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A
bstract ergodic theory is the study of
1-1 (invertible) measure-preserving
transformations T on a measure
space X of total measure 1 or a
one-parameter family of such trans-

formations Tt where Tt2(Tt1(x)) = Tt1+t2(x) (x ∈ X).
(We call the latter a flow.)

There has been a recent explosion of interest
in abstract ergodic theory, due mainly to its un-
expected applications to number theory. It may
therefore be of interest to revisit an early chapter in
its history.

I am going to tell the story1 of Bernoulli shifts,
the abstract version of coin tossing. A central piece
of this story is the existence of an abstract flow,
the Bernoulli flow, or Bt , which pastes together the
Bernoulli shifts.
Bt is the “most random abstract flow possible”.

A priori, this statement has no real meaning, and to
the extent that it does, one would expect a host of
competitors for “most random”. We will, however,
state several properties of Bt which, when taken to-
gether, can be interpreted as “Bt is the most random
abstract flow possible”, even though we do not give
a precise definition of “random”.2

Bt is the cause of all randomness in dynamical sys-
tems (for a precise statement, see “Positive Entropy
and Factors”).

There are classical dynamical systems, governed
by Newton’s Laws, that are the same as Bt at our level
of abstraction. We will discuss the concrete implica-
tions of this abstract equivalence and the relevance
to chaos theory.

Don Ornstein is emeritus professor of mathematics
at Stanford University. His email address is ornstein@math.
stanford.edu.
1We will also point out certain questions which at the time
were overlooked.
2See the section “Positive Entropy and Factors”.
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This paper is narrowly focused and is not a sur-
vey. In particular, I do not discuss the first deep
isomorphism theorem, which is due to Adler and
Weiss [AW67] (or the directions it initiated: Markov
partitions, finitary codings, etc.), even though it was
an inspiration for so much later work. Nor do I dis-
cuss the Keane-Smorodinsky finitary isomorphism
theorem for Bernoulli shifts.

The bibliography is very incomplete. One crite-
rion I used is that the title should give some idea
of the main result, so that reading the bibliography
will add to the picture described in the text.

Isomorphism

To pin down the objects we are talking about, we
need to say when two abstract transformations or
flows are the same or isomorphic.
(Tt , X) and (T̂t , X̂) are isomorphic if there is a 1-1

invertible measure-preserving map ψ from X to X̂
such that T̂t = ψ−1Ttψ. (We have the same definition
for transformations.)

For flows there is another weaker sense in which
two flows could be the same. We say that T̂t is “essen-
tially the same” as Tt if T̂t = Tct for some constant
c.

There Are Two Contexts In Which Abstract
Ergodic Theory Arose: Concrete or Classical
Dynamical Systems (Like the Time Evolution
of a Gas Confined to a Box) and Stationary
Processes
Classical Dynamical Systems

Here, we try to abstract-out the statistical properties
of the mechanism governing the time evolution. In
particular, we ignore events of probability zero.

The state or configuration of the system is rep-
resented by a point x in a smooth manifold M , the
phase space. Newton’s laws determine where x in M
will be at time t ; denote this by Tt(x).
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Figure 1. Sinai billiards: the motion of a billiard
ball on a frictionless table with convex obstacles.

There is a smooth invariant probability measure
µ with the same sets of measure 0 as Lebesgue
measure (Liouville’s theorem). µ(E) models the
probability that the state of the system is in E. We
need to introduce a probability structure, because
Newton’s laws do not respect the direction of time
(and can’t alone imply the increase of entropy or
keep a pond from ejecting a stone).

At the level of abstract ergodic theory, we regard
(M,µ) as an abstract measure space (X, µ) (i.e., we
ignore sets of measure 0 and the geometry of M).
We get back the geometry by a function that maps a
point in X to the corresponding point in M .

A good example is Sinai billiards. Here we fix a
speed, and the points in M are the position and
direction of motion of the ball. µ is 3-dimensional
Lebesgue measure. See Figure 1.

