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ABSTRACT. In this work we establish trace Hardy-Sobolev-Maz’ya inequalities
with best Hardy constants, for weakly mean convex domains. We accomplish
this by obtaining a new weighted Hardy type estimate which is of independent
inerest. We then produce Hardy-Sobolev-Maz’ya inequalities for the spectral
half Laplacian. This covers a critical case left open in [9].

1. Introduction. The Hardy-Sobolev-Maz’ya (HSM) inequalities combine Sobolev
and Hardy terms, the latter with best constant. For instance, for the regular (local)
Laplacian and for a domain Q@ C R™ n > 3 it states that, if d(z) = dist(x, 0Q),
there exists a positive constant ¢ such that

n—2

1 2n "
VquasZ/dx—i—c( u“dm) , ueCrQ). 1.1
[ 1vupas= 5 [ 2 [ Ju PO, 0

Such an inequality was first proven in [12] in the special case where ) is the half
space. In [8] it was proven under the assumption that  is a weakly mean convex
domain, that is, it satisfies in the distributional sense,

—Ad(z) >0, in Q. (1.2)

We note that in the case where 92 € C? condition (1.2) is equivalent to the mean
convexity of 9L, see [11, 13].

In [10] inequality (1.1) was established with a constant ¢ independent of Q, under
the stronger hypothesis that €2 is convex. We note that mean convexity is equivalent

2000 Mathematics Subject Classification. Primary: 35J60, 42B20, 46E35; Secondary: 26D10,
35J15, 35P15, 47G30.

Key words and phrases. Hardy inequality, fractional Sobolev inequality, fractional Laplacian,
critical exponent, best constant, trace inequality.

The authors were partially supported by the FP7-REGPOT project ACMAC: Archimedes
Center for Modeling, Analysis and Computations of the University of Crete. AT was also partially
supported by ELKE grant, University of Crete.


http://dx.doi.org/10.3934/cpaa.2014.13.

2 STATHIS FILIPPAS, LUISA MOSCHINI AND ACHILLES TERTIKAS

to convexity in n = 2 dimensions but it is a much weaker assumption for n > 3, cf
[1].

Our interest in this work is in the fractional (non local) Laplacian in a bounded
domain. Various fractional s—Laplacians (0 < s < 1) have been recently studied,
see [2, 3, 7, 9] and references therein. In [9] the limiting case of obtaining Hardy—
Sobolev-Maz’ya inequalities for the half Laplacian was left open in the case of a
domain 2. In fact, the half Laplacian is a border line case, since different behaviors
are observed for s < % and s > % For instance, the fractional Laplacian considered
in [6], satisfies Hardy inequality for % < s < 1but not for 0 < s < %, in the
case of smooth bounded domains. Similarly a dichotomy appears, for a different
fractional Laplacian this time, in the context of I'-convergence of non local phase
transitions, or in the context of non local surface diffusion, see [14, 4]. In our case
certain aymptotics are different for s > 1/2 than for s = 1/2 and as a consequence
the analysis in [9] fails for the limiting case of the half Laplacian.

As we have already mentioned, there are several fractional Laplacians, but in this
work we will focus on the spectral fractional Lapacian that was recently considered
in [3]. We will do this as in [9] via a suitable extension problem in the spirit of [5].
In our case the appropriate extension problem is the following:

—Agypu = 0, in 2 x (0,00) , (1.3)
u = 0, on 09 x (0,00) , (1.4)
w(@,0) = f(), inQ, (15)

the energy of which is given by

1 [t
Ju] = §/0 /Q|V(zyy)u(x,y)|2dwdy .

At this point we recall that the inner radius of a domain € is defined as R;, :=
SUp,eq d(x). We say that the domain  has finite inner radius whenever R;, < oo.
Our first result is the following Trace Hardy-Sobolev-Maz’ya inequality:

Theorem 1.1. Letn > 2 and 2 C R™ be a uniformly Lipschitz domain with finite
inner radius which in addition satisfies

—Ad(z) >0, in Q. (1.6)

Then there exists a positive constant ¢ such that for all u € C5°(2 x R) there holds

e 2 [ u?(z,0) 2n =
Viapuley)Pdody > 2 [ 0 dx+c(/ u(z.0 de)
/0 /Q| (a) U(2,Y)] o TE | Iu(,0)

(1.7)

We note that the constant % is the best constant for the corresponding trace
Hardy inequality see Theorem 1 of [9] for the precise statement.

