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1 Introduction

The main focus of this survey is the mutually perpetuating interplay between
ergodic theory, combinatorics and Diophantine analysis.

Ergodic theory has its roots in statistical and celestial mechanics. In
studying the long time behavior of dynamical systems, ergodic theory deals
first of all with such phenomena as recurrence and uniform distribution of
orbits.

Ramsey theory, a branch of combinatorics, is concerned with the phe-
nomenon of preservation of highly organized structures under finite parti-
tions.

Diophantine analysis concerns itself with integer and rational solutions of
systems of polynomial equations.

To get a feeling about possible connections between these three quite
distinct areas of mathematics, let us consider some examples.

Our first example is related to Fermat’s last theorem. Given n ∈ N,
where N, here and throughout this survey, represents the set of positive
integers, and a prime p, consider the equation xn + yn ≡ zn( mod p). This
equation (as well as its more general version axn + byn + czn ≡ 0( mod p))
was extensively studied in the 19th and early 20th centuries. (See [D2],
vol. 2, Ch. 26 for information on the early work and [Ri], Ch. XII for more
recent developments and extensions.) We are going to prove, with the help
of ergodic and combinatorial considerations, the following theorem.

Theorem 1.1. For fixed n ∈ N and a large enough prime p, the polynomial
f(z, y) = zn − yn represents the finite field Zp = Z/pZ. In other words, for
any c ∈ Zp there exist z, y ∈ Z∗p = Zp \ {0}, such that c = zn − yn.

Putting c = xn immediately gives the following result, which was proved
by Schur in 1916. (See also [D1].)

Corollary 1.2. ([Schur]) For fixed n ∈ N and large enough prime p, the
equation xn + yn ≡ zn( mod p) has nontrivial solutions.

In the course of the proof of Theorem 1.1 we shall utilize the following
classical fact due to F. Ramsey ([Ram]). For a nice discussion which puts
Ramsey’s theorem into the perspective of Ramsey theory, see [GraRS]. In
what follows, |A| denotes the cardinality of a set A.
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Theorem 1.3. For any n, r ∈ N there exists a constant c = c(n, r) such that
if a set A satisfies |A| ≥ c and the set [A]2 of two-element subsets of A is
partitioned into r cells (or, as we will often say, is r-colored): [A]2 =

⋃r
i=1 Ci,

then there exists a subset B ⊂ A satisfying |B| > n and such that for some
i, 1 ≤ i ≤ r, [B]2 ⊂ Ci. (In this case we say that [B]2 is monochromatic.)

We shall also be using the following abstract version of the Poincaré
recurrence theorem (cf. [Po], pp. 69–72).

Theorem 1.4. Assume that µ is a finitely-additive probability measure on a
measurable space (X,B), and let a group G (which is not necessarily infinite
or commutative) act on (X,B, µ) by measure preserving transformations Tg,
g ∈ G. Let A ∈ B with µ(A) = a > 0 and let an integer k satisfy k > b 1

a
c.

If |G| ≥ k, then for any k distinct elements g1, g2, . . . , gk ∈ G there exist
1 ≤ i < j ≤ k such that µ(A ∩ Tgig−1

j
A) > 0.

Proof. If the statement does not hold, then for any i 6= j, µ(TgiA∩TgjA) = 0.

But then µ
(⋃k

i=1 TgiA
)

=
∑k

i=1 µ(TgiA) = ka > 1, in contradiction with
µ(X) = 1.

Remark 1.5. If one measures the triviality of a mathematical statement by
the triviality of its proof, one can only wonder how and why a statement
as trivial as Theorem 1.4 can lead to interesting applications. Yet it does!
In particular, we shall utilize it in the proof of Theorem 1.1 and, at least
implicitly, on few more occasions. (See Theorems 1.11 and 1.12 below. See
also [Be4] for additional examples and more discussion.)

Proof of Theorem 1.1. Let ν be the normalized counting measure on Zp.
Noting that the index r of the multiplicative subgroup Γ = {xn : x ∈ Z∗p} in

Z
∗
p is at most n, we get ν(Γ) ≥ 1

n+ 1
n

. (The quantity 1
n

in the denominator

accounts for the neutral element 0 ∈ Zp.) Let a1, . . . , ar ∈ Z∗p, where r ≤ n,
be such that Z∗p =

⋃r
i=1 Γai is the partition of Z∗p into disjoint cosets of Γ.

Let A =
{

2j, 1 ≤ j < log2 p
}

. Interpreting A as a subset of Z∗p, we note
that since all the differences 2j − 2i, 1 ≤ i < j < log2 p are distinct, there is
a natural bijection between the set [A]2 of two-element subsets of A and the
set 4(A) =

{
2j − 2i, 1 ≤ i < j < log2 p

}
⊆ Zp. The partition Z∗p =

⋃r
i=1 Γai

naturally induces a partition (coloring) of 4(A). Assuming that p is large
enough, we get by Theorem 1.3 a subset B ⊂ A with the property that
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|B| > n and such that the set of differences of distinct elements from B,
4(B), is monochromatic, i.e. for some i0 ∈ {1, 2, . . . , r}, 4(B) ⊂ Γai0 . But
then Γ itself also contains a set of differences, namely 4(Ba−1

i0
).

Let us apply now Theorem 1.4 to the action of Zp on itself by translations:
x → x + g, g ∈ Zp. Let c ∈ Z∗p be arbitrary. Consider the set Ba−1

i0
c ⊂ Γc.

Since |Ba−1
i0
c| = |B| > n, we have by Theorem 1.4 that there is an element x

in the set of differences 4(Ba−1
i0
c), such that ν(Γ∩Γ−x) > 0. Noting that x

is of the form gc, where g ∈ 4(Ba−1
i0
c) ⊂ Γ, we have (Γ∩Γ− gc) 6= 0, which

implies gc ∈ Γ− Γ =
{
zn − yn : z, y ∈ Z∗p

}
. Utilizing the fact that g ∈ Γ, we

get c ∈ Γ−Γ. Since c ∈ Z∗p was arbitrary (and since, trivially, 0 ∈ Γ−Γ) we
finally get Zp = Γ− Γ.

�

We leave it to the reader to check that routine adaptation of the proof
above allows one to show that for fixed n the polynomial f(z, y) = zn − yn
represents any large enough finite field. While this result has also a more
traditional number-theoretical proof (see [Schm]), the “soft” method utilized
in the proof of Theorem 1.1, gives, after appropriate modifications, the fol-
lowing more general result, which so far has no conventional proof. We shall
provide the proof at the end of Section 5.

Theorem 1.6. ([BeS]) Let F be an infinite field and let Γ be a multiplicative
subgroup of finite index in F ∗ = F \ {0}. Then

Γ− Γ = {x− y : x, y ∈ Γ} = F.

While Theorem 1.1 is stronger than Schur’s result (Corollary 1.2), the
following key lemma from [Schur] is of independent interest as one of the
earliest results of Ramsey theory.

Theorem 1.7. For any r ∈ N, there exists a positive constant c = c(r) such
that for any integer N ≥ c, any r-coloring {1, 2, . . . , N} =

⋃r
i=1 Ci yields a

monochromatic solution of the equation x+ y = z.

Proof. The result almost immediately follows from Ramsey’s theorem (The-
orem 1.3 above) via an argument similar to the one utilized in the proof of
Theorem 1.1. (Schur’s original proof was somewhat longer, but completely
elementary.) Observe that if r is fixed and N is sufficiently large, then one of
the Ci contains the set of differences of a 3-element set A =

{
a1, a2, a3

}
. The

desired result then follows by setting x = a3−a2, y = a2−a1, z = a3−a1.
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To derive Corollary 1.2 from Theorem 1.7, one considers the partition of{
1, 2, . . . , p − 1

}
induced by the partition of Z∗p into disjoint cosets of the

multiplicative group Γ =
{
xn : x ∈ Z∗p

}
. It then follows from Theorem 1.7

that there exists a coset Γc and x, y, z ∈ Γc such that (both in N and in Zp)
x+ y = z. Writing, for some x1, y1, z1 ∈ Γ, x = x1c, y = y1c, z = z1c, we get,
after the cancellation, xn1 + yn1 = zn1 ( mod p).

Arguably, the earliest nontrivial result of Ramsey theory is the follow-
ing theorem which D. Hilbert utilized in [Hil] in order to show that if the
polynomial p(x, y) ∈ Z[x, y] is irreducible, then there exists n ∈ N such that
p(x, n) ∈ Z[x] is also irreducible. Given d distinct integers x1, . . . , xd, define
the d-cube generated by x1, . . . , xd byQ(x1, . . . , xd) =

{∑d
i=1 εixi, εi ∈ {0, 1}

}
.

Theorem 1.8. ([Hil]) For any d, r ∈ N and any partition N =
⋃r
i=1 Ci, one

of the Ci contains infinitely many translates of a d-cube.

We shall see below that Hilbert’s theorem admits a very simple proof
based on a version of Poincaré recurrence theorem. But first we are going to
formulate and discuss Hindman’s classical Finite Sums Theorem, proved in
[Hin1], which contains both Schur’s and Hilbert’s theorems as very special
cases.

Definition 1.9. Let (xi)
∞
i=1 ⊂ N. The IP set generated by the sequence

(xi)
∞
i=1 is the set FS(xi)

∞
i=1 of finite sums of elements of (xi)

∞
i=1 with distinct

indices:
FS(xi)

∞
i=1 =

{
xα =

∑
i∈α

xi, α ⊂ N, 1 ≤ |α| <∞
}
.

IP sets can be viewed as a natural generalization of the notion of a d-
cube (if one disregards the following subtle distinction: while the vertices xi
of the d-cube are supposed to be distinct, no such assumption is made in
Definition 1.9.) This explains the term IP (coined by H. Furstenberg and B.
Weiss in [FuW1]): Infinite-dimensional Parallelepiped.

Theorem 1.10. ([Hin1]) For any finite partition of N, one of the cells of the
partition contains an IP set.

The original proof of Theorem 1.10 in [Hin1] was, in Hindman’s own
words, “horrendously complicated.” It therefore comes as a pleasant surprise
that Hindman’s theorem admits a short and easy proof. The following simple
proposition is the key to proofs of Hindman’s and many other results of a
similar nature.
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Theorem 1.11. Let S be a family of nonempty sets in N. If S has the
following property:

(i) for any A ∈ S there exist arbitrarily large t ∈ N such that
A ∩ (A− t) ∈ S,

then for any A ∈ S and any d ∈ N, there exist t1 < t2 < . . . < td such that
A contains infinitely many translates of the d-cube Q(t1, t2, . . . , td). If the
following stronger property holds:

(ii) for any A ∈ S there exist arbitrarily large t ∈ A such that
A ∩ (A− t) ∈ S,

then each A ∈ S contains an IP set.

Proof. Let A ∈ S and let t1 be such that A1 = A ∩ (A − t1) ∈ S. By
assumption, there exists t2 > t1 such that A2 = A1 ∩ (A1 − t2) ∈ S. But
A2 = A ∩ (A− t1) ∩ (A− t2) ∩ (A− (t1 + t2)) and so it is clear that, for any
a ∈ A2, one has a+Q(t1, t2) ⊂ A. Continuing in this fashion one gets, after
d steps, t1 < t2 < . . . < td such that Ad =

⋂
α∈Fd(A − tα) ∈ S, where Fd is

the set of all subsets of
{

1, 2, . . . , d
}

and tα =
∑

α∈Fd ti. Then any a ∈ Ad
has the property that a + Q(t1, t2, . . . , td) ⊂ Ad ⊂ A, which proves the first
assertion of the theorem. Now, let us assume that property (ii) holds. It is
easy to see that by choosing at each step ti ∈ Ai−1, where A0 = A, one gets,
for any d ∈ N, Q(t1, t2, . . . , td) ⊂ A. This clearly implies that FS(ti)

∞
i=1 ⊂ A

and we are done.

Recall that, for a set A ⊂ N, the upper density d(A) is defined by d(A) =

lim supN→∞
|A∩{1,2,...,N}|

N
. It is easy to see, by trivial adaptation of the proof of

Theorem 1.4 above, that if d(A) > 0 then there exist arbitrarily large t ∈ N
such that d(A ∩ (A − t)) > 0. Applying Theorem 1.11, we have now the
following result which, in view of the fact that for any finite partition N =⋃r
i=1 Ci at least one of the Ci has positive upper density, may be considered

as a strengthening of Hilbert’s Theorem 1.8.

Theorem 1.12. Let A ⊂ N have positive upper density. Then for any d ∈ N,
there exist t1 < t2 < . . . < td such that the set{

a ∈ A : a+Q(t1, t2, . . . , td) ⊂ A
}

has positive upper density. In particular, A contains infinitely many trans-
lates a+Q(t1, t2, . . . , td) with a ∈ A.
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Remark 1.13. One says that Theorem 1.12 is a density version of Theo-
rem 1.8, which is a result about partitions. While we were lucky to produce
a rather trivial proof of this density result, usually this is not the case. As
we shall see in detail in Section 4, the density versions of partition results
are much deeper and have rather involved and sophisticated proofs.

As we shall momentarily see, Hindman’s theorem also follows from The-
orem 1.11. To make the derivation possible, one needs only to find a family
S of subsets of N which satisfies condition (ii) and has the property that for
any finite partition N =

⋃r
i=1 Ci, one of the Ci belongs to S. This is best

achieved by utilizing βN, the Stone-Čech compactification of N interpreted
as the space of ultrafilters on N. To be more precise, one utilizes the fact
that, with respect to a naturally inherited operation extending the addition
in N, βN is a compact semitopological semigroup and, as such, has an idem-
potent. Any such idempotent allows one to introduce a certain {0, 1}-valued
measure µ on the power set P(N) which, in turn, provides the sought after
family S by the rule A ∈ S ⇔ µ(A) = 1.

The properties of such measures are described in the following proposi-
tion, the proof of which will be given in Section 3. (See Theorem 3.3 below.)

Proposition 1.14. There exists a finitely additive {0, 1}-valued probability
measure µ on the space P(N) of all subsets of N which is “almost shift-
invariant” in the following sense. For any C ⊂ N with µ(C) = 1, the set

TC =
{
n ∈ N : µ(C − n) = 1

}
(1.1)

satisfies µ(TC) = 1.

We are now in a position to give a proof of Hindman’s theorem.

Proof of Theorem 1.10. Let µ be an almost shift-invariant measure as de-
scribed in Proposition 1.14, and let N =

⋃r
i=1 Ci be a finite partition. Since

µ is a probability measure, µ
(⋃r

i=1 Ci
)

= 1, which, by finite additivity and
{0, 1}-valuedness, implies that one of the Ci, call it C, satisfies µ(C) = 1.
By (1) we have µ(TC) = 1, which implies that µ(C ∩TC) = 1. It follows that
the set

{
n ∈ C : µ(C − n) = 1

}
is of full measure and, in particular, that

property (ii) in Theorem 1.11 is satisfied. Hence C contains an IP set and
we are done.

�
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Remark 1.15. Hindman’s theorem finds numerous applications in ergodic
theory, topological dynamics, and Diophantine analysis. Some of these will
be discussed in this survey. Before moving on with our discussion, we want
to record here the following equivalent version of Hindman’s theorem, which
can be interpreted as “indestructibility” of IP sets under finite partitions.

Theorem 1.16. For any finite partition of an IP set, one of the cells of the
partition contains an IP set.

We leave the elementary derivation of Theorem 1.16 from Hindman’s
theorem to the reader. (The other direction is trivial due to the fact that
N = FS(2i)∞i=1.) On a more sophisticated level, offered by the familiarity
with βN, Theorem 1.16 becomes an immediate consequence of the proof of
Hindman’s theorem given above. Indeed, one can show that any IP set in
N is the support of an almost shift-invariant measure. (See Theorem 3.4
below.)

Our next example is the celebrated van der Waerden theorem.

Theorem 1.17. ([vdW1],[vdW2]) For any r ∈ N and any finite partition
N =

⋃r
i=1 Ci, one of the Ci contains arbitrarily long arithmetic progressions.

We remark that one cannot, in general, expect to get in Theorem 1.17
an infinite arithmetic progression in one of the Ci. Indeed, let us represent
N as the union of disjoint intervals of increasing length and alternately color
them red and blue. This obviously gives a two-coloring N = R ∪ B without
an infinite monochromatic progression.

The idea behind this remark can also be utilized to show that Theo-
rem 1.17 implies the following, ostensibly stronger, finitistic version.

Theorem 1.18. For any r, l ∈ N there exists c = c(r, l) such that if N ≥ c,
then for any partition

{
1, 2, . . . , N

}
=
⋃r
i=1 Ci, one of the Ci contains an

arithmetic progression of length l.

Proof of Theorem 1.18 via Theorem 1.17. Assume by way of contradiction
that Theorem 1.18 fails. Then there exist natural numbers r, l and, for any
N ∈ N, an interval I with |I| ≥ N and an r-coloring of I, which we will
find convenient to view as a mapping f : I →

{
1, 2, . . . , r

}
, such that I

contains no monochromatic progression of length l. Calling such r-colorings
(and the corresponding intervals) APl-free, we may assume without loss of
generality that APl-free intervals In, n ∈ N tile N and satisfy |In+1| ≥ 2|In|.
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Given an r-coloring f : I →
{

1, 2, . . . , r
}

of an interval I, let us call the

r-coloring defined by f̃ : I →
{
r+ 1, r+ 2, . . . , 2r

}
a disjoint copy of f if for

all k ∈ I, f(k) = f̃(k)− r. To finish the argument, let us replace, for every
n ∈ N, the APl-free colorings f2n : I2n →

{
1, 2, . . . , r

}
by their disjoint copies

f̃2n : I2n →
{
r + 1, r + 2, . . . , 2r

}
. This results in a 2r-coloring of N which

has no monochromatic arithmetic progressions of length l, which contradicts
Theorem 1.17.

�

While in Khintchine’s book ([Kh]) van der Waerden’s theorem is called a
“pearl of number theory”, it should, perhaps, be more properly called a pearl
of geometry. Indeed, it is not hard to see that van der Waerden’s theorem is
equivalent to the following result, which not only has an apparent geometric
flavor, but also is suggestive of natural multidimensional extensions.

Theorem 1.19. For any finite partition Z =
⋃r
i=1 Ci, one of the Ci has the

property that for any finite set F ⊂ Z, there exist a ∈ Z, and b ∈ N such that
aF + b =

{
ax + b : x ∈ F

}
⊂ Ci. In other words, one of the Ci contains a

homothetic copy of any finite set.

Here is the formulation of the multidimensional analogue of Theorem 1.19.
It was first proved by Grünwald (Gallai), who apparently never published his
proof. (Grünwald’s authorship is acknowledged in [Rado], p. 123.)

Theorem 1.20. For any d ∈ N and any finite partition Zd =
⋃r
i=1 Ci, one

of the Ci has the property that for any finite set F ⊂ Zd, there exist n ∈ N,
and v ∈ Zd such that nF + v =

{
nx+ v : x ∈ F

}
⊂ Ci.

We shall now formulate yet another, dynamical, version of the (multi-
dimensional) van der Waerden theorem. The idea to apply the methods of
topological dynamics to partition results is due to H. Furstenberg and B.
Weiss. (See [FuW1].)

Theorem 1.21. (Cf. [FuW1], Theorem 1.4.) Let d ∈ N, ε > 0, and let X be
a compact metric space. For any finite set of commuting homeomorphisms
Ti : X → X, i = 1, 2, . . . , k, there exist x ∈ X and n ∈ N such that

diam{x, T n1 x, T n2 x, . . . , T nk x} < ε.

The reader will find various proofs of Theorem 1.21 in Sections 2 and
3. For now, we shall confine ourselves to the proof of the equivalence of
Theorems 1.20 and 1.21.
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Theorem 1.20 ⇒ Theorem 1.21. Let y ∈ X be arbitrary. For a vector
m = (m1,m2, . . . ,mk) ∈ Z

k, write Tmy = Tm1
1 Tm2

2 . . . Tmkk y. Since X
is compact, there exists a finite family of open balls of radius ε

2
, call it

{Bi}ri=1, which covers X. Assign to each m ∈ Zk the minimal i for which

Tmy ∈ Bi. This produces a finite coloring Zk =
⋃r′

i=1 Ci (where r′ ≤ r.)
Let S = {0, e1, . . . , ek}, where ei are the standard unit vectors. By The-
orem 1.20, there exist n ∈ N and v ∈ Zk such that nS + v is monochro-
matic. But this means that T vy, T v+ne1y, . . . , T v+neky all belong to the same
ε
2
-ball. Writing x = T vy and noting that T nei = T ni , i = 1, 2, . . . , k, we get

diam{x, T n1 x, T n2 x, . . . , T nk x} < ε.

Theorem 1.21 ⇒ Theorem 1.20. The r-colorings of Zd (viewed as mappings
from Z

d to {1, 2, . . . , r}) are naturally identified with the points of the com-
pact product space Ω = {1, 2, . . . , r}Zd . For m = (m1,m2, . . . ,md) ∈ Zd,
let |m| = max1≤i≤d |mi|. Introduce a metric on Ω by defining, for any pair
x, y ∈ Ω, ρ(x, y) = inf

{
1
n

: x(m) = y(m) for m with |m| < n
}

. It is easy
to see that the metric ρ is compatible with the product topology and that
ρ(x, y) < 1 ⇔ x(0) = y(0). Let F =

{
a1, a2, . . . , ak} ⊂ Z

d. Define the
homeomorphisms Ti : Ω → Ω, i = 1, 2, . . . , k, by (Tix)(m) = x(m + ai),
and set, for n = (n1, n2, . . . , nk) ∈ Zk, T n = T n1

1 T n2
2 . . . T nkk . Let now x(m)

be the element of Ω corresponding to the coloring Zd =
⋃r
i=1 Ci (in other

words, for any m ∈ Zd, x(m) = i iff m ∈ Ci.) Let X = {T nx}n∈Zk be the
orbital closure of x in Ω. Note that for any δ > 0 and any y ∈ X, there
exists m ∈ Zk with ρ(Tmx, y) < δ. Setting ε = 1 in Theorem 1.21, we can
find y ∈ X and n ∈ N such that diam{y, T n1 y, . . . , T nk y} < 1. Choosing
u = (u1, . . . , uk) ∈ Zk so that the element of the orbit T ux is close enough
to y, and also such that T ni (Tmx) are close enough to T ni y for i = 1, 2, . . . , k,
we shall still have diam{T ux, T uT n1 x, . . . , T uT nk x} < 1. This implies that, for
v = u1a1 + u2a2 + . . . + ukak, x(v) = x(v + na1) = . . . = x(v + nak), which
means that the set v + nF is monochromatic.

�
In accordance with the general philosophy of Ramsey Theory (see [Be3]

for more discussion), one should expect the density version of Theorem 1.20
to hold true as well. While the proof of this density version is far from being
trivial, its formulation is easily guessable (see Theorem 1.23 below.) It is also
natural to expect that the dynamical form of the multidimensional van der
Waerden theorem, our Theorem 1.21, can be “upgraded” in such a way that
it gives a dynamical equivalent to the density version of Theorem 1.20. The-
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orem 1.24 below, proved in [FuK1], confirms these expectations. To present
the historical development in its natural order, we should mention that al-
ready the density version of the one-dimensional van der Waerden theorem,
conjectured by Erdős and Turán in the mid-thirties in [ET], proved quite re-
calcitrant and was settled only in 1975 by Szemerédi ([Sz]). A few years later,
Furstenberg ([Fu2]) gave a completely different, ergodic-theoretical proof of
Szemerédi’s theorem, thereby starting a new area of dynamics which is today
called Ergodic Ramsey Theory. The multidimensional Szemerédi theorem
proved in [FuK1] was the first result in the long and impressive line of dy-
namical proofs of various combinatorial and number-theoretical results, most
of which still do not have a conventional proof. Many of these results will be
discussed in the subsequent sections. (See [FuW1], [FuK1], [FuK3], [FuK3],
[FuK4], [Le1], [Le2], [BeL1], [BeL2], [BeL3], [BeM1], [BeM3], [BeMZ].)

Definition 1.22. Let d ∈ N and E ⊂ Zd.
(i) The upper density of E, d(E), is defined by

d(E) = lim sup
N→∞

|E ∩ [−N,N ]d|
(2N + 1)d

.

(ii) The upper Banach density of E, d∗(E), is defined by

d∗(E) = lim sup
Ni−Mi→∞,1≤i≤d

|E ∩
∏d

i=1[Mi, Ni − 1]|∏d
i=1(Ni −Mi)

Here are now combinatorial and dynamical formulations of the density
version of the multidimensional van der Waerden theorem. (Cf. [FuK1].)

Theorem 1.23. Let d ∈ N, and let E ⊂ Z
d have positive upper Banach

density. For any finite set F ⊂ Zd, there exist n ∈ N and v ∈ Zd such that
nF + v ⊂ E.

Theorem 1.24. Let (X,B, µ) be a probability measure space. For any finite
set {T1, . . . , Tk} of commuting measure preserving transformations of X and
for any A ∈ B with µ(A) > 0, there exists n ∈ N such that

µ
(
A ∩ T−n1 A ∩ T−n2 A ∩ . . . ∩ T−nk A

)
> 0.

To see that Theorem 1.23 follows from Theorem 1.24, one can use a cor-
respondence principle, introduced by Furstenberg in [Fu2] in order to derive
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Szemerédi’s theorem from an ergodic multiple recurrence result which he es-
tablished in [Fu2] and which corresponds to taking Ti = T i, i = 1, 2, . . . , k in
Theorem 1.24.

For the proof of the following version of Furstenberg’s correspondence
principle, see [BeM3], Prop. 7.2. See also Theorem 5.8 in Section 5 for a gen-
eral form of Furstenberg’s correspondence principle for amenable (semi)groups.

Theorem 1.25. Let d ∈ N. For any set E ⊂ Zd with d∗(E) > 0, there exists
a probability measure preserving system (X,B, µ, {Tn}n∈Zd) and a set A ∈ B
with µ(A) = d∗(E) such that for all k ∈ N and n1,n2, . . . ,nk ∈ Zd one has

d∗
(
E ∩ (E − n1) ∩ . . . ∩ (E − nk)

)
≥ µ

(
A ∩ Tn1A ∩ . . . ∩ TnkA

)
.

We leave it to the reader to verify (with the help of Theorem 1.25) that
Theorem 1.24 implies Theorem 1.23. Here is a simple proof of the other
implication (the idea behind this proof will also be used in the proof of
Lemma 5.10 in Section 5.)

Theorem 1.23 ⇒ Theorem 1.24. Assume, by way of contradiction, that there
exist a probability measure space (X,B, µ), commuting measure preserving
transformations T1, T2, . . . , Tk of X, and a set A ∈ B with µ(A) > 0 such
that for all n ∈ N, µ(A ∩ T−n1 A ∩ . . . ∩ T−nk A) = 0. Deleting, if needed, a
set of measure zero from A, we may and will assume that one actually has
A ∩ T−n1 A ∩ . . . ∩ T−nk A = ∅ for all n ∈ N. For n = (n1, n2, . . . , nk), write
Tn = T n1

1 T n2
2 . . . T nkk and let

fN(x) =
1

(2N + 1)k

∑
n∈[−N,N ]k

1A(Tnx), N = 1, 2, . . .

Note that 0 ≤ fN(x) ≤ 1 for all x ∈ X and N ∈ N and that
∫
fNdµ =

µ(A). Let f(x) = lim supN→∞ fN(x). By Fatou’s lemma, we have∫
fdµ =

∫
lim sup
N→∞

fNdµ ≥ lim sup
N→∞

∫
fNdµ = µ(A).

It follows that there exists x0 ∈ X such that lim sup fN(x0) = f(x0) ≥
µ(A). Hence for some increasing sequence Ni →∞, one has

lim
i→∞

fNi(x0) = lim
i→∞

1

(2Ni + 1)k

∑
n∈[−Ni,Ni]k

1A(Tnx0) = f(x0) ≥ µ(A).

12



This implies that the set E =
{
n ∈ Zk : Tnx0 ∈ A

}
has positive upper

density. (We actually showed that d(E) ≥ µ(A).) By Theorem 1.23, the set
E contains a configuration of the form nF + v, where F = {0, e1, e2, . . . , ek},
n ∈ N, and v ∈ Zk (where ei are the standard unit vectors.) This implies
that A ∩ T−n1 A ∩ . . . ∩ T−nk A 6= ∅, which contradicts the assumption made
above.

�

It is perhaps of interest to observe that while the combinatorial version
of the multidimensional van der Waerden theorem follows immediately from
Theorem 1.23 by the observation that for any finite partition Zd =

⋃r
i=1 Ci,

at least one of the Ci satisfies d(Ci) ≥ 1
r
, the derivation of Theorem 1.21 from

Theorem 1.24 is less trivial, and depends on the fact that for any Zd-action
by homeomorphisms of a compact space, there exists an invariant measure.

We would like to formulate still another important extension of van der
Waerden’s theorem, the powerful Hales-Jewett theorem.

Consider the following generalization of tic-tac-toe: there are r players
which are taking turns in placing the symbols s1, . . . , sr in the k×k× . . .×k
(n times) array, which one views as the n-th cartesian power An of a k-
element set A = {a1, a2, . . . , ak}. (In the classical tic-tac-toe, we have r = 2,
k = 3, n = 2.) It is convenient to think of the symbols s1, . . . , sr as colors,
and to identify the elements of the array An as the set Wn(A) of words of
length n over the alphabet A. We are going to define now the notion of a
combinatorial line in An. Let Ã = A ∪ {t} be an extension of the alphabet
A, obtained by adding a new symbol t. Let Wn(t) be the set of words of
length n over Ã in which the symbol t occurs. Given a word w(t) ∈ Wn(t),
let us define a combinatorial line as a set {w(a1), w(a2), . . . , w(ak)} obtained
by substituting for t the elements of A. For example, the word 13t241t2
over the alphabet {1, 2, 3, 4, 5} ∪ {t} gives rise to the combinatorial line
{13124112, 13224122, 13324132, 13424142, 13524152}. The goal of the players
is to obtain a monochromatic combinatorial line. The following celebrated
theorem of Hales and Jewett ([HaJ]) implies that for fixed r, k and large
enough n, the first player can always win.

Theorem 1.26. Let r, k ∈ N. There exists c = c(k, r) such that if n ≥ c,
then, for any r-coloring of the set Wn(A) of words of length n over the k-
letter alphabet A = {a1, a2, . . . , ak}, there is a monochromatic combinatorial
line.

Taking A = {0, 1, . . . , l− 1} and interpreting Wn(A) as integers in base l
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having at most n digits in their base l expansion, we see that in this situation,
the elements of a combinatorial line form an arithmetic progression of length
l (with difference of the form d =

∑k−1
i=0 εil

i, where εi = 0 or 1.) Thus van
der Waerden’s theorem is a corollary of Theorem 1.26.

Take now A to be a finite field F . Then Wn(F ) = F n has the natural
structure of an n-dimensional vector space over F . It is easy to see that, in
this case, a combinatorial line is an affine linear one-dimensional subspace of
F n. We have therefore the following corollary of the Hales-Jewett theorem.

Theorem 1.27. Let F be a finite field. For any r ∈ N there exists c = c(r)
such that if V is a vector space over F having dimension at least c, then for
any r-coloring V =

⋃r
i=1 Ci, one of the Ci contains an affine line.

One of the signs of the fundamental nature of the Hales-Jewett theo-
rem is that one can easily derive from it its multidimensional version. (This
fact will be especially appreciated by anyone who tried to derive from van
der Waerden’s theorem its multidimensional version.) Let t1, t2, . . . , tm be
m variables and let w(t1, t2, . . . , tm) be a word of length n over the al-
phabet A ∪ {t1, . . . , tm}. (We assume, of course, that the letters ti do
not belong to A.) If, for some n, w(t1, . . . , tm) is a word of length n in
which all of the variables t1, t2, . . . , tm occur, the result of the substitu-
tion

{
w(t1, t2, . . . , tm)

}
(t1,t2,...,tm)∈Am =

{
w(ai1 , ai2 , . . . , aim) : aij ∈ A, j =

1, 2, . . . ,m
}

is called a combinatorial m-space.
Observe now that if we replace the original alphabet A by Am, then a

combinatorial line in Wn(Am) can be interpreted as an m-space in Wnm(A).
Thus, we have the following ostensibly stronger theorem as a corollary of
Theorem 1.26.

Theorem 1.28. Let r, k,m ∈ N. There exists c = c(r, k,m) such that if
n ≥ c, then for any r-coloring of the set Wn(A) of words of length n over the
k-letter alphabet A, there exists a monochromatic m-space.

Theorem 1.28 obviously implies the following multidimensional extension
of Theorem 1.27.

Theorem 1.29. Let F be a finite field. For any r,m ∈ N, there exists
c = c(r,m) such that if V is a vector space over F having dimension at
least c, then for any r-coloring V =

⋃r
i=1 Ci, one of the Ci contains an m-

dimensional affine space.
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We leave it to the reader to derive from Theorem 1.28 the multidimen-
sional van der Waerden theorem and an extension of Theorem 1.27 pertain-
ing to m-dimensional affine subspaces of F n. See Section 2 for a proof of the
Hales-Jewett theorem and for more discussion and applications.

Our next example is the following surprising theorem, which was proved
independently by Sárközy and Furstenberg, and which has interesting links
with spectral theory, Diophantine approximations, combinatorics, and dy-
namical systems. (See [Sa], [Fu2], [Fu3], [Fu4], [KM].)

Theorem 1.30. Let E ⊂ N be a set of positive upper density, and let p(n) ∈
Z[n] be a polynomial with p(0) = 0. Then there exist x, y ∈ E and n ∈ N
such that x− y = p(n).

This result is perhaps more surprising than any of the theorems formu-
lated above. One can surely expect the set of differences of a large set to be
even larger. For example, if, for E ⊂ N, d∗(E) > 0, then it is not hard to
show that the set of differences E−E =

{
x−y : x, y ∈ E

}
is syndetic, i.e. has

bounded gaps. (See, for example, [Fu3], Prop. 3.19, or [Be3], pp. 8–9.) But
there is, a priori, no obvious reason for the set E −E to be so “well spread”
as to nontrivially intersect the set of values taken by any integer polynomial
vanishing at zero. The following dynamical counterpart of Theorem 1.30,
due to Furstenberg, is just as striking. (See [Fu2], Prop. 1.3 and [Fu3], Thm.
3.16.)

Theorem 1.31. For any invertible probability measure preserving system
(X,B, µ, T ), any A ∈ B with µ(A) > 0, and any polynomial p(n) ∈ Z[n] with
p(0) = 0, there exists n ∈ N such that µ(A ∩ T p(n)A) > 0.

Remarks.
1. One can derive Theorem 1.30 from Theorem 1.31 by utilizing Fursten-
berg’s correspondence principle. In the other direction, one can, for example,
mimic the argument that was used above to derive Theorem 1.24 from The-
orem 1.23.
2. One should, of course, view Theorem 1.31 as a refinement of the Poincaré
recurrence theorem. While the classical Poincaré recurrence theorem only
tells us that a typical point returns, under the evolution laws of the dynam-
ical system, to a set of positive volume in the phase space, Theorem 1.31
tells us that this will happen along any prescribed in advance sequence of
“polynomial” times. However, when compared with the Poincaré recurrence
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theorem, Theorem 1.31 is a rather deep result. This is, in particular, man-
ifested by the fact that all the known proofs ot the Theorem 1.31 prove
actually more than stated.

Furstenberg’s proof of Theorem 1.31 utilizes the spectral theorem for
unitary operators. The proof that we have chosen to present here is “softer”
in the sense that it avoids the usage of the spectral theorem and thereby
is susceptible to further generalizations. (See Theorems 4.2.10 and 4.2.13
below.)

We shall need the following useful result, which can be viewed as a Hilbert
space version of the classical van der Corput difference theorem in the theory
of uniform distribution.

Theorem 1.32. (van der Corput trick) Let (un)n∈N be a bounded sequence
in a Hilbert space H. If for every h ∈ N it is the case that

lim
N→∞

1

N

N∑
n=1

〈un+h, un〉 = 0,

then lim
N→∞

∥∥∥ 1

N

N∑
n=1

un

∥∥∥ = 0.

Proof. Observe that for any ε > 0 and any H ∈ N, if N is large enough then

∣∣∣∣∣∣ 1

N

N∑
n=1

un −
1

N

1

H

N∑
n=1

H−1∑
h=0

un+h

∣∣∣∣∣∣ < ε.

But,

lim sup
N→∞

∣∣∣∣∣∣ 1

N

1

H

N∑
n=1

H−1∑
h=0

un+h

∣∣∣∣∣∣2 ≤ lim sup
N→∞

1

N

N∑
n=1

∣∣∣∣∣∣ 1

H

H−1∑
h=0

un+h

∣∣∣∣∣∣2
= lim sup

N→∞

1

N

N∑
n=1

1

H2

H−1∑
h1,h2=0

〈un+h1 , un+h2〉 ≤
B

H
,

where B = supn∈N ‖un‖2. Since H was arbitrary, we are done.
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Proof of Theorem 1.31. Let H = L2(X,B, µ) and let U : H → H be the
unitary operator induced by T :

(Uf)(x) = f(Tx), f ∈ L2(X,B, µ).

Let, for each a ∈ N,

Ha =
{
f : Uaf = f

}
H(a)
erg =

{
f :
∣∣∣∣∣∣ 1

N

N−1∑
n=0

Uanf
∣∣∣∣∣∣→ 0

}
The classical ergodic splitting (with respect to Ua), H = Ha⊕H(a)

erg, leads
to the following, more suitable for our goals, splitting of H into “rational
spectrum” and “totally ergodic” parts. Let

Hrat =
{
f : ∃a ∈ N : Uaf = f

}
=
∞⋃
a=1

Ha

Htot.erg. =
{
f : ∀a ∈ N,

∣∣∣∣∣∣ 1

N

N−1∑
n=0

Uanf
∣∣∣∣∣∣→ 0

}
=
∞⋂
a=1

H(a)
erg

It is easy to check now that H⊥rat = Htot.erg. and that H = Hrat⊕Htot.erg.

Let 1A = f + g, where f ∈ Hrat, g ∈ Htot.erg. We remark that since 1A ≥ 0
and

∫
1Adµ = µ(A) > 0, one has f ≥ 0, f 6= 0. Indeed, f minimizes the

distance from Hrat to 1A, and the function max{f, 0} (which, as is not too
hard to check, also belongs to Hrat) would do at least as well in minimizing
this distance. This remark equally applies, for any a ∈ N, to the orthogonal
projection fa of 1A onto Ha. Note also that

∫
fadµ = µ(A).

We are going to show that limN→∞
1
N

∑N−1
n=0 µ(A ∩ T p(n)A) exists and is

positive. Note that, in view of the orthogonal decomposition 1A = f + g, we
have:

µ(A ∩ T p(n)A) =

∫
(f + g)Up(n)(f + g)dµ =

∫
fUp(n)fdµ+

∫
gUp(n)gdµ.

We shall show first that limN→∞
1
N

∑N−1
n=0

∫
gUp(n)gdµ = 0 (and hence it

will remain to show that

limN→∞
1
N

∑N−1
n=0 µ(A ∩ T p(n)A) = limN→∞

1
N

∑N−1
n=0

∫
fUp(n)fdµ > 0.)
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Note that since g ∈ Htot.erg., one has, for any linear polynomial p(n) with

integer coefficients, limN→∞ ‖ 1
N

∑N−1
n=0 U

p(n)g‖ = 0.
We shall use the van der Corput trick to inductively reduce the situation

to this linear case. Let un = Up(n)g, n ∈ N. We have:

〈un+h, un〉 = 〈Up(n+h)g, Up(n)g〉 = 〈Up(n+h)−p(n)g, g〉.

Notice that, for any fixed h ∈ N, the degree of the polynomial p(n+h)−
p(n) equals deg p(n)−1. Using the fact that strong convergence implies weak
convergence, we have by the induction hypothesis:

lim
N→∞

1

N

N∑
n=1

〈un+h, un〉 = lim
N→∞

1

N

N∑
n=1

〈Up(n+h)−p(n)g, g〉 = 0.

