
J. Math. Fluid Mech.            (2021) 23:5 
c© 2020 Springer Nature Switzerland AG
https://doi.org/10.1007/s00021-020-00528-0

Journal of Mathematical
Fluid Mechanics

On Vector Fields Describing the 2d Motion of a Rigid Body in a Viscous Fluid and
Applications

Stathis Filippas and Alkis Tersenov

Communicated by D. Gerard-Varet

Abstract. We present some properties of functions in suitable Sobolev spaces which arise naturally in the study of the motion
of a rigid body in compressible and incompressible fluid. We relax the regularity assumption of the rigid body by allowing its
boundary to be Lipschitz. In the case of a smooth rigid body we obtain a new estimate on the angular velocity. Our results
extend and complement related results by V. Starovoitov and moreover we show that they are optimal. As an application
we present an example where the rigid body collides with the boundary with non zero speed. Finally, we present a new non
collision result concerning a smooth rotating body approaching the boundary, without assuming any special geometry on
either the body or the container.

Mathematics Subject Classification. 46E35, 35Q30.

Keywords. Sobolev spaces, Fluid solid interaction, Estimates on angular speed, Non zero speed collision, Non collision.

1. Introduction

Let Ω ⊂ IR2 be a domain, S ⊂ Ω be a bounded connected domain and x∗ ∈ S be a fixed point. By
W 1,p

0 (S, Ω), p ≥ 1, we denote the vector function space consisting of functions

u : Ω → IR2, u ∈
(
W 1,p

0 (Ω)
)2

,

such that for a constant vector a∗ ∈ IR2 and a constant ω ∈ IR there holds

u(x) = a∗ + ω(x − x∗)⊥, for x ∈ S , (1.1)

with x = (x1, x2), x⊥ = (x2,−x1) and u = (u1, u2).
Such function spaces arise naturally when studying the motion of a rigid body S inside a fluid region

Ω, see e.g., [5,8–12]. In this context u is the velocity field in Ω whereas inside the rigid body the velocity
is given by (1.1). This is a consequence of the fact that inside the rigid body the deformation tensor is
zero, that is,

Di,j(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
= 0, i, j = 1, 2 . (1.2)

The vector fields u for which this holds true, consist of the rigid body vector fields given by (1.1), see
e.g., [11,14]. We note that a∗ is the linear velocity of the reference point x∗ and ω is the angular speed
of S around x∗.

We are interested both in the static case where the body S touches the boundary ∂Ω as well as in
the dynamic case, where S approaches the boundary ∂Ω. When the boundaries ∂Ω and ∂S are C2 such
questions have been studied in [8], whereas the case where the boundaries are C1,α, 0 < α < 1, have been
studied in [11].
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Suppose that S touches the boundary ∂Ω, that is, dist(S, ∂Ω) = 0. We further assume that u is

solenoidal in Ω that is, divu(x) = 0 for x ∈ Ω and moreover u ∈
(
W 1,p

0 (Ω)
)2

. It is shown in [11],

Theorem 2.1, that if both ∂Ω and ∂S are C1,α with 0 < α < 1, then

p ≥ 2 + α

2α
implies a∗ = 0, ω = 0 .

We first show that the above result is optimal, in the sense that for 1 ≤ p < 2+α
2α we construct examples

where either ω or a∗ are not zero. Next, we relax the smoothness requirement replacing it by Lipschitz
continuity of ∂S and ∂Ω. In such a case we show that if p ≥ 2 then a∗ = 0, whereas ω does not have
to be zero. A similar result is shown in the limit case where S degenerates to a smooth curve, which
can be considered as a thin walled solid body, see [4]. This result is optimal and moreover holds true
independently of whether u is solenoidal or not in Ω. See Theorem 2.1 for the general case and Theorem
3.2 for the solenoidal case.

We next consider the dynamic case, where S is allowed to move inside Ω. Denote by S(t) ⊂ Ω the
position of S at time t and set S0 = S(0). Let us assume that there are L∞(0, T ) functions a∗(t) and
ω(t) so that S(t) consists of points x(t) satisfying

dx(t)
dt

= a∗(t) + ω(t)(x(t) − x∗(t))⊥, x(0) = x0 ∈ S0.

For p ≥ 1, q ≥ 1 we define the space of functions u(x, t), x ∈ Ω, t ∈ (0, T ),

Lq(0, T ;W 1,p
0 (S(t) ,Ω))

:= {u ∈ Lq
(
0, T ;

(
W 1,p

0 (Ω)
)2

)
: u(x, t) = a∗(t) + ω(t)(x − x∗(t))⊥ for x ∈ S(t)}.

We denote by h(t) the distance at time t between S(t) and ∂Ω, that is,

h(t) = dist(S(t), ∂Ω) = inf
x∈S(t)

d(x),

where d(x) = dist(x, ∂Ω). We assume that S0 and Ω are C1,α with 0 < α ≤ 1. Then for a solenoidal
vector field

u ∈ L∞(0, T ;L2(Ω)) ∩ L1(0, T ;W 1,p
0 (S(t) ,Ω)),

it is shown in [11], Theorem 3.1, that h is Lipschitz continuous in t and∣∣∣∣
dh(t)

dt

∣∣∣∣ ≤ Ch
1+2α

p(1+α) (p− 2+α
1+2α )‖u‖W 1,p

0 (Ω) for a.a. t ∈ (0, T ) . (1.3)

In the present work we first show that if S is Lipschitz then h is Lipschitz continuous and estimate
(1.3) holds with α = 0. The same result holds true for a thin walled body as well. In addition, we do not
require u to be solenoidal, see Theorem 4.3 for the precise statement.

Next, under the assumption that S is C1,α with 0 < α ≤ 1, we obtain the following estimate for the
angular velocity ω:

|ω| ≤ Ch
2α

p(1+α) (p− 2+α
2α )‖∇u‖Lp(Ω); (1.4)

see Theorem 4.6 for the precise statement. This estimate is new and complements (1.3). Moreover, we
show that this estimate as well as (1.3) are optimal.

In the context of rigid body motion in a viscous incompressible fluid, Starovoitov [11] shows that if
u is in the usual energy space and α ≥ 1

2 then the body comes to the boundary of Ω with zero speed.
We construct an example which shows that for 0 ≤ α < 1

2 collision is possible with a non zero speed, see
Example 1 of Sect. 5.

Hillairet [7] has shown that if the rigid body S is a disc and Ω is half–plane, then in the absence of
external forces there is no collision. In [6] Gérard–Varet and Hillairet show that for a C1,α body moving
vertically near a flat horizontal part of ∂Ω, under the action of gravity, collision is possible if and only if
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α < 1
2 . It is important to note that in [6,7] the authors use essentially the Navier–Stokes equations and

not just the fact that u is a member of suitable Sobolev spaces.
Using (1.4) we present a formal argument suggesting that for smooth S and Ω and in the absence of

external forces, collision is impossible. The argument is formal since we assume that the fluid is governed
by the stationary Stokes equations for a.a. t. On the other hand no special geometry on S or Ω is assumed.

The paper is organized as follows. In Sect. 2 we consider the case where S and Ω are in contact, that
is, dist(S, ∂Ω) = 0 without requiring the vector field u to be solenoidal. The solenoidal case is considered
in Sect. 3. In Sect. 4 we consider the dynamic case where S is approaching the boundary of Ω. In Sect. 5
several examples are presented and discussed. Finally in Sect. 6 the non collision result is presented.

2. The General Case During Contact

In this section we assume that the rigid body S ⊂ Ω touches the boundary of Ω at the point P . Without
loss of generality we take P = (0, 0) = x∗. In particular we have

u(x) = a + ωx⊥, for x ∈ S ,

where for simplicity of notation we write a instead of a∗. By “general case” we mean that u is not
necessarily divergence free.

We consider two cases. First we consider the case where ∂Ω and ∂S are both C1,α with 0 < α < 1. In
this case we choose our coordinate system x1x2 so that the x1 axis coincides with the common tangent
to ∂S and ∂Ω at the point P . One easily checks that there exist k > 0 and ε0 > 0 such that for any
ε ∈ (0, ε0],

P+
ε,α := {|x1| < ε, k|x1|1+α < x2 < kε1+α} ⊂ S ,

P−
ε,α := {|x1| < ε, −kε1+α < x2 < −k|x1|1+α} ⊂ IR2\Ω . (2.1)

We also denote by Πε,α the orthogonal parallelogram

Πε,α := {(x1, x2) : |x1| < ε, |x2| < kε1+α} . (2.2)

In the second case ∂Ω and ∂S are Lipschitz. We recall that if Ω is a Lipschitz domain and x ∈ ∂Ω, it
follows, see [2], Chapter 4, that there exists a finite sector Sec0(0, r0, θ) contained in Ωc = IR2\Ω. Here
Sec0(0, r0, θ) = B(0, r0) ∩ Sec(0, θ0) where B(0, r0) is the open ball centered at (0, 0) of radius r0 and
Sec(0, θ0) is the angle with vertex at (0, 0) and opening θ0.

