
HOMOGENEOUS DYNAMICS AND NUMBER THEORY

Gregory Margulis

Homogeneous dynamics is another name for the theory of flows on homogeneous
spaces, or homogeneous flows. The study of homogeneous flows has been attracting
considerable attention for the last 40-50 years. During the last three decades, it has
been realized that some problems in number theory and, in particular, in Diophan-
tine approximation, can be solved using methods from the theory of homogeneous
flows. The purpose of these lecture notes is to demonstrate this approach on sev-
eral examples rather than to give a survey of the subject. In particular, recent very
important work by M.Einsiedler, E.Lindenstrauss, P.Michel and A.Venkatesh on
application of diagonalizable flows to number theory will not be discussed. (This
work was the subject of two invited addresses at ICM 2006).

We will start with the Oppenheim conjecture proved in the mid 1980’s and the
Littlewood conjecture, still not settled. The next topic is quantitative generaliza-
tions of the Oppenheim conjecture and counting lattice points on homogeneous
varieties. After that, we will go to Diophantine approximation on manifolds where,
in particular, we will very briefly describe the proof of Baker-Sprindzuk conjectures.
We will also discuss results on translates of submanifolds and unipotent flows which
are used in applications to number theory.

But before all that, let us mention the following observation which was originally
made by D.Zagier about 20 years ago. Let G = SL(2,R), let Γ = SL(2,Z) and let

U = {ut : t ∈ R} where ut =
(

1 t
0 0

)
. For each t > 0, there is a unique closed

orbit of U in G/Γ of period t, call it Ct(utx = x and ut′x �= x for x ∈ Ct and
0 < t′ < t). The famous Riemann hypothesis about zeros of Riemann zeta-function
is equivalent to the following statement. For any function f ∈ C∞

0 (G/Γ) (i.e. f is
smooth and compactly supported) and any ε > 0

1
t

∫
Ct

fdm =
∫

G/Γ

fdμ+O(t−(3/4)+ε)

as t → ∞ where m is the Lebesgue measure on Ct and μ is the G-invariant prob-
ability Borel measure on G/Γ. It should be noted that (a) the power − 3

4
+ ε is

1
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different from the usual power − 1
2 + ε which one could expect from probabilistic

type arguments; (b) the equivalence remains true if one considers only K-invariant
functions f where K is a maximal compact subgroup of G; (c) apparently the just
mentioned equivalence is considered mostly as a curiosity rather than a serious
approach to the proof of the Riemann hypothesis.

§1. Values of quadratic forms and of

products of linear forms at integral points

We will say that a real quadratic form is rational if it is a multiple of a form
with rational coefficients and irrational otherwise.

Theorem 1. Let Q be a real irrational indefinite nondegenerate quadratic form in

n ≥ 3 variables. Then for any ε > 0, there exist integers x1, . . . , xn not all equal

to 0 such that |Q(x1, . . . , xn)| < ε.

Theorem 1 was conjectured by A.Oppenheim in 1929 and proved by the author in
1986 (see [Marg1] and [Marg2] and references therein). Oppenheim was motivated
by Meyer’s theorem that if Q is a rational quadratic form in n ≥ 5 variables, then
Q represents zero over Z nontrivially, i.e. there exists x ∈ Zn, x �= 0 such that
Q(x) = 0. Because of that he originally stated the conjecture only for n ≥ 5.
Let us also note that the condition “n ≥ 3” cannot be replaced by the condition
“n ≥ 2”. To see this, consider the form

x2
1 − λx2

2 = (x1 −
√
λx2)(x1 +

√
λx2)

where λ is an irrational positive number such that
√
λ has a continued fraction

development with bounded partial quotients; for example λ = (1+
√

3)2 = 4+2
√

3.

It is a standard simple fact that if Q is a real irrational indefinite nondegenerate
quadratic form in n variables and 2 ≤ m < n, then Rn contains a rational subspace
L of dimension m such that the restriction of B to L is irrational, indefinite and
nondegenerate. Hence if Theorem 1 is proved for some n0, then it is proved for all
n ≥ n0. As a consequence of this remark, we see that it is enough to prove Theorem
1 for n = 3.

Before the Oppenheim conjecture was proved, it was extensively studied mostly
using analytic number theory methods. In particular it had been proved by
H.Davenport and his coauthors for diagonal forms in five or more variables and for
n ≥ 21 (during approximately a 15 year period between 1945 and 1960). About 10
years ago, V.Bentkus and F.Götze proved the Oppenheim conjecture for n ≥ 9 using
analytic number theory methods. They also proved, under the same assumption
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n ≥ 9, that if Q is a positive definite quadratic form on Rn and

E = {x ∈ Rn : Q(x) ≥ 1}

then for r → ∞ the number of points in Zr ∩rE differs from vol(rE) by an error of
order O(rn−2) in general and of order o(rn−2) for irrationalQ. In [G]. Götze proved
this result under a weaker assumption n ≥ 5. As a corollary of this, one gets the
proof of the Davenport-Lewis conjecture about gaps between values of irrational
positive definite quadratic forms at integral points. The proofs given in [G] and in
the previous work by Bentkus and Götze are in a certain sense “effective” contrary
to the author’s proof of Theorem 1. In the joint work in progress by F.Götze and
the author, we obtained an “effective” proof of the Oppenheim conjecture and its
quantitative versions in the case n ≥ 5; this proof is based on the combination of
methods from [EMM1] and [G]. But it seems that the methods of analytic number
theory are not sufficient to prove the Oppenheim conjecture in the case where n is
3 or 4.

Theorem 1 was proved by studying orbits of the orthogonal group SO(2, 1) on
the space of unimodular matrices in R3. It turns out that this theorem is equivalent
to the following:

Theorem 2. Let G = SL(3,R) and Γ = SL(3,Z). Let us denote by H the group

of elements of G preserving the form 2x1x3 − x2
2 and by Ω3 = G/Γ the space of

lattice in R3 having determinant 1. Let Gy denote the stabilizer {g ∈ G : gy = y}
of y ∈ Ω3 in G. If z ∈ Ω3 = G/Γ and the orbit Hz is relatively compact in Ω3,

then the quotient space H/H ∩Gz is compact.

For any real quadratic form B in n variables, let us denote the special orthogonal
group

SO(B) = {g ∈ SL(n,R) : gB = B} by HB

and
inf{|B(x)| : x ∈ Zn, x �= 0} by m(B).

As it was already noted, it is enough to prove Theorem 1 for n = 3. Then the
equivalence of Theorem 1 and 2 is a consequence of the assertions (i) and (ii) below.
The assertion (i) easily follows from Mahler’s compactness criterion. As for (ii),
it was essentially proved in the 1955 paper [CS] by Cassels and Swinnerton-Dyer
by some rather elementary considerations; (ii) can be also deduced from Borel’s
density theorem.

(i) Let B be a real quadratic form in n variables. Then the orbit HBZn is
relatively compact in the space Ωn = SL(n,R)/SL(n,Z) of unimodular
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lattices in Rn if and only if m(B) > 0.