It follows from Theorem 1.31 that limN→∞ ‖ 1
N

∑N−1
n=0 U

p(n)g‖ = 0 and

hence limN→∞
1
N

∑N−1
n=0

∫
gUp(n)gdµ = 0. It remains now to prove that

limN→∞
1
N

∑N−1
n=0

∫
fUp(n)fdµ > 0. Note first that the existence of this limit

is almost obvious. Indeed, since f ∈ Hrat, it is enough to check only the case
when f belongs to one of the Ha, in which case there is practically nothing
to check since, for such f , the sequence Up(n)f , n ∈ N, is periodic.

To see that the limit in question is strictly positive, choose a ∈ N so that
‖f − fa‖ is close to zero (where fa is the orthogonal projection on Ha). Note
now that if n ∈ aN then p(n) is divisible by a, and hence

∫
faU

p(n)fadµ =∫
f 2
adµ ≥ (µ(A))2. This implies that for n ∈ aN,

∫
fUp(n)fdµ is close to

µ2(A), which clearly implies the positivity of the limit

lim
N→∞

1

N

N−1∑
n=0

∫
fUp(n)fdµ = lim

N→∞

1

N

N−1∑
n=0

µ(A ∩ T p(n)A).

�

We will conclude the introductory section here. Each of the examples
above is a small fragment of a much bigger picture. In the subsequent sec-
tions, we shall try to supply more facts and details so that the reader will
be able to see better both the multiple interconnections between various the-
orems of Ergodic Ramsey Theory and the general direction of the flow of
current developments.

Acknowledgement. The author would like to thank Ronnie Pavlov and
Sasha Leibman for their assistance in preparing this survey, and Neil Hind-
man, Emmanuel Lesigne, and Randall McCutcheon for helpful comments on
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the preliminary version of this survey. Special thanks go also to the editors of
this volume, Anatole Katok and Boris Hasselblatt for their infinite patience.

2 Topological dynamics and partition Ramsey theory

In various applications, one would like not only to be able to find certain
types of monochromatic configurations for any finite coloring of a highly
organized structure, such as N or an infinite vector space over a finite field,
but also to know that these configurations are plentiful. There are many
notions of largeness which one can use to measure the abundance of sought-
after configurations. One of these notions is that of syndeticity. A subset S
in N is syndetic if finitely many translates of S cover N, i.e. for some k and
a1, a2, . . . , ak ∈ N, one has

⋃k
i=1(S − ai) = N. (This definition can be easily

adapted to make sense in any semigroup.)
A stronger notion of largeness which we will presently introduce with the

help of IP sets (see Definition 1.9) not only implies syndeticity, but has also
the finite intersection property.

Definition 2.1. A set E ⊆ N is said to be IP∗ if it has nontrivial intersection
with any IP set.

It is not too hard to see that any IP∗ set is syndetic. Indeed, if an IP∗ set
S were not syndetic, then its complement would contain an infinite union of
intervals [an, bn] with bn− an →∞, and it is not hard to show that any such
union of intervals contains an IP set, which leads to a contradiction with the
assumption that S is an IP∗ set.

Let us show now that the family of IP∗ sets has the finite intersection
property. It is enough to prove that if S1, S2 are IP∗ sets, then S1 ∩ S2

is as well. Let E be an arbitrary IP set and consider the partition E =
(E ∩ S1) ∪ (E ∩ Sc1). By Hindman’s theorem (see Theorem 1.10), either S1

or Sc1 has to contain an IP set E1. But, it is clear that it has to be S1,
since S1 is IP∗, and hence S1 ∩ E1 6= ∅, which implies that E1 ⊂ E ∩ S1.
Now, since S2 is also an IP∗ set, we have E1 ∩ S2 6= ∅, which implies that
(E ∩ S1) ∩ S2 = E ∩ (S1 ∩ S2) 6= ∅.

We are going to formulate and prove now the so-called IP van der Waerden
theorem (proved first in [FuW1]) which, in particular, will tell us that the set
of differences of monochromatic arithmetic progressions always to be found
in any finite coloring of Z is an IP∗ set. At the same time, this IP van der
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Waerden theorem is powerful enough to imply not only Theorem 1.20, but
also Theorem 1.29. The proof presented below is taken from [Be5] and is
based on the proof of the multidimensional van der Waerden’s theorem in
[BPT]. We need first to introduce a few more definitions, and some notation.

An F-sequence in an arbitrary space Y is a sequence {yα}α∈F indexed
by the set F of the finite nonempty subsets of N. If Y is a (multiplicative)
semigroup, one says that an F -sequence defines an IP-system if for any α =
{i1, i2, ..., ik} ∈ F , one has yα = yi1yi2 . . . yik . IP-systems should be viewed
as generalized semigroups. Indeed, if α ∩ β = ∅, then yα∪β = yαyβ. We shall
often use this formula for sets α, β satisfying α < β.

We will be working with IP-systems generated by homeomorphisms be-
longing to a commutative group G acting minimally on a compact space X.
(Recall that (X,G) is a minimal dynamical system if for each nonempty open

set V ⊂ X there exist S1, ..., Sr ∈ G so that
r⋃
i=1

SiV = X.)

Theorem 2.2. Let X be a compact topological space and G a commuta-
tive group of its homeomorphisms such that the dynamical system (X,G) is
minimal. For any nonempty open set V ⊆ X, any k ∈ N, any IP-systems
{T (1)

α }α∈F , ..., {T (k)
α }α∈F in G and any α0 ∈ F , there exists α ∈ F , α > α0,

such that V ∩ T (1)
α V ∩ ... ∩ T (k)

α V 6= ∅.

Proof. We fix a nonempty open V ⊆ X and S1, ..., Sr ∈ G with the property
that S1V ∪ S2V ∪ . . . ∪ SrV = X. (The existence of S1, ..., Sr is guaranteed
by the minimality of (X,G).) The proof proceeds by induction on k. The
case k = 1 is almost trivial, but we shall do it in detail to set up the notation
in a way that indicates the general idea.

So, let {Ti}∞i=1 be a fixed sequence of elements in G and {Tα}α∈F the
IP-system generated by {Ti}∞i=1. (This means of course that for any finite
nonempty set α = {i1, i2, ..., im} ⊂ N, one has Tα = Ti1Ti2 · · ·Tim .)

Now we construct a sequence W0,W1, ... of nonempty open sets in X so
that:

(i) W0 = V ;

(ii) T−1
n Wn ⊆ Wn−1,∀n ≥ 1;

(iii) each Wn, n ≥ 1, is contained in one of the sets S1V, S2V, ..., SrV . (We
recall that S1V ∪ S2V ∪ ... ∪ SrV = X.)
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To define W1, let t1, 1 ≤ t1 ≤ r, be such that T1V ∩St1V = T1W0∩St1V 6=
∅; let W1 = T1W0∩St1V . If Wn was already defined, then let tn+1 be such that
1 ≤ tn+1 ≤ r and Tn+1Wn∩Stn+1V 6= ∅, and let Wn+1 = Tn+1Wn∩Stn+1V . By
the construction, each Wn is contained in one of the S1V, ..., SrV , so there will
necessarily be two natural numbers i < j and 1 ≤ t ≤ r such that Wi∪Wj ⊆
StV (pigeonhole principle!). Let U = S−1

t Wj and α = {i+ 1, i+ 2, ..., j}. We
have

T−1
α U = T−1

i+1T
−1
i+2 . . . T

−1
j S−1

t Wj = S−1
t T−1

i+1T
−1
i+2 . . . T

−1
j Wj

⊆ S−1
t T−1

i+1T
−1
i+2 . . . T

−1
j−1Wj−1 ⊆ . . . ⊆ S−1

t T−1
i+1Wi+1 ⊆ S−1

t Wi ⊆ V.

So, U ⊆ TαV and U ⊆ V which implies V ∩ TαV 6= ∅.
Notice that since the pair i < j for which there exists t with the property

Wi ∪Wj ⊆ StV could be chosen with arbitrarily large i, it follows that the
set α = {i+ 1, ..., j} for which V ∩ TαV 6= ∅ could be chosen so that α > α0.

Assume now that the theorem holds for any k IP-systems in G. Fix a
nonempty set V and k + 1 IP-systems {T (1)

α }α∈F , ..., {T (k+1)
α }α∈F . We shall

also fix the homeomorphisms S1, ..., Sr ∈ G (whose existence is guaranteed
by minimality) satisfying S1V ∪ ...∪SrV = G. We shall inductively construct
a sequence W0,W1, ... of nonempty open sets in X and an increasing sequence
α1 < α2 < ... in F so that

(a) W0 = V ,

(b) (T
(1)
αn )−1Wn ∪ (T

(2)
αn )−1Wn ∪ . . . ∪ (T

(k+1)
αn )−1Wn∪ ⊆ Wn−1 for all n ≥ 1,

and

(c) each Wn, n ≥ 1 is contained in one of the sets S1V, ..., SrV .

To define W1, apply the induction assumption to the nonempty open set
W0 = V and IP-systems

{(T (k+1)
α )−1T (1)

α }α∈F , ..., {(T (k+1)
α )−1T (k)

α }α∈F .

There exists α1 ∈ F such that

V ∩ (T
(k+1)
α1 )−1T

(1)
α1 V ∩ . . . ∩ (T

(k+1)
α1 )−1T

(k)
α1 V

= W0 ∩ (T
(k+1)
α1 )−1T

(1)
α1 W0 ∩ . . . ∩ (T

(k+1)
α1 )−1T

(k)
α1 W0 6= ∅.

Applying T
(k+1)
α1 , we get

T (k+1)
α1

W0 ∩ T (1)
α1
W0 ∩ . . . ∩ T (k)

α1
W0 6= ∅.

21



It follows that for some 1 ≤ t1 ≤ r

W1 := T (1)
α1
W0 ∩ T (2)

α1
W0 ∩ . . . ∩ T (k+1)

α1
W0 ∩ St1V 6= ∅.

Clearly, W0 and W1 satisfy (b) and (c) above for n = 1
If Wn−1 and αn−1 ∈ F have already been defined, apply the induc-

tion assumption to the nonempty open set Wn−1 (and the IP-systems

{(T (k+1)
α )−1T

(1)
α }α∈F ,. . ., {(T (k+1)

α )−1T
(k)
α }α∈F) to get αn > αn−1 such that

Wn−1 ∩ (T (k+1)
αn )−1T (1)

αnWn−1 ∩ . . . ∩ (T (k+1
αn )−1T (1)

αnWn−1 6= ∅,

and hence, for some 1 ≤ tn ≤ r,

Wn := T (1)
αnWn−1 ∩ ... ∩ T (k+1)

αn Wn−1 ∩ StnV 6= ∅.

Again, this Wn clearly satisfies the conditions (b) and (c).
Since, by the construction, each Wn is contained in one of the sets

S1V, ..., SrV , there is 1 ≤ t ≤ r such that infinitely many of the Wn are
contained in StV . In particular, there exists i as large as we please and j > i
so that Wi ∪Wj ⊆ StV . Let U = S−1

t Wj and α = αi+1 ∪ ... ∪ αj.
Notice that U ⊆ V , and for any 1 ≤ m ≤ k + 1, (T

(m)
α )−1U ⊆ V . Indeed,

(T
(m)
α )−1U = (T

(m)
αi+1∪...∪αj)

−1S−1
t Wj = S−1

t (T
(m)
αi+1)−1 . . . (T

(m)
αj )−1Wj

⊆ S−1
t (T

(m)
αi+1)−1 . . . (T

(m)
αj−1)−1Wj−1 ⊆ . . . ⊆ S−1

t (T
(m)
αi+1)−1Wi+1 ⊆ S−1

t Wi ⊆ V

It follows that U ∪ (T
(1)
α )−1U ∪ . . . ∪ (T

(n+1)
α )−1U ⊆ V , and this, in turn,

implies V ∩ T (1)
α V ∩ . . . ∩ T (k+1)

α V 6= ∅.

Corollary 2.3. If X is a compact metric space and G a commutative group
of its homeomorphisms, then for any k IP-systems {T (1)

α }α∈F , ..., {T (k)
α }α∈F

in G, any α0 ∈ F , and any ε > 0 there exist α > α0 and x ∈ X such that
the diameter of the set {x, T (1)

α x, ..., T
(k)
α x} is smaller than ε.

Proof. If (X,G) is minimal, then the claim follows immediately from Theo-
rem 2.2. If not, then pass to a minimal, nonempty, closed G-invariant subset
of X. (Such a subset always exists by Zorn’s lemma.)

Corollary 2.4. Under the conditions of Corollary 2.3, one can find, for any
m ∈ N, finite sets α1 < α2 < . . . < αm and x ∈ X such that x and all the
points T

(i1)
α1 x, T

(i2)
α2 x, . . . , T

(im)
αm x, i1, . . . , im ∈ {1, 2, . . . , k} belong to the same

open ball of radius ε.
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Proof. The result follows by simple iteration. Assume that the group gen-
erated by T

(i)
α , i = 1, 2, . . . , k acts on X in a minimal fashion. Let V be an

open ball of radius ε. By Theorem 2.2, for any α0 ∈ F , there exists α1 > α0

such that

V1 = V ∩
k⋂
i=1

(
T (i)
α1

)−1
V 6= ∅.

Applying Theorem 2.2 again, one gets α2 > α1 such that

V2 = V1 ∩
k⋂
i=1

(
T (i)
α1

)−1
V1 = V ∩

k⋂
i1,i2=1

(
T i1α1

T i2α2

)−1
V 6= ∅.

Let Vk be the nonempty set obtained as the result of k iterations of
this procedure. It is easy to see that any x ∈ Vk satisfies the claim of the
Corollary.

The following corollary of Theorem 2.2 is a refinement of the multidimen-
sional van der Waerden theorem.

Corollary 2.5. For any r, d, k ∈ N, any IP sets
(
n

(1)
α

)
α∈F ,

(
n

(2)
α

)
α∈F , . . .,(

n
(k)
α

)
α∈F in N, any finite set F = {u1, u2, . . . , uk} ⊂ Zd and any partition

Z
d =

⋃r
i=1 Ci, there exist i ∈ {1, 2, . . . , r}, α ∈ F and v ∈ Zd such that

v + {n(1)
α u1, n

(2)
α u2, . . . , n

(k)
α uk} ⊂ Ci.

Remark. Taking d = 1, all
(
n

(i)
α

)
α∈F identical and F = {0, 1, . . . , k}, one

obtains the fact that for any finite coloring N =
⋃r
i=1 Ci and any k ∈ N, the

set
{
n ∈ N : for some a ∈ Z, {a, a+n, . . . , a+ (k− 1)n} is monochromatic

}
is IP∗.

Proof of Corollary 2.5. Notice that Corollary 2.3 implies that for any com-
muting homeomorphisms T1, T2, . . . , Tk of a compact space X, any ε > 0 and
any IP sets

(
n

(1)
α

)
α∈F ,

(
n

(2)
α

)
α∈F , . . . ,

(
n

(k)
α

)
α∈F in N, there exists x ∈ X and

α ∈ F such that diam
{
x, T n

(1)
α

1 x, . . . , T n
(k)
α

k x
}
< ε. The desired combinatorial

result follows now by the argument which is practically identical to one used
in the Introduction in the derivation of Theorem 1.20 from Theorem 1.21.

�

Let us show that Theorem 1.29 is also derivable from Theorem 2.2. We
shall find it more convenient to deal with the following equivalent form of
Theorem 1.29.
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Theorem 2.6. Let F be a finite field and VF an infinite vector space over
F . For any finite coloring VF =

⋃r
i=1 Ci and any m ∈ N, there exists a

monochromatic affine m-space, that is, an m-dimensional affine subspace.

Before embarking on the proof of Theorem 2.6, let us briefly explain why
Theorems 1.29 and 2.6 are equivalent. Clearly one has only to show that
Theorem 2.6 implies Theorem 1.29. This follows from the compactness of
the space of r-colorings of VF . Assuming without loss of generality that VF
is countably infinite, observe that, as an abelian groups, VF is isomorphic to
the direct sum F∞ of countably many copies of F :

F∞ =
{
g = (a1, a2, . . .) : ai ∈ F and all but finitely many ai = 0

}
=
∞⋃
n=1

Fn,

where Fn =
{
g = (a1, a2, . . .) : ai = 0 for i > n

} ∼= F ⊕ . . .⊕ F (n times.)
For g = (a1, a2, . . .) ∈ F∞, let |g| be the minimal natural number such

that ai = 0 for all i ≥ |g|. Note that |g| = 0 if and only if g = 0 = (0, 0, . . .).
We will identify the space of r-colorings of VF with Ω = {1, 2, . . . , r}F∞ . For
any pair x = x(g), y = y(g), g ∈ F∞, of elements of Ω, let

ρ(x, y) = inf
n∈N

{
1
n

: x(g) = y(g) for g with |g| < n
}
.

One readily checks that ρ is a metric on Ω with the property ρ(x, y) = 1⇔
x(0) 6= y(0). Moreover, (Ω, ρ) is a compact space, and it is the compactness
of (Ω, ρ) which, as we shall now see, is behind the fact that Theorem 2.6
implies Theorem 1.29.

Assume that Theorem 2.6 holds true but Theorem 1.29 does not. Then,
there exist r,m ∈ N such that for any n ∈ N, there exists an r-coloring
Fn =

⋃r
i=1 Ci with no monochromatic affine m-subspace. Viewing each such

coloring as a map fn : Fn → {1, 2, . . . , r} and extending fn, for each n ∈ N,
arbitrarily to a map gn : F∞ → {1, 2, . . . , r}, we obtain the sequence (gn)n∈N
of elements of the compact space {1, 2, . . . , r}F∞ , which, by compactness, has
a convergent subsequence (gni)i∈N. The limiting coloring g = limi→∞ gni will
also not have monochromatic affine m-subspaces, which contradicts Theo-
rem 2.6.

Proof of Theorem 2.6. Fix m IP-systems
{
g

(i)
α

}
α∈F , i = 1, 2, . . . ,m such

that, for each i, Span
{
g

(i)
α , α ∈ F

}
is an infinite subset in VF . We will show

a stronger fact that, for any partition VF =
⋃r
i=1 Ci, one of the Ci contains
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an affine m-space of the form h + Span{g1, . . . , gm} with gj ∈
{
g

(j)
α

}
α∈F . In

other words, we will show that the set of ordered m-tuples (g1, . . . , gm) such
that, for some h, h+Span{g1, . . . , gm} ⊂ Ci is an IP∗ set in the m-fold direct
sum F∞⊕ . . .⊕F∞ (where the notion of IP∗ is defined in the obvious sense.)

We start with showing that one can always find α1 ∈ F and i ∈ {1, 2, . . . , r}
so that the one-dimensional affine subspace h+

{
cg

(i)
α1 , c ∈ F

}
is contained in

Ci. For h ∈ VF , let Th : Ω → Ω be defined by (Thx)(g) = x(g + h). Clearly
Th is a homeomorphism of Ω for every h ∈ VF . Let ξ ∈ Ω be the element
in Ω corresponding to the partition VF =

⋃r
i=1 Ci, i.e. ξ(g) = i ⇔ g ∈ Ci.

Finally, let X ⊆ Ω be the orbital closure of ξ(g): X =
{
Thξ, h ∈ Vf

}
.

Use now the IP system
{
g

(1)
α

}
α∈F to define, for every c ∈ F , c 6= 0, an IP

system of homeomorphisms T
(c)
α := T

cg
(1)
α
, α ∈ F . In this way, we get |F | − 1

IP systems of commuting homeomorphisms of X. Applying Corollary 2.3 to
the space X and the IP systems T

(c)
α and taking ε < 1, we get a point x1 ∈ X

and α1 ∈ F such that the diameter of
{
T
cg

(1)
α1

, c ∈ F
}

is less than 1. This

implies x1(0) = x1

(
cg

(1)
α1

)
for every c ∈ F . Since the orbit

{
Thξ, h ∈ VF

}
is dense in X, there exists h1 ∈ VF such that

(
Th1ξ

)
(g) and x1(g) agree on

all g satisfying |g| ≤
∣∣g(1)
α1

∣∣. If ξ(h1) = i, then Ci contains the affine line

h1 +
{
cg

(1)
α1 , c ∈ F

}
. (We, of course, took care in choosing α1 so that g

(1)
α1 6= 0,

which is possible in view of our assumptions on
{
g

(i)
α

}
α∈F .) Introducing now

the IP systems T
cg

(2)
α
, c ∈ F, c 6= 0, and applying Corollary 2.4, we will find

x2 ∈ X and α2 > α1 such that

diam
{
T
c1g

(1)
α1

+c2g
(2)
α2

x2 : c1, c2 ∈ F
}
< 1

(again, our assumption allows us to choose α2 so that g
(1)
α1 and g

(2)
α2 are linearly

independent in VF .) Similarly to the argument above, it follows now that

for some h2 ∈ VF the affine 2-space h2 + Span
{
g

(1)
α1 , g

(2)
α2

}
is monochromatic.

After repeating this procedure m − 2 more times, we will get the desired
monochromatic affine m-space.

�

We are going now to give still another proof of van der Waerden’s theorem.
This proof has the advantage that, when properly interpreted, it gives also
a proof of the Hales-Jewett theorem. To stress the affinity between the van
der Waerden theorem and that of Hales-Jewett, this “double” proof is given
in two parallel columns having many identical portions. To ease the presen-
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tation and to emphasize the correspondence between the number-theoretical
and set-theoretical notions, we will abide by the following notational agree-
ment: “+” will be used both for addition in N and for operation of taking
(disjoint) unions of sets, “−” will be used not only for subtraction in N (when
the minuend is not smaller than the subtrahend) but also instead of the set-
theoretical difference “\” in expressions of the form A\B where B ⊆ A. The
sign “·” will be used for both the multiplication in N and for the operation
of taking the Cartesian products (and will often be omitted). The sign “�”
will mean either the usual inequality “≤” or the set-theoretical containment
“⊆”. “0” will mean either zero or the empty set ∅. For any set E, F(E) will
mean the set of finite subsets (including the empty set) of E.

Let (X, ρ) be a compact metric space. Let q ∈ N.

Denote the set of nonnegative in-
tegers by FF . Let T be a continuous
self-mapping of X. Let A be a set
consisting of q pairwise distinct natu-
ral numbers

A = {pi ∈ N : i = 1, . . . , q};

assume without loss of generality that
p1 < p2 < . . . < pq.

Let S be an infinite set, denote
F(S) by FF . Let V = {1, . . . , q} ×
S and let (T a)a∈F(V ) be an action of
F(V ) on X. (That is, T is a mapping
from F(V ) into the set of continuous
self-mappings of X satisfying the fol-
lowing condition: if a ∩ b = ∅, then
T a∪b = T aT b. Put pi = {1, . . . , i},
i = 1, . . . , q, and a = {p1, . . . , pq}.

We are going to prove the following (two) proposition(s):

Proposition 2.7. ([BeL2], Prop. L) For any ε > 0 there exists N ∈ FF , such
that for any x ∈ X there exist n � N , n 6= 0, and a � pq(N − n) such that
for any p ∈ A,

ρ(T a+pnx, T ax) < ε.

Remark 2.8. Let us show how Proposition 2.7 implies the “classical” Hales-
Jewett theorem. (See Theorem 1.26 above.) First, we pass to the combinato-
rial version of Proposition 2.7: let r, q ∈ N; there exists M ∈ N such that for
N = {1, . . . ,M} and V = {1, . . . , q} × N , given an r-coloring of F(V ) one
can find a nonempty n � N and a � {1, . . . , q} × (N − n) such that the set

L =
{
a∪({1}×n), a∪({1, 2}×n), . . . , a∪({1, . . . , q}×n)

}
is monochromatic.

Second, we identify F(V ) with F({1, . . . , q})M , D ↔ (D1, . . . , DM) where
Di = D ∩ ({1, . . . , q} × {j}), j = 1, . . . ,M , and define a mapping ϕ from
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F(V ) to the “M -dimensional cube” Q = {0, . . . , q}M by ϕ(D1, . . . , DM) =
(|D1|, . . . , |DM |). Now, any r-coloring of Q induces an r-coloring of F(V ),
and the ϕ-image of a monochromatic set L as in the assertion above is just
a monochromatic line in Q.

Proof. We will prove this proposition by induction on q. Define B by

B = {pi − p1, i = 2, . . . , q}.

Since B contains q−1 elements, we may assume that the statement to prove
is valid for B, that is, for any ε > 0, there exists N ∈ FF such that for any
x ∈ X there exist n � N , a � (pq − p1)(N − n), such that n 6= 0 and for
every r ∈ B one has ρ(T a+rnx, T ax) < ε.

Let ε > 0. Let k ∈ N be such that among any k + 1 points of X there
are two points at a distance less than ε/2.

Put ε0 = ε/2k. By the induction hypothesis, there exists N0 ∈ FF such
that for any x ∈ X there exist n � N0 and a � (pq − p1) · (N0− n) such that
n 6= 0 and for every r ∈ B one has ρ(T a+rnx, T ax) < ε0.

Let ε1 > 0 be such that the inequality ρ(y1, y2) < ε1 implies the inequality

ρ(T by1, T
by2) < ε/2k

for any b � pqN0. Let N1 ∈ FF be such that N1∩N0 = 0 (this disjointness con-
dition concerns the part of Proposition 2.7 dealing with the Hales-Jewett the-
orem only) and for any x ∈ X there exist n � N1 and a � (pq − p1)(N1 − n)
such that n 6= 0 and for every r ∈ B one has ρ(T a+rnx, T ax) < ε1.

Continue this process: assume that ε0, . . . , εi and N0, . . . , Ni ∈ FF have
been already chosen. Let εi+1 > 0 be such that the inequality ρ(y1, y2) < εi+1

implies the inequality
ρ(T by1, T

by2) < ε/2k

for any b � pq(N0 + . . .+Ni). Let Ni+1 ∈ FF be such that Ni+1 ∩ (N0 ∪ . . .∪
Ni) = 0 (again, this disjointness condition is relevant for the Hales-Jewett
part of Proposition 2.7 only) and for any x ∈ X there exist n � Ni+1 and
a � (pq − p1)(Ni+1 − n), such that n 6= 0 and for every r ∈ B one has
ρ(T a+rnx, T ax) < εi+1.

Continue the process of choosing εi, Ni up to i = k, and put N = N0 +
. . .+Nk.

Now fix an arbitrary point x ∈ X.
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Applying the definition of Nk to the point

yk = T p1Nkx,

find nk � Nk, nk 6= 0, and ak � (pq − p1)(Nk −nk) such that for every r ∈ B
we have

ρ(T rnk+akyk, T
akyk) < εk.

Then, applying the definition of Nk−1 to the point

yk−1 = T p1(Nk+Nk−1)+akx,

find nk−1 � Nk−1, nk−1 6= 0, and ak−1 � (pq− p1)(Nk−1−nk−1) such that for
every r ∈ B we have

ρ(T rnk−1+ak−1yk−1, T
ak−1yk−1) < εk−1.

Continue this process: suppose that we have already found nk, . . . , ni,
ak, . . . , ai. Applying the definition of Ni−1 to the point

yi−1 = T p1(Nk+...+Ni−1)+ak+...+aix,

find ni−1 � Ni−1, ni−1 6= 0, and ai−1 � (pq − p1)(Ni−1 − ni−1) such that for
every r ∈ B we have

ρ(T rni−1+ai−1yi−1, T
ai−1yi−1) < εi−1.

Continue the process of choosing ni, ai up to i = 0.
For every 0 ≤ i ≤ k we have 0 6= ni � Ni and ai � (pq − p1)(Ni − ni);

therefore, for any 0 ≤ i ≤ j ≤ k we
have

p(nj + . . .+ ni) + aj + . . .+ a0

+p1(Nj + . . .+N0 − nj − . . .− n0)
� pq(nj + . . .+ ni+1)

+(pq − p1)(Nj − nj + . . .+N0 − n0)
+p1(Nj + . . .+N0 − nj − . . .− n0)

= pq(N0 + . . .+Nj).
(2.1)

besides, Ni ∩Nl = 0 for i 6= l. There-
fore, for any 0 ≤ i ≤ j ≤ k we have(

p(nj + . . .+ ni) + aj + . . .+ a0

+p1(Nj + . . .+N0 − nj − . . .− n0)
)

∩
(
aj+1 + (p− p1)nj+1

)
= 0.

(2.2)
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And, for any 0 ≤ j ≤ k,

ak + . . .+ a0 + p1(Nk + . . .+N0 − nj − . . .− n0)
� (pq − p1)(Nk − nk + . . .+N0 − n0) + p1(Nk + . . .+N0 − nj − . . .− n0)

� pq(Nk + . . .+N0 − nj − . . .− n0).
(2.3)

Define points xi, i = 0, . . . , k, by

xi = T ak+...+a0+p1(Nk+...+N0−ni−...−n0)x.

We are going to show that for any 0 ≤ i ≤ j ≤ k and any p ∈ A,

ρ(T p(nj+...+ni+1)xj, xi) ≤
ε

2k
(j − i). (2.4)

We will prove this by induction on j − i; when j = i the statement is trivial.
We will derive the validity of (2.4) for i, j, where i < j, from its validity for
i, j − 1.

By the definition of nj,

ρ(T aj+(p−p1)njyj, T
ajyj) < εj,

where
yj = T p1(Nk+...+Nj)+ak+...+aj+1x.

So, by the choice of εj (and (2.1)),

ρ(T p(nj−1+...+ni+1)+aj−1+...+a0+p1(Nj−1+...+N0−nj−1−...−n0)T aj+(p−p1)njyj,
T p(nj−1+...+ni+1)+aj−1+...+a0+p1(Nj−1+...+N0−nj−1−...−n0)T ajyj) < ε/2k.

Using the definition of yj, xj (and (2.2)), we see

T p(nj−1+...+ni+1)+aj−1+...+a0+p1(Nj−1+...+N0−nj−1−...−n0)T aj+(p−p1)njyj
= T p(nj+...+ni+1)+ak+...+a0+p1(Nk+...+N0−nj−...−n0)x = T p(nj+...+ni+1)xj

and

T p(nj−1+...+ni+1)+aj−1+...+a0+p1(Nj−1+...+N0−nj−1−...−n0)T ajyj
= T p(nj−1+...+ni+1)+ak+...+a0+p1(Nk+...+N0−nj−1−...−n0)x = T p(nj−1+...+ni+1)xj−1.

Since, by the induction hypothesis,

ρ(T p(nj−1+...+ni+1)xj−1, xi) ≤
ε

2k
(j − i− 1),
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we obtain (2.4).
By the choice of k, among the k + 1 points x0, . . . , xk there are two, say

xi, xj, 0 ≤ i < j ≤ k, for which ρ(xi, xj) < ε/2. Put

n = nj + . . .+ ni+1,
a = ak + . . .+ a0 + p1(Nk + . . .+N0 − nj − . . .− n0).

Then xj = T ax and

ρ(T a+pnx, T ax) = ρ(T pnxj, xj)
≤ ρ(T pnxj, xi) + ρ(xj, xi) < ε(j − i)/2k + ε/2 ≤ ε.

Furthermore, n � N , n 6= 0 and a � pq(N − n) by (2.3). This proves
Proposition 2.7.

We shall formulate now a polynomial extension of the multidimensional
van der Waerden’s theorem which was obtained in [BeL1]. We leave it to
the reader to formulate the combinatorial equivalent of this result. (See also
Theorems 2.12 and 2.14 below.)

Theorem 2.9. Let (X, ρ) be a compact metric space, let T1, . . . , Tt be com-
muting homeomorphisms of X and let pi,j, i = 1, . . . , k, j = 1, . . . , t, be
polynomials taking on integer values on the integers and vanishing at zero.
Then, for any positive ε, there exist x ∈ X and n ∈ N such that

ρ
(
T
pi,1(n)
1 T

pi,2(n)
2 . . . T

pi,t(n)
t x, x

)
< ε (2.5)

for all i = 1, . . . , k simultaneously. Moreover, the set {n ∈ Z : ∀ε > 0,∃x ∈
X such that ∀i ∈ {1, 2, . . . , k}, (2.5) is satisfied} is an IP∗ set.

We provide now a proof of a special case. Let (X, ρ) be a compact metric
space and let T be a homeomorphism of X. Let ε > 0; we will find x ∈ X
and n ∈ N such that ρ(T n

2
x, x) < ε.

Without loss of generality we will assume that the system (X,T ) is min-
imal. We shall find a sequence x0, x1, x2, . . . of points of X and a sequence
n1, n2, . . . of natural numbers such that

ρ(T (nm+...+nl+1)2

xm, xl) < ε/2 for every l,m ∈ Z+, l < m (2.6)

(where Z+ = {0, 1, 2, . . .}). Since X is compact, for some l < m one will have
ρ(xm, xl) < ε/2; together with (2.6) this will give ρ(T (nm+...+nl+1)2

xm, xm) <
ε.
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Choose x0 ∈ X arbitrarily and put n1 = 1, x1 = T−n
2
1x0. Let ε1 < ε/2

be such that ρ(T n
2
1y, x0) < ε/2 for every y for which ρ(y, x1) < ε1. Using

the “linear” van der Waerden theorem, find y1 ∈ X and n2 ∈ N such that
ρ(y1, x1) < ε1/2 and ρ(T 2n1n2y1, y1) < ε1/2. Put x2 = T−n

2
2y1; then

ρ(T n
2
2x2, x1) = ρ(y1, x1) < ε1/2 < ε/2;

also,
ρ(T 2n1n2+n2

2x2, x1) ≤ ρ(T 2n1n2y1, y1) + ρ(y1, x1) < ε1

and, hence, by the choice of ε1,

ρ(T (n1+n2)2

x2, x0) = ρ(T n
2
1T 2n1+n2

2x2, x0) < ε/2.

Suppose that xm, nm have been found; let us find xm+1, nm+1. Choose
εm, 0 < εm < ε/2, guaranteeing the implication

ρ(y, xm) < εm =⇒ ρ(T (nm+...+nl+1)2

y, xl) < ε/2, l = 0, . . . ,m− 1,

and (using the linear van der Waerden theorem) find ym, nm+1 such that

ρ(ym, xm) < εm/2, ρ(T 2(nm+...+nl+1)nm+1ym, ym) < εm/2, l = 0, . . . ,m− 1.

Putting xm+1 = T−n
2
m+1ym, we obtain

ρ(T 2(nm+...+nl+1)nm+1+n2
m+1xm+1, xm)

≤ ρ(T 2(nm+...+nl+1)nm+1ym, ym) + ρ(ym, xm) < εm, l = 0, . . . ,m− 1

and, hence, by the choice of εm,

ρ(T n
2
m+1xm+1, xm) < ε/2

and
ρ(T (nm+1+...+nl+1)2

xm+1, xl) < ε/2 for l = 0, . . . ,m− 1.

Remark. We leave it to the reader to check that the proof above shows
actually that a number n with the property that, for some x, ρ(T n

2
x, x) < ε

can be chosen from any IP set.
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We are going to formulate now the polynomial extension of the Hales-
Jewett theorem which was obtained in [BeL2]. Like its “linear” special case,
the polynomial Hales-Jewett theorem has many equivalent formulations. The
one we have chosen to present here is a natural extension of Proposition 2.7.

Theorem 2.10. Let (X, ρ) be a compact metric space. For fixed d, q ∈ N, let
PN be the set of subsets of {1, 2, . . . , N}d×{1, 2, . . . , q}. Let T (c), c ∈ PN be a
family of self-mappings of X such that a∩b = ∅ implies T (a∪b) = T (a)T (b).
Then for any x ∈ X and any ε > 0 there exist N ∈ N, a ∈ PN and a
nonempty set γ ⊆ {1, 2, . . . , N} such that a ∩

(
γd × {1, 2, . . . q}

)
6= ∅ and

ρ
(
T
(
a ∪

(
γd × {i}

)
x, T (a)x

)
< ε for every i = 1, 2, . . . , q.

Here is the combinatorial version of Theorem 2.10. We leave it to the
reader to verify that it is indeed equivalent to Theorem 2.10. (In one direc-
tion, the argument is similar to that in Remark 2.8 above. See also [Be3],
pp.45-47 and [BeL2], Prop. 3.3.)

Theorem 2.11. ([BeL2], Thm. PHJ) For any r, d, q ∈ N there exists
N = N(r, d, q) such that for any r-coloring of the set PN of subsets of
{1, 2, . . . , N}d × {1, 2, . . . , q} there exist a ∈ PN and a nonempty set γ ⊆
{1, 2, . . . , N} with a ∩

(
γd × {1, 2, . . . , q}

)
= ∅ and such that the sets

a, a ∪ (γd × {1}), a ∪ (γd × {2}), . . . , a ∪ (γd × {q})

are all of the same color.

We will formulate now some corollaries of the polynomial Hales-Jewett
theorem. The density versions of these results (or, rather, the ergodic coun-
terparts of these density versions) will be discussed in Section 4. The follow-
ing result extends and refines the polynomial van der Waerden theorem.

Theorem 2.12. ([BeL2], Thm. 0.14) For any t,m ∈ N, any polynomial
mapping P : Zt → Z

m satisfying P (0) = 0, any finite set F ⊂ Zt and any
finite coloring χ : Zm → {1, 2, . . . , r}, there is l ∈ {1, 2, . . . , r} such that the
set{

(n1, . . . , nt) : there is a ∈ Zm such that χ
(
a+ P (n1v1, . . . ntvt)

)
= l

for all v = (v1, . . . , vt) ∈ F
}

is an IP∗ set in Zt.
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The following proposition corresponds to the special case t = 2q, m = 1,
P (n1, k1, n2, k2, . . . , nq, kq) =

∑q
i=1 niki and F =

{
(1, 1, 0, . . . , 0), (0, 0, 1, 1, 0,

. . . , 0), . . . , (0, 0, . . . , 0, 0, 1, 1)
}

.

Proposition 2.13. Let
(
n

(1)
i

)
i∈N,
(
k

(1)
i

)
i∈N, . . . ,

(
n

(q)
i

)
i∈N,
(
k

(q)
i

)
i∈N be sequences

in Z and let
(
n

(1)
α

)
α∈F ,

(
k

(1)
α

)
α∈F , . . . ,

(
n

(q)
α

)
α∈F ,

(
k

(q)
α

)
α∈F be (additive) IP

sets generated by these sequences. Then for any finite coloring of Z there
exists a monochromatic set of the form{

a, a+ n(1)
γ k(1)

γ , a+ n(2)
γ k(2)

γ , . . . , a+ n(q)
γ k(q)

γ

}
for some a ∈ N and a finite nonempty γ ⊂ N.

One can also derive from the polynomial Hales-Jewett theorem an ana-
logue of the polynomial van der Waerden theorem which is valid in any
commutative ring. The following corollary of Theorem 2.11 contains the
combinatorial counterpart of Theorem 2.9 as a special case.

Theorem 2.14. ([BeL2], Thm. 0.17) Let W and V be vector spaces over an
infinite field K, let P : W → V be a polynomial mapping with P (0) = 0, and
let F ⊂ W be a finite set. If V =

⋃r
i=1 Ci is a finite coloring of V , then:

(i) There exist a ∈ V and n ∈ K, n 6= 0 such that the set

a+ P (nF ) =
{
a+ P (nv) : v ∈ F

}
is monochromatic.

(ii) For some l ∈ {1, 2, . . . , r} the set{
n ∈ K : there exists a ∈ V such that a+ P (nv) ∈ Ci for all v ∈ F

}
is an IP∗ set.

Observing that the various versions of van der Waerden’s theorem are
linked with recurrence theorems for commuting homeomorphisms of a com-
pact metric space, one is naturally inclined to inquire whether these recur-
rence results can be generalized to a non-commutative situation. The answer,
in general, is NO. (See [Fu3], p. 40 and [BeH2].) The following theorem, due
to A. Leibman ([Le1]), shows that, when the homeomorphisms generate a
nilpotent group, the answer is YES. Note that Leibman’s theorem is, at the
same time, a generalization of the polynomial van der Waerden theorem,
Theorem 2.9 above.
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Theorem 2.15. Let (X, ρ) be a compact metric space, let homeomorphisms
T1, . . . , Tt of X generate a nilpotent group and let pi,j, i = 1, . . . , k, j =
1, . . . , t, be polynomials taking on integer values on the integers and vanishing
at zero. Then, for any positive ε, there exist x ∈ X and n ∈ N such that

ρ
(
T
pi,1(n)
1 T

pi,2(n)
2 . . . T

pi,t(n)
t x, x

)
< ε for all i = 1, . . . , k simultaneously.