We then have

Theorem 2.1. Let u ∈ W 1,p
0 (S,Ω).

(A) Suppose first that Ω, S are C1,α, with α ∈ (0, 1).
(i) If p ≥ 2+α

1+α then a = 0, moreover if p ≥ 2+α
α then ω = 0 as well.

This result is optimal in the following sense
(ii) There exist Ω, S and u ∈ W 1,p

0 (S,Ω) such that if 1 ≤ p < 2+α
1+α then a 
= 0, whereas if 1 ≤ p < 2+α

α

then ω 
= 0.
(B) Suppose now that Ω, S are Lipschitz continuous.
(iii) If p ≥ 2 then a = 0.
This is optimal in the following sense
(iv) there exist domains Ω, S and a function u ∈ W 1,p

0 (S,Ω) such that if 1 ≤ p < 2 then a 
= 0,
whereas if p ≥ 1 then ω 
= 0.

Proof. Throughout the proof we extent u outside Ω by zero.
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A (i) Triangle inequality gives that
(∫

P+
ε,α

|u|pdx

) 1
p

=

(∫

P+
ε,α

|a + ωx⊥|pdx

) 1
p

≥ |a|
(∫

P+
ε,α

1dx

) 1
p

− |ω|
(∫

P+
ε,α

|x|pdx

) 1
p

≥
∣∣∣c1|a|ε

2+α
p − c2|ω|ε1+ 2+α

p

∣∣∣ , (2.3)

for some positive constants c1, c2 independent of ε. On the other hand Poincare’s inequality in Πε,α gives
that for some positive constant c0, independent of ε,

(∫

Πε,α

|u|pdx

) 1
p

≤ c0ε
1+α

(∫

Πε,α

|∇u|pdx

) 1
p

, (2.4)

where ∇ = ( ∂
∂x1

, ∂
∂x2

)T , u = (u1, u2) and ∇u is the corresponding tensor. From (2.3) and (2.4) we get
that

∣∣∣c1|a|ε
2+α

p − c2|ω|ε1+ 2+α
p

∣∣∣ ≤ c0ε
1+α

(∫

Πε,α

|∇u|pdx

) 1
p

,

from which it follows
∣∣∣c1|a| − c2|ω|ε

∣∣∣ ≤ c0ε
1+α− 2+α

p

(∫

Πε,α

|∇u|pdx

) 1
p

, (2.5)

Sending ε to zero we get that a = 0 provided that p ≥ 2+α
1+α . Setting a = 0 in (2.5), simplifying and

sending ε to zero we conclude that ω = 0 when p ≥ 2+α
α .

(ii) Let Ω be the half disc

Ω = {(x1, x2) : x2
1 + x2

2 < R2, x2 > 0} ,

of which we smooth out the boundary and S be the domain bounded by the curves x2 = k|x1|1+α, k > 0,
and x2

1 + x2
2 = ρ2, x2 > 0, 2ρ < R, for which domain we also smooth out the boundary.

Since both domains are symmetric with respect to the x2–axis we restrict ourselves to the first quad-
rant, that is, the x1 > 0, x2 > 0 part of the plane. We next define the function

u(x) = ψ(|x|)φ
(

x2

kx1+α
1

)
uS(x) , (2.6)

where,

uS(x) = a + ωx⊥, x ∈ IR2 , a 
= 0,

and ψ(r) and φ(τ) are smooth cutoff functions given by

ψ(r) =

⎧
⎨
⎩

1, 0 < r < ρ,
C∞, ρ < r < 2ρ ,
0, 2ρ < r ,

φ(τ) =

⎧
⎨
⎩

1, τ ≥ 1,
C∞, 0 < τ < 1
0, τ ≤ 0.

(2.7)

It is easily seen that u is a bounded C1 function in the upper half plane. Moreover,

u(x) = a + ωx⊥ for x ∈ S and u(x) = 0 on ∂Ω.

In the sequel we will check the integrability of |∇u|p. Taking the gradient of u we have the following
matrix equality

∇u = ∇ψφuS + ψ∇φuS + ψφ∇uS . (2.8)
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The first and third terms of the right hand side are bounded, hence the integrability of the left hand side
is reduced to the integrability of the middle term of the right hand side. Concerning the middle term we
easily note that

(a) its integrability is decided by the term ∇φ = ∇φ
(

x2

kx1+α
1

)
, the other two factors being bounded,

(b) it is enough to check the domain of integration

0 < x1 < σ, 0 < x2 < kx1+α
1 ,

for σ small .
We easily see

|∇φ| ≤ Cx−1−α
1 , 0 < x1 < σ, 0 < x2 < kx1+α

1 ,

and ∫ σ

0

∫ kx1+α
1

0

|∇φ|p dx2dx1 ≤ C

∫ σ

0

x
(1+α)(p−1)
1 dx1. (2.9)

Then for a 
= 0, we have u ∈ W 1,p
0 (Ω; IR2) provided that p < 2+α

1+α .
Suppose now that 2+α

1+α ≤ p < 2+α
α . We then have a = 0 and therefore

|uS(x)| = |ω||x|, ω 
= 0 .

The integrability of |∇u|p is now equivalent to the finiteness of
∫ σ

0

∫ kx1+α
1

0

|x|px−(1+α)p
1 dx2dx1,

which is true provided that p < 2+α
α .

B (iii) Since Ω is Lipschitz continuous there exists a finite sector Sec0(0, θ, ε
sin θ ) ⊂ Ωc, 0 < ε < ε0. We

choose our orthogonal system to be x1x2 where x2 is along the direction of the bissectrice of the angle θ.
We also define

Πε := {(x1, x2) : |x1| < ε, |x2| < ε cot θ} . (2.10)

Since S is Lipschitz there exists a finite sector Sec0(0, r̃0, θ̃0) ⊂ S. We also set Sε = Sec0(0, r̃0, θ̃0) ∩ Πε.
We work as in A(i)

(∫

Sε

|u|pdx

) 1
p

≥ |a|
(∫

Sε

1dx

) 1
p

− |ω|
(∫

Sε

|x|pdx

) 1
p

≥
∣∣∣c1|a|ε 2

p − c2|ω|ε1+ 2
p

∣∣∣ ,

where we used that |Sε| = c0ε
2 and |x| < c1ε for suitable positive constants c0, c1. We conclude as in the

proof of A(i) with α = 0 there.
(iv) Here we use the construction of part (ii) with α = 0. We omit further details. �

What happens if the rigid body degenerates to a line segment L touching the boundary ∂Ω? This can
be thought as a thin wall body approximation, see e.g. [4]. In this case we understand the requirement
u(x) = a + ωx⊥ for x ∈ S in the sense of trace. As in the previous case we asume that L touches the
boundary of Ω at the point (0, 0).

We then have

Theorem 2.2. Let u ∈
(
W 1,p

0 (Ω)
)2

and Tr
∣∣
L
u(x) = a + ωx⊥.

A. Assume that ∂Ω is Lipschitz continuous. If p ≥ 2 then a = 0.
B. Assume that ∂Ω is C1,α, α ∈ (0, 1], and that L is tangent to ∂Ω. If p ≥ 2+α

1+α then a = 0, moreover
if p ≥ 2+α

α then ω = 0 as well.
C. All the above results are optimal similarly to Theorem 2.1.
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In case (A) above, ω is not necessarily zero, no matter what p is. Similarly, in case (B) if L touches
∂Ω nontangentially then by part (A), a = 0 provided that p ≥ 2 and ω is not necessarily zero no matter
what p is.

Proof. The proof is similar to the proof of Theorem 2.1. We assume that the point of contact is (0, 0).
A. Let Πε be the orthogonal defined in (2.10) centered at (0, 0) and let Lε = L ∩ Πε. Similarly to

Theorem 2.1 the result is optimal.
Triangle inequality and simple estimates give that

(∫

Lε

|u|pds

) 1
p

≥ c(|a|ε 1
p − |ω|ε1+ 1

p ) . (2.11)

where we used |Lε| ∼ ε.
Assume at the moment that ε = 1. By the standard trace theorem we have that

(∫

L1

|u|pds

) 1
p

≤ c1

(∫

Π1

|u|pdx

) 1
p

+ c1

(∫

Π1

|∇u|pdx

) 1
p

.

On the other hand by Poincare inequality
(∫

Π1

|u|pdx

) 1
p

≤ c2

(∫

Π1

|∇u|pdx

) 1
p

.

Combining the previous two estimates we get that
(∫

L1

|u|pds

) 1
p

≤ c3

(∫

Π1

|∇u|pdx

) 1
p

.

