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Abstract Motivated by a question of Brezis and Marcus, we show that the L p–
Hardy inequality involving the distance to the boundary of a convex domain, can
be improved by adding an Lq norm q ≥ p, with a constant depending on the
interior diameter of �.

Keywords Hardy inequality · Distance function · Convexity · Inner radius

1 Introduction

Recently a lot of attention has been paid to the so called improved Hardy inequal-
ities; see e.g. [1, 2, 3, 5, 9, 11, 12, 17, 16], and references therein. By “improved”
it is meant that one considers a classical Hardy inequality with best constant and
adds a positive term in the right hand side, as for instance in (1.1) or (1.2) be-
low. These inequalities play an essential role in the theory of partial differential
equations and nonlinear analysis. They are used, for instance, in the study of the
stability of solutions of elliptic and parabolic equations (cf [3, 14]), as well as in
the study of existence and asymptotic behavior of solutions of heat equations with
singular potentials; see e.g. [4, 5, 10, 17].

Multidimensional inequalities of this kind first appeared in [[12], Sect. 2.1.6]
where functions defined in the whole space IRn were considered. More recently,
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Brezis and Marcus [2] showed that if � is a bounded convex domain in IRn and
d(x) = dist(x, ∂�) then for u ∈ C∞

0 (�),

∫
�

|∇u|2dx − 1

4

∫
�

u2

d2
dx ≥ 1

4diam2(�)

∫
�

u2dx, (1.1)

and they asked whether the constant in the right hand side can be replaced by one
depending only on the volume of �. This question was answered in affirmative in
[11] for p = 2 and later in [16] for any p > 1. The constant obtained in these
two papers has the form C = c(p, n) (vol(�))−p/n , where c(p, n) is an explicitly
given constant independent of the domain �.

The main goal of the present work is to study the dependence of the best
constant C(�) in the inequality

∫
�

|∇u|pdx −
(

p − 1

p

)p ∫
�

|u|p

d p
dx ≥ C

(∫
�

|u|qdαdx

) p
q

, (1.2)

u ∈ C∞
0 (�), on the domain �. We establish that C(�) depends on � through its

interior diameter Dint := 2 supx∈� d(x).
In case α = 0, we have

Theorem 1.1 Suppose � ⊂ IRn is a convex domain with Dint finite. For 1 < p <
n and p ≤ q <

np
n−p , let C(�) be the best constant in the inequality

∫
�

|∇u|pdx −
(

p − 1

p

)p ∫
�

|u|p

d p
dx ≥ C(�)

(∫
�

|u|qdx

) p
q

, u ∈ W 1,p
0 (�).

(1.3)

Then, there exist positive constants ci = ci (p, q, n), i = 1, 2 independent of �,
such that

c1(p, q, n)D
n−p− np

q
int ≥ C(�) ≥ c2(p, q, n)D

n−p− np
q

int . (1.4)

This kind of dependence of the best constant appears for example when estimat-
ing the first eigenvalue λ1(�) of the p−Laplacian under the Dirichlet boundary
conditions, ∫

�

|∇u|pdx ≥ λ1(�)

∫
�

|u|pdx . (1.5)

In particular if � is convex with Dint finite, then (see [13] Sect. 5.11 for p = 2
and in [12] Theorem 11.4.1 on page 434 for the general case) there are positive
constants ci (p, n), i = 1, 2 independent of �, such that

c1(p, n)D−p
int ≥ λ1(�) ≥ c2(p, n)D−p

int . (1.6)

For p = q = 2 our lower bound for C(�) in (1.4) is 3D−2
int . Needless to say,

it is better than the bound 4−1(diam(�))−2 in (1.1) of Brezis and Marcus [2].
Moreover, since 3D−2

int ≥ 3/4(vn/vol(�))2/n , where vn is the volume of the unit
ball, our lower bound on C(�) implies a bound in terms of of vol(�) as in [11]. In
particular our estimate is stronger than that in [11] in the two or three dimensional
case. However these estimates do not imply each other for n > 3.
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The Sobolev exponent q = np
n−p is not allowed in (1.3) since our proof fails.