Stationary Processes

A stationary process is a sequence or a one-
parameter family of random variables, Xn or Xt ,
defined on the same measure space (Ω, µ). (Forω inΩ, Xn(ω) or Xt(ω) is a realization of the process.)

We define a transformation in Ω:

T{Xn} = {Xn+1} and Tt{Xt} = {Xt+t}.

Stationarity means that the joint distribution of
{X0, X1, . . . , Xn} is the same as the joint distribution
{Xk, X1+k, . . . , Xn+k} for all k, and the joint distribu-
tion of {Xt1 , . . . , Xtn} is the same as the joint distri-
bution of {Xt1+t , . . . , Xtn+t} for all t . This is the same
as saying that T (or Tt ) is measure preserving.

We get the Kolmogorov model for a stationary
process by starting with (T ,Ω, µ) or (Tt ,Ω, µ), and
a function F on Ω, F(ω) = X0(ω), {F(Tn(ω))}∞−∞
or {F(Tt(ω))}∞−∞ are the realizations we started
out with. We will denote this process by (T ,Ω, F) or
(Tt ,Ω, F), or by (T ,X, F) or (Tt , X, F).

Bernoulli Shifts

These are the transformations that come from inde-
pendent processes.

We will give an alternate description of how,
in this case, we go from a stationary process to a
measure-preserving transformation.

Let π be a set with k elements ei with probabili-
ties pi ,

∑k
i=1 pi = 1, and x in X is a doubly infinite

sequence of the elements in π . x is a realization of
the process. A cylinder set is the set of x where we
fix the ei at a finite set of coordinates (or times). Its
measure is the product of those pi . This extends to
a measure on X. T is the transformation that shifts
these sequences (the n coordinates of T(x) in the
n + 1 coordinate x). We will call the transformation
above B(p1, . . . , pk).

We get the model for the independent process by
a function F on X where F(x) is the zero component
of x. F(T i(x)) is a realization of the process.

We will now describe a continuous time analog
of the Bernoulli shifts. For simplicity, we will take
B( 1

2 ,
1
2 ).

The Coin Tossing Flow

We start with the Continuous Time Coin Tossing Pro-
cess. Pick t1 and t2 such that t1/t2 is irrational. Toss
a fair coin. If we get heads, output 0 for time t1. If
we get tails, output 1 for time t2. Toss again.

We can visualize the flow Tt that we get from the
above process as follows: Start with B( 1

2 ,
1
2 ), defined

on X. Tt is defined on a subset, Y , of X×R, pictured
below:

T

0 1

Figure 2. Coin Tossing Flow

A point x in the base flows straight up for time t1
(or t2) and returns to the base at B( 1

2 ,
1
2 )
(x).

Although this is a continuous time analog of a
Bernoulli shift, the connection is much deeper. For
example, the isomorphism theory will show that by
discretizing time, we can get B( 1

2 ,
1
2 ).

We can visualize the model for continuous time
coin tossing by a function, F , that labels the points
above 1 by 1 and those above 0 by 0. F(Tt(y)) are
the realization of our process.

The Kolmogorov point of view puts dynamical sys-
tems and stationary processes into the same mathe-
matical framework: a measure-preserving transfor-
mation or flow, together with a function that gives
the concrete structure.
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Entropy and Isomorphism
Our story of Bernoulli shifts begins with the long-
standing question: Are all Bernoulli shifts isomor-
phic?

Kolmogorov [Kol59] was able to show that not
all Bernoulli shifts were isomorphic by introduc-
ing an invariant, which he called “the entropy of
the transformation”. This revolutionized abstract
ergodic theory.

To define the entropy of a transformation, we
start with the Shannon entropy of a stationary
process with a finite (or countable) number of out-
puts. Define the entropy to be the infimum of the α
such that, given ε, there is an N(ε) and the number
of outputs of length n (n > N(ε)) is less than 2αn

after removing a subset of these outputs of measure
≤ ε.