Scaling the above inequality to Πε we finally have
(∫

Lε

|u|pds

) 1
p

≤ c3ε
p−1

p

(∫

Πε

|∇u|pdx

) 1
p

. (2.12)

From (2.11) and (2.12) we conclude

c|a| − c|ω|ε ≤ c3ε
p−2

p

(∫

Πε

|∇u|pdx

) 1
p

,

and the result follows taking ε → 0.
B. We now have that L is part of the x1 axis and let Πε,α be as defined in (2.2). We also set Lε = L∩Πε,α

and Π−
ε,α = Πε,α ∩ {x2 < 0}. For x1 ∈ Lε we easily have

∣∣∣|a| − |ω||x1|
∣∣∣ ≤ |u(x1, 0)| ≤

∫ 0

−k|x1|1+α

|ux2(x1, x2)|dx2.

Integrating with respect to x1 ∈ Lε we obtain
∣∣∣c1|a|ε − c2|ω|ε2

∣∣∣ ≤
∫

Π−
ε,α

|∇u|dx ≤ ε(2+α) p−1
p ‖∇u‖Lp(Π−

ε,α),

for suitable positive constants c1, c2 independent of ε. We conclude as before.
C. For the optimality we use a similar construction as in Theorem 2.1(ii). �

Remark 2.1. Clearly the same proof works if instead of a line segment we have a smooth finite curve.
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3. The Solenoidal Case During Contact

In this section we continue to assume that the rigid body S ⊂ Ω touches the boundary of Ω at the point
P = (0, 0) = x∗, but we impose the extra assumption that u is divergence free i.e., divu = 0. We continue
to use the same coordinate system as in Sect. 2. If we denote by nP and τP the outward (to S) unit
normal and unit tangential vector respectively and by uP the velocity of the rigid body at the point P
we have

uP = a = (a1, a2) = (uP · τP , −uP · nP ). (3.1)

We first present an auxiliary Lemma for later use

Lemma 3.1. Let u ∈ W 1,p
0 (S,Ω), p > 1, with divu = 0. Suppose that Ω, S are C1,α, with α ∈ (0, 1). Then

there exist positive constants C and ε0 such that for all ε ∈ (0, ε0) there holds

|a2 − 2k

2 + α
a1ε

α − ω

(
1
3

+
k2ε2α

3 + 2α

)
ε| ≤ C(‖∇u‖Lp(Πε,α)ε

α + ‖divu‖Lp(Πε,α))ε
1+α− α+2

p . (3.2)

Proof. We denote by Γ±
ρ the graph of the curves x2 = ±kx1+α

1 , 0 ≤ x1 ≤ ρ ≤ ε0 and by Gρ the planar
region enclosed by the curves Γ+

ρ , Γ−
ρ and the line x1 = ρ. We note that on Γ+

ρ we have u = a + ωx⊥

whereas u = 0 on Γ−
ρ . By the divergence theorem applied to Gρ we have

∫

Gρ

divu dx1dx2 =
∫ kρ1+α

−kρ1+α

u1(ρ, x2) dx2 +
∫

Γ+
ρ

u · n ds ,

where n is the outward unit normal to Gρ and the line integrals are taken counter clockwise. Straightfor-
ward calculations show that

a2ρ − a1kρ1+α − 1
2
ω(ρ2 + k2ρ2+2α) =

∫ kρ1+α

−kρ1+α

u1(ρ, x2) dx2 −
∫

Gρ

divu dx1dx2 .

We now integrate the last equality from ρ = 0 to ρ = ε ≤ ε0 to get

1
2
a2ε

2 − k

2 + α
a1ε

2+α − ω

(
1
6

+
k2ε2α

6 + 4α

)
ε3

=
∫

Gε

u1(x1, x2) dx1dx2 −
∫ ε

0

∫

Gρ

divu dx1dx2dρ . (3.3)

We next estimate the two integrals in the right hand side. Using Holder and Poincare inequalities as well
as the fact that |Gε| = 2k

2+αε2+α we obtain

|
∫

Gε

u1(x1, x2) dx1dx2| ≤ ‖u‖Lp(Πε,α)|Gε|
p−1

p

≤ C‖∇u‖Lp(Πε,α) ε3+2α− α+2
p . (3.4)

On the other hand

|
∫ ε

0

∫

Gρ

divu dx1dx2dρ| ≤
∫ ε

0

(∫

Gρ

|divu|p dx1dx2

) 1
p

|Gρ|
p−1

p dρ

≤ ε

(∫

Gε

|divu|p dx1dx2

) 1
p

|Gε|
p−1

p

≤ C‖divu‖Lp(Πε,α) ε3+α− α+2
p . (3.5)

From (3.3)–(3.5) the result follows. �

We then have
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Theorem 3.2. Let u ∈ W 1,p
0 (S,Ω) be such that divu = 0.

(A) Suppose first that Ω, S are C1,α, with α ∈ (0, 1).
(i) If p ≥ 2+α

1+2α then a2 = 0.
(ii) If p ≥ 2+α

1+α then a = 0.
(iii) If p ≥ 2+α

2α then a = 0 and ω = 0 .
The above results are optimal in the following sense:
(iv) there exist Ω, S and u ∈ W 1,p

0 (S,Ω) such that
if 1 ≤ p < 2+α

2α then a 
= 0,
if 2+α

2α ≤ p < 2+α
1+α then a1 
= 0,

if 2+α
1+α ≤ p < 2+α

2α then ω 
= 0.
(B) Suppose now that Ω, S Lipschitz continuous.
(v) If p ≥ 2 then a = 0. This is optimal in the sense that there exist domains Ω, S and a function

u ∈ W 1,p
0 (S,Ω) such that if 1 ≤ p < 2 then a 
= 0, whereas if p ≥ 1 then ω 
= 0.

Proof. (i) Using Lemma (3.1) with divu = 0 and sending ε to zero we get that a2 = 0.
(ii) This is a consequence of Theorem 2.1(ii). Alternatively from (3.2), after setting divu = 0 and

a2 = 0 and simplifying we get

| − 2k

2 + α
a1 + ω

(
1
3

+
k2ε2α

3 + 2α

)
ε1−α| ≤ C‖∇u‖Lp(Πε,α) ε1+α− α+2

p . (3.6)

Sending ε to zero we get that a1 = 0.
(iii) This is Theorem 2.1 in [11]. Alternatively, it follows from (3.6) by a similar procedure as in (ii).
(iv) Let Ω and S be as in the proof of Theorem 2.1(ii). We recall

uS(x) = a + ωx⊥, x ∈ IR2 ,

and define

Φ(x) := a · x⊥ +
1
2
ω|x|2 ,

so that

uS(x) = (u1S , u2S) = ∇⊥Φ(x) =
(

∂Φ
∂x2

, − ∂Φ
∂x1

)
.

With ψ and φ as in (2.7) we take

u(x) = ∇⊥
(

ψ(|x|)φ
(

x2

kx1+α
1

)
Φ(x)

)
. (3.7)

Clearly divu = 0. Since ψ = 1 for |x| < ρ, we have that for such x

∇u = Φ∇∇⊥φ + ∇Φ∇⊥φ + ∇φ∇⊥Φ + φ∇∇⊥Φ .

We easily see that in the region 0 ≤ x1 ≤ ρ, 0 ≤ x2 ≤ kx1+α
1 the following estimates hold true for

i, j = 1, 2

|φ| < C, |φxi
| < Cx−1−α

1 , |φxixj
| < Cx−2−2α

1

|Φ| < Cx1(|a| + |ω|x1) |Φxi
| < C(|a| + |ω|x1), |Φxixj

| < C|ω|.
We then compute

|∇u| ≤ C(|a| + |ω|x1)x−1−2α
1 .

As a consequence the integrability of |∇u|p in Ω is equivalent to the finiteness of the integral
∫ ρ

0

∫ kx1+α
1

0

(|a| + |ω|x1)px
−p(1+2α)
1 dx2dx1 .
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If |a| 
= 0 the above integral is finite for

p <
2 + α

1 + 2α
.

If on the other hand |a| = 0 and ω 
= 0 then the integral is finite for

p <
2 + α

2α
.

Now choosing Φ(x) = a1x2, with a1 
= 0, we note that

|Φxi
| < Cx1+α

1 , i = 1, 2, 0 < x2 < kx1+α
1 ,

and therefore |∇u| ≤ Cx−1−α
1 . This time the integrability of |∇u|p is ensured by the condition

p <
2 + α

1 + α
.

(v) The fact that if p ≥ 2 then a = 0 is shown in Theorem 2.1 (B) without the requirement divu = 0.
For the optimality we use Ω and S as in Theorem 2.1 and u as given in (3.7) with α = 0. As in part (iv)
we obtain

|∇u| ≤ C(|a| + |ω|x1)x−1
1 .

We conclude as before. �

Remark 3.1. We recall that if both S and Ω are differentiable at the point P = (0, 0) then the x1 axis is
along the common tangent to ∂S and ∂Ω. If we denote by nP and τP the outward to S unit normal and
unit tangential vector respectively and by uP the velocity of the rigid body at the point P we have

(a1, a2) = a = uP = (uP · τP , −uP · nP ).

We next consider the case of the thin wall approximation. Assume that the line segment L touches
the boundary ∂Ω.