We will apply Theorem 1.1 to the spectral fractional Laplacian that is defined
as follows. Let 2 C R™ be a bounded domain, and A\; and ¢; be the Dirichlet
eigenvalues and orthonormal eigenfunctions of the Laplacian, i.e. —A¢p; = \;¢; in
Q, with ¢; = 0 on Q. Then, for f(x) = > c¢;¢;(x) the s—fractional Laplacian is
defined by

(=A)* f(x) = me(x), 0<s<1. (1.8)
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In the sequel we will be interested in the case s = % More precisely, the Hardy-

Sobolev-Maz’ya inequality for the spectral half Laplacian reads:

Theorem 1.2. Let n > 2 and 2 C R™ be a bounded Lipschitz domain which in
addition satisfies

—Ad(z) >0, in Q. (1.9)
Then there exists a positive constant ¢ such that for all f € C§°(Q2) there holds

1 2 [ f*(x)
(a)}rnez2 [ L8 awve( [ 116
( ® o da) ot
Again, the constant % is the best constant for the corresponding Hardy inequality
see Theorem 3 of [9] for the precise statement.
We note that the proof is based on the following crucial estimate that was missing
in [9].
Theorem 1.3. Let 2 C R™ be a domain with finite inner radius R;, such that
—Ad(z) >0, in Q.
If in addition A+ 1> 0, then for all u € C§°(R™ x R) there holds

+o0 yA+2gA+2 ,
/ / ) AH\Vu\ dxdy

A—I—l 4A—|—9 /+00/ A+1dA+1X
2A+5 Q d2—|—y A+2

A+1 +oo AdAX2 2
_8 2A+5 / / @ A+1 dzdy , (1.11)

where X = X (%2) and X (t) = (1 - 1nt)*1, 0<t<l.

= dx) t (1.10)

Z e (—~Ad)u’dxdy

For Theorem 1.3 it is important that the domain has a finite inner radius.

Using Theorem 1.3 and quite similar arguments to the ones leading to the proof
of Theorems 1.1 and 1.2 one can establish HSM—inequalities for the Dirichlet half
Laplacian defined in [9]. In particular Theorems 4, 5 and 12 of [9] are valid for the
limiting case s = 1/2.

In Section 2 we give the proof of Theorem 1.3 after establishing a more general
result, where weak mean convexity of the domain is not required. In the final
Section 3 we give the proofs of Theorems 1.1 and 1.2.

2. The proof of Theorem 1.3. In this section we will prove Theorem 1.3. In
fact we will prove a more general result that does not require any sign assumption
on the measure —Ad(x).

Theorem 2.1. Let Q C R™ be a domain with finite inner radius R;,. If A+1 >0,
then for all w € CP(R™ x R) there holds

+oo yAT2gAT2 ,
/ / D |Vul*dzdy

A+1 +O° yA+T2gA+1 X2 yAT2qAT3 X
+4(A+2) | (—Ad)u?
124+ 5)2 / / [ 2+ y )A+2 +4(A+ )(d2 Fy2)A+3 (—Ad)u”dzdy

A+ 1 +oo AdA 2
S@A L5 / / @ A+1 dxdy , (2.1)
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where X = X(%) and X(t)=(1—Int)~1, 0 <t < 1.
From this estimate we have:

Proof of Theorem 1.3. The result follows from Theorem 2.1 using the sign assump-
tion —Ad(z) > 0 in Q. O

The rest of this section is devoted to the proof of Theorem 2.1. We first present
some auxilliary Lemmas. Our first Lemma covers a limiting case of Lemma 8 of [9].

Lemma 2.2. Let Q C R™ be a domain with finite inner radius Ry,. If A and B
are constants such that A+1 >0 and B+ 1 > 0 then for all v € CP(R™ x R)

there holds
+oo AdBX2
| [ = e g ey

A+B+2 +°° A+2dBX
A / s g By

A+B+3 +oo A+1dB
sl g Vuldedy (2.2)

where X = X(%—i}) and X(t) = (1 —lnt)_l, 0<t<1.