The entropy of a transformation (T ,X) is the sup
of the entropies of the stationary process (T ,X, F)
that come from (T ,X).

Kolmogorov’s key result is that the entropy of a
Bernoulli shift is the same as the entropy of the in-
dependent, identically distributed process used to
define it. It is not hard to see that if the outputs of
this process have probability Pi , then the entropy of
this process is−

∑
Pi log Pi (where−

∑
Pi log Pi could

be finite or infinite).
After Kolmogorov, the problem became: Are all

Bernoulli shifts of the same entropy isomorphic? An
answer was given twelve years later.

Theorem ([Orn70b], [Orn70d]). Bernoulli shifts of the
same entropy are isomorphic.

Thus, when we go to the level of abstract ergodic
theory, we get a very simple picture.

Independent processes are the least predictable
and in this sense the most random possible, and
Bernoulli shifts are in this sense the most random
transformations.

The proof of the theorem above is the basis for
the stronger and deeper theorem below.

Bernoulli Isomorphism Theorem 1 ([Orn70b],
[Orn70d], [Orn70a], [Orn73b]). There exists an
abstract finite entropy flow, Bt , with the following
properties:

(a) If we discretize time at multiples of t0, then
for all t0 the resulting transformation, Bt0 , is
a Bernoulli shift of finite entropy.

(b) Every Bernoulli shift of finite entropy is iso-
morphic to Bt0 for some t0.

(c) Uniqueness. For any flow Tt , if for some t0
Tt0 is isomorphic to a finite entropy Bernoulli
shift, then Tt as a flow is isomorphic to Bct
for some constant c.

We also have an analogous Bernoulli flow, B∞t , of
infinite entropy.

Three consequences of the theorem above are:

1. Bernoulli shifts of the same entropy are iso-
morphic. (The entropy of the transformation
Tt0 is proportional to t0.)

2. We can complete our understanding of
Bernoulli shifts by representing them as the
discretizations of the Bernoulli flow, Bt , or
the time of one transformation of the Bct .
Thus, returning to Kolmogorov, even though
the Bernoulli shifts are not all isomorphic,
they are “essentially” the same in the sense
that they differ only by a rescaling of time.

3. A Bernoulli shift can be embedded in a flow
and in particular it has roots of all order (it
was not previously known that the Bernoulli
shift 1

2 ,
1
2 had a square root).

We can now return to some of the concrete systems
that gave birth to abstract ergodic theory

An Important Aspect of the Proof of the
Isomorphism Theorem Is Giving Criteria for
Proving Bernoulli
The criteria are somewhat technical and we post-
pone their description. We will start with two
applications of the Bernoulli criteria.

Theorem.3 The coin tossing flow and Sinai billiards
are both isomorphic to Bt .

This theorem links the two contexts in which ab-
stract ergodic theory arose.

It came as a surprise that continuous time coin
tossing and a classical dynamical system could be
the same as abstract flows.

The isomorphism between Sinai billiards and the
coin tossing flow implies that we can realize con-
tinuous time coin tossing by a fixed (nonrandom)
function on the phase space of Sinai billiards and
its time evolution could be derived from Newton’s
laws.

Some Bernoulli Examples

• Our first example is a generalization of the con-
tinuous time coin tossing flow where we replace
coin tossing by an N-step Markov process.

We replace the continuous time coin tossing
process by a process that we will call a ct (con-
tinuous time) Markovian process. This process
has a finite number of outputs Oi . Oi lasts for
time ti . The next output is determined by a
roulette wheel4 whose probabilities depend on i
and the previous N outputs.

We can visualize the flow as a “flow built under a
function” where the transformation on the base
is an N-step Markovian process.

• Sinai billiards [GO74].

3Deep results of Sinai about Sinai billiards are needed to
check our criteria.
4Or many coin tosses.
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• Geodesic flow on a manifold, M , of negative
curvature (the flow is really on the tangent
bundle of M) [OW73].
This was the first concrete flow that was
shown to be Bernoulli and showed how to use
hyperbolic structure to verify our criteria (this
was Weiss’s insight and the beginning of a
long collaboration). Almost all of the concrete
flows that were shown to be Bernoulli follow
this format.