(ii) Let B be a real irrational indefinite nondegenerate quadratic form in 3

variables. Then HB/HB ∩ SL(3,Z) is compact if and only if the form B

is rational and anisotropic over Q.

Remark. In an implicit form, the equivalence of Theorem 1 and 2 appears already in
the abovementioned paper [CS] by Cassels and Swinnerton-Dyer. In the mid-1970’s,
M.S.Raghunathan rediscovered this equivalence and noticed that the Oppenheim
conjecture would follow from a conjecture about closures of orbits of unipotent
subgroups. This conjecture and some other related conjectures will be discussed
in §5. Raghunathan’s observations inspired the author’s work on the homogeneous
space approach to the Oppenheim conjecture.

Theorem 2 was also used to prove the following stronger version of Theorem 1:

Theorem 3. If Q and n are the same as in Theorem 1, then Q(Zn) is dense in R

or, in other words, for any a < b there exist integers x1, . . . , xn such that

a < Q(x1, . . . , xn) < b.

An integer vector x ∈ Zn is called primitive if x �= ky for any y ∈ Zn and k ∈ Z
with |k| ≥ 2. We denote by P(Zn) the set of all primitive integral vectors in Zn.
The following strengthening of Theorem 3 was proved in 1988 by S.G.Dani and the
author:

Theorem 4. If Q and n are the same as in Theorem 1 and 3, then Q(P(Zn)) is

dense in R.

In the same way as Theorem 1 is deduced from Theorem 2, Theorem 4 is deduced
from the following:

Theorem 5. Let Q be a real indefinite nondegenerate quadratic form in n ≥ 3
variables. Let us denote by H the special orthogonal group SO(Q). Then any orbit

of H in SL(n,R)/SL(n,Z) either is closed and carries an H-invariant probability

measure or is dense.

Let us go now from quadratic forms to a different topic. Around 1930, Littlewood
stated the following:

Conjecture 1. Let 〈x〉 denote the distance between x ∈ R and the closest integer.

Then

lim inf
n→∞ n〈nα〉〈nβ〉 = 0
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for any real numbers α and β.

We already mentioned the paper [CS] by Cassels and Swinnerton-Dyer in connec-
tion with earlier discussion about quadratic forms. But they also consider another
type of form, namely products of three linear forms in 3 variables. In particular,
they show that the Littlewood conjecture will be proved if the following conjecture
is proved for n = 3.

Conjecture 2. Let L be the product of n linearly independent linear forms on Rn.

Suppose that n ≥ 3 and L is not a multiple of a form with rational coefficients.

Then for every ε > 0, there exist integers x1, . . . , xn not all equal to 0 such that

|L(x1, . . . , xn)| < ε.

Conjecture 2 can be considered as an analogue of Theorem 1. As in Theorem
1 and because of the same example, in this conjecture the condition n ≥ 3 cannot
be replaced by the condition n ≥ 2. Conjecture 2 turns out to be equivalent to the
following conjecture about orbits of the diagonal subgroup in SL(n,R)/SL(n,Z).
For n = 3, this equivalence was essentially noticed in [CS].

Conjecture 3. Let n ≥ 3, G = SL(n,R), Γ = SL(n,Z), and let A denote the

group of all positive diagonal matrices in G. If z ∈ G/Γ and the orbit Az is

relatively compact in G/Γ, then Az is closed.

In the paper [EKL] published in 2006 and submitted in 2003, M.Einsiedler,
A.Katok and E.Lindenstrauss made dramatic progress on Littlewood’s conjecture
by showing that the set

{(α, β) ∈ R2 : lim inf
n→∞ n〈nα〉〈nβ〉 �= 0}

of exceptions to Littlewood’s conjecture has Hausdorff dimension zero. They deduce
this result from the classification of the measures on SL(n,R)/SL(n,Z) which are
invariant and ergodic under the action of the group A of positive diagonal matrices
with positive entropy.

§2. A quantitative version of the Oppenheim conjecture.

In the previous section, we described some applications to number theory based
on topological behavior of orbits of points in SL(n,R)/SL(n,Z) under the action
of a subgroup of SL(n,R). In this and the following two sections, we will give
examples of number theoretic applications based on results about the distribution
of translates of submanifolds of SL(n,R)/SL(n,Z).

Let ρ be a positive continuous function on the sphere {v ∈ Rn : ‖v‖ = 1}, and
let Ω = {v ∈ Rn : ‖v‖ < ρ(v/‖v‖)}. We denote by TΩ the dilate of Ω by T . For an
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indefinite quadratic form Q in n ≥ 3 variables, let us denote by NQ,Ω(a, b, T ) the
cardinality of the set

{x ∈ Zn : x ∈ TΩ and a < Q(x) < b}

and by VQ,Ω(a, b, T ) the volume of the set

{x ∈ Rn : x ∈ TΩ and a < Q(x) < b}.

It is easy to verify that, as T → ∞

VQ,Ω(a, b, T ) ∼ λQ,Ω(b− a)Tn−2,

where
λQ,Ω =

∫
L∩Ω

dA

‖∇Q‖ ,

L is the light cone Q = 0 and dA is the area element on L.
Let O(p, q) denote the space of quadratic forms of signature (p, q) and discrim-

inant ±1, let (a, b) be an interval. In [DM], S.G.Dani and the author proved the
following theorem which essentially gives the asymptotically exact lower bound for
NQ,Ω(a, b, T ).

Theorem 6. (I) Let p ≥ 2 and q ≥ 1. Then for any irrational form Q ∈ O(p, q)
and any interval (a, b),

lim inf
T→∞

NQ,Ω(a, b, t)
VQ,Ω(a, b, T )

≥ 1.

Moreover, this bound is uniform over compact sets of forms: if K is a compact

subset of O(p, q) which consists of irrational forms, then

lim inf
T→∞

inf
Q∈K

NQ,Ω(a, b, t)
VQ,Ω(a, b, T )

≥ 1.

(II) If p > 0, q > 0 and n = p+ q ≥ 5, then for any ε > 0 and any compact subset

K of O(p, q) there exists c = c(ε,K) > 0 such that for all Q ∈ K and T > 0,

NQ,Ω(−ε, ε, T ) ≥ cVQ,Ω(−ε, ε, T ).

Remark. The condition n ≥ 5 in statement (II), is related to the same condition in
Meyer’s theorem.

The situation with the asymptotics and upper bounds for NQ,Ω(a, b, T ) is more
delicate. Rather surprisingly, here the answer depends on the signature of Q. In
[EMM1], A.Eskin, S.Mozes and the author proved the following Theorems 7-10.
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Theorem 7. If p ≥ 3, q ≥ 1 and n = p+ q, then as T → ∞

(∗) NQ,Ω(a, b, T ) ∼ λQ,Ω(b− a)Tn−2

for any irrational form Q ∈ O(p, q).

