Theorem 1.4 we make use of the oscillation decrease method, cf Sect. 4.3 of
[13], as adapted in Theorem 1.4 of [19] to the anisotropic setting. This is done in Sect. 3.

In Sect. 4 we give the proofs of Theorems 1.1 and 1.2. We also discuss various extensions
of our results.

@ Springer



Liouville type properties for a class of weighted anisotropic... Page50f27 263

2 Subcritical case: Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3(b). This will be done by means of an elliptic
Harnack inequality, using the Moser iteration scheme, as adapted to isotropic degenerate
elliptic operators on bounded domains in [8]. There is a difference in the cut off functions
used here as compared to the ones used in [8]. In this work our cut off functions take into
account the geometry of the cylinder and they depend only on x’. We combine this with a
density argument similar to [8] that takes care of the A direction.

The three ingredients needed for the scheme to work are the doubling volume-growth
condition, a local weighted Sobolev inequality as well as a local weighted Poincaré inequality.

The doubling property follows easily from the fact that

1
V(CR):/ widx'd\ = (/ dﬂ)/ widh = CRN"1, 2.1
Cr B -1

for some uniform constant C (independent from R) and any R > 0. Here we denote with B}
the Euclidean ball of radius R in RY~!. We also denote the half cylinder,

Cr=CrN{x>0={x| <R, 0<i<l}

For the Moser iteration scheme to work, we will also need the analogue of Theorem 2.11
of [8]. We first introduce the following norm

“””%ﬁul o ::/c (u® + |Voul* + wr (03u)?) widx'da,
LW R

and we denote by Hol, (CRg) the completion of C3°({|x’| < R}) under the above norm,

wi, w2
whereas Holo wy ., (CR) is the completion under the same norm, of functions that in addition
have compact support in A € (—1, 1), that is

———— Iyt
H()l()’wl’w2 (Cr) = CSO(CR) Hiby wy (CR)
‘We then have

Proposition 2.1 (Density) Suppose wi, wy satisfy (HI1). Then

1 1
H(),w],w2 (CR) = H()(),wl,wz(CR)»

that is, we are free from boundary conditions at |\| = 1.

Proof We change variables by defining

1 1 -1
szsm:(/ wﬁ(r)dr)(/ w;%(odt) . s =FEL N, 22)
A 0

In the new variables, domain C ; becomes (using calligraphic C)
CH={IxI<R 0<s<1}

We recall that A = 1 corresponds to s = 0. The norm now takes the form

/+ (u® + |Voul* + Bu)?) s%dx'ds,
C

R

2 —
||u||H1(C;,s9dx’dS) H
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and H l(C,}f,s“)alx/als) is the corresponding function space. In addition we denote by
HO1 (€}, s%dx’ds) the completion of C(x'| < R, s > 0) under the above norm We
need to prove that any function in H'! (C;, s%dx’'ds) can be approximated by functions in
Hy(Ck, s%dx'ds).

By Theorem 7.2 of [15] it is known that the set C*° (CIJQ) is dense in HI(C;, s%dx'ds).
Hence for any v € Hl(C}“, s?dx’ds) and any ¢ > 0, there exists w € CW(C;F) such that
[lv — w|| g1 < €. We then define the function

0 if s <,
or(s) = l—l—llnn((];:)) ifki2 <s <%,

1 if s> 1

and set

Then,

llw = well31 = [lw(l — @o)l13
2/ w9+n@wﬁ+mmwﬁx1—¢@%%uus+2/+w%m%fﬁdﬂm
Ck Ck

52/ (W2 + |Vow|* + 0sw)?) sdx'ds
{lx'|<R, O<s<g}

1
CRV! (/ a2 "
FOR My, |, g

For 6 > 1 there holds

1 ) 1o/t
/1 2anioe ® dsf““*(*) N2
L<s<} s7(In(k)) 6 —1\k (In(k))

whereas for0 =1,

1 1 1
[,y e o= o fy o =
1} $2(In(k))? <1n(k)) el P nw
Thus, for & > 1 and k large enough we have ||v — wg|| g1 < 2€ and the result follows. 0O
Concerning the local weighted Sobolev inequality we have

Lemma 2.2 (local weighted Sobolev) Suppose w1, wy satisfy (HI). Then, for q = 2(N+6)
there exists a positive constant Cs such that for any R > 1 and for all f € C§° (Ix'] < R})
there holds

2
q / 4 2 2] 2 2 /
|flfwidx’dr | < CsR*(V(CR))? (IVe f17 + w2(85 £)°) widx"d.
Cr Cr
(2.3)
Proof 1t is clear that it is enough to prove the inequality in the half cylinder,

Cr=CrN{x>0={x| <R, 0<i<l}.
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Thus, we will prove that for any f € C3°({|x'| < R})

2
q
(/ Ifl"wldx’dk) < CsRA(V(C}y)i ! / (IVa 12 + w28, 1)) widx'd.
CR CR

2.4)
We next change variables by (2.2). We recall that domain C ;{ becomes
CH={IxI <R, 0<s<1}

with V(C;{) = V(C;{) = ¢yRN-L Taking into account (H1), inequality (2.4) takes the
following equivalent form

q 2
(/+ |g|qs9dx’ds> < Cs RAV(Chy)a! /+ (IVegl + (8,9)%) s%dx'ds. (2.5)
C

CR R

For R = 1 the above inequality is written

2
g 2
(/+|g|"s9dx’ds> <Cs vy /+(|Vx/g|2+(Bsg)z)sedx'ds. (2.6)

G 4

This is true by Proposition 2.1 of [9] with OB = 2A = 6 there. As a consequence ¢ =
2(N+6)
N-2+0"