• The following deep theorem of Pesin gives a
general class of Bernoulli flows [Pes77]:

Let Tt be a smooth ergodic5 flow in C1+ε on
a compact 3-dimensional manifold with a
smooth invariant measure. If Tt has positive
entropy, Tt is either Bct or Bct × Rt (Rt is a
rotation of the circle). (This also applies to
the ergodic components of positive entropy.
These have positive measure. A nice example
is the double pendulum. It is not known if
this has positive entropy.)

• We get an infinite entropy example by replac-
ing the two shift by a Bernoulli shift of infinite
entropy in “flow built under a function” (see
Figure 2).

• Other infinite entropy examples are the flows
we get from Brownian motion on the unit inter-
val with reflecting barriers, Poisson processes,
and diffusion processes.

Some discrete time examples are:

• Mixing Markov (or multistep Markov).
• Ergodic automorphisms of compact groups.

This result is due to Lind [Lin77] and,
independently, Miles and Thomas [MT78].

• One of the deepest results in abstract ergodic
theory is due to Rudolph: mixing compact
extensions of a Bernoulli shift are Bernoulli
[Rud78a], [Rud78b].

The titles of some of the papers in the bibliogra-
phy extend this sampling.

Another Aspect of the Proof of the Isomor-
phism Theorem Is That in Certain Cases
the Isomorphism Preserves the Concrete
Structure
Proving that a dynamical system is Bernoulli identi-
fies the system if we ignore the concrete structure
given by a function on X.

The Concrete Structures of All Bernoulli Systems
Have a Certain Randomness Property

Recall the definition of a ct N-step Markovian pro-
cess.

Theorem ([OW91]). Fix (Ft ,M, F), where the range of
F is a finite set (Oi). If Ft is isomorphic to the Bernoulli

5Ergodic means that the only invariant sets have measure 0
or 1.

flow, then given ε we can change F to (F̂) on a set of
measure ε; and if we regard M as an abstract mea-
sure space, then (Tt ,M, F̂) is the model for a ctN-step
Markovian process on the same Oi .

A good example: display Sinai billiards on a TV
screen. This is a (Bt ,M, F) where the range of F is
the states of the TV screen. If we fix a set of posi-
tions and directions of measure < ε and force the
TV to misread the position when in these states in
a fixed nonrandom way, then the display on the TV
screen becomes the model for a ct N-step Markovian
process. Thus, the evolution of the slightly altered TV
movie that we get by looking at a fixed billiard ball
orbit is determined by the outcome of a sequence of
coin tosses.

The discussion above holds for any classical sys-
tem that is isomorphic to Bt where F is any coarse
graining of the phase space.

The theorems above have implications for chaos
“theory”, because they show that there are “super
chaotic systems”, which, at an abstract level, are
the most random possible (see “Positive Entropy and
Factors”) and, at a concrete level, are essentially
indistinguishable from systems that are driven by
coin tossing and where the coin tossing, after many
tosses, wipes out any memory of the past.

The cornerstone of chaos “theory” is Lorenz’s ob-
servation that for certain classical systems, a small
change in the initial position grows exponentially
fast. (Sinai billiards are an example.) This is usually
referred to as “sensitivity to initial conditions” or
the “butterfly effect”. The conclusion is that the be-
havior of these systems is unpredictable or random.
“Super chaos” is the ultimate strengthening of this
conclusion. In particular, the lack of predictability
due to sensitivity to initial conditions is qualitatively
different from the lack of predictability due to coin
tossing.

The results above also mean that the distinction
between long-term determinism of Newtonian me-
chanics6 and the long-term randomness introduced
by coin flipping is not as sharp as one might expect.