If the signature of Q is (2, 1) or (2, 2), then no universal formula like (*) in
Theorem 7 holds. In fact we have the following:

Theorem 8. Let Ω be the unit ball, and let q = 1 or 2. Then for every ε > 0
and every interval (a, b) there exists an irrational form Q ∈ O(2, q) and a constant

c > 0 such that for an infinite sequence Tj → ∞

NQ,Ω(a, b, T ) > cT q
j (logTj)1−ε.

The case q = 1, b ≤ 0 of this theorem was noticed by Sarnak and worked out by
Brennan in his undergraduate thesis. The quadratic forms constructed are of the
type x2

1+x
2
2−αx2

3, or x2
1+x

2
2−α(x2

1+x2
4) where α is extremely well approximated by

squares of rational numbers. Another point is that in the statement of Theorem 8,
(logT )1−ε can be replaced by log T/ν(T ) where ν(T ) is any unbounded increasing
function.

However, in the (2, 1) and (2, 2) cases, there is an upper bound of the form
cT q logT . This upper bound is uniform over compact subsets K of O(p, q), and it
is effective in the sense that there is an effective way to compute the constant c.
There is also an effective upper bound for the case p ≥ 3.

Theorem 9. Let K be a compact subset of O(p, q) and n = p+ q. Then, if p ≥ 3
and q ≥ 1, there exists a constant c = c(K, a, b,Ω) such that for any Q ∈ K and all

T > 1
NQ,Ω(a, b, T )< cTn−2.

If p = 3 and q = 1 or q = 2, then there exists a constant c = c(K, a, b,Ω) such that

for any Q ∈ K and all T > 2

NQ,Ω(a, b, T ) < cTn−2 log T.

Also, for the (2, 1) and (2, 2) cases, the following “almost everywhere” result is
true:

Theorem 10. The asymptotic formula (*) from Theorem 7 holds for almost all

quadratic forms of the signature (2, 1) or (2, 2).

We will now briefly describe how Theorems 6-10 are proved. LetG = SL(n,R),Γ =
SL(n,Z), Ωn = G/Γ = {the space of unimodular lattices in Rn with determinant 1}.
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One can associate to an integrable function f on Rn, a function f̃ on Ωn by setting

f̃ (Δ) =
∑

v∈Δ,v �=0

f(v),Δ ∈ Ωn.

According to a theorem of Siegel,
∫

Rn

fdmn =
∫
Ωn

f̃dμ,

where mn is the Lebesgue measure on Rn and μ is the G-invariant probability
measure on Ωn = G/Γ. In [DM], the proof of Theorem 6 is based on the following
identity which is immediate from the definitions:

(A)

�T∫
T

∫
F

∑
v∈gZn

f(utkv)dσ(k)dt =

�T∫
T

∫
F

f̃(utkgΓ)dσ(k)dt,

where {ut} is a certain one-parameter unipotent subgroup of SO(p, q), F is a Borel
subset of the maximal compact subgroup K of SO(p, q), σ is the normalized Haar
measure on K, and f is a continuous compactly supported function on Rn\{0}.
The number NQ,Ω(a, b, T ) can be approximated by the sum over m of the integrals
on the left hand side of (A) for an appropriate choice of g, f = fi, F = Fi, 1 ≤ i ≤ m.
The right hand side of (A) can be estimated, uniformly when gΓ belongs to certain
compact subsets of G/Γ, using the just mentioned theorem of Siegel and some
results on the equidistribution for unipotent flows (for details see §5). The function
f̃ on Ωn is unbounded for any nonnegative nonzero continuous function f on Rn.
But the abovementioned results on the equidistribution for unipotent flows are
proved (and in general true) only for bounded continuous functions. On the other
hand, as was done in [DM], one can get lower bounds by considering bounded
continuous functions ϕ ≤ f and applying these results to f .

Let p ≥ 2, p ≥ q, q ≥ 1. We denote p+q by n. Let {e1, . . . , en} be the standard
basis of Rn. Let Q0 be the quadratic form of signature (p, q) defined by

Q0(
n∑

i=1

viei) = 2v1vn +
p∑

i=2

v2
i −

n−1∑
i=p+1

v2
i

for v1, . . . , vn ∈ R. Let H = SO(Q0). For t ∈ R, let at be the linear transformation
so that ate1 = e−te1, aten = eten, and atei = ei, 2 ≤ i ≤ n − 1. Let K̂ be the
subgroup of G consisting of orthogonal matrices, and let K = H ∩ K̂. It is easy to
check that K is a maximal compact subgroup ofH , and consists of all h ∈ H leaving
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invariant the subspace spanned by {e1 + en, e2, . . . , ep}. For technical reasons, we
consider in [EMM1] not the identity (A) but another identity:

(B)
∫
K

∑
v∈gZn

f(atkv)ν(k)dσ(k) =
∫
K

f̃ (atkgΓ)ν(k)dσ(k),

where ν is a bounded measurable function on K.
Let Δ be a lattice in Rn. We say that a subspace L of Rn is Δ-rational if L∩Δ

is a lattice in L. For any Δ-rational subspace L, we denote by d(L) the volume
of L/L ∩ Δ. Let us note that d(L) is equal to the norm of e1 ∧ . . . ∧ e� in the
exterior power

∧�(Rn) where 
 = dimL and (e1 . . . , e�) is a basis over Z of L∩Δ.
If L = {0} we write d(L) = 1. Let

α(Δ) = sup{ 1
d(L)

: L is a Δ-rational subspace}.

According to a well known fact from the geometry of numbers, sometimes called
“Lipschitz principle”, for any bounded compactly supported function f on Rn,
there exists a positive constant c = c(f) such that f̃(Δ) < cα(Δ) for every lattice
Δ in Rn.

Theorems 7-9 are proved in [EMM1] by combining the abovementioned results
on the equidistribution for unipotent flows with the identity (B), the Lipschitz
principle and the following integrability estimates:

Theorem 11. (a) If p ≥ 3, q ≥ 1 and 0 < s < 2, or if p = 2, q ≥ 1 and 0 < s < 1,

then for any lattice Δ in Rn

sup
t>0

∫
K

α(atkΔ)sdσ(k) <∞.

(b) If p = 2 and q = 2, or if p = 2 and q = 1, then for any lattice Δ in Rn

sup
t>1

1
t

∫
K

α(atkΔ)dσ(k) <∞.

These upper bounds are uniform as Δ varies over compact sets in the space of

lattices.

Theorem 10 is deduced from the identity (B), the Lipschitz principle, Howe-
Moore estimates for matrix coefficients of unitary representations, and from the
fact that the function α on the space Ωn = L(n,R)/SL(n,Z) of unimodular lattices
in Rn belongs to every Lμ, 1 ≤ μ ≤ n.
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As was noticed before, there are quadratic forms Q of the type x2
1 +x2

2 −αx2
3 or

x2
1 +x2

2−α(x2
3 +x2

4), where α is extremely well approximated by squares of rational
numbers, such that the asymptotic formula (*) in Theorem 7 does not hold. These
examples can be generalized by considering irrational forms of the signature (2, 1)
or (2, 2) which are extremely well approximated by split (over Q) rational forms.
As Theorem 12 below shows, this generalization is essentially the only method of
constructing such forms in the (2, 2) case.

