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This is an updated and expanded version of our earlier survey article [E. Gutkin, “Billiard dynamics: a

survey with the emphasis on open problems,” Regular Chaotic Dyn. 8, 1–13 (2003)]. Section I

introduces the subject matter. Sections II–IV expose the basic material following the paradigm of

elliptic, hyperbolic, and parabolic billiard dynamics. In Sec. V, we report on the recent work pertaining

to the problems and conjectures exposed in the survey [E. Gutkin, “Billiard dynamics: a survey with the

emphasis on open problems,” Regular Chaotic Dyn. 8, 1–13 (2003)]. Besides, in Sec. V we formulate a

few additional problems and conjectures. The bibliography has been updated and considerably

expanded. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729307]

I. INTRODUCTION

Billiard dynamics broadly understood is the geodesic

flow on a Riemannian manifold with a boundary. But even

this very general framework is not broad enough, e.g., for

applications in physics. In these applications, the manifold in

question is the configuration space of a physical system. Of-

ten, it is a manifold with corners and singularities. Some

physics models lead to the Finsler billiard:80 The manifold in

question is not Riemannian; it is Finslerian. The simplest

examples of Riemannian manifolds with corners are plane

polygons, and some basic physical models yield the billiard

on triangles.28,50,60,82

The configuration space of the famous gas of elastic

balls129,137 is structured combinatorially like a euclidean pol-

yhedron of a huge number of dimensions. In fact, this config-

uration space is much more complicated, because the

polyhedron is not flat. The mathematical investigation of this

system produced the celebrated Boltzmann ergodic hypothe-

sis. After Sinai’s seminal papers,129,130 a modified version of

the original conjecture became known as the Boltzmann-

Sinai hypothesis.

However, the bulk of our exposition is restricted to the

billiard in a bounded planar domain with piecewise smooth

boundary. The reason is threefold. First of all, this setting

allows us to avoid lengthy preliminaries and cumbersome

formalism: It immediately leads to qualitative mathematical

questions (This was also the opinion of Birkhoff.12). Second,

there are basic physical models that correspond to planar

billiards.60 Third, and most important, there are fundamental

problems on the plane billiard that are still open. The prob-

lems are indeed fundamental: They concern the main fea-

tures of these dynamical systems.

In the body of the paper, we introduce several open

problems of billiard dynamics. Our choice of the questions is

motivated partly by the personal taste and partly by the sim-

plicity of formulation. We review the preliminaries, discuss

the motivation, and outline possible angles of attack. We

also point out partial results and other evidence toward the

answer. Formally, the exposition is self-contained, but the

reader may want to consult the literature.26,57,60,86,102,107,138

For obvious reasons, we will call the planar domain in

question the billiard table. Its geometric shape determines

the qualitative character of the motion. Historically, three

classes of shapes have mostly attracted attention.100 First, it

is the class of smooth and strictly convex billiard tables. For

several reasons, the corresponding billiard dynamics is called

elliptic. Second, it is the piecewise concave and piecewise

smooth billiard tables. The corresponding dynamics is hyper-

bolic. (There are also convex billiard tables that yield hyper-

bolic dynamics. See Sec. III.) Billiard tables of the third

class are the polygons. The corresponding dynamics is para-

bolic. The three types of the billiard are exposed in Secs.

II–IV, respectively.

In the rest of the Introduction, we describe the basic

notation and the terminology. Let Y � R2 be a compact,

connected billiard table. Its boundary @Y is a finite union of

C1 curves. It may have several connected components. The

billiard flow on Y is modelled on the motion of a material

point: The “particle” or the “billiard ball.” At each time

instant, the state of the system is determined by the position

of the ball, y 2 Y, and its velocity, a unit vector v 2 R2 (It

suffices to consider the motion with the unit speed.) The ball

rolls along the ray emanating from y, in the direction v. At

the instant the ball reaches @Y, its direction changes. Let x 2
@Y be the point in question, and let v0 be the new direction.

The transformation, v 7! v0, is the orthogonal reflection about

the tangent line to @Y at x. The vector v0 is directed inward,

and the ball keeps rolling.

These rules define: (1) The phase space W of the billiard

flow, as the quotient of Y � S1 by the identification

(x, v)¼ (x, v0) above; (2) The billiard flow Tt: W! W. (See

Fig. 1.) If Y is simply connected, and @Y is C1, then W is

homeomorphic to the three-dimensional sphere. (We are not

aware of any uses of this observation in the billiard litera-

ture.) In any way, dim W ¼ 3, and the reader may think of W
as the set of pairs (y, v), such that v is directed inward.

A few remarks are in order. The rules defining the billiard

flow stem from the assumptions that the billiard motion isa)Electronic addresses: gutkin@mat.umk.pl and gutkin@impan.pl.
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frictionless, and that the boundary of the billiard table is per-

fectly elastic. The orthogonal reflection rule v 7! v0 insures

that billiard orbits are the local minimizers of the distance

functional (This property extends to the Finsler billiard.80)

The reflection rule is not defined at the corners of the bound-

ary. The standard convention is to “stop the ball” when it

reaches a corner. Thus, if @Y is not C1, then there are billiard

orbits that are not defined for all times. Their union has zero

volume with respect to the Liouville measure defined below.

Set X ¼ @Y, and endow it with the positive orientation.

Choosing a reference point on each connected component,

and using the arc length parameter, we identify X with the

disjoint union of k � 1 circles. In this paper, with the excep-

tion of Sec. IV, k¼ 1. The set U � W given by the condition

y 2 @Y is a cross-section for the billiard flow. The Poincaré

mapping u: U! U is the billiard map and U is its phase

space. (See Fig. 2.) The terminology is due to Birkhoff who

championed the “billiard ball problem.”12 Let x be the arc

length parameter on X. For ðx; vÞ 2 U, let h be the angle

between v and the positive tangent to @Y at x. Then 0 � h
� p where 0 and p correspond to the forward and the back-

ward tangential directions, respectively. This coordinate

system fails at the corners of @Y. If @Y is C1, then

U ¼ X � ½0; p�. We will use the notation uðx; hÞ ¼ ðx1; h1Þ.
Let p, q be the euclidean coordinates in R2, and let 0 � a

< 2p be the angle coordinate on the unit circle. The Liouville

measure on W has the density d� ¼ dpdqda. It is invariant

under the billiard flow. The induced Liouville measure l on U
is invariant under the billiard map, and has the density

dl ¼ sinhdxdh. Both measures are finite. Straightforward

computations yield

�ðWÞ ¼ 2p AreaðYÞ; lðUÞ ¼ 2 Lengthð@YÞ: (1)

II. SMOOTH, STRICTLY CONVEX BILLIARD: ELLIPTIC
DYNAMICS

The first deep investigation of this framework is due

to Birkhoff.12 For this reason, it is often called the Birkhoff
billiard. The billiard map is an area preserving twist

map.102 An invariant circle is a u-invariant curve C � U
which is a noncontractible topological circle. Recall that U
is a topological annulus. Both components of @U are the

trivial invariant circles. From the geometric optics view-

point, U is the space of light rays (i.e., directed lines),

and Y is a room whose walls are the perfect mirrors. Then,

C � U is a one-parameter family of light rays in Y, and its

envelope FðCÞ is the set of focusing points of light rays in

this family. Note that FðCÞ is not a subset of Y, in general.

For instance, if Y is an ellipse, then there are invariant

curves C such that FðCÞ are confocal hyperbolas.

Let C be an invariant circle, and let c ¼ FðCÞ. Then,

c � IntðYÞ.76 These curves are the caustics of the billiard

table. When @Y is an ellipse, the caustics are the confocal

ellipses. Their union is the region Y n ½f f 0�, where f, f0 are the

foci of Y. If Y is not a disc, the invariant circles fill out a

region, CðUÞ � U, whose complement looks like a pair of

“eyes.” See Figure 3.