Proof. Integrating by parts in the y-variable we compute

“+o0 A 3B v2
yrd® X
(A+1)/ /d22)A+B+2|u|d$dy
+oo A+2dB
<(A+ B+2) / / d2 A+B+4 |u|dzdy

+o0 A+1dB
+ /d2 e dody. (23)

In the previous calculation there is no boundary term due to our assumptions. To
continue we will estimate the first term in the right hand side above. To this end
we define the vector field F' : Q x (0,+00) — R™ x R by

yA+2dB+1XVd yA+3dBX
( 7y) = (

(2.4)

F(zx 5
l2 yz) A+QB+4 ( l2 y2) A+QB+4
We then have

+oo o +oo . +oo .
/ / divF|uldzdy = —/ / F - Vu|dzdy < / / |F||Vu|dzdy. (2.5)
0 Q 0 Q 0 Q

We note that because of our assumptions A +1 > 0 and B + 1 > 0, there are
no boundary terms in (2.5). After a straightforward calculation (in the sense of
distributions), taking also into account that |Vd| =1 a.e., we end up with,

yA+2dBX(dAd) yA+2dBX2

divF = , 2.6
(2 +y2) "5 (P )T 20
and
| _0| _ yAJerBX yA+1dBX (2 7)
(@ +y2) 577 7 (@) '
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From (2.5)—(2.7) we get

+oo A+2dBX2 +oo A+2dBX dAd
[ sty < [ [ e ey

+oo A+1dBX
/ / @ A+B+2 |Vuldzdy . (2.8)

Combining (2.3) and (2.8) the result follows. O

We next obtain the L?-analogue of Lemma 2.2:

Lemma 2.3. Let Q C R™ be a domain with finite inner radius R;,. If A and B
are constants such that A+ 1 >0 and B+ 1 > 0 then for all u € CP(R™ x R)

there holds
+o00 AdB
|| e e =l

2(A+B+2) +°° A+2dBX
= A+1 / / (d? + A+B+4 (— dAd)Udedy

4(A+B+3)* [T A“¢3
- / /d2 Cacges (Ve (2.9)

where X = X(%—i?) and X(t)=(1—Int)"1, 0 <t <1

Proof. We apply Lemma 2.2 to u2. We then use Young’s inequality in the last term
of the right hand side:

1
20X |ul| V| < ey X2u? + gyA+2|Vu|2,

with

B A+1

2(A+B+3)°

‘We omit the details. O

The following is a variation of Lemma 6 of [9], in the sense that no assumption
on the sign of (—Ad) is required.

Lemma 2.4. Suppose that Q@ C R™ has finite inner radius. If A, B are constants
such that A+1>0, B4+1>0, then for all u € C§°(R™ x R) there holds

+oo AdBX2
(B +1) / / s luldady

d2 2)
“+oo AdB+1
<(A+B+3) / / @ A+B+2 |Vuldzdy (2.10)
+oo AdB+1X2 yAdB+3X
/ / d2 A+B+2 (A+B+2)W (fAd)|u|dxdy ;

where X = X(%—i}) and X(t)=(1—Int)"1, 0 <t < 1.
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Proof. Integrating by parts in the x-variables we compute

+o00 A B x2 400 A B 3
yrd® X yrd® X
(B+1)/ /W|U|d$dy+2/ /—A?H|U|d$dy

&+ y2)
+oo AdB+1X2 +oo AdB+1X2 Ad)
/ / d2 A+B+2 |Vu\dxdy + / / A+B+2 Mdﬂﬂdy
+00 AdB+2X2
+(A+B+2) / / n A+B+4 |u|dzdy. (2.11)

In the previous calculation there are no boundary terms due to our assumptions.
To continue we will estimate the middle term in the right hand side above. To this
end we use (2.5) with the following choice of the vector field F' : © x (0, +00) —
R" xR

. yAdBJrBXVd yA+1dB+2X
F(x,y) = ) A+Brd > (@ + 1) A+B+d
Straightforward calculations show that

~ AgB+3 X (A AgB+2 x2
divF— Y4 XD | yTd

(492557 (@42
and
B yAdB+2X yAdB+1X
= (@2 +y2) 552 7 (@)

‘We then have that

+o0o AdB+2
| ey sl
+oo AdB+3X +oo AdB+1X
/ / @ A+B+4( Ad) \u|dxdy+/ / 1 A+B+2 |Vu|dzdy.