Fix a norm ‖ · ‖ on the space O(2, 2) of quadratic forms of the signature (2, 2).
We say that a quadratic form Q ∈ O(2, 2) is extremely well approximable by split
rational forms, to be abbreviated as EWAS, if for any N > 0, there exist a split
rational form Q′ and a real number λ > 2 such that ‖λQ − Q′‖ ≤ λ−N . It is
clear that if the ratio of two nonzero coefficients of Q is Diophantine, then Q is
not EWAS; hence the set of EWAS forms has Hausdorff dimension zero as a subset
of O(2, 2). (A real number α is called Diophantine if there exist N > 0 such
that |qx − p| > q−N for any integers p and q, |q| > 2. All algebraic numbers are
Diophantine.) In [EMM2], A.Eskin, S.Mozes and the author proved the following:

Theorem 12. The asymptotic formula (*) in Theorem 7 holds if Q ∈ O(2, 2) is

not EWAS and 0 /∈ (a, b).

Remarks. (i) If a form Q ∈ O(2, 2) has a rational 2-dimensional isotropic subspace
L, then L ∩ TΩ contains of the order of T 2 integral points x for which Q(x) = 0,
hence NQ,Ω(−ε, ε) ≥ cT 2, independently of the choice of ε. This is exactly the
reason why we assumed in Theorem 12 that 0 /∈ (a, b). Let us also note that an ir-
rational quadratic form of the signature (2, 2) may have at most 4 rational isotropic
subspaces and that ifQ is such a form, then the number of points in the set {x ∈ Zn :
Q(x) = 0, ‖x‖ < T, x is not contained in an isotropic (with respect to Q) subspace}
grows not faster than a linear function of T .

(ii) Thought it seems that an analogue of Theorem 12 should be true for forms
of the signature (2, 1), it is not clear how the method of the proof of Theorem 12
can be extended to the (2, 1) case.

It was noted by Sarnak that the quantitative version of the Oppenheim conjecture
in the (2, 2) case is related to the study of eigenvalue spacings of flat 2-tori. Let
Δ be a lattice in R2 and let M = R2/Δ denote the associated flat torus. The
eigenvalues of the Laplacian on M are the values of the binary quadratic form
q(m, n) = 4π2‖mv1 + nv2‖2, where {v1, v2} is a Z-basis for the dual lattices Δ∗.
We label these eigenvalues (with multiplicity) by

0 = λ0(M) < λ1(M) ≤ λ2(M) · · ·
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It is easy to see that Weyl’s law holds, i.e.

|{j : λj(M) ≤ T}| ∼ cMT

where cM = (areaM)/4π. We are interested in the so-called pair correlation

RM(a, b, T ) =
|{j �= k : λj(M) ≤ T, λk(M) ≤ T, a ≤ λj(M) − λk(M) ≤ b}|

T

Theorem 13. Let M be a flat 2-torus rescaled so that one of the coefficients in the

associated binary quadratic form q is 1. Let A1, A2 denote the two other coefficients

of q. Suppose that there exists N > 0 such that for all triples of integers (p1, p2, r)
with r ≥ 2,

max
i=1,2

|Ai − pi

q
| > 1

qN
.

Then, for any interval (a, b) which does not contain 0,

(∗ .) lim
T→∞

RM(a, b, T ) = c2M(b− a)

In particular, if one of the Ai is Diophantine, then (*) holds, and therefore the set

of (A1, A2) ⊂ R2 for which (*) does not hold has zero Hausdorff dimension.

This theorem is proved by applying Theorem 12 to the form Q(m1, n1, m2, n2) =
q(m1, n1)− q(m2, n2). It is not difficult to give the asymptotics of RM(a, b, T ) also
in the case when 0 ∈ (a, b) (under the same conditions on q). For this we have
to study the multiplicity of eigenvalues λi(M). This can be easily done if q is
irrational, but it requires consideration of several cases. Note also that, for all
i > 0, this multiplicity is at least 2.

The equality (*) in Theorem 13 is exactly what is predicted by the random num-
ber (Poisson) model. Sarnak showed that this equality holds on a set of full measure
in the space of tori. But his method does not give any explicit example of such
a torus. Let us also note that Theorem 13 is related to the Berry-Tabor conjec-
ture that the distribution of the local spacings between eigenvalues of a completely
integrable Hamiltonian is Poisson. Another result related to the Berry-Tabor con-
jecture is the following theorem, due to J.Marklof (see [Mark]), about the pair
correlation of values of inhomogeneous quadratic forms.

Theorem 14. Let 0 ≤ λ1 ≤ λ2 ≤ . . . be the infinite sequence given by the values

of

(m− α)2 + (n− β)2

at lattice points (m, n) ∈ Z2 for fixed α, β ∈ [0, 1]. For a given interval [a, b] ⊂ R,

let

R2[a, b](λ) =
|{j �= k : λj ≤ λ, λk ≤ λ, a ≤ λj − λk ≤ b}|

πλ
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denote the pair correlation function of this sequence. Suppose α, β, 1 are linearly

independent over Q, and assume α is Diophantine. Then

lim
λ→∞

R2[a, b](λ) = π(b− a).

The proof of Theorem 14 in [Mark] uses theta sums and some results on the
equidistribution of translates of unipotent orbits.

§3. Counting lattice points on homogeneous varieties.

In this section we will mostly give an overview of the paper [EMS] by A.Eskin,
S.Mozes and N.Shah published in 1996. About more recent results, we refer to a
comprehensive survey [O] by Hee Oh.

Let V be a real algebraic subvariety of Rn defined over Q, and let G be a
reductive real algebraic subgroup of GL(n,R) also defined over Q. Suppose that
V is invariant under G and that G acts transitively on V (or, more precisely, the
complexification of G acts transitively on the complexification of V ). Let ‖·‖ denote
a Euclidean norm Rn. Let BT denote the ball of radius T in Rn around the origin,
and define

N (T, V ) = |V ∩ BT ∩ Zn|,

the number of integral points in V with norm less than T . We are interested in the
asymptotics of N (T, V ) as T → ∞.

Let Γ denote G(Z)
def
= {g ∈ G : gZn = Zn}. By a theorem of Borel and Harish-

Chandra, V (Z) is a union of finitely many Γ-orbits. Therefore to compute the
asymptotics of N (T, V ), it is enough to consider each Γ-orbit, say O, separately,
and compute the asymptotics of

N (T, V,O) = |O ∩ BT |.

Of course, after that there is the problem, often non-trivial, of the summation over
the set of Γ-orbits. This is essentially a problem from the theory of algebraic and
arithmetic groups and is of completely different type than the computation of the
asymptotics of N (T, V,O).