For some results in this case we refer to [7, 8].
We actually establish lower bounds of the best constant in inequality (1.2) for a

suitable range of the parameters p, q, α. These results are formulated in Theorems
3.1 and 3.2 of Sect. 3. Theorem 3.1 deals with the special case p = q = 2, which
is particularly simple and allows for the calculation of an explicit lower bound
of the best constant in (1.2). We then consider the general case in Theorem 3.2.
Section 3 also contains Theorem 1.1. An auxiliary estimate is presented in Sect. 2.

2 Preliminaries

Here we will present an auxiliary estimate. Let X (t) = (1−log t)−1, for t ∈ [0, 1].
X (t) is an increasing function with X (0) = 0 and X (1) = 1. In the sequel we will
write X instead of X (

d(x)
Rint

), where Rint = supx∈� d(x) is the interior radius of �.
The Proposition that follows has been proved in [1], but we include its proof

here for completeness. The proof we present is slightly simpler than in [1].

Proposition 2.1 Let � ⊂ IRn be a convex domain. For u ∈ C∞
0 (�) we set u(x) =

v(x)d
p−1

p .
(i) If 1 < p < 2, then∫
�

|∇u|pdx −
(

p − 1

p

)p ∫
�

|u|p

d p
dx ≥

≥ c(p, n)

[∫
�

d p−1 X2−p|∇v|p dx +
∫

�

(−�d)|v|p dx

]
. (2.1)

(ii) If p ≥ 2, then∫
�

|∇u|pdx −
(

p − 1

p

)p ∫
�

|u|p

d p
dx

≥ c(p, n)

[∫
�

d p−1|∇v|pdx
∫

�

(−�d)|v|pdx

]
. (2.2)

Proof: We first consider the case p ≥ 2 which is easier. For p ≥ 2 we will use the
following pointwise inequality valid for any a, b ∈ IRn ,

|a + b|p − |a|p ≥ c(p, n)|b|p + p|a|p−2a · b . (2.3)

We have that

∇u = p − 1

p
d− 1

p v∇d+d
p−1

p ∇v =: a+b,
p − 1

p

|u|
d

= p − 1

p
|v|d− 1

p = |a|.
(2.4)

Using (2.3) we obtain∫
�

|∇u|pdx −
(

p − 1

p

)p ∫
�

|u|p

d p
dx

≥ c(p, n)

[∫
�

d p−1|∇v|pdx +
∫

�

∇d · ∇|v|pdx

]
. (2.5)
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For any domain �, the distance function is a Lipschitz continuous function
and therefore differentiable a.e.. Moreover, if � is convex, then −d(x), x ∈ � is
a convex function. It then follows that −�d(x) is a nonnegative Radon measure,
see e.g., [[6], Sect. 6.3]. That is

∫
�

∇d · ∇φdx =
∫

�

φdµ, φ ∈ C1
0(�), (2.6)

with dµ ≥ 0. For convenience we will write (−�d(x)) dx in the place of dµ, and
in this sense, integration by parts is permissible in the left hand side of (2.6).

Integrating by parts the last term in (2.5) we obtain (2.2).
We next consider the case 1 < p < 2. In this case, the following pointwise

inequality is true for a, b ∈ IRn ,

|a + b|p − |a|p ≥ c(p, n)
|b|2

(|a| + |b|)2−p
+ p|a|p−2a · b. (2.7)

In view of (2.4) we have that
∫

�

|∇u|pdx −
(

p − 1

p

)p ∫
�

|u|p

d p
dx

≥ c(p, n)

[∫
�

d|∇v|2
(|v| + |d∇v|)2−p

dx +
∫

�

(−�d)|v|pdx

]
. (2.8)

To simplify the subsequent calculations we set

A1 :=
∫

�

d|∇v|2
(|v| + |d∇v|)2−p

dx, A2 :=
∫

�

d−1 X2|v|pdx,

A3 :=
∫

�

d p−1 X2−p|∇v|pdx, A4 :=
∫

�

(−�d)|v|pdx .