To establish (2.5), after a rescaling in the x’ variables the inequality takes the form

d 2_
(/C+ Igl"s"dx’ds) < Cs (V) 1/(:+ (IVegl? + R* (358)%) s"dx'ds.
1

1

This is true by (2.6) and the fact that R > 1. This completes the proof. O

We next consider the local weighted Poincare iequality. If

f = VCo e, f(x'A) widx'dr

we have

Lemma 2.3 (local weighted Poincare) Suppose w1, wy satisfy (H1), then there exist positive
constant Cp such that for any R > 1 and for all f € C'(Cg) there holds

/ |f — flPwidx'dx < CpR? / IV £12 4+ w2 (8. £)?) widx'd, Q2.7)
Cr

Cr

Proof The result will follow once we establish that forany f € C!(Cg) we have the following
inequality in the upper half cylinder C;,

/+ |f — €|*widx'd) < CpR? /+ (IVe £ + wa (8, £)?) widx'd (2.8)
CR

CR
for some positive constant Cp (independent on R), with the choice

f|x/|<R f(x',0)dx’
RNfl

WN -1
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A similar inequality will hold in the lower half cylinder C, with the same choice of &. Then,
since

/ |f—f|2w1dx’dk=min/ |f — £1Pwidx'dA,
Cr §€R Jcp

the required inequality in Cg will follow.
Making use of the change of variables (2.2) and taking into account (H1) inequality (2.8)
takes the following equivalent form (modulo absolute constants)

f lg — £)*s%dx'ds < CpRZ/ (IVegl* + (3,8)%) s”dx'ds.
{|x"|<R, 0<s<1} {|x’|<R, 0<s<1}

2.9)
‘We note that

_ Juvizr 8@ Dax’
- a)NflRN_l

§

Once again it is enough to establish the result for R = 1. The general case then follows by
scaling in x” and using the fact that R > 1, as it was done in the proof of (2.5).
For s € [0, 1] we define

f{lxlkl}g(x/,s)dx/

g(s) = ,
WN-1
and note that £ = g(1). There holds
/ 1" 5) — £ Psd'ds
{Ix'|<1, O<s<1}
< 2/ lg(x’,s) — g(s))*s%dx'ds + 2/ 1g(s) — g(1)|>s?dx'ds.
{lx’]<1, O<s<1} {lx’]<1, O<s<1}

(2.10)

We next consider the first integral on the right hand side. By Poincaré in the x’ variables we
have

1
/ g0 5) — §(s)Psdx'ds = / s ( / e, 5) — g<s>|2dx’) ds
{Ix'|<1, O<s<1} 0 |x’|<1

< C/ |Vx/g(x/,s)|250 dx'ds.
{|x'|<1, 0<s<1}
(2.11)

Concerning the second integral on the right hand side of (2.10) we have the following one
dimensional Poincaré

’

L . 1 T
/0 1865 — 3(D)Ps dszfo (s — 3(D)| (9+1> ds
2

1
=—— | (&) —g(1)3 (s)s"*!
= 9+1/0 (&(s) —&(1))g (s)s" " ds

2 ' = 1N\2 042 : Y :
Sm</0 (8(s) —g(M)"s dS) </0 g (s)s dS)
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2 ! LN §
o (/ (3(s) — g(1)*s” dS> (/ g 2(s)s? ds) ,
1\ A

/ 18() — §(Ps" ds < (9+1)2/ §2(5)s" ds.

from which it follows that

IA

whence,

/ 12(s) — g()|>s%dx'ds < 4 (058)%s%dx'ds.
(Ix']<1, 0<s<1} ©+1)? (Ix'|<1, 0<s<I}

2.12)

Combining (2.10), (2.11) and (2.12) we obtain (2.9) with R = 1 and this completes the
proof. O

We are now ready to study positive weak solutions of £ # = 0 in the proper energy space
H!  (Cg),forall R > 1.In particular, functions u € H!  (Cg) satisfy

wi, w2 wy, w2

/ (w1 VyuVyg + wiwr0,ud) @) dx'dy = 0,
Cgr

for any test function ¢ € H010 w1 (CR).
As usually, u € H!

Wi (CRr) is a weak subsolution in Cg provided that

(W1 VyuVy@ + wiwrdyudye) dx'dr <0,
Cr

forany0 < ¢ € Holo, wy ., (Cr) and similarly for the weak supersolution, reversing the above
inequality.
We note that by Lemma 2.1, under the assumption (H1) of the present section, we have

1
H()lo,wl,wg (CR) = HO,wl,u)z(CR)'

Theorem 1.3 (b) is a consequence of the following Harnack inequality, whose main ingre-
dients are the local weighted Sobolev inequality, the local weighted Poincaré inequality and
the density property stated above.

Theorem 2.4 (Harnack inequality) Let N > 2 and suppose that wi, wy satisfy (HI). Let
u e Hul)1 w, (CR) be a nonnegative weak solution of Lu = 0 in Cr. Then for any R > 1 and
any 0 < o < 1, there holds

supu < Cy inf u,
Cor Car

where Cy = Cyg (N, «, 0, c1, ¢2) is a positive constant.
The proof of this, uses several auxiliary results. We initially consider functions u, =
u + & > ¢ > 0, so that negative powers of u, are in the appropriate function spaces. In the

final stage, when proving Theorem 2.4 we will send ¢ to zero. For simplicity we drop the
subscript € in the Lemmas that follow.

@ Springer



263  Page 10 of 27 S. Filippas, L. Moschini, A. Tertikas

Lemma 2.5 (Local boundedness) Let N > 2, suppose that wy, wy satisfy (HIl) and u €
HJ)I .w, (CR) be anon negative subsolution of Lu = 0in Cg . Then forany R > 0, & € (0, 1)
and p > 1 there exists a positive constant C = C(N, 0, c1, c2) such that

G2+ N\
supu? < C " < u”wnix’d)»), (2.13)
Cur (] —a)ZO[T V(CR) Cgr
where k = leoiz > 1.