Suppose that O = Γv0 for some v0 ∈ V (Z). Then the stabilizer
H = {g ∈ G : gv0 = v0} is a reductive Q-subgroup, and V ∼= G/H . Define

RT = {gH ∈ G/H : gv0 ∈ BT},

the pullback of the ball BT to G/H .
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Assume that H0 and H0 does not admit nontrivial Q-characters, where G0

(resp. H0) denotes the connected component of identity in G (resp. in H). Then
by a theorem of Borel and Harish-Chandra, G/Γ admits a G-invariant (Borel)
probability measure, say μG, and H/(Γ ∩ H) admits an H-invariant probability
measure, say μH . We can consider H(Γ∩H) as a (closed) subset of G/Γ; then μH

can be treated as a measure on G/Γ supported on H/(Γ∩H). Let λG/H denote the
(unique) G-invariant measure on G/H induced by the normalization of the Haar
measures on G and H . One of the main results in [EMS] is the following:

Theorem 15. Suppose that H0 is a maximal proper connected Q-subgroup of G.

Then asymptotically as T → ∞,

(∗) N (T, V,O) ∼ λG/H(RT ).

Example. Let p(λ) be a monic polynomial of degree n ≥ 2 with integer coeffi-
cients and irreducible over Q. Let Mn(Z) denote the set of n× n integer matrices,
and put

Vp(Z) = {A ∈Mn(Z) : det(λI − A) = p(λ)}.

Thus Vp(Z) is the set of integer matrices with characteristic polynomial p(λ). Con-

sider the norm on n× n matrices given by ‖(xij)‖ =
√∑

ij x
2
ij .

Theorem 16. Let N (T, Vp) denote the number of points on Vp(Z) with norm less

than T . Then asymptotically as T → ∞,

N (T, Vp) ∼ cpT
n(n−1)/2,

where cp > 0 is an explicitly computable constant.

In the above example, the group G is SL(n,R) which acts on the space M(n,R)
of n × n matrices by conjugation. In the case when p(λ) splits over R, and for a
root α of p(λ) the ring of algebraic integers in Q(α) is Z[α], the following formula
for cp is given in [EMS]:

cp =
2n−1hRωn

√
D ·

n∏
k=2

Λ(k/2)
,

where h is the class number of Z[α], R is the regulator of Q(α), D is the discriminant
of p(λ), ωn is the volume of the unit ball in Rn(n−1)/2, and Λ(s) = π−sΓ(s)ζ(2s).

For the case when V is affine symmetric, the asymptotic formula (*) in Theorem
15 had been earlier proved by Duke, Rudnik and Sarnak using harmonic analy-
sis; subsequently a simpler proof using the mixing property of (generalizations of)
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the geodesic flow was given by Eskin and McMullen - a similar ‘mixing property’
approach had been also used in 1970 in the author’s thesis to obtain asymptotic
formulas for the number of closed geodesics in Mn and for the number of points
from π−1(x) in balls of large radius in M̃n, where Mn is a compact manifold of
a negative curvature, x ∈ Mn, M̃n is the universal covering space of Mn and
π : M̃n →Mn is the natural projection.

The proof of Theorem 15 in [EMS] is based on the equidistribution properties of
the translates of the measure μH . It turns out that if {gi} ⊂ G and the sequence
{giH} is divergent (that is, it has no divergent subsequences) in G/H , then the
sequence {giμH} gets equidistributed with respect to μG as i → ∞ (that is giμH →
μG weakly).

§4. Diophantine approximation on manifolds

In this section we present an approach to metric Diophantine approximation
on manifolds which uses the correspondence between approximation properties of
numbers and orbit properties of certain homogeneous flows. We start by recalling
several basic facts from the theory of simultaneous Diophantine approximation. For
x,y ∈ Rn, we let

x · y =
n∑

i=1

xiyi, ‖x‖ = max
1≤i≤n

|xi|,

∏
(x) =

n∏
i=1

|xi| and
∏

(x)+ =
n∏

i=1

|xi|+,

where |x|+ stands for max(|x|, 1). One says that a vector y ∈ Rn is very well
approximable, to be abbreviated as VWA, if the following two equivalent conditions
are satisfied:

(V1) for some ε > 0 there are infinitely many q ∈ Zn such that

|q · y + p| · ‖q‖n ≤ ‖q‖−nε

for some p ∈ Z.
(V2) for some ε > 0 there are infinitely many q ∈ Z such that

‖qy + p‖n · |q| ≤ |q|−ε

for some p ∈ Zn.
A vector y ∈ Rn is called very well multiplicatively approximable, to be abbre-

viated as VWMA, if the following two equivalent conditions are satisfied:
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(VM1) for some ε > 0 there are infinitely many q ∈ Zn such that

|q · y + p| ·
∏

(q)+ ≤
∏

(q)−ε
+

for some p ∈ Z;
(VM2) for some ε > 0 there are infinitely many q ∈ Z such that

∏
(qy + p) · |q| ≤ |q|−ε

for some p ∈ Zn.

Remark. It is clear that if a vector is VWA, then it is also VWMA. The equivalence
of (V1) and (V2) (resp. the equivalence of (VM1) and (VM2)) follows from (resp.
from a modification of) Khintchine’s transference principle.

It easily follows from (the simple part of) the Borel-Cantelli lemma that almost
every y ∈ Rn is not VWA. A more difficult question arises if one considers almost
all points y on a submanifold M of Rn (in the sense of the natural measure class
on M). In 1932, K.Mahler conjectured that almost all points on the curve

(∗) M = {(x, x2, . . . , xn)} : x ∈ R}

are not very well approximable. In 1964, V.Sprindžuk proved this conjecture using
what is later become known as “the method of essential and inessential domains”.
According to Sprindžuk’s terminology, a submanifold M ⊂ Rn is called extremal
(resp. strongly extremal) if almost all y ∈M are not VWA (resp. are not VWMA).
Clearly any strongly extremal manifold is extremal. In his book on transcendental
number theory published in 1975, A.Baker stated a conjecture about the strong
extremality of the curve (*) from the Mahler conjecture. Later it was generalized
by Sprindžuk in a survey paper published in 1980:

Conjecture. Let f = (f1, . . . , fn) be an n-tuple of real analytic functions on a

domain V in Rd which together with 1 are linearly independent over R. Then for

almost all x ∈ V the vector f(x) is not VWMA.

Remark.. In the same survey, Sprindžuk stated also a weaker version of this con-
jecture where VWMA is replaced by VWA.

The just stated conjecture was proved in 1997 by D.Kleinbock and the author
(see [KM]) not only for analytic but also for smooth functions. To state our main
result, we have to introduce the following definition: if V is an open subset of
Rd and 
 ≤ k, an n-tuple f = (f1, . . . , fn) of Ck functions V → Rd is called 
-
nondegenerate at x ∈ V if the space Rn is spanned by partial derivatives of f at



16 GREGORY MARGULIS

x of order up to 
. The n-tuple f is nondegenerate at x if it is 
-nondegenerate
at x for some 
. We say that f : V → Rn is nondegenerate if it is nondegenerate
at almost every point of V . Note that if the functions f1, . . . , fn are analytic and
V is connected, the nondegeneracy of f is equivalent to the linear independence of
1, f1, . . . , fn over R. The main result in [KM] is the following:

Theorem 17. Let f : V → Rn be a nondegenerate Ck map of an open subset V

of Rd into Rn. Then f(x) is not VWMA (hence not VWA either) for almost every

point x ∈ Rn.