Taking into account (2.8) we need to show that for some constant c depending
only on p, n there holds

(A3 + A4) ≤ c(A1 + A4). (2.9)

To this end, using elementary inequalities we have

A3 =
∫

�

d
p
2 |∇v|p

(|v| + |d∇v|)p(2−p)/2
· (|v| + |d∇v|)p(2−p)/2 d

p−2
2 X2−pdx

≤ Ap/2
1

(∫
�

d−1 X2 (|v| + |d∇v|)p dx

)(2−p)/2

≤ c Ap/2
1

(∫
�

d−1 X2|v|pdx +
∫

�

d p−1 X2−p|∇v|pdx

)(2−p)/2

≤ c Ap/2
1 A(2−p)/2

2 + c Ap/2
1 A(2−p)/2

3

≤ cε A1 + εA2 + εA3 + cε A1,
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where ε is small and the constant cε depends only on ε and p. Hence,

(1 − ε)A3 ≤ 2cε A1 + εA2. (2.10)

We will also use the estimate

A2 ≤ c0(p, n)(A3 + A4). (2.11)

If we accept this we get from (2.10) that

(1 − ε − εc0)A3 ≤ 2cε A1 + εc0 A4,

from which (2.9) follows.
It remains to prove (2.11). Using the fact that ∇d · ∇d = 1 a.e. and noticing

that ∇d · ∇ X = d−1 X2∇d · ∇d = d−1 X2 we integrate by parts to get

A2 = −
∫

�

Xdiv(∇d|v|p)dx

≤ p
∫

�

X |v|p−1|∇v|dx +
∫

�

(−�d)X |v|p

≤ p

(∫
�

d−1 X2|v|pdx

) p−1
p

(∫
�

d−1 X2|∇v|pdx

) 1
p +

∫
�

(−�d)X |v|p

≤ p A
p−1

p
2 A

1
p
3 + A4

≤ pεA2 + pCε A3 + A4,

from which (2.11) follows. The proof of the Proposition is now complete. �

3 Main Theorems and proofs

We first consider the special case p = q = 2. We have

Theorem 3.1 If � ⊂ IRn is a convex domain, then for any α > −2 and all
u ∈ H1

0 (�),

∫
�

|∇u|2dx − 1

4

∫
�

u2

d2
dx ≥ Cα D−(α+2)

int

∫
�

u2dαdx, (3.1)

with Cα = 2α(α + 2)2 if −2 < α < −1 and Cα = 2α(2α + 3) if α ≥ −1.

Proof: We will prove the result for u ∈ C∞
0 (�), the general case following by a

density argument.

Using the change of variables u(x) = d
1
2 (x)v(x) we have∫

�

u2dαdx =
∫

�

v2dα+1dx, (3.2)

and ∫
�

|∇u|2dx − 1

4

∫
�

u2

d2
dx =

∫
�

d|∇v|2dx + 1

2

∫
�

(−�d)|v|2dx . (3.3)
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Using the fact that |∇d(x)| = 1 a.e and integrating by parts we get

∫
�

dα+1v2dx = 1

α + 2

∫
�

∇dα+2 · ∇d v2dx = − 1

α + 2

∫
�

dα+2div(∇d v2)dx

= − 2

α + 2

∫
�

dα+2|v|∇d · ∇vdx + 1

α + 2

∫
�

dα+2(−�d)v2dx .

Using elementary inequalities we have

(α + 2)

∫
�

dα+1v2dx ≤ 2

(∫
�

dα+1v2dx

) 1
2
(∫

�

dα+3|∇v|2
) 1

2

+ Rα+2
int

∫
�

(−�d)v2dx

≤ δ

∫
�

dα+1v2dx + δ−1
∫

�

dα+3|∇v|2

+ Rα+2
int

∫
�

(−�d)v2dx

≤ δ

∫
�

dα+1v2dx + 2Rα+2
int

×
(

1

2δ

∫
�

d|∇v|2 + 1

2

∫
�

(−�d)v2dx

)
.

Hence, we have

(α+2−δ)

∫
�

dα+1v2dx ≤ 2Rα+2
int

(
1

2δ

∫
�

d|∇v|2 + 1

2

∫
�

(−�d)v2dx

)
. (3.4)

We next choose δ = min{ 1
2 , α+2

2 } and recall that Dint = 2Rint . The result then
follows taking into account (3.2) and (3.3). �

We next consider the general case.

Theorem 3.2 Let � ⊂ IRn be a convex domain. Then for any u ∈ W 1,p
0 (�) we

have

∫
�

|∇u|pdx −
(

p − 1

p

)p ∫
�

|u|p

d p
dx ≥ c D

−
(

p(α+n)
q −n+p

)
int

(∫
�

dα|u|qdx

) p
q

,

(3.5)
with c = c(p, q, n, α) > 0 a constant independent of � and

1 < p ≤ q ≤ np

n − p
, n > p, α >

q

p
(n − p) − n. (3.6)

If p = q then n = p is allowed.