Definition 1. A billiard table Y is integrable if the set of
invariant circles has nonempty interior.

The most famous open question about caustics is known

as the Birkhoff conjecture. It first appeared in print in a paper

by Poritsky,121 several years after Birkhoff’s death. (In the

introduction to Ref. 121, the author says that many years

ago, when he was a doctoral student of Birkhoff, his advisor

communicated the conjecture to him.)

Problem 1 (Birkhoff conjecture). Ellipses are the only

integrable billiard tables.

A disc is a degenerate ellipse, with f¼ f0. The preceding

analysis applies, and the invariant circles fill out all of the

phase space. Bialy proved the converse: If all of UðYÞ is foli-

ated by invariant circles, then Y is a disc.10 See Ref. 11 for

an extension of this theorem to the surfaces of arbitrary con-

stant curvature. We refer the reader to Sec. V for elabora-

tions and updates on the Birkhoff conjecture.

Let Y be any oval. If X ¼ @Y is sufficiently smooth, and

its curvature is strictly positive, then the invariant circles fill

out a set of positive measure. This was proved by Lazutkin

under the assumption that @Y was of class C333.109 Lazut-

kin’s proof crucially uses a famous theorem of Moser115

(this is a seminal paper on the KAM theory. See also Ref.

116. The name KAM stands for Kolmogorov, Arnold, and

Moser. See Ref. 35 for an exposition). The number 333 is

chosen in order to satisfy the assumptions in Ref. 115. The
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FIG. 1. The billiard flow.

FIG. 2. The billiard map.
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required smoothness was eventually lowered to C6.37 By a

theorem of Mather,114 the positive curvature condition is

necessary for the existence of caustics.

An invariant noncontractible topological annulus, X � U,

whose interior contains no invariant circles, is a Birkhoff
instability region. This is a special case of an important con-

cept for area preserving twist maps.102 Assume the Birkhoff

conjecture, and let Y be a non-elliptical billiard table. Then, U
contains Birkhoff instability regions. The dynamics in an

instability region has positive topological entropy.3 Hence,

the Birkhoff conjecture implies that any non-elliptical billiard

has positive topological entropy. By the (metric) entropy of a

billiard, we will mean the entropy of the Liouville measure.

The only examples of convex billiard tables with positive en-

tropy are the Bunimovich stadium17 and its generalizations.

These billiard tables are not strictly convex, and their bound-

ary is only C1. The corresponding billiard dynamics is hyper-

bolic. See Sec. III. This leads to our next open question.

Problem 2. (a) Construct a strictly convex C1-smooth

billiard table with positive entropy. (b) Construct a convex

C2-smooth billiard table with positive entropy.

Using an ingenuous variational argument, Birkhoff

proved the existence of certain periodic billiard orbits.12 His

approach extends to area preserving twist maps, and thus

yields a more general result on periodic orbits of these dy-

namical systems.102 In the billiard framework, the relevant

considerations are especially transparent. A periodic orbit of

period q corresponds to an (oriented) closed polygon with q
sides, inscribed in Y, and satisfying the obvious condition on

the angles it makes with @Y. Birkhoff called these the har-
monic polygons. Vice versa, any oriented harmonic q-gon P
determines a periodic orbit of period q. Let 1 � p < q be the

number of times the pencil tracing P goes around @Y. The ra-

tio 0 < p=q < 1 is the rotation number of a periodic orbit.

Fix a pair 1 � p < q, with p and q relatively prime. Let

X(p, q) be the set of all inscribed q-gons that go p times

around @Y. The space X(p, q) is a manifold with corners. For

P 2 Xðp; qÞ, let f(P) be the circumference of P. Then, har-

monic polygons are the critical points of the function

f : Xðp; qÞ ! R. Birkhoff proved that f has at least two dis-

tinct critical points. One of them delivers the maximum, and

the other a minimax to the circumference. The corresponding

periodic billiard orbits are the Birkhoff periodic orbits with

the rotation number p/q.

By way of example, we take the rotation number 1/2.

Then, the maximal Birkhoff orbit yields the diameter of Y.

The minimax orbit corresponds to the width of Y. When the

diameter and the width of Y are equal, the boundary @Y is a

curve of constant width; then, we have a one-parameter fam-

ily of periodic orbits with the rotation number 1/2. They fill

out the “equator” of U. There are other examples of ovals

with one-parameter families of periodic orbits having the

same length and the same rotation number. See Refs. 59, 68,

and 94 for different approaches.

One of the basic characteristics of a dynamical system is

the growth rate of the number of periodic points. In order to

talk about it, we need a counting function. The standard

counting function fYðnÞ for the billiard map is the number of

periodic points of the period at most n (see Secs. III and IV

for other examples). The set of periodic points is partitioned

into periodic orbits, and let FYðnÞ be the number of periodic

orbits of period at most n. Birkhoff’s theorem bounds FYðnÞ
from below by the number of relatively prime pairs

1 � p < q � n. This implies a universal cubic lower bound

fYðnÞ � cn3. See, e.g., Ref. 85.

Since an oval may have infinitely many periodic points

of the same period, there is no universal upper bound on

fYðnÞ. The size of a measurable set is naturally estimated by

its measure. Let P � U (resp. Pn � U) be the set of periodic

points (resp. periodic points of period n). For example, if Y is

a table of constant width, then P2 � U is the equator.

Although it is infinite, lðP2Þ ¼ 0. Since P ¼ [1n¼2Pn, a dis-

joint union, lðPÞ ¼
P1

n¼2 lðPnÞ. Thus, lðPÞ ¼ 0 if and

only if lðPnÞ ¼ 0 for all n ¼ 2; 3; 4;….

The famous Weyl formula gives the leading term and the

error estimate for the spectral asymptotics of the Laplace op-

erator (with either Dirichlet or Neumann boundary condi-

tions) in a bounded domain of the euclidean space (of any

number of dimensions). The (also famous) Weyl conjecture
predicts the second term of the asymptotic series.148 A theo-

rem of Ivrii95 establishes the Weyl conjecture for a euclidean

domain under the assumption that the set of periodic billiard

orbits has measure zero. (A more general formula for the

spectral asymptotics of the Laplacean, due to Safarov and

Vassiliev, contains a term accounting for periodic orbits.124

If periodic points yield a set of measure zero, this term

vanishes.)

Ivrii conjectured that the assumption lðPÞ ¼ 0 was su-

perfluous: It should hold for any euclidean domain with a

smooth boundary. Members of the Sinai’s dynamics seminar

in Moscow promised to him in 1980 to prove the desidera-

tum in a few days. The question is still open. Problem 3

below states the conjecture for plane domains.

Problem 3 (Ivrii conjecture). Let Y be a piecewise

smooth billiard table. (a) Prove that lðPÞ ¼ 0. (b) Prove that

lðPnÞ ¼ 0 for all n.

Although Problem 3 concerns arbitrary billiard tables, it

is especially challenging for the Birkhoff billiard, hence we

have put the problem into this section. It is convenient to

FIG. 3. The phase space of the billiard map in an ellipse.

026116-3 Eugene Gutkin Chaos 22, 026116 (2012)



designate by, say, In the claim lðPnÞ ¼ 0. Thus, Ivrii conjec-

ture amounts to proving In for all n � 2. Claim I2 is obvious.

Proposition I3 is a theorem of Rychlik.123 His proof depends

on a formal identity, verified using MAPLE. Stojanov simpli-

fied the proof, and eliminated the computer verification.135

Vorobets gave an independent proof.146 His argument

applies to higher dimensional billiards as well. Wojtkow-

ski152 obtained Rychlik’s theorem as an application of the

mirror equation of the geometric optics and the isoperimet-
ric inequality. See Ref. 76 for other applications.