Statistical Stability

This is a more special case of isomorphisms be-
tween concrete systems where the proof of the
isomorphism theorem allows us to preserve the
geometry.

Theorem ([OW91]). Let Ft be geodesic flow on a man-
ifold or surface M of negative curvature (the flow is
really on the tangent bundle MT ), and define F̂t by a
C2 change in the Riemannian structure of M that is
small in the C2-metric.

6It is critical that we are talking about the determinism
of Newtonian mechanics, because any abstract system is
deterministic in the sense that the starting point x in X
determines the entire orbit.
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Then, given ε, if the change is small enough, F̂t
will be isomorphic to Fct , (|c − 1| < ε) by a map ψ
of MT to itself that moves all but ε of the points by
a distance < ε. (In particular, orbits map to orbits,
preserving time.)

We would get the same conclusion if, instead of
changing the Riemannian structure, we made a small
variable speed change along the orbits of Ft .

We would also get the same conclusion if we
made a small change in the obstacles in Sinai
billiards [Elo88].

The theorems above are examples of what we call
statistical stability.

The isomorphisms above give a clean picture of
the potentially messy long-term consequences of the
small perturbations above.

Comparison with the Structural Stability (of
Peixoto, Anosov, Smale, Mané, etc.)

In the case of geodesic flow, if we define F̂t as com-
ing from the above change in Riemannian structure,
then structural stability asserts that there is a home-
omorphism of ψ of MT onto itself that takes the
orbits of Ft onto those of F̂t (without preserving time)
and moves all points by < ε.

In statistical stability, we lose the continuity ofψ,
and instead of moving all points by < ε, there is a
set of measure ε where points may be moved by a
large distance.

However, statistical stability corrects the following
problems with structural stability in continuous time.

1. It is possible that ψ maps a set of probability
one onto a set of probability zero.

2. Since ψ does not preserve the speed along
orbits, sets that correspond under ψ at time
0 may not correspond to each other at time
t ≠ 0.

If our perturbation were a variable speed change
along the same orbits, ψ would be the identity,
whereas ψ must scramble orbits.

Sinai billiards is statistically stable (we make a
small change in the curvature of the obstacles) but
not structurally stable [Elo88].

The systems that are structurally stable are the
axiom A attractors. These are Bernoulli with respect
to the SBR measure, which is considered to be the
measure that is physically relevant, and we can ask
if they are statistically stable. The only obstruction
comes from the existence of eigenfunctions. A pre-
cise statement can be found in [OW91].

Positive Entropy and Factors and the
Bernoulli Criterion
We now return to abstract ergodic theory.

An arbitrary F defines a measure on the
{F(Tn(x))}∞−∞ or {F(Tt(x))}∞−∞. This is the model
for a stationary process, except that many x can
give the same {F(Tn(x))}∞−∞ or {F(Tt(x))}∞−∞. If we

lump these points together, we get a new transfor-
mation or flow, which we call a factor of (T ,X, µ) or
(Tt , X, µ).

A factor can also be described as restricting the
measurable sets to belong to a sub-σ -algebra, which
is invariant under T (or Tt ).

Bernoulli Isomorphism Theorem 2 ([Orn70b],
[Orn70d], [Orn70c], [Orn70a], [Orn73b]).

(a) The only factors of Bct are the Bαt for α ≤ c.
(b) If Tt has finite positive entropy, then Tt has Bct

as a factor of the same or smaller entropy.

(There exists an abstract flow of infinite entropy,
B∞t , with the analogous properties.)

(a) and (b) are also true for Bernoulli shifts. Sinai
proved (b) for Bernoulli shifts before the isomor-
phism theorems in this article. Even though Sinai’s
method was entirely different, knowledge of this
result was of major importance.

The main consequences of the theorem above are:

• There exists a unique abstract flow of finite
(infinite) entropy that is the “most random”
flow possible:

One meaning comes from characterizing
the randomness of a flow, (Tt , X), by the
randomness of Tt , X, F , the stationary pro-
cesses that come from the flow. (b) implies
that any flow of positive (infinite) entropy
that is not Bt gives rise to more station-
ary processes and includes processes that
are not VWB (see “Very Weak Bernoulli
(VWB) Systems”) and are therefore less
unpredictable.