To get the feeling of some of the ideas behind the proof of Theorem 2.15 let
us consider the simplest noncommutative situation. Let (X, ρ) be a compact
metric space and let homeomorphisms T and S of X do not commute but
be such that R = [T, S] commute with both T and S; the group G generated
by T and S is then two-step nilpotent. Let ε > 0; our goal is to find x ∈ X
and n ∈ N such that both ρ(T nx, x) < ε and ρ(Snx, x) < ε.

Without loss of generality we will assume that X is minimal with respect
to the action of the groupG. The sequence SnT−n, n ∈ N, inG can be written
as a “polynomial sequence” (ST−1)nRn(n−1)/2. Since the homeomorphisms
ST−1 and R commute, we have, by the polynomial van der Waerden theorem
that, for any δ > 0 there exists y ∈ X such that, for some n ∈ N, one has
ρ(SnT−ny, y) < δ. We will first show that the set of points with this property
is dense in X: for any open set V ⊆ X we will find y ∈ V such that, for some
n ∈ N, both T ny, Sny ∈ V . Since X is minimal with respect to the action of
G and compact, there exist P1, . . . , Pk ∈ G such that

⋃k
i=1 P

−1
i V = X. Let

δ be a Lebesgue number for this cover. For any P = T aSbRc ∈ G we have

P−1SnT−nP = SnT−n[SnT−n, P ] = (ST−1)nRn(n−1)/2[S, T ]an[T, S]−bn

= (ST−1)nRn(n−1)/2−(a+b)n, n ∈ N.

All these “polynomial sequences” lie in the commutative group generated by
ST−1 and R. Thus, by the polynomial van der Waerden theorem, there exist
z ∈ X and n ∈ N such that ρ(P−1

i SnT−nPiz, z) < δ for all i = 1, . . . , k.
Hence, there exists i ∈ {1, . . . , k} such that z ∈ P−1

i V and P−1
i SnT−nPiz ∈

P−1
i V , i = 1, . . . , k. It remains to put y = Piz.

We will now construct a sequence x0, x1, x2, . . . of points of X and a
sequence n1, n2, . . . of positive integers such that

ρ(T nm+...+nl+1xm, xl) < ε/2 and ρ(Snm+...+nl+1xm, xl) < ε/2
for every l,m ∈ Z+, l < m.

(2.7)

Since X is compact, for some l < m we will have ρ(xm, xl) < ε/2; together
with (2.7) this implies ρ(T nm+...+nl+1xm, xm) < ε and ρ(Snm+...+nl+1xm, xm) <
ε.
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Using the polynomial van der Waerden theorem find a point x0 ∈ X and
an integer n1 ∈ N such that ρ(Sn1T−n1x0, x0) < ε/2. Put x1 = T−n1x0, then
ρ(T n1x1, x0) = 0 < ε/2 and ρ(Sn1x1, x0) < ε/2.

Suppose now that xm, nm satisfying (2.7) have been found for all m ≤ k;
we will find xk+1, nk+1. Choose δ, 0 < δ < ε/2, such that ρ(y, xk) < δ
implies ρ(T nk+...+nl+1y, xl) < ε/2 and ρ(Snk+...+nl+1y, xl) < ε/2 for all l =
0, . . . , k − 1. Find yk in the δ/2-neighborhood of xk and nk+1 ∈ N such that
ρ(Snk+1T−nk+1yk, yk) < δ/2. Put xk+1 = T−nk+1yk, then ρ(T nk+1xk+1, xk) <
δ/2 < ε/2 and ρ(Snk+1xk+1, xk) < δ < ε/2. By the choice of δ this implies
ρ(T nk+1+...+nl+1xk+1, xl) < ε/2 and ρ(Snk+1+...+nl+1xk+1, xl) < ε/2 for all l =
0, . . . , k − 1.

We want to conclude this section by discussing a nilpotent version of the
polynomial Hales-Jewett theorem, which was obtained in [BeL4]. But first
we want to give a formulation of a corollary of the polynomial Hales-Jewett
theorem, which will be suggestive of the further, nilpotent generalization.

Write F ′ = F ∪∅ (where F , as before, denotes the set of finite nonempty
subsets of N). Let G be a commutative (semi)group. A mapping P : F ′ → G
is an IP polynomial of degree 0 if P is constant, and, inductively, is an IP
polynomial of degree ≤ d if for any β ∈ F ′ there exists an IP polynomial
DβP : F ′(N \ β)→ G of degree ≤ d− 1 (where F ′(N \ β) is the set of finite
subsets of N \ β), such that P (α ∪ β) = P (α) ∪ (DβP )(α) for every α ∈ F ′
with α ∩ β = ∅. We have the following theorem.

Theorem 2.16. ([BeL2]) Let G be an abelian group of self-homeomorphisms
of a compact metric space (X, ρ) and let P1, P2, . . . , Pk be IP polynomials
mapping F ′ into G and satisfying Pi(∅) = 1G for all i ∈ {1, . . . , k}. Then for
any ε > 0 there exist x ∈ X and a nonempty α ∈ F ′ such that ρ

(
Pi(α)x, x

)
<

ε for i = 1, . . . , k.

It is proved in [BeL2], Thm. 8.3, that if G is an abelian group then
a mapping P : F ′ → G is an IP polynomial of degree ≤ d if and only if
there exists a family

{
g(j1,...,jd)

}
(j1,j2,...,jd)∈Nd of elements of G such that for

any α ∈ F ′ one has P (α) =
∏

(j1,...,jd)∈αd g(j1,...,jd). This characterization of
IP polynomials makes sense in the nilpotent setup as well. Given a nilpotent
group G, let us call a mapping P : F ′ → G an IP polynomial if for some
d ∈ N there exists a family

{
g(j1,...,jd)

}
(j1,...,jd)∈Nd of elements of G and a linear

order < on Nd such that for any α ∈ F ′ one has P (α) =
∏<

(j1,...,jd)∈αd g(j1,...,jd).

(The entries in the product
∏< are multiplied in accordance with the order
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<.) We can formulate now the nilpotent version of the polynomial Hales-
Jewett theorem, which contains many results formulated above, in particular
Theorems 1.29, 2.9 and 2.15, as special cases.

Theorem 2.17. ([BeL4], Thm. 0.24) Let G be a nilpotent group of self-
homeomorphisms of a compact metric space (X, ρ) and let P1, . . . , Pk : F ′ →
G be polynomial mappings satisfying P1(∅) = . . . = Pk(∅) = 1G. Then, for
any ε > 0, there exist x ∈ X and a nonempty α ∈ F ′ such that ρ(Pi(α)x, x) <
ε for all i = 1, 2, . . . , k.

The following corollary of Theorem 2.17 can be viewed as the nilpotent
generalization of Hilbert’s theorem (See Theorems 1.8 and 1.12). It is worth
noting that, unlike Hilbert’s theorem which had an easy proof, the nilpotent
version of it is far from being trivial.

Theorem 2.18. ([BeL4], Thm. 5.5) Let G be an infinite nilpotent group. For

any k, r ∈ N there exist N ∈ N such that for any g
(i)
j ∈ G, 1 ≤ i ≤ k, 1 ≤

j ≤ N , and any r-coloring of G there exist a nonempty set α ⊆ {1, 2, . . . , N}
and infinitely many h ∈ G such that for hi =

∏
j∈α g

(i)
j , i = 1, . . . , k, (where

the entries are multiplied in the natural order of j ∈ N), all the products
hhi1hi2 . . . hil with 0 ≤ l ≤ k and distinct i1, i2, . . . , il are of the same color.

Finally, we formulate a corollary of the nilpotent Hales-Jewett theorem
which may be viewed as an extension of Theorem 1.29. See [BeL4], Thm.
5.9 for yet another nilpotent extension of Theorem 1.29.

Theorem 2.19. ([BeL4], Thm. 5.8) For any r, q, c ∈ N and prime integer
p there exists k ∈ N such that if F is a field of characteristic p and of
cardinality at least k, then for any r-coloring of the group G of q × q upper
triangular matrices over F with unit diagonal, there exist a subgroup H of G
with |Hq| ≥ c and h ∈ G such that the coset hH is monochromatic.

3 Dynamical, combinatorial, and Diophantine appli-
cations of βN

In this section, we shall discuss briefly the Stone-Čech compactification of the
natural numbers, βN, and indicate some of its connections with and applica-
tions to topological dynamics, combinatorics, and the theory of Diophantine
approximations.
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We start with some general definitions and facts. The reader will find
the missing details in [Be3], Section 3, and [Be6]. (See also [HinS] for a com-
prehensive treatment of topological algebra in Stone-Čech compactifications
and applications thereof.)

An ultrafilter p on N is a maximal filter, namely a family of subsets of N
satisfying the following conditions: (the first three of which constitute, for a
nonempty family of sets, the definition of a filter.)
(i) ∅ /∈ p
(ii) A ∈ p and A ⊂ B imply B ∈ p
(iii) A ∈ p and B ∈ p imply A ∩B ∈ p
(iv) (maximality) if r ∈ N and N =

⋃r
i=1 Ai then, for some i ∈ {1, 2, . . . , r},

Ai ∈ p.
The space of ultrafilters on N has a natural topology which turns it into

a universal compactification of N, the so-called Stone-Čech compactification.
(See more on that in [HinS].)

A convenient way of looking at ultrafilters is to identify each ultrafilter p
with a finitely additive {0, 1}-valued probability measure µp on the power set
P(N). This measure µp is naturally defined by the requirement µp(A) = 1
iff A ∈ p and it follows immediately from the conditions (i) through (iv)
above that µp(∅) = 0, µp(N) = 1 and that for any finite disjoint collection

A1, . . . , Ar of subsets of N, one has µp

(⋃r
i=1 Ai

)
=
∑r

i=1 µp(Ai). Without

saying so explicitly, we will always think of ultrafilters as such measures, but
we will prefer to write A ∈ p rather that µp(A) = 1.

Any n ∈ N naturally defines an ultrafilter {A ⊂ N : n ∈ A}. Such ul-
trafilters, which can be viewed as “delta measures” concentrated at points
of N, are called principal and, alas, are the only ones which can be con-
structed without the use of Zorn’s lemma (see [CN], pp. 161-162.) Since
many of the constructions in topological dynamics and ergodic theory use
this or that equivalent of Zorn’s lemma, we will not be bothered by this,
notwithstanding the fact that there is certainly some importance in knowing
which mathematical results are Zorn lemma free.

Suppose that C is a family of subsets of N which has the finite intersection
property. Then there is some p ∈ βN such that C ∈ p for each C ∈ C. Indeed,
let

C̃ = {B ⊂ P(N) : B has the finite intersection property and C ⊂ B}.

Clearly, C̃ 6= ∅ (since C ∈ C̃). Also, the union of any chain in C̃ is a member
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of C̃. By Zorn’s Lemma there is a maximal member p of C̃, which is actually
maximal with respect to the finite intersection property and hence a member
of βN.

To see that non-principal ultrafilters exist, take for example

C = {A ⊂ N : Ac = N \ A is finite}.

Clearly C has the finite intersection property, so there is an ultrafilter p ∈ βN
such that C ∈ p for all C ∈ C. It is easy to see that such p cannot be principal.

For another example, take

D = {A ⊂ N : d(A) = lim
n→∞

|A ∩ {1, 2, . . . , n}|
n

= 1}.

Again, D clearly satisfies the finite intersection property. If p is any ultrafilter
for which D ⊂ p, then any member of p has positive upper density. (If
d(A) = 0, then Ac = (N \ A) ∈ D.)

These examples hint that the space βN is quite large. It is indeed: the
cardinality of βN equals that of P

(
P(N)

)
([GiJ], 6.10(a)).

Let us say now a few words about topology in βN. Given A ⊂ N, let
A = {p ∈ βN : A ∈ p}. The set G = {A : A ⊂ N} forms a basis for the
open sets (and a basis for the closed sets). To see that G is indeed a basis
for a topology on βN observe that if A,B ⊂ N, then A ∩ B = A ∩B. Also,
N = βN and hence

⋃
A∈G A = βN. (Notice also that A ∪ B = A ∪B.) With

this topology, βN satisfies the following.

Theorem 3.1. βN is a compact Hausdorff space.

Proof. Let K be a cover of βN by sets belonging to the base G = {A : A ⊂ N}.
Let C ⊂ P(N) be such that K = {A : A ∈ C}. Assume that K has no finite
subcover. Consider the family D = {Ac : A ∈ C}. There are two possibilites
(each leading to a contradiction):

(i) D has the finite intersection property. Then, as shown above, there
exists an ultrafilter p such that Ac ∈ p for each Ac ∈ D. Since p is an
ultrafilter, Ac ∈ p if and only if A 6∈ p. On the other hand, since K covers βN,
for some element A of the cover p ∈ A, or equivalently A ∈ p, a contradiction.

(ii) D does not have the finite intersection property. Then for some
A1, · · · , Ar ∈ C one has

⋂r
i=1 A

c
i = ∅, or

⋃r
i=1 Ai = N, which implies that⋃r

i=1 Ai = βN. Again, this is a contradiction, as we assumed that K has no
finite subcover.
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As for the Hausdorff property, notice that if p, q ∈ βN are distinct ultrafil-
ters then since each of them is maximal with respect to the finite intersection
property, neither of them is contained in the other. If A ∈ p\q, then Ac ∈ q\p,
which means that A and Ac are disjoint neighborhoods of p and q.

Remark. Being a nice compact Hausdorff space, βN is in many respects
quite a strange object. We mentioned already that its cardinality is that of
P
(
P(N)

)
. It follows that βN is not metrizable, as otherwise, being a compact

and hence separable metric space, it would have cardinality not exceeding
that of P(N). Another curious feature of βN is that any infinite closed subset
of βN contains a copy of all of βN.

Since N = βN, it is natural to attempt to extend the operation of addi-
tion from (the densely embedded) N to βN. Since ultrafilters are measures
(principal ultrafilters being just the point measures corresponding to the el-
ements of N), it comes as no surprise that the extension we look for takes
the form of a convolution. What is surprising, however, is that the algebraic
structure of βN was explicitly introduced only relatively recently (in [CY]).
In the following definition, A − n (where A ⊂ N, n ∈ N) is the set of all m
for which m+ n ∈ A. For p, q ∈ N, define

p+ q =
{
A ⊂ N : {n ∈ N : (A− n) ∈ p} ∈ q

}
.

Remarks.
1. Note that in much of the literature, including [HinS], what we have written
as p+ q is denoted as q + p.
2. It is not hard to check that for principal ultrafilters the operation +
corresponds to addition in N.
3. Despite the somewhat forbiding phrasing of the operation just intro-
duced in set-theoretical terms, the perspicacious reader will notice the direct
analogy between this definition and the usual formulas for convolution of
measures µ, ν on a locally compact group G (cf. [HeR], 19.11):

µ ∗ ν(A) =

∫
G

ν(x−1A) dµ(x) =

∫
G

µ(Ay−1) dν(y).

4. Before checking the correctness of the definition, a word of warning: the
introduced operation + (which will turn out to be well defined and associa-
tive) is badly noncommutative. This seems to contradict our intuition since
(N,+) is commutative and in the case of σ-additive measures on abelian
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semi-groups convolution is commutative. The explanation: our ultrafilters,
being only finitely additive measures, do not obey the Fubini theorem, which
is behind the commutativity of the usual convolution.

Let us show that p+q is an ultrafilter. Clearly ∅ 6∈ p+q. Let A,B ∈ p+q.
This means that {n ∈ N : (A− n) ∈ p} ∈ q and {n ∈ N : (B − n) ∈ p} ∈ q.
Since p and q are ultrafilters, we have:

{n ∈ N : (A ∩B)− n ∈ p}
= {n ∈ N : (A− n) ∈ p} ∩ {n ∈ N : (B − n) ∈ p} ∈ q.

Assume now that A ⊂ N, A 6∈ p+ q. We want to show that Ac ∈ p+ q. Since
A 6∈ p+q, we know that {n ∈ N : (A−n) ∈ p} 6∈ q, or, equivalently, {n ∈ N :
(A−n) ∈ p}c ∈ q. But this is true precisely when {n ∈ N : (Ac−n) ∈ p} ∈ q,
which is the same as Ac ∈ p+ q. It follows that p+ q ∈ βN.

Let us now check the associativity of the operation +. Let A ⊂ N and
p, q, r ∈ βN. One has:

A ∈ p+ (q + r)⇔ {n ∈ N : (A− n) ∈ p} ∈ q + r
⇔ {m ∈ N :

(
{n ∈ N : (A− n) ∈ p} −m

)
∈ q} ∈ r

⇔
{
m ∈ N : {n ∈ N : (A−m− n) ∈ p} ∈ q

}
∈ r

⇔ {m ∈ N : (A−m) ∈ p+ q} ∈ r ⇔ A ∈ (p+ q) + r.

Theorem 3.2. For any fixed p ∈ βN the function λp(q) = p+ q is a contin-
uous self map of βN.

Proof. Let q ∈ βN and let U be a neighborhood of λp(q). We will show that
there exists a neighborhood B of q such that for any r ∈ B, λp(r) ∈ U . Let
A ⊂ N be such that λp(q) = p + q ∈ A ⊂ U . Then A ∈ p + q. Let us show
that the set

B = {n ∈ N : (A− n) ∈ p}
will do for our purposes. Indeed, by the definition of p + q, B ∈ q, or, in
other words, q ∈ B. If r ∈ B then B = {n ∈ N : (A − n) ∈ p} ∈ r. This
means that A ∈ p+ r = λp(r), or λp(r) ∈ A ∈ U .

With the operation +, βN becomes, in view of Theorem 3.2, a compact
left topological semigroup.

Theorem 3.3. If (G, ∗) is a compact left topological semigroup (i.e. for any
x ∈ G the function λx(y) = x ∗ y is continuous) then G has an idempotent.
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Remark. For compact topological semigroups (i.e. with an operation which
is continuous in both variables), this result is due to Numakura, [Nu]; for left
topological semigroups the result is due to Ellis, [E1].

Proof. Let

G =
{
A ⊂ G : A 6= ∅, A is compact, A ∗ A = {x ∗ y : x, y ∈ A} ⊂ A

}
.

Since G ∈ G, G 6= ∅. By Zorn’s Lemma, there exists a minimal element
A ∈ G. If x ∈ A, then x ∗ A is compact and satisfies

(x ∗ A) ∗ (x ∗ A) ⊂ (x ∗ A) ∗ (A ∗ A) ⊂ (x ∗ A) ∗ A ⊂ x ∗ (A ∗ A) ⊂ x ∗ A.

Hence x ∗ A ∈ G. But x ∗ A ⊂ A ∗ A ⊂ A, which implies that x ∗ A = A.
Thus x ∈ x ∗ A, which implies that x = x ∗ y for some y ∈ A. Now consider
B = {z ∈ A : x ∗ z = x}. The set B is closed (since B = λ−1

x ({x})), and we
have just shown that B is nonempty. If z1, z2 ∈ B then z1 ∗ z2 ∈ A ∗ A ⊂ A
and x ∗ (z1 ∗ z2) = (x ∗ z1) ∗ z2 = x ∗ z2 = x. So B ∈ G. But B ⊂ A and
hence B = A. So x ∈ B which gives x ∗ x = x.

For a fixed p ∈ βN we shall call a set C ⊂ N p-big if C ∈ p. The notion
of largeness induced by idempotent ultrafilters is special (and promising) in
that it inherently has a shift-invariance property. Indeed, if p ∈ βN with
p+ p = p then

A ∈ p⇔ A ∈ p+ p⇔ {n ∈ N : (A− n) ∈ p} ∈ p.

A way of interpreting this is that if p is an idempotent ultrafilter, then A is
p-big if and only if for p-many n ∈ N the shifted set (A − n) is p-big. Or,
still somewhat differently: A ⊂ N is p-big if for p-almost all n ∈ N the set
(A− n) is p-big. This is the reason why specialists in ultrafilters called such
idempotent ultrafilters “almost shift invariant” in the early seventies (even
before the existence of such ultrafilters was established).

Remark. The reader is invited to check that if p is an idempotent ultrafilter,
then for any a ∈ N, aN ∈ p. This, in particular, implies that such p cannot
be a principal ultrafilter. (This can also be deduced from the fact that (N,+)
has no idempotents.)
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Each idempotent ultrafilter p ∈ βN induces a “measure preserving dy-
namical system” with the phase space N, σ-algebra P(N), measure p, and
“time” being the “p-preserving” N-action induced by the shift. The two pe-
culiarities about such a measure preserving system are that the phase space
is countable and that the “invariant measure” is only finitely additive and
is preserved by our action not for all, but for almost all instances of “time.”
Notice that the “Poincaré recurrence theorem” trivially holds: If A ∈ p then,
since there are p-many n for which (A − n) ∈ p, one has, for any such n,
A ∩ (A− n) ∈ p.

As we saw in the introduction, it is this defining property of idempotent
ultrafilters (arranged there as Proposition 1.14) which is all that one needs
for the proof of Hindman’s theorem.

The following result gives the “ultrafilter explanation” of Theorem 1.16
in the Introduction. We shall also need it in the proof of Theorem 3.5 below.

Theorem 3.4. For any sequence (xi)i∈N in N there is an idempotent p ∈ βN
such that FS((xi)i∈N) ∈ p.

Sketch of the proof. Let Γ =
⋂∞
n=1 FS((xi)∞i=n). (The closures are taken in

the natural topology of βN.) Clearly, Γ is compact and nonempty. It is not
hard to show that Γ is a subsemigroup of (βN,+). Being a compact left-
topological semigroup, Γ has an idempotent. If p ∈ Γ is an idempotent, then
Γ = Γ 3 p which, in particular, implies FS((xi)

∞
i=1) ∈ p.

�

The space βN has also another natural semigroup structure, namely, the
one inherited from the multiplicative semigroup (N, ·), and is a left topological
compact semigroup with respect to this structure too. In particular, there are
(many) multiplicative idempotents, namely ultrafilters q with the property

A ∈ q ⇔ {n ∈ N : A/n ∈ q} ∈ q

(where A/n := {m ∈ N : mn ∈ A}.) By complete analogy with the proof of
(the additive version of) Hindman’s theorem, one can show that any member
of a multiplicative idempotent contains a multiplicative IP set, namely a set
of finite products of the form

FP (yn)∞n=1 =
{∏
i∈α

yi : α ⊂ N, 1 ≤ |α| <∞
}
.
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It follows that for any finite partition N =
⋃r
i=1 Ci there are i, j ∈

{1, 2, ..., r} such that Ci contains an additive IP set and Cj contains a multi-
plicative IP set. The following theorem due to Hindman shows that one can
always have i = j.

Theorem 3.5. [Hin2] For any finite partition N =
⋃r
i=1 Ci, there exists

i ∈ {1, 2, ..., r} and sequences (xn)∞n=1 and (yn)∞n=1 in N such that

FS
(
(xn)∞n=1) ∪ FP ((yn)∞n=1

)
⊆ Ci.

Proof. Let Γ be the closure in βN of the set of additive idempotents. We
claim that p ∈ Γ if and only if every p-large set A contains an additive IP set.
Indeed, if A ∈ p ∈ Γ, then A is a (clopen) neighborhood of p. It follows that
there exists q ∈ A with q+q = q. Then A ∈ q and by Hindman’s theorem, A
contains an IP set. Conversely, if A is a basic neighborhood of p and for some
(xn)∞n=1, FS((xn)∞n=1) ⊆ A, then by Theorem 3.4, there exists an idempotent
q with FS((xn)∞n=1) ∈ q, which implies A ∈ q, and hence p ∈ Γ.

We will show now that Γ is a right ideal in (βN, ·). Let p ∈ Γ, q ∈ βN,
and let A ∈ p · q. Then {x ∈ N : Ax−1 ∈ p} ∈ q and, in particular,
{x ∈ N : Ax−1 ∈ p} is nonempty. Let x be such that Ax−1 ∈ p. Since p ∈ Γ,
there exists a sequence (yn)∞n=1 with FS((yn)∞n=1) ⊆ Ax−1, which implies
FS((xyn)∞n=1) ⊆ A and so p ·q ∈ Γ. We see that Γ is a compact subsemigroup
in (βN, ·) and hence contains a multiplicative idempotent. To finish the proof,
let ∪ri=1Ci = N and let p ∈ Γ satisfy p · p = p. Let i ∈ {1, 2, ..., r} be such
that Ci ∈ p. Then, since p ∈ Γ, Ci contains an additive IP set. Also, since
p is a multiplicative idempotent, Ci contains a multiplicative IP set. We are
done.

Remarks.
1. For an elementary proof of Theorem 3.5, see [BeH4].
2. Theorem 3.13 below shows that for any finite partition

⋃r
i=1 Ci = N one

of Ci has interesting additional properties. In particular, one of Ci can be
shown to contain in addition to an additive and a multiplicative IP sets, also
arbitrarily long arithmetic and arbitrarily long geometric progressions.

Seeing how much mileage one can get by sheer analogy between idem-
potent ultrafilters and measure preserving systems, it would be natural to
inquire (in a hope that this can lead to interesting new results) whether there
is a class of idempotents which could be likened to a minimal topological sys-
tem (with an invariant measure.)

43



To answer this question, let us extend the shift operation σ : n →
n + 1, n ∈ N, from N to βN, by the rule q → q + 1 (where 1 denotes
the principal ultrafilter of sets containing the integer 1), and consider the
topological dynamical system (βN, σ).

The following theorem establishes the connection between minimal sub-
systems of (βN, σ) and minimal right ideals in (βN,+).

Theorem 3.6. The minimal closed invariant subsets of the dynamical system
(βN, σ) are precisely the minimal right ideals of (βN,+).

Proof. We first observe that closed σ-invariant sets in βN coincide with right
ideals. Indeed if I is a right ideal, i.e. satisfies I+βN ⊆ I, then for any p ∈ I
one has p+ 1 ∈ I +βN ⊆ I, so that I is σ-invariant. On the other hand, if S
is a closed σ-invariant set in βN and p ∈ S, then p+ βN = p+N = p+ N ⊆
S = S, which implies S + βN ⊆ S.

Now the theorem follows from a simple general fact that any minimal
right ideal in a compact left-topological semigroup (G, ·) is closed. Indeed, if
R is a right ideal in (G, ·) and x ∈ R, then xG is compact as the continuous
image of G and is an ideal. Hence the minimal ideal containing x is compact
as well. (The fact that R contains a minimal ideal follows by an application
of Zorn’s lemma to the nonempty family {I : I is a closed right ideal of G
and I ⊆ R}).

Our next step is to observe that any minimal right ideal in (βN,+),
being a compact left-topological semigroup, contains, by Theorem 3.3, an
idempotent.

Definition 3.7. An idempotent p in (βN,+) is called minimal if p belongs
to a minimal right ideal.

Theorem 3.8. Any minimal subsystem of (βN, σ) is of the form (p+βN, σ)
where p is a minimal idempotent in (βN,+).

Proof. It is obvious that, for any p ∈ (βN,+), p + βN is a right ideal. To
see that any minimal right ideal is of this form, take any q ∈ R and observe
that q + βN ⊆ R + βN ⊆ R. Since R is minimal, we get q + βN = R. In
particular, one can take q to be an idempotent.

We shall need the following definition in order to formulate some imme-
diate corollaries of Theorem 3.8.
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Definition 3.9. A set A ⊆ N is piecewise syndetic if it can be represented as
an intersection of a syndetic set with an infinite union of intervals [an, bn],
where bn − an →∞.

Remark. It is not hard to see that A ⊆ N is piecewise syndetic if and only
if there exists a finite set F ⊂ N such that the family{⋃

t∈F (A− t)− n : n ∈ N
}

has the finite intersection property. While this description of piecewise syn-
deticity looks somewhat forbidding, it has the advantage of making sense in
any semigroup. As we shall see in the proof of Corollary 3.10 below, it is this
form of the definition of piecewise syndeticity which is much easier to check
when dealing with minimal idempotents.

Corollary 3.10. Let p be a minimal idempotent in (βN,+).
(i) For any A ∈ p the set B = {n : (A− n) ∈ p} is syndetic.
(ii) Any A ∈ p is piecewise syndetic.

Proof. Statement (i) follows immediately from the fact that (p + βN, σ) is
a minimal system. Indeed, note that the assumption A ∈ p just means
that p ∈ A, i.e. A is a (clopen) neighborhood of p. Now, in a minimal
dynamical system every point x is uniformly recurrent, i.e. visits any of its
neighborhoods V along a syndetic set. This implies that the set {n : p+n ∈
A} = {n : A ∈ p+ n} = {n : A− n ∈ p} is syndetic.

(ii) Since the set B = {n : A − n ∈ p} is syndetic, the union of finitely
many shifts of B covers N, i.e. for some finite set F ⊂ N one has

⋃
t∈F (B−t) =

N. So, for any n ∈ N there exists t ∈ F such that n ∈ B − t, or n + t ∈ B.
By the definition of B this implies (A − (n + t)) ∈ p. It follows that for
any n the set

⋃
t∈F (A − t) − n belongs to p, and consequently, the family

{
⋃
t∈F (A − t) − n : n ∈ N} has the finite intersection property. By the

remark above, this is equivalent to piecewise syndeticity of A.

Remark. It follows from part (ii) of Corollary 3.10 that for any finite par-
tition N =

⋃r
i=1 Ci, one of the Ci is piecewise syndetic, and moreover for any

finite partition of a piecewise syndetic set, one of the cells of the partition
is again piecewise syndetic. One can show that (with the appropriately ar-
ranged definition of piecewise syndeticity) this result holds for any infinite
semigroup. (In the case of the semigroup (N,+), this fact can be proved in
an elementary fashion, and is apparently originally due to T. Brown, [Br].)
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Note that it follows from the definition above that if A is a syndetic set
in N, then, for some finite set F ⊂ N, the set

⋃
t∈F (A− t) contains arbitrarily

long intervals. It follows now from Theorem 1.18 that any piecewise syndetic
set contains arbitrarily long arithmetic progressions. (Since any piecewise
syndetic set has positive upper Banach density, this fact also follows from
Szemerédi’s theorem, but this would be an overkill.)

On the other hand, it is clear that since for any minimal idempotent
p ∈ βN and any finite partition N =

⋃r
i=1 Ci, one of the Ci belongs to p, van

der Waerden’s theorem follows from the following result. The proof below is
a slight modification of the proof in [BeFHK]. (Cf. also [FuK3].)

Theorem 3.11. Let p ∈ (βN,+) be a minimal idempotent and let A ∈ p.
Then A contains arbitrarily long arithmetic progressions.

Proof. Fix k ∈ N and let G = (βN)k. Clearly, G is a compact left topological
semigroup with respect to the product topology and coordinatewise addition.
Let

E0 = {(a, a+ d, ..., a+ (k − 1)d) : a ∈ N, d ∈ N ∪ {0}},
I0 = {(a, a+ d, ..., a+ (k − 1)d) : a, d ∈ N}.

Clearly, E0 is a semigroup in Nk and I0 is an ideal of E0. Let E = clGE0 and
I = clGI0 be, respectively, the closures of E0 and I0 in G. It follows by an easy
argument, which we leave to the reader, that E is a compact subsemigroup
of G and I is a two-sided ideal of E. Let now p ∈ (βN,+) be a minimal
idempotent and let p̃ = (p, p, ..., p) ∈ G. We claim that p̃ ∈ I and that this
implies that each member of p contains a length k arithmetic progression.
Indeed, assume that p̃ ∈ I and let A ∈ p. Then A × ... × A = (A)k is a
neighborhood of p̃. Hence p̃ ∈ (A)k ∩ clGI0 = clG(Ak ∩ I0), which implies
Ak ∩ I0 6= ∅. It follows that for some a, d ∈ N (a, a+ d, ..., a+ (k− 1)d) ∈ Ak
which finally implies {a, a+ d, ..., a+ (k − 1)d} ⊂ A.

So it remains to show that p̃ ∈ I. We check first that p̃ ∈ E. Let
A1, A2, ..., Ak ∈ p. Then A1 × A2 × ... × Ak 3 p̃. If a ∈

⋂k
i=1 Ai then

(a, a, ..., a) ∈ (A1 × A2 × ...× Ak) ∩ E0 which implies p̃ ∈ E.
Now, since p is a minimal idempotent, there is a minimal right ideal R of

(βN,+) such that p ∈ R. Since p̃ ∈ E, p̃+E is a right ideal of E and there is
a minimal right ideal R̃ of E such that R̃ ⊆ p̃+E. Let q̃ = (q1, q2, ..., qk) be an
idempotent in R̃. Then q̃ ∈ p̃+E and for some s̃ = (s1, s2, ..., sk) in E we get
q̃ = p̃+ s̃. We shall show now that p̃ = q̃+ p̃. Indeed, from q̃ = p̃+ s̃ we get,
for each i = 1, 2, ..., k, qi = p+si. This implies qi ∈ R and since R is minimal,
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qi + βN = R. Hence p ∈ qi + βN. Let , for each i = 1, 2, ..., k, ti ∈ βN be
such that p = qi + ti. Then qi + p = qi + qi + ti = qi + ti = p and so we
obtained p̃ = q̃ + p̃.

To finish the proof, we observe that p̃ = q̃ + p̃ implies p̃ ∈ q̃ + E = R̃
which, in its turn, implies p̃ ∈ I (since, as it is not hard to see, any minimal
right ideal is contained in a two-sided ideal). We are done.

Definition 3.12. A set A ⊆ N is called additively (respectively, multiplica-
tively) central if there is a minimal idempotent p ∈ (βN,+) (respectively,
p ∈ (βN, ·)), such that A ∈ p.

As theorems above indicate, central sets are an ideal object for Ramsey-
theoretical applications. For example, central sets in (N,+) not only are
large (i.e. piecewise syndetic) but also are combinatorially rich and, in partic-
ular, contain IP sets and arbitrarily long arithmetic progressions. Similarly,
the multiplicative central sets in (N, ·) (namely, the members of minimal
idempotents in (βN, ·)) are multiplicatively piecewise syndetic, contain fi-
nite products sets (i.e. the multiplicative IP sets), arbitrarily long geometric
progressions etc.

The following theorem obtained in collaboration with N. Hindman may
be viewed as an enhancement of Theorem 3.5 above.

Theorem 3.13. ([BeH1], p. 312) For any finite partition N =
⋃r
i=1 Ci, one

of Ci is both additively and multiplicatively central.

Sketch of the proof. Let M = cl{p : p is a minimal idempotent in (βN,+)}.
Then one can show that M is a right ideal in (βN, ·) (see [BH1], Theorem
5.4, p.311). Let R ⊆ M be a minimal right ideal and pick an idempotent
q = q · q in R. Let i ∈ {1, 2, ..., r} be such that Ci ∈ q. Since q is a minimal
idempotent in (βN, ·), Ci is central in (N, ·). Since Ci ∈ q and q ∈M , there is
some minimal idempotent p in (βN,+) with Ci ∈ p. Hence Ci is also central
in (N,+).

�

The following theorem supplies a useful family of examples of additively
and multiplicatively central sets in N.

Theorem 3.14. ([BeH4], Lemma 3.3) For any sequence (an)∞n=1 and an in-
creasing sequence (bn)∞n=1 in N,

⋃∞
n=1{an, an+1, an+2, ..., an+bn} is additively

central and
⋃∞
n=1{an · 1, an · 2, ..., an · bn} is multiplicatively central.
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The original definition of central sets in (N,+), due to H. Furstenberg, was
made in the language of topological dynamics. Before introducing Fursten-
berg’s definition of centrality, we want first to recall some relevant dynamical
notions.

Given a compact metric space (X, d), a continuous map T : X → X and
not necessarily distinct points x1, x2 ∈ X, one says that x1, x2 are proximal,
if for some sequence nk →∞ one has d(T nkx1, T

nkx2)→ 0.
A point which is proximal only to itself is called distal. In case all the

points of X are distal T is called a distal transformation and (X,T ) is called
a distal system.

Recall that a point x in a dynamical system (X,T ) is called uniformly
recurrent if for any neighborhood V of x the set {n : T nx ∈ V } is syndetic.
Since in a minimal system any point is uniformly recurrent and since any
compact topological system has a minimal subsystem, any topological system
has a uniformly recurrent point. A stronger statement, due to J. Auslander
([A]) and R. Ellis ([E2]) says that in a dynamical system on a compact metric
space, any point is proximal to a uniformly recurrent point. (Note that this,
in particular, implies that any distal point is uniformly recurrent.)

We are now ready to formulate Furstenberg’s original definition of cen-
tral sets in (N,+). For the proof of the equivalence of this definition to
Definition 3.12 above, see Theorem 3.22.

Definition 3.15. (see [Fu3], p.161.) A subset S ⊆ N is a central set if there
exists a system (X,T ), a point x ∈ X, a uniformly recurrent point y proximal
to x, and a neighborhood Uy of y such that S = {n : T nx ∈ Uy}.

In order to prove the equivalence of the two definitions of centrality, we
need to introduce first the notion of convergence along ultrafilters. As we
shall see, this notion allows one to better understand distality, proximality,
and recurrence in topological dynamical systems. We would like to point out
that some proofs involving ultrafilters are similar to known proofs involving
the so-called Ellis enveloping semigroup. This is not surprising in view of
the fact that the Ellis semigroup is a particular type of compactification and,
as such, is in many respects similar to the universal object, the Stone-Čech
compactification. In particular, it allows one to much more easily deal with
combinatorial applications of topological dynamics.

Given an ultrafilter p ∈ βN and a sequence (xn)n∈N in a topological space
X, one writes p-limn∈N xn = y if, for every neighborhood U of y, one has
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{n : xn ∈ U} ∈ p. It is easy to see that if X is a compact Hausdorff space,
then p-limn∈N xn exists and is unique for any sequence (xn)n∈N in X.

Theorem 3.16. Let X be a compact Hausdorff space and let p, q ∈ βN.
Then for any sequence (xn)n∈N in X one has

(q + p)-lim
r∈N

xr = p-lim
t∈N

q-lim
s∈N

xs+t. (3.1)

In particular, if p is an idempotent, and q = p, one has

p-lim
r∈N

xr = p-lim
t∈N

p-lim
s∈N

xs+t.

Proof. Let x = (q + p)-limr∈N xr. Given a neighborhood U of x we have
{r : xr ∈ U} ∈ q + p. Recalling that a set A ⊆ N is a member of ultrafilter
q + p if and only if {n ∈ N : (A− n) ∈ q} ∈ p, we get

{t : ({s : xs ∈ U} − t) ∈ q} = {t : {s : xs+t ∈ U} ∈ q} ∈ p

This means that, for p-many t, q-lims∈N xs+t ∈ U and we are done.

Proposition 3.17. Let (X,T ) be a topological system and let x ∈ X be an
arbitrary point. Given an idempotent ultrafilter p ∈ βN, let p-limn∈N T

nx =
y. Then p-limn∈N T

ny = y. If x is a distal point (i.e. x is proximal only to
itself) then p-limn∈N T

nx = x.

Proof. Applying Theorem 3.16 (and the fact that p+ p = p), we have

p-lim
n∈N

T ny = p-lim
n∈N

T n p-lim
m∈N

Tmx = p-lim
n∈N

p-lim
m∈N

Tm+nx = p-lim
n∈N

T nx = y.

If x is a distal point, then the relations p-limn∈N T
nx = y = p-limn∈N T

ny
clearly imply x = y and we are done.

Remark. Note that Proposition 3.17 implies that a continuous distal self-
map T of a compact metric space is onto. It follows that T is invertible and
T−1 is also distal.
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Let R be a minimal right ideal in βN. By Theorem 3.8 above, (R, σ),
where σ : p → p + 1, is a minimal (nonmetrizable) system. Given a topo-
logical system (X,T ) and a point x ∈ X, let ϕ : R → X be defined
by ϕ(p) = p-limn∈N T

nx. Observe that if the set Y ⊆ X is defined by
Y =

{
p-limn∈N T

nx : p ∈ R
}

, then the following diagram is commutative:

R
σ−→ R

ϕ ↓ ↓ ϕ
Y

T−→ Y

It follows that (Y, T ) is a minimal system. We will use this observation
in the proof of the following result.

Proposition 3.18. If (X,T ) is a minimal system then for any x ∈ X and
any minimal right ideal R in βN there exists a minimal idempotent p ∈ R
such that p-limT nx = x.