Proof We consider a function £(x’, 1) = £(x) > O such that & € C{°(Bj), By = {x' €
RN=1: x| < R}. Then, for 8 > 0, function ¢ = £*uf € Hy, , (Cg) is an admissible
test function. Using the computations

1 B—1 1 1 g4
wiVouVy (E2uP) = Bun 2uP IV, uV,ou +2 (ﬁwfsuTVx’“> (ﬁwf“%ws) ’
wlwzaluax(é’zuﬂ) = ﬁwlwzézuﬂ_]a;‘uaw

the definition of weak solutions and Young inequality we arrive at

R

1
B—o f (i Vou® + wiwa (00)%) u?~'g%dx'dp. < — / wi [V & PPt dx' d.
CRr €Jc

B+1
2

We choose € = /2 and set v := u 2 . The previous inequality yields

2 2 / B+1) 2.2 ,
X 2 = X .
/ (Ve (E0) 12 + w2 (05, (Ev))?) widx'di. < 2[(/3) + 1}/ IV E[Pv2widx'd)
CR CR

We next choose a function n € C*°(0, 1) such that n(y) = 1 for y < s and n(y) = 0 for

x|

y>t,with0 <s <t < 1. Wetake £(x') = n (T) Using the local weighted Sobolev
inequality of Lemma 2.2, we get

1 1
3 CcoVil(C 1\?
(/ uBDr wldx/dk> < Cs 0 (zzR) (,3+ ) 4 / WP widxd
Csr (t - S) /3 Cir

where C is a universal constant and k = % > 1 with 8 > 1 as defined in (H1). Making
use of the doubling property, as well as of the fact that V(Csg) = c(sR)N!, we deduce

that
: 1
( / uBHDx wldx/dk)
V(CsR) Jei

CoC 1\? 1
< 0 SAH <ﬂ+ > +1| — ubftl widx'dA.
(t— 5)257 B V(CiRr) Cir
Fora € (0,1)and e <s <t <1 we have
1 1
< u B+ wldx/d)»>
V(Csr) Jeoog
CoC 1\? 1
< 0 SAH (ﬁ + ) +1| — uftl widx'dA.
(t — )2« B V(Cir) Jeip
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for a universal constant Cy. Taking s,,,+1 = a+r]n;+°§ andt,, = a+’11;+”; =su,m=0,1,2,...
the above inequality is written as

1

1 ‘ 1
_ w0 yax'dn] < Ap [ ——— uPt widx'da ) .
14 (Csanrl R) C'Ym+l R 14 (Csm R) CsuR

(2.14)
where
(m+ D2(m +2)2CoCs | (B+1)?
Ay = T +1].
(1 —a)a« B
‘We define

1

1 m .
I(m) =|—— u<"BED ydx'd ,

V(Cs,r) Jc,,x

so that we rewrite (2.14) as
1
Im+1) < AY 1(m), m=0,1,2,....
We next iterate the above inequality to obtain

1(c0) < (]_[ A,fj") 100).

m=0

The infinite product is easily seen to be finite, therefore taking p = 8+ 1 > 1, we end up

with

G2+ N\

supu? < C P! T ( upwldx’dk).
Car (1 —a)a < V(CR) Jcg

‘We next have

Lemma 2.6 Let N > 2 and suppose that wy, wy satisfy (HI). Let u € H! (CR) be a non

wi,wy
negative, supersolution in Cg. Then for any R > 0, any 0 < a < 1, there exists a positive

constant C = C(N, 0, c1, ¢2) such that

GP+1\ T
supuf < C | —2 — ( u!’wldx’cm), (2.15)
Car (1 —a)a« V(CR) Jcy
forany0 < p < 1, and
GE?+1\"T
supu~? < C Pl — ( u_l’wldx’dk) , (2.16)
Car (1 —a)a < V(CR) Jcg
N+6

forany p > 0, where k = Nyo—3 > 1.
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263  Page 12 0f 27 S. Filippas, L. Moschini, A. Tertikas

Proof The proof is similar to the proof of the previous Lemma. We may suppose that u is
bounded below by a positive constant. In particular u? e Hl})l’wz (Cg) forany B < 0. We
againuse ¢ = £2uf € H&wl s (CR) as atest function and we similarly arrive at the analogue

of (2.14),

1
# uPEDE pdx'dr) < A, ; wPtl widx'd)r ) .
V(Cs,1R) Cop1 R V(Cs, ) Je,, &

where

o (m 4 2)*CyCs <ﬁ+1>2+1
T e |\ B '

In case B > —1, we set p = B + 1 and we conclude the result as before, for the case
O0<p<l.
In case B < —1, then the iteration takes the form

1

1 +1 Y
—_ u<" T BED wdx do.
V(Cs,11R) Copir R

1

-7 1 m K’ﬂ
< AY" 7/ u"BED 4y dx’d ,
V(Cs,R) Je,,x

with § + 1 = —p and again we conclude as before. O
The following Lemma is an adaptation of a similar result in Theorem 4.15 of [13].

Lemma 2.7 Let N > 2 and suppose that wi, wy satisfy (HI). Let u € H! (CR) be a non-

wi,wy
negative supersolution in Cg. Then for any a € (0, 1) there exists po = po(a, N, 6, c1,c2) €

(0, 1) such that

(/ uho wldx’dk) (/ u—ro wldx’d)»> <4V?*(Cap). 2.17)
Cuor Cur

Proof We initially consider u, = u + ¢ > ¢ > 0. After proving the estimate, we send ¢ to
zero. For simplicity in what follows we omit the subscript €.
For some pg = po(a, N, 6, c1, c2) > 0 we will establish the following estimate

/ Py dx’d) < 2 V(Cyr), (2.18)
Co(R
where,

v=Inu—InL =In %, with InL := Vfl(CaR) Inu widx'dh.
CotR

Once (2.18) is true for some pg we may assume that pg € (0, 1). Since

(Polvl? | (polo)"

polvl _
e =14 polul + = n! ’

it is enough to establish

f lolfwidx'dr < CEeF IV (Cyr), (2.19)
CD(R
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where Co = Co(N, 0, c1, ¢2, @) is a positive constant. Then, (2.18) will follow by choosing
po = (2Coe) ™!, since

k

1

/ %wldx’dk < ?V(CaR)’ k=1,2,....
Car .