Theorem 3.3. Let u ∈
(
W 1,p

0 (Ω)
)2

be such that divu = 0 and Tr
∣∣
L
u(x) = a + ωx⊥.

A. Assume that ∂Ω is Lipschitz continuous. If p ≥ 2 then a = 0.
B. Assume that ∂Ω is C1,α, α ∈ (0, 1], and that L is tangent to ∂Ω. If p ≥ 2+α

1+2α then a2 = 0. If
p ≥ 2+α

1+α then a = 0. Finally if p ≥ 2+α
2α then ω = 0 as well.

C. All the above results are optimal similarly to Theorem 3.2.

In case (A) above, ω is not necessarily zero, no matter what p is. Similarly, in case (B) if L touches
∂Ω nontangentially then by part (A), a = 0 provided that p ≥ 2 and ω is not necessarily zero no matter
what p is.

Proof. Part A is true (without u being divergent free) by Theorem 2.2. For part B we take L to lie on
the x1 axis and let Π−

ε,α be as defined in (2.2). Let Tρ be the region enclosed by the x1 axis, the parabola
Γ−

ρ and the vertical line x1 = ρ. Noting that on L we have u = (a1, a2 − ωx1) and applying divergence
Theorem in Tρ we get

a2ρ − 1
2
ωρ2 =

∫ 0

−kρ1+α

u1(ρ, x2)dx2.

Integrating the above from ρ = 0 to ε and using standard inequalities as before we arrive at
∣∣∣1
2
|a2|ε2 − 1

6
|ω|ε3

∣∣∣ ≤ ε3+2α− 2+α
p ‖∇u‖Lp(Tε), (3.8)

from which the result follows in case p ≥ 2+α
1+2α . The case where p ≥ 2+α

1+α is a consequence of Theorem
2.2. Finally from (3.8) after setting a2 = 0 there follows that ω = 0 when p ≥ 2+α

2α .
For the optimality we use a similar construction as in Theorem 3.2. �
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4. Before the Contact

In this Section we consider the case where S is allowed to move. By S = S(t) we denote the position of
the rigid body at time t ∈ [0, T ), with S(0) = S0 and by h(t) the distance at time t between S(t) and
∂Ω. Throughout the Section we assume that h is strictly positive.

We say that a domain D ⊂ IR2 is uniformly C1,α, α ∈ (0, 1], if there exist constants k > 0 and ρ0 > 0
s.t. for each x0 ∈ D there is an isometry R : IR2 → IR2 s.t.

R(0) = x0, R({x ∈ IR2 : k|x1|1+α < x2 < k|ρ0|1+α, |x1| < ρ0}) ⊂ D.

We note that if D is a bounded C1,α domain then it is a uniformly C1,α domain, see e.g, [1].
We recall the following result by Starovoitov

Theorem 4.1 [11]. Let Ω ⊂ IR2 and S0 ⊂ Ω be uniformly C1,α, α ∈ (0, 1] domains, S0 being in addition
bounded and

u ∈ L∞(0, T ; (L2(Ω))2) ∩ L1(0, T ;W 1,p
0 (S(t),Ω)), p ∈ [1,∞], divu = 0.

We assume that h(t) < H for some H > 0. Then h(t) is Lipschitz continuous and there exists a constant
C depending only on S, Ω, H and p such that∣∣∣∣

dh(t)
dt

∣∣∣∣ ≤ Chβ‖∇u‖Lp(Ω) for a.e. t ∈ (0, T ); (4.1)

here

β =
1 + 2α

p(1 + α)

(
p − 2 + α

1 + 2α

)
.

The following is a direct consequence of the above result, see Theorem 3.2 in [11]

Corollary 4.2. Let the conditions of Theorem 4.1 be satisfied and in addition

u ∈ Lq(0, T ;W 1,p
0 (S(t),Ω)), p, q ∈ [1,∞].

If h(t∗) = 0 for some t∗ ∈ [0, T ] and β < 1, then there exists a positive function ε(t) such that

h(t) = ε2(t)(t∗ − t)
q−1

q(1−β) , t ∈ (0, t∗), ε(t) −−→
t↑t∗

0. (4.2)

In this section we first extend Theorem 4.1 for a Lipschitz rigid body. We next complement estimate
(4.1) with a similar estimate for the angular velocity ω(t).

4.1. Lipschitz Rigid Body

Here we consider the case of a Lipschitz rigid body as well as the limiting case where the rigid body
degenerates to a smooth curve. The main result is

Theorem 4.3. Let Ω ⊂ IR2 be a domain that satisfies a uniform two sided ball condition of radius R and
S0 ⊂ Ω be either a bounded Lipschitz domain or a finite smooth curve. Let

u ∈ L∞(0, T ; (L2(Ω))2) ∩ L1(0, T ;W 1,p
0 (S(t),Ω)), p ∈ [2,∞].

Then h(t) is Lipschitz continuous and there exists a constant C depending only on S, Ω, H and p such
that ∣∣∣∣

dh(t)
dt

∣∣∣∣ ≤ Ch
p−2

p ‖u‖W 1,p
0 (Ω) for a.e. t ∈ (0, T ) . (4.3)

Remark 4.1. In case Ω is bounded the uniform two sided ball condition is equivalent to Ω being a C1,1

domain see, e.g., [1], Corollary 3.14.
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Remark 4.2. We note that in Theorem 4.1, if we set α = 0 then β = p−2
p . The proof of [11] however does

not work for α = 0. In addition, we do not require u to be solenoidal; see also Example 4 of next Section.

To prove the above Theorem we will combine two auxiliary lemmas. We first recall a few facts. In
case S ⊂ Ω is a bounded Lipschitz domain, it follows, see [2], Chapter 4, that S satisfies the uniform
cone condition, that is, there exists a length r0 and an angle θ0 ∈ (0, π

3 ) such that for any point x ∈ ∂S

a finite sector Sec0(x, r0, θ) is contained in S̄. The sector Sec0(x, r0, θ) is given, modulo translation and
rotation, by B(x, r0)∩Sec(x, θ0) where B(x, r0) is the open ball centered at x of radius r0 and Sec(x, θ0)
is the angle with vertex at x and opening θ0.

Let P ∈ ∂S and Q ∈ ∂Ω be two points that realize the distance h between S and ∂Ω, that is

h = |PQ| = dist(S, ∂Ω) > 0 .

We choose our coordinate system x1x2 s.t. Q is the origin (0, 0) and P is the point (0, h) = xP . We
also note that the x1–axis is tangent to ∂Ω at the point Q. Our first Lemma refers to a fixed time t and
S = S(t). For simplicity we drop the t dependence and write u(x) instead of u(x, t). We then have

Lemma 4.4. Let Ω ⊂ IR2 be a domain that satisfies a uniform two sided ball condition of radius R and
S ⊂ Ω be either a bounded Lipschitz domain or a finite smooth curve. Let u ∈ W 1,p

0 (S,Ω), p > 1 and uP

be the value of the vector field u at the point P . Then, for h < R we have

|uP | ≤ Ch
p−2

p

(
‖∇u‖Lp(Ω) + h

2
p ‖u‖L2(S)

)
.

where C = C(S,R) is a constant that depends only on S and R.

Proof. A. Suppose first that S is a bounded Lipschitz domain. By our assumptions we have that when
h < R and k is such that 0 < k < min{1, r0

R } then Sec0(P, kh, θ) ⊂ S̄. Define

Πh = {(x1, x2) : −h < x1 < h, −h < x2 < 2h}.

Since P = (0, h) and k < 1 there holds Sec0(P, kh, θ) ⊂ Πh. Using the fact that in the rigid body
u = uP + ω(x − xP )⊥ and triangle inequality we have that

|uP |
(

θ0(kh)2

2

) 1
p

− |ω|
(

θ0(kh)p+2

p + 2

) 1
p

≤ ‖u‖Lp(Sec0(P,kh,θ))

≤ ‖u‖Lp(Πh)

≤ c0h‖∇u‖Lp(Πh);

the last inequality follows from Poincare inequality since the bottom side of Πh is outside of Ω and u is
zero there. It then follows

|uP | ≤ Ch
p−2

p (‖∇u‖Lp(Πh) + h
2
p |ω|). (4.4)

From the fact that u ∈ L∞(0, T ; (L2(Ω))2) and (1.1) there follows that

|ω| ≤ C0‖u‖L2(S), with C0 = C0(S);

see, e.g., [11] p. 321, and the result follows.
B. Suppose that S is a finite smooth curve which for simplicity we take to be a line segment L. With

P , Q and Πh as before we set Lh = Πh ∩ L. On L we have u = uP + ω(x − xP )⊥ and by triangle
inequality and simple estimates we get

∣∣∣c1|uP |h 1
p − c2|ω|h1+ 1

p

∣∣∣ ≤
(∫

Lh

|uP |pds

) 1
p

,

For suitable positive constants independent of h. On the other hand similarly to estimate (2.12),
(∫

Lh

|u|pds

) 1
p

≤ c3h
p−1

p

(∫

Πh

|∇u|pdx

) 1
p

.