Proof. By the observation above, X = {p-limn∈N T
nx, p ∈ R}. It follows

that the set Γ = {p ∈ R : p-limn∈R T
nx = x} is nonempty and closed. We

claim that Γ is a semigroup. Indeed, if p, q ∈ Γ, one has :

(p+ q)-lim
n∈N

T nx = q-lim
n∈N

T n p-lim
m∈N

Tmx = x.

By Theorem 3.3, Γ contains an idempotent which has to be minimal since it
belongs to R. We are done.

We shall need the following simple fact in the proofs below. The proof is
immediate and is left as an exercise for the reader.

Theorem 3.19. Let (X,T ) be a topological system, R a minimal right ideal
in βN, and let x ∈ X be a point in X. The following are equivalent:

(i) x is uniformly reccurent;
(ii) there exists a minimal idempotent p ∈ R such that p-limn∈N T

nx = x.

It follows from Proposition 3.17 that for any topological system (X,T ), any
x ∈ X, and any idempotent ultrafilter p, the points x and y = p-limn∈N T

nx
are proximal. (If (X,T ) is a distal system then y = x.) The following
theorem gives a partial converse of Proposition 3.17.

50



Theorem 3.20. If (X,T ) is a topological system and x1, x2 are proximal,
not necessarily distinct points and if x2 is uniformly reccurent, then there
exists a minimal idempotent p ∈ βN such that p-limn∈N T

nx1 = x2.

Proof. Let I = {p ∈ βN : p-limn∈N T
nx1 = p-limn∈N T

nx2}. It is not hard
to see that I is a nonempty closed subset of βN. One immediately checks
that I is a right ideal. Let R be a minimal right ideal in I. Since x2 is uni-
formly recurrent, its orbital closure is a minimal system. By Proposition 3.18,
there exists a minimal idempotent p ∈ R such that p-limT nx2 = x2. Then
p-limn∈N T

nx1 = p-limn∈N T
nx2 = x2 and we are done.

One can give a similar proof to the following classical result due to J. Aus-
lander [A] and R. Ellis [E2].

Theorem 3.21. Let (X,T ) be a topological system. For any x ∈ X there
exists a uniformly recurrent point y in the orbital closure {T nx}n∈N , such
that x is proximal to y. Moreover, for any minimal right ideal R ⊂ βN there
exists a minimal idempotent p ∈ R such that p-limn∈N T

nx = y.

Proof. Let R be a minimal ideal in βN and let p be a (minimal) idempotent
in R. Let y = p-limn∈N T

nx. Clearly, y belongs to the orbital closure of x.
By Proposition 3.17, the points x and y are proximal. By Theorem 3.19, y
is uniformly recurrent. We are done.

We are in position now to establish the equivalence of two notions of
central that were discussed above.

Theorem 3.22. The following properties of a set A ⊆ N are equivalent:
(i) (cf. [Fu3], Definition 8.3) There exists a topological system (X,T ),

and a pair of (not necessarily distinct) points x, y ∈ X where y is uniformly
recurrent and proximal to x, such that for some neighborhood U of y one has:

A = {n ∈ N : T nx ∈ U}

(ii) (See Definition 3.12 above, see also [BeH1], Definition 3.1) There
exists a minimal idempotent p ∈ (βN,+) such that A ∈ p.

Proof. (i)⇒ (ii) By Theorem 3.20, there exists a minimal idempotent p, such
that p-limn∈N T

nx = y. This implies that for any neighborhood U of y the
set {n ∈ N : T nx ∈ U} belongs to p.
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(ii) ⇒(i) The idea of the following proof is due to B. Weiss. Let A be
a member of a minimal idempotent p ∈ βN. Let X = {0, 1}Z, the space of
bilateral 0-1 sequences. Endow X with the standard metric, which turns it
into a compact space:

d(ω1, ω2) = inf
{

1
n+1

: ω1(i) = ω2(i) for |i| < n
}

Let T : X → X be the shift operator: T (ω)(n) = ω(n + 1). Then T
is a homeomorphism of X and (X,T ) is a topological dynamical system.
Viewing A as a subset of Z, let x = 1A ∈ X. Finally, let y = p-limn∈N T

nx.
By Proposition 3.17, x and y are proximal. Also, since p is minimal, y is, by
Theorem 3.19, a uniformly recurrent point. We claim that y(0) = 1. Indeed,
define U = {z ∈ X : z(0) = y(0)}, and note that, since y = p-limn∈N T

nx and
A ∈ p, one can find n ∈ A such that T nx ∈ U . But since x = 1A, (T nx)(0) =
1. But then, given n ∈ Z, we have: T nx ∈ U ⇔ (T nx)(0) = 1 ⇔ x(n) =
1⇔ n ∈ A. It follows that A = {n ∈ Z : T nx ∈ U} and we are done.

Let (X,T ) be a topological system. In [Fu3], a point x ∈ X is called IP∗

recurrent if for any neighborhood U of x, the set
{
n ∈ N : T nx ∈ U

}
is an

IP∗ set. It is easy to see that a point x is IP∗ recurrent if and only if for any
idempotent p ∈ βN, one has p-limn∈N T

nx = x. Note that the property of a
point x being IP∗ recurrent is much stronger than that of uniform recurrence
(which, by Theorem 3.19, is equivalent to the fact that for some minimal
idempotent p, one has p-limn∈N T

nx = x.) While, in a minimal system,
every point is uniformly recurrent, there are minimal systems having no IP∗

recurrent points. For example, any minimal topologically weakly mixing
system has this property. (See [Fu3], Theorem 9.12.) The following theorem
shows that distal points (and no others) are IP∗ recurrent.

Theorem 3.23. Let (X,T ) be a dynamical system and x ∈ X. The following
are equivalent:

(i) x is a distal point;
(ii) x is IP∗ recurrent.

Proof. (i) ⇒ (ii). By Proposition 3.17, for any idempotent p, the points x
and p-limn∈N T

nx are proximal. Since x is distal, this may happen only if
x = p-limT nx. But this means that x is an IP∗ recurrent point.

(ii) ⇒ (i). If x is not distal, then there exists y 6= x, such that x and y
are proximal. But then, by Theorem 3.20, there exists an idemponent p such
that p-limT nx = y. Since y 6= x, this contradicts (ii).

52



We shall conclude this section with some Diophantine applications of
distal minimal systems. The results which we are going to describe can
be viewed as enhancements of classical theorems due to Kronecker, Hardy–
Littlewood, and Weyl, and will be based on the following characterization of
distal systems. A set E ⊂ N is called IP∗+ if it is a translation of an IP∗ set.

Theorem 3.24. Assume that (X,T ) is a minimal system. Then it is distal
if and only if for any x ∈ X and any open set U ⊆ X the set {n : T nx ∈ U}
is IP∗+.

Proof. Assume that (X,T ) is distal. By minimality, there exists n0 ∈ N such
that T n0x ∈ U . By Theorem 3.23, the set {n : T n(T n0x) ∈ U} is IP∗ which,
of course, implies that the set {n : T nx ∈ U} is IP∗+.

Assume now that for any x1, x2 and a neighborhood U of x2 the set
{n : T nx1 ∈ U} is IP∗+. We will find it convenient to call an IP∗+ set A ⊆ N
proper if A is not IP∗ (i.e. A is a nontrivial shift of an IP∗ set and, moreover,
this shifted IP∗ set is not IP∗). If T were not distal, then for some dis-
tinct points x1, x2 and idempotents p, q one would have: p-limn∈N T

nx1 = x2,
q-limn∈N T

nx2 = x1 and also p-limn∈N T
nx2 = x2, q-limn∈N T

nx1 = x1 (see
Theorem 3.20 and Proposition 3.17). Let U be a small enough neighborhood
of x2. Then, since p-limn∈N T

nx1 = x2, the set S = {n : T nx1 ∈ U} is a mem-
ber of p, and hence cannot be a proper IP∗+ set. But, since q-limn∈N T

nx1 =
x1, the set S cannot be an improper IP∗+ set (that is, an IP∗ set) either: if U
is small enough, S /∈ q. So T has to be distal. We are done.

The following theorem was obtained by Hardy and Littlewood in [HaL]
and may be viewed as a polynomial extension of a similar “linear” theorem
due to Kronecker ([Kro].)

Theorem 3.25. If the numbers 1, α1, ..., αk are linearly independent over Q,
then for any d ∈ N and any kd intervals Ilj ⊂ [0, 1], l = 1, ..., d; j = 1, ..., k
the set

Γdk = {n ∈ N : nlαj mod 1 ∈ Ilj, l = 1, ..., d; j = 1, ..., k}

is infinite.

In 1916, H. Weyl ([Weyl]) introduced the notion of uniform distribution
and obtained many strong results extending and enhancing the earlier work
of Kronecker, Hardy–Littlewood and others on Diophantine approximations.
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Perhaps the most famous result obtained in [Weyl] was the theorem on uni-
form distribution of the sequence p(n) (mod 1), n = 1, 2, . . ., where p(n) is
a real polynomial having at least one irrational coefficient other than the
constant term. This theorem also admits a nice ergodic proof, via the study
of a class of affine transformations of the torus, due to Furstenberg ([Fu1]).

In connection to the Hardy–Littlewood theorem, Weyl was able to show
in [Weyl] that the set Γdk has positive density equal to the product of the
lengths of Iij. This also can be shown by using the dynamical approach of
Furstenberg. In the following theorem, we show that the affine transforma-
tions of the kind treated by Furstenberg in [Fu1] can also be utilized to prove
the following strengthening of the Hardy–Littlewood theorem.

Theorem 3.26. Under the assumptions and notation of Theorem 3.25, the
set Γdk is IP∗+.

Proof. To make the formulas more transparent we shall put d = 3. It will be
clear that the same proof gives the general case.

We start with the easily checkable claim that if Tα : T3 → T
3 is defined

by Tα(x, y, z) = (x + α, y + 2x + α, z + 3x + 3y + α) then T nα (0, 0, 0) =
(nα, n2α, n3α). This transformation T is distal (easy) and minimal. The last
assertion can actually be derived from the case k = 1 of Hardy–Littlewood
theorem above, but also can be proved directly. (For example, this fact is
a special case of Lemma 1.25, p.36 in [Fu3]). Our next claim is that if the
numbers 1, α1, α2, ..., αk are linearly independent over Q, then the product
map T = Tα1 × · · · × Tαk (acting on T3k) is distal and minimal as well. (The
distality is obvious, and the minimality follows, again, from an appropriately
modified Lemma 1.25 in [Fu3]). By minimality of T , the orbit of zero in T3k

is dense, and this, together with Theorem 3.24, gives the desired result.

We conclude this section by formulating a general result which may be
proved by refining the techniques used above.

Theorem 3.27. If real polynomials p1(t), p2(t), ..., pk(t) have the property
that for any non-zero vector (h1, h2, ..., hk) ∈ Z

k the linear combination∑k
i=1 hipi(t) is a polynomial with at least one irrational coefficient other than

the constant term then for any k subintervals Ij ⊂ [0, 1], j = 1, ..., k, the set

{n ∈ N : pj(n) mod 1 ∈ Ij, j = 1, ..., k}

is IP∗+.
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4 Multiple recurrence

One of the common features of the topological multiple recurrence results
which were discussed in the previous sections is that they have streamlined,
and often relatively short, proofs. In particular, in proving these theorems,
one does not have to analyze and distinguish between various types of dy-
namical behavior which the topological system may possess. In other words,
the proofs evolve without taking into account the possibly intricate structure
of the system. The situation with measure-theoretical multiple recurrence
is, at least at present, quite different. All of the known proofs of dynamical
theorems such as the ergodic Szemerédi theorem and other more recent and
stronger multiple recurrence results, which will be discussed in this section,
are complicated by the fact that systems with different types of dynamical
behavior require different types of arguments. Yet, these proofs have a cer-
tain (and, in the opinion of the author, quite beautiful) structure which, in
some “big” sense, is the same in different proofs.

Our plan for this section is as follows. In subsection 4.1, we shall analyze
the proof of Furstenberg’s ergodic Szemerédi theorem, and, in particular,
provide complete proofs of some important special cases.

In subsection 4.2, we will give an overview of (the proofs of) the major
multiple recurrence results (as well as their density counterparts) which have
appeared since the publication of Furstenberg’s groundbreaking paper [Fu2].
An attempt will be made to emphasize the common features of these proofs
and to amplify the subtle points. The flow of the discussion in subsection
4.2 will eventually lead us to some quite recent results and natural open
problems.

4.1 Furstenberg’s ergodic Szemerédi theorem

This subsection is devoted to the thorough discussion of the proof of Fursten-
berg’s ergodic Szemerédi theorem, which corresponds to the case Ti = T i in
Theorem 1.24 formulated in the introduction.

Theorem 4.1.1. ([Fu2]) For any probability measure preserving system (X,B,
µ, T ), any A ∈ B with µ(A) > 0 and any k ∈ N, there exists n ∈ N such that
µ(A ∩ T−nA ∩ . . . ∩ T−knA) > 0.

Actually, we do not know how to prove Theorem 4.1.1 without proving,
at least superficially, a little bit more. (The situation here is analogous to
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what we encountered when discussing and proving the Sárközy-Furstenberg
theorem – see Theorem 1.31 and the subsequent remarks.)

Here is the version of Theorem 4.1.1 which we will find convenient to
work with.

Theorem 4.1.2. For any probability measure preserving system (X,B, µ, T ),
any A ∈ B with µ(A) > 0, and any k ∈ N, one has:

lim inf
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−nA ∩ . . . ∩ T−knA) > 0

Remark 4.1.3. As a matter of fact, the result proved by Furstenberg in
[Fu2] establishes that

lim inf
N−M→∞

1

N −M

N−1∑
n=M

µ(A ∩ T−nA ∩ . . . ∩ T−knA) > 0.

This implies (via the Furstenberg correspondence principle) not only that any
set of positive upper density in N contains arithmetic progressions but that
the differences of these progressions form a syndetic set. This fact, in turn,
follows from a much stronger IP Szemerédi theorem proved by Furstenberg
and Katznelson in [FuK3]. (See Theorems 4.2.14 and 4.2.15 below.) One of
the reasons we have chosen to deal with the formulation as in Theorem 4.1.2
is that it has a simpler proof which nevertheless will allow us to stress the
main ideas and will naturally serve as the basis for a discussion of possible
extensions.

There are a few assumptions that we may make without loss of generality.
First, we can assume that the measure µ is non-atomic. (This follows

from the fact that the atoms of µ generate an invariant sub-σ-algebra, and
Theorems 4.1.1 and 4.1.2 are trivially satisfied in the case of atomic measure
spaces.)

Second, we can assume that the space (X,B, µ) is Lebesgue, i.e. is isomor-
phic to the unit interval with Lebesgue measure. Indeed, given the set A ∈ B,
we can pass, if needed, to a T -invariant separable sub-σ-algebra of B with
respect to which all of the functions fn = 1A(T nx) and their finite products
are measurable. By Caratheódory’s theorem, (see [Roy], Chap. 15, Theorem
4) any separable atomless measure algebra (X,B, µ) with µ(X) = 1 is iso-
morphic to the measure algebra L induced by the Lebesgue measure on the
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unit interval. This isomorphism carries T into a Lebesgue-measure preserv-
ing isomorphism of L, which by the classical theorem due to von Neumann
(see [Roy], Ch. 15, Th. 20) admits realization as a point mapping.

Finally, we can assume that the measure preserving systems that we are
dealing with are invertible. Indeed, assuming the invertibility of the measure
preserving transformations occurring in the formulations of multiple recur-
rence theorems such as Theorem 1.24 or Theorem 4.1.2, not only makes the
proofs more convenient, but also is sufficient for combinatorial applications.
On the other hand, it is not hard to show that in the case of measure pre-
serving actions of commutative semigroups with cancellation, the general
case follows from the invertible one. See, for example, [Fu3], Ch. 7, Section
4.

These remarks apply also to the other multiple recurrence results formu-
lated below, and we will tacitly keep the above assumptions throughout the
rest of this survey.

We could also assume that the measure preserving transformation T in the
formulation of Theorems 4.1.1 and 4.1.2 is ergodic. Despite the fact that this
would make some of the arguments somewhat simpler, we have chosen not
to do so since, in more general situations such as, say, the multidimensional
ergodic Szemerédi theorem (Theorem 1.24 above), one can assume only that
one of the transformations involved is ergodic, which does not help things too
much. We will however allow ourselves to assume ergodicity of T in dealing
with a particular case of Theorem 4.1.2, namely the case k = 2, where, as
we shall see below, one can thereby get a short proof via a special argument.

To get a better insight we begin by discussing some pertinent special
cases.

Theorem 4.1.2 is clearly trivial if T is periodic, i.e. if for some m, Tm = Id.
The next case, in order of complexity, is that of T being almost perioidic,
say a translation by an irrational α on the unit circle. Let ‖x‖ denote the
distance from a real number x to the nearest integer. If α is irrational,
then, as it is easy to see, for any ε > 0, the set {n ∈ Z : ‖nα‖ < ε} is
syndetic. (It is actually IP∗.) Hence for a syndetic set of n, the operator
T n is ε-close to the identity operator (in the strong topology on the space
of operators.) It follows that, in this case, for any ε > 0 the set

{
n :∣∣µ(A∩ T−nA∩ . . .∩ T−knA)− µ(A)

∣∣ < ε
}

is syndetic, which is clearly more
than enough for our purposes.

A slightly more general class of measure preserving systems, for which a
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similar argument works, is the class of so-called compact systems (another
term: systems with discrete spectrum.) These are defined by the requirement
that any f ∈ L2(X,B, µ) is compact, i.e. the closure of the orbit {T nf}n∈Z
in L2 is compact. To see that this is indeed only a slightly more general
situation, note that one can show (see [HalN], Theorem 4) that if (X,B, µ, T )
is a compact ergodic system, then it is conjugate to a translation on a compact
abelian group. Now, if (X,B, µ, T ) is a compact system and A ∈ B with
µ(A) > 0, then, as before, the set

{
n : ‖T nf − f‖ < ε

}
is syndetic and we

see that in this case Theorem 4.1.2 holds for the same reason as in the case
of the irrational translation.

Let us assume now that the system (X,B, µ, T ) is such that no non-
constant function f ∈ L2 is compact. In particular, this means that the
unitary operator induced on L2 by T (and which, by the customary abuse
of notation, we will often be denoting also by T ) has no nontrivial eigen-
functions. Measure preserving systems with this property were introduced,
under the name dynamical systems with continuous spectra, in [KoN] and
form one of the most important classes of measure preserving systems. To-
day, such systems are called weakly mixing systems. As we shall see below,
Theorem 4.1.2 can be verified for weakly mixing transformations with relative
ease. Before showing this, we want to summarize various equivalent forms of
weak mixing in the following theorem. For the proofs see [KoN] (where the
stress is placed on measure preserving R-actions), [Hopf], or any of the more
modern texts such as [Hal], [Wal], or [Pe]. Note that in most books, either
(i) or (ii) below is taken as the “official” definition of weak mixing, whereas
the original definition in [KoN] corresponds to condition (vi).

Theorem 4.1.4. Let T be an invertible measure preserving transformation
of a probability measure space (X,B, µ). Let UT denote the operator defined
on measurable functions by (UTf)(x) = f(Tx). The following conditions are
equivalent:

(i) For any A,B ∈ B

lim
N→∞

1

N

N−1∑
n=0

∣∣µ(A ∩ T−nB)− µ(A)µ(B)
∣∣ = 0;

(ii) For any A,B ∈ B there is a set P ⊂ N of density zero such that

lim
n→∞, n/∈P

µ(A ∩ T−nB) = µ(A)µ(B);
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(iii) T × T is ergodic on the Cartesian square of (X,B, µ);
(iv) For any ergodic probability measure preserving system (Y,D, ν, S) the

transformation T × S is ergodic on X × Y ;
(v) If f is a measurable function such that for some λ ∈ C, UTf = λf

a.e., then f = const a.e.;
(vi) For f ∈ L2(X,B, µ) with

∫
f = 0 consider the representation of

the positive definite sequence 〈Un
T f, f〉, n ∈ Z, as a Fourier transform of a

measure ν on T:

〈Un
T f, f〉 =

∫
T
e2πinxdν, n ∈ Z

(this representation is guaranteed by Herglotz theorem, see [He]). Then ν has
no atoms.

As we shall see below, it is the relativized version of weak mixing, that
is, the notion of weak mixing relative to a factor, that plays an important
role in the analysis of the structure of an arbitrary dynamical system and
which is behind the proof of Theorem 4.1.2. First, let us verify the validity
of Theorem 4.1.2 for weakly mixing systems.

Theorem 4.1.5. If (X,B, µ, T ) is a weakly mixing system, then for any
k ∈ N and any fi ∈ L∞(X,B, µ), i = 1, 2, . . . , k, one has:

lim
N→∞

1

N

N−1∑
n=0

T nf1T
2nf2 . . . T

knfk =

∫
f1dµ

∫
f2dµ . . .

∫
fkdµ

in the L2-norm.

Theorem 4.1.5 implies that for any fi ∈ L∞, i = 0, 1, . . . , k, one has

lim
N→∞

1

N

N−1∑
n=0

∫
f0T

nf1 . . . T
knfk =

∫
f0dµ

∫
f1dµ . . .

∫
fkdµ.

Putting fi = 1A, i = 0, 1, . . . , k, gives us

lim
N→∞

1

N

N−1∑
n=0

µ
(
A ∩ T−nA ∩ . . . ∩ T−knA

)
=
(
µ(A)

)k+1
.

As a matter of fact, Theorem 4.1.5 implies that for some set E ⊂ N

having zero density, one has
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lim
n→∞
n/∈E

µ
(
A ∩ T−nA ∩ . . . ∩ T−knA

)
= µ(A)k+1 (4.1)

To see this, note first that, since T is weakly mixing, it follows from
Theorem 4.1.4, (iii) and (iv), that not only T × T is ergodic, but also (T ×
T )× T = T × T × T and (T × T × T )× T = (T × T )× (T × T ) are ergodic
(on X3 and X4 respectively.) But then T × T is weakly mixing. Applying
Theorem 4.1.5 to T × T and performing routine manipulations one gets, for
any fi ∈ L∞, i = 0, 1, . . . , k,

lim
N→∞

1

N

N−1∑
n=0

(∫
f0T

nf1 . . . T
knfkdµ−

∫
f0dµ

∫
f1dµ . . .

∫
fkdµ

)2

= 0,

which implies (4.1).
In the proof of Theorem 4.1.5, we shall utilize the following version of

the van der Corput trick (cf. Theorem 1.32.) For the proof see, for example,
[BeL3], p. 445.

Theorem 4.1.6. Let (un)n∈N be a bounded sequence in a Hilbert space H.
If for every h ∈ N it is the case that limN→∞

1
N

∑N
n=1〈un+h, un〉 exists and if

limH→∞
1
H

∑H
h=1 limN→∞

1
N

∑N
n=1〈un+h, un〉=0, then limN→∞

∥∥ 1
N

∑N
n=1 un

∥∥=
0.

Proof of Theorem 4.1.5. Since any weakly mixing system is ergodic, the claim
of the theorem trivially holds for k = 1. To see how the induction works,
consider the case k = 2. Since the case when one of f1, f2 is constant brings
us back to k = 1, we can assume, in view of the identity f = (f −

∫
f) +

∫
f ,

that
∫
f1dµ = 0. Let now un = T nf1T

2nf2. By the ergodicity of T , we have:

lim
N→∞

1

N

N∑
n=1

〈un+h, un〉 = lim
N→∞

1

N

N∑
n=1

∫
T n+hf1T

2n+2hf2T
nf1T

2nf2dµ

= lim
N→∞

1

N

N∑
n=1

∫
T hf1T

n+2hf2f1T
nf2dµ

= lim
N→∞

1

N

N∑
n=1

∫ (
f1T

hf1

)
T n
(
f2T

2hf2

)
dµ =

∫
f1T

hf1dµ

∫
f2T

2hf2dµ.
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We remark now that if T is weakly mixing, then T 2 is also weakly mixing
and hence T × T 2 is ergodic (on the product space (X ×X,B × B, µ× µ)).
Writing f1 ⊗ f2 for f1(x)f2(y) and using the ergodicity of T × T 2 we have:

lim
H→∞

1

H

H∑
h=1

∫
f1T

hf1 dµ

∫
f2T

2hf2 dµ

= lim
H→∞

1

H

H∑
h=1

∫
(f1 ⊗ f2)(T × T 2)h(f1 ⊗ f2)d(µ× µ)

=
(∫

f1 ⊗ f2 d(µ× µ)
)2

=
(∫

f1dµ
)2(∫

f2dµ
)2

= 0.

The result now follows from Theorem 4.1.6. Note now that the same
argument (in which one uses the ergodicity of T × T 2 × . . .× T k) works for
general k. We are done.

�

Remark 4.1.7.
1. It is not hard to show that if the system (X,B, µ, T ) is such that for any
f1, f2 ∈ L∞(X,B, µ), one has limN→∞

1
N

∑N
n=1 T

nf1T
2nf2 =

∫
f1dµ

∫
f2dµ in

the L2-norm, then T is weakly mixing.
2. By using a modification of Theorem 4.1.6, which pertains to the uniform
Cesàro averages 1

N−M
∑N−1

n=M xn, (see, for example, Remark 2.2 in [BeL3])
one can show that in Theorem 4.1.5 one actually has

lim
N−M→∞

1

N −M

N−1∑
n=M

T nf1T
2nf2 . . . T

knfk =

∫
f1 dµ

∫
f2 dµ . . .

∫
fk dµ,

which implies

lim
N−M→∞

1

N −M

N−1∑
n=M

µ
(
A ∩ T−nA ∩ . . . ∩ T−knA

)
= µ(A)k+1.

3. The reader is invited to check that the proof above actually gives the
following more general result, first proved in [BB].

Theorem 4.1.8. Assume that, for k ≥ 2, T1, T2, . . . , Tk are commuting mea-
sure preserving transformations on a probability space (X,B, µ). Then the
following are equivalent:
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(i) For any f1, f2, . . . , fk ∈ L∞(X,B, µ) one has

lim
N→∞

1

N

N∑
n=1

T n1 f1T
n
2 f2 . . . T

n
k fk =

∫
f1dµ

∫
f2dµ . . .

∫
fkdµ in L2.

(ii) For any i 6= j, TiT
−1
j is ergodic on X and T1 × T2 × . . . × Tk is ergodic

on Xk.

The two special cases of Theorem 4.1.2, which we verified above, corre-
spond on a spectral level to two complementary classes of unitary operators,
namely those having discrete spectrum and continuous spectrum. While
these two cases are much too special to allow us to conclude the proof of
Theorem 4.1.2 for general k, they are sufficient for k = 2 (which constitutes
the first non-trivial case of Theorem 4.1.2.) These two special cases are also
important in that they indicate a possible line of attack which we will discuss
after first completing the proof for k = 2.

Proof of Theorem 4.1.2 for k=2. Assume first that T is ergodic, and consider
the following splitting of L2(X,B, µ) = H. H = Hc ⊕ Hwm, where the
T -invariant subspaces Hc and Hwm are defined as follows:

Hc = Span
{
f ∈ H : there exists λ ∈ C with Tf = λf

}
=
{
f ∈ H : the orbit (T nf)n∈Z is precompact in norm topology

}
,

Hwm = H⊥c =
{
f ∈ H : ∀g ∈ H, lim

N→∞

1

N

N−1∑
n=0

|〈Tf, g〉| = 0
}
.

(We remark in passing that this splitting is valid for any unitary operator,
and moreover, can be defined in such a way that it makes sense for any group
of unitary operators.)

Writing f for 1A let f = fc + fwm where fc ∈ Hc, fwm ∈ Hwm. Note
that fc ≥ 0 and

∫
fcdµ = µ(A), while

∫
fwmdµ = 0. The non-negativity of fc

follows from an argument similar to the one used in the proof of Theorem 1.31
to establish the non-negativity of the projection of 1A on the spaceHrat. Note
also that applying this argument again to 1 − fc gives us that 0 ≤ fc ≤ 1.
Since fwm = 1A − fc, it follows also that fwm satisfies |fwm| ≤ 1.

Using the decomposition f = fc + fwm, we have
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1

N

N−1∑
n=0

T nfT 2nf =
1

N

N−1∑
n=0

T nfcT
2nfc +

N−1∑
n=0

T nfcT
2nfwm

+
1

N

N−1∑
n=0

T nfwmT
2nfc +

1

N

N−1∑
n=0

T nfwmT
2nfwm.

We claim that the last three expressions (in which fwm occurs) have zero
limit in L2 as N → ∞. To see this the reader is invited to reexamine the
proof of Theorem 4.1.5 and to observe that it was actually shown there that
if ϕ ∈ Hwm, then for any ψ ∈ H = L2(X,B, µ), one has (assuming that at
least one of ϕ, ψ is bounded):

lim
N→∞

∥∥∥ 1

N

N−1∑
n=0

T nϕT 2nψ
∥∥∥ = lim

N→∞

∥∥∥ 1

N

N−1∑
n=0

T nψT 2nϕ
∥∥∥ = 0.

So, we see that in L2,

lim
N→∞

1

N

N−1∑
n=0

T nfT 2nf = lim
N→∞

1

N

N−1∑
n=0

T nfcT
2nfc,

if the latter limit exists. But the existence of this limit clearly follows from
the fact that this is certainly the case when one substitutes for fc a finite
linear combination of eigenfunctions of T and that eigenfunctions span the
space Hc. So we have that limN→∞

1
N

∑N−1
n=0 T

nfT 2nf also exists in L2, and
hence

lim
N→∞

1

N

N−1∑
n=0

∫
fT nfT 2nfdµ = lim

N→∞

1

N

N−1∑
n=0

∫
1AT

n1AT
2n1Adµ

= lim
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−nA ∩ T−2nA)

exists as well.
It remains to establish the positivity of the limit in question. Note that,

for bounded g1, g2 ∈ Hc, one has g1 · g2 ∈ Hc, and hence fwm is orthogonal
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to T nfcT
2nfc. We have:

lim
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−nA ∩ T−2nA) = lim
N→∞

1

N

N−1∑
n=0

∫
fT nfcT

2nfcdµ

= lim
N→∞

1

N

N−1∑
n=0

∫
(fc + fwm)T nfcT

2nfcdµ = lim
N→∞

1

N

N−1∑
n=0

∫
fcT

nfcT
2nfcdµ.

Note now that since fc is a compact function, the set

{n ∈ Z : ‖T nfc − fc‖ < ε}

is syndetic for every ε > 0, and hence the set

Sε = {n ∈ Z :
∣∣∣ ∫ fcT

nfcT
2nfcdµ−

∫
f 3
c dµ

∣∣∣ < ε
}

is also syndetic. Note also that
∫
f 3
c dµ ≥

( ∫
fc
)3

=
(
µ(A)

)3
.

Therefore, if ε is small enough, we shall have

lim
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−nA ∩ T−2nA)

≥ lim
N→∞

1

N

∑
n∈Sε∩[0,N−1]

µ(A ∩ T−nA ∩ T−2nA) > 0.

To finish the proof of this special case one uses the ergodic decomposition.
It is not hard to see that in the non-ergodic case, both the convergence and
the positivity of the limit hold as well. We omit the details.

�

As a bonus, we have obtained the fact that for any measure preserv-
ing system (X,B, µ, T ) and any f, g ∈ L∞, limN→∞

1
N

∑N−1
n=0 T

nfT 2ng ex-

ists in L2 and equals limN→∞
1
N

∑N−1
n=0 T

nfcT
2ngc, where fc, gc denote the

orthogonal projections of f, g on Hc. One, naturally, would like to know
whether, in general, one has the convergence of the expressions of the form
1
N

∑N−1
n=0 T

nf1T
2nf2 . . . T

knfk, where fi ∈ L∞(X,B, µ), i = 1, 2, . . . , k. For
k = 3 the positive answer to this question was provided in [CL2] for to-
tally ergodic T and in full generality in [FuW2], [Zh], and [HoK1]. The
recalcitrant problem of establishing the convergence for general k was solved
only recently, in the remarkable work of B. Host and B. Kra [HoK2] and T.
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Ziegler, [Zie]. See Section 5 below for a discussion of various convergence
results which are suggested by combinatorial applications of ergodic theory.
See also appendices A and B written by A. Leibman and A. Quas and M.
Wierdl which deal with convergence issues. Note, however, that while the
study of convergence is more fundamental from the point of view of ergodic
theory, it is (multiple) recurrence, i.e. the positivity of the expressions like
µ(A ∩ T−nA ∩ T−2nA ∩ . . . ∩ T−knA), which is needed for combinatorial and
number-theoretic applications. (The situation is, of course, more complex.
To be somewhat imprecise, convergence results may, in some cases, provide
the shortest path to establishing recurrence. This point is certainly sup-
ported by the proof of Theorem 1.31 and the above discussion of the k = 2
case of Theorem 4.1.2. See also Theorem 5.20(i) below.)

We return now to our discussion of Theorem 4.1.5. It turns out that
for k > 2, the Hilbertian splitting utilized above for k = 2 is no longer
sufficient, and in order to establish multiple recurrence one has to undertake
a deeper study of the structure of general measure preserving systems. In
order to describe the main points of Furstenberg’s approach, we will review
first some general facts. For more information and missing details, the reader
is encouraged to consult [Fu2], [Fu3], and [FuKO]. Our presentation below
follows mainly [FuKO] where a simplified proof of Theorem 4.1.2 is presented.
The only significant point of departure from [FuKO] is in the treatment of
compact extensions (see Definition 4.1.15 below), where we will use a “soft”
argument based on van der Waerden’s theorem. One of the reasons for this
choice is that coloring theorems seem to be indispensable in proving more
sophisticated multiple recurrence results and we want to use this opportunity
to acquaint the reader with this technique.

Given two probability measure spaces (X,B, µ) and (Y,D, ν) and a map
π : X → Y such that π−1(D) ⊂ B and πµ = ν, we say that (X,B, µ) is an
extension of (Y,D, ν), and that (Y,D, ν) is a factor of (X,B, µ).

Under mild conditions on the regularity of the space (X,B, µ) (which are
usually satisfied in the case of Lebesgue spaces – our standing assumption),
one can associate with the factor (Y,D, ν) a family of measures {µy}y∈Y on
(X,B) with the following properties:

(i) For each f ∈ L1(X,B, µ) one has f ∈ L1(X,B, µy) for a.e. y ∈ Y .

(ii) The function g(y) =
∫
fdµy belongs to L1(Y,D, ν) and∫ (∫
f(x)dµy(x)

)
dν =

∫
f(x)dµ(x).
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(iii) If f is measurable with respect to π−1(D), then∫
fdµπ(x) = f(x) a.e.

Using the family {µy}y∈Y , we will write µ =
∫
µydν(y) (which means

that, for any A ∈ B, µ(A) =
∫
µy(A)dν(y)) and refer to this decomposition

as the disintegration of µ with respect to the factor (Y,D, ν).
For any 1 ≤ p ≤ ∞ one can define the conditional expectation operator

E(·|Y ) from Lp(X,B, µ) to Lp(Y,D, ν) by the formula

E(f |Y )(y) =

∫
fdµy, f ∈ L2(X,B, µ).

Clearly, for f ≥ 0, one has E(f |Y ) ≥ 0 and E(1|Y ) = 1. Also, by
property (ii) above, one has

∫
fdµ =

∫
E(f |Y )dν.

Note that, given the measure space (X,B, µ), there is a natural 1-1 cor-
respondence between its factors and sub-σ-algebras of B. This correspon-
dence allows one to identify the space L2(Y,D, ν) with a closed subspace of
L2(X,B, µ) which is of the form L2(X,B1, µ), where B1 = π−1(D). This, in
turn, leads to a convenient interpretation of conditional expectation operator
as the orthogonal projection L2(X,B, µ)→ L2(X,B1, µ) ∼= L2(Y,D, ν).

For any f ∈ L∞(Y,D, ν) (viewed as a bounded function in L2(X,B, µ)
which is measurable with respect to B1), one has E(gf |Y ) = fE(g|Y ). For
more details on conditional expectation operators see [Fu3], Ch. 5, Section
3 or [Bi], Section 34.

Suppose now that (X1,B1, µ1) and (X2,B2, µ2) are extensions of (Y,D, ν)
and π1 : X1 → Y , π2 : X2 → Y are the corresponding measure preserving
mappings. One can form the fibre product space (X,B, µ), where

X = X1 ×Y X2 =
{

(x1, x2) ∈ X1 ×X2 : π1(x1) = π2(x2)
}
,

B is the restriction of B1 × B2 to X, and µ is defined via the disintegrations
{µ(1)

y }y∈Y , {µ(2)
y }y∈Y by the formula

µ(A) = (µ1 ×Y µ2)(A) =

∫
(µ(1)

y × µ(2)
y )(A)dν(y).

The notions of extension, factor, and fibre product are naturally extended
to measure preserving systems. Given two probability measure preserving
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systems X = (X,B, µ, T ) and Y = (Y,D, ν, S), one says that X is an exten-
sion of Y, and Y a factor of X, if the corresponding map π : X → Y is not
only measure preserving but also satisfies Sπ(x) = πT (x) for a.e. x ∈ X. We
have now the following formulas:

(iii) for almost every y ∈ Y , Tµy = µSy, meaning µy(T
−1A) = µSy(A) for

any A ∈ B.

(iv) For any f ∈ L2(X,B, µ), SE(f |Y ) = E(Tf |Y ).

When the systemX = (X,B, µ, T ) is not ergodic, it has a natural nontriv-
ial factor Xinv = (X,Binv, µ, T ), where Binv is the σ-algebra of T -invariant
sets in B. It is not hard to see that the disintegration of µ corresponding to
this factor is nothing but the classical ergodic decomposition of µ (which was
treated first in [Ne2].) Another natural example of a factor, which we have,
implicitly, encountered already, is associated with the space Hc of compact
functions. Indeed, one has the following theorem.

Theorem 4.1.9. (cf. [Kre1], Theorem 2.2.) Let (X,B, µ, T ) be a probability
measure preserving system and let Bc be the smallest σ-algebra in B with
respect to which the elements of Hc are measurable. Then Bc is T -invariant
and Hc

∼= L2(X,Bc, µ).

Clearly, (X,Bc, µ, T ) is a maximal compact factor. As we have already
mentioned above, if T is ergodic, the system (X,Bc, µ, T ) is conjugate to a
translation on a compact abelian group (see [HalN], Theorem 4.) In this
case, (X,Bc, µ, T ) is often called the (maximal) Kronecker factor.

We can formulate now a criterion in terms of factors for a system to be
weakly mixing. (Note that this is just a new way of expressing a familiar
concept.)

Theorem 4.1.10. A probability measure preserving system is weakly mixing
if and only if it has no nontrivial compact factors.

In order to prove Theorem 4.1.2, one has to study the relativized notions
of weak mixing and compactness with respect to a factor.

To define a weak mixing extension, one needs the notion of a relative
product of measure preserving systems. Let X1 = (X1,B1, µ1, T1) and X2 =
(X2,B2, µ2, T2) be extensions of Y = (Y,D, ν, S). We claim that the measure
µ1 ×Y µ2 is (T1 × T2)-invariant, that is, for any measurable A ⊆ X1 ×Y X2
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one has µ1 ×Y µ2

(
(T1 × T2)−1A

)
= µ1 ×Y µ2(A). One needs only to verify

this for the sets of the form A = A1 × A2 where Ai ∈ Bi. By definition of
µ1 ×Y µ2 we have

µ1 ×Y µ2

(
(T1 × T2)−1(A1 × A2)

)
=

∫
µ(1)
y × µ(2)

y (T−1
1 A1 × T−1

2 A2)dν(y)

=

∫
T1µ

(1)
y × T2µ

(2)
y (A1 × A2)dν(y) =

∫
µ

(1)
Sy × µ

(2)
Sy (A1 × A2)dν(y)

=

∫
µ(1)
y × µ(2)

y (A1 × A2)dSν(y) =

∫
µ(1)
y × µ(2)

y (A1 × A2)dν(y)

= µ1 ×Y µ2(A1 × A2),

and so X1 ×Y X2 = (X1 × X2,B1 × B2, µ1 ×Y µ2, T1 × T2) is a measure
preserving system, which is called the relative product of X1 and X2 (with
respect to Y.)