To prove (2.19) we take as a test function ¢ = £2u~! in the definition of  as a supersolution,
with £(x') = 7 ('LR‘) neC®0,1),n(y) = 1fory <a,0 <a < 1and 5(y) = 0 for
y > 1. We get

/ (IVevl* + w2 (030)°) widx'da < f (IVerol” + w2(8,0)°) E2widx'dd.
CO(R CR

<4 / IV &Pwidx'd. (2.20)
Cpr
We next use the local weighted Poincaré inequality of Lemma 2.3, to get

/ v:2widx'dh < 4CP(aR)2/ \VeElPwidx'dh < —————=V(Car).
CuR Cgr at T (1 _a)

and by Holder inequality

1
/ [vlwidx'd) < V%(CO,R) </ vzwldx’dk>2 < %V(CQR). (2.21)
Cur Cur a2 (1 —a)
These prove (2.19) fork =1, 2.
It remains to prove it for any integer kK > 3. We now use as a test function in the definition
of u as a weak supersolution, the function ¢ = ézu_l |vm|2ﬂ, forv, = —-mifv < —m,
vy = vif [v] < m,and v, = m if v > m. We have ¢ € Hol’ (Cr) N L*®(Cg) and

wi, w2

E2 v P (IVev]* + w2 (330))widx'dr
Cpr

<2B) | (VouVelvm| + w208 vm v [ E2widx'd
Cr

+2/ EV UV E v |PPwidxd.
Cgr

Notice that VvV [Vm| = Vi Ve [um| < [Vyvm|? ace.in Cg, and similarly for the partial
derivative with respect to A. Young’s inequality implies
28 —1

1
26—1 28 26 __
2B vl < T (U |7 + % 28" = <1

1

28 26—1
2[3>|vm| +(28) .

Hence we obtain

E2 v [P (IVov)? + w2 (830)P)widx'dr
Cpr
1
< (1 - *> (Vv |* + w2 (33 0m)?) [om [P 2w dx'd
28 ) Jeg

+2p)*F! / (IVarvm|* + w2 (83vm)?)E>w1dx'd
Cr
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+2 | EVuVyE|um|PPwidx'dn.
Cgr

Thus, since Vv = Vv, for |v| < m and Vv, = 0 for |v| > m, and similarly for the
partial derivative with respect to A, we deduce
Eom P (IVrvl* + w2 (810)* ) widx'din
Cgr

< 2B | (Veuml* + wa(@vm)?)E widx'dx
Cr

+4B | EVVVE|vg|PPwidxd.
Cr

Therefore by Cauchy inequality on the second term of the right hand side, we obtain that
& 1um PP (Vv + w2 (@0)* widx'd

Cr

<A | (Vevml? + wa(8vm)HE>widxdA
Cr

+ff’2f IV &1 vm | P widx'd.
Cr
Hence we have

E2|um 1P IV v |* + w2 (3 vm) P widx'd
Cgr

< 2B | (Veuml* + wa(@vm)?)E widx'dx
Cr

+8% | IVeEP o PP widx'da.
Cr

In the following we write v = v,, and then let m — +o00. By (2.20) we deduce that

/ E2uP IVl + wa(3av)?)widx'da
Cr

<42p)% /

Cr

V& Pwidx'dx +,32/ IV &2 v[Pwidx’d. (2.22)
Cr

We next use Young’s inequality
IV (EIP)* < 2|VeEP P + 28282 0[P 2| Vo)
B—1

1
< 2|VuEP vl + 282 | Vol (TM” + Bﬂ”) :

and
@ EIP)? = B2 PP 2 (B30)?
—1 1
< X ()’ (%wr“ﬁ + Bﬂ”) .
From (2.22) and (2.20),

/(|Vx/($|v|’3)|2+w2(3x§|v|ﬁ)2)w1dx/d)»
Cr
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< C{(Zﬂfﬁ/ |V &Pwidx'd)
Cr

+52/ IVx/SIZIUIZﬂwldx/dA}.
Cgr

N+6

Vo3 We deduce

Applying the local weighted Sobolev inequality of Lemma 2.2, withx =
that

( ($|v|ﬁ)zkw1dx’dk>K chV(cR)%—‘ch{(z,s)Qﬂ/ V& Pwidx'dA
Cr

Cr

+/32/ |Vx/§|2|v|25w1dx’dk}.
Cr

Choose the cut off function& = 1 on B,,g, & =0on Bg \ B,,_ g withr; =7+ %(r/ - 1),
0<t<7t <1, =«~! we deduce that

1

(v—l(c,,R)/ |v|2’(iw1a’x’d)»)
Crl-R

C226-1)
(T —1)?