From these two estimates we obtain (4.4) and conclude as before. �
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We next state our second Lemma. We now allow time to evolve. We will use the following notation:
By x(t, P (t0)) we denote the trajectory that at time t0 ∈ [0, T ] passes through the point P (t0) ∈ S(t0),
that is the solution of the ODE

dx(t)
dt

= a∗(t) + ω(t)(x(t) − x∗(t))⊥, (4.5)

where x(t0) is the radius vector of the point P (t0) ∈ S(t0). With this notation we have that

h(t) = inf
P (t0)∈S(t0)

d(x(t, P (t0))) , ∀ t, t0 ∈ [0, T ]. (4.6)

The following result does not require any smoothness from the part of S.

Lemma 4.5. Assume that Ω satisfies the inner sphere condition of radius R > 0. Suppose that at time t0
a point Pm(t0) ∈ S(t0) with radius vector x(t0, Pm(t0)) realizes the distance of S(t0) to ∂Ω, that is

h(t0) = d(x(t0, Pm(t0))).

Let h < R. Then h(t) is a Lipschitz continuous function and for almost all t0 we have
dh(t)

dt

∣∣∣
t=t0

= ∇xd(x(t0, Pm(t0)) · dx

dt
(t, Pm(t0)))

∣∣∣
t=t0

. (4.7)

In particular, if ∂S is differentiable at the point P = Pm(t0) and nP is the outward unit normal there,
then

dh(t)
dt

∣∣∣
t=t0

= −nP · uP . (4.8)

Proof. We first recall that d(x) is 1-Lipschitz function in Ω and a C1 function in ΩR := {x ∈ Ω : d(x) <
R}. Because of (4.5) and the fact that a∗ and ω are bounded (see [11]) it follows that the function
x(t, P (t0)) is a Lipschitz continuous function of the first variable and as a consequence the composed
function d(x(t, P (t0))) is Lipschitz continuous in t ∈ (0, T ). It then follows that h(t) as given by (4.6)
is Lipschitz continuous in t ∈ (0, T ) as well and therefore differentiable for a.e. t ∈ (0, T ). On the other
hand, all trajectories defined by (4.5) are easily seen to be differentiable at the Lebesgue points of a∗(t)
and ω(t), and the same is true for the functions d(x(t, P (t0))) and in particular for d(x(t, Pm(t0))). Since
almost all points of a∗(t) and ω(t) in (0, T ) are Lebesgue points we conclude that at the exception of a
set of measure zero both functions h(t) and d(x(t, Pm(t0))) are differentiable. Let t0 be a point where
both h(t) and d(x(t, Pm(t0))) are differentiable. For τ > 0 we have

h(t0 + τ) − h(t0) = inf
P∈S(t0)

d(x(t0 + τ, P (t0))) − inf
P∈S(t0)

d(x(t0, P (t0)))

= inf
P∈S(t0)

d(x(t0 + τ, P (t0))) − d(x(t0, Pm(t0)))

≤ d(x(t0 + τ, Pm(t0))) − d(x(t0, Pm(t0))) ,

from which it follows that
dh(t)

dt

∣∣∣
t=t0

≤ d

dt
d(x(t, Pm(t0)))

∣∣∣
t=t0

.

Similarly we have that

h(t0) − h(t0 − τ) ≥ d(x(t0, Pm(t0))) − d(x(t0 − τ, Pm(t0))) ,

from which it follows that
dh(t)

dt

∣∣∣
t=t0

≥ d

dt
d(x(t, Pm(t0)))

∣∣∣
t=t0

,

and therefore
dh(t)

dt

∣∣∣
t=t0

=
d

dt
d(x(t, Pm(t0)))

∣∣∣
t=t0

= ∇xd(x(t0, Pm(t0)) · dx

dt
(t, Pm(t0))

∣∣∣
t=t0

,
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and this completes the proof of (4.7). Relation (4.8) follows from (4.7), taking into account that

∇xd(x(t0, Pm(t0)) =
−−→
QP

|QP | = (0, 1) = −nP

see e.g., Theorem 2.2.7 in [3] and

dx

dt
(t, Pm(t0))

∣∣∣
t=t0

= uPm(t0). (4.9)

�

We are now ready to give the proof of Theorem 4.3.

Proof of Theorem 4.3. : Since u ∈ L1(0, T ;W 1,p
0 (S(t),Ω)) we have that for almost all t0 ∈ (0, T ) function

u(·, t0) is an element of W 1,p
0 (S(t0),Ω). At such a time t0, we have (4.9) and

∇xd(x(t0, Pm(t0)) =
−−→
QP

|QP | = (0, 1).

Now the result follows from Lemmas 4.4 and 4.5 taking also into account that

‖u‖L2(S) ≤ |S|
p−2
2p ‖u‖Lp(S) ≤ |S|

p−2
2p ‖u‖Lp(Ω).

�

Remark 4.3. If in the above proof we use (4.4) in the place of the estimate of Lemma 4.4 we have that
for p ≥ 2 ∣∣∣∣

dh(t)
dt

∣∣∣∣ ≤ Ch
p−2

p

(
‖∇u‖Lp(Πh) + h

2
p |ω|

)
, for a.e. t ∈ (0, T ); (4.10)

here the orthogonal parallelogram Πh is defined in the proof of Lemma 4.4. In particular ḣ → 0 when
h → 0, even for p = 2. Moreover, when ω = 0, |ḣ| is bounded by a local norm of ∇u, in the sense that in
the right hand side of (4.10) appears the integral of ∇u over Πh instead of Ω.

In the smooth case where ∂S, ∂Ω are C1,α with α > 0, examination of the proof of [11] Theorem 3.1,
for n = 2, shows that in fact the following local estimate is true

∣∣∣∣
dh(t)

dt

∣∣∣∣ ≤ Chβ‖∇u‖Lp(Gh,σ0 ) for a.e. t ∈ (0, T ); (4.11)

here σ0 = ch
1

1+α for a suitable positive constant c and

Gh,σ = {(x1, x2) : −kx1+α
1 ≤ x2 ≤ kx1+α

1 + h, −σ < x1 < σ}. (4.12)

It is interesting that (4.11) holds even for ω 
= 0.

4.2. Estimates on the Angular Velocity ω

Here we assume that S and Ω are both C1,α, α ∈ (0, 1]. As usual h is the distance of S to the boundary
of Ω and let the points P ∈ S and Q ∈ ∂Ω be two points that realize the distance h, that is h = | 
PQ|.
We choose a coordinate system x1x2 s.t. x1 is tangent to ∂Ω at the point Q which coincides with the
origin (i.e. xQ = (0, 0)) and P has radius vector xP = (0, h).

We assume that if x ∈ S̄ then
uS(x) = uP + ω(x − xP )⊥, (4.13)

where uP = (uP1, uP2) is the velocity of the solid at the point P . We denote by τP the unit tangent
vector to S at the point P . We have
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Theorem 4.6. Let Ω ⊂ IR2 and S0 ⊂ Ω be uniformly C1,α, α ∈ (0, 1] domains, S0 being in addition
bounded and

u ∈ L∞(0, T ; (L2(Ω))2) ∩ L1(0, T ;W 1,p
0 (S(t),Ω)), p ∈ [1,∞], divu = 0.

We assume that h(t) < H for some H > 0. Then there exists a constant C depending only on S, Ω, H
and p such that

|ω| ≤ Ch
2α

p(1+α) (p− 2+α
2α )‖∇u‖Lp(Ω)

|uP · τP | ≤ Ch
1
p (p− 2+α

1+α )‖∇u‖Lp(Ω).

Proof. We consider the curves

Γ+
h,ρ = {(x1, x2) : x2 = h + kx1+α

1 , 0 ≤ x1 ≤ ρ},

Γ−
ρ = {(x1, x2) : x2 = −kx1+α

1 , 0 ≤ x1 ≤ ρ}.

From now on we choose a k and a ρ0 such that Γ+
h,ρ0

⊂ S and Γ−
ρ0

⊂ IR2\Ω̄. We also denote

Gh,ρ = {(x1, x2) : −kx1+α
1 < x2 < h + kx1+α

1 , −ρ < x1 < ρ},

G+
h,ρ = {(x1, x2) : −kx1+α

1 < x2 < h + kx1+α
1 , 0 < x1 < ρ}.