Ivrii’s conjecture is known to hold in many special

cases, e.g., for hyperbolic and parabolic billiard tables. See

Secs. III and IV. It holds for billiard tables with real analytic

boundary.124 For the generic billiard table, the sets Pn are fi-

nite for all n.119 The billiard map for a Birkhoff billiard table

is an area preserving twist map. However, there are smooth

area preserving twist maps such that lðPÞ > 0. Thus, Ivrii’s

conjecture is really about the billiard map.

Recently, Glutsyuk and Kudryashov announced a proof

of Proposition I4.51 See Sec. V C for further comments.

III. HYPERBOLIC BILLIARD DYNAMICS

It is customary to say that a billiard table is hyperbolic if

the associated dynamics is hyperbolic. The dynamics in

question may be the billiard flow or the billiard map or the

induced map on a subset of the phase space. For concrete-

ness, we will call a billiard table hyperbolic if the corre-

sponding billiard map is hyperbolic. The modern approach

to hyperbolic dynamics crucially uses the Oseledets multipli-

cative ergodic theorem.117 See Refs. 86 and 102 for a general

introduction into the hyperbolic dynamics and Refs. 18, 103,

and 138 (resp. [26]) for introductory (resp. thorough) exposi-

tions of the hyperbolic billiard.

The first hyperbolic billiard tables were made from con-

cave arcs. As a motivation, let us consider the following con-

struction. Let P be a convex polygon. Replace some of the

sides of P by circular arcs whose centers are sufficiently far

from P. The result is a “curvilinear polygon,” Y, approximat-

ing P. Choosing appropriate center points, we insure that the

“curved sides” of Y are convex inward. It is not important

that they be circular, as long as they are smooth and convex

inward.

This class of billiard tables arose in the work of Sinai on

the Boltzmann-Sinai gas.129 (See the Appendix by Szasz in

Ref. 137.) In the Boltzmann gas, the identical round molecules

are confined by a box. Sinai has replaced the box by periodic

boundary conditions. Thus, the molecules of the Boltzmann-

Sinai gas move on a flat torus. In the “real world,” the confining

box is three-dimensional and the number of moving molecules

is enormous. In the Sinai “mathematical caricature,” there are

only two molecules on a two-torus. The system reduces to

the geodesic flow on a flat torus with a round hole. Represent

the flat torus by the 2� 2 square, so that the hole is the central

disc of radius 1/2. By the four-fold symmetry, the problem

reduces to the billiard on the unit square with the deleted

quarter-disc of radius 1/2, centered at a vertex. See Figure 4.

This domain is known as the Sinai billiard. (Unfortu-

nately, there is a fair amount of confusing terminology in the

literature. Mathematicians often use the expressions like

“Sinai’s billiard” or “the Sinai table” or “a dispersive bil-

liard” interchangeably. Physicists tend to mean by “the Sinai

billiard” a special billiard table, although not necessarily that

of Figure 4). Let now P be a (not necessarily convex) n-gon.

Let Y be the region obtained by replacing 1 � m < n (resp.

all) of the sides of P by circular arcs, satisfying the condi-

tions above. Then, Y is a semi-dispersive (resp. dispersive)
billiard table. The circular arcs (resp. the segments) of @Y
are its dispersive (resp. neutral) components. This terminol-

ogy extends to the billiard tables whose dispersive boundary

components are smooth, convex inward curves. These are

the (semi)dispersive billiard tables. The table in Figure 4 has

one dispersive and four neutral boundary components.

In Ref. 130, Sinai proved the hyperbolicity of dispersive

billiard tables. After the discovery by Bunimovich that the

stadium and similar billiard tables are hyperbolic,17 mathe-

maticians started searching for geometric criteria of hyper-

bolicity. The notion of an invariant cone field149,101 proved

to be very useful.

Denote by Vz the tangent plane to the phase space at

z 2 U. The differential u� is a linear map from Vz to VuðzÞ.
By our convention, a subset of a vector space is a cone if it is

invariant under multiplications by all scalars.

Definition 2. A family C ¼ fCz � Vz : z 2 Ug is an
invariant cone field if the following conditions are satisfied.

• The closed cone Cz is defined for almost all z 2 U, and the

map z 7!Cz is measurable.
• The cone Cz is has nonempty interior.
• We have u�ðCzÞ � CuðzÞ.
• There exists n ¼ nðzÞ such that un

�ðCzÞ � intðCunðzÞÞ.

The hyperbolicity is equivalent to the existence of an

invariant cone field.149 Wojtkowski constructed invariant

cone fields for several classes of billiard tables.150 See also

Ref. 151. In addition to the dispersive tables and the general-

ized stadia, he found invariant cone fields for a wide class of

locally strictly convex tables. Wojtkowski’s approach was

further extended by Bunimovich, Donnay, and Markarian.26

Using these ideas, Gutkin, Smilanski, and the author

DE

A

C

B

FIG. 4. The Sinai billiard table.
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constructed hyperbolic billiard tables on surfaces of arbitrary

constant curvature.53

Problem 4. Is every semi-dispersive billiard table

hyperbolic?

Let Y be a semi-dispersive n-gon with only one neutral

component. Let Y be the reflection of Y about this side,

and set Z ¼ Y [ Y0. Since Z is a dispersive billiard table, it

is hyperbolic. By the reflection symmetry, the table Y is also

hyperbolic. In special cases, the reflection trick yields the

hyperbolicity of semi-dispersive n-gons with m < n� 1 dis-

persive components. For instance, let P be a triangle with an

angle p=n. Let Y be the semi-dispersive triangle, whose only

dispersive component is located opposite the p=n angle.

Reflecting Y successively 2n times, we obtain a dispersive

billiard table, Z. Thus, Z is hyperbolic. By the symmetry, the

table Y is hyperbolic as well. A suitable generalization of the

reflection trick will work if P is a rational polygon. See

Sec. IV. The special case m¼ 1 of Problem 4 is closely

related to Problem 9 of Sec. IV.

Dispersive billiard tables are ergodic.20 There are exam-

ples of hyperbolic, but nonergodic billiard tables.150 The

consensus is that a typical hyperbolic billiard is ergodic. For

instance, the stadium and its relatives are ergodic.136 There

are no examples of strictly convex hyperbolic billiard tables.

See Problem 2.

For the rest of this section, we consider only dispersive

billiard tables. Referring the reader to Refs. 19, 20, 24, 25,

137, and 153 for a discussion of their chaotic properties and

to open questions about, e.g., the decay of correlations, we

concentrate on the statistics of periodic orbits in hyperbolic

billiards. The set of periodic points of any period is finite; let

fYðnÞ be the number of periodic points, whose period is less

than or equal to n. The asymptotics of fYðnÞ, as n!1, is an

important dynamical characteristic. By theorems of Stojanov

and Chernov,19,134 there are 0 < h� < hþ <1 such that

0 < h� � lim inf
n!1

log fYðnÞ
n

� lim sup
n!1

log fYðnÞ
n

� hþ <1:

(2)

The following two problems were contributed by Chernov.

Problem 5. Does the limit

h ¼ lim
n!1

log fYðnÞ
n

(3)

exist?

Problem 6. If the limit in Eq. (3) exists, is 0 < h <1
the topological entropy of the billiard map?