Definition 4.1.11. The system X = (X,B, µ, T ) is an ergodic extension
of Y = (Y,D, ν, S) if the only T -invariant sets in B are preimages of the
invariant sets in D. The system X is a weakly mixing extension of Y if
X×YX is an ergodic extension of Y.

One can show that most properties of the “absolute” weak mixing (and
in particular, items (i) through (iv) in Theorem 4.1.4) extend, with obvious
modifications, to statements about relative weak mixing. For example, one
has the following fact.

Theorem 4.1.12. (Cf. [Fu3], Proposition 6.2.) A measure preserving system
(X,B, µ, T ) is a weak mixing extension of (Y,D, ν, S) if and only if for any
A1, A2 ∈ B one has

lim
N→∞

1

N

N−1∑
n=0

∫ (
µy(A1 ∩ T−nA2)− µy(A1)µy(T

−nA2)
)2
dν(y) = 0.

Moreover, by using Theorem 4.1.6, one can obtain (by an argument anal-
ogous to the one used in the proof of Theorem 4.1.5) the following result.

Theorem 4.1.13. If (X,B, µ, T ) is a weak mixing extension of (Y,D, ν, S),
then for any A0, A1, . . . , Ak ∈ B one has

lim
N→∞

1

N

N−1∑
n=0

∫ (
µy(A0 ∩ T−nA1 ∩ T−2nA2 . . . ∩ T−knAk)−

µy(A0)µy(T
−nA1) . . . µy(T

−knAk)
)2
dν(y) = 0.
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Let us say, following [FuKO], that a system X = (X,B, µ, T ) has the SZ
property, or that T is SZ, if Theorem 4.1.2 holds for X. (For example, as we
have already seen above, compact and weakly mixing systems do have the
SZ property)

We have now the following corollary of Theorem 4.1.13:

Theorem 4.1.14. ([FuKO], Theorem 8.4) If (X,B, µ, T ) is weakly mixing
extension of (Y,D, ν, S) and the transformation S is SZ, then (X,B, µ, T )
has the SZ property.

Proof. Let A ∈ B with µ(A) > 0 and denote f = 1A. Note that if a > 0 is
small enough then the set A1 = {y : E(1A|Y )(y) ≥ a} satisfies ν(A1) > 0.
It follows now from Theorem 4.1.13 (and the formula E(f |Y )(y) =

∫
fdµy)

that, since E(1A|Y ) ≥ a · 1A1 ,

1

N

N−1∑
n=0

µ(A∩T−nA∩. . .∩T−knA) >
1

2
ak+1· 1

N

N−1∑
n=0

ν(A1∩S−nA1∩. . .∩S−knA1)

for all large enough N . The result now follows from the assumption that
(Y,D, ν, S) has the SZ property.

We will define now relatively compact extensions and show that an ana-
logue of Theorem 4.1.14 holds. Unlike Theorem 4.1.14, which is a more or
less straightforward extension of Theorem 4.1.5, the argument needed for
the treatment of compact extensions (the mere definition of which is, in our
opinion, much less trivial than that of weak mixing extensions) is perhaps
the most subtle part of the proof of Theorem 4.1.2.

Definition 4.1.15. Let X = (X,B, µ, T ) be an extension of Y = (Y,D, ν, S).
Call a function f ∈ L2(X,B, µ) almost periodic, or an AP-function, rela-
tive to Y if for any ε > 0 there exist r ∈ N and functions g1, g2, . . . , gr ∈
L2(X,B, µ) such that, for every n ∈ Z, min1≤s≤r ‖T nf − gs‖L2(µy) < ε for
almost every y ∈ Y . We say that X is a compact extension of Y if AP-
functions are dense in L2(X,B, µ).

Clearly any compact system (i.e. a system for which the subspace Hc

coincides with L2(X,B, µ)) is a compact extension of the trivial one-point
system. Note that in this case every element of L2(X,B, µ) is an AP-function.

A less trivial example and, in a sense, a typical one is given by so-called
isometric extensions. Let Y = (Y,D, ν, S) be an arbitrary system and let Z
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be a compact metric space equipped with a probability measure η on BZ ,
the (completion of the) σ-algebra of Borel sets in Z. Suppose that G is a
compact group of isometries of Z and define for some measurable family σ(y)
of elements of G a transformation T on X = Y × Z by

T (y, z) = (Sy, σ(y)z).

One can verify that the system X = (Y × Z,D ×BZ , ν × η, T ) is a compact
extension of Y. Perhaps the shortest parth to this verification is to consider
(as a special case) the familiar skew product on the 2-torus given by R :
(y, z)→ (y + α, z + y) and to observe that a similar proof works for general
isometric extensions. Note that for non-trivial isometric extensions it is no
longer true that every function is AP. For example, it is not hard to see that
in the case of the transformation R above, if α is irrational then for any
f ∈ L2(Y ) \L∞(Y ), functions of the form f(y)e2πiz cannot be AP relative to
the factor corresponding to the translation of the first coordinate by α.

The importance of weakly mixing and compact extensions lies with the
fundamental fact, established by Furstenberg in the course of his proof of
Szemerédi’s theorem, that any system X = (X,B, µ, T ) appears in a chain
(possibly transfinite), X → . . . → Xα+1 → Xα → . . . → X1 → X0, in
which the individual links Xα+1 →Xα are either compact or weakly mixing
extensions. (As a matter of fact, one can take all of the extensions, with the
possible exception of the last link X = Xη+1 →Xη, to be compact.)

The topological predecessor of this ergodic-theoretical structure theorem
is a similar structure theorem, also due to Furstenberg, for distal systems,
which states that any distal system can be seen as a tower of isometric
extensions. See [Fu1] for details. The structure theory of distal systems
works for general locally compact group actions, which hints that measure
theoretical structure theory can also be established in this generality. This
was done in independent and deep work of Zimmer. (See [Zim1], [Zim2].)

Returning to the discussion of the proof of Theorem 4.1.2, we are in
position now to describe the general scheme of the proof. As we shall show
in detail below, if X is a compact extension of Y and Y has the SZ property,
then X also does. Now, one can show by a routine argument that any totally
ordered by inclusion family of factors of a system (X,B, µ, T ) which have the
SZ property has a maximal element. (See [FuKO], Proposition 7.1.) But
then it follows from the structure theorem cited above that this maximal
factor has to be (X,B, µ, T ) itself, which gives Theorem 4.1.2. A somewhat

70



shorter (or, rather, less involved) path, which avoids the full strength of the
structure theorem, is via the following proposition.

Theorem 4.1.16. ([FuKO], Theorem 5.10) If X = (X,B, µ, T ) is an exten-
sion of Y = (Y,D, ν, S) which is not relatively weak mixing, then there exists
a strictly intermediate factor X∗ between Y and X such that X∗ is a compact
extension of Y.

Either way, all that is needed now to bring the proof of Theorem 4.1.2 to
conclusion is the following result.

Theorem 4.1.17. If X = (X,B, µ, T ) is a compact extension of Y = (Y,D,
ν, S) and Y has the SZ property, then X also does.

Proof. We shall utilize van der Waerden’s theorem on arithmetic progres-
sions. To make the ideas clear (and to stress the relevance of van der Waer-
den’s theorem), let us first go back to the “absolute” case and show how the
proof works when (X,B, µ, T ) is a compact system. Let A ∈ B with µ(A) > 0,
let f = 1A and let, for a given ε > 0, g1, g2, . . . , gr be elements of the compact
set K = {T nf}n∈Z such that for any n ∈ Z there is j = j(n) in {1, 2, . . . , r}
satisfying ‖T nf−gj(n)‖ < ε. This naturally defines an r-coloring Z =

⋃r
i=1 Ci,

and by van der Waerden’s theorem, there exists j ∈ {1, 2, . . . , r} such that
for some m ∈ Z and n ∈ N one has ‖Tm+inf − gj‖ < ε, i = 0, 1, . . . , k,
which implies diam

{
Tmf, Tm+nf, . . . , Tm+knf

}
< 2ε (in L2(X,B, µ).) Note

that the set of possible n with this property has positive lower density
(and, in fact, is syndetic and even IP∗ – see the remark following Corol-
lary 2.5.) Since T is an isometry, we have diam

{
f, T nf, . . . , T knf

}
< 2ε,

and hence by choosing ε small enough, we see that for a “large” set of n,∫
fT nf . . . T knfdµ = µ(A∩T−nA∩ . . .∩T−knA) is arbitrarily close to µ(A).

This certainly implies that

lim inf
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−nA ∩ . . . ∩ T−kn) > 0.

The scheme of usage of van der Waerden’s theorem in the case of relatively
compact extensions is similar but a little bit more sophisticated. Before
embarking on the proof, let us make some convenient reductions. First, note
that deleting from a given set A ∈ B with µ(A) > 0 portions for which
µy(A) ≤ 1

2
µ(A) removes less than half of the measure from A, and hence we
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can assume without loss of generality that there exists a set A1 ∈ D with
ν(A1) ≥ 1

2
µ(A) and such that, for y ∈ A1, µy(A) ≥ 1

2
µ(A) and for y /∈ A1,

µy(A) = 0. Second, one can show that, by removing additional arbitrarily
small portions from A, one can assume that f = 1A is compact relative to
Y. (See for the details [FuKO], p. 548 or [Fu3], Theorem 6.13.)

Fix a small enough ε > 0 and functions g1, g2, . . . , gr (one of which is
assumed to be 0) such that for any n ∈ Z,

min
1≤s≤r

‖T nf − gs‖y < ε for a.e. y ∈ Y.

Let N be such that for any r-coloring of {1, 2, . . . , N} one has a monochro-
matic progression of length k + 1, and assume that for the set A1 ∈ D de-
scribed above and some c1 > 0, the set RN =

{
n ∈ N : ν(A1 ∩ S−nA1 ∩

. . . ∩ S−nNA1) > c1

}
is of positive lower density. We shall show that there

exist constants c2 > 0 and M ∈ N such that for any n ∈ RN there exists
d ∈ {1, 2, . . . ,M} with µ(A ∩ T−dnA ∩ . . . ∩ T−k(dn)A) > c2. This, clearly,
will imply that X has the SZ property. Note that for every y ∈ A1 and
n ∈ RN one has Siny ∈ A1, i = 0, 1, . . . , N . Now, for each y ∈ A1 and each
n ∈ RN , the inequalities min1≤s≤r ‖T inf − gs‖y < ε, i = 1, 2, . . . , N , define
an r-coloring of {1, 2, . . . , N}. By van der Waerden’s theorem, there exists a
monochromatic arithmetic progression {i, i + d, . . . , i + kd} ⊂ {1, 2, . . . , N}
which implies that, for some gs(y) = g, ‖T (i+jd)nf−g‖y < ε for j = 0, 1, . . . , k.
This, in turn, implies that ‖T jdnf − g‖Siny < ε. It remains now to choose a
progression {i, i + d, . . . , i + kd} which occurs for a set A2 of y of measure

at least ν(A1)
P

, where P is the total number of possibilities for the choice of
a (k + 1)-element progression from {1, 2, . . . , n}. Note that, since A2 ⊂ A1,
for each y ∈ A2, one has µSiny(A) ≥ 1

2
µ(A). This implies that (if ε is small

enough)

µSiny
(
A ∩ T−dnA ∩ . . . ∩ T−k(dn)A

)
> µSiny(A)− (k + 1)ε >

1

3
µ(A).

Integrating over the set A2, we get

µ
(
A ∩ T−dnA ∩ . . . ∩ T−k(dn)A

)
≥ 1

3
µ(A)ν(A2) ≥ 1

3P
µ(A)ν(A1) = c2.

We are done.
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4.2 An overview of multiple recurrence theorems

Furstenberg’s ground-breaking proof of the ergodic Szemerédi theorem was
the starting point of a new area: Ergodic Ramsey Theory. In this subsec-
tion we shall discuss various multiple recurrence results which are dynamical
versions of corresponding Ramsey-theoretical density statements, and which
have, so far, no conventional proof. While the proofs of these results are
rather involved (which is manifested, in particular, by the length of papers
such as [FuK2], [FuK4], [Le2], [BeM3], [BeLM]), they have a conspicuous
commonality of the main structural features. One of our intentions in the fol-
lowing discussion is to stress the structural analogies between various proofs,
while paying attention to new ideas whose introduction is necessary in the
course of establishing new, stronger, and more refined results.

For a warm-up, let us start the discussion with the density version of
Theorem 2.6.

Let VF be a countably infinite vector space over a finite field F . As in
Section 2, let us identify VF with the direct sum F∞ of countably many copies
of F :

F∞ =
{
g = (a1, a2, . . .) : ai ∈ F and all but finitely many ai = 0

}
=
∞⋃
n=1

Fn,

where Fn =
{
g = (a1, a2, . . .), ai ∈ F, ai = 0 for i > n

}
.

We shall say that a set E ⊂ VF ∼= F∞ has positive upper density if
dF∞(E) = lim supN→∞

|E∩Fn|
|Fn| > 0.

Theorem 4.2.1. Any set of positive upper density in the vector space VF
contains arbitrarily large affine subspaces.

Note that since F is a finite field, saying “arbitrarily large” in the formu-
lation above is tantamount to saying “of arbitrarily large dimension”.

We now formulate an ergodic-theoretical theorem which is analogous to
Theorem 4.1.2 and which implies Theorem 4.2.1.

Theorem 4.2.2. For any measure preserving action (Tg)g∈F∞ on a probabil-
ity measure space (X,B, µ) and for any A ∈ B with µ(A) > 0, one has

lim inf
n→∞

1

|Fn|
∑
g∈Fn

µ
(⋂
c∈F

TcgA
)
> 0.
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For the derivation of Theorem 4.2.1 from Theorem 4.2.2, one can use
the following version of Furstenberg’s correspondence principle. Both the
version below and the result stated above as Theorem 1.25 are special cases
of Theorem 5.8, which will be proved in the next section.

Theorem 4.2.3. For any set E ⊂ F∞ with dF∞(E) > 0, there exists a
probability measure preserving system

(
X,B, µ, (Tg)g∈F∞

)
and a set A ∈ B

with µ(A) = dF∞(E) such that for all k ∈ N and any g1, g2, . . . , gk ∈ F∞ one
has

dF∞
(
E ∩ E − g1 ∩ . . . ∩ E − gk

)
≥ µ

(
A ∩ Tg1A ∩ . . . ∩ TgkA

)
.

Noting that the set {cg}c∈F forms a one-dimensional subspace of VF ∼=
F∞, we see that Theorem 4.2.2 immediately implies, via Furstenberg’s corre-
spondence principle, that for some g 6= 0, dF∞

(⋂
c∈F (E− cg)

)
> 0 and hence

for any x ∈
⋂
c∈F (E − cg), the one dimensional affine space {x + cg}c∈F is

contained in E.
To obtain the full strength of Theorem 4.2.1, one can use the following

“iterational” trick (which is very similar to that utilized in the proof of Theo-
rem 1.12.) Namely, use Theorem 4.2.2 to find g1 = (b1, b2, . . . , bk, 0, 0, . . .) 6= 0
with the property that the set A1 =

⋂
c∈F Tcg1A has positive measure. Apply

now Theorem 4.2.2 to the restriction of the action (Tg)g∈F∞ to the subgroup
G1 ⊂ F∞ which is defined by

G1 =
{
g = (a1, a2, . . .) ∈ F∞ : a1, a2, . . . , ak = 0

}
.

In other words, the supports of elements from G1 are disjoint from the
support of our g1 = (b1, b2, . . . , bk, 0, 0, . . .). Note also that G1 is isomorphic
to the direct sum of countably many copies of F , and hence is isomorphic
to F∞. Find now g2 ∈ G1 with the property that A2 =

⋂
c∈F Tcg2A1 has

positive measure, and continue in this fashion. After m steps of this itera-
tional procedure, we will have found elements g1, g2, . . . , gm such that the set
Am =

⋂
c1,c2,...,cm∈F Tc1g1+c2g2+...+cmgmA has positive measure. It follows now

from Theorem 4.2.3 that dF∞
(⋂

c1,c2,...,cm∈F E− (c1g1 + . . .+ cmgm)
)
> 0, and

this clearly implies that E contains (many) affine m-dimensional subspaces.

Let us now comment briefly on the proof of Theorem 4.2.2. It is not hard
to check that Theorem 4.2.2 holds in the two “extremal” cases, namely the
case when the action (Tg)g∈F is compact (which, as before, means that for
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any f ∈ L2(X,B, µ) the orbit {Tgf}g∈F∞ is precompact), and the weakly
mixing case (which can be defined, for example, by postulating the absence
of compact functions). Moreover, the proof in each of these two cases is very
similar to the analogous case of Theorem 4.1.2. Perhaps a few remarks are in
order to clarify the situation with weak mixing for actions of (Tg)g∈F∞ . First,
one can check that, like in the case of Z-actions, weak mixing for F∞-actions
can be characterized in a variety of ways, all parallel to those occurring in the
formulation of Theorem 4.1.4. (This remark actually applies to − properly
defined − weak mixing actions of any countable or even locally compact
group. See for example [BeR1], [Be6], [BeG].)

Second, one can check that an analogue of Theorem 4.1.6 also holds for
more general groups (here the right generality is that of amenable groups;
see more discussion in the next section.)

Now, one can define, in complete analogy to Definitions 4.1.11 and 4.1.15
the notions of relative weak mixing and relative compactness. The analogues
of Theorems 4.1.12, 4.1.14, and 4.1.16 can also be established in a more or
less similar fashion. So to finish the proof, one has to show that the multiple
recurrence property lifts to compact extensions. As the perspicacious reader
has probably guessed by now, one can use here the natural analogue of van
der Waerden’s theorem, namely Theorem 1.27.

Let us discuss now the multidimensional Szemerédi theorem or, rather, its
measure-theoretical twin, Theorem 1.24. Here is the version which actually
was proved by Furstenberg and Katznelson in [FuK1].

Theorem 4.2.4. For any commuting measure preserving transformations
T1, T2, . . . , Tk of a probability space (X,B, µ) and for any A ∈ B with µ(A) >
0 one has

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
A ∩ T−n1 A ∩ . . . ∩ T−nk A

)
> 0.

The main new difficulty which one faces when dealing with k general
commuting transformations is that they generate a Zk-action, which may
have different dynamical properties along the sub-actions of different sub-
groups. In other words, while Theorem 4.1.2 was about the joint behavior
of k commuting transformations of a special form, namely T, T 2, . . . , T k, in
Theorem 4.2.4 we have to study k commuting transformations which are in,
so to say, general position. This complicates the underlying structure the-
ory, which has to be “tuned up” to reflect the more complicated situation
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when different operators in the group generated by T1, . . . , Tk have different
dynamical properties. What saves the day is Theorem 4.2.7 below, which is
at the core of Furstenberg and Katznelson’s proof of Theorem 4.2.4.

We need first to introduce some pertinent definitions. While these defi-
nitions make sense for any measure preserving group actions, (and are given
below a general formulation for future reference), the reader should remem-
ber that in the discussion of the proof of Theorem 4.2.2, the group G which
occurs in the next two definitions is meant to stand for Zk (and hence the
subgroups of G are themselves isomorphic to Zl for some 0 ≤ l ≤ k.)

Definition 4.2.5. (Cf. Def. 6.3 in [Fu3].) An extension
(
X,B, µ, (Tg)g∈G

)
of
(
Y,D, ν, (Sg)g∈G

)
is a weakly mixing extension if for every g0 ∈ G, g0 6= e,

the system (X,B, µ, Tg0) is a weakly mixing extension of (Y,D, ν, Sg0) (in the
sense of Definition 4.1.11).

Definition 4.2.6. (Cf. Def. 6.5 in [Fu3].) Assume that
(
X,B, µ, (Tg)g∈G

)
is

an extension of
(
Y,D, ν, (Sg)g∈G

)
. This extension is called primitive if G is

a direct product of two subgroups, Gc ×Gwm, so that
(
X,B, µ, (Tg)g∈Gc

)
is a

compact extension of
(
Y,D, ν, (Sg)g∈Gc

)
and

(
X,B, µ, (Tg)g∈Gwm

)
is a weakly

mixing extension of
(
Y,D, ν, (Sg)g∈Gwm

)
.

Remark. We did not explicitly define the notion of compact extension
for this more general situation because it is verbatim the same as Defini-
tion 4.1.15. (One just has to replace “for every n ∈ Z” by “for every g ∈ G”.)
This should be juxtaposed with Definition 4.2.5 which, while still coinciding
with Definition 4.1.11 when G = Z, has the emphasis not on the weak mix-
ing behavior of the group action (Tg)g∈G, but on the behavior of Z-actions
generated by elements g ∈ G, g 6= e.

We are now ready to formulate the theorem which provides the main
ingredient in the pertinent structure theory. The reader should keep in mind
that in the theorem below G stands for Zk.

Theorem 4.2.7. If X =
(
X,B, µ, (Tg)g∈G

)
is an extension of Y =

(
Y,D, ν,

(Sg)g∈G
)
, then there is an intermediate factor Z such that Z is a primitive

extension of Y.

As was the case with Theorem 4.1.2, one can show that there is always
a maximal factor for which Theorem 4.2.2 is valid. So, in view of Theo-
rem 4.2.7, it remains only to make sure that the multiple recurrence property
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in question lifts to primitive extensions. This can be achieved by an argu-
ment which puts together the ideas behind the proofs of Theorems 4.1.14 and
4.1.17. The fact that primitive extensions utilize the appropriate splitting of
Z
k plays a crucial role. In dealing with the compact part of this splitting,

one uses this time the multidimensional van der Waerden theorem. For full
details, see [FuK1] and [Fu3], Ch. 7.

Note that the coloring theorems used in the proofs of Theorems 4.1.2,
4.2.2, and 4.2.4 are all corollaries of the IP van der Waerden theorem (which
was discussed in detail in Section 2.) This hints that there exists per-
haps a more general theorem which bears the same relation to the IP van
der Waerden theorem (Theorem 2.2 above) as, say, Theorem 4.1.1 to the
(one-dimensional) van der Waerden theorem, and has Theorems 4.1.2, 4.2.2,
and 4.2.4 as corollaries. Such a result, which is called the ergodic IP Sze-
merédi theorem, was established by Furstenberg and Katznelson in [FuK2]
and will be briefly discussed below. But before turning our attention to
the Furstenberg-Katznelson IP Szemerédi theorem, we want to discuss the
polynomial extension of Szemerédi’s theorem obtained in [BeL1]. While the
paper [BeL1], which appeared in 1996, is more recent than the 1985 paper
[FuK2], the structure theory which is utilized in [BeL1] is the same as that
needed for the proof of Theorem 4.2.4, whereas in [FuK2] the authors deal
with IP systems and develop the nontrivial and complicated IP version of
structure theory.

Here then is the formulation of the polynomial Szemerédi theorem.

Theorem 4.2.8. ([BeL1], Thm. B′) Let r, l ∈ N and let P : Zr → Z
l be a

polynomial mapping satisfying p(0) = 0. For any S ⊆ Zl with d∗(S) > 0 and
any finite set F ⊂ Zr, there is n ∈ N and u ∈ Zl such that u+ P (nF ) ⊂ S.

In order to formulate an ergodic result which would imply Theorem 4.2.8,
let us first reformulate Theorem 4.2.8 in coordinate form.

Theorem 4.2.9. ([BeL1], Thm. B) For l ∈ N, let S ⊆ Zl satisfy d∗(E) > 0.
Let p1,1(n), . . . , p1,t(n), p2,1(n), . . . , p2,t(n), . . . , pk,1(n), . . . , pk,t(n) be polyno-
mials with rational coefficients taking integer values on the integers and sat-
isfying pi,j(0) = 0, i = 1, . . . , k, j = 1, . . . , t. Then, for any v1, . . . , vt ∈ Zl,
there exist n ∈ N and v ∈ Zl such that n +

∑t
j=1 pi,j(n)vj ∈ S for each

i ∈ {1, 2, . . . , k}.
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To see that Theorem 4.2.8 implies Theorem 4.2.9, take k = r and apply
Theorem 4.2.8 to the polynomial mapping P : Zr → Z

l defined by

P (n1, n2, . . . , nr) =
t∑

j=1

r∑
i=1

pi,j(ni)vj

and the finite set F = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)} ⊂ Zr.
To see that Theorem 4.2.8 follows from Theorem 4.2.9, let P : Zr → Z

l be
a polynomial mapping satisfying P (0) = 0 and let F = {w1, . . . , wk} be an
arbitrary finite set in Zr. Letting t = l in Theorem 4.2.9, define polynomials
pi,j(n) by

pi,j(n) = P (nwi)j, n ∈ N, i = 1, 2, . . . , k, j = 1, 2, . . . , l.

Let v1, v2, . . . , vl denote the unit vectors from the standard basis in Zl.
Then, by Theorem 4.2.9 one has, for some n ∈ N and u ∈ Zl,

u+ P (nwi) = u+
t∑

j=1

P (nwi)jvj ∈ S, i = 1, 2, . . . k,

which is the same as u+ P (nF ) ⊂ S.
We formulate now an ergodic theoretic result which implies (via Fursten-

berg’s correspondence principle) Theorems 4.2.8 and 4.2.9, and which may
be viewed as a measure preserving analogue of the topological polynomial
van der Waerden theorem, Theorem 2.9 above. (See also Theorem 4.2.26
below.)

Theorem 4.2.10. ([BeL1], Thm. A) Let, for some t, k ∈ N, p1,1(n), . . . , p1,t(n),
p2,1(n), . . . , p2,t(n), . . . , pk,1(n), . . . , pk,t(n) be polynomials with rational coef-
ficients taking integer values on the integers and satisfying pi,j(0) = 0, i =
1, 2, . . . , k, j = 1, 2, . . . , t. Then, for any probability space (X,B, µ), com-
muting invertible measure preserving transformations T1, T2, . . . , Tt of X and
any A ∈ B with µ(A) > 0, one has

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
A∩

t∏
j=1

T
−pi,j(n)
j A∩

t∏
j=1

T
−p2,j(n)
j A∩ . . .∩

t∏
j=1

T
−pn,j(n)
j A

)
> 0.

To get a feeling for how general Theorem 4.2.10 is (though this feeling,
on a combinatorial level, should be provided by the formulation of The-
orem 4.2.8), let us note that as a special case one has, for example, the
following refinement of Theorem 4.2.4.
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Theorem 4.2.11. For any commuting invertible measure preserving trans-
formations T1, . . . , Tk of a probability space (X,B, µ), any polynomials p1(n), . . . ,
pk(n) which have rational coefficients, take integer values on the integers, and
satisfy pi(0) = 0, i = 1, 2, . . . , k, any any A ∈ B with µ(A) > 0, one has

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
A ∩ T−p1(n)

1 A ∩ T−p2(n)
2 A ∩ . . . ∩ T−pk(n)

k A
)
> 0.

The proof of Theorem 4.2.10 in [BeL1] can be described as a “polynomi-
alization” of the proof of Theorem 4.2.4. To ease the discussion, let us put
in Theorem 4.2.4 Ti = T i and consider the expression

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
A ∩ T−p1(n)

1 A ∩ T−p2(n)
2 A ∩ . . . ∩ T−pk(n)

k A
)
.

Assume first that f = 1A is a compact function. In this special case the
positivity of the liminf above easily follows from the following simple fact.

Lemma 4.2.12. Suppose that p1(n), p2(n), . . . , pk(n) are polynomials with
rational coefficients which take integer values on integers and satisfy pi(0) =
0, i = 1, 2, . . . , k. Let T be an isometry of a compact metric space (X, ρ).

Then for any ε > 0 the set
⋂k
i=1

{
n : ρ(T pi(n)x, x) < ε

}
is syndetic.

To prove Lemma 4.2.12, one can, for example, invoke the fact that if
T is an isometry then the dynamical system (X,T ) is semisimple, i.e. is a
disjoint union of minimal systems. Now, it is not hard to show that if the
topological system (X,T ), where T is an isometry, is minimal, then it is
topologically isomorphic (conjugate) to a minimal translation on a compact
abelian group. The desired result then can be deduced from Weyl’s result
on polynomial Diophantine approximation. Alternatively, one can observe
that Lemma 4.2.12 is a corollary of the polynomial van der Waerden theorem
(Theorem 2.9 above).

If (X,B, µ, T ) is weakly mixing, then the result in question also holds,
due to the following refinement of Theorem 4.1.5.

Theorem 4.2.13. ([Be2]) Let (X,B, µ, T ) be an invertible weakly mixing
system. Assume that the polynomials pj(n), j = 1, 2, . . . , k, take integer val-
ues on integers, have degree greater than or equal to one, and satisfy the
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condition pi(n) − pj(n) 6≡ const, i 6= j. Then for any fi ∈ L∞(X,B, µ) one
has

lim
N→∞

1

N

N−1∑
n=0

T p1(n)f1T
p2(n)f2 . . . T

pk(n)fk =

∫
f1dµ

∫
f2dµ . . .

∫
fkdµ

in L2-norm.

Putting fi = 1A, i = 1, 2, . . . , k, multiplying by 1A and integrating gives
us

lim
N→∞

1

N

N−1∑
n=0

µ
(
A ∩ T−p1(n)A ∩ T−p2(n)A ∩ . . . ∩ T−pk(n)A

)
= µ(A)k+1.

The proof of Theorem 4.2.13 is achieved by an inductive procedure, based
on Theorem 4.1.6, which is sometimes called PET-induction. See [Be2] for
details.

The proof of Theorem 4.2.10 in its full generality takes, of course, some
more work, but with the help of the polynomial van der Waerden theorem
and the appropriately general form of Theorem 4.2.13, one is able to push
the statement through the primitive extensions. See [BeL1] for the details.

We pass now to the discussion of the IP Szemerédi theorem which was
obtained by Furstenberg and Katznelson in [FuK2]. The reader is encouraged
to review the definition of an IP system introduced before the formulation
of the IP van der Waerden theorem (Theorem 2.2) and to juxtapose the
formulations of Theorem 2.2 and the following statement.

Theorem 4.2.14. (See [FuK2], Thm. A.) Let (X,B, µ) be a probability space
and G an abelian group of measure-preserving transformations of X. For any
k ∈ N, any IP systems

{
T

(1)
α

}
α∈F ,

{
T

(2)
α

}
α∈F , . . . ,

{
T

(k)
α

}
α∈F in G, and any

A ∈ B with µ(A) > 0 there exists α ∈ F such that

µ
(
A ∩ T (1)

α A ∩ T (2)
α A ∩ . . . ∩ T (k)

α A
)
> 0.

The proof of the IP Szemerédi theorem is achieved via a sophisticated
structure theory which could be viewed as an IP variation on the theme of
primitive extensions discussed above. Curiously enough, it is not the IP van
der Waerden theorem, but the more powerful Hales-Jewett theorem which
has to be used when dealing with the IP version of compact extensions. We
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will give more details on the proof of Theorem 4.2.14 below, but first we want
to discuss some of its corollaries.

Note that, since the notion of an IP set is a generalization of a (semi)group,
the notion of an IP system of commuting invertible measure preserving trans-
formations generalizes the notion of a measure preserving action of a count-
able abelian group. It follows that Theorems 4.1.2, 4.2.2, and 4.2.4 are
immediate corollaries of Theorem 4.2.14. It also follows, via an appropriate
version of Furstenberg’s correspondence principle, that, on a combinatorial
level, Theorem 4.2.4, the IP Szemerédi theorem, implies the multidimen-
sional version of Szemerédi’s theorem (Theorem 1.23 above) as well as The-
orem 4.2.1. However, the IP Szemerédi theorem gives more! For example,
it follows from it that the sets of configurations, always to be found in sets
of positive density in Zk or F∞, are abundant in the sense that the set of
parameters of these configurations form IP∗ sets. (See the discussion at the
beginning of Section 2.)

One can derive these IP∗ versions of combinatorial results from the fol-
lowing corollary of Theorem 4.2.14. The IP and IP∗ sets in an abelian group
are defined in complete (and obvious) analogy to the definitions in Sections
1 and 2 which were geared towards N.

Theorem 4.2.15. Let (X,B, µ) be a probability space, and let G be a
countable abelian group. For any k commuting measure preserving actions(
T

(1)
g

)
g∈G,

(
T

(2)
g

)
g∈G, . . .,

(
T

(k)
g

)
g∈G of G on (X,B, µ) and any A ∈ B with

µ(A) > 0, the set{
g ∈ G : µ

(
A ∩ T (1)

g A ∩ T (2)
g A ∩ . . . ∩ T (k)

g A
)
> 0
}

is an IP∗ set in G.

Note that since any IP∗ set in N is obviously syndetic, Theorem 4.2.15
implies, for example, the following fact.

Corollary 4.2.16. For any commuting transformations T1, T2, . . . , Tk of a
probability space (X,B, µ) and any A ∈ B with µ(A) > 0, the set

{
n ∈ N :

µ
(
A ∩ T−n1 A ∩ T−n2 A ∩ . . . ∩ T−nk A

)
> 0
}

is syndetic.

Note that the conclusion of Corollary 4.2.16 would follow from Theo-
rem 4.2.4 if one would be able to replace in its formulation the statement
involving the regular Cesàro averages:

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
A ∩ T−n1 A ∩ . . . ∩ T−nk A

)
> 0
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by a similar, but stronger, statement, involving “uniform” averages:

lim inf
N−M→∞

1

N −M

N−1∑
n=M

µ
(
A ∩ T−n1 A ∩ . . . ∩ T−nk A

)
> 0.

It is perhaps instructive to pinpoint the exact place in the proof of The-
orem 4.2.4 (or its earlier version, Theorem 4.1.2) that does not work for the
uniform Cesaro averages. This analysis will also allow the reader to get a
better feeling for why one is forced to use the Hales-Jewett theorem. Careful
examination of the proof reveals that it is actually only the case of compact
extensions which causes the trouble.

Let us briefly review the main ingredients of the proof of Theorem 4.1.2.
First, if the system (X,B, µ, T ) is compact, we saw that the set

{
n ∈ Z :∣∣µ(A ∩ T−nA ∩ . . . ∩ T−knA) − µ(A)

∣∣ < ε
}

is syndetic. Second, as was
mentioned in Remark 4.1.7, in the case when (X,B, µ, T ) is weakly mixing,
one has, for any A ∈ B with µ(A) > 0,

lim
N−M→∞

1

N −M

N−1∑
n=M

µ
(
A ∩ T−nA ∩ . . . T−knA

)
=
(
µ(A)

)k+1
,

and hence, in this case, the set{
n ∈ Z :

∣∣µ(A ∩ T−nA ∩ . . . ∩ T−knA)− (µ(A)
)k+1∣∣ < ε

}
is syndetic.

One can check that the case of relative weak mixing also works for uniform
averages. However, it is the case of relatively compact extensions where the
syndeticity property is lost in the passage to the extension. Indeed, in the
proof of Theorem 4.1.17 we show that if X = (X,B, µ, T ) is a relatively
compact extension of Y = (Y,D, ν, S) and A ∈ B with µ(A) > 0, then there
is a set A1 ∈ D with ν(A1) > 0 and a number M ∈ N such that for any n
which is good for multiple recurrence of A, in Y, there is a multiple dn with
d ≤M , which is good for multiple recurrence of A inX. So even if one would
know in advance that the set RA1 = {n1, n2, . . .} of multiple returns of A1 is
a syndetic set, the set of multiples RA = {d1n1, d2n2, . . .} while being still of
positive upper density (due to the fact that di ≤ M for all i), is no longer
guaranteed to be syndetic, as it is not hard to see on some trivial examples.

A possible solution of this problem is to use a more powerful coloring
theorem instead of van der Waerden’s. It turns out that the Hales-Jewett
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theorem (see Theorems 1.26 and 1.28) which, as we saw in Section 2 (see
Proposition 2.7) is very close to van der Waerden’s, is strong enough to
supply the missing link needed to assure that the syndeticity can be pushed
through the transfinite induction. This added strength allows one to get the
better result:

lim inf
N−M→∞

1

N −M

N−1∑
n=M

µ
(
A ∩ T−n1 A ∩ . . . ∩ T−nk A

)
> 0.

(See [McC], Section 5.2, for a presentation of the syndetic version of Theo-
rem 4.1.2 via the Hales-Jewett theorem.)

We give now more details on the proof of the IP Szemerédi theorem. First,
let us introduce, following [Fu3] and [FuK2], some pertinent terminology.

Let us recall that any sequence indexed by the set of nonempty subsets
of N is called an F -sequence. In particular, IP sets and IP systems that we
have dealt with in earlier sections are examples of F -sequences. As before,
we will be writing, for α, β ∈ F , α < β (or β > α) if maxα < min β. Assume
that a collection of sets αi ∈ F , i = 1, 2, . . . has the property αi < αi+1 for

all i ∈ N. The set F (1) =
{⋃

i∈β αi : β ∈ F
}

is called an IP ring. Observe

that F can be viewed as an IP set in the commutative semigroup (N,∪),
generated by the singletons {i}, i ∈ N. By the same token, the IP ring F (1)

can be viewed as an IP set in (N,∪) which is generated by the “atoms” αi,
i ∈ N, and hence has the same structure as F . More formally, let us define
a mapping ϕ : F → F (1) by ϕ(β) =

⋃
i∈β αi. Clearly, ϕ is bijective and

“structure preserving.” It follows that any sequence indexed by the elements
of an IP ring may itself be viewed as an F -sequence.

The following is a version of Hindman’s theorem, which will be needed
below. The reader should have no problem establishing its equivalence to
Theorem 1.10.

Theorem 4.2.17. For any finite partition F =
⋃r
i=1 Ci, one of Ci contains

an IP ring.

Definition 4.2.18. Assume that (xα)α∈F is an F-sequence in a topological
space X. Let x ∈ X and let F (1) be an IP ring. We shall write IP-lim

α∈F(1)
xα = x

if for any neighborhood U of x there exists α0 = α0(U) such that, for any
α ∈ F (1) with α > α0, one has xα ∈ U .
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One has now the following IP version of the classical Bolzano-Weierstrass
theorem.

Theorem 4.2.19. (cf. [Fu3], Thm. 8.14 and [FuK2], Thm. 1.3.) If (xα)α∈F
is an F-sequence in a compact metric space X, then there exist an IP ring
F (1) and x0 ∈ X such that the F-sequence (xα)α∈F(1) has an IP-limit in X:

IP-lim
α∈F(1)

xα = x0.

Sketch of the proof. The proof goes along the lines of the classical “di-
chotomic” proof of the Bolzano-Weierstrass theorem, in which one replaces
the pigeonhole principle by the (much more powerful) Hindman’s theorem.
For given ε > 0, let (Bi)

r
i=1 be a finite family of open balls of radius ε

2
which

covers the compact space X. By Theorem 4.2.17 one can extract an IP ring
F (1) so that the F -sequence (xα)α∈F(1) has all of its elements within distance
less than ε of one another. The proof is concluded by the diagonal procedure.

�

Remark. The notions and properties of IP convergence are very similar
to those of the convergence along an idempotent ultrafilter, which was in-
troduced and discussed in Section 3. One could advance this analogy even
further by introducing βF , the Stone-Čech compactification of F . We have
preferred to stick to IP convergence for two reasons. First, this allows us
to follow more closely the work of Furstenberg and Katznelson in [FuK2].
Second, IP-limits seem, at least as of now, to be a more convenient tool for
dealing with the polynomial extensions of the IP Szemerédi theorem. (See
Theorems 4.2.23 and 4.2.26 below.)

The following result is an IP analogue of Proposition 3.17 above. For the
(short) proof see [Fu3], Lemma 8.15, or [FuK2], p. 124.

Theorem 4.2.20. Let {Tα}α∈F be an IP system of continuous transforma-
tions of a metric space X. Assume that, for some x, y ∈ X, IP-lim

α∈F
Tαx = y.

Then IP-lim
α∈F

Tαy = y.

Assume now that (Uα)α∈F is an IP system generated by commuting uni-
tary operators acting on a separable Hilbert space H. By using the fact that
the closed ball BR = {x ∈ H : ||x|| ≤ R} is a compact metrizable space in
the weak topology, one has the following result.
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Theorem 4.2.21. ([FuK2], Thm. 1.7) If {Uα}α∈F is an IP system of com-
muting unitary operators on a Hilbert space H, then there is an IP ring F (1)

such that the IP subsystem {Uα}α∈F(1) converges weakly. Moreover, if one
has IP-lim

α∈F
Uα = P weakly, then P is an orthogonal projection.