Another sense of “most random” comes
from its realization as the flow we get from
continuous time coin tossing.

Yet another sense comes from its
discretizations being the most random
transformations.

• (b) means that Tt can be realized as a skew
product with base Bct , where Bct has full en-
tropy and the action on the fibers does not
contribute to the entropy. In this sense, Bt or
B∞t is the cause of all randomness in flows
(flows of zero entropy are not considered
random).

• (a) says that the flow we get from any
Bt , X, F is still Bct ; i.e., the processes that
give a Bernoulli flow are the same as the
processes that we get from a Bernoulli flow .

We thus have a nice class of processes which
we call Bernoulli.

The Entropy Hierarchy and the Limits of the
Isomorphism Theory
Our story began with Kolmogorov’s introduction of
entropy as an invariant for Bernoulli shifts. Soon
after, Sinăı [Sin59] modified Kolmogorov’s defini-
tion to give an invariant for any measure-preserving
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transformation or flow. This led to a hierarchy of
transformations and flows and to the question:
What is the role of Bernoulli shifts (and later Bt ) in
this hierarchy?

1. Zero Entropy. A discrete time process with a
finite (or countable) number of outputs has
zero entropy if the infinite past determines
the infinite future.

A transformation or flow has zero en-
tropy if all of the discrete time processes
that come from it have zero entropy.

2. Positive Entropy. A transformation or flow
has positive entropy if some discrete time
process that comes from it has nonzero en-
tropy.

3. K. A transformation or flow is K if no dis-
crete time process that comes from it has
zero entropy.

This is equivalent to having no factors of
zero entropy.

4. The Bernoulli shifts in discrete time or Bt
(B∞t ) in continuous time (Bernoulli implies
K).

The isomorphism theorem shows that Bernoulli
shifts provide a simple top to the entropy hierarchy
in discrete time.

The existence of Bt (B∞t ) shows that there is a single
top to the entropy hierarchy in continuous time.

Furthermore, all entropy comes from Bernoulli
shifts or the Bernoulli flow.

Kolmogorov introduced the K property around
the same time as the introduction of the Kolmogorov-
Sinăı entropy. The two main questions about
Bernoulli shifts at the time were: Are Bernoulli
shifts of the same entropy isomorphic, and are
K-transformations Bernoulli shifts? [KAT07]

The answer to the second question is no [Orn73a].
In fact, there are uncountably many nonisomorphic
K-automorphisms of the same entropy [OS73] and un-
countably many nonisomorphic K-flows of the same
entropy [Smo73].

Sinai and his school are responsible for the first
applications of hard abstract results to classical dy-
namical systems, proving the time one transforma-
tions to be K. The proofs rested on analyzing the
hyperbolic structure of these systems, the structure
that makes the distance between nearby points grow
exponentially fast. Later, in some cases, this analysis
also allowed the application of the Bernoulli criteria
(see “Some Bernoulli Examples”), proving the time
one transformation to be Bernoulli, thus narrowing
the class to a single flow.

Pinsker [Pin60] conjectured that every trans-
formation of positive entropy was the direct
product of a transformation of zero entropy and a
K-automorphism.

A theorem of Pesin shows that for flows on
3-dimensional manifolds (transformations on 2-
dimensional surfaces), a strong form of the Pinsker

conjecture is true. Every flow of positive entropy is
the direct product of Bt and a rotation (see item 4
above for an exact statement).

In general, the Pinsker conjecture is false [Orn73a],
[Orn73c].

Open Problem: Is every transformation the direct
product of a transformation of arbitrarily small en-
tropy and a Bernoulli shift? These are called weak
Pinsker transformations.

