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ABSTRACT. Consider closed Riemannian manifolds with negative sectional curva­
ture. There are three natural dynamics associated with the Riemannian structure: 
the geodesic flow on the unit tangent bundle, the dynamics of the invariant foliations 
of the geodesic flow, and the Brownian motion on the universal cover of the manifold. 
These dynamics define global asymptotic objects such as growth rates or measures 
at infinity. For locally symmetric negatively curved spaces, these objects are easy 
to compute and to describe. In this paper, we survey some of their properties and 
relations in the general case. 

1 Measures at infinity 

Let (AI, g) be a closed Riemannian manifold with negative sectional curvature and 
let 7T : (M,g) —> (M,g) be the universal cover of M, endowed with the canonically 
lifted metric g. The space (M, g) is a simply connected Riemannian manifold with 
negative curvature; in particular, the space (AI,g) is a Hadamard manifold and 
the geometric boundary dM is defined as the space of ends of geodesies (see e.g. 
[BGS]). The geometric boundary dM is homeomorphic to a sphere. For any x in 
M write rx for the homeomorphism between the unit sphere SxAI_ja the tangent 
space at x and dM defined by associating to a unit vector v in SXAI the end rx(v) 
of the geodesic av starting at v. In this section are defined natural families of finite 
positive measures on the boundary indexed by x, x G M. 

(a) Lebesgue visibility measures. Let Â  denote the image measure under rx of 
the Lebesgue measure on the unit sphere SXAI. It follows from [A], [ASi] that for 
x and y in M, the measures Xx and Xy have the same negligible sets and that the 
density -^ admits a (Holder) continuous version on dM (the metric on dM will 
be recalled below). Write A for the common measure class of the \x,x G M. 

(b) Harmonic measures. Let A be the Laplace-Beltrami operator on C2-functions 
on AI, A = div grad. A function u on M is called harmonic if Au = 0. The 
Dirichlet problem is solvable on MUdAI ([An], [S]): let / be a continuous function 
on dAI; there is a unique harmonic function Uf on M such that for all £ in dM, 
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lim Uf(z) = /(£)• For any x in AI, the mapping / —> uj(x) defines a probability 

measure u)x on dM. The measure UJX is called the harmonie measure of the point 
x. For x and y in AI, the measures c^ and u)y have the same negligible sets and the 
density -^f- admits a Holder continuous version on dM called the Poisson kernel 
and denoted k(x,y, •) ([ASn], [Aa]). Write UJ for the common measure class of the 
ux,x G AI. 

(c) Margulis-Patterson measures. For two points (£, r]) in dAI, and x in A/, define 
the Gromov product (Ç, 77)x by: 

(£, 77)* = lim - (d(x, y) + d(z, z) - d(y, z)) 

z^ri 

(see e.g. [GH]). Set dx(Ç,rj) = exp— (£,rj)x and define balls, spherical Hausdorff 
measures, and spherical Hausdorff dimension as if dx was a distance on dAI (in 
fact, there is a> 0 so that d£ is a distance on dAI). Let H be the spherical 
Hausdorff dimension of dAI. The spherical i/-Hausdorff measure vx is positive 
and finite and the measure vx is called the Margulis-Patterson measure of the 
point x. For x, y in M, the measures vx and vy have the same negligible sets. 

Recall that for x in AI, £ in dAI, the Busemann function bx^ is a function 
on AI defined by 

bxAv) = } i m d(y:av(t)) - t , 

where av is the geodesic in AI starting at v = r~1^. Then the density -^- is given 
by 

^L(t)=exp-HbX£(y). 

Write v for the common measure class of the vx,x Ç. AI. The construction of this 
measure is essentially given in [M2]. The presentation and the properties given 
here are derived from [HI], [Ka3], and [L3]. 

(d) General properties. Let 7 be an isometry of AI. Then the action of 7 extends 
to dAI and to measures on dAI. By naturality for fi = A, UJ, or v. 

ß-yx = Ifßx • 

For ji = \,LJ, or v, define a positive Radon measure fi on SAI by setting 

/ 
dffi= I I / ^f(rx^)dfix(0 dvol (x) 

dM J 

for any continuous function / on SAI with compact support. The measure fi is 
invariant under the action of 7, and therefore defines a finite positive measure fi 
on the quotient space SAI. 
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In the case when M is a symmetric space of negative curvature, there is a 
compact group Kx of isometries of M that fixes x and acts transitively on dAI. Let 
rnx be the unique i^-invariant probability measure on dAI. It follows from the 
above invariance relation that if (Al.g) is locally symmetric there are constants 
a, b such that for all x in M 

a\x =u)x = bvx = mx . 