Sketch of the proof. Since, clearly, ||P || ≤ 1, one needs only to show that
P 2 = P . But this follows from Theorem 4.2.20.

�

The projection P occurring in the above theorem is an orthogonal projec-
tion on the space of rigid elements, i.e. elements R, satisfying Uαf → f . Note
also that, by a classical exercise, Uαf → f weakly if and only if Uαf → f
strongly. Assuming that IP-lim

α∈F
Uα = P weakly, we have now the following

decomposition of H:
H = Hr ⊕Hm, where

Hr =
{
f ∈ H : IP-lim

α∈F
Uαf = f

}
,

Hm =
{
f ∈ H : IP-lim

α∈F
Uαf = 0 weakly

}
.

The reader should view this splitting as the IP analogue of the splitting
H = Hc ⊕ Hwm which was utilized in the proof of Theorem 4.1.2. This
analogy is the starting point of the long list of facts about IP systems of
commuting measure preserving transformations which parallel the familiar
results pertaining to the structure theory of measure preserving systems and
multiple recurrence. For example, when H = L2(X,B, µ) and the operators
Uα are induced by measure preserving transformations Tα on the probability
measure space, the spaceHr of rigid functions can be represented, in complete
analogy to Theorem 4.1.6, as L2(X,B1, µ), where the σ-algebra B1 consists of
sets A for which the indicator function 1A is rigid. One can go even further
and define the notions of relatively rigid and relatively mixing extensions.
There is also an IP analogue of the van der Corput trick. (See for example
Lemma 5.3 in [FuK2].) To handle relatively rigid (or relatively compact, as
they are called in [FuK2]) extensions, one uses the Hales-Jewett theorem.
Finally, (and mainly due to the fact that one deals with a finitely generated
group of IP systems), one also has an analogue of primitive extensions and
a theorem analogous to Theorem 4.2.7. (See Theorem 7.10 in [FuK2].)

While many details of the corresponding results demand much work and
have to be worked out with care, it is shown in [FuK2] that all this can be
glued together to obtain the proof of the IP Szemerédi theorem.
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Being encouraged by the IP Szemerédi theorem, one can ask whether the
polynomial Szemerédi theorem (Theorem 4.2.10) also admits an IP version.
This question is already not trivial in the case of single recurrence, and we
address it in this context first.

For an arbitrary invertible probability measure preserving system
(X,B, µ, T ), a set A ∈ B with µ(A) > 0, and a polynomial p(n) which
takes integer values on the integers and satisfies p(0) = 0, consider the set

RA = {n : µ(A ∩ T p(n)A) > 0}.

As we have shown in the course of the proof of Theorem 1.31,
one has limN→∞

1
N

∑N−1
n=0 µ(A ∩ T p(n)A) > 0, which clearly implies

that RA has positive upper density. Moreover, by using a mod-
ification of the van der Corput trick (Theorem 1.32) which deals
with limits of the form limN−M→∞

1
N−M

∑N−1
n=M xn, one can show that

limN−M→∞
1

N−M
∑N−1

n=M µ(A ∩ T p(n)A) > 0, which implies that, in fact, the
set RA is syndetic.

In order to obtain an IP version of Theorem 1.31, which would guarantee
that the set RA is an IP∗ set, one has to switch from Cesàro limits to IP
limits. The following theorem, which is a special case of a more general
result proved in [BeFM], not only implies that RA is indeed an IP∗ set, but
actually shows that for any ε > 0, the set of returns with large intersections,
{n : µ(A ∩ T p(n)A) > µ(A)2 − ε} is also IP∗.

Theorem 4.2.22. (See [Be3], Thm. 3.11.) Assume that p(t) ∈ Q[t] sat-
isfies p(Z) ⊆ Z and p(0) = 0. Then for any invertible probability measure
preserving system (X,B, µ, T ), any A ∈ B with µ(A) > 0, and any IP set
(nα)α∈F ⊂ N, there exists an IP-ring F (1) ⊂ F such that

IP-lim
α∈F(1)

µ(A ∩ T p(nα)A) ≥ µ(A)2.

The crucial role in the proof of Theorem 4.2.22 is played by the fact
(obtained with the help of an IP version of van der Corput’s trick) that there
is an IP ring such that (denoting by UT the unitary operator on L2(X,B, µ)
which is induced by T ) one has

IP-lim
α∈F(1)

U
p(nα)
T = P weakly,
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where P is an orthogonal projection. In particular, it is the fact that P is an
orthogonal projection which enables one to get large intersections along the
sequence

(
p(nα)

)
α∈F(1) . Here is the proof:

IP-lim
α∈F(1)

µ
(
A ∩ T p(nα)A

)
= IP-lim

α∈F(1)
〈Up(nα)

T 1A, 1A〉

= 〈P1A, 1A〉 = 〈P1A, P1A〉〈1, 1〉 ≥ 〈P1A, 1〉2 = 〈1A, 1〉2 = µ(A)2.

While the proof of Theorem 4.2.22 is, in many respects, just an IP ana-
logue of the proof of Theorem 1.31 above, there is one important distinction
which we want to mention here. As we saw in the proof of Theorem 1.31,
the splitting H = Hrat ⊕Htot.erg. works for all p(n) ∈ Z[n]. A novel feature
encountered in the proof of the IP analogue of Theorem 1.31 is that the split-
ting of H = L2(X,B, µ) which enables one to distinguish between different

kinds of asymptotic behavior of U
p(n)
T along an IP set (nα)α∈F may depend

on the polynomial p(n).
However, a much more important novelty which is encountered when one

deals with IP analogues of polynomial recurrence theorems is that one has
now a bigger family of functions, namely the IP polynomials which form the
IP analogue of the conventional polynomials, and for which the IP versions
of familiar theorems make sense. Examples of IP polynomial recurrence
results in topological dynamics were given in Section 2 (see for example
Theorems 2.9 and 2.12). The results which we are going to formulate now can
be characterized as polynomial IP extensions of Theorems 1.31 and 4.2.10,
and involve a natural subclass of IP polynomials which can be obtained in
the following way.

Let q(t1, . . . , tk) ∈ Z[t1, . . . , tk] and let
(
n

(i)
α

)
α∈F , i = 1, 2, . . . , k be IP

sets. Then q(α) = q
(
n

(1)
α , n

(2)
α , . . . , n

(k)
α

)
is an example of an IP polynomial.

For example, if deg q(t1, . . . , tk) = 2, then q(α) will typically look like

g(α) =
s∑
i=1

n(i)
α m

(i)
α +

r∑
i=1

k(i)
α .

The following result, obtained in [BeFM], extends Theorem 4.2.22 to
the case of several commuting transformations and to the the family of IP
polynomials described above.

Theorem 4.2.23. ([BeFM], Cor. 2.1) Suppose that (X,B, µ) is a probability
space and that {T1, T2, . . . , Tt} is a collection of commuting invertible measure
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preserving transformations of X. Suppose that
(
n

(i)
α

)
α∈F ⊂ N are IP sets,

i = 1, 2, . . . , k, and that pj(x1, . . . , xk) ∈ Z[x1, . . . , xk] satisfy pj(0, 0, . . . , 0) =
0 for j = 1, 2, . . . , t. Then for any measurable A ⊆ X, there exists an IP-ring
F (1) ⊂ F such that

IP-lim
α∈F(1)

µ
(
A ∩

t∏
i=1

T
pi

(
n

(1)
α ,n

(2)
α ,...,n

(k)
α

)
i A

)
≥ µ(A)2.

Theorem 4.2.23 is obtained in [BeFM] as a corollary of the following
general fact about families of unitary operators, which can be viewed as a
polynomial variation of Theorem 4.2.21. Note that the IP-ring F (1) which
occurs in the formulation, always exists due to the compactness of the weak
topology.

Theorem 4.2.24. ([BeFM], Thm. 1.8) Suppose that H is a Hilbert space,(
Ui)

t
i=1 is a commuting family of unitary operators onH,

(
pi(x1, . . . , xk)

)t
i=1
⊂

Z[x1, . . . , xk] satisfy pi(0, 0, . . . , 0) = 0 for 1 ≤ i ≤ t, and that
(
n

(i)
α

)
α∈F are

IP sets for 1 ≤ j ≤ t. Suppose that F (1) is an IP-ring such that for each
f ∈ H,

IP-lim
α∈F(1)

( t∏
i=1

U
pi

(
n

(1)
α ,...,n

(k)
α

)
i

)
f = P(p1,...,pt)f

exists in the weak topology. Then P(p1,...,pt) is an orthogonal projection. Pro-

jections of this type commute, that is, if also
(
qi(x1, . . . , xk)

)t
i=1
⊂ Z[x1, . . . , xk]

satisfy qi(0, 0, . . . , 0) = 0 for 1 ≤ i ≤ t, then

P(p1,...,pt)P(q1,...,qt) = P(q1,...,qt)P(p1,...,pt).

An interesting feature of the proof of Theorem 4.2.23 is the usage of the
following extension of Hindman’s theorem, due independently to K. Milliken
and A. Taylor. (See [M] and [T].)

Theorem 4.2.25. ([M], [T]) Suppose that F (1) is an IP-ring, l, r ∈ N, and

{
(α1, . . . , αl) ∈

(
F (1))l : α1 < α2 < . . . < αl

}
=

r⋃
i=1

Ci.

Then there exists j, 1 ≤ j ≤ r, and an IP-ring F (2) ⊂ F (1) such that{
(α1, . . . , αl) ∈

(
F (2))l : α1 < α2 < . . . < αl

}
⊂ Cj.
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The next natural step is to (try to) extend Theorem 4.2.23 to a multiple
recurrence result. The following theorem obtained (as a corollary of a more
general result) in [BeM2], which we will call the IP polynomial Szemerédi
theorem, is an IP extension of Theorem 4.2.10. (Cf. Theorem 2.9 above.)

Theorem 4.2.26. ([BeM2], Thm. 0.9) Suppose we are given r commuting
invertible measure preserving transformations T1, . . . , Tr of a probability space
(X,B, µ). Let k, t ∈ N and suppose that pi,j(n1, . . . , nk) ∈ Q[n1, . . . , nk]
satisfy pi,j(Z

k) ⊆ Z and pi,j(0, 0, . . . , 0) = 0 for 1 ≤ i ≤ r, 1 ≤ j ≤ t. Then
for every A ∈ B with µ(A) > 0, the set

RA =
{

(n1, . . . , nk) ∈ Zk : µ
( t⋂
j=1

( r∏
i=1

T
pi,j(n1,...,nk)
i

)
A
)
> 0
}

is an IP∗ set in Zk.

We collect some of the corollaries of Theorem 4.2.26 in the following list.

(i) Already for k = 1, Theorem 4.2.26 gives a refinement of the polynomial
Szemerédi theorem (Theorem 4.2.10). Indeed, it says that the set{
n ∈ Z : µ

(
A∩T p11(n)

1 T
p12(n)
2 . . . T p1r(n)

r A∩. . .∩T pt1(n)
1 T

pt2(n)
2 . . . T ptr(n)

r A
)
> 0
}

is IP∗, hence syndetic, hence of positive lower density.

(ii) Theorem 4.2.26 also enlarges the family of configurations which can al-
ways be found in sets of positive upper Banach density in Zn. For example,
using Furstenberg’s correspondence principle, one obtains the following fact,
in which the reader will recognize the density version of Theorem 2.12.

Theorem 4.2.27. Let P : Zr → Z
l, r, l ∈ N, be a polynomial mapping

satisfying P (0) = 0, and let F ⊂ Zr be a finite set. Then for any set E ⊂ Zl
with d∗(E) > 0 and any IP sets

(
n

(i)
α

)
α∈F , i = 1, . . . , r, there exist u ∈ Zl

and α ∈ F such that{
u+ P

(
n(1)
α x1, n

(2)
α x2, . . . , n

(r)
α xr

)
: (x1, . . . , xr) ∈ F

}
⊂ S.

See [BeFM] for additional applications, both to combinatorics and to
ergodic theory.
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The proof of Theorem 4.2.26 that is given in [BeM2] is quite cumber-
some (partly due to the fact that in order to push the statement through the
transfinite induction over the factors with “manageable” behavior, one has
to formulate and prove an even more general result.) In a way, it is a polyno-
mialization of the proof of the IP Szemerédi theorem in [FuK2]. Not being
able to go through the details of the proof here, we would like to mention
the two combinatorial facts which play a decisive role in the proof. One of
them is the Milliken-Taylor theorem, formulated above as Theorem 4.2.25.
The other one is the polynomial Hales-Jewett theorem, Theorem 2.11.

We are going to discuss now the density versions (and their ergodic coun-
terparts) of three more partition theorems which we encountered in Sections
1 and 2.

We start with Theorem 1.26, the Hales-Jewett theorem. As we saw in
Section 2, some major corollaries of the Hales-Jewett theorem, such as the
multidimensional van der Waerden theorem and the so-called geometric Ram-
sey theorem, Theorem 1.27, follow from the IP van der Waerden theorem.
The streamlined measure theoretical extension of the IP van der Waerden
theorem, the IP Szemerédi theorem, (Theorem 4.2.14) allows one to get the
density versions of these corollaries. The IP Szemerédi theorem is, how-
ever, still not general enough to give the density version of the Hales-Jewett
theorem. This density version, which we will refer to below as dHJ, was
established by Furstenberg and Katznelson in [FuK4]. Here is one of a few
equivalent formulations of dHJ.

Theorem 4.2.28. ([FuK4], Thm. E) There is a function R(ε, k), defined for
all ε > 0 and k ∈ N, so that if A is a set with k elements, WN(A) consists of
words in A with length N , and if N ≥ R(ε, k), then any subset S ⊂ WN(A)
with |S| ≥ εkN contains a combinatorial line.

In order to formulate the ergodic counterpart of Theorem 4.2.28 which
was proved in [FuK4], we shall need the following definition.

Definition 4.2.29. (See [FuK4], Def. 2.7.) Let W (k) denote the free semi-

group over the k-element alphabet {1, 2, . . . , k}. Given k sequences
{
T

(1)
n

}∞
n=1

,{
T

(2)
n

}∞
n=1

, . . .,
{
T

(k)
n

}∞
n=1

of invertible measure preserving transformations of

a probability space (X,B, µ), define, for each w =
(
w(1), w(2), . . . , w(k)

)
∈

W (k),

T (w) = T
w(1)
1 T

w(2)
2 . . . T

w(k)
k .

The family
(
T (w), w ∈ W (k)

)
is called a W (k)-system.

90



Here is now the ergodic formulation of dHJ.

Theorem 4.2.30. (See [FuK4], Prop. 27.) Let {T (w), w ∈ W (k)} be a
W (k)-system of invertible measure preserving transformations of a probability
space (X,B, µ). For any A ∈ B with µ(A) > 0, there exists a combinatorial
line

(
l(t)
)
t∈{1,2,...,k} in W (k) such that

µ
(
T
(
l(1)
)−1

A ∩ T
(
l(2)
)−1

A ∩ . . . ∩ T
(
l(k)

)−1
A
)
> 0.

The proof of Theorem 4.2.30, while following the general scheme of the
other proofs discussed above, is significantly more involved, mainly due to
the fact that the transformations forming the W (k)-system need not com-
mute. (As a matter of fact, in the case where the W (k)-system is formed by
commutative transformations, the situation is reduced to the IP Szemerédi
theorem.) Despite the absence of commutativity, the proof of Theorem 4.2.30
has a strong IP flavor. In particular, the authors use the IP version of the
van der Corput trick, Theorem 4.2.20, and a (noncommutative) version of
Theorem 4.2.21. Much more importantly, the authors are using an infini-
tary combinatorial result which is a simultaneous extension of the Hindman,
Milliken-Taylor, and Hales-Jewett theorems. This combinatorial fact was
also obtained by Carlson. (See [FuK3], [Ca], and [BeBH].)

Before moving on with our discussion, we would like to stress that while
Theorem 4.2.30 deals with an action of a free finitely generated semigroup,
namely W (k), it is a result about rather special configurations in W (k).

Another multiple recurrence theorem involving a noncommutative group
is Leibman’s nil-Szemerédi theorem obtained in [Le2], which is a density
version of his nil-van der Waerden theorem (Theorem 2.15), and, at the
same time, is an extension of Theorem 4.2.10.

Theorem 4.2.31. (Cf. [Le2], Thm. NM) Let k, t, r ∈ N. Assume that G
is a nilpotent group of measure preserving transformations of a probability
measure space (X,B, µ). Let pi,j(n1, . . . , nk) ∈ Z[n1, . . . , nk] with pi,j(Z

k) ⊆ Z
and pi,j(0, 0, . . . , 0) = 0, 1 ≤ i ≤ r, 1 ≤ j ≤ t. Then for every A ∈ B with
µ(A) > 0 and any T1, T2, . . . Tr ∈ G, the set{

(n1, . . . , nk) ∈ Zk : µ
( t⋂
j=1

( r∏
i=1

T
pi,j(n1,...,nk)
i

)
A
)
> 0
}

is a syndetic set in Zk.
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In his proof, Leibman builds a nilpotent version of primitive extensions
similar to, but more sophisticated (due to the noncommutativity) than that
which was introduced in [FuK1]. We will describe it now. Let Y be a measure
space and let {Xi}i∈I be a system of measure spaces of the form Xi = Y ×Fi,
i ∈ I; then the measure space X = Y ×

∏
i∈I Fi is called a relatively direct

product of Xi, i ∈ I, over Y .

Definition 4.2.32. (Cf. [Le2], Def. 11.10) Let G be a finitely generated nilpo-
tent group. An extension X = (X,B, µ, (Tg)g∈G) of a system Y = (Y,D, ν,
(Sg)g∈G) is primitive if X is (isomorphic to) the relatively direct product over
Y of a system {Xi}i∈I of measure spaces so that

(i) the transformations Tg, g ∈ G, on X permute the spaces Xi in the product:
for any g ∈ G and i ∈ I one has Tg(Xi) = Xj for some j ∈ I;

(ii) if T = Tg preserves Xi, i.e. Tg(Xi) = Xi, then the action of T on Xi is
either compact relative to Y or weak mixing relative to Y .

Modulo this definition, the structure theorem for measure preserving ac-
tions of a finitely generated nilpotent group is the same as the structure
theorem for Zk-actions, Theorem 4.2.7 above.

Theorem 4.2.33. ([Le2], Thm. 11.11) If G is a finitely generated nilpotent
group and X =

(
X,B, µ, (Tg)g∈G

)
is an extension of Y =

(
Y,D, ν, (Sg)g∈G

)
,

then there is an intermediate factor Z such that Z is a primitive extension
of Y.

It is worth mentioning that the structure similar to that appearing in
the case of measure preserving actions of nilpotent groups can already be
observed on the unitary level.

Theorem 4.2.34. ([Le3], Thm. N) Let {Tg} be a unitary action of a finitely
generated nilpotent group G on a Hilbert space H. Then H is representable
as the direct sum of a system {Li}i∈I of closed pairwise orthogonal subspaces
so that:
(i) the operators Tg, g ∈ G, permute the subspaces Li: for any g ∈ G and
i ∈ I one has Tg(Li) = Lj for some j ∈ I.
(ii) if T = Tg preserves Li, i.e. if T (Li) = Li, then either T is scalar on Li
or T is weakly mixing on Li.

Another interesting feature of Leibman’s proof of Theorem 4.2.31 is that
in order to lift the recurrence property in question to relatively compact
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extensions, a coloring theorem is employed which is close in spirit to Theo-
rem 2.17.

Leibman’s nil-Szemerédi theorem naturally leads to the question whether
the assumptions can be further relaxed and whether, in particular, an ana-
logue of Theorem 1.24 holds true if the measure preserving transformations
T1, T2, . . . , Tk generate a solvable group. Note that any finitely generated
solvable group is either of exponential growth or is virtually nilpotent, i.e.
contains a nilpotent group of finite index. (See, for example, [Ros].) Since
Theorem 4.2.31 easily extends to virtually nilpotent groups, the question
boils down to solvable groups of exponential growth. The following result,
proved in [BeL5], shows, in a strong way, that for solvable groups of expo-
nential growth the answer to the above question is NO.

Theorem 4.2.35. ([BeL5], Thm. 1.1. (A)) Assume that G is a finitely
generated solvable group of exponential growth. There exist a measure pre-
serving action (Tg)g∈G of G on a probability measure space (X,B, µ), elements
g, h ∈ G, and a set A ∈ B with µ(A) > 0 such that TgnA ∩ ThnA = ∅ for all
n 6= 0.

We conclude this section by formulating a conjecture about a density
version of the polynomial Hales-Jewett theorem which, if true, extends both
the partition polynomial Hales-Jewett theorem (Theorem 2.11) and the den-
sity version of the “linear” Hales-Jewett theorem (Theorem 4.2.28). For
q, d,N ∈ N, let Mq,d,N be the set of q-tuples of subsets of {1, 2, . . . , N}d:

Mq,d,N =
{

(α1, α2, . . . , αq) : αi ⊂ {1, 2, . . . , N}d, i = 1, 2, . . . , q
}
.

Conjecture 4.2.36. For any q, d ∈ N and ε > 0, there exists C = C(q, d, ε)

such that if N > C and a set S ⊂Mq,d,n satisfies |S|
|Mq,d,N |

> ε then S contains

a “simplex” of the form:{
(α1, α2, . . . , αq), (α1 ∪ γd, α2, . . . , αq), (α1, α2 ∪ γd, . . . , αq), . . . ,

(α1, α2, . . . , αq ∪ γd)
}
,

where γ ⊂ N is a nonempty set and αi ∩ γd = ∅ for all i = 1, 2, . . . , q.

5 Actions of amenable groups

One of the most striking theorems in mathematics, known as the Hausdorff-
Banach-Tarski paradox, (see [Hau] and [BaT]), claims that given any two
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bounded sets A and B in Rn, n ≥ 3, each having nonempty interior, one
can partition A into finitely many disjoint parts and rearrange them by rigid
motions of Rn to form B. What makes this fact even more striking is that
(as was shown by Banach in [Ba]) the analogous result does not take place
in R or R2.

It was von Neumann who, in his fundamental work [Ne1], showed that the
phenomenon of “paradoxicality” is related not so much to the structure of the
space Rn, but rather to the group of transformations which is used to rear-
range the elements of the partition. In particular, von Neumann introduced
and studied in [Ne1] a class of groups which he called “messbar” (measur-
able) and which do not allow for “paradoxical decompositions.” These groups
are called nowadays amenable, (see [OrW], p. 137, for the origin of the term
amenable) and are known to have connections to many mathematical areas,
including probability theory, geometry, theory of dynamical systems and rep-
resentation theory. As we shall see in this section, countable amenable semi-
groups provide also a natural framework for Furstenberg’s correspondence
principle. (See [Gre], [Pier], [Pa] for comprehensive treatment of different
aspects of amenability in the general framework of locally compact groups.
See also [Wag] for a thorough and accessible discussion of amenability for dis-
crete groups with the stress on connections to the Hausdorff-Banach-Tarski
paradox.)

Definition 5.1. Let G be a discrete semigroup. For x ∈ G and A ⊂ G, let
x−1A = {y ∈ G : xy ∈ A} and Ax−1 = {y ∈ G : yx ∈ A}. A semigroup
G is called left-amenable (correspondingly, right-amenable) if there exists a
finitely additive probability measure on the power set P(G) satisfying µ(A) =
µ(x−1A) (correspondingly, µ(A) = µ(Ax−1) for all A ∈ P(G) and x ∈ G).
We say that G is amenable if it is both left- and right-amenable.

It is easy to see (cf. [Wag], p. 147) that a semigroup G is amenable if
and only if there exists an invariant mean on the space B(G) of real-valued
bounded functions on G, that is, a positive linear functional L : B(G) → R

satisfying
(i) L(1G) = 1,
(ii) L(fg) = L(gf) = L(f) for all f ∈ B(G) and g ∈ G, where fg(t) := f(tg)
and gf(t) := f(gt).

The existence of an invariant mean is only one item from a long list of
equivalent properties, (see, for example, [Wag], Thm. 10.11), some of which,

94



such as the characterization of amenability given in the next theorem, are
far from being obvious and, moreover, are valid for groups (or special classes
of semigroups) only. One of the advantages of dealing with groups is that
for groups, the notions of left and right amenability coincide. (For an easy
proof of this fact see, for example, [HeR], Thm. 17.11.)

We will find the following characterization of amenability for discrete
groups, which was established by Følner in [Fø], to be especially useful. (See
also [Na] for a simplified proof.)

Theorem 5.2. A countable group G is amenable if and only if it has a left
Følner sequence, namely a sequence of finite sets Fn ⊂ G, n ∈ N, with
|Fn| → ∞ and such that |Fn∩gFn||Fn| → 1 for all g ∈ G.

Remark 5.3.
1. A right Følner sequence is defined (in an obvious way) as a sequence of

finite sets Fn ⊂ G, n ∈ N, for which |Fn| → ∞ and |Fn∩Fng
|Fn| → 1 for all

g ∈ G. While in non-commutative groups not every left Følner sequence is
necessarily a right Følner sequence and vice versa, it is not hard to show
that the existence of a sequence of either type in a semigroup implies the
corresponding one-sided version of amenability. As was mentioned above, if
G is a group, this is actually enough to get two-sided amenability. The hard
part of Theorem 5.2 is establishing the existence of a Følner sequence.
2. Theorem 5.2 is also valid for semigroups possessing the cancellation law.
See [Na] for details.
3. Theorem 5.2 can also be extended to general locally compact groups. See
[Gre] for details.

It is not known how to construct Følner sequence in a general amenable
group defined, say, by a finite set of generators and relations. On the other
hand, in many concrete, especially abelian, situations, one has no prob-
lem finding a Følner sequence. For example, it is easy to see that the
sets Fn which occurred in the proof of Theorem 2.6, form a Følner se-
quence in F∞. The reader should also have no problem verifying that d-
dimensional parallelepipeds Πn = [a

(1)
n , b

(1)
n ] × [a

(2)
n , b

(2)
n ] × . . . × [a

(d)
n , b

(d)
n ],

where min1≤i≤d |ai − bi| → ∞ as n → ∞, form a Følner sequence in Zd.
Let us indicate how one can construct a Følner sequence in the cancellative
abelian semigroup (N, ·).

Let (an)n∈N be an arbitrary sequence in N and let
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Fn = {anpi11 pi22 . . . pinn : 0 ≤ ij ≤ kj,n, j = 1, 2, . . . , n},

where kj,n is a doubly indexed sequence of positive integers such that, for
every j, kj,n → ∞ as n → ∞, and {pn} is the sequence of primes taken in
arbitrary order. It is not hard to check that {Fn}n∈N is a Følner sequence in
(N, ·).

The following theorem summarizes some general facts about amenable
(semi)groups which were established already in [Ne1]. (For accessible proofs,
see [Gre], Ch. 1 and [Wag], Thm. 10.4.)

Theorem 5.4. (i) Any abelian semigroup is amenable.
(ii) Homomorphic images and subgroups of amenable groups are amenable.
(iii) If N is a normal subgroup of an amenable group G, then G/N is amenable.
(iv) If N is a normal subgroup of a group G, and if both N and G/N are
amenable, then G is amenable.
(v) If a group G is a union of a family of amenable subgroups

{
Hα

}
α∈I so

that for any Hα, Hβ there exists Hγ with Hγ ⊃ Hα∪Hβ, then G is amenable.

It follows that the class of amenable groups is quite rich. In particular,
it contains all solvable groups, since they can be obtained (with the help of
(iv)) from abelian groups by successive extensions with the help of abelian
groups. It follows also that a group is amenable if and only if all of its
finitely generated subgroups are amenable. This, in turn, implies that all
locally finite groups (i.e. the groups in which every finite subset generates a
finite subgroup) are amenable.

On the other hand, the group F2 = 〈a, b〉, (the free group on two genera-
tors) and hence any group containing it as a subgroup, is not amenable.

To see that F2 is not amenable, one can argue as follows. Let F2 =
A+ ∪A− ∪B+ ∪B− ∪{e}, where e is the unit of F2 (the “empty” word) and
the sets A+, A−, B+, and B− consist of the reduced words starting with a,
a−1, b, and b−1 respectively. Assume that µ is a finitely additive probability
measure on P(F2) satisfying µ(A) = µ(gA) for any A ∈ P(F2) and g ∈ F2.
Clearly, µ({e}) = 0. (If µ({e}) = c > 0, then, by translation invariance of
µ, for any n ∈ N, µ({bn}) = c and the set {e, b, b2, . . . , bN}, where N ≥ 1

c
,

would have measure bigger than one.) Assume that µ(A+) = c > 0. (The
same proof will work for any other set of our partition which has positive
measure.) Let An = bnA, n ≥ 0. Clearly, the sets An are disjoint and, by
translation invariance, have the same measure c > 0. It follows that the

96



set
⋃N
n=0 An, where, as before, N ≥ 1

c
, has measure bigger than one, which

gives a contradiction. (Note that the simple argument used here is similar to
that utilized in the proof of the abstract version of the Poincaré recurrence
theorem, Theorem 1.4.)

It follows now that groups such as SL(n,Z) with n ≥ 2 or SO(3,R) (with
the discrete topology) are not amenable, since one can show that they contain
a subgroup isomorphic to F2. As was observed by von Neumann in [Ne1], it
is the latter fact that is behind the Hausdorff-Banach-Tarski paradox. See
[Wag] for a reader-friendly explanation of this fact. On the other hand,
not every non-amenable group has to contain a subgroup isomorphic to F2.
Moreover, non-amenable groups can even be periodic. (See [Ol1], [Ol2], and
[Pa], p. 182.)

As is well known to aficionados, many classical notions and results per-
taining to 1-parameter group actions extend naturally to amenable groups.
Here is, for example, a version of von Neumann’s ergodic theorem for actions
of countable amenable groups.

Theorem 5.5. Let G be a countable amenable group. Assume that (Ug)g∈G is
an antirepresentation of G as a group of unitary operators acting on a Hilbert
space H (i.e. Ug1Ug2 = Ug2g1 for all g1, g2 ∈ G). Let P be the orthogonal
projection on the space Hinv =

{
f ∈ H : Ugf = f ∀g ∈ G

}
. Then for any

left Følner sequence (Fn)n∈N in G, one has

lim
n→∞

∥∥∥ 1

|Fn|
∑
g∈Fn

Ugf − Pf
∥∥∥ = 0.

Sketch of the proof. It is not hard to check that, in complete analogy to
Z-actions, the orthogonal complement of Hinv in H, which we will denote by

Herg, coincides with the space Span
{
f − Ugf : f ∈ H, g ∈ G

}
. So it remains

to verify that on Herg, the limit in question is zero. It is enough to check
this for elements of the form f − Ug0f . We have:

∥∥∥ 1

|Fn|
∑
g∈Fn

Ug(f − Ug0f)
∥∥∥ =

∥∥∥ 1

|Fn|
∑
g∈Fn

Ugf −
1

|Fn|
∑
g∈Fn

Ug0gf
∥∥∥

=
∥∥∥ 1

|Fn|
∑
g∈Fn

Ugf −
1

|Fn|
∑

g∈g0Fn

Ugf
∥∥∥ ≤ |Fn4g0Fn|

|Fn|
‖f‖.
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Since, by the definition of a left Følner sequence, |Fn4g0Fn|
|Fn| −→

n→∞
0, we are

done.
�

Recall that a measure preserving action (Tg)g∈G of a group G on a proba-
bility space (X,B, µ) is ergodic if any set A ∈ B which satisfies µ(TgA4A) =
0 for all g ∈ G has either measure zero or measure one. The reader should
have no problem in verifying the following corollary of Theorem 5.5.

Theorem 5.6. Assume that (Tg)g∈G is an ergodic measure preserving action
of a countable amenable group G. Then for any (left or right) Følner sequence
(Fn)n∈N of G, and any A1, A2 ∈ B, one has

1

|Fn|
∑
g∈Fn

µ(A1 ∩ TgA2) −→
n→∞

µ(A1)µ(A2).

Here is another useful result, whose proof can be transferred almost ver-
batim from the proof of the classical Bogoliouboff-Kryloff theorem. (See, for
example, [Wal], Thm. 6.9 and Cor. 6.9.1.)

Theorem 5.7. Let (Tg)g∈G be an action of an amenable group G by homeo-
morphisms of a compact metric space X. Then there is a probability measure
on the Borel σ-algebra B(X) such that for any A ∈ B(X) and any g ∈ G,
one has µ(A) = µ(TgA).

Remark. Unlike the von Neumann ergodic theorem, the pointwise theorem
for actions of amenable groups is a much harder and more delicate result,
which was proved in the right generality (that is, for any locally compact
amenable group and for functions in L1) only recently, in a remarkable paper
of E. Lindenstrauss, [Li].

We are now going to discuss Ramsey-theoretical aspects of amenable
groups.

Given a countable amenable group G and, say, a left Følner sequence
{Fn}n∈N in G, one can define the upper density with respect to {Fn}n∈N by

d{Fn}(E) = lim supn→∞
|E∩Fn|
|Fn| , E ⊂ G. Note that it immediately follows

from the definition of a left Følner sequence that for all g ∈ G and E ⊂ G,
one has d{Fn}(gE) = d{Fn}(E). By analogy with some known results about
sets of positive density in abelian or nilpotent groups which were discussed
in previous sections, one can expect that large sets in G, i.e. sets having
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positive upper density with respect to some Følner sequence, will contain
some nontrivial configurations. The results which we will formulate below
support this point of view and lead to a general conjecture, which will be
formulated at the end of this section.

We start by formulating and proving a version of Furstenberg’s corre-
spondence principle for countable amenable groups.

Theorem 5.8. (See [Be5], Thm. 6.4.17.) Let G be a countable amenable
group and assume that a set E ⊂ G has positive upper density with respect to
some left Følner sequence {Fn}n∈N: d{Fn}(E) = lim supn→∞

|E∩Fn|
|Fn| > 0. Then

there exists a probability measure preserving system
(
X,B, µ, (Tg)g∈G

)
and a

set A ∈ B with µ(A) = d{Fn}(E) such that for any k ∈ N and g1, . . . , gk ∈ G,
one has

d{Fn}
(
E ∩ g−1

1 E ∩ . . . ∩ g−1
k E

)
≥ µ

(
A ∩ T−1

g1
A ∩ . . . T−1

gk
A
)
.

Proof. We show first that there exists a left-invariant mean L on the space
B(G) of bounded real-valued functions on G such that

(i) L(1E) = d{Fn}(E)
(ii) for any k ∈ N and any g1, . . . , gk ∈ G, one has

d{Fn}
(
E ∩ g−1

1 E ∩ . . . ∩ g−1
k E

)
≥ L

(
1E · 1g−1

1 E · . . . · 1g−1
k E

)
.

Let S be the (countable) family of subsets of G of the form
⋂k
j=1 g

−1
j E,

where k ∈ N and gj ∈ G, j = 1, 2, . . . , k. By using the diagonal procedure,
we can pass to a subsequence

{
Fni
}∞
i=1

of our Følner sequence such that for

our set E we have d{Fn}(E) = limi→∞
|E∩Fni |
|Fni |

and for any S ∈ S the limit

L(S) = limi→∞
|S∩Fni |
|Fni |

= limi→∞
1
|Fni |

∑
g∈Fni

1S(g) exists. Observe that for a

typical set S =
⋂k
j=1 g

−1
j E ∈ S this will give

d{Fn}

( k⋂
j=1

g−1
j E

)
= lim sup

n→∞

∣∣∣(⋂k
j=1 g

−1
j E

)
∩ Fn

∣∣∣
|Fn|

≥ lim
i→∞

∣∣∣(⋂k
j=1 g

−1
j E

)
∩ Fni

∣∣∣
|Fni|

= L
( k⋂
j=1

1g−1
j E

)
.
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Extending by linearity, we will get a positive linear functional L on the
subspace V ⊂ B(G) of finite linear combinations of characteristic functions
of sets in S. Note that it follows from the definition of a left Følner sequence
that this functional L on V is left-invariant, i.e. for any f ∈ V and g ∈ G,
one has L(f) = L(gf), where as before gf(t) = f(gt).

To extend L from V to B(G), define the Minkowski functional P (f) by
P (f) = lim supi→∞

1
|Fni |

∑
g∈Fni

f(g). Clearly, for any f1, f2 ∈ B(G), one has

P (f1 + f2) ≤ P (f1) + P (f2), and for any non-negative t, P (tf) = tP (f).
Note also that, on V , L(f) = P (f). By the Hahn-Banach theorem, there
is an extension of L (which we will denote by L as well) to B(G) satisfying
L(f) ≤ P (f) for all f ∈ B(G). Clearly, L is a left-invariant mean satisfying
conditions (i) and (ii) above.

Finally, in preparation for the next stage of the proof, let us note that L
can be naturally extended to the space BC(G) of complex valued bounded
functions. We shall continue to denote this extension by L.

Let now f(h) = 1E(h) be the characteristic function of E and let A be the
uniformly closed and closed under conjugation functional algebra generated
by the function f and all of the functions of the form gf , where g ∈ G.
Then A is a separable (G is countable and linear combinations with rational
coefficients are dense in A) commutative C∗-algebra with respect to the sup
norm. By the Gelfand representation theorem, A is isomorphic to an algebra
of the form C(X), where X is a compact metric space. The linear functional
L, which we constructed above, induces a positive linear functional L̃ on
C(X). By the Riesz representation theorem, there exists a regular measure
µ on the Borel σ-algebra B of X such that for any ϕ ∈ A,

L(ϕ) = L̃(ϕ̃) =

∫
X

ϕ̃dµ,

where ϕ̃ denotes the image of ϕ in C(X). Notice that since the Gelfand
transform, establishing the isomorphism between A and C(X), preserves the
algebraic operations, and since the characteristic functions of sets are the
only idempotents in C(X), it follows that the image f̃ of our f(h) = 1E(h)
is the characteristic function of some set A ⊂ X: f̃(x) = 1A(x). This gives

d{Fn}(E) = L(1E) = L̃(1A) =

∫
X

1Adµ = µ(A).

Notice also that the translation operators ϕ(h) → ϕ(gh), ϕ ∈ A, g ∈ G,
form an anti-action of G on A, which induces an anti-action (Tg)g∈G on C(X)
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defined for any ϕ ∈ A by (Tg)ϕ̃ = g̃ϕ. The transformations Tg, g ∈ G are C∗-
isomorphisms of C(X) (since they are induced by C∗-isomorphisms ϕ→g ϕ
of A). Now, it is known that algebra isomorphisms of C(X) are induced by
homeomorphisms of X, which we, by a slight abuse of notation, will also be
denoting by Tg, g ∈ G. These homeomorphisms Tg : X → X form an action
of G on X and preserve the measure µ. To see this, let C ∈ B and let ϕ ∈ A
be the preimage of 1C (so that ϕ̃ = 1C). For an arbitrary g ∈ G we have:

µ(C) =

∫
X

1C(x)dµ(x) = L̃(ϕ̃) = L(ϕ) = L(gϕ) = L̃(g̃ϕ)

= L̃
(
ϕ̃(Tgx)

)
=

∫
X

1C(Tgx)dµ(x) =

∫
1T−1

g C(x)dµ(x)

= µ
(
T−1
g C

)
.

Notice also that since L(1) = 1, µ(X) = L̃(1X) = 1. It follows that(
X,B, µ, (Tg)g∈G

)
is a probability measure preserving system. (As a bonus,

we have that, in this representation, the measure preserving transformations
Tg are homeomorphisms of a compact metric space.) We finally have, for
f = 1E, g0 = e, and any g1, . . . , gk ∈ G:

d{Fn}

( k⋂
j=0

g−1
j E

)
≥ L

( k∏
j=0

gjf
)

= L̃
( k∏
j=0

gj f̃
)

= L̃
( k∏
j=0

(
(Tgj)f

))
=

∫
X

k∏
j=0

1T−1
gj
A = µ

( k⋂
j=0

T−1
gj
A
)
.

We are done.