The first smooth non-Bernoulli K-automorphism
is due to Katok [Kat80]. Rudolph gave the first
example of a smooth non-Bernoulli K-flow. The
first “natural” example of a non-Bernoulli K-
automorphism is due to Kalikow [Kal82]. It’s
easy to describe—it is a random walk on a ran-
dom environment—but difficult to show that it is
non-Bernoulli.

The next question is: What kinds of non-Bernoulli
behavior can we get without introducing any deter-
ministic elements?

We now have a zoo of K-automorphisms with
qualitatively different behaviors [Hof99b], [Hof99d],
[Hof99c], [OS73], [Rud78a], [Rud76], [Rud77]. A
small sampling is:

• K-automorphisms that are not isomorphic to
their inverses.

• Two K-automorphisms that are not isomor-
phic, but all of their powers are isomorphic
[Rud77].

• K-automorphisms that have no square root
[Cla72].

Hoffman, using work of Rudolph, showed that the
behaviors of finite permutations could be lifted to
behaviors of K-automorphisms [Hof99c], [Hof99b],
[Rud79]. Thus, instead of isolated examples, we have
a systematic method for producing examples.

At the time these counterexamples were pro-
duced, the main focus was on the discrete time
hierarchy, and the issue of embedding the examples
in a flow was largely ignored, leaving a large gap in
the theory.

Factors of a Bernoulli Shift
We end by tying together the proofs and results of
the two main strands of the abstract part of our
story: the isomorphism theorem and the entropy hi-
erarchy, together with the counterexamples.

The results concern the relationship of a factor
to the whole Bernoulli shift. We say that two fac-
tors of T , A, and B sit the same way if there is an
automorphism of T that takes A onto B.

We say that T is Bernoulli relative to a factor A if
T = A× B.

Thouvenot’s Relative Isomorphism Theory

The starting point is Thouvenot’s relative isomor-
phism theory, which tells us when T is relatively
Bernoulli with respect to A. (In Thouvenot’s theory
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there is no restriction on A. In particular, A does not
have to be a factor of a Bernoulli shift.)

The theory gives the relative analog of the
Bernoulli criteria in the appendix (relatively finitely
determined, relatively VWB). Here is the analog of
the theorem that factors of Bernoulli shifts are
Bernoulli.

Theorem (Thouvenot). If T = A × B where B is a
Bernoulli shift, then any factor of T that includes A
also has the form A× B, where B is a Bernoulli shift.
(In general, B is not a factor of B.)

Fieldsteel extended the relative isomorphism the-
orem to flows.

The Relative Entropy Hierarchy

We now restrict to factors of a Bernoulli shift.
Recall that T is Bernoulli relative to a factor A if

there is a factor B such that T = A× B. We say that
T is K relative to a factor A if any B > A has greater
entropy. There exists a factor with respect to which
T is relatively K but not relatively Bernoulli [Orn75].
Hoffman [Hof99a], by a subtle modification of this
example, produced uncountably many such factors
that do not sit the same way.
T has positive entropy relative to A if the entropy

of T is greater than the entropy of A. T has zero
entropy relative to a factor of full entropy.

Rudolph proved that there are only a finite
number of ways that a factor whose fibers have k
points can sit and that these are classified by an
algebraic structure on the symmetric group on k
points [Rud78b].

Hoffman, using results of Rudolph, showed that
the behaviors of permutations could be lifted to
the ways that factors of Bernoulli shifts could sit
[Hof99a].

Proofs. We get the factors by taking a skew prod-
uct over a Bernoulli base with a counterexample. We
use a criteria for Bernoulli to prove that the skew
product is Bernoulli. The base is the factor we are
interested in.

These results show how far we have come since
the time of Kolmogorov. Before Kolmogorov, it
was not known whether B 1

3 ,
2
3

had any nontrivial

factors. After Kolmogorov, essentially all that was
known was that a Bernoulli shift had a factor of any
smaller entropy. It was not known whether or not a
Bernoulli shift had a nontrivial factor of full entropy.
We now know that the relative classification of fac-
tors of a Bernoulli shift mimics, to a large extent,
the classification of general transformations.