If M ⊂ Rn is a d-dimensional Ck submanifold, we say that M is nondegenerate
at y ∈ M if any (equivalently some) Ck diffeomorphism f between an open subset
V of Rd and a neighborhood of y in M is nondegenerate at f−1(y). We say that
M is nondegenerate if it is nondegenerate at almost every point of M (in the sense
of the natural measure class on M). A connected analytic submanifold M ⊂ Rn is
nondegenerate if and only if it is not contained in any hyperplane in Rn. Now we
can reformulate Theorem 17.

Theorem 17′. Let M be a nondegenerate Ck submanifold of Rn. Then almost

all points of M are not VWMA (hence not VWA either).

The proof of Theorem 17 (or Theorem 17′) is based in [KM] on a method which
uses the correspondence, originally introduced by S.G.Dani in mid-1980’s, between
approximation properties of vectors y = (y1, . . . , yn) ∈ Rn and the behavior of
certain orbits in the space of unimodular lattices in Rn. More precisely, let

Uy =

⎛
⎜⎜⎜⎝

1 y1 y2 . . . yn

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 1

⎞
⎟⎟⎟⎠ ∈ SL(n+ 1,R).

Thus Uy is a unipotent matrix with all rows, except the first one, the same as in
the identity matrix. Note

Uy

(
p
q

)
=

(
q · y+p

q

)
, p ∈ Z, q ∈ Zn.

We also have to introduce some diagonal matrices. Let

gs =

⎛
⎜⎝
ens 0 . . . 0
0 e−s . . . 0
. . . . . . . . . . . .
0 0 . . . e−s

⎞
⎟⎠ ∈ SL(n+ 1,R), s ≥ 0
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and

gt =

⎛
⎜⎝
et 0 . . . 0
0 e−t1 . . . 0
. . . . . . . . . . . .
0 0 . . . e−tn

⎞
⎟⎠ ∈ SL(n+ 1,R),

t = (t1, . . . , tn), ti ≥ 0, t =
n∑

i=1

ti;

(it is clear that gs = g(s,...s)). Next define a function δ on the space of lattices by

δ(Δ)
def
= inf

v∈Δ\{0}
‖v‖, where ‖(v1, . . . , vn+1)‖ = max{|vi| : 1 ≤ i ≤ n+ 1}.

Note the ratio of 1 + log(1/δ(Δ)) and 1 + dist(Δ,Zn+1) is bounded between two
positive constants for any metric “dist” on the space SL(n+ 1,R)/SL(n+ 1,Z) of
unimodular lattices Δ in Rn+1 induced by a right invariant Riemannian metric on
SL(n+ 1,R). It is easy to check that

δ(gtUyZn+1) =

= inf
(p,q)∈Zn+1\{0}

min{et(q · y + p), e−t1q1, . . . , e
−tnqn},

where q = (q1, . . . , qn). From this, one an easily get that a vector y ∈ Rn is VWA
(resp. VWMA) if and only if there exists γ > 0 and infinitely many t ∈ Z+ (resp.
infinitely many t ∈ Zn

+) such that

(∗∗) δ(gtUyZn+1) ≤ e−γt(resp. δ(gtUyZn+1) ≤ e−γ‖t‖)

in other words, y is not VWA (resp. not VWMA) if and only if

dist(gtUyZn+1,Zn+1) (resp. dist(gtUyZn+1,Zn+1))

as a function of t ∈ Z+ (resp. as a function of t ∈ Zn
+), grows slower than any

linear function. Thus Theorem 17 is equivalent to the statement that for almost all
x ∈ V and any γ > 0, there are at most finitely many t ∈ Zn

+ such that (**) holds
for y = f(x). In view of the Borel-Cantelli lemma, this statement can be proved
by estimating the measure of the sets

Et
def
= {x ∈ V : δ(gtUf(x)Zn+1) ≤ e−γ‖t‖}

for any given t ∈ Zn
+, so that ∑

t∈Zn
+

|Et| < ∞,

where | · | stands for the Lebesgue measure. Such estimates are easily deduced in
[KM] from the following:
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Theorem 18. Let f : V → Rn be a Ck map of an open subset V of Rd into Rn,

and let x0 ∈ V be such that Rn is spanned by partial derivatives of f at x0 of order

up to k. Then there exists a ball B ⊂ U centered at x0, and positive constants D

and ρ such that for any t ∈ Rn
+ and 0 ≤ ε ≤ ρ one has

|{x ∈ B : δ(gtUf(x)Zn+1) ≤ ε}| ≤ D(
ε

ρ
)1/dk|B|.

Theorem 18 is deduced in [KM] from a more general theorem (Theorem 22 in
§5).

There are also other applications of the homogeneous space approach to Dio-
phantine approximation on manifolds, in particular to Khintchine-type theorems
on manifolds (Bernik, Kleinbock and the author) and to Diophantine properties
of almost all points with respect to so called “friendly measures” (D.Kleinbock,
E.Lindenstrauss and Barak Weiss). Let us describe in more details one more
application.

There is the following multiplicative form of Dirichlet’s theorem on simultaneous
Diophantine approximation as formulated by Minkowski:

Given y = (y1, . . . , yn) ∈ Rn and positive integers N1, . . .Nn, there exist integers
q1, . . . , qn and p, not all zero, such that

|q1y1 + . . .+ qnyn − p| ≤ (N1, . . . , Nn)−1, |qi| < N (1 ≤ i ≤ n).

Following the terminology introduced by Davenport and Schmidt, we say that given
any infinite set N ⊂ Zn

+, the Dirichlet’s theorem (DT) cannot be improved along
N for y = (y1, . . . , yn) ∈ Rn if, for every 0 < μ < 1, there are infinitely many
(N1, . . . , Nn) ∈ N such that the following system of inequalities insoluble for inte-
gers q1, . . . , qn and p, not all zero:

|q1y1 + . . .+ qnyn − p| ≤ μ(N1 . . .Nn)−1,

|qi| < μNi (1 ≤ i ≤ n).

In the late sixties, Davenport and Schmidt showed that for N = {(N, . . . , N) ∈
Zn : N ∈ Z+}, the Dirichlet’s theorem cannot be improved along N for almost
all points of Rn. The same conclusion was obtained recently by D.Kleinbock and
Barak Weiss for sets N ⊂ Zn with infinite projection on each coordinate. In the
preprint [S], N.Shah proves the following:

Theorem 19. Let N be an infinite subset of Zn
+. Then for any analytic curve

f : [a, b] → Rn whose image is not contained in a proper affine subspace, the

Dirichlet’s theorem cannot be improved along N for f(x) for almost every x ∈ [a, b].
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The proof of Theorem 19 in [S] is based on the asymptotic equidistribution of
the curves

{gtUf(x)Zn+1 : a ≤ x ≤ b, t ∈ N}
in the space Ωn+1 of unimodular lattices in Rn+1; these curves are obviously the
translations by gt, t ∈ N , of the curve

{Uf(x)Zn+1 : a ≤ x ≤ b}.