Problems 5 and 6 fit into the general relationship

between the distribution of periodic points and the topologi-

cal entropy.98 However, the singularities, which constitute

the paramount feature of billiard dynamics, preclude the

applicability of smooth ergodic theory. Other techniques

have to be developed.23,70,71

IV. POLYGONAL BILLIARD: PARABOLIC DYNAMICS

The polygon P that serves as a billiard table is not

required to be convex or simply connected. It may also have

barriers, i.e., obstacles without interior. It is rational if the

angles between its sides are of the form pm=n. Let N¼N(P)

be the least common denominator of these rational numbers.

A classical construction associates with P a closed surface

S¼ S(P) tiled by 2N copies of P. The surface S has a finite

number of cone points; the cone angles are integer multiples

of 2p. Suppose that P is a simple polygon (A polygon P is

simple if @P is connected). and let mip=ni; 1 � i � p; be its

angles. The genus of S(P) satisfies57

gðSðPÞÞ ¼ 1þ N

2

Xp

i¼1

mi � 1

ni
: (4)

Equation (4) implies that S(P) is a torus if and only if P tiles

the plane under reflections. The billiard in P is essentially

equivalent to the geodesic flow on S(P). This observation was

first exploited by Katok and Zemlyakov,104 and S(P) is often

called the “Katok-Zemlyakov surface.” However, the con-

struction has been in the literature (at least) since the early

20th century.133,45 We refer to the surveys,57,60,113,131,138 for

extensive background material.

Surfaces S(P) are examples of translation surfaces,

which are of independent interest.74 From the viewpoint of

classical analysis, a translation surface is a closed Riemann

surface with a holomorphic linear differential. Using holo-

morphic quadratic (as opposed to linear) differentials, we

arrive at the notion of half-translation surfaces.73,74 Billiard

orbits on a polygon become geodesics on the corresponding

translation (or the half-translation) surface. Since billiard

orbits change directions at every reflection, the notion of the

direction of an orbit is not well defined. Geodesics on a

translation surface, on the contrary, do not change their

directions. This yields a technical advantage of translation

surfaces over polygons.104 The crucial advantage comes,

however, from the natural action of the group SLð2;RÞ on

translation surfaces.106,110,111,131,144 See Sec. V for

elaborations.

The geodesic flow of any translation surface, S, decom-

poses into the one-parameter family of directional flows
bt

h; 0 � h < 2p. The flow bt
h is identified with the linear flow

on S in direction h. The Lebesgue measure on S is preserved

by every bt
h. Thus, not only is the billiard flow of a rational

polygon not ergodic, it decomposes as a one-parameter family

of directional billiard flows. Let S be an arbitrary translation

surface. A theorem of Kerckhoff, Masur, and Smillie106 says

that the flows bt
h are uniquely ergodic for Lebesgue almost all

h. In particular, the directional billiard flow of a rational poly-

gon is ergodic for almost every direction. The set NðSÞ �
½0; 2pÞ of non-uniquely ergodic directions has positive Haus-

dorff dimension for the typical translation surface;112 for par-

ticular classes of rational polygons and translation surfaces the

sets NðSÞ are countably infinite.27,55,144 We point out that a

typical translation surface does not correspond to any polygon,

which illustrates the limitations of this relationship for the

study of polygonal billiard. See Sec. V for elaborations on the

polygonal billiard and translation surfaces.

Much less is known about the billiard in irrational (i.e.,

arbitrary) polygons. Denote by T ðnÞ the moduli space of

simple euclidean n-gons. Since the billiard dynamics is
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invariant under scaling, in T ðnÞ we identify polygons that

coincide up to scaling. The space T ðnÞ is a finite union of

components which correspond to particular combinatorial

data. We will refer to them as the combinatorial type compo-
nents. Each component is homeomorphic to a relatively

compact set of the maximal dimension in a Euclidean space.

Let k be the probability measure on T ðnÞ, such that its

restrictions to the combinatorial type components are the

corresponding Lebesgue measures. For instance, the space

T ð3Þ � R2 is given by T ð3Þ ¼ fða; bÞ : 0 < a � b < p=2g.
Thus, T ð3Þ itself is a plane triangle. By a theorem in

Ref. 106, the set EðnÞ � T ðnÞ of ergodic n-gons is residual

in the sense of Baire category.118

Problem 7. Is kðEðnÞÞ > 0?

The case of n¼ 3 is especially interesting, since the me-

chanical system of three elastic point masses moving on a

circle (see Figure 5) leads to the billiard in an acute trian-

gle.22,50 Let m1;m2;m3 be the masses. Then, the angles of

the corresponding triangle Dðm1;m2;m3Þ satisfy

tan ai ¼ mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 þ m2 þ m3

m1m2m3

r
: (5)

We point out that the rationality of the triangle correspond-

ing to a mechanical system of point masses does not have

any obvious physical meaning. In the limit, when m3 !1,

we obtain the physical system of two elastic particles on an

interval. The limit of Dðm1;m2;m3Þ is the right triangle

whose angles satisfy tan a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
; tan a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m1

p
.

Let P be an irrational polygon. Let a1;…; ak be its

angles. If the numbers ai=p simultaneously admit a certain

super-exponentially fast rational approximation, then P is er-

godic.147 This remarkable theorem yields explicit examples

of ergodic polygons. However, it does not help with the

above problem. There is some numerical evidence that irra-

tional polygons are ergodic and have other stochastic proper-

ties.4,22 So far, there are no theorems confirming or

precluding this.

Problem 8. Give an example of an irrational but noner-

godic polygon.

Let P be an arbitrary n-gon, and let a1;…; an be its

sides. For 1 � i � n, let Ui � U be the set of elements whose

base points belong to the side ai. Then, U ¼ [n
i¼1Ui, a dis-

joint decomposition. By Eq. (1), lðUiÞ ¼ 2 LengthðaiÞ. The

next question/conjecture concerns the structure of invariant

sets in the phase space of a nonergodic polygon (compare

with Problem 4 in Sec. III). By Ref. 106, the conjecture holds

for rational polygons.

Problem/Conjecture 9. Let P be an irrational n-gon, and

let M � U be an invariant set of positive measure. If Ui � M
for some 1 � i � n, then M ¼ U.

The subject of periodic billiard orbits in polygons

requires only elementary euclidean geometry, and has imme-

diate applications to physics. For instance, let Dðm1;m2;m3Þ
be the acute triangle corresponding to the system of three

elastic point masses equation (5). Periodic billiard orbits in

Dðm1;m2;m3Þ correspond to the periodic motions of this me-

chanical system. (Another connection between billiards and

physics arises in the study of mechanical linkages.132) Ironi-

cally, periodic orbits in polygons turned out to be especially

elusive.

Problem 10. Does every polygon have a periodic orbit?

Every rational polygon has periodic orbits, and much is

known about them. Certain classes of irrational polygons

have periodic orbits.28,82 Every acute triangle has a classical

periodic orbit—the Fagnano orbit.61 It corresponds to the

inscribed triangle of minimal perimeter. It is not known if

every acute triangle has other periodic orbits; it is also not

known if every obtuse triangle has a periodic orbit.47,83 See

Sec. V for updates and elaborations.

A periodic orbit with an even number of segments is

contained in a parallel band of periodic orbits of the same

length. The boundary components of a band are concatena-

tions of singular orbits, the so-called generalized diago-
nals.99 These are the billiard orbits with endpoints at the

corners. Periodic orbits with an odd number of segments

(e.g., the Fagnano orbit) are isolated. They seem to be rare; a

rational polygon has at most a finite number of them. Denote

by fPð‘Þ the number of periodic bands of length at most ‘.
This counting function for periodic billiard orbits in poly-

gons grows subexponentially.70,71,99 Conjecturally, there

should be a universal polynomial upper bound on fPð	Þ. See

Sec. V for elaborations.

Problem 11. Find efficient upper and lower bounds on fP

for irrational polygons.