[(2;<"—‘)2K" +K2"V—‘(c,,.71R)/ |v|2ki1w1dx’dk}.
C

ri_1R

Naming /; to the power 2k the left hand side, we have fori = 2, 3,4, - - - that
I = Czld'li*l {2/{"71 + 1571}

with C = C(N,0,c1,c,7,t) > 0. Iterating the above inequality and observing that

Y20 & < 00, we obtain
-V K

i
I < CZKj_l +Cly < Ck' + Cl.
j=1

Now for 8 > 2 there exists a i such that a1l < B < 2kt Hence
5
<V_1(CIR)/ Ivlﬂwldx/dk> <CI; <Ck' +Cly < CB+Cly < CB,
CrR
due to (2.21). This is the desired estimate since
[ wlwavan < veawct s < Vet s,
CTR
due to the Sterling formula for integer 8. This proves (2.18) with o = 7.
To complete the proof we apply (2.18) to obtain
/ PP widx'da < 2V (CyRr), / e PV yidx'da < 2V (CyR).
CQR CQR

Multiplying the two and recalling the definition of v the result follows. O
We next have
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Proof of Theorem 2.4 Let pg € (0, 1) as given by Lemma 2.7. From Lemma 2.6 and for some
constant C; = Cy(«, N, 0, c1, ¢2),

L

-1 1 1 _ , P0
suapu” = —— < () u PO widx'dx ,
Cop infc , u V(Cur) Jeyr

hence,
1
-1 ! —po SR
C, P — u widx'dA < inf u,
V(CaRr) Jeur Carp

Similarly we have

1 Y
sup u < Cy uP® widx'dx .
Cop V(Cur) Jeor

Using Lemma 2.7 we conclude that

sup u < Cg inf u.

Cor «2R
with Cyg = C 1C24% independent of R. ]
We finally have
Proof of Theorem 1.3 (b): Take instead of u the function v := u — infgu which is still a

nonnegative solution of Lv = 01in S, having now infs v = 0. From the definition of infimum,
for any € > 0, there exists xe = (x., 1) € S such that v(x¢) < €. As a consequence of the
Harnack inequality, Theorem 2.4, for any R > |x; | /o, we have SUPc,, U < Cpinfc,,v <
Cpe; thus v(x) < Cpye in all Cyp for any R big enough, whence 0 < v(x) < Cpe for all
x € S. The claim follows from the arbitrariness of €. O

3 Critical and supercritical cases: Proof of Theorem 1.4
To obtain the result we make use of the oscillation decrease method, cf Sect. 4.3 of [13], as

adapted in Theorem 1.4 of [19] to the anisotropic setting.
For R > 2 we define

Lg:={(x,2) €S: x| <R, o) < R"}
where

o) =1+ (wiw2) " (t)dt. (3.1)
0

Let us define the notion of weak solutions of Lu = 0 that we consider throught this
section. The norm of the energy space is given by

Wiy, o= [0+ 19wl w2 @) i
! R
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We define the space H! wi,w, (L R) is the completion of C§° (L g) under the above norm. Then,

u is a weak solution if u € Hll)l’wz (Lg) and for any € I-jlwl,wz (L g) there holds

(W1 VeuVeyr + wiwdudy ) dx'dr =0,
Lg

As usually, u € HJ)] wp(LR) is a weak subsolution in L g provided that

(W1 VyuVyyr + wiwrdudy ) dx’dr <0,
Lg

forany 0 < ¢ € H! wy,wy (L g) and similarly for the weak supersolution.
It is easily seen that we have the following volume doubling property, that is, there exists
a positive constant Cp (independent of R) such that

V(Lar) < CpV(LR)

for every R > 2, where V(D) := [}, widx'd. We also note that
f (IVeel® + w2(829)%) widx'ds = oy RN 1 (R™ = 1), (3.2)
Ly

Our first result reads

Lemma 3.1 (local weighted Sobolev) Suppose wi, wy satisfy (H2) for some 6 > 0 and
m > 2. Then for g = 12\,(7;09) there exists a positive constant Cg such that for any R > 2 and

forall f e C§°(LR) there holds

21

2
(/ |f|qw1dx/d)~>qSCSR2(V(LR))‘7 / (Ve £ + w235 f)%) widx'dr. 3.3)
Lgr LR

Proof The proof is similar to the proof of Lemma 2.2, we therefore sketch it. By scaling in
the x'—variables

x'=Ry, g0 AN=fO'RMNeCEIyI<1,¢<R™,

estimate (3.3) takes the following equivalent form

2
q
( / |g|‘1w1dy’dx> < Cs / (IVy8P + R2wi(0g)?) widy'di:
{ly'1<1, p<R™} {ly'l<1, p<R™}

Since (1) < R™ is equivalent to (p% (M) < RZ,itis enough to establish

2
q 2
(/ Igl"w1dy’dk> < Cs/ (IV_v'gl2 + sz(axg)z) widy'dh;
{Iy'I<1, p<R™} {Iy'I<1, p<R™}

In fact we will prove a stronger inequality, namely for g € C§°(] Y| <1, |A] < D).

2
q 2 /
(/ |g|qw1dy’d?~) <Cs f (lVy/g|2 + wﬁwz(axg)Z) widy'dA.
{1y I<1, |A|<1} {ly'1<1, |A]<1}
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It is enough to prove the result in the upper half cylinder, that is for g € CJ°(]y| <
L Al < D),

2
q 2
(/ Iglqwldy/dk> sCsf (IVy/gI2 +om wz(axg)z) widy'dx.
{ly’I<1, O<Ar<1} {ly'|<1, O<r<1}

3.4

To do this we change variables by

1 _1 1 _1 -
s=s() = ( / o (Hw, ? (z)dt) ( / o (Hw, 2(z>dr) :
1 0
h(y',s) =g, »), A€ (0,1). (3.5)
Taking into account (H2), inequality (3.4) takes the form

2
(/ |h|‘1s9dy’ds)q < CS/ (IVyh|* + (3sh)%) s%dy'ds,
{ly'l<1, 0O<s<1} {Iy'|<1, 0<s<1}

where i € C§°(|y’| < 1), with A(y’, 0) = 0. This is true by Proposition 2.1 of [9]. O
Next, after recalling that