Let 0 < ρ̃ < ρ ≤ ρ0. We apply divergence Theorem in the region G+
h,ρ\G+

h,ρ̃ which is enclosed by the curves
x1 = ρ, Γ+

h,ρ\Γ+
h,ρ̃, x1 = ρ̃ and Γ−

ρ \Γ−
ρ̃ . Then we have (all line integrals are taken in the counter clockwise

direction)

0 =
∫

G+
h,ρ\G+

h,ρ̃

div u dx1dx2 =
∫ h+kρ1+α

−kρ1+α

u1(ρ, x2) dx2

+
∫

Γ+
h,ρ

u · n ds −
∫

Γ+
h,ρ̃

u · n ds +
∫ h+kρ̃1+α

−kρ̃1+α

u1(ρ̃, x2) dx2. (4.14)

Straightforward calculations yields:
∫

Γ+
h,ρ

u · n ds = ρuP · nP + kρ1+α uP · τP +
ρ2

2
(1 + k2ρ2α)ω; (4.15)

where nP = (0,−1) and τP = (1, 0). From (4.14) and (4.15) we get
∣∣k(ρ1+α − ρ̃1+α)uP · τP +

1
2

[
ρ2 − ρ̃2 + k2(ρ2+2α − ρ̃2+2α)

]
ω
∣∣

≤ |ρ − ρ̃| |uP · nP | +
∫ h+kρ1+α

−kρ1+α

|u1(ρ, x2)| dx2 +
∫ h+kρ̃1+α

−kρ̃1+α

|u1(ρ̃, x2)| dx2

=: B.

By the same argument, this estimate is true even if 0 < ρ < ρ̃ ≤ ρ0. We rewrite this as

− B ≤ k(ρ1+α − ρ̃1+α)uP · τP +
1
2

[
ρ2 − ρ̃2 + k2(ρ2+2α − ρ̃2+2α)

]
ω ≤ B. (4.16)

We first integrate estimate (4.16) from ρ = 0 to ρ = σ ≤ ρ0 for fixed ρ̃ and then we integrate from ρ̃ = 0
to ρ̃ = λσ for some λ ∈ (0, 1), to obtain

∣∣∣kλ(1 − λ1+α)
2 + α

uP · τP σ3+α +
(

λ(1 − λ2)
6

+
k2λ(1 − λ2+2α)

3 + 2α
σ2α

)
σ4ω

∣∣∣

≤ 1
2
λ(1 − λ +

2
3
λ2)|uP · nP | σ3 + λσ

∫

G+
h,σ

|u| dx1dx2 + σ

∫

G+
h,λσ

|u| dx1dx2. (4.17)
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We next estimate the terms in the right hand side. The first term in the right hand side has in fact be
estimated in the proof of Theorem 4.1. More precisely, examination of the proof of Theorem 3.1 in [11]
(see pp 321–322), for the 2D case shows that the following estimate holds true

|uP · nP | ≤ C1σ
−1− 1

p (h + 2kσ1+α)2− 1
p ‖∇u‖Lp(Gh,σ),

for a universal constant C1. The second term of (4.17) is estimated, using Holder and then Poincare
inequalities,

∫

G+
h,σ

|u| dx1dx2 ≤ (h + 2kσ1+α)|G+
h,σ|

p−1
p ‖∇u‖Lp(G+

h,σ).

Using also the fact that

|G+
h,σ| = σ

(
h +

2kσ1+α

2 + α

)
< σ(h + 2kσ1+α),

we get
∫

G+
h,σ

|u| dx1dx2 ≤ σ
p−1

p (h + 2kσ1+α)2− 1
p ‖∇u‖Lp(G+

h,σ).

We similarly estimate the third term in the right hand side, so that from (4.17) we have

∣∣∣kλ(1 − λ1+α)
2 + α

uP · τP σ3+α +
(

λ(1 − λ2)
6

+
k2λ(1 − λ2+2α)

3 + 2α
σ2α

)
σ4ω

∣∣∣

≤ λσ2− 1
p (h + 2kσ1+α)2− 1

p

[
C1

2
(1 − λ +

2
3
λ2) + 1 + λ− 1

p

]
‖∇u‖Lp(Gh,σ)

≤ C2λσ2− 1
p (h + 2kσ1+α)2− 1

p ‖∇u‖Lp(Gh,σ).

In the last inequality we restrict λ ∈ [12 , 3
4 ] and C2 is a universal constant. After simplifying with λ and

σ3+α we get
∣∣∣k(1 − λ1+α)

2 + α
uP · τP +

(
(1 − λ2)

6
+

k2(1 − λ2+2α)
3 + 2α

σ2α

)
σ1−αω

∣∣∣

≤ C2σ
−1−α− 1

p (h + 2kσ1+α)2− 1
p ‖∇u‖Lp(Gh,σ).

Since λ, k can take many different values we easily conclude that each of the terms |uP ·τP | and |σ1−αω|
is separately bounded by a suitable multiple of the right hand side and therefore we arrive at

|uP · τP | ≤ C3σ
−1−α− 1

p (h + 2kσ1+α)2− 1
p ‖∇u‖Lp(Gh,σ)

|ω| ≤ C3σ
−2− 1

p (h + 2kσ1+α)2− 1
p ‖∇u‖Lp(Gh,σ),

with a positive constant C3 depending on k, ρ0. To conclude the proof we finally choose σ =
(

h
H

) 1
1+α ρ0 ≤

ρ0. �

Remark 4.4. It follows from the proof that in the statement of Theorem 4.6 we can replace the norm
‖∇u‖Lp(Ω) by ‖∇u‖Lp(Gh,σ). Also, the dependence of the constant C on S, Ω is through k, ρ0 and α.

Remark 4.5. We note that Theorems 4.3 and 4.6 are in agreement with Theorem 3.2 of the static case.
In fact, one can easily obtain Theorem 3.2 from Theorems 4.3 and 4.6 through a limiting process h → 0
taking into account Remark 3.1 and (4.8).
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5. Examples and Optimality of the Results

In this section we first present an example, motivated from the motion of a rigid body in an incom-
pressible fluid, which shows the possibility of non zero collision speed. The other examples of the section
demonstrate the optimality of the results obtained in Sect. 4.

Throughout this section Ω = IR2
+ = {(x1, x2) : x2 > 0} and 0 ≤ h = h(t) < H is a smooth function of

time. We next define

S(t) = {(x1, x2) : x2 ≥ k|x1|1+α + h(t), x2
1 + (x2 − h(t))2 ≤ ρ0}. (5.1)

Clearly h(t) = dist(S(t), ∂Ω). Let a = (0, ḣ(t)) and

Φ(x, t) = a · x⊥ = −ḣ(t)x1.

Let φ, ψ be the cutoff functions defined in (2.7) with ρ = H + ρ0. We consider the vector field

u(x, t) = ∇⊥Ψ(x, t) := ∇⊥
(

ψ(|x|)φ
(

x2

kx1+α
1 + h(t)

)
Φ(x, t)

)
. (5.2)

One easily sees that

u(x, t) = (0, ḣ(t)), x ∈ S(t),
divu(x, t) = 0, x ∈ IR2

+, t > 0,

u((x1, 0), t) = 0.

Since u is zero outside |x| < 2ρ we can obviously consider bounded domains Ω as well. We then have

Example 1. (Non zero collision speed) We interpret u in (5.2) as the velocity field of a viscous fluid in
IR2

+ and S(t) is a rigid body moving in the fluid, see e.g [6,11]. It is then natural to require

u ∈ L∞(0, T ; (L2(Ω))2) ∩ L2(0, T ;W 1,2
0 (S(t),Ω)). (5.3)

Using Lemma (7.1) of the “Appendix” this is easily seen to be true provided that

ḣ ∈ L∞(0, T ), ḣ2h− 3α
1+α ∈ L1(0, T ), α ∈ (0, 1],

ḣ ∈ L∞(0, T ), ḣ2| ln h| ∈ L1(0, T ), α = 0.

For α = 1 the above conditions are the same as in [11], Lemmas 4.1, 4.2 where a completely different
example is constructed.

We also note that ḧ ∈ L2(0, T ) implies Ψt ∈ L2(0, T ;L2(Ω)) which, by means of (5.2) has as a conse-
quence that ut ∈ L2(0, T ;H−1(Ω)). Then, the pair (u(x, t), S(t)), according to [11], is a weak solution of
the problem of motion of a rigid body in a viscous fluid, with a forcing term g ∈ L2(0, T ;H−1(Ω)).

It is shown in [11], p. 323 that for α ≥ 1/2 a body comes to the external boundary with zero speed.
We will show that for 0 ≤ α < 1/2 the body hits the boundary with a non zero speed. Indeed, let

h(t) = (T − t)θ, θ ≥ 1, (5.4)

condition (5.3) is satisfied for

θ ≥ 1 if α ∈ [0, 1/2) or θ >
1 + α

2 − α
≥ 1 if α ∈ [1/2, 1] .

Moreover ḧ ∈ L2(0, T ) provided that θ = 1 or θ > 3/2. Thus, for 0 ≤ α < 1/2 we can take h(t) = T − t

which gives a non zero collision speed (ḣ = −1), whereas for α ≥ 1/2 the collision speed is indeed zero.

Example 2. (On the optimality of Theorems 4.1 and 4.3) Suppose that α = 0. From the estimate (4.10)
of Remark 4.3 we have that

C|ḣ|ph2−p ≤
∫

Πh

|∇u|pdx1dx2,
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whereas from (7.3) of “Appendix” we see that∫

Πh

|∇u|pdx1dx2 ≤ C|ḣ|ph2−p.