Remark 5.9. It is not hard to modify the proof above to make Theorem 5.8
valid for any countable amenable semigroup possessing a left Følner sequence.
As a matter of fact, Furstenberg’s correspondence principle can be extended
to general countable amenable semigroups if, instead of using Følner se-
quences, one defines a set E ⊂ G to be large if for some left-invariant mean
L on B(G), one has L(1E) > 0. (See [BeM3], Theorem 2.1.) The proof in
[BeM3] is different also in that it avoids the usage of the Gelfand transform.
See also Remark 6.4.21 in [Be5], which describes an approach to the proof of
Theorem 5.8 which does not make use of C∗-algebras.
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The following useful lemma will be be used repeatedly in the sequel. (Note
that while, in view of the pending applications, it is arranged in the amenable
set-up, the lemma is actually completely general and has, in principle, very
little to do with amenability.)

Lemma 5.10. (Cf. [Be1], Thm. 1.1.) Let {Fn}n∈N be a (left or right) Følner
sequence in a countable amenable semigroup G, let (X,B, µ) be a probability
space, and let, for every g ∈ G, Ag ∈ B with µ(Ag) ≥ a > 0. Then there
exists a set S ⊂ G with d{Fn}(S) ≥ A, such that for any finite set F ⊂ S one

has µ
(⋂

g∈F Ag

)
> 0.

Proof. For any finite set F ⊂ G, let AF =
⋂
g∈F Ag. Deleting, if needed, a

set of measure zero from
⋃
g∈GAg, we may and will assume that if AF 6= 0

then µ(AF ) > 0. Let now

fn(x) =
1

|Fn|
∑
g∈Fn

1Ag(x).

Note that 0 ≤ fn(x) ≤ 1 for all x and that
∫
fndµ ≥ a > 0 for all n ∈ N.

Let f(x) = lim supn→∞ fn(x). By Fatou’s lemma, we have∫
X

fdµ =

∫
X

lim sup
n→∞

fdµ ≥ lim sup
n→∞

∫
X

fndµ ≥ a.

Thus
∫
X
fdµ ≥ a and, since µ(X) = 1, there exists x0 ∈ X such that

lim supn→∞ fn(x0) = f(x0) ≥ a. It follows that there is a sequence ni → ∞
such that

fni(x0) =
1

|Fni|
∑
g∈Fni

1Ag(x) −→
i→∞

f(x0) ≥ a. (5.1)

Let P = {g ∈ G : x0 ∈ Ag}. It follows from (5.1) that d{Fn}(P ) ≥ a,
and, since x0 ∈ Ag for all g ∈ P , we have that µ(AF ) > 0 for every finite
nonempty F ⊂ P .

Applying Theorem 5.8 (more precisely, the version of Theorem 5.8 for
semigroups possessing a Følner sequence), we immediately obtain the follow-
ing result.
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Corollary 5.11. Let {Fn}n∈N be a left Følner sequence in an amenable
semigroup G, and let E ⊂ G satisfy d{Fn}(E) = c > 0. Then there ex-

ists a set P ⊂ G with d{Fn}(P ) ≥ c such that for any g1, . . . , gk ∈ P ,

d{Fn}

(⋂k
i=1 g

−1
i E

)
> 0.

In order to formulate another application of Lemma 5.10, we need to
introduce first the following definition.

Definition 5.12. Let G be a countable semigroup. A set R ⊂ G is called
a set of measurable recurrence if for any measure preserving action (Tg)g∈G
on a probability space (X,B, µ) and any A ∈ B with µ(A) > 0, there exists
g ∈ R, g 6= e, such that µ(A ∩ T−1

g A) > 0.

Different semigroups have all kinds of peculiar sets of recurrence. For
example, it follows from Theorem 1.31 that for any polynomial p(n) ∈ Z[n]
with p(0) = 0, the set {p(n) : n ∈ Z} is a set of measurable recurrence for Z-
actions. Moreover, Theorem 4.2.22 tells us that for any IP set (nα)α∈F ⊂ N,
the set {p(nα) : α ∈ F} is a set of measurable recurrence. More generally,
one can show (see [BeFM]) that, for any p1(n), . . . , pk(n) ∈ Z[n] satisfying

pi(0) = 0, i = 1, . . . , k, and any IP sets
(
n

(1)
α

)
α∈F , . . . ,

(
n

(k)
α

)
α∈F , the set{

p1

(
n(1)
α

)
, . . . , pk

(
n(k)
α

)
: α ∈ F

}
⊂ Zk

is a set of measurable recurrence. Sets of the form {1 + 1
k

: k ∈ N} can
be shown to be sets of measurable recurrence for the multiplicative group of
positive rationals. This list can be continued indefinitely.

The following theorem shows that, for countable amenable semigroups
possessing a Følner sequence, the notion of a set of measurable recurrence
coincides with the notion of “density recurrence”:

Theorem 5.13. Let S be an amenable semigroup having a left Følner se-
quence. Then R ⊂ S is a set of measurable recurrence if and only if for any
left Følner sequence {Fn}n∈N in G and any E ⊂ G with d{Fn}(E) > 0 there
exists g ∈ R, g 6= e, such that E ∩ g−1E 6= ∅.

Proof. In one direction, the claim of the theorem immediately follows from
Furstenberg’s correspondence principle. So, it remains to show that if for any
left Følner sequence {Fn}n∈N and E ⊂ G with d{Fn}(E) > 0 there exists g ∈
R, g 6= e, such that E ∩ g−1E 6= ∅, then R is a set of measurable recurrence.
Let (Tg)g∈G be a measure preserving action on a probability space (X,B, µ)
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and let A ∈ B with µ(A) > 0. It follows from (the proof of) Lemma 5.10
that we may assume that, if A∩T−1

g A 6= ∅, then µ(A∩T−1
g A) > 0, and that

there exist a set P ⊂ G with d{Fn}(P ) ≥ µ(A), and a point x ∈ X such that,
for any g ∈ P , one has Tgx ∈ A.

By our assumptions, there exists g ∈ R, g 6= e, such that P ∩ g−1P 6= ∅.
Letting h ∈ P ∩ g−1P , we have h, gh ∈ P . It follows that Thx ∈ A and
Tghx = Tg(Thx) ∈ A. This implies that, simultaneously, Thx ∈ A and
Thx ∈ T−1

g A, which gives A ∩ T−1
g A 6= ∅ and, hence, µ

(
A ∩ T−1

g A
)
> 0. We

are done.

The following version of Theorem 5.13 is valid for any amenable semi-
group. (See [BeM3], Thm. 2.2.)

Theorem 5.14. Suppose that S is a countable left amenable semigroup.
Then R ⊂ S is a set of measurable recurrence if and only if for every left-
invariant mean L and every E ⊂ S with L(1E) > 0, one has E ∩ g−1E 6= ∅
for some g ∈ R, g 6= e.

Remark 5.15. One can show that both Furstenberg’s correspondence prin-
ciple and Theorem 5.13 fail for R-actions. Indeed, it is proved in [BeBB] that

(i) For any α > 0, {nα : n ∈ N} is a set of measurable recurrence for
(continuous) measure preserving R-actions.
(ii) For all but countably many α > 1, one can find a measurable set E ⊂ R
such that

d(E) = lim
t→∞

m(E ∩ [0, t])

t
=

1

2

and E ∩ (E − nα) = ∅ for all n ∈ N.

We shall use now Lemma 5.10 to obtain some new results about multi-
plicatively large sets in N, namely sets E which, for some Følner sequence
{Fn}n∈N in (N, ·), satisfy d{Fn}(E) > 0.

We start by remarking that the notions of largeness for sets in N, which are
based on additive and multiplicative structures, are different. For example,
the set O of odd natural numbers has (additive!) density 1

2
with respect to

any Følner sequence in (N,+). On the other hand, it is not hard to see that
the set O will have zero density along any Følner sequence in (N, ·). Indeed,
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note that the sets On = O/2n, n ∈ N, are pairwise disjoint and, being
multiplicative translates of O, have the same upper density with respect to
any Følner sequence in (N, ·). It’s not hard to see that these facts would lead
to a contradiction if for some {Fn}n∈N in (N, ·) one would have d{Fn}(O) > 0.
In the other direction, consider, for example, a Følner sequence {anFn}n∈N
in (N, ·), which is defined as follows. Let

Fn =
{
pi11 p

i2
2 . . . p

in
n , 0 ≤ ij ≤ n, 1 ≤ j ≤ n

}
,

where pi, i = 1, 2, . . . are primes in arbitrary order, and let the integers an
satisfy an > |Fn|, n ∈ N Let now S =

⋃∞
n=1 anFn. It is easy to see that S

has zero additive density with respect to any Følner sequence in (N,+). At
the same time, S has multiplicative density one with respect to the Følner
sequence {anFn}n∈N.

As may be expected by mere analogy with additively large sets, multi-
plicatively large sets always contain (many) geometric progressions. (This
can be derived, for example, with the help of the IP Szemerédi theorem,
see Section 4.2.) It turns out, however, that multiplicatively large sets also
contain arbitrarily long arithmetic progressions and some other, somewhat
unexpected, configurations.

Theorem 5.16. (See [Be7], Thm. 3.2.) Any multiplicatively large set E ⊆ N
contains arbitrarily long arithmetic progressions.

Proof. Invoking Furstenberg’s correspondence principle, let
(
X,B, µ, (Tn)n∈N

)
be the corresponding measure preserving system (where (Tn)n∈N is a mea-
sure preserving action of (N, ·)), and let A ∈ B be the set of positive mea-
sure corresponding to E. Let An = T−1

n A. Clearly, µ(A) = µ(An) for all
n ∈ N. By Lemma 5.10, there exists an additively large set S with the

property that for any finite F ⊂ S, one has µ
(⋂

n∈F T
−1
n A

)
> 0. Using

Szemerédi’s theorem, we get, for arbitrary k ∈ N, an arithmetic progression
Pk = {n+ id : i = 0, 1, . . . , k − 1} ⊂ S such that

µ
( ⋂
n∈Pk

T−1
n A

)
> 0.

Applying again Furstenberg’s correspondence principle, we see that the
set

⋂
n∈Pk E/n is multiplicatively large and, in particular, nonempty. This

implies that, for some n ∈ N, E ⊃ mPk.
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By working a little bit harder, one can show that any multiplicatively
large set contains geoarithmetic progressions, namely configurations of the
form {bqj(a + id) : 0 ≤ i, j ≤ n}. (See [Be7], Thm. 3.11.) The following
result describes yet another type of geoarithmetic configurations, which can
always be found in multiplicatively large sets. (See [Be7] for more results on,
and a discussion of, the combinatorial richness of multiplicatively large sets
in N.)

Theorem 5.17. (See [Be7], Thm. 3.15.) Let E ⊂ N be a multiplicatively
large set. For any k ∈ N, there exist a, b, d ∈ N such that{

b(a+ id)j : 0 ≤ i, j ≤ k
}
⊂ E.

We shall address now the question about possible amenable extensions of
the multiple recurrence results discussed in Section 4. While it is not clear at
all how to even formulate an amenable generalization of the one-dimensional
Szemerédi theorem (either ergodic or combinatorial), it is, curiously enough,
not too hard to guess what should be an amenable version of the multidi-
mensional Szemerédi theorem.

Conjecture 5.18. Let G be a countable amenable group with a Følner se-

quence {Fn}n∈N. Let
(
T

(1)
g

)
g∈G

, . . . ,
(
T

(k)
g

)
g∈G

be k pairwise commuting mea-

sure preserving actions of G on a probability measure space (X,B, µ). (“Pair-
wise commuting” means here that for any 1 ≤ i 6= j ≤ k and any g, h ∈ G,
one has T

(i)
g T

(j)
h = T

(j)
h T

(i)
g .) Then for any A ∈ B with µ(A) > 0 one has:

lim
n→∞

1

|Fn|
∑
g∈Fn

µ
(
A ∩ T (1)

g A ∩ T (1)
g T (2)

g A ∩ . . . ∩ T (1)
g T (2)

g . . . T (k)
g A

)
> 0.

Remark 5.19. The “triangular” expressions

A ∩ T (1)
g A ∩ T (1)

g T (2)
g A ∩ . . . ∩ T (1)

g T (2)
g . . . T (k)

g A

appearing in the formulation above, seem to be the “right” configurations to
consider. See the discussion and the counterexamples in [BeH2].

The following theorem lists the known instances of the validity of Con-
jecture 5.18.
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Theorem 5.20. Conjecture 5.18 holds true in the following situations:
(i) ([BeMZ]) For k =2.
(ii) ([BeR2]) For general k but under the additional assumption that each of
the following actions is ergodic:(

T
(k)
g

)
g∈G

,(
T

(k−1)
g ⊗ T (k−1)

g T
(k)
g

)
g∈G

,

...(
T

(2)
g ⊗ T (2)

g T
(3)
g ⊗ . . .⊗ T (2)

g T
(3)
g . . . T

(k)
g

)
g∈G

,(
T

(1)
g ⊗ T (1)

g T
(2)
g ⊗ . . .⊗ T (1)

g T
(2)
g . . . T

(k)
g

)
g∈G

.

(In this case, the limit in question equals
(
µ(A)

)k+1
).

While the case k = 2 corresponds to the intersection of three sets only, it
allows one to derive some interesting combinatorial corollaries, some of which
are brought together in the following theorem.

Theorem 5.21. (i) ([BeMZ], Thm. 6.1) Suppose G is a countable amenable
group and that E ⊂ G × G has positive upper density with respect to a left
Følner sequence {Fn}n∈N for G×G. Then the set{
g ∈ G : there exists (a, b) ∈ G×G such that {(a, b), (ga, b), (ga, gb)} ⊂ E

}
is a syndetic set in G.

(ii) ([BeMZ], Cor. 7.2.) Suppose that G is a countable amenable group,
r ∈ N, G×G×G =

⋃r
i=1 Ci. Then the set{

g ∈ G : there exist i, 1 ≤ i ≤ r, and (a, b, c) ∈ G×G×G such that

{(a, b, c), (ga, b, c), (ga, gb, c), (ga, gb, gc)} ⊂ Ci

}
is a syndetic set in G.

(iii) ([BeM3], Thm. 3.4.) Suppose that G is a countable amenable group and
that G =

⋃r
i=1 Ci is a finite partition. Let A =

{
g ∈ G : [G : C(g)] < ∞

}
,

where C(g) is the centralizer of g. If [G : A] =∞, then there exist x, y ∈ G
and i, 1 ≤ i ≤ r, with xy 6= yx and such that {x, y, xy, yx} ⊂ Ci.
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We conclude this section by fulfilling the promise made in Section 1:

Proof of Theorem 1.6. Let A = {a1, a2, . . .} ⊂ Γ be an infinite set. Denoting
by [A]2 the set of two-element subsets of A, let us define a finite coloring of
[A]2 by assigning to each {ai, aj} ∈ [A]2, i < j, the coset (ai − aj)Γ. (This
coloring is finite since Γ is of finite index in F ∗.) We will apply now the
infinite version of Ramsey’s theorem (see [GraRS], Thm. 5, p.16), which
says that for any finite coloring of the set of two-element subsets [P ]2 of an
infinite set P there exists an infinite subset P1 ⊂ P such that the set of
two-element subsets of P1, [P1]2, is monochromatic. It follows that there is
c ∈ F ∗ and an infinite set B = {an1 , an2 , . . .} ⊂ A such that each member of
[B]2 has the same color, cΓ. This, in turn, says that ani − anj ∈ cΓ for all
i < j. Writing bi = c−1ani , we see that Γ itself contains an infinite difference
set {bi − bj}i<j.

Using now the amenability of the abelian group F , let µ be a finitely
additive translation-invariant probability measure on P(F ). Since there are
only finitely many disjoint cosets of Γ in F ∗ and since, clearly, µ({0}) = 0, one
of the cosets, call it cΓ, has to satisfy µ(cΓ) > 0. Let x ∈ F ∗ be an arbitrary
element and consider the sets cΓ + xbi, i ∈ N. Applying the familiar by now
reasoning, we see that for some i < j, µ

(
(cΓ + xbi) ∩ (cΓ + xbj)

)
> 0. This

implies that cΓ ∩
(
cΓ− x(bi − bj)

)
6= ∅, which, in turn, gives us x(bi − bj) ∈

cΓ− cΓ. Since bi − bj ∈ Γ, we get x ∈ cΓ− cΓ, and, since x was arbitrary, it
gives us F = cΓ− cΓ, and, after the cancellation, F = Γ− Γ. We are done.

�

Remark 5.22. The methods used in the above proof can be applied to more
general (and not necessarily commutative) rings. Some of the generalizations
are given in [BeS]. By invoking stronger combinatorial theorems, such as the
IP-Szemerédi theorem, one can actually show that if F is an infinite field and
Γ is a multiplicative subgroup of finite index in F ∗, then for any finite set
S ⊂ F there is γ ∈ Γ such that γ + S = {γ + x : x ∈ S} ⊂ Γ. This, in turn,
implies that there exists a finitely additive translation-invariant probability
measure µ on F such that µ(Γ) = 1.

6 Issues of convergence

This relatively short section is devoted to the discussion of ergodic theo-
rems which are related to combinatorial and number-theoretic applications
of ergodic theory.
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Various convergence results and conjectures that we have already encoun-
tered in the previous sections typically emerged as a means of establishing
various recurrence results. Yet, from a purely ergodic-theoretical point of
view, these results are of significant interest on their own. While, in order to
obtain combinatorial corollaries, one is perfectly satisfied with establishing
the positivity of a liminf of Cesàro averages (see for example Theorem 4.1.2),
the ideology and tradition of ergodic theory immediately leads to questions
whether the limit of a pertinent Cesàro sum exists in norm or almost every-
where.

These questions usually lead to the development of new strong analytic
techniques which, in turn, not only provide deeper knowledge about the
structure of dynamical systems, but also enhance our understanding of the
mutually perpetuating connections between ergodic theory, combinatorics,
and number theory.

Consider, for example, Theorem 1.31. As we have seen in Section 1, a con-
venient way of showing that, for any measure preserving system (X,B, µ, T ),
any A ∈ B with µ(A) > 0, and any polynomial p(n) ∈ Z[n] satisfying
p(0) = 0, one has µ

(
A ∩ T p(n)A

)
> 0, is to consider the averages

1

N

N−1∑
n=0

µ
(
A ∩ T p(n)A

)
and to show that the limit of these averages is positive. This implies that
the set {

n ∈ N : µ(A ∩ T p(n)A) > 0
}

(6.1)

has positive upper density, which, in turn, implies that the equation x− y =
p(n) has “many” integer solutions (x, y, n) with x, y ∈ E, n ∈ N. At this
point the interests of combinatorial number theory and conventional ergodic
theory part. While the Cesàro averages are of little help if one wants to
undertake the more refined study of the set (6.1) (see Theorem 4.2.22 and
the discussion preceding it), it is the focus of the classical ergodic theory on
the equidistribution of orbits, which makes the following question interesting.

Question 6.1. Given an invertible probability measure preserving system
(X,B, µ, T ), a polynomial p(n) ∈ Z[n] and a function f ∈ Lp(X,B, µ), where
p ≥ 1, is it true that

lim
N→∞

1

N

N−1∑
n=0

f
(
T p(n)x

)
(6.2)
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exists almost everywhere?

What makes this question especially peculiar is that while the norm con-
vergence of the averages (6.2) is not hard to establish (we did it at the end of
Section 1 for p = 2, which almost immediately implies the norm convergence
in any Lp space for p ≥ 1), the pointwise convergence is quite a bit harder.
It was J. Bourgain who developed in the late eighties a powerful technique
which allowed him to answer Question 6.1 in the affirmative first for p = 2
([Bou1]) and soon after for any p > 1 ([Bou2]). The case p = 1 is still open
and is perhaps one of the central open problems in that branch of ergodic
theory which deals with almost everywhere convergence.

For an excellent survey of Bourgain’s methods and a thorough discussion
of various positive and negative results on pointwise ergodic theorems, the
reader is referred to [RosW]. See also Appendix B, where A. Quas and M.
Wierdl present a reader-friendly simplified proof of Bourgain’s theorem on
a.e. convergence along the set of squares (i.e. for p(n) = n2) for functions in
the L2 space.

In view of the multiple recurrence results discussed in Section 4, the
following question naturally suggests itself.

Question 6.2. Let T1, T2, . . . , Tk be invertible measure preserving transfor-
mations which act on a probability space (X,B, µ) and generate a nilpotent
group. Is it true that for any polynomials pi(n) ∈ Z[n] and fi ∈ L∞(X,B, µ),
i = 1, 2, . . . , k,

lim
N→∞

1

N

N−1∑
n=0

f1

(
T
p1(n)
1 x

)
f2

(
T
p2(n)
2 x

)
. . . fk

(
T
pk(n)
k x

)
(6.3)

exists in the L2 norm? Almost everywhere?

We are going to describe the status of current knowledge in the following
brief comments.

The only known result on almost everywhere convergence for k > 1 is
due, again, to Bourgain, who showed in [Bou3] that for k = 2, p1(n) = an,
p2(n) = bn, a, b ∈ Z, the limit in (6.3) exists a.e. for any f1, f2 ∈ L∞. (It is
not hard to show that this implies also the a.e. result for any f1, f2 ∈ L2.)

Assume now that T1 = T2 = . . . = Tk = T . As was already mentioned in
Section 4, the convergence of the averages

1

N

N−1∑
n=0

f1(T nx)f2(T 2nx) . . . fk(T
knx) (6.4)
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in L2 norm was only recently established by Host and Kra ([HoK2]) and,
independently, Ziegler ([Zie]). Appendix A, written by A. Leibman, gives,
among other things, a glimpse into the structure of the proofs contained in
the impressive papers [HoK2] and [Zie]. (While the main result proved in
Appendix A is somewhat special and deals with the so-called characteristic
factors for the averages 1

N

∑N−1
n=0 f1

(
T a1nx

)
f2

(
T a2nx

)
. . . fk

(
T aknx

)
, the ap-

paratus and techniques utilized there should provide the reader with a better
understanding of the methods involved in the study of the averages (6.4).)

The following result, obtained very recently by A. Leibman ([Le5]), shows
that the Host-Kra and Ziegler theorems can be extended to polynomial ex-
pressions.

Theorem 6.3. ([Le5]) For T1 = T2 = . . . = Tk = T , the averages (6.3)
converge in L2.

It was shown in [FuW2] that if T is totally ergodic (i.e. T n is ergodic for
any n 6= 0), then for any f, g ∈ L∞(X,B, µ), one has

lim
N→∞

1

N

N−1∑
n=0

f1

(
T nx

)
f2

(
T n

2

x
)

=

∫
f1dµ

∫
f2dµ

in the L2 norm.
The following theorem, proved in [FrK], gives a nice generalization of this

fact.

Theorem 6.4. ([FrK]) Assume that (X,B, µ, T ) is an invertible totally er-
godic system. Then for any rationally independent polynomials p1(n), p2(n),
. . . , pk(n) ∈ Z[n] and any fi ∈ L∞(X,B, µ), i = 1, 2, . . . , k, one has

lim
N→∞

1

N

N−1∑
n=0

f1

(
T p1(n)x

)
f2

(
T p2(n)x

)
. . . fk

(
T pk(n)x

)
=

∫
f1dµ

∫
f2dµ . . .

∫
fkdµ.

The L2-convergence of the averages 1
N

∑N−1
n=0 f1(T n1 x)f2(T n2 x) for com-

muting T1, T2 (where f1, f2 ∈ L∞(X,B, µ)) was established in [CL1]. The
following result, obtained in [BeL3], provides a nilpotent extension of this
fact.
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Theorem 6.5. ([BeL3]) Let T1, T2 be measure preserving transformations
of a probability space (X,B, µ) generating a nilpotent group. Then for any
f1, f2 ∈ L∞(X,B, µ),

lim
N→∞

1

N

N−1∑
n=0

f1(T n1 x)f2(T n2 x) (6.5)

exists in the L2 norm.

Remark 6.6. Similarly to the situation with recurrence (See Theorem 4.2.35),
one can show that if T1, T2 generate a solvable group of exponential growth,
then the averages (6.5) do not always converge. See Theorem 1.1.(B) in
[BeL5].

Due to our specific interest in ergodic theorems related to the material
surveyed in the previous sections, we have focused here only on rather spe-
cial (but important) convergence issues. For more information on pointwise
convergence, the reader is referred to [Kre2] and [Ga] as well as to the survey
[RosW] mentioned above and the article of A. Nevo in this volume.
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A Appendix: Host-Kra and Ziegler factors,
and convergence of 1

N

∑N
n=1 T

a1nf1 · . . . · T aknfk
by A. Leibman1

The Ohio State University
Columbus, OH 43210, USA

E-mail: leibman@math.ohio-state.edu

The nonconventional, or multiple ergodic averages

1

N

N∑
n=1

T nf1 · . . . · T knfk, (A.1)

where T is a measure preserving transformation of a probability measure
space X and f1, . . . , fk are (bounded) measurable functions on X, were in-
troduced by H. Furstenberg in his ergodic-theoretical proof of Szemerédi’s
theorem ([Fu2]). In order to prove Szemerédi’s theorem, it was sufficent to
show that, in the case f1 = . . . = fk ≥ 0, 6≡ 0, the liminf of the averages
(A.1) is nonzero, and Furstenberg had confined himself to proving this fact.
The question whether the limit of the multiple ergodic averages exists in L1-
sense was an open problem for more than twenty years, until it was answered
positively by Host and Kra ([HoK2]) and, independently, by Ziegler ([Zie]).
The way of solving this problem was suggested in [Fu2]: one has to deter-
mine a factor Z of X which is characteristic for the averages (A.1), which
means that the limiting behavior of (A.1) only depends on the conditional
expectation of fi with respect to Z:

∥∥∥ 1

N

N∑
n=1

(
T nf1 · . . . · T knfk − T nE(f1|Z) · . . . · T knE(fk|Z)

)∥∥∥
L1(X)

−→
N→∞

0

for any f1, . . . , fk ∈ L∞(X), or equivalently, that limN→∞
1
N

∑N
n=1 T

nf1 ·
. . . · T knfk = 0 whenever one of E(fi|Z), i = 1, . . . , k, is equal to 0. Once
a characteristic factor Z has been found, the problem is restricted to the
system (Z, T ); one therefore succeeds if he/she manages to show that ev-
ery system (X,T ) possesses a characteristic factor with a relatively simple
structure, so that the convergence of averages (A.1) can be easily established

1Supported by NSF, grant DMS-0345350.

113



for it. For example, under the assumption that T is ergodic, one can show
that the Kronecker factor K of X is characteristic for the two-term averages
1
N

∑N
n=1 T

nf1 · T 2nf2 (see [Fu2]; see also Section 4.1 of this survey). Since K
has a structure of a compact abelian group on which T acts as a translation,
it is not hard to see that the averages above converge for f1, f2 ∈ L∞(K).

A k-step nilsystem is a pair (N, T ) where N is a compact homogeneous
space of a k-step nilpotent group G and T is a translation of N defined by
an element of G. When G is a nilpotent Lie group, N is called a k-step nil-
manifold ; if G is an inverse limit of nilpotent Lie groups, N is called a k-step
pro-nilmanifold. After Conze and Lesigne had shown ([CL1], [CL2], [CL3])
that the characteristic factor for the three-term multiple ergodic averages is a
two-step nilsystem, it was natural to conjecture that the characteristic factor
for the averages (A.1) with arbitrary k is a (k− 1)-step nilsystem. Host-Kra
and Ziegler have confirmed this conjecture by constructing such factors.

Ziegler’s factors Yk−1(X,T ), k = 2, 3, . . ., are characteristic for the aver-
ages of the form

lim
N→∞

1

N

N∑
n=1

T a1nf1 · . . . · T aknfk (A.2)

for any a1, . . . , ak ∈ Z. Ziegler’s construction is a (very complicated) exten-
sion of that of Conze-Lesigne: she obtains the factor Yk(X,T ) as a product of
Yk−1(X,T ) and a compact abelian group H so that T acts as a skew-product
transformation on Yk(X,T ) = Yk−1(X,T )×H, T (y, h) = (Ty, h+ ρ(y)), with
ρ satisfying certain conditions that allow one to impose on Yk(X,T ) the struc-
ture of a k-step pro-nilmanifold with T being a translation on it. She also
shows that Yk−1(X,T ) is the minimal factor of X which is characteristic
for all averages of the form (A.2), and the maximal factor of X having the
structure of a (k − 1)-step pro-nilmanifold.

Host and Kra used another, very elegant construction. They first describe
the characteristic factor for the (numerical) averages of the form

lim
Nk→∞

1

Nk

Nk∑
nk=1

. . . lim
N1→∞

1

N1

N1∑
n1=1

∫
X

∏
ε1,...,εk∈{0,1}

T ε1n1+...+εknkfε1,...,εk . (A.3)

(These averages are not introduced in [HoK2] explicitly, but can be clearly
observed in the very construction of the Host-Kra factors; see Proposition A.9
below.) While the expression (A.3) looks scary, it is quite natural. (For in-
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stance, when k = 2 it is just lim
N2→∞

1
N2

N2∑
n2=1

lim
N1→∞

1
N1

N1∑
n1=1

∫
X
f0,0·T n1f1,0·T n2f0,1

· T n1+n2f1,1.) The corresponding characteristic factor, which will be denoted
by Zk−1(X,T ), can be easily constructed inductively (we will describe this
construction below), and Host and Kra prove that, for each k, the factor
Zk−1(X,T ) possesses a structure of a (k − 1)-step pro-nilmanifold. The av-
erages (A.3) turn out to be “universal”: successive applications of the van
der Corput lemma (see [Be2]; see also Theorems 1.32 and 4.1.6 of the main
text) allow one to majorize by the averages (A.3), with suitable k = k(l), all
averages of the form

lim
N→∞

1

|ΦN |
∑
u∈ΦN

Tϕ1(u)f1 · . . . · Tϕl(u)fl, (A.4)

where ϕ1, . . . , ϕl are linear functions Zd −→ Z and {ΦN}∞N=1 is any Følner
sequence in Zd. (The averages (A.3) also majorize the “polynomial” aver-
ages of the form limN→∞

1
|ΦN |

∑
u∈ΦN

T p1(u)f1 · . . . · T pl(u)fl, where p1, . . . , pl

are polynomials Zd −→ Z; see [HoK3] and [Le5].) It follows that the factors
Zk(X,T ), with k = k(l), are characteristic for the averages (A.4). In partic-
ular, it is shown in [HoK2] that Zk−1(X,T ) is characteristic for the averages
(A.1), and in [HoK3] that Zk(X,T ) is characteristic for the averages of the
form (A.2).

In this note we first describe the Host-Kra construction. We then show
that the Host-Kra factors associated with a nontrivial power T l of a trans-
formation T are the same as the factors associated with T itself. (In [HoK3]
this was done for the case of a totally ergodic T only; we give a different proof
of this fact.) Next, we prove that, actually, for k ≥ 2 already Zk−1(X,T )
is characteristic for the averages (A.4) and, in particular, (A.2). (The exis-
tence of the limit (A.4) will now follow from two facts: (i) (Zk−1(X,T ), T ) is
isomorphic to a nil-system on a pro-nilmanifold, and (ii) the averages (A.4)
converge for such a nilsystem; for a (quite nontrivial) proof of the first fact see
[HoK2], for a proof of the second fact see [Les] and [Le4].) As a corollary, we
obtain that the Host-Kra factors Zk−1(X,T ) coincide with the correspond-
ing Ziegler factors Yk−1(X,T ). Indeed, being a (k − 1)-step pro-nilmanifold,
Zk−1(X,T ) is a factor of Yk−1(X,T ); on the other hand, since Yk−1(X,T )
is the minimal characteristic factor for the averages (A.2), it is a factor of
Zk−1(X,T ).

We will now set up some terminology and notation. We will assume
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that the measure spaces we deal with are regular, that is, are metric spaces
endowed with a probability Borel measure. (Any separable measure preserv-
ing system has a regular model; see, for example, [Fu3], Chapter 5.) Let
π : X −→ V be a measurable mapping from a measure space (X,B, µ) to
a measure space (V,D, ν). If π is measure preserving, that is, µ(π−1(A)) =
ν(A) for all A ∈ D, V is called a factor of X. (Note that here V is a factor of
a space, not of a dynamical system.) We will denote by Xv the fiber π−1(v),
v ∈ V . Let f ∈ L1(X); then µf (D) =

∫
π−1(D)

f dµ is a (signed) measure on

V absolutely continuous with respect to ν. By the Radon-Nikodym theorem
dµf/dν is an integrable function on V ; it is denoted by E(f |V ) and is called
the conditional expectation of f with respect to V . The fibers Xv, v ∈ V , may
be given a structure of measure spaces with probability measures µv, v ∈ V ,
such that

∫
Xv
f dµv = E(f |V )(v) for all f ∈ L1(X). (See [Fu3], Chapter 5).

We will refer to the partition X =
⋃
v∈V Xv as to the decomposition of X

with respect to V .
If (V,D, ν) is a factor of (X,B, µ), with π : X −→ V being the factoriza-

tion mapping, then π−1(D) is a sub-σ-algebra of B, which we will identify
with D. Conversely, with any sub-σ-algebra D of B a factor V of X is as-
sociated; roughly speaking, V is the partition of X induced by D. (One
can construct V in the following way. Choose a countable system {Dn}n∈N
generating D. (Such a system may not, actually, exist; we then take a count-
able system that generates the subsets from D up to measure zero.) For
each n, let D0

n = Dn and D1
n = X \ Dn. Put V = {0, 1}N, and for each

v = (e1, e2, . . .) ∈ V put Xv =
⋂∞
n=1 D

en
n . This defines a mapping X −→ V ,

Xv 7→ {v}; a measure on V is inherited from X.)
Let (V,D, ν) be a factor of (X,B, µ) and π : X −→ V be the factorization

mapping. The relative square X ×V X is the subspace
{

(x1, x2) : π(x1) =
π(x2)

}
=
⋃
v∈V Xv ×Xv of X ×X, with the measure µ×V µ =

∫
V
µv × µvdν

thereon. A mapping X ×V X −→ V is naturally defined by (x1, x2) 7→
π(x1)(= π(x2)), and turns V into a factor of X×V X with fibers (X×V X)v =
Xv × Xv, v ∈ V , so that

⋃
v∈V Xv × Xv is the decomposition of X ×V X

with respect to V . (Note that, if we start with a σ-subalgebra D of B, the
space representing the corresponding factor V is not defined canonically, and
X×V X is only defined up to measure zero. Usually, no new underlying space
is introduced for V , and V is simply taken to be the non-regular measure
space (X,D, µ). The relative square X ×V X is then defined as X2 with the
measure given by (µ×V µ)(A×B) =

∫
V
µv(A)µv(B) dν, A,B ∈ B. We use the
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“set-theoretical” approach to make the geometric picture more transparent.
This however leads to some delicate problems related to the fact that our
constructions are only defined up to measure zero. The reader is referred to
[Fu3], Chapter 5 for a detailed treatment of measure-theoretical issues.) To
simplify notation, starting from this moment we will not designate measures;
for each space appearing below it will be clear from the context what measure
is assumed thereon.

Now let T be a measure preserving transformation of X. We will denote
by I(X,T ) the σ-algebra of T -invariant measurable subsets of X and by
I(X,T ) the factor of X associated with I(X,T ). The decomposition X =⋃
v∈I(X,T )Xv of X with respect to I(X,T ) is then the ergodic decomposition

of X. To simplify notation, we will write X ×T X for X ×I(X,T ) X.
The Host-Kra factors of X with respect to T are constructed in the fol-

lowing way. One puts X
[0]
T = X, T [0] = T , and when X

[k]
T and T [k] have

been defined for certain k, let X
[k+1]
T = X

[k]
T ×T [k] X

[k]
T and let T [k+1] be the

restriction of T [k] × T [k] on X
[k+1]
T . For any k = 0, 1, . . ., X

[k]
T is a measur-

able subspace of X2k ; let Zk(X,T ) be the minimal σ-algebra on X such that

I(X
[k]
T , T

[k]) ⊆ Zk(X,T )⊗2k . The k-th Host-Kra factor Zk(X,T ) of X with
respect to T is the factor of X associated with Zk(X,T ).

Assume that (V,D) is a factor of X such that the fibers Xv, v ∈ V , are
T -invariant, T (Xv) = Xv. Since “life is independent” in distinct fibers Xv,
we have:

Lemma A.1. For any k, the spaces X
[k]
T and I(X

[k]
T , T

[k]) decompose with

respect to V to, respectively,
⋃
v∈V (Xv)

[k]
T and

⋃
v∈V I((Xv)

[k]
T , T

[k]).

Proof. Let X =
⋃
α∈I(X,T ) Xα be the decomposition of X with respect to

I(X,T ), that is, the ergodic decomposition of X. Elements of the σ-algebra
D ⊆ B are preserved by T , thus D ⊆ I(X,T ), and V is a factor of I(X,T ).
Let I(X,T ) =

⋃
v∈V Iv be the decomposition of I(X,T ) with respect to V .

For (almost) every v ∈ V the decomposition Xv =
⋃
α∈Iv Xα is the ergodic

decomposition of Xv, and thus I(Xv, T ) = Iv. Hence,
⋃
v∈V I(Xv, T ) is the

decomposition of I(X,T ) with respect to V . Now,

X
[1]
T =

⋃
α∈I(X,T )

Xα ×Xα =
⋃
v∈V

⋃
α∈IXv,T

Xα ×Xα =
⋃
v∈V

(Xv)
[1]
T .

(To be accurate, we also have to check that the measure on X
[1]
T agrees with
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this decomposition. It does:

µ×I(X,T ) µ =

∫
I(X,T )

µα × µαdα =

∫
V

∫
Iv

µα × µαdα dv =

∫
V

µvdv.)

We then proceed by induction on k.

Let
⋃
i∈V Xi be a finite measurable partition of X. The finite set V can

then be considered as a factor of X (with measure defined by ν({i}) =
µ(Xi), and the fibers Xi having measures µi = µ/µ(Xi), i ∈ V ). For

this case, Lemma A.1 says that X
[k]
T and I(X

[k]
T , T

[k]) partition to, respec-

tively,
⋃
i∈V (Xi)

[k]
T and

⋃
i∈V I((Xi)

[k]
T , T

[k]). It follows that I(X
[k]
T , T

[k]) =∏
i∈V I((Xi)

[k]
T , T

[k]), and that Zk(X,T ) =
∏

i∈V Zk(Xi, T ) and Zk(X,T ) =⋃
i∈V Zk(Xi, T ).

Our first goal is to investigate the Host-Kra factors associated with T l,
l 6= 0.

Theorem A.2. For any l 6= 0 and k ≥ 1 the k-th Host-Kra factor Zk(X,T
l)

of X with respect to T l coincides with the k-th Host-Kra factor Zk(X,T ) of
X with respect to T .

Proof. We fix a nonzero integer l. It follows from Lemma A.1 that it suffices
to prove Theorem A.2 for an ergodic T only. We first assume that T l is also
ergodic. Given a measure preserving transformation S of a measure space
Y , let us denote by Eλ(Y, S) the eigenspace of S in L1(Y ) corresponding to
the eigenvalue λ, Eλ(Y, S) =

{
f ∈ L1(Y ) : Sf = λf

}
. In particular, E1(Y, S)

is the space of S-invariant integrable functions on Y , which we will denote
by L(Y, S).

Lemma A.3. (Cf. [HoK3]) Let S be a measure preserving transformation of
a measure space Y . If Sl is ergodic, then I(Y ×Y, Sl×Sl) = I(Y ×Y, S×S).

Proof. Sl is ergodic means that Eλ(Y, S) = {0} for all λ 6= 1 with λl = 1.
We have L(Y × Y, (S × S)l) ⊆ span

{
Eλ(Y × Y, S × S) : λl = 1

}
. For

any λ ∈ C, |λ| = 1, the space Eλ(Y × Y, S × S) is spanned by the the
functions of the form f ⊗ g where f ∈ Eλ1(Y, S) and g ∈ Eλ2(Y, S) with
λ1λ2 = λ. For such a function, fg ∈ Eλ(Y, S). If λ 6= 1 and λl = 1, we have
fg = 0; since S is ergodic, |f | = const and |g| = const, so either f = 0 or
g = 0. Thus, for any λ 6= 1 with λl = 1 we have Eλ(Y × Y, S × S) = {0}.
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Hence, L(Y × Y, Sl × Sl) ⊆ E1(Y × Y, S × S) = L(Y × Y, S × S). With the
evident opposite inclusion L(Y × Y, S × S) ⊆ L(Y × Y, Sl × Sl) this implies
I(Y × Y, Sl × Sl) = I(Y × Y, S × S).