1
V(LR) Jig

= FO A widx'dx

we have

Lemma 3.2 (local weighted Poincaré) Suppose wi, wy satisfy (H2) for some 0 > 0 and
m > 2. Then, there exists a positive constant Cp such that, for every R > 2 and every
f e CY(Lg) satisfying f = 0on{|x'| <R, ¢ = R™)}, there holds

/ If — flPwidx'dx < CpR2/ (IVe £ 12 + wa (8, £)?) widx'd. (3.6)
LR LR
Moreover, if in addition f is such that

1

V(I D eLp: fG&2)=0)) = SV(Lg),
then, we also have
A Mwidx'd < ch2/ (IVe 12+ wo (@ )?) widx'dr.  (3.7)
LR LR

Proof Assuming that (3.6) has been established, we first show that it implies (3.7). To this
end we show that if f satisfies V({f =0} N Lg) > %V(LR), we then have

Frwidx'dx < 2/ |f — FlPwidx'dA. (3.8)

Lg Lg

Indeed (3.8) follows easily from the following computation:

_ (fp, fwidx'dn)?
/ lf = f|2w1dx’d)\ = wa]dx/d)\ _ fLR—
Lg Lg V(LR)
17332
- Frwidx'dx — (f{f#o}mLR fwidx'dx)
o V(Lg)
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: Frwidx'dr) VAf #0)N Lg)
> frwidx'd — (f{f i l > -

Lr V(LR)
(i, Frwndx'dn) V((F #0101 Ly)
= | frwidx'dx -
Lr V(LR)
> 1 frwidx'dx,
2 )i,

and (3.8) follows. In the sequel we will give the proof of (3.6).
Since

/ \f = FPwidy'dr = min / \f — EPwidy'da.,
Lg §eR J1,

it is enough to prove that for every f € C'(Lg) satisfying f = O on {|x’| < R, ¢ = R™},
the following inequality holds

/ |f — EPwidx'dx < CpRZ/ (IVe £12 + w2 (8. £)*) widx'd., (3.9)
Lg L

R

for a particular choice of the constant & that we will specify later.
Once again we rescale by

x'=Ry, g0, M) =f(O'R ),

and (3.9) takes the following equivalent form

/ g~ ePwidy'dr = Co (IVy gl + R2wa(@,0)) widy'dA
{Iy'I<1, p<R™} {Iy'I<l, p<R™}

forany g € C'({|y’| < 1, ¢ < R™})suchthatg = Oon{|y’| < 1, ¢ = R™}. This inequality
will follow after establishing

2
/ g~ &Pwidy'dr=Cr [ (198 + 07 w2(0,9)?) widy'd
{Ily'I<LIAl<1} {Iy'I<1, IAl<1}

(3.10)
forany g € C'({|y'| < 1, |A] < 1}).
To prove (3.10), once again we work in the upper half cylinder and choose
¢ = <8008
WN-1
We will show that for every g € Cl({ly’| < 1,0 < A < 1}) there holds
/ ¢ — & Pwidy'dx
{ly'I<1, 0<r<l1}
2
<cp / (198l + g wa(@r)?) wrdy'dr, 311
{ly’I<1, O<ir<1}
Using (H2) and making the change of variables (3.5) we are lead to prove that for & =
N RO Dy
W and 6 > O there holds,
N—1
/ |h —&1%s%dy'ds < Cp/ (IVyh|* + (3sh)?) s%dy'ds,
{[y'|<1, 0<s<1} {ly'|<1, O<s<1}
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taking into account that 2(y’, 0) = 0. This inequality is quite similar to (2.9).
We next have

Theorem 3.3 (Density Theorem) Suppose wi, wy satisfy (H2) for some 0 > 0 and m > 2.
Let u be a weak subsolution in L with

O0<u=x<2,

andu € H! (LR) for every R > 2. Suppose in addition that

wi,wy
1
V({u > 1}NLg) > EV(LR)~

Then, there exists o € (0, 1) and Ry > 2 such that for any R > Ry, there holds

inf u > 8.
Lor

Constants o, R, § depend only on N, 60, m, cy, c>.
Proof For ¢ > 0 we define u, = u + ¢ > ¢ > 0. We will work with u, in place of u so that

all subsequent quantities exist. For convenience we drop the subscript €.
For o € (0, 1) we define

u(x) + (%)m, Ag,
u(x) 4+ 25 Lp — Ag

AR = {lx’| <R, o)) < <§> }

For 8 > 0, we also define

(3.12)

1//()6):{

where,

¢:=(=Iny —p).

Function ¢ is also a subsolution, since in the region {¢ > 0} we have —L¢ < 0. We also
notice that when ¢ (1) = R™ then y = u+1 and therefore ¢ = 0 there. We nexttest —L¢ < 0
with the function ¢£2 where £ = £(x’) is a standard cut off function in B, = {|x'| < R}.
We integrate by parts and eventually arrive at

(W1 |V ($E)1? + wiwds (9E)H)dx'dr < C f Vo Pp*widx'dx.

LR LR

Making use of the local weighted Sobolev inequality in Lemma 3.1 we have

2
2
</ |¢;:|‘fw1dx’dx>qSCszrl(Lm / Vo 2g2undx db
Lg LR

2(N+6)
N+6—-2"

forg = Holder inequality implies

<¢s>2w1dx’dxs€R2v5*1<LR>< /

Lg

|vx/5|2¢2w1dx’dx> V=T (supp(¢€) N Lg).

(3.13)

Lg
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We will use (3.13) for various choices of functions. More precisely, for n;y € C'(0, 1) with
mG) = 1ify < 3+ ghy and () = 0if y = § + gl we set &) = mi (U5 ) and

Bii=E(1-275, ¢x=(—Iny — By, fork=01,...,

for some positive constant E to be made more precise later. We also set

V(L )/ (P&r)>widx'dA,

Using (3.13) as well as the facts that
¢ 1s decreasing in k,
1< Ek 1 in supp(&x),
1<%  dr—1 in supp(Eee).