§5. Translates of submanifolds and unipotent flows

Let G be a connected Lie group, Γ a discrete subgroup of G and Y a (smooth)
submanifold of G/Γ. In previous sections, in connection with problems in Diophan-
tine approximation and number theory, we essentially tried to answer in some cases
the following general question:

(Q) What is the distribution of gY in G/Γ when g tends to infinity in G?
This question can be divided into two subquestions:
(Q1) What is the behavior of gY “near infinity” of G/Γ?
(Q2) What is the distribution of gY in the “bounded part” of G/Γ?
In §2 and implicitly in the part of §1 related to quadratic forms, G,Γ, g and Y

were, respectively, SL(n,R), SL(n,Z), at andKΔ, where Δ ∈ Ωn
∼= SL(n,R)/SL(n,Z)

and K is a maximal compact subgroup of SO(p, q). In §3, G,Γ and Y were, re-
spectively a real reductive Q-subgroup of GL(n,R), G(Z) and H/(Γ ∩H), where
H is a reductive Q-subgroup of G. In §4 we had the following:

G = SL(n+ 1,R),Γ = SL(n+ 1,Z), g = gt, and

Y = {Uf(x)Zn+1 : x ∈ V }.

Theorems 1-3 are related only to the question (Q2), and Theorem 9 is related only
to the question (Q1). But other statements about quadratic forms and orbits of
orthogonal groups (Theorem 4-7, 10 and 12) are related to both questions (Q1) and
(Q2). Theorems 15 and 16 in §3 are also related to both questions (Q1) and (Q2).
In §4, Theorems 17 and 18 are related only to the question (Q1), and Theorem 19
is related to both questions (Q1) and (Q2).

Let y ∈ Y and let W be a ‘small” neighborhood of y in Y . Then for any w ∈W

there exists an element h ∈ G that is “close” to 1, such that w = hy. It is clear that
gw = (ghg−1)gy and that Ad(ghg−1) has the same eigenvalues as Ad h where Ad
denotes the adjoint representation of G. Hence gW consists of translates of gy by
“almost” Ad-unipotent elements (x ∈ G is called Ad-unipotent if Adx is unipotent;
that is, after all eigenvalues of Adx are equal to 1). This is exactly the reason why
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results and methods from the theory of unipotent flows on homogeneous spaces
play such an important role in the study of the distribution properties of translates
of submanifolds. We will now state some of these results.

Theorem 20. Let G be a connected Lie group, Γ a lattice (i.e. a discrete subgroup

with finite covolume) in G, F a compact subset of G/Γ and ε > 0. Then there exists

a compact subset K ofG/Γ such that for any Ad-unipotent one-parameter subgroup

{u(t)} of G, any x ∈ F , and T ≥ 0,

|{t ∈ [0, T ] : u(t)x ∈ K}| ≥ (1− ε)T.

This theorem is essentially due to S.G.Dani. He proved it in the mid-eighties,
separately for semisimple groups G of R-rank 1 and for arithmetic lattices. The
general case can be easily reduced to these two cases using the arithmeticity
theorem. In the case of arithmetic lattices, Theorem 20 can be considered as the
quantitative version of the following:

Theorem 21. Let Ωn
∼= SL(n,R)/SL(n,Z) denote the space of unimodular lat-

tices in Rn, and let {u(t)} be a unipotent one-parameter subgroup of SL(n,R).
Then, for any lattice Δ ∈ Ωn, u(t)Δ does not tend to infinity in Ωn as t → +∞
or, equivalently,

lim sup
t→+∞

δ(u(t)Δ) → 0,

where the function δ on Ωn is defined in §4.

Theorem 21 in the case n = 2 and Theorem 20 in the case G/Γ = Ω2 can be
easily proved. The proof is based on the following two facts:

(i) For every r > 1 one can find ε = ε(r, n) > 0 such that if v ∈ Rn, v �= 0, a > 0
and

‖u(t)v‖ < ε for all t ∈ [−a, a]
then

‖u(t)v‖ < 1 for all t ∈ [−ra, ra].
(ii) If n = 2, Δ ∈ Ω2, v1, v2 ∈ Λ − {0} and ‖vi‖ < 1

2
, i = 1, 2 then v1 and v2 are

proportional.
But for n > 2, the proof of Theorem 21 is much more complicated because an

analog of (ii) is no longer true for n > 2. The main idea of the proof for n > 2 is
to study {u(t)}-orbits not only of (primitive) vectors v ∈ Δ but also of primitive
subgroups of Δ. (We say that a subgroup Λ of Δ is primitive (in Δ) if Λ = ΛR ∩Δ
where ΛR denotes the linear span of Δ.) Let us also note that the statement (i) is
related to the polynomial behavior or polynomial divergence of unipotent flows.
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The proof of Theorem 20 for arithmetic lattices, given by S.G.Dani, is similar
to the proof of Theorem 21. Further modifications and refinements of these proofs
eventually lead to a general Theorem 22 below. Before stating this theorem, we
have to introduce some notation and terminology.

Let V be a subset of Rd and f a continuous function on V . We write
‖f‖B

def
= sup

x∈B
|f(x)| for a subset B of V . For positive numbers C and α, say that f

is (C, α)-good on V if for any open ball B ⊂ V and any ε > 0 one has

|{x ∈ B : |f(x)| < ε}| ≤ C ·
(

ε

‖f‖B

)α

· |B|.

A model example of good functions are polynomials: for any k ∈ Z+, any polyno-
mial f ∈ R[x] of degree not greater than k is (2k(k + 1)1/k, 1/k)-good on R.

For a discrete subgroup Λ of Rn, we let j = dim(ΛR) and say that w ∈ ∧j(Rn)
represents Λ if j > 0 and w = v1 ∧ . . .∧ vj where v1, . . . , vj is a basis of Λ. Clearly
the element representing Λ is defined up to a sign. Therefore it makes sense to
define the norm ‖Λ‖ def

= ‖w‖ where w represents Λ.
Let us denote by P (Δ) the set of all nonzero primitive subgroups of Δ ∈ Ωn.

Another piece of notation which we need is B(x, r) which will stand for the open
ball of radius r > 0 centerer at x.

Theorem 22. (see [KM]) Let d, n ∈ Z+, C, α > 0, 0 < ρ < 1/n and let a ball

B = B(x0, r0) ⊂ Rd and a map h : B̃ → GL(n,R) be given, where B̃ stands for

B(x0, 3nr0). For any Λ ∈ P (Zn), denote by ψΛ the function ψΛ(x)
def
= ‖h(x)Λ‖,

x ∈ B̃. Assume that for any Λ ∈ P (Zn),
(i) ψΛ is (C, α)-good on B̃;

(ii) ‖ψΛ‖B ≥ ρ.