Therefore estimate (4.10) of Remark 4.3 is optimal for any p ≥ 1. Similarly by comparing estimate (4.3)
of Theorem 4.3 and (7.2) (with α = 0), we conclude that the estimate of Theorem 4.3 is optimal for
p > 2.

Consider now the case α > 0. From estimate (4.11) of Remark 4.2 we have that

C|ḣ|ph−βp ≤
∫

Gh,σ0

|∇u|pdx1dx2,

whereas using the asymptotics of (7.3) we see that∫

Gh,σ0

|∇u|pdx1dx2 ≤ C|ḣ|ph−βp.

Therefore (4.11) is optimal for any p ≥ 1. A similar argument shows that estimate (4.1) is optimal for
p > 2+α

1+2α .

Example 3. (On the optimality of Theorem 4.6) For simplicity we consider the case α = 1. We also
assume that p > 3

2 . This time S is the disc of radius r centered at x∗ = (0, h + r) and h is taken to be a
constant. The disc is rotated with angular velocity ω about its center. More precisely

Φ(x) =
1
2
ω|x|2 − ω(r + h)x2,

so that ∇⊥Φ = ω(x − x∗)⊥ and the vector field is now given by

u = ∇⊥
(

ψ(|x|)φ
(

x2

h + 1
2r x2

1

)
Φ(x)

)
,

here φ, ψ are the usual cutoff functions defined in (2.7) with ρ = h + 2r. One easily sees that

u(x, t) = ω(x − x∗)⊥, x ∈ S(t),
divu(x, t) = 0, x ∈ IR2

+, t > 0,

u(x1, 0) = 0.

From Theorem (4.6) we have that (for α = 1),

C|ω|ph( 3
2−p) ≤

∫

Ω

|∇u|pdx1dx2,

whereas using the estimates |Φ(x)| ≤ C|ω|(x2
1 + x2) and |∇Φ(x)| < C|ω| and working as in the in the

“Appendix” we get ∫

Ω

|∇u|pdx1dx2 ≤ C|ω|ph( 3
2−p).

As a consequence the estimate for |ω| is optimal. The estimate for the tangential part can be treated
similarly.

Example 4. (A non solenoidal vector field) For φ, ψ as in (2.7) with ρ = H + ρ0 and S(t), Ω as in (5.1)
we define

u(x, t) = ψ(|x|)φ
(

x2

kx1+α
1 + h(t)

)
uS , uS = (0, ḣ). (5.5)

We now have that u(x, t) = (0, ḣ(t)) for x ∈ S(t), u(x1, 0) = 0 but u is not necessarily divergence free.
From estimate (4.1) we have that

C|ḣ|ph−βp ≤
∫

Ω

|∇u|pdx1dx2, (5.6)
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On the other hand, similar to previous examples calculations, yield

∫

IR2
+

|∇u|pdx1dx2 ≤

⎧
⎪⎨
⎪⎩

C|ḣ|p, p < 2+α
1+α ,

C|ḣ|
2+α
1+α | ln h|, p = 2+α

1+α ,

C|ḣ|p|h|−(p− 2+α
1+α ), p > 2+α

1+α .

One easily sees that for p > 2+α
1+α one reaches a contradiction when α > 0. Thus estimate (4.1) fails for

the non solenoidal case for α > 0, as opposed to the case α = 0 of Theorem 4.3.

6. A Rotating Body Approaching the Boundary: A Non Collision Result

In this section we present an application of Theorem 4.6.
Let S(t) ⊂ Ω ⊂ IR2 be two smooth domains (e.g. C2). The rigid body S(t) is bounded, it has

density one and its center of mass has radius vector xc(t). We denote by F(t) the fluid region, that is
F(t) = Ω\S(t). We assume that there exists a vector field u(x, t)

u ∈ L∞(0, T ; (L2(Ω))2) ∩ L2(0, T ;W 1,2
0 (S(t),Ω)), (6.1)

such that
u|S(t) = a(t) + ω(t)(x − xc(t))⊥, x ∈ S(t), (6.2)

where a and ω are in H1(0, T̃ ) for any T̃ ∈ (0, T ). The assumption on a and ω is reasonable in view
of Theorem 2.2 in [13]. Moreover u(x, t) satisfies the stationary Stokes system in F(t) with Dirichlet
boundary conditions. More precisely, in addition to (6.2), for almost all t, u satisfies

divT = 0, T := 2D(u) − pI, x ∈ F(t),
div u = 0,

u|∂S(t) = a(t) + ω(t)(x − xc(t))⊥,

u|∂Ω = 0. (6.3)

Here p is the pressure function and D is the deformation tensor given in (1.2). As usual h(t) is the distance
of S(t) to ∂Ω. In view of Lemma 4.5 and (6.2) we have

ḣ = −(a + ω(xP − xc(t))⊥) · nP ; (6.4)

here P is a point that realizes the distance, xP the radius vector of P and nP the outward to S normal
vector.

At each time t the fluid exerts on the body a force F and a torque N . By Newton’s balance equations
we have that (|S| is the area of S)

|S| ȧ = −F = −
∫

∂S

(2D(u)n − pIn)dS

Jω̇ = −N = −
∫

∂S

(2D(u)n − pIn) · (x − xc)⊥dS, J =
∫

S

|x − xc|2dx;
(6.5)

Here n is the outward to F(t) normal vector.
We then have

Theorem 6.1. Assume that the functions u, h, a, ω satisfy (6.1)–(6.5). If h(0) is positive then h(t) remains
positive in [0, T ] and therefore the rigid body S never touches the boundary of Ω.

The rest of the section is devoted to the proof of this Theorem. We first prove an auxiliary Lemma.
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Lemma 6.2. Let u be as in Theorem 6.1. Then for a.a. t∫

F
∇u · (∇u)T dx = 2ω2|S| =

∫

S

|∇u|2dx. (6.6)

a · F + ωN =
∫

Ω

|∇u|2dx. (6.7)

Proof. (i) We note that in S we have D(u) = 0, |∇u| =
√

2|ω| and ∇u · (∇u)T = −2ω2. Since u is
divergence free we have∫

Ω

∇u · (∇u)T dx =
∫

Ω

∂ui

∂xj

∂uj

∂xi
dx =

∫

Ω

∂

∂xj

(
ui

∂uj

∂xi

)
dx

=
∫

Ω

div (u · ∇u)dx =
∫

∂Ω

(u · ∇u) · nds = 0.

Consequently

0 =
∫

Ω

∇u · (∇u)T dx =
∫

F
∇u · (∇u)T dx +

∫

S

∇u · (∇u)T dx

=
∫

F
∇u · (∇u)T dx − 2ω2|S|,

from which (6.6) follows.
(ii) We multiply the first equation of (6.3) by u and integrate by parts in F to get

0 =
∫

F
u · divT dx = −

∫

F
∇u · Tdx +

∫

∂F
u · Tn ds

= −2
∫

F
∇u · D(u)dx +

∫

∂S

(a + ω(x − xc)⊥) · (2D(u)n − pIn)ds

= −
∫

F
|∇u|2dx − 2ω2|S| + a ·

∫

∂S

(2D(u)n − pIn)ds

+ω

∫

∂S

(2D(u)n − pIn) · (x − xc)⊥ds

= −
∫

Ω

|∇u|2dx + a · F + ωN.

In the above calculation we also used (6.5) and (6.6). This shows (6.7) and completes the proof of the
Lemma. �

From (6.5) and (6.7) we have

1
2

d

dt

(
|S||a|2 + Jω2

)
= −

∫

Ω

|∇u|2dx. (6.8)

We set

k2(t) := |S| |a|2 + Jω2,

so that (6.8) reads
k(t)k̇(t) = −‖∇u‖2

L2(Ω). (6.9)

Let us recall our notation from the previous sections. At each time t we denote by P ∈ ∂S a point that
realizes the distance h(t). We denote by uP the velocity at the point P and by nP and τP the external
(to S) normal and tangential unit vectors, respectively, at the point P . We then have

Lemma 6.3. There are two positive constants c, C depending only on S such that for any t

c(|ḣ| + |uP · τP | + |ω|) ≤ k(t) ≤ C(|ḣ| + |uP · τP | + |ω|). (6.10)



    5 Page 20 of 24 S. Filippas, and A. Tersenov JMFM

Proof. We choose coordinate system such that the x1 axis is parallel to τP . Let xP = (xP1, xP2) be the
radius vector of P . We then have

uP = (uP · τP , uP · nP ) = a + ω(xP − xc)⊥

= (a1 + ω(xP2 − xc2), a2 − ω(xP1 − xc1),

whence,

a1 = uP · τP − ω(xP2 − xc2)
a2 = uP · nP + ω(xP1 − xc1).

Thus,

k2(t) = |S|((uP · τP − ω(xP2 − xc2))2 + (uP · nP + ω(xP1 − xc1))2) + Jω2.