757 € (0, 1), we have,

we obtain that, foro =1 — 5 =
C
b < 3 @b, k=12,

1
Choosing E = Db for appropriately large constant D, as in [19], we inductively prove that

bo
bk = 2k(1+0) ° k= 1,2,....
27
It follows that limi— 0o bx = 0 and since limg— o0 fx = E, we conclude that

supy, , (=Iny — E) < 0. Recalling that ¢9 = (—Iny)4 and the choice of the constant

E, wé have
3
supgo < CV ™2 (Lg) ( / ¢§w1dx/dx>
Lg LR

Next we will use the local weighted Poincaré inequality (3.7). Note that {¢p9 = 0} =
{—Iny < 0} = {¢ > 1} contains the set {# > 1}. The weighted volume of the latter
set satisfies the assumption of Lemma 3.2, we therefore arrive at

1

supo < CRV™2(Lg) ( / (w1 |Vedol® + wlwz(axfﬁo)z)dxld)L)Z
Lg

Lg
2
Using the specific form of i cf (3.12) and splitting suitably the integral cf (3.12) we estimate

(w1|Vegol® + wiwa(d¢0)>)dx'dr
Lg

C
< 2o / (@1 |Vl + wiwa(09)))dx'dh + 25V (Lp),

Using also the estimate (3.2),

(W1 Vepl* + wiwa (3r9))dx'dr < CRN 1™,
Lg
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we eventually conclude

supgo < CRV ™2 "+ C=CR"T +1).

Lg
2

Since m > 2 the first term in the right hand side tends to zero as R tends to +o0c. Therefore,
there exists Ro > 0 such that sup; R ¢o < C, forany R > Ry.

2
Whence in a smaller set {|x'| < £, o) < ($R)™}, we deduce that e=% < 1//
>

u+ ( ) . As a consequence for o small enough, there exists § > 0 such that inf; _,

2

o £ IA

for any R > Ry and this completes the proof.

As usual we define

oscpu :=supu —infu = Mg — mg.
Lg Lg

Lemma 3.4 (Oscillation decrease) Suppose w1, wy satisfy (H2) for some 6 > 0 and m > 2.
Let u be a weak solution in L g with

O<uc<?2,

andu € H) (LR) for every R > 2. Then, there exists a € (0, 1) and Ry > 2 such that

wi, w2

)
oscr U < <1 — E) osCr U (3.14)

for some 8 > 0 and all R > Ry. The constants «, Ro, 8 depend only on the constants of the
problem, that is on N, 60, m, cy, c;.

In fact, the o and § appearing in the Lemma are the same as the ones given by Theorem
3.3.

Proof In Ly we define the following nonnegative solutions

u—mg Mg —u
U= ———and up = ———.
Mg —mpg Mg —mp
Note that u; +up = 1 and 0 < 2u; < 2,i = 1, 2. Therefore either V({2u; > 1} N L) >
%V(LR) orelse V({2uy; > 1}NLEg) > %V(LR). Suppose the first one is true. We then apply
Theorem 3.3 to 2u; to deduce that there exists « € (0, 1) and Ry > 2 such that for any
R > Ry, there holds

N[ S

infr,g2u1 =6 <& infrzur >

Therefore

MgR — MR > ) . M < 1 )
—_— = 0sC u= —m — — | OSCLU.
MR —mp = 2 LaR aR aR = 2 LR

We argue similarly in the case V ({2uy > 1} N Lg) > %V(LR). O

We are now ready to give the proof of Theorem 1.4
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Proof of Theorem 1.4 Let u be a bounded solution. We may assume that it is nonnegative and
we consider the function v = Hulliizws) sothat) < v < 2.

For R large enough we apply iteratively the Lemma 3.4 to obtain

8\* s\*
oscL,v <|l—=) oscp ,v<2{1—=) ., k=1,2,....
2 3 2

Therefore

S k
OSCLRU =< (1—5) ||u||L00(S), k=1,2,....

Passing to the limit k — oo we conclude that u is constant in Lg for any R > Ry, hence in
S.

4 The distance function weight and final remarks

In this section we first make specific choices of the weights wq, wy and give the proof of
Theorems 1.1 and 1.2. We next present some extensions of our results.
We make the following choices

wi) = (1 —[AD* and wa(d) = (1 —[A]".

Proof of Theorem 1.1 Tt is a consequence of Theorem 1.3. For part (a) we note that o > —1
is equivalent to w; € L'O0,Dandv <1 —ais equivalent to (wlwz)_1 e L1(0, 1). Since
1

o > —landv < 1 — «a it follows that v < 2, which is equivalent to w, > € L'(0, 1).
Similarly, for part (b) when 1 — & < v < 2 then (wyw)~! ¢ L1(0, 1), and (H1) is satisfied
T+§ > 1. O
— =

by choosing 6 =
We next have

Proof of Theorem 1.2 1t is a consequence of Theorem 1.4. As we have seen, @ > —1 is

equivalent to wy € L1(0, 1). We next note that (wz)_% ¢ L0, 1) corresponds to v > 2.
Then,

4] [A]
o) =1+ [ (wiwy) (n)dr =1 +f (1 —[e)™@Vdt ~ (1 — A~ @D,
0 0

for|)\|~1.When%"_l—%+l>0<:>m(v—2)<2(a+v—1),then

at+v—1

o m wy L) ~ (1 — DY e L0, 1),

Moreover in this case
1 L 7% atv=l_ v
@ m(Dw, > (@)dt ~ (L—|A) m 727,
2]