From now until the end of this section we consider only

rational polygons. By results of Masur110,111 and Boshernit-

zan,15,16 there exist numbers 0 < c�ðPÞ � c�ðPÞ <1 such

that c�ðPÞ‘2 � fPð‘Þ � c�ðPÞ‘2 for sufficiently large ‘. We

will refer to these inequalities as the quadratic bounds on

periodic billiard orbits. The numbers c�ðPÞ; c�ðPÞ are the

quadratic constants.

Problem 12. Find efficient estimates for quadratic

constants.

In all known examples fPð‘Þ=‘2 has a limit, i.e., c�ðPÞ
¼ c�ðPÞ ¼ cðPÞ. In this case, we say that the polygon has
quadratic asymptotics. The preceding definitions and ques-

tions have obvious counterparts for translation surfaces,

where periodic billiard orbits are replaced by closed

m1

m2

m3

FIG. 5. Three perfectly elastic particles on the circle.
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geodesics. There is a special class of polygons and surfaces:

Those satisfying the lattice property, or, simply, the lattice
polygons and translation surfaces.73,74,143 They have quad-

ratic asymptotics, and there are general expressions for their

quadratic constants.55,73,74,143,145 Besides, the quadratic con-

stants for several lattice polygons are explicitly known.143,145

These formulas contain rather subtle arithmetic. The (nor-

malized) quadratic constant of any lattice polygon is an alge-

braic number.74

There is a lot of information about lattice polygons and

lattice translation surfaces. Lattice polygons seem to be very

rare. All acute lattice triangles have been determined.105,122

For obtuse triangles the question is still open. There are a

SLð2;RÞ-invariant Lebesgue-class finite measures on the

strata of the moduli spaceMg of translation surface of fixed

genus.39 The strata correspond to the partitions 2g� 2

¼ p1 þ 	 	 	 þ pt : pi 2N. Hence, we can speak of a generic
translation surface inMgðp1;…; ptÞ. The quadratic constant

of the generic translation surface S 2 Mgðp1;…; ptÞ depends

only on the stratum.39,41,42 These results crucially use the

relationship between the Teichmüller flow93 on Mg and lin-

ear flows on translation surfaces. See the surveys Refs. 5, 36,

and 113 for this material.

The results for generic translation surfaces have no con-

sequences for rational polygons, since the generic translation

surface does not correspond to a polygon. However, an

extension of the Teichmüller flow approach establishes the

quadratic asymptotics for a special, but nontrivial class of

rational polygons.40

Problem 13. Does every rational polygon have quadratic

asymptotics?

Section V contains updates, elaborations, and extensions

of the preceding material.

V. COMMENTS, UPDATES, AND EXTENSIONS

At the time of writing this text, the problems discussed

in the survey Ref. 62 remain open. However, the works that

have since appeared contain substantial relevant material.

The main purpose of this section is to comment on this mate-

rial. At the same time, we take the opportunity to add a few

extensions and ramifications that for some reasons did not

appear in the survey.62 Accordingly, we have updated and

expanded the bibliography.

A few recent books contain discussions of the billiard

ball problem. The book Ref. 26 is a thorough exposition of

the hyperbolic billiard dynamics. See Sec. III. The treatise9

contains several discussions of connections between the bil-

liard ball problem and geometry. The material in Ref. 9 is

relevant for all three types of billiard tables discussed above.

The latter can be also said about Ref. 139. However, the two

books are fundamentally different. The book9 is a compre-

hensive treatise on geometry, where the billiard ball problem

is but one of a multitude of illustrative examples and applica-

tions, while Ref. 139 is addressed primarily to young Ameri-

can students, and discusses a few instances pertaining to the

geometric aspect of the billiard. The book52 exposes several

applications of convex geometry to the billiard ball problem.

See the material in Sec. II.

A. The Birkhoff conjecture and related material

The traditional formulation of the Birkhoff integrability

conjecture is in terms of the billiard map. See Definition 1

and Problem 1. The billiard flow on a smooth, convex table

Y is a Hamiltonian system with 2 degrees of freedom. The

Hamiltonian version of Problem 1 is as follows:

Problem 1a. Let Y be a smooth, convex billiard table. If

the billiard flow on Y is an integrable Hamiltonian system,

then Y is an ellipse.

Although Problems 1 and 1a are obviously related, a re-

solution of either one of them would not directly imply a re-

solution of the other. The results of Bolotin14 provide

evidence supporting a positive resolution of Problem 1a.

Let c � R2 be a closed convex curve. Denote by jcj
its perimeter. The string construction associates with any

‘ > jcj a closed convex curve Gðc; ‘Þ containing c in its inte-

rior. The curve Gðc; ‘Þ is obtained by the following “physical

process.” We take a ring of length ‘ made from a soft, non-

stretchable material and wrap it around c. We pull the ring

tight with a pencil; then, holding it tight, we rotate the pencil

all the way around c. The moving pencil will then trace the

curve Gðc; ‘Þ. A gardener could use this process to design

fences around his flower beds. For this reason, the procedure

is sometimes called the gardener construction.9

Let Y ¼ Yðc; ‘Þ � R2 be the billiard table whose bound-

ary is Gðc; ‘Þ. Then, c is a caustic for the billiard on

Y.76,109,139 If c1 is an ellipse and ‘1 > jc1j, then c2 ¼ Gðc1; ‘1Þ
is a confocal ellipse. Let now ‘2 > jc2j. Then, c3 ¼ Gðc2; ‘2Þ
is a confocal ellipse containing c1. There is a unique ‘3 such

that c3 ¼ Gðc1; ‘3Þ. This transitivity property of gardener’s

construction is a consequence of the integrability of billiard

on an ellipse. The Birkhoff conjecture suggests the following

problem.

Problem 1b. Ellipses are the only closed convex curves

satisfying the above transitivity.

This entirely geometric variant of the Birkhoff conjec-

ture is due to Melrose. A positive solution of Problem 1b is

the subject of the Ph.D. thesis of Melrose’s student Amiran.2

However, the work2 contains a serious gap, and the question

remains open.

Let now c be any closed convex curve. For ‘ > jcj, let

Yð‘Þ ¼ Yðc; ‘Þ be the corresponding family of convex bil-

liard tables, and let 0 < qcð‘Þ < 1=2 be the rotation number

of the caustic c � Yð‘Þ. The rotation function qð‘Þ ¼ qcð‘Þ is

continuous and monotonically increasing, but not strictly,

in general. Let r 2 ð0; 1=2Þ be such that q�1ðrÞ ¼ ½aðrÞ; bðrÞ�
is a nontrivial interval. Then, (a) r is rational; (b) for

‘ 2 ½aðrÞ; bðrÞ� the billiard map of Yð‘Þ restricted to the caus-

tic c is not a rotation. The converse also holds; ½aðrÞ; bðrÞ�
are the phase locking intervals. The above situation is a spe-

cial case of the dynamical phenomenon called phase locking.

It is characteristic for one-parameter deformations in elliptic

dynamics. See Ref. 77 for a study and a detailed discussion

of this phase locking when c is a triangle.

Let now c be a convex polygon. Then, the C1 curve

Gðc; ‘Þ is a concatenation of arcs of ellipses with foci at the

corners of c. At the points of transition between these elliptic

arcs, typically, only one of the two foci changes, causing a
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jump in the curvature. Thus, a typical billiard table, say Y,

obtained by this construction, is strictly convex, piecewise

analytic, but not C2. The boundary @Y contains a finite num-

ber of points where the curvature jumps. Hubacher studied

billiard tables of this class.92 She proved that there is an

open neighborhood X � Y of @Y such that any caustic in Y
belongs to the complement of X.92

Recall that c is a caustic of Yðc; ‘Þ for any ‘ > jcj. There

is an analogy between Hubacher’s theorem and a result in

Ref. 76 which says that billiard caustics stay away from the

table’s boundary if it contains points of very small curvature.