Conversely, assume that there is a constant a, b, or c such that one of the 
following equalities of measures holds for all x in M: 

aXx = UJX, bux = u)x or cXx = vx . 

Then the space (M,g) is locally symmetric. In order to prove this result, set 
for x in AI and £ in dAI : 

B(x,Ç) = Ay bXÂ (y)\y=x , 

and observe that cither hypothesis implies that B is constant ([L3], [Y]). A key 
result is that the function B is constant if and only if the space (M, g) is locally 
symmetric. This is immediate in dimension 2 and can be checked directly in di­
mension 3 (see e.g. [Kn]). In higher dimensions, the proof combines results from 
[FL], [BFL], and [BCG]. This result is used in the other characterizations of locally 
symmetric spaces that are given below. 

2 Geodesic flow 

The geodesic flow (0t)teR 1S a one-parameter group of diffeomorphisms of the unit 
tangent bundle SAI, defined as follows: for v in SAI, write {av(t),t G R} for the 
unit-speed geodesic starting at v. Then for any real t, 9tv is the speed vector of 
the geodesic a at av(t). A flot (Ot)teR *s called Anosov if there exist a metric || || 
on TSAI, numbers C > 0 and \ < 1? a n d a Whitney decomposition of TSM as 
gss 0 ßuu 0 jix, where X is the vector field generating the flow and for v in 
Ess,t > 0, \\D0tv\\ < Cx'IMI, for v in Euu,t > 0, ||Dfl-ft;|| < C**||v||. 

Because of negative curvature, the geodesic flow is Anosov ([A]). 

(a) Topological entropy. The number H is the topological entropy of the geodesic 
flow ([B]). There is a function c on M such that, uniformly on AI, 

lim exp(-HR) vol B(x,R) = c(nx), 

where B(x,R) is the ball of radius R about x in (Al.g) and vol B(x,R) its Rie­
mannian volume ([Ml]). Because c(itx) is proportional to vx(dAI), the function c 
is C°°. The function c is in general not constant ([Kn]). 
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(b) Metric entropy. The measure Ä is the Liouville measure; it is finite and 
invariant under the geodesic flow. Write h\ for the Kolmogorov-Sinai entropy of 
the system 

{SM-jàiis'):hi=iM (sœ[ASil)' 
From [LY] it follows that h\ is the Hausdorff dimension of the A measure class on 
dM, i.e. 

hx = inf {Hausdorff dimension (A) : A C dAI, X(A) > 0} . 

From the variational principle ([BR]) it follows that h\ < H with equality if 
and only if the measure classes A and v coincide. In dimension 2, h\ = H if and 
only if the curvature is constant ([KI]). In higher dimensions, the entropy rigidity 
problem is whether h\ = H if and only if the space (AI, g) is locally symmetric. 

(c) Regularity of the stable direction. In general, the distribution Es = Ess © 
KX is only Holder continuous. If the distribution is C2 , then h\ = H ([H5]). If 
the distribution is Cx, then the space (AI,g) is locally symmetric (this follows 
again from [BFL] and [BCG]). The properties are more precise in the case of 
surfaces: the distribution Es in C1 ([Ho]), even C1+A* ([HK]). If the distribution 
is C1+°(s ' l logsl), then it is Cx ([HK]) and the curvature is constant ([Gh]). This 
discussion is a particular case of the analogous discussion for general Anosov flows 
(see [Gh], [BFL], [H4], and [¥)). 

3 Brownian motion on M 

Recall that A is the Laplace-Beltrami operator on AI and write p(t,x,y) for 
the fundamental solution of the equation ^ = Au. The properties below reflect 
asymptotic properties of the Brownian motion on AI. 