Factors of a Bernoulli flow form another largely
neglected area.

Appendix: Criteria for Bernoulli
We will call a stationary process (T ,X, F), where T
is a Bernoulli shift, a B process. We will now give

characterizations of B processes where F is finite
valued.

The d Metric

We will describe a distance between (T ,X, F) and
(T ,X, F) where F and F have the same range.
Both processes put a measure on sequences of
length n which can be realized by functions f
and f from nondiscrete measure spaces Y and Y
of total measure 1 to the sequences of length n.
Denote these by Y, f , and Y, f . We say that these
measures are closer than α in d if there is a 1-1
measure preserving map between Y and Y where
the corresponding sequences differ in less than αn
places except for a set in Y (or Y ) of measure < α.
d((T ,X, F), (T ,X, F)) < α if the measure they put

on sequences of length n for all n are closer than α.

Finitely Determined (FD) Systems

(T , F) is said to be finitely determined if, given ε,
there is an n and δ > 0 such that if T , F satisfies

d
( n∨
i=0

F(T i(x)),
n∨
i=0

F(t i(x))
)
< δ

and the entropies of T , F , and T , F are closer than δ,
then d((T , F), (T , F)) < ε.

FD is the crucial idea behind our proofs, since it
allows us to control infinite behavior by finite con-
structions. We prove:

Theorem. FD processes of the same entropy are iso-
morphic.

We then show that a specific process (e.g., an in-
dependent process) is FD.

Feldman made a subtle modification of FD that
works for flows. He used this to give a proof of the
technically more difficult isomorphism theorem for
flows that parallel the discrete time proof [Fel80].
The original proof used a sequence of finer and finer
discretizations.

Very Weak Bernoulli (VWB) Systems

T , F is said to be “very weak Bernoulli” (VWB) if, for
every ε > 0, there is an n such that for all m and
n ≥ n and all but ε of the atoms in

∨−1
i=−m F(T i(x)),

the conditional distribution of
∨n
i=0 F(T i(x)) is

closer than ε in d to the unconditional distribution.
A process is FD if—and only if —it is VWB [OW74].
VWB is usually the easiest to check.

The mixing hierarchy (discrete time).
VWB allows us to view the relationship between

K and Bernoulli in terms of the dependence of
the future on the past. VWB is such a condition;
K can be described by an analogous but weaker,
condition, where we condition F(Tn(x)) rather than∨n
i=0 F(T i(x)) on the past.
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VWB completes the traditional mixing hierarchy:
ergodicity, weak mixing, mild mixing, mixing, K,
Bernoulli.

Postscript 7

Most of the isomorphism theory of Bernoulli sys-
tems was carried over to actions of unimodular
amenable groups in [OW87]. At that time we be-
lieved that there was no reasonable entropy-like
theory for nonamenable groups and in particular
for the free group on two generators where one can
define a factor map from the 2-shift onto the 4-shift.
It came as quite a surprise when Lewis Bowen in
[Bow10b] proved the analogue of Kolmogorov’s
theorem for Bernoulli shifts defined over the free
group, namely, that if they are isomorphic then
they must have the same base entropy. He went on
to extend this new theory to a very wide class of
groups called sofic groups (no countable group has
yet to be shown to be nonsofic) in [Bow10a]. This
new theory has sparked a great deal of activity in
the ergodic theory of actions of general groups. New
phenomena appear here, as was shown a few years
ago by Sorin Popa, who gave examples of factors
of Bernoulli shifts over many nonamenable groups
that were not isomorphic to Bernoulli shifts [Pop06].

Finally, one should mention Bowen’s recent exten-
sion of the isomorphism theorem to all groups (if
the distributions are not supported on just two ele-
ments) in [Bow12]. It is remarkable that the proof of
this result makes essential use of the relative theory
that was developed by Thouvenot for the classical
Bernoulli shift.
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