This result is a quantitative version of Mather’s theorem114

that insures nonexistence of caustics if @Y has points of zero

curvature. Hubacher’s theorem replaces them with jump

points of the curvature. As opposed to Ref. 76, the work92

does not estimate the size of the region X � Y free of caus-
tics. It is plausible that for the typical table Yðc; ‘Þ the free of

caustics region X ¼ Xðc; ‘Þ is the annulus between @Yðc; ‘Þ
and c.

There are polygons c such that for special values of the

string length ‘ the boundary @Yðc; ‘Þ is a C2 curve. Let c be

the regular hexagon with the unit side length. Then,

@Yðc; 14Þ is a C2 curve. The work of Fetter43 studies the bil-

liard on Yðc; 14Þ. Fetter suggests that the billiard on Yðc; 14Þ
is integrable, and thus Yðc; 14Þ is a counterexample to the

Birkhoff conjecture. However, the evidence of integrability

of Yðc; 14Þ presented in Ref. 43 is mostly numerical. The

present author believes that the further investigation of the

billiard on Yðc; 14Þ will confirm the Birkhoff conjecture.

The subject of Ref. 97 is a billiard version of the famous

question of Marc Kac: “Can one hear the shape of a drum?”96

As an application of their results, the authors prove a condi-
tional version of the Birkhoff conjecture.

B. The Ivrii conjecture and related material

Investigations of Problems (3a) (i.e., the Ivrii conjecture)

and (3b) (i.e., the claims In for n > 2), as well as related ques-

tions, remain active. The work8 develops a functional theoretic

approach to study billiard caustics. As a byproduct, Ref. 8 con-

tains yet another proof of Rychlik’s theorem stating that the set

of 3-periodic billiard orbits has measure zero. The preprint65

announced a solution of the Ivrii conjecture. Unfortunately, the

work65 contains a mistake; thus, the conjecture remains open.

The paper51 announced a proof of the claim I4: The set of

4-periodic billiard orbits has measure zero. The work51 states

several propositions implying the claim, and explains the strat-

egy of their proofs. The approach of Ref. 51 is based on a study

of certain foliations, on one hand, and a very detailed analysis of

singularities of certain mappings, on the other hand. Complete

proofs should appear shortly. There is a curious connection

between the Ivrii conjecture and the subject of invisibility.120

It is natural to investigate the counterparts of the Ivrii

conjecture for the billiard on (simply connected) surfaces of

constant curvature. The billiard on R2 corresponds to the

zero curvature, j ¼ 0. Multiplying a constant curvature by a

positive factor does not qualitatively change the geometry;

thus, it suffices to consider the two cases j ¼ 61. The surfa-

ces in question are the hyperbolic plane, j ¼ �1, and the

round unit sphere, j ¼ 1. Let us denote them by H2 and S2,

respectively. On S2, the immediate analog of the Ivrii con-

jecture fails. The paper80 contains an example of a (not

strictly) smooth, convex billiard table in S2 with an open set

of periodic orbits. This observation shows the subtlety of the

Ivrii conjecture for R2. The work13 contains a detailed study

of 3-periodic orbits for billiard tables in H2 and S2. It shows,

in particular, that the set of 3-periodic billiard orbits on a

Birkhoff billiard table in H2 has measure zero. This is the

counterpart of Rychlik’s theorem for the hyperbolic plane.

C. Extensions of the material in Sec. II

Nontrivial billiard properties can be roughly divided

into three categories: (1) Those that hold for all tables; (2)

those that hold for the typical table; (3) those that hold for

special billiard tables. Studies in category (3) can be

described as follows: Let P be a property satisfied by a very

particular billiard table, e.g., the round disc. Are there non-

round tables that have property P? If the answer is “yes,”

then describe the billiard tables having property P.

The following example illustrates the situation. Let 0 < a
� p=2 be an angle. Let Y � R2 be a Birkhoff billiard table.

We say that the table Y has property Pa if every chord in Y
that makes angle a with @Y at one end also makes angle a
with @Y at the other end. The round table has property Pa for

any a. A billiard table with property Pa has a very special

caustic Ca; we will say that Ca is a constant angle caustic. Let

qðhÞ; 0 � h � 2p; be the radius of curvature for @Y. Tables

with the caustic Cp=2 are well known to geometers: Their

boundaries are the curves of constant width.9,52 A curve @Y
has constant width if an only if its radius of curvature satisfies

the identity

qðhÞ þ qðhþ pÞ ¼ const:

In particular, there are non-round infinitely smooth, and even

real analytic billiard tables in this class.

For 0 < a < p=2 let Pa be the class of non-round tables

with the property Pa. The author has investigated the class

Pa about 20 yr ago and reported the results at the 1993 Penn-

sylvania State University Workshop on Dynamics.59 The

main results in Ref. 59 are as follows: The class Pa is non-

empty if and only if a satisfies

tanðnaÞ ¼ n tan a (6)

for some n > 1. The set An � ð0; p=2Þ of solutions of Eq. (6)

is finite and nonempty for n � 4. For every a 2 An, there is

an analytic family of (nonround) distinct, convex, real ana-

lytic tables YaðsÞ 2 Pa : 0 < s < 1. As s! 0, the tables

YaðsÞ converge to the unit disc. The limit Yað1Þ of YaðsÞ, as

s! 1, also exists, but has corners.

It turns out that planar regions satisfying property Pa for

some angle a are of interest in the mathematical fluid

mechanics. Besides the concept of Archimedean floating, (In

fact, this concept goes back to Aristotle.) there is a concept

of capillary floating in neutral equilibrium at a particular
contact angle. This concept goes back to Thomas Young154
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and was further developed and investigated by Finn.44 If

Y 2 Pa, then the infinite cylinder C ¼ Y �R floats in neu-

tral equilibrium at the contact angle p� a at every orienta-
tion. The work64 is a detailed exposition of the results in Ref.

59 aimed, in particular, at the mathematical fluid mechanics

readership. See Refs. 31 and 140 for related investigations

and Ref. 69 for additional comments.

D. Comments and updates for the material in Sec. IV

Although Problem 10 remains open, recent publica-

tions91,127,128 provided substantial evidence toward the posi-

tive answer, i.e., that every polygon does have a periodic

orbit. These papers investigate periodic billiard orbits in

obtuse triangles. Let Dða; b; cÞ be the triangle with the angles

a � b � c. In Refs. 127 and 128, Schwartz proves that if c is

less than or equal 100
, then Dða; b; cÞ has a periodic orbit.

In Ref. 91 Hooper and Schwartz prove that if the angles a
and b are sufficiently close, then Dða; b; cÞ has a periodic

orbit. If a ¼ b, then D is an isosceles triangle. It is well

known and elementary that isosceles triangles have periodic

orbits. The main theorem in Ref. 91 says that any triangle

which is sufficiently close to an isosceles one, has periodic

orbit. Note that in the Hooper-Schwartz theorem the angles a
and b can be arbitrarily small, thus c can be arbitrarily close

to 180
.
Let D be a triangle, and let a, b, c be the sides of D. The

works91,127,128 build on the approach of Ref. 47, where peri-

odic billiard orbits were coded by words on the alphabet

fa; b; cg. The paper47 studied relationships between periodic

orbits and the associated words. A periodic billiard orbit is

stable if it persists under all sufficiently small deformations

of D. By Ref. 47, the stability of an orbit is equivalent to a

combinatorial property of the associated word. For the sake

of brevity, I will simply say that the words on the alphabet

fa; b; cg satisfying this property are stable. Let T � R2 be

the moduli space of triangles. Slightly simplifying the situa-

tion, we assume that T ¼ fðx; yÞ 2 R2 : 0 � x; y � 1g. The

subsets of obtuse (resp. isosceles) triangles are given by xþ y
< 1 (resp. x¼ y). Let Wk be the set of stable words of length

k, and let W ¼ [kWk. For w 2 W, let T w � T be the open set

of triangles having a periodic orbit with the code w. These are

the tiles in the terminology of Ref. 91.