Proof: By standard density arguments it is enough to prove (3.5) for u ∈ C∞
0 (�).
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We first consider the case 1 < p < 2. Using the change of variables u(x) =
v(x)d

p−1
p we have by Proposition 2.1 that

∫
�

|∇u|pdx −
(

p − 1

p

)p ∫
�

|u|p

d p
dx (3.7)

≥ c(p, n)

(∫
�

d p−1 X2−p|∇v|pdx +
∫

�

(−�d)|v|pdx

)
.

On the other hand ∫
�

dα|u|qdx =
∫

�

dα+q− q
p |v|qdx . (3.8)

For simplicity we set

A = α + q − q

p
. (3.9)

Let {Qm}, m = 1, 2, . . ., be a covering of � by Whitney cubes (see [[15],
chapter VI, sec. 1]). In particular each side of the cube Qm has length dm such
that c0dm ≤ d(x) ≤ c1dm and

c′
0 X

(
dm

Rin

)
≤ X

(
d(x)

Rin

)
≤ c′

1 X

(
dm

Rin

)
,

for any x ∈ Qm and any m = 1, 2 . . ., where c0, c1, c′
0, c′

1 are universal constants.
Then, for a universal constant c we have

(∫
�

d A|v|qdx

) p
q ≤ c

(∑
m

∫
Qm

d A
m |v|qdx

) p
q

≤ c
∑

m

d
p A
q

m

(∫
Qm

|v|qdx

) p
q

.

(3.10)
From now on we denote by c a positive constant, not necessarily the same in

each occurrence, that may depend only on n, p, q or α. Using Sobolev’s inequality
in Qm for functions defined in W 1,p(Qm), we have

c

(∫
Qm

|v|qdx

) p
q ≤ d

np
q −n+p

m

∫
Qm

|∇v|pdx + d
np
q −n

m

∫
Qm

|v|pdx .

It then follows

c

(∫
Qm

|v|qdx

) p
q ≤ d

np
q −n+1

m X p−2
(

dm

Rint

)∫
Qm

d p−1 X2−p|∇v|pdx

+ d
np
q −n

m X p−2
(

dm

Rint

) ∫
Qm

X2−p|v|pdx .

Combining this with (3.10) we get

(∫
�

d A|v|qdx

) p
q ≤ c

∑
m

[
d

(A+n)p
q −n+1

m X p−2
(

dm

Rint

)∫
Qm

d p−1 X2−p|∇v|pdx

+d
(A+n)p

q −n
m X p−2

(
dm

Rint

)∫
Qm

X2−p|v|pdx

]
. (3.11)
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For the first term in the bracket in (3.11), noting that

(A + n)p

q
− n + 1 = (α + n)p

q
− n + p > 0, (3.12)

we use the estimate

d
(A+n)p

q −n+1
m X p−2

(
dm

Rint

)
≤ max

0≤t≤1

{
t

(A+n)p
q −n+1 X p−2(t)

}
R

(A+n)p
q −n+1

int

= c R
(A+n)p

q −n+1

int . (3.13)

To estimate the second term in the brackets in (3.11) we notice that, by (3.12)
there exists an ε = ε(p, q, n, α) > 0 such that (A+n)p

q − n − ε > −1. We then
have

d
(A+n)p

q −n
m X p−2

(
dm

Rint

)∫
Qm

X2−p|v|pdx ≤

≤ cdε
m X p−2

(
dm

Rint

)∫
Qm

d
(A+n)p

q −n−ε X2−p|v|pdx

≤ c Rε
int

∫
Qm

d
(A+n)p

q −n−ε X2−p|v|pdx . (3.14)

Combining (3.11), (3.13) and (3.14) we get
(∫

�

d A|v|qdx

) p
q ≤ cR

(A+n)p
q −n+1

int

∫
�

d p−1 X2−p|∇v|pdx

+cRε
int

∫
�

d
(A+n)p

q −n−ε X2−p|v|pdx . (3.15)

To continue we will estimate the last term in (3.15). For simplicity we set

θ := (A + n)p

q
− n − ε + 1 > 0. (3.16)

Using the fact that ∇d · ∇d = 1 a.e. and integrating by parts we have∫
�

dθ−1 X2−p|v|pdx = θ−1
∫

�

∇dθ · ∇d X2−p|v|pdx

= −θ−1
∫

�

dθ div(∇d X2−p |v|p)dx

= θ−1
∫

�

dθ (−�d)X2−p|v|pdx − (2 − p)θ−1
∫

�

dθ−1 X3−p|v|pdx

− pθ−1
∫

�

dθ X2−p|v|p−1∇d · ∇|v|dx

≤ θ−1
∫

�

dθ (−�d)X2−p|v|pdx + pθ−1
∫

�

dθ X2−p|v|p−1|∇v|dx .