Then for any positive ε ≤ ρ one has

|{x ∈ B : δ(h(x)Zn) < ε‖ ≤ R

(
ε

ρ

)α

|B|,

where R = nC(3dNd)n and Nd is an integer (from Besicovitch’s Covering Theorem)

depending only on d.

Remarks. (a) In [KM], we consider norms on the exterior products Λj(Rn) which
are different from Euclidean norms. Using those norms it is easier to check (i) in
the formulation of Theorem 22.

(b) Theorem 18 is deduced in [KM] from Theorem 22 using some standard facts
from the geometry of numbers and some standard estimates for differentiable func-
tions.
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In a 1981 paper, S.G.Dani formulated two conjectures. One is Raghunathan’s
conjecture which states that if G is a connected Lie group, Γ a lattice in G, and
U an Ad-unipotent subgroup of G, then for any x ∈ G/Γ there exists a closed
connected subgroup L = L(x) containing U such that the closure of the orbit
Ux coincides with Lx. The second conjecture is due to Dani himself and may be
stated (in a slightly stronger form) as follows. If G,Γ and U are as above and μ

is a finite Borel U -ergodic U -invariant measure on G/Γ, then there exists a closed
subgroup F of G such that μ is F -invariant and supp μ = Fx for some x ∈ G/Γ
(a measure for which this condition holds is called algebraic). In the same paper,
Dani proved his conjecture in the case where G is reductive and U is a maximal
horospherical subgroup of G. In another paper, published in 1986, Dani proved
Raghunathan’s conjecture in the case where G is reductive and U is an arbitrary
horospherical subgroup of G. These results of S.G.Dani generalize earlier results by
Hedlund, Furstenberg, Bowen, Veech, Ellis and Perrizo. In two papers, published in
1987 and 1989, A.N.Starkov proved Raghunathan’s conjecture for solvable G. We
remark that the proof given by Dani in the just mentioned 1986 paper is restricted
to horospherical U and the proof given by Starkov cannot be applied if G is not
solvable.

The first result on Raghunathan’s conjecture for nonhorospherical subgroups of
semisimple groups was obtained in 1989 by S.G. Dani and the author. We proved
the conjecture in the case where G = SL(3,R) and U = {u(t)} is a one-parameter
unipotent subgroup of G such that u(t)− 1 has rank 2 for all t �= 0. Though this is
only a very special case, our proof together with the methods developed to prove
Theorems 2 and 5 suggests an approach for proving the Raghunathan conjecture
in general. In particular, it was used by N.Shah about a year ago, to prove the
S-arithmetic generalization of Raghunathan’s conjecture for the case where G is the

product
m∏

j=1

SL(2, Kj), 1 ≤ j ≤ m, where Kj is a local field of characteristic zero.

This approach is topological and is based on the technique which involves finding
orbits of larger subgroups inside closed sets invariant under unipotent subgroups by
studying the minimal invariant sets, and the limits of orbits of sequences of points
converging to a minimal invariant set.

A far reaching generalization of Theorems 2 and 5 and other abovementioned
results on orbit closures was obtained by M.Ratner in 1990 in the paper [R2] pub-
lished in 1991. She proved the following:

Theorem 23. Let G be a connected Lie group, Γ a lattice inG, and H a connected

subgroup of G that is generated by the Ad-unipotent one-parameter subgroups

contained in it. Then for any x ∈ G/Γ, there exists a closed connected subgroup
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L = L(x) containing H such that the closure of the orbit Hx coincides with Lx

and there is an L-invariant probability measure supported on Lx.

Theorem 23 settles (a generalization of) the Raghunathan conjecture. In [R2],
this theorem is deduced from a rather simple result about the countability of a cer-
tain (depending on Γ) set of subgroups of G and from the following equidistribution
theorem.

Theorem 24. If G and Γ are the same as in Theorem 23, {u(t)} is a one-parameter

Ad-unipotent subgroup ofG, and x ∈ G/Γ, then the orbit {u(t)x} is equidistributed

with respect to an algebraic probability measure μx on G/Γ in the sense that for

any bounded continuous function f on G/Γ,

1
T

T∫
0

f(u(t)x)dt→
∫

G/Γ

fdμx as T → ∞.

The proof of Theorem 24 in [R2] uses Theorem 25 below together with Theorem
20 and the just mentioned countability result.

Theorem 25. Let G and H be the same as in Theorem 23, and let Γ a discrete

subgroup of G (not necessarily a lattice). Then any finite H-ergodic H-invariant

measure μ on G/Γ is algebraic in the sense that there exists a closed subgroup F

of G such that μ is F -invariant and supp μ = Fx for some x ∈ G/Γ.

Theorem 25 settles (a generalization of) the Dani conjecture. It is a fundamental
result with numerous applications. Theorem 25 was proved by M.Ratner in a series
of three papers, the last of which is [R1]. The total length of Ratner’s proof is
more than 150 pages. We refer also to a shorter proof given by Tomanov and the
author in [MT] for the crucial case where G is algebraic. The proof in [MT] bears
a strong influence of Ratner’s argument but is substantially different in approach
and methods.

In order to prove Theorem 6, S.G.Dani and the author obtain in [DM] a refined
version of the equidistribution Theorem 24. The proof of this version in [DM]
uses, as in [R2], Theorems 20 and 25. The reduction to these theorems is based
in [DM] on a countability result and on a variation of the following assertion: Let
H be a connected closed subgroup of G such that H ∩ Γ is a lattice in H , and let
X(H,U) = {g ∈ G : Ug ⊂ gH}, where U = {u(t)} and G,Γ and {u(t)} are the
same as in Theorem 24. Then the subset X(H,U)/Γ of G/Γ is avoidable with respect
to {u(t)} in the following sense: for any compact subset C of (G/Γ)\X(H,U) and
any ε > 0 there exists a neighborhood Ψ of X(H,U) in G/Γ such that for any
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x ∈ C and t1 ≤ 0 ≤ t2, we have

|{t ∈ [t1, t2] : T tx ∈ Ψ}| ≤ ε(t2 − t1).

The proof of this assertion in [DM] is based on what is now called the “linearization”
technique.

Remarks. (i) The polynomial divergence of unipotent flows, mentioned in this sec-
tion (after Theorem 21), was one of the main motivations for M.S.Raghunathan
when he formulated his conjecture. He hoped that unipotent flows are likely to
have “manageable behavior” because of the slow divergence of orbits of unipotent
one-parameter subgroups (in contrast to the exponential divergence of orbits of
diagonalizable subgroups). It should also be noted that the polynomial divergence
plays a basic role in the theory of unipotent flows.

(ii) About S-arithmetic generalizations of theorems on unipotent flows, stated
in this section, see [MT] and [R3]. It should be noted that the study of these
S-arithmetic generalizations was inspired by a work of A.Borel and G.Prasad on
values of isotropic quadratic forms at S-integral points.
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