The approach of Hooper and Schwartz is to exhibit a

sufficient set Wsuff � W so that the tiles fT w : w 2 Wsuffg
cover the targeted part of T . It goes without saying that this

idea cannot be implemented without substantial computer

power. The computer program “MacBilliards” created by

Hooper and Schwartz does the job. Besides providing us

with ample evidence towards the conjecture that every poly-

gon has periodic billiard orbits, the works91,127,128 have

established several facts that show just how intricate the mat-

ter is. In some cases, every finite set is insufficient; then

Ref. 91 exhibits sufficient infinite sets.

Unfortunately, the survey62 has omitted the subject of

complexity of billiard orbits in polygons, which is very close

to Problem 11. We will briefly discuss it below. Let P be a

polygon, and let A ¼ fa; b; c;…g be the set of its sides. Fol-

lowing a finite billiard orbit c and recording the sides that it

encounters, we obtain a word, wðcÞ, on the alphabet A. We

say that wðcÞ is the code of c; the number of letters in wðcÞ is

the combinatorial length of c. Let WnðPÞ be the set of codes

of all billiard orbits with combinatorial length n. The func-

tion FðnÞ ¼ jWnðPÞj is the full complexity of the billiard on

P. Imposing various restrictions on the billiard orbits, we

obtain conditional or partial complexities F�ðnÞ. For

instance, the function fPðnÞ in Problem 11 is the periodic
complexity for the billiard on P. Thus, Problem 11 is a spe-

cial case of the following open question.

Problem 14. Find nontrivial, explicit bounds on partial

billiard complexities for the general polygon. (The designa-

tion general polygon may be replaced by irrational
polygon.)

By Refs. 70, 71, and 99, the full complexity of the billiard

in any polygon is subexponential. This means that for n suffi-

ciently large FðnÞ < ean for any a > 0. Note that this result

provides no subexponential bound on F(n). Very few nontri-

vial bounds on billiard complexities are known. Let fPðnÞ be

the number of codes for periodic orbits in P of length at most

n. For any k 2N Hooper constructed open sets X k in the

moduli space of polygons such that for P 2 X k the function

fPðnÞ grows faster than n logkn.88 Let gPðnÞ be the number of

generalized diagonals in P of length at most n. Let T 3 be the

moduli space of triangles, endowed with the Lebesgue mea-

sure. Scheglov125 showed that for almost every P 2 T 3 and

any e > 0 the inequality gpðnÞ < constexpðn
ffiffi
3
p
�1þeÞ holds.

Note that Scheglov’s result yields explicit subexponential

upper bounds on the full and the periodic complexities for

almost every triangle.

To make Problem 14 more concrete, we state below a

widely accepted conjecture.

Conjecture 1. There is d � 3 such that the full billiard

complexity for any polygon has a cubic lower bound and a

degree d upper bound.

The claim is established only for rational polygons,

with d¼ 3. This is a consequence of the results of

Masur110,111 about saddle connections on translation surfa-

ces. We will now briefly discuss recent results on partial

complexities that provide support for it.78 Let P be an ar-

bitrary polygon. Let 0 � h < 2p be a direction, and let z 2
P be a point. Coding those billiard orbits that start off in

direction h (resp. from the point z) and counting the num-

ber of words of length less than or equal to n, we obtain

the directional complexity FhðnÞ (resp. position complexity
FzðnÞ) for the billiard on P. It was known that the direc-

tional complexity grows polynomially, i.e., there is d > 0

depending only on P such that FhðnÞ ¼ OðndÞ for all direc-

tions h.82 By Ref. 78, for any P and any e > 0 for almost

all directions h, we have FhðnÞ ¼ Oðn1þeÞ. Another result

in Ref. 78 says that for any P and any e > 0, for almost all

points z 2 P we have FzðnÞ ¼ Oðn2þeÞ (This establishes, in

particular, the unpublished results of Boshernitzan.16) The

proofs are based on the relationships between the average

complexity and individual complexities. The concept of a

piecewise convex polygon exchange introduced in Ref. 81

yields a new approach to the billiard complexities. This

approach works for the polygonal billiard on surfaces of arbi-

trary constant curvature.
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E. Ramifications and extensions of the polygonal
billiard

In this section, we briefly report on several generaliza-

tions of the subject in Sec. IV that did not get discussed in

Ref. 62. The main direction in these developments is to

replace the usual polygons by noncompact or infinite poly-

gons. The work in this direction started already at the end of

the last century,33,34 and flourished after the turn of the cen-

tury. The noncompact polygons in Ref. 33 and 34 are semi-

infinite stairways. A stairway in these works is a noncompact

polygon, say P, with infinitely many vertical and horizontal

sides, and of finite area. In particular, P is a rational noncom-
pact polygon, and we have the obvious family of directional

billiard flows bt
h; 0 � h � p=2; on P. In addition to studying

the ergodicity of these flows, the papers33,34 investigate

escaping orbits in P, a new phenomenon caused by the non-

compactness of P.

There are many kinds of noncompact polygons, both

rational and irrational, bounded or unbounded, with finite or

infinite area. More generally, there are noncompact polygo-
nal surfaces,67 and in particular, noncompact translation
surfaces.67,89 In this brave new world, there are infinite (as

opposed to semi-infinite) stairways,90 infinite coverings of

compact polygonal surfaces,30,46,67 and even fractals, e.g.,

the Koch snowflake.108 Besides being of interest on its own,

the billiard on noncompact polygons comes up in physics

and engineering.6,32,54,56,58

All of the questions concerning the dynamics and geom-

etry for compact polygons, translation surfaces, etc, have

obvious counterparts in the noncompact world. (Except for

the billiard on a fractal table where these counterparts are

not obvious.108) The answers to these questions are some-

times unexpected,30,46,142 not at all analogous to the answers

in the compact world. Besides, there are problems in the non-

compact world that do not arise in the classical setting. One

of them is the conservativity of billiard dynamics. In

the classical setting, the conservativity is ensured by the

Poincaré recurrence theorem. We conclude this necessarily

incomplete survey of noncompact polygonal billiard with a

brief discussion of the billiard for a classical family of non-

compact, doubly periodic polygons.

Let 0 < a; b < 1, and let Rða; bÞ be the a� b rectangle.

Denote by Rð0;0Þ the upright rectangle R(a, b) centered at

(1/2, 1/2). For ðm; nÞ 2 Z2 set Rðm;nÞ ¼ Rð0;0Þ þ ðm; nÞ. The

region ~Pða; bÞ ¼ R2 n
�
[ðm;nÞ2Z2 Rðm;nÞ

�
is a noncompact

rational polygon of infinite area. We will refer to it as the

rectangular Lorenz gas. The randomized version of ~Pða; bÞ
is the famous wind-tree model of statistical physics.38 For

0 � h < p=2, denote by bt
h the directional billiard flows on

~Pða; bÞ. The paper30 works out the ergodic decomposition of

bt
h on ~Pða; bÞ for particular directions h and sufficiently small

a and b, provided that a/b be irrational. The directions in

question are h ¼ arctanðq=pÞ corresponding to ðp; qÞ 2N2

such that the flow line of bt
h emanating from a corner of

Rð0;0Þ reaches the homologous corner of Rðp;qÞ bypassing the

obstacles. Although these directions form a finite set, it is

asymptotically dense as a, b go to zero. The dissipative

component of bt
h is spanned by the straight lines (with the

slopes 6q=p) avoiding the obstacles. The conservative part

of bt
h decomposes as a direct sum of 2pq identical ergodic

flows. The decomposition is as follows. There is a certain

subgroup Hðp;qÞ � Z2 of index 2pq. Let S1;…; S2pq � Z2 be

its cosets. The ergodic component of bt
h corresponding to the

coset Si; 1 � i � 2pq; is spanned by the billiard orbits that

encounter the obstacles Rðm;nÞ, where ðm; nÞ 2 Si. Thus, the

ergodic decomposition of the flow in the (p, q) direction is

induced by a natural partition of the set of obstacles in the

configuration space. For instance, the two ergodic compo-

nents of the flow in the direction p=4 correspond to the bil-

liard orbits on ~Pða; bÞ that encounter the obstacles Rðm;nÞ
with even and odd mþ n, respectively.