(3.17)
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Using Hölder’s inequality for the last term in (3.17) we have

∫
�

dθ X2−p|v|p−1|∇v|dx ≤
(∫

�

dθ−1 X2−p|v|pdx

) p−1
p

×
(∫

�

dθ−1+p X2−p|∇v|pdx

) 1
p

≤δ

∫
�

dθ−1 X2−p|v|pdx+cδ

∫
�

dθ−1+p X2−p|∇v|pdx .

Combining this with (3.17) we easily arrive at

c
∫

�

dθ−1 X2−p|v|pdx ≤
∫

�

dθ−1+p X2−p|∇v|pdx +
∫

�

dθ (−�d)X2−p|v|pdx

≤ Rθ
int

[∫
�

d p−1 X2−p|∇v|pdx +
∫

�

(−�d)|v|pdx

]
.

This is the sought for estimate for the last term in (3.15); see (3.16) for the value
of θ . Using this estimate in (3.15) we conclude

(∫
�

d A|v|qdx

) p
q ≤ c R

(A+n)p
q −n+1

int

[∫
�

d p−1 X2−p|∇v|pdx +
∫

�

(−�d)|v|pdx

]
.

(3.18)
From this and (3.7)–(3.9) the result follows. The case 1 < p < 2 has been proved.

The case p ≥ 2 is similar but simpler since no logarithmic corrections are
involved in this case. We will therefore sketch it.

For u(x) = v(x)d
p−1

p we have by Proposition 2.1 that

∫
�

|∇u|pdx −
(

p − 1

p

)p ∫
�

|u|p

d p
dx ≥ (3.19)

≥ c(p, n)

(∫
�

d p−1|∇v|pdx +
∫

�

(−�d)|v|pdx

)
.

The Lq–integral is again given by (3.8)–(3.9).
By the same covering argument as before and the fact that d(x) ≤ Rin we

obtain the analogue of (3.15) which is

(∫
�

d A|v|qdx

) p
q ≤ cR

(A+n)p
q −n+1

int

∫
�

d p−1|∇v|pdx + c
∫

�

d
(A+n)p

q −n|v|pdx .

(3.20)

We note that (3.20) is trivially true in the case p = q = n.
As before, we will estimate the last term in (3.20). For simplicity we now set

θ := (A + n)p

q
− n + 1 > 0. (3.21)
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Using the identity dθ−1 = θ−1∇dθ · ∇d and integration by parts we have
∫

�

dθ−1|v|pdx = −θ−1
∫

�

dθ div(∇d |v|p)dx

≤ θ−1
∫

�

dθ (−�d)|v|pdx + pθ−1
∫

�

dθ |v|p−1|∇v|dx .

(3.22)

The last term above is estimated using Hölder’s inequality to get
∫

�

dθ |v|p−1|∇v|dx ≤ δ

∫
�

dθ−1|v|pdx + cδ

∫
�

dθ−1+p|∇v|pdx .

Combining this with (3.22) we obtain
∫

�

d
(A+n)p

q −n|v|pdx ≤ c R
(A+n)p

q −n+1

int

(∫
�

d p−1|∇v|pdx +
∫

�

(−�d)|v|pdx

)
.

(3.23)
The result follows by (3.8)–(3.9) and (3.19). �

Proof of Theorem 1.1: The lower bound of C(�) comes from Theorems 3.1,
3.2. The upper bound is a consequence of the corresponding upper bound for the
best constant cp,q(�) in

∫
�

|∇u|pdx ≥ cp,q(�)

(∫
�

|u|qdx

) p
q

, (3.24)

for u ∈ W 1,p
0 (�) and 1 < p ≤ q <

np
n−p . In particular, if Bint is the ball of

maximum interior diameter, we have that cp,q(�) ≤ cp,q(Bint ) and then the result
follows.
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