It follows that (H2) holds if we choose 6 such that

-1
9<%_3+1>:a+
m

-1
E_w. .1
2 2 m
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If m is such that
a+v-—1 a+v—1 v
>

>——1,
2 m 2
then, sincea > —1and v > 2 we have that "‘;jﬁ;l < 2 and it follows from (4.1) the positivity
2
of 6. Hence, all hypothesis of Theorem 1.4 are satisfied and the result follows. O

We next give examples of weights w, w, that satisfy the hypotheses of Theorem 1.3(b) and
are not covered by Theorem 1.1(b). To this end we consider weights which when % <M <1,
they behave like

wi(h) & (1= [A)*(n(1 — A ~H7,

wa () & (1= [ADY(n(1 — [A)~H*,
whereas for |A| < % both weights are positive, bounded and stay away from zero.
Straightforward elementary calculations show that

Lemma 4.1 All assumptions of Theorem 1.3(b) are satisfied provided that
2B+n

eitheroa = —1, B <—1,v=2,2<,u§l—ﬁandchoosing9=ﬁ > 1,
ohba>—-l,v=1—a f=—u nekR and choosing 6 = 1,
Or’a>_1’2>v>1_a,ﬁ:—%,ueR,andchoosingG=2;‘_74",”Z L.

Remark (i) Our Liouville type results in the supercritical case, thatis @ > —1 and v > 2 of
Theorem 1.2, can be transformed to Liouville type results for the isotropic equation of the
form

20+ v
2—v’
here 7 can be any number in the interval (—oo, —1). This can be done via the change of
variables

div((1 + |sD*Vu(x',5)) =0, in RY for r = 4.2)

)
s = / (1 —1t)~2 dt, v(x',8) = u(x, 1).
0
It follows that every bounded weak solution of (4.2) is constant.

(ii) In the critical case, that is v = 2, using the same change of variables, one can obtain
Liouville type results for the isotropic equation of the form

div(Ee™Vu(x’, 5)) = 0in RY, T=—1+aw),

here t can be any number in the interval (—oo, 0).

We note that the above results do not follow by the ones by Bella and Schéiffner [2] but
they do follow from Theorem 2.1 in [M1].
(iii) Similarly, in the subcritical case, thatis 1 —a < v < 2, one obtains Liouville type results
as in Theorem 1.1(b), for the equation

_2a+v.

div((1 —|s)* Vo', ) =0, in RV x (-1, 1), 5 :
—V

here 7 can be any number in the interval [1, 4+-00).

In an other direction, we note that the same results with Theorems 1.1 and 1.2 hold for
more general operators that can be thought of as perturbations of the operators we considered
so far. More precisely, let

Ly, u = div(By,(x', )Vu)
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N—-1

9 du 9 du
= — 1— A — (A 1 — [Ap*tY
‘E_ 8xi< i, (1= [AD® ) ax( NN —A]) ax)
N—-1 N—1
0 u d v ou
§ A 1—A°‘+2 — | AinvA = |Apetz— ),
+ ak(wj( (A1) )+ axl'<l,N( A1) ax)

j=1 i=1
4.3)
in
S=RV!x(-1,1) N>2,

where the N x N matrix A = (A; ;) has bounded and measurable entries A; ; = A; j(x’, &)
for (x’, ) € S, anditis symmetric and uniformly elliptic, that is, for some constants 0 < c¢o <
Cy the following inequalities hold true for any £ = (£¢/, &y) € RV~! x Rand (x’, 1) € S:

N
colé? < Y Aij(x, MEE; < Colel™.

i,j=1
Equivalently, we have

co(1 = [AD*(IE"P + (1 — A" I&n1%)
N
< ) Ba)ij (', MEE < Co(1 = XD + (1 =AD" [&n 7).
ij=1
Clearly, the model operator Ly, defined in (1.2), follows from Efw in the special case where

A; j =&, ,thatis, when A is the identity matrix. By quite similar arguments one can prove

Theorem 4.2 Leta > —1.
(a) If in addition 1 —a < v < 2, then any nonnegative weak solution of E:”u =0inSis
constant.

(b) If in addition v > 2 and
A; n do notdependon x;, i=1,2,...,N-1,
AN, ndoes not depend on X,

every bounded weak solutions of L, ,u = 0 in S is constant.

We can also consider the more general operator

L u = div(B(x', \)Vu)

N-1

ad au ad ou
— A w— iy O\ =
Z ax,( ”f““axj>+ax< NNwlwzax)
i,j=1

N—-1 9 N—1 9
+> ax( N jWIN/W2 >+ -

j=1 i=1

ou
(Ai,Nwlx/WZa) , (4.4)

l

S=RVIx(-1,1) N>2

@ Springer



263  Page 26 of 27 S. Filippas, L. Moschini, A. Tertikas

where the N x N matrix A = (A; ;) has bounded and measurable entries A; ; = A; j(x’, A)
for (x’, A) € S, and it is symmetric and uniformly elliptic, that is, for some constants 0 <
co < Cy the following inequalities hold true for any & = (¢/, £y) € RV —! % R and for any
x',A) es:

N
colé? < Y A, MEE; < Colgl™.

i,j=1
Equivalently
N
cowi (J&'* + walén?) < Y Bij(x', MEE; < Cow (1E']> + walén]?).
i,j=1

We recall that w; = w; (|A|), i = 1, 2. The model operator £ in (1.1) follows from £’ in the
special case where A is the N x N identity matrix. By quite similar arguments we have

Theorem 4.3 (a) If wy, wy satisfy (HI) for some 0 > 1, then any nonnegative weak solution
of L'u =0inS, is constant.
(b) If wy, wy satisfy (H2) for some 6 > 0 and m > 2 and in addition,

A; n donotdependon x;, i=1,2,...,N-1I,
AN, N does not depend on A,

then any bounded weak solution of L'u = 0 in S is constant.
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