The upper estimate follows easily taking into account that, by Lemma 4.5, ḣ = −uP · nP .
For the lower estimate, expanding the squares and using Young’s inequality we obtain that for any

ε > 0 we have

k2(t) ≥ |S|(1 − ε)(|uP · τP |2 + |uP · nP |2)

+
(

J + |xP − xc|2|S| − |xP − xc|2|S|
ε

)
ω2. (6.11)

Choosing

1 − J

J + |S| maxx∈∂S |x − xc|2
< ε < 1,

all coefficients in (6.11) are strictly positive and the lower bound follows. �

Using (6.10) and then Theorems 4.1 and 4.6 (for α = 1 and p = 2), we have

k(t) ≤ C(|ḣ| + |uP · τP | + |ω|)
≤ c(h

1
4 + h

3
4 )‖∇u‖L2(Ω)

≤ ch
1
4 ‖∇u‖L2(Ω). (6.12)

From (6.9) and (6.12) we have that
kk̇ ≤ −c1k

2h− 1
2 . (6.13)

Assuming that h is positive in (0, t∗) and h(t∗) = 0 at a time t∗ ≤ T we will reach a contradiction.
Since k(t) is non increasing we also have k(t) > 0 in (0, t∗). (If it becomes zero then the body “freezes”
and never touches the boundary of Ω). We rewrite (6.13) as

d

dt
(ln k(t)) ≤ −c1h

− 1
2 (t), t ∈ (0, t∗). (6.14)

It is a consequence of Corollary 4.2, with α = 1, p = 2 (hence β = 3/4) and q = 2, that there exists a
positive function ε(t) such that

h(t) = ε2(t)(t∗ − t)2, t ∈ (0, t∗), ε(t) −−→
t↑t∗

0. (6.15)

It follows that given any ε0 > 0 there exists a t0 ∈ (0, t∗) such that

ε(t) < ε0, t ∈ (t0, t∗). (6.16)

Integrating (6.14) in (t0, t) with t < t∗ we get

k(t) ≤ k(t0)e
−c1

∫ t
t0

h− 1
2 (s)

ds, t ∈ (t0, t∗).

Taking into account (6.10) we note that

h(t) = −
∫ t∗

t

ḣ(s)ds ≤ c2

∫ t∗

t

k(s)ds.
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Combining the previous two estimates we have that

h(t) ≤ c3

∫ t∗

t

e
−c1

∫ s
t0

h− 1
2 (τ)dτ

ds, t ∈ (t0, t∗), (6.17)

with c3 = c2k(t0) > 0. To reach a contradiction we show

Lemma 6.4. There is no function h satisfying both (6.15) and (6.17).

Proof. We set

F (t) :=
∫ t∗

t

e
−c1

∫ s
t0

h− 1
2 (τ)dτ

ds > 0, t0 < t < t∗.

We may think of (6.17) as giving a lower bound for F , whereas using (6.15) we can obtain an upper
bound for F . It turns out that the two are incompatible.

We first note that for t ∈ (t0, t∗),

F ′(t) = −e
−c1

∫ t
t0

h− 1
2 (τ)dτ

< 0,

F ′′(t) = −c1h
− 1

2 (t)F ′(t) > 0. (6.18)

In particular,

h(t) =
(

c1F
′

F ′′

)2

,

and (6.17) can be rewritten as
(

c1F
′

F ′′

)2

≤ c3F, or
F ′′

c1F ′ ≥ F− 1
2

√
c3

.

The last inequality is easily seen to be equivalent to
(√

c3 F ′ + 2c1F
1
2

)′
≥ 0, t ∈ (t0, t∗). (6.19)

Taking into account (6.15), (6.16) and (6.18) we easily arrive at

|F ′(t)| ≤ (t∗ − t0)
− c1

ε0 (t∗ − t)
c1
ε0 , t ∈ (t0, t∗),

which upon integration from t to t∗ gives

0 < F (t) ≤ (t∗ − t0)
− c1

ε0

c1
ε0

+ 1
(t∗ − t)

c1
ε0

+1
, t ∈ (t0, t∗). (6.20)

A direct consequence of the above two estimates is that

F (t∗) = F ′(t∗) = 0.

Integrating (6.19) from t to t∗ we get
√

c3 F ′ + 2c1F
1
2 ≤ 0,

or
1
2
√

c3F
′
3F

− 1
2 + c1 ≤ 0,

which can be rewritten as

(
√

c3 F
1
2 − c1(t∗ − t))′ ≤ 0 t ∈ (t0, t∗).

Integrating once more from t to t∗ we end up with

F (t) ≥ c2
1

c3
(t∗ − t)2, t ∈ (t0, t∗).

Since ε0 can be chosen arbitrarily small, the last estimate contradicts (6.20). �
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7. Appendix

We recall that

β =
1 + 2α

p(1 + α)

(
p − 2 + α

1 + 2α

)
.

We then have

Lemma 7.1. Let p ≥ 1 and 0 ≤ α ≤ 1. Then, for u as defined in (5.2) there holds

∫

IR2
+

|u|pdx1dx2 ≤

⎧
⎪⎨
⎪⎩

C|ḣ|p, αp < 2 + α ,

C|ḣ|p | ln h|, αp = 2 + α,

C|ḣ|ph
2+α−αp

1+α , αp > 2 + α,

(7.1)

∫

IR2
+

|∇u|pdx1dx2 ≤

⎧
⎪⎨
⎪⎩

C|ḣ|p, p < 2+α
1+2α ,

C|ḣ|
2+α
1+2α | ln h|, p = 2+α

1+2α ,

C|ḣ|ph−βp, p > 2+α
1+2α .

(7.2)

In addition, the following local estimates hold true for p ≥ 1
∫

Gh,σ0

|∇u|pdx1dx2 ≤ C|ḣ|ph−βp, 0 < α ≤ 1, (7.3)

∫

Πh

|∇u|pdx1dx2 ≤ C|ḣ|ph2−p, α = 0, (7.4)

where Gh,σ0 is defined in (4.12) and Πh in the proof of Theorem 4.3.

Proof. For

φ = φ

(
x2

kx1+α
1 + h(t)

)
,

we have that

∇u = Φ∇∇⊥φ + ∇Φ∇⊥φ + ∇φ∇⊥Φ + · · ·
=: I1 + I2 + I3 + · · · (7.5)

A straightforward calculation shows that for i, j = 1, 2

∂φ

∂xi
= 0, x2 ≥ kx1+α

1 + h,

∣∣∣ ∂φ

∂xi

∣∣∣ ≤ C

kx1+α
1 + h

, 0 ≤ x2 ≤ kx1+α
1 + h,

∣∣∣ ∂2φ

∂xixj

∣∣∣ ≤ C(1 + αhxα−1
1 )

(kx1+α
1 + h)2

, 0 ≤ x2 ≤ kx1+α
1 + h.
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We then compute, for γ > 0 small enough but fixed

I1 =
∫

IR2
+

|Φ|p|∇∇⊥φ|pdx1dx2

≤ 2
∫ γ

0

∫ kx1+α
1 +h

0

|Φ|p|∇∇⊥φ|pdx2dx1 + 2
∫ 2ρ

γ

∫ kx1+α
1 +h

0

|Φ|p|∇∇⊥φ|pdx2dx1

≤ C|ḣ|p
(∫ γ

0

∫ kx1+α
1 +h

0

xp
1 dx2dx1

(kx1+α
1 + h)2p

+
∫ γ

0

∫ kx1+α
1 +h

0

αpxαp
1 dx2dx1

(kx1+α
1 + h)p

+ Oh(1)

)

≤ C|ḣ|p
(∫ γ

0

xp
1 dx1

(kx1+α
1 + h)2p−1

+ αp

∫ γ

0

xαp
1 dx1

(kx1+α
1 + h)p−1

+ Oh(1)
)

To estimate the integrals above we use the fact that for 0 ≤ α ≤ 1 and b, q ∈ IR we have
∫ γ

0

xb
1 dx1

(kx1+α
1 + h)q

=
h

b−α
1+α −q+1

1 + α

∫ γ1+α

h

0

z
b−α
1+α dz

(kz + 1)q
,

(
z =

x1+α

h

)
.

We then get after elementary manipulations

I1 ≤

⎧
⎪⎨
⎪⎩

C|ḣ|p, p < 2+α
1+2α ,

C|ḣ|
2+α
1+2α | ln h|, p = 2+α

1+2α ,

C|ḣ|p|h|−
1+2α
1+α (p− 2+α

1+2α ), p > 2+α
1+2α .

We similarly calculate for i = 2, 3

Ii ≤

⎧
⎪⎨
⎪⎩

C|ḣ|p, p < 2+α
1+α ,

C|ḣ|
2+α
1+α | ln h|, p = 2+α

1+α ,

C|ḣ|p|h|−(p− 2+α
1+α ), p > 2+α

1+α .

Combining the estimates of Ii, i = 1, 2, 3 and noticing that the omitted terms in (7.5) are not as important
we conclude (7.2). Estimate (7.1) is similar and simpler. �
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