Combining the above with (2.11) and the fact that X S 1 we conclude the
proof. 0

We next obtain the L?-analogue of Lemma 2.4:

Lemma 2.5. Suppose that Q@ C R™ has finite inner radius. If A, B are constants
such that A+1>0, B4+ 1> 0, then for all u € C§°(R™ x R) there holds

+o0 AdB 2
/ / o ey

A + B + 3)? +°° AdB+2
§ / / & 1 A+B+2 |Vu|>dzdy (2.12)
+oo AdB+1X2 yAdB+3X
VA S S

where X = X(‘ﬁ—jj) and X(t) =(1-Int)"L,0<t<1.

Proof. We apply Lemma 2.4 to u?> We then use Young’s inequality in the first term
of the right hand side:

1
2dBT X |u||Vu| < ed® X?u? + gdB+2|vu|2,
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with
B+1

T2A+B+3)
‘We omit the details. O

We are now ready to give the proof of Theorem 2.1:

Proof of Theorem 2.1. We first apply Lemma 2.3 with B = A 4+ 2 to get:

+o0 AdA+2X2 2A +oo A+2dA+2
/ wdzdyl = + 5 / / (= Vu|*dzdy

d2+y A+2
(A+2) [+ [ yAT2gAtsx )
A (21
A+1/ /d2+y AH( dyddrdy . (2.13)

We next use Lemma 2.5 with A = B + 2, to obtain:

+oo B+2dBX2 2 QB + 5 +oo B+2dB+2 0
/ / @+ ) B+2 dzdy < Bri? / / gz Vul dzdy

+oo B+2dB+1X2 B+2dB+3X .
BJr 1/ / [ a2 + y2)B+2 2(B+2)(d2+y2)3+3} (—Ad)udzdy |
(2.14)

Replacing B by A in (2.14) and adding it to (2.13) we conclude the proof. [

3. The proofs of Theorems 1.1 and 1.2. We first establish the following Hardy—
Sobolev estimate, that will be used in an essential way in the proof of Theorem 1.1.
For the definition of the “ uniformly Lipschitz domain” see for instance [9].

Theorem 3.1. Letn > 2 and 2 C R™ be a uniformly Lipschitz domain with finite
inner radius that in addition satisfies

—Ad(z) >0, in Q. (3.1)
Then there exists a positive constant ¢ such that for all u € C§°(2 x R) there holds

+oo
/ / |V(L,y)u(xay)|2dxdy
n—1
+oo nt1 n+1
—/ de +c(/ /|uxy|2("+1) :z:dy) . (3.2)

Proof of Theorem 3.1. We first recall inequality (2.11), from [9], with s = 1/2 (and

a = 0), that is
+oo —+oo
/ / |Vul2dedy >= / 0 dx+/ / [Vu — @uﬁdxdy
d(z) 0 Q ¢
+o00o A
- / / —¢u2dxdy , (3.3)
0 o ¢
where ¢ is given by
—a(¥
oy =A(4), y>0 req, (3.4)

and A solves (2.3), (2.4) in [9], that is

2
A(t) =1 — — arctant, t>0. (3.5)
T
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The result will follow after establishing the following inequality:

+oo +oo
/ / [Vu — —u| dxdy / / u?dzdy
+oo 2(nt1) n+1
>c </ / lu(z, )| 2 dxdy) . (3.6)

To this end we start with the Sobolev inequality,

oo oo n41 T
/ / |Vuldzdy > ¢ (/ / |u(x,y)|ndmdy> , ue C°(QxR),
0 Q 0 Q

with the choice u = gb% v. Hence we obtain

/+OO/ 47 l‘wmdy*i/ /¢" 1| Vé|lvldzdy
26(/ /W)" To| " dmdy) o : (3.7)