These results follow from the ergodicity of certain

Z2-valued cocycles over irrational rotations30 established by

the classical methods of ergodic theory for infinite invariant

measures.1,29,126 The explicit ergodic decomposition of the

(conservative part of) the directional flows yields nontrivial

consequences for the recurrence and the spatial distribution

of typical billiard orbits.30 The recurrence in the direction

p=4 has been discussed in the physics literature.84 Judging

by the results in Refs. 30 and 46 etc, the noncompact polygo-

nal billiard may yield further surprises.

F. Security for billiard tables and related questions

This subject arose quite recently. It has to do with the ge-

ometry of billiard orbits as curves on the configuration space.

Let X � R2 be any billiard table. For any pair x; y 2 X
(in particular for pairs x, x) let Cðx; yÞ be the set of billiard

orbits in X that connect x and y. We say that the pair x, y is
secure if there exists a finite set fz1;…; zng � X n fx; yg such

that every c 2 Cðx; yÞ passes through some zi. We say that

z1;…; zn are blocking points for x, y. We call X secure if every

pair of points is secure. Thus, to show that X is insecure
means to find a pair x,y that cannot be blocked with a finite set

of blocking points. The questions that arise are: (1) What

tables X are secure?; (2) If X is insecure, how insecure is it?

For instance, is it true that every pair x; y 2 X is insecure, that

almost all pairs x; y 2 X are insecure, etc.

The subject, in disguise of problems about bodyguards
came up in the Mathematical Olympiad literature. The

recent interest in security got triggered by Ref. 87. The

authors, who were then students at Cambridge University,

studied the security of polygons. The main claim in Ref. 87

is that every rational polygon is secure. Regular n-gons pro-

vide a counterexample to the claim: A regular n-gon is

secure if and only if n¼ 3, 4, 6.63 See Ref. 64 for related

results. Although the statement is elementary, the proof is

not. The claim follows from a study of security in transla-

tion surfaces, and is based on Refs. 55, 72–74, 143, and

145. However, the general study of security for polygons

has just begun.

Problem 15. To characterize secure polygons. In partic-

ular, establish a criterion of security for rational polygons.

Triangles with the angles of 30
, 60
, 90
 and 45
, 45
,
90
, as well as the equilateral triangle and the rectangles are
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the only polygons whose translation surfaces are flat tori,

and hence their billiard flows are integrable.55 Following

Ref. 55, we will call them integrable polygons. A polygon P
is almost integrable if it is tiled under reflections by one of

the integrable polygons.75 By Ref. 63, every almost integra-

ble polygon is secure.

Conjecture 2. A polygon is secure if and only if it is

almost integrable.

Almost integrable polygons are certainly rational. Con-

jecture 2 would imply, in particular, that every irrational

polygon is insecure. At present, the problem of insecurity

for general polygons seems hopeless. However, the security

framework makes sense for arbitrary billiard tables, and

more generally, for arbitrary riemannian manifolds (with

boundary, corners, and singularities, in general). Security of

riemannian manifolds is related to the growth of the number

of connecting geodesics, and hence to their topological en-
tropy.21,66 Not much is known about the security in non-

polygonal billiard tables X. Let X be a Birkhoff billiard table.

Approximating @X locally by the arcs of its osculating circles,

it is intuitively clear that pairs of sufficiently close points

x; y 2 @X are insecure; the work141 confirms it.

Much more is known about the security of compact,

smooth Riemannian manifolds. Flat manifolds are secure.21,63

For a flat torus, the proof is elementary.63 For general flat

manifolds, this follows from the Bieberbach theorem.21

Conjecture 3. A compact, smooth riemannian manifold

is secure if and only if it is flat.

Conjecture 3 has been established for various classes of

compact Riemannian manifolds.7,21,79 In particular, it holds

for all compact surfaces of genus greater than zero.7 Thus,

among surfaces, it remains to prove it for arbitrary smooth

Riemannian metrics on the two-sphere. The work49 gives

examples of totally insecure real analytic metrics on the two-

sphere; Ref. 48 shows that higher dimensional compact Rie-

mannian manifolds are generically insecure.
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1–20 338, (1962) Regular Chaotic Dyn. 6, 337–20 338 (2001)].
117V. I. Oseledets, “A multiplicative ergodic theorem. Lyapunov characteris-

tic numbers for dynamical systems,” Trans. Mosc. Math. Soc. 19,

197–231 (1968).
118J. C. Oxtoby, Measure and Category (Springer-Verlag, New York, 1996).
119V. Petkov and L. Stojanov, “On the number of periodic reflecting rays in

generic domains,” Ergod. Theory Dyn. Syst. 8, 81–91 (1988).
120A. Plakhov and V. Roshchina, “Invisibility in billiards,” Nonlinearity 24,

847–854 (2011).
121H. Poritsky, “The billiard ball problem on a table with a convex bound-

ary—An illustrative dynamical problem,” Ann. Math. 51, 446–470

(1950).
122J.-Ch. Puchta, “On triangular billiards,” Comment. Mathem. Helv. 76,

501–505 (2001).
123M. Rychlik, “Periodic points of the billiard ball map in a convex

domain,” J. Diff. Geom. 30, 191–205 (1989).
124Yu. Safarov and D. Vassiliev, The Asymptotic Distribution of Eigenvalues

of Partial Differential Operators (A.M.S., Providence, 1997).
125D. Scheglov, “Complexity of typical triangle billiards,” arXiv:1202.1244.
126K. Schmidt, Lectures on Cocycles of Ergodic Transformations Groups,

Lecture Notes in Mathematics Vol. 1 (MacMillan Co., India, 1977).
127R. E. Schwartz, “Obtuse triangular billiards. I. Near the (2,3,6) triangle,”

Exp. Math. 15, 161–182 (2006).
128R. E. Schwartz, “Obtuse triangular billiards. II. One hundred degrees

worth of periodic trajectories,” Exp. Math. 18, 137–171 (2009).
129Ya. Sinai, “On the foundations of the ergodic hypothesis for a dynamical

system of statistical mechanics,” Sov. Math. Dokl. 4, 1818–1822 (1963)

[Dokl. Akad. Nauk SSSR 153, 1261–1822 1264 (1963) (In Russian)].
130Ya. Sinai, “Dynamical systems with elastic reflections: Ergodic properties

of dispersing billiards,” Usp. Mat. Nauk 25, 141–192 (1970) (in Russian).

131J. Smillie, “The dynamics of billiard flows in rational polygons,” in Ency-
clopedia of Mathematical Sciences (Springer-Verlag, New York, 2000),

Vol. 100, pp. 360–382.
132A. B. Sossinsky, “Configuration spaces of planar mechanical linkages

with one degree of freedom,” Russ. J. Math. Phys. 15, 530–541

(2008).
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