(a) Growth rates. There is a positive number £ such that, for all x in AI, 

£ = lim - / d(x,y)p(t,x,y)d\o\ (y) 
t-*00 * JM 

(see [Gu]) and £ is given by £ = j,g?v/x ([Kal]). There is another positive number 

h such that for all x in AI. 

h = lim - - / p(t, .x, y) log p(t, x, y) dvol (y) 
f^x * JM 

([Kal]). Finally denote 6 the spectral gap of A: 

S = inf - J 7 A / r f v o l 
fecUÂi) ÏPdvol 
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(b) Relations. The following inequalities hold: 

(1) h < £H with equality if and only if the measure classes u and v coincide 
([L2]), 

(2) £2 < h with equality if and only if the space (AI, g) is locally symmetric 
([Kal]), and 

(3) 4(5 < h with equality if and onlv if the space (AI. g) is locally symmetric 
(M). 

Observe that other sharp inequalities can be directly derived from the above three: 

£ < H, h< H2, or 46 < H2 . 

Let m be the only 0-invariant probability measure on SM such that, if m 
denotes the isometry^invariant extension of m to SAI, the projection of rn by 
r = {TX, x G M} on dM belongs to the o;-class ([L2], see also [H2], [Ka3]). Then h/£ 
is the Kolmogorov-Sinai entropy of the system (SAI, rn: 6\) and also the Hausdorff 
dimension of the measure class UJ. The first relation follows from the variational 
principle for the geodesic flow. The proof of the other two relations is based on an 
integral formula satisfied by the measure Q. 

(c) Measure rigidity. The question again arises as to whether measure classes at 
infinity can coincide with UJ only when the space (AI,g) is locally symmetric. In 
dimension 2, the curvature is constant if and only if the measure classes UJ and A 
coincide ([K2], [Ll]) or if and only if the measure classes UJ and v coincide ([L3], 
[H3]). Observe that this problem makes sense for other objects such as graphs. 
There are examples of finite graphs that are neither homogeneous nor bipartite, 
but such that some pair of natural measures at infinity has the same negligible 
sets [Ls]. 

4 Invariant foliations 

Recall that the distribution Ess is continuous in TSAI and that it admits integral 
manifolds WHS defined by 

Wss(v) = {w: firn d(0tv,6tw)=0} 

(see [A]). 
The Wss form a continuous foliation with smooth leaves and there is a natural 

metric on the leaves, lifted from the metric g on M through the canonical projec­
tion. Let A s s be the Laplace-Beltrami operator along the leaves Wss. Then, for any 
continuous function / on SAI, which is C2 along the Wss leaves, J Ass f dv = 0. 

The measure v is — up to multiplication by a constant factor — the unique 
measure with that property (the proof of this uses results from [Ka2] and [BM]). 
The measure vjv(SM) can also be seen as the limit of averages on large spheres 

in SM ([Kn]). In particular H = LSK^ • 



1200 François Ledrappier 

(a) Stable foliation. The manifolds Ws given by Ws(v) = \J 9tW
ss(v) form a 

continuous foliation, with smooth leaves and with TW8 = Es. Consider again the 
metric on the leaves lifted from the metric g on AI, and let A s be the corresponding 
Laplace-Beltrami operator. The measure UJ is — up to multiplication by a constant 
factor — the unique measure on SAI satisfying J Asf dû = 0 for any continuous 
/ , which is C2 along the Ws leaves ([G]). 
_ For^a continuous function / on SAI write / for the continuous function on 
M x dAI given by 

f(x,t)=f-7T(x,T-1t). 

Then for t > 0, there is a function Qtf on SM such that: 

OTf (*,0 = Jp{t,x,y) f(y,0 dvol (y) . 

The operator Qt is the leafwise heat operator Qt = exp t As. 
There is a Holder norm | | on functions on SAI with the following property: 

there are C > 0 and \ < 1 s u c h that for a l l t > 0 any function / on SAI: 

Qtf-ïm 
w J vol M 

< c x* l/l 

([L5]). 
From this follow asymptotic properties of the Brownian motion on AI and a 

decomposition theorem for closed regular leafwise 1-forms ([L6]). As a consequence 
define for s G R the function ip(s) by 

ip(s) = lim - log max / p(t.x,y) ks(x,y.£) dvol (y) . 
t^oc t (x,0 J 

The function ip is convex and analytic in a neighborhood of 0. The space 
(M,g) is locally symmetric if and only if p(s) = as(s — 1) for some constant a (in 
fact a is then the common value of £2, H2, h, or 4Ä) or if and only if we have 

2ip'(0) + tp"(0)=0. 
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