Next we will control the second term of the LHS using Lemma 7 of [9]. To this end
we recall that we have the following asymptotics (cf Lemma 2 of [9]),

d 2711 dn+1

2n_ n- n+1 n—1

Ort s OV~ (3.8)
(d® +y?)nT (@ +y?)n

We then use Lemma 7 of [9] with the choice A =0, B = 2t and I' = - taking

into account that A+ B +2 —2I' = 1 > 0, to obtain the estimate

n+1

+oo +oo
/ / RS |v\dxdy < cl/ / d2 n y |Vv|dacdy

+oo
+02/ / d2 ) |v\dxdy (3.9)

From this and (3.7) we have that

too 2n +oo 2n oo 2n ntl %H
[ ey [ [ <z>m|v|da:dyzc( ) |¢mv|ndxdy) :
0 Q 0 Q 0 Q

To continue we next set v = |w\"2fnl and apply Schwartz inequality in the LHS.
After a simplification we arrive at:

+oo +o0 +oo 2(n+1) %
/ /¢2|Vw|2da:dy+/ /¢2w2d:cdy2c(/ /| pE > .
0 Q 0 Q 0 Q

(3.10)

To conclude the proof of the Theorem we need the following estimate:

c/0+oo/9¢2w2dxdy</O+OO/Q¢2|Vw|2dxdy—/Om/Q(Aqs)d)w?dxdy. (3.11)

It is worth noticing that the estimates of [9] that work for 1 < s < 1 fail to give

(3.11) for the limiting value s = . It is at this point that we will use the more



TRACE HARDY-SOBOLEV-MAZ’YA INEQUALITIES 9

refined estimate of Theorem 1.3 with A = 0, that is,

+oo 22 +oo 22 2
//X dzdy<200/ / d|vw|dd

+oo dX 2
+18/ /y dwdy (3.12)
d2+y

here X = X (Rin) This implies
1 +oo d2 2 +oo d2|Vw|2

+oo
+ 18/ / dzxdy . 3.13
d2 s y (3.13)

Taking into account the asymptotics of ¢, cf (3.8), as well as the fact that

Y
Ap = d2 Ty 5(—Ad)
estimate (3.13) leads to (3.11). We omit further details. O

We next give the proof of Theorem 1.1.

Proof of Theorem 1.1. We will use (3.3) where ¢ is given, as before, by (3.4), (3.5).
The result then will follow once we establish:

+oo +o0 o —
[ [wus Toupasay - [ [ Sasay = e [ jute o))
0 Q (b 0 Q ¢ Q

(3.14)
To this end we start with the trace inequality,

—+oo
/ / |Vu|dzdy > c/ |u(z,0)|dx ,
0 Q Q

valid for u € C§°(Q2 x R). We apply this to u = ¢n2%1 v. Hence we obtain

+OO 2n
/ / 1672 vldz (3.15)
0 Q Q

Next we will control the second term of the LHS exactly as we did in (3.9) in the
proof of Theorem 3.1, to arrive at

“+o0 +oo n
/ /¢%|W|dxdy+/ /¢>"2j|vldxdy20/
0 Q 0 Q Q

To continue we next set v = |w|% and apply Schwartz inequality in the LHS to
get after elementary manipulations that

(/()+Oo/gz¢w|2(:+1l)dxdy) [/+OO/ ¢>2|Vw|2dmdy+/+oo/ »*w dedy]
>c</ g (z, 0)| 72 1dm> (3.16)

At this point we use (3.10) and then inequality (3.11) to arrive at

qb%v(x,()ﬂdx .

n—1

/ " | vukdsay - [ m / (A¢>¢w2dxdy>c< / ¢w<x,0>|f"1dx)" ,



10 STATHIS FILIPPAS, LUISA MOSCHINI AND ACHILLES TERTIKAS

which is equivalent to (3.14) after the substitution v = ¢|w|. We omit further
details. O

Proof of Theorem 1.2. The result follows from Theorem 1.1 since the harmonic ex-
tension u(z,y) in £ x [0,00) of f, that is, the solution of (1.3)—(1.5), has energy
that satisfies

+oo
| [ 1vudedy = (a2 7.0 (3.17)
see (8.5) of [9]. O
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