Lemma A.4. (Cf. [HoK3]) Let T be a measure preserving transformation of

a measure space X. If T l is ergodic then X
[k]

T l
= X

[k]
T and I

(
X

[k]

T l
, (T l)[k]

)
=

I
(
X

[k]
T , T

[k]
)

for all k ≥ 0.

Proof. For k = 0 the statement is trivial. Assume by induction that, for
some k ≥ 0, Y = X

[k]

T l
= X

[k]
T and I = I(Y, (T l)[k]) = I(Y, T [k]). Then

X
[k+1]

T l
= X

[k+1]
T = Y ×I Y . Let Y =

⋃
α∈I Yα be the decomposition of Y

with respect to I and for each α ∈ I let Sα = T [k]
∣∣
Yα

. By the induction

assumption Slα is ergodic on Yα for every α ∈ I, thus by Lemma A.1 and
Lemma A.3 applied to the systems (Yα, Sα),

I(Y ×I Y, (T l)[k] × (T l)[k]) =
⋃
α∈I I

(
Yα × Yα, Slα × Slα

)
=
⋃
α∈I I

(
Yα × Yα, Sα × Sα

)
= I(Y ×I Y, T [k] × T [k]).

It follows that Zk(X,T
l) = Zk(X,T ) for all k ≥ 0, which proves Theo-

rem A.2 in the case T l is ergodic.
Now assume that T is ergodic whereas T l is not. We may assume that l

is a prime integer. In this case X is partitioned, up to a subset of measure
0, to measurable subsets X0, . . . , Xl−1 such that T (Xi) = Xi+1 for all i ∈ Zl.
(We identify {0, . . . , l−1} with Zl = Z/(lZ) in order to have (l−1)+1 = 0.)

Lemma A.5. Let X be a disjoint union of measure spaces X0, . . . , Xl−1

and let T be an invertible measure preserving transformation of X such that
T (Xi) = Xi+1, i ∈ Zl. Then X0, . . . , Xl−1 ∈ Z1(X,T ).

Proof. We may assume that T is ergodic; otherwise we pass to the ergodic
components of X with respect to T . Then X

[1]
T = X2 and T [1] = T × T .

The “diagonal” W = X2
0 ∪ . . . ∪ X2

l−1 ⊆ X
[1]
T is T [1]-invariant and therefore

W is Z1(X,T ) ⊗ Z1(X,T )-measurable. By Fubini’s theorem the “fibers”
X0, . . . , Xl−1 of W are Z1(X,T )-measurable.

Lemma A.6. Let Y be a disjoint union of measure spaces Y0, . . . , Yl−1 and let
S be an invertible measure preserving transformation of Y such that S(Yi) =
Yi+1, i ∈ Zl. Then Y ×S Y is partitioned to

⋃
i,j∈Zl Yi,j where Yi,i = Yi ×Sl Yi
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for all i ∈ Zl, and for all i, j, s, t ∈ Zl, (Ss × St)
∣∣
Yj,j

is an isomorphism

between Yi,j and Yi+s,j+t. In particular, (S × S)(Yi,j) = Yi+1,j+1 for all i, j,
thus the subsets Vi =

⋃
j∈Zl Yj,j+i, i ∈ Zl are S × S-invariant and partition

Y ×S Y , and IdY0 ×Si is an isomorphism between V0 and Vi.

Proof. We first determine I(Y, S). Let A be a measurable S-invariant subset
of Y . Let Ai = A ∩ Yi, i ∈ Zl. Then A0 is Sl-invariant, and Ai = Si(A0) for
i ∈ Zl. So, the mapping A 7→ A∩ Y0 is an isomorphism between I(Y, S) and
I(Y0, S

l), which induces an isomorphism between I(Y, S) and I(Y0, S
l).

Let Y0 =
⋃
α∈I Y0,α be the decomposition of Y0 with respect to I =

I(Y0, S
l). For every α ∈ I and i ∈ Zl \ {0} define Yi,α = Si(Y0,α) and

Yα =
⋃
i∈Zl Yi,α. Then Y =

⋃
α∈I Yα is the decomposition of Y with respect

to I. We have

Y
[1]
S =

⋃
α∈I

Yα ×S Yα =
⋃
α∈I

⋃
i,j∈Zl

Yi,α × Yj,α =
⋃
i,j∈Zl

⋃
α∈I

Yi,α × Yj,α =
⋃
i,j∈Zl

Yi,j,

where Yi,j =
⋃
α∈I Yi,α×Yj,α. In particular, Yi,i =

⋃
α∈I Yi,α×Yi,α = Yi×Sl Yi

for all i ∈ Zl.
Lemma A.7. Let X be a disjoint union of measure spaces X0, . . . , Xl−1

and let T be an invertible measure preserving transformation of X such
that T (Xi) = Xi+1, i ∈ Zl. Then for any k ≥ 0, X

[k]
T can be parti-

tioned, X
[k]
T =

⋃lk

j=1 Wj, into T [k]-invariant measurable subsets W1, . . . ,Wlk ,

such that W1 =
⋃
i∈Zl(Xi)

[k]

T l
with T [k]

(
(Xi)

[k]

T l

)
= (Xi+1)

[k]

T l
for each i, and

for each j = 2, . . . , lk there exists an isomorphism τj : W1 −→ Wj, which
in each coordinate is given by a power of T (that is, if πn : X [k] −→ X,
n = 1, . . . , 2k, are the projection mappings, for each n there exists m ∈ Z
such that πn ◦ τj = Tm ◦ πn

∣∣
W1

).

Proof. We use induction on k; for k = 0 the statement is trivial. Assume

that it holds for some k ≥ 0. Then by Lemma A.1, X
[k+1]
T =

⋃lk

j=1 Wj ×T [k]

Wj. The isomorphisms τj between W1 and Wj, commuting with T [k], induce
isomorphisms τj×τj between W1×T [k]W1 and Wj×T [k]Wj, j = 1, . . . , lk, and
τj × τj acts on coordinates as powers of T if τj does. Thus, we may focus on
W1 ×T [k] W1 only.

By Lemma A.6 applied to W1 =
⋃
i∈Zl(Xi)

[k]

T l
and T [k]

∣∣
W1

, W1 ×T [k] W1 is

partitioned into T [k] × T [k] = T [k+1]-invariant subsets V0, . . . , Vl−1 such that

V0 =
⋃
i∈Zl

(Xi)
[k]

T l
×(T [k])l (Xi)

[k]

T l
=
⋃
i∈Zl

(Xi)
[k+1]

T l
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and V1, . . . , Vl−1 are isomorphic to V0 by isomorphisms whose projections on

the factors (Xi)
[k]

T l
coincide with some powers of T [k].

End of the proof of Theorem A.2. Assume that T is ergodic on X, l is a
prime integer and T l is not ergodic on X. Let k ≥ 1. Ignoring a subset
of measure 0 in X, partition X to measurable subsets X0, . . . , Xl−1 such
that, for each i, T (Xi) = Xi+1. Let k ≥ 1 and let W1, . . . ,Wlk be as in
Lemma A.7. Since X0, . . . , Xl−1 are T l-invariant, by Lemma A.1 we have

I(X [k], (T l)[k]) =
∏

i∈Zl I(X
[k]
i , (T

l)[k]) and Zk(X,T l) =
∏

i∈Zl Zk(Xi, T
l).

Any T [k]-invariant measurable subset A of W1 =
⋃
i∈Zl(Xi)

[k]

T l
has form A =⋃

i∈Zl Ai where Ai ∈ I(Xi, (T
l)[k]) and T [k](Ai) = Ai+1, i ∈ Zl. Thus,

I(W1, T
[k]) ⊆ I(X [k], (T l)[k]) ⊆ Zk(X,T l)⊗2k . Since Zk(X,T l) is T -invariant

and Wn = τn(W1) where τn is an isomorphism acting on each coordinate as
a power of T , I(Wn, T

[k]) ⊆ Zk(X,T l)⊗2k for any n. Hence, Zk(X,T ) ⊆
Zk(X,T l).

We will now show that for any i ∈ Zl and any B ∈ I(X
[k]
i , (T

l)[k]) one
has B ∈ Zk(X,T )⊗2k ; this will imply that Zk(X,T l) ⊆ Zk(X,T ). Put
Aj = (T [k])j−i(B), j ∈ Zl, and A =

⋃
j∈Zl Aj. Then A ∈ I(W1, T

[k]) ⊆
Zk(X,T )⊗2k . By Lemma A.5, Xi ∈ Z1(X,T ) ⊆ Zk(X,T ), thus (Xi)

[k]

T l
∈

Zk(X,T )⊗2k , and therefore B = Ai = A ∩ (Xi)
[k]

T l
∈ Zk(X,T )⊗2k .

�

We now pass to our second result:

Theorem A.8. For any k ≥ 2, any d ∈ N, any linear functions ϕ1, . . . , ϕk :
Z
d −→ Z and any Følner sequence {ΦN}∞N=1 in Zd, Zk−1(X,T ) is a charac-

teristic factor for the averages 1
|ΦN |

∑
u∈ΦN

Tϕ1(u)f1 · . . . · Tϕk(u)fk in L1(X),
that is,

lim
N→∞

∥∥∥ 1

|ΦN |
∑
u∈ΦN

(
Tϕ1(u)f1 · . . . · Tϕk(u)fk

−Tϕ1(u)E
(
f1|Zk−1(X,T )

)
· . . . · Tϕk(u)E

(
fk|Zk−1(X,T )

))∥∥∥
L1(X)

= 0

(A.5)
for any f1, . . . , fk ∈ L∞(X).

In order to prove Theorem A.8 we will first show that Zk−1(X,T ) is a
characteristic factor for averages of a very special form. Let us bring more
facts from [HoK2]. Starting from this moment, we will only be considering
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real-valued functions on X. Given f0, f1 ∈ L∞(X), by the ergodic theorem
we have

lim
N→∞

1

N

N∑
n=1

∫
X

f0·T nf1 =

∫
I(X,T )

E
(
f0|I(X,T )

)
·E
(
f1|I(X,T )

)
=

∫
X

[1]
T

f0⊗f1.

Applying this twice we get, for f0,0, f0,1, f1,0, f1,1 ∈ L∞(X),

lim
N2→∞

1

N2

N2∑
n2=1

lim
N1→∞

1

N1

N2∑
n1=1

∫
X

f0,0 · T n1f1,0 · T n2f0,1 · T n1+n2f1,1

= lim
N2→∞

1

N2

N2∑
n2=1

lim
N1→∞

1

N1

N2∑
n1=1

∫
X

(f0,0 · T n2f0,1) · T n1(f1,0 · T n2f1,1)

= lim
N2→∞

1

N2

N2∑
n2=1

∫
X[1]

(f0,0 ⊗ f1,0) · T n2(f0,1 ⊗ f1,1)

=

∫
X[2]

(f0,0 ⊗ f1,0)⊗ (f0,1 ⊗ f1,1).

By induction, for any k and any collection fε1,...,εk ∈ L∞(X), ε1, . . . , εk ∈
{0, 1},

lim
Nk→∞

1

Nk

Nk∑
nk=1

. . . lim
N1→∞

1

N1

N1∑
n1=1

∫
X

∏
ε1,...,εk∈{0,1}

T ε1n1+...+εknkfε1,...,εk

=

∫
X[k]

⊗
ε1,...,εk∈{0,1}

fε1,...,εk

(where the tensor product is taken in a certain order, which we do not specify
here).

For k ∈ N and f ∈ L∞(X) the seminorm |||f |||T,k associated with T is

defined by |||f |||T,k =
(∫

X
[k]
T
f⊗2k

)1/2k
. Equivalently,

|||f |||2
k

T,k = lim
Nk→∞

1

Nk

Nk∑
nk=1

. . . lim
N1→∞

1

N1

N1∑
n1=1

∫
X

∏
ε1,...,εk∈{0,1}

T ε1n1+...+εknkf.

It is proved in [HoK2] that for any f1, . . . , f2k ∈ L∞(X) one has∣∣∣∫
X

[k]
T

2k⊗
j=1

fj

∣∣∣ ≤ 2k∏
j=1

|||fj|||T,k.
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For any k ∈ N and f ∈ L∞(X) we have

|||f |||2
k

T,k =

∫
X

[k]
T

f⊗2k =

∫
I(X

[k−1]
T ,T [k−1])

E
(
f⊗2k−1|I(X

[k−1]
T , T [k−1])

)2
.

Since I(X
[k−1]
T , T [k−1]) ⊆ Zk−1(X,T )⊗2k−1

, one has |||f |||T,k = 0 whenever

E
(
f |Zk−1(X,T )

)
= 0.

Proposition A.9. For any k ≥ 2, nonzero integers l1, . . . , lk and a collection
fε1,...,εk ∈ L∞(X), ε1, . . . , εk ∈ {0, 1}, if E

(
fε1,...,εk |Zk−1(X,T )

)
= 0 for some

ε1, . . . , εk then

lim
Nk→∞

1

Nk

Nk∑
nk=1

. . . lim
N1→∞

1

N1

N1∑
n1=1

∫
X

∏
ε1,...,εk∈{0,1}

T ε1l1n1+...+εklknkfε1,...,εk = 0.

Proof. Let l be a common multiple of l1, . . . , lk. Since, by Theorem A.2,
Zk−1(X,T l) = Zk−1(X,T ), E

(
fε1,...,εk |Zk−1(X,T )

)
= 0 implies |||fε1,...,εk |||T l,k =

0.
Let ri = l/li, i = 1, . . . , k. We have

lim
Nk→∞

1

Nk

Nk∑
nk=1

. . . lim
N1→∞

1

N1

N1∑
n1=1

∫
X

∏
ε1,...,εk∈{0,1}

T ε1l1n1+...+εklknkfε1,...,εk

=
1

r1 . . . rk

rk−1∑
mk=0

. . .

r1−1∑
m1=0

lim
Nk→∞

1

Nk

Nk∑
nk=1

. . . lim
N1→∞

1

N1

N1∑
n1=1∫

X

∏
ε1,...,εk∈{0,1}

T ε1ln1+...+εklnk(T ε1l1m1+...+εklkmkfε1,...,εk)

=
1

r1 . . . rk

rk−1∑
mk=0

. . .

r1−1∑
m1=0

∫
X

[k]

Tl

⊗
ε1,...,εk∈{0,1}

T ε1l1m1+...+εklkmkfε1,...,εk .

And for any mε1,...,εk ∈ Z, ε1, . . . , εk ∈ {0, 1},∣∣∣∫
X

[k]

Tl

⊗
ε1,...,εk∈{0,1}

Tmε1,...,εkfε1,...,εk

∣∣∣ ≤ ∏
ε1,...,εk∈{0,1}

|||Tmε1,...,εkfε1,...,εk |||T l,k

=
∏

ε1,...,εk∈{0,1}

|||fε1,...,εk |||T l,k = 0.
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Let ϕ : Zd −→ Z be a nonzero linear function, that is, a function of the
form
ϕ(n1, . . . , nd) = a1n1 + . . . + adnd with a1, . . . , ad ∈ Z not all zero. Then
for any measure preserving system (Y, S), any f ∈ L1(Y ) and any Følner se-
quence {ΦN}∞N=1 in Zd one has limN→∞

1
|ΦN |

∑
u∈ΦN

Sϕ(u)f = E(f |I(Y, Sl)) =

limN→∞
1
N

∑N
n=1 S

lnf , where l = gcd(a1, . . . , ad). Applying this fact k times,
we come to the following generalization of Proposition A.9:

Proposition A.10. For any k ≥ 2, positive integers di ∈ N, nonzero
linear functions ϕi : Z

di −→ Z, Følner sequences {Φi,N}∞N=1 in Z
di, i =

1, . . . , k, and a collection of functions fε1,...,εk ∈ L∞(X), ε1, . . . , εk ∈ {0, 1},
if E

(
fε1,...,εk |Zk−1(X,T )

)
= 0 for some ε1, . . . , εk then

lim
Nk→∞

1

|Φk,Nk |
∑

uk∈Φk,Nk

. . . lim
N1→∞

1

|Φ1,N1|
∑

u1∈Φ1,N1∫
X

∏
ε1,...,εk∈{0,1}

T ε1ϕ1(u1)+...+εkϕk(uk)fε1,...,εk = 0.

The proof of Theorem A.8 will be based on the following lemma:

Lemma A.11. For any linear functions ϕ1, . . . , ϕk : Zd −→ Z and any
f1, . . . , fk ∈ L∞(X),

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
u∈ΦN

Tϕ1(u)f1 · . . . · Tϕk(u)fk

∥∥∥
L2(X)

≤
(

lim
N1→∞

1

|ΦN1|2
∑

(v1,w1)∈Φ2
N1

lim
Nk→∞

1

|ΦNk |2
∑

(vk,wk)∈Φ2
Nk

. . . lim
N2→∞

1

|ΦN2 |2
∑

(v2,w2)∈Φ2
N2∫

X

∏
ε1,ε2,...,εk∈{0,1}

T ε1ϕ1(v1−w1)+ε2(ϕ1−ϕ2)(v2−w2)+...+εk(ϕ1−ϕk)(vk−wk)f1

)1/2k

·
k∏
i=2

‖fi‖L∞(X).

Proof. Let {ΦN}∞N=1 be a Følner sequence in Zd. We will use the van der
Corput lemma in the following form: if {fu}u∈Zd is a bounded family of
elements of a Hilbert space, then

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
u∈ΦN

fu

∥∥∥2

≤ lim sup
N1→∞

1

|ΦN1|2
∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |
∑
u∈ΦN

〈fu, fu+v−w〉.
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We may assume that |f2|, . . . , |fk| ≤ 1. By the van der Corput lemma we
have:

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
u∈ΦN

Tϕ1(u)f1 · . . . · Tϕk(u)fk

∥∥∥2

L2(X)

≤ lim sup
N1→∞

1

|ΦN1|2
∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |
∑
u∈ΦN

∫
X

Tϕ1(u)f1 · . . . · Tϕk(u)fk

·Tϕ1(u+v−w)f1 · . . . · Tϕk(u+v−w)fk

= lim sup
N1→∞

1

|ΦN1|2
∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |
∑
u∈ΦN

∫
X

Tϕ1(u)(f1 · Tϕ1(v−w)f1) · . . .

·Tϕk(u)(fk · Tϕk(v−w)fk)

= lim sup
N1→∞

1

|ΦN1|2
∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |
∑
u∈ΦN

∫
X

Tϕ1(u)−ϕk(u)(f1 · Tϕ1(v−w)f1) · . . .

·Tϕk−1(u)−ϕk(u)(fk−1 · Tϕk−1(v−w)fk−1) · (fk · Tϕk(v−w)fk)

= lim sup
N1→∞

1

|ΦN1|2
∑

v,w∈ΦN1

lim sup
N→∞

∫
X

( 1

|ΦN |
∑
u∈ΦN

T (ϕ1−ϕk)(u)(f1 · Tϕ1(v−w)f1) · . . .

·T (ϕk−1−ϕk)(u)(fk−1 · Tϕk−1(v−w)fk−1)
)
· (fk · Tϕk(v−w)fk)

≤ lim sup
N1→∞

1

|ΦN1|2
∑

(v,w)∈Φ2
N1

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
u∈ΦN

T (ϕ1−ϕk)(u)(f1 · Tϕ1(v−w)f1) · . . .

·T (ϕk−1−ϕk)(u)(fk−1 · Tϕk−1(v−w)fk−1)
∥∥∥
L2(X)

.

By the induction hypothesis, applied to the linear functions ϕi−ϕk : Zd −→ Z

and to the functions fi · Tϕi(v−w)fi ∈ L∞(X), i = 1, . . . , k − 1, for any
(v, w) ∈ Z2d we have

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
u∈ΦN

T (ϕ1−ϕk)(u)(f1 · Tϕ1(v−w)f1) · . . .

·T (ϕk−1−ϕk)(u)(fk−1 · Tϕk−1(v−w)fk−1)
∥∥∥
L2(X)

≤
(

lim
Nk→∞

1

|ΦNk |2
∑

(vk,wk)∈Φ2
Nk

. . . lim
N2→∞

1

|ΦN2|2
∑

(v2,w2)∈Φ2
N2∫

X

∏
ε2,...,εk∈{0,1}

T ε2(ϕ1−ϕ2)(v2−w2)+...+εk(ϕ1−ϕk)(vk−wk)(f1 · Tϕ1(v−w)f1)
)1/2k−1
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=
(

lim
Nk→∞

1

|ΦNk |2
∑

(vk,wk)∈Φ2
Nk

. . . lim
N2→∞

1

|ΦN2|2
∑

(v2,w2)∈Φ2
N2∫

X

∏
ε1,ε2,...,εk∈{0,1}

T ε1ϕ1(v−w)+ε2(ϕ1−ϕ2)(v2−w2)+...+εk(ϕ1−ϕk)(vk−wk)f1

)1/2k−1

.

Thus,

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
u∈ΦN

Tϕ1(u)f1 · . . . · Tϕk(u)fk

∥∥∥
L2(X)

≤
(

lim sup
N1→∞

1

|ΦN1|2
∑

(v,w)∈Φ2
N1

(
lim

Nk→∞

1

|ΦNk |2
∑

(vk,wk)∈Φ2
Nk

. . . lim
N2→∞

1

|ΦN2|2
∑

(v2,w2)∈Φ2
N2∫

X

∏
ε1,ε2,...,εk∈{0,1}

T ε1ϕ1(v−w)+ε2(ϕ1−ϕ2)(v2−w2)+...+εk(ϕ1−ϕk)(vk−wk)f1

)1/2k−1)1/2

≤
(

lim
N1→∞

1

|ΦN1|2
∑

(v,w)∈Φ2
N1

lim
Nk→∞

1

|ΦNk |2
∑

(vk,wk)∈Φ2
Nk

. . . lim
N2→∞

1

|ΦN2|2
∑

(v2,w2)∈Φ2
N2∫

X

∏
ε1,ε2,...,εk∈{0,1}

T ε1ϕ1(v−w)+ε2(ϕ1−ϕ2)(v2−w2)+...+εk(ϕ1−ϕk)(vk−wk)f1

)1/2k

.

Proof of Theorem A.8. Because of the multilinearity of (A.5), it suffices to
show that limN→∞

1
|ΦN |

∑
u∈ΦN

Tϕ1(u)f1 · . . . ·Tϕk(u)fk = 0 in L1(X) whenever

E
(
f1|Zk−1(X,T )

)
= 0. We may assume that the functions ϕ1, . . . , ϕk are all

nonzero and distinct. Then, combining Lemma A.11 and Proposition A.10,
applied to the nonzero linear functions ϕ1(v − w), (ϕ1 − ϕ2)(v − w), . . .,
(ϕ1 − ϕk)(v − w) on Z2d and the Følner sequence {Φ2

N}∞N=1 in Z2d, we get
limN→∞

1
|ΦN |

∑
u∈ΦN

Tϕ1(u)f1 · . . . · Tϕk(u)fk = 0 in L2(X) and so, in L1(X).
�

Acknowledgment. I thank V. Bergelson and E. Lesigne for valuable com-
ments on the draft of this note.
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B Appendix: Ergodic averages along the squares

by Anthony Quas1 and Máté Wierdl2

University of Memphis
Department of Mathematical Sciences
373 Dunn Hall
Memphis, TN 38152-3240, USA

E-mail: quasa@msci.memphis.edu, mw@csi.hu

B.1 Enunciation of the result

In this note we want to present a proof of the almost everywhere convergence
of the ergodic averages along the sequence of squares.

Theorem B.1. Let τ be a measurable, measure preserving transformation
of the σ-finite measure space (X,Σ, µ).

Then, for f ∈ L2, the averages

Stf(x) =
1

t

∑
n≤t

f(τn
2

x)

converge for almost every x ∈ X.

The theorem is due to J. Bourgain. To keep our presentation as continu-
ous as possible, we present historical remarks, and cite references in the last
section, Section B.6.

B.2 Subsequence lemma

The main idea of the proof is to analyze the Fourier transform Ŝt(α) =
1/t
∑

n≤t e
2πin2α of the averages. This analysis permits us to replace the av-

erages St by other operators that are easier to handle. The replace-ability of
the sequence (St) by another sequence (At) means that we have an inequality
of the form ∫ ∑

t

|Stf − Atf |2 < c

∫
|f |2. (B.1)

1A. Quas’ research is partially supported by NSF grant #DMS–0200703
2M. Wierdl’s research is partially supported by NSF grant #DMS–0100577
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Now, if somehow we prove that the sequence (Atf(x)) converges for a.e. x,
then the above inequality implies, since its left hand side is finite for f ∈ L2,
that the sequence (Stf(x)) converges a.e. as well.

Well, we will not be able to prove an inequality of the type (B.1) exactly.
In the real inequality, we will be able to have an inequality where the t runs
through a lacunary sequence. But this is quite all right since it is enough to
prove the a.e. convergence of the (Stf) along a lacunary sequence:

Lemma B.2. For σ > 1 denote

I = Iσ = {t | t = σn for some positive integer n}.

Suppose that for each fixed σ > 1, the sequence (Stf)t∈I converges a.e.
Then the full (St) sequence converges a.e.

Proof. We can assume that the function f is nonnegative. For a given t,
choose k so that σk ≤ t < σk+1. We can then estimate as

Stf(x) ≤ 1

σk

∑
n≤σk+1

f(τn
2

x) = σ · Sσk+1f(x),

and similarly, we have σ−1 · Sσkf(x) ≤ Stf(x). This means that

σ−1 · lim
k
Sσkf(x) ≤ lim inf

t
Stf(x) ≤ lim sup

t
Stf(x) ≤ σ · lim

k
Sσkf(x).

Choosing now σp = 22−p , we get that limk Sσkpf(x) is independent of p for
a.e. x, and, by the above estimates, it is equal to limt Stf(x).

For the rest of the proof, we fix σ > 1, and unless we say
otherwise, we always assume that t ∈ I = Iσ.

Definition B.3. If two sequences (At) and (Bt) of L2 → L2 operators satisfy∫ ∑
t

|Atf −Btf |2 < c

∫
|f |2; f ∈ L2,

then we say that (At) and (Bt) are equivalent.
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B.3 Oscillation and an instructive example

One standard way of proving a.e. convergence for the usual ergodic averages
1/t
∑

n≤t f(τnx) is to first prove a maximal inequality, and then note that
there is a natural dense class for which a.e. convergence holds.

Unfortunately, the second part of this scheme does not work for the av-
erages along the squares, since there is no known class of functions for which
it would be easy to prove a.e. convergence of the averages.

Instead, for the squares, we will prove a so called oscillation inequality :
for any t(1) < t(2) < . . . with t(k) ∈ I, there is a constant c so that we have∫ ∑

k

sup
t(k)<t<t(k+1)

|Stf − St(k+1)f |2 ≤ c

∫
f 2. (B.2)

We leave it to the reader to verify why an oscillation inequality implies a.e.
convergence of the sequence (Stf). We also leave it to the reader to verify
that if two operator sequences (At) and (Bt) are equivalent and (At) satisfies
an oscillation inequality, then so does (Bt).

An important remark is that by the so called transference principle of
Calderón, it is enough to prove the inequality in (B.2) on the integers Z
which we consider equipped with the counting measure and the right shift.
In this case, we have Stf(x) = 1/t

∑
n≤t f(x+ n2).

To see how Fourier analysis can help in proving an oscillation inequality,
let us look at a simpler example first: the case of the usual ergodic averages
Utf(x) = 1/t

∑
n≤t f(x + n) (by the transference principle, we only need to

prove the oscillation inequality on the integers).
Let us assume that we already know the maximal inequality∫

Z
sup
t
|Utf |2 ≤ c ·

∫
Z
|f |2

For the Fourier transform Ût(α) = 1/t
∑

n≤t e
2πinα, α ∈ (−1/2, 1/2) we easily

obtain the estimates
|Ût(α)− 1| ≤ c · t · |α|; (B.3)

|Ût(α)| ≤ c

t · |α|
. (B.4)

The first estimate is effective (nontrivial) when |α| < 1/t and it says that

Ût(α) is close to 1. The second estimate is effective when |α| > 1/t, and it says
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that then |Ût(α)| is small. In other words, the estimates in (B.3) and (B.4) say

that the function 11(−1/t,1/t)(α) captures the “essence” of Ût(α). How? Let us

define the operator At via its Fourier transform as Ât(α) = 11(−1/t,1/t)(α). The
great advantage of the (At) is that it is a monotone sequence of projections.
We’ll see in a minute how this can help. First we claim that the sequences
(Ut) and (At) are equivalent. To prove this claim, start by observing that

Ûtf(α) = Ût(α) · f̂(α); Âtf(α) = Ât(α) · f̂(α),

and then estimate, using Parseval’s formula, as∫
Z

∑
t∈I

|Atf − Utf |2 =

∫ 1/2

−1/2

∑
t∈I

|Ât(α)− Ût(α)|2 · |f̂(α)|2 dα

≤
∫ 1/2

−1/2

|f̂(α)|2 dα · sup
α

∑
t∈I

|Ût(α)− Ât(α)|2

=

∫
Z
f 2 · sup

α

∑
t∈I

|Ût(α)− Ât(α)|2

It follows that it is enough to prove the inequality

sup
α

∑
t∈I

|Ût(α)− Ât(α)|2 <∞.

To see this, for a fixed α, divide the summation on t into two parts, t < |α|−1

and t > |α|−1. For the case t < |α|−1, use the estimate in (B.3) and in
case t > |α|−1 use the estimate in (B.4). In both cases, we end up with a
geometric progression with quotient 1/σ.

Since (Ut) and (At) are equivalent and (Ut) satisfies a maximal inequality,
the operators At also satisfy a maximal inequality. But then the sequence
(Atf(x)) satisfies an oscillation inequality. To see this, first note that if
t(k) ≤ t ≤ t(k+1) then Atf(x)−At(k+1)f(x) = At

(
At(k)f(x)− At(k+1)f(x)

)
.

It follows, that∫
Z

sup
t(k)<t<t(k+1)

|Atf − At(k+1)f |2 =

∫
Z

sup
t

∣∣At (At(k)f − At(k+1)f
)∣∣2

≤ c ·
∫
Z

∣∣At(k)f − At(k+1)f
∣∣2 ,
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since the sequence (At) satisfies a maximal inequality. But now the oscillation
inequality follows from the inequality∫

Z

∑
k

|At(k)f − At(k+1)f |2 ≤
∫
Z
f 2.

This inequality, in turn, follows by examining the Fourier transform of the
left hand side.

Now the punchline is that the ergodic averages (Ut) also satisfy the oscil-
lation inequality since (Ut) and (At) are equivalent.

Let us summarize the scheme above: the maximal inequality for (Ut)
implies a maximal inequality for the (At) since the two sequences are equiv-
alent. But the (At), being a monotone sequence of projections, satisfy an
oscillation inequality. But then, again appealing to the equivalence of the
two sequences, the (Ut) satisfies an oscillation inequality.

What we have learned is that if a sequence of operators (Btf) satisfies
a maximal inequality, and it is equivalent to a monotone sequence (At) of
projections, then (Btf) satisfies an oscillation inequality..

In the remaining sections we will see that the scheme of proving an os-
cillation inequality for the averages along the squares (St) is similar, and
ultimately it will be reduced to proving a maximal inequality for a monotone
sequence of projections.

B.4 Periodic systems and the circle method

The difference between the usual ergodic averages and the averages along
squares is that the squares are not uniformly distributed in residue classes.
Indeed, for example no number of the form 3n−1 is a square. This property of
the squares is captured well in the behavior of the Fourier transform, Ŝt(α) =

1/t
∑

n≤t e
2πin2α: for a typical rational α = b/q, limt→∞ Ŝt(α) is nonzero

(while it would be 0 if the squares were uniformly distributed mod q).

We need some estimates on the Fourier transform Ŝt(α). Since we will of-
ten deal with the function e2πiβ, we introduce the notation e(β) = e2πiβ. Also,

the estimates for the Fourier transform Ŝt(α) are simpler if instead of the
averages 1

t

∑
n≤t τ

n2
f(x) we consider the weighted averages 1/t

∑
n2≤t(2n −

1)τn
2
f(x). The weight 2n − 1 is motivated by n2 − (n − 1)2 = 2n − 1. Ev-

erything we said about the averages along the squares applies equally well
to these new weighted averages. Furthermore, it is an exercise in summation
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by parts to show that the a.e. convergence of the weighted and non weighted
averages is equivalent.

So from now on, we use the notation

Stf(x) =
1

t

∑
n2≤t

(2n− 1)τn
2

f(x).

Let Λ̂(α) = limt Ŝt(α). By Weyl’s theorem, Λ̂(α) = 0 for irrational α and for
rational α = b/q, if b/q is in reduced terms, we have the estimate

|Λ̂(b/q)| ≤ c

q1/2
(B.5)

This inequality tells us that while the squares are not uniformly distributed
in residue classes mod q, at least they try to be: Λ̂t(b/q)→ 0 as q →∞.

Now the so called circle method of Hardy and Littlewood tells us about
the structure of Ŝt(α). Let us introduce the notations P (t) = t1/3, Q(t) =
2t/P (t) = 2t2/3. According to the circle method, we have the following
estimates∣∣∣Ŝt(α)− Λ̂(b/q) · Ût(α− b/q)

∣∣∣ ≤ c · t−1/6; q ≤ P (t), |α− b/q| < 1/Q(t)

(B.6)∣∣∣Ŝt(α)
∣∣∣ < c · t−1/6, otherwise, (B.7)

where recall that Ut denotes the usual ergodic averages so Ût(β) = 1/t
∑

n≤t e(nα).

In other words, the estimate above tells us that Ŝt(α) is close to Λ̂(b/q) ·
Ût(α− b/q) if α is close to a rational point b/q with small denominator, and

otherwise |Ŝt(α)| is small.
Given these estimates, it is easy to see that the sequence (St) is equivalent

to the sequence (At) defined by its Fourier transform as

Ât(α) =
∑
b/q

q≤P (t)

Λ̂(b/q) · Ût(α− b/q) · 11(−1/Q(t),1/Q(t))(α− b/q)

It remains to prove an oscillation inequality for the At. To do this, first we
group those b/q for which q is of similar size:

Ep = {b/q | 2p ≤ q < 2p+1}
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By the estimates in (B.5), we have

sup
b/q∈Ep

|Λ̂(b/q)| ≤ c · 2−p/2. (B.8)

Note also that if b/q ∈ Ep then the term Λ̂(b/q) occurs in the definition of
At only when t > 23p. Define the operator Ap,t by its Fourier transform as

Âp,t(α) =
∑
b/q∈Ep

Λ̂(b/q) · Ût(α− b/q) · 11(−1/Q(t),1/Q(t))(α− b/q), t > 23p.

Using the triangle inequality for the summation in p, we see that an oscillation
inequality for (At) would follow from the inequality∫

Z

∑
k

sup
t(k)<t<t(k+1)

|Ap,tf − Ap,t(k+1)f |2 ≤ c · p
2

2p
·
∫
Z
f 2 (B.9)

We have learned in the previous section, Section B.3, that it is useful to try
work with projections. As a step, we introduce the operators Bp,t defined via

B̂p,t(α) =
∑
b/q∈Ep

Λ̂(b/q) · 11(−1/t,1/t)(α− b/q), t > 23p.

Note that for each α there is at most one b/q ∈ Ep so that 11(−1/t,1/t)(α−b/q) 6=
0 or 11(−1/Q(t),1/Q(t))(α−b/q) 6= 0 for some t > 23p. Hence, using the estimates
in (B.3), (B.4), and (B.8), we get

|Âp,t(α)− B̂p,t(α)| ≤ c · 2−p/2 ·min{t|α|, (t|α|)−1}; t > 23p.

It follows that we can replace the (Ap,t) by the (Bp,t):∫
Z

∑
t>23p

|Ap,tf −Bp,tf |2 ≤ c · 2−p ·
∫
Z
f 2

In order to prove the required oscillation inequality for the Bp,t, we make one
more reduction. Namely, we claim that defining Cp,t by

Ĉp,t(α) =
∑
b/q∈Ep

11(−1/t,1/t)(α− b/q), t > 23p.
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(so Ĉp,t is just Bp,t without the multipliers Λ̂(b/q)), we need to prove∫
Z

∑
k

sup
t(k)<t<t(k+1)

|Cp,t − Cp,t(k+1)|2 ≤ c · p2 ·
∫
Z
f 2. (B.10)

We leave the proof of this implication to the reader with the hint to replace
the function f by g defined by its Fourier transform as

ĝ(α) =
∑
b/q∈Ep

Λ̂(b/q) · 11(−2−3p,2−3p)(α− b/q) · f̂(α).

Indeed, then Bp,tf(x) = Cp,tg(x) and
∫
Z g

2 ≤ c · 2−p
∫
Z f

2 by (B.8).
Now, the Cp,t form a monotone (in t) sequence of projections, and hence

they will satisfy the oscillation inequality in (B.10) once they satisfy the
maximal inequality ∫

Z
sup
t>23p

|Cp,t|2 ≤ c · p2 ·
∫
Z
f 2. (B.11)

To encourage the reader, we emphasize that our only remaining task is to
prove the inequality in (B.11) above.

B.5 The main inequality

Since the least common multiple of the denominators of rational numbers in
the set Ep is not greater than 2cp2

p
and the distance between two elements

of Ep is at least 2−2p, the estimate in (B.11) follows from the following result

Theorem B.4. Let 0 < δ < 1/2 and e(α1), e(α2), . . . , e(αJ) be distinct com-
plex Q-th roots of unities with |αi − αj| > δ for i 6= j. We assume that
δ−1 ≤ Q. Define the projections Rt by

R̂t(α) =
∑
j≤J

11(−1/t,1/t)(α− αj).

Then we have, with an absolute constant c,∫
Z

sup
t≥δ−1

|Rtf |2 ≤ c · (log logQ)2 ·
∫
Z
|f |2.
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We restrict the the range on t to t ≥ δ−1, because then the sum making
up Rt contains pairwise orthogonal elements—as a result on the separation
hypothesis |αi − αj| > δ.

Proof. Two essentially different techniques will be used to handle the supre-
mum. The first technique will handle the range δ−1 ≤ t < Q4, and the other
technique will handle the remaining t > Q4 range.

Let us start with proving the inequality∫
Z

sup
δ−1≤t≤Q4

|Rtf |2 ≤ c · (log logQ)2 ·
∫
Z
|f |2. (B.12)

We can assume that Q4 is a power of σ, say Q4 = σS, and then the range
δ−1 ≤ t ≤ Q4 can be rewritten as c log δ−1 ≤ s ≤ S, where we take log
with base σ. Introduce the monotone sequence of projections Ps = RσS−s ,
s ≤ S − c log δ−1. All follows from∫

Z
sup

s≤S−c log δ−1

|Psf |2 ≤ c · log2 S ·
∫
Z
|f |2.

It is clearly enough to show the inequality for dyadic S − c log δ−1:∫
Z

sup
s≤2M

|Psf |2 ≤ c ·M2 ·
∫
Z
|f |2.

For each integer m ≤M consider the sets

Hm =
{
P(d+1)·2m − Pd·2m | d = 0, 1, . . . , 2M−m − 1

}
.

If the dyadic expansion of s is s =
∑

m≤M εm · 2m, where εm is 0 or 1, then
for some Xm ∈ Hm, Ps =

∑
m≤M εm ·Xm. It follows that

|Psf(x)|2 ≤M ·
∑
m≤M

|Xmf(x)|2.

For each m, we have

|Xmf(x)|2 ≤
∑

d≤2M−m

|P(d+1)·2mf(x)− Pd·2mf(x)|2,
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hence∫
Z

sup
s≤2M

|Psf |2 ≤M ·
∫
Z

∑
m≤M

∑
d≤2M−m

|P(d+1)·2mf(x)− Pd·2mf(x)|2

≤M ·
∑
m≤M

∑
s≤2M

∫
Z
|Ps+1f − Psf |2

≤M2 · 2 ·
∫
Z
|f |2.

Let us now handle the remaining range for t. We want to prove∫
Z

sup
t>Q4

|Rtf |2 ≤ c ·
∫
Z
|f |2. (B.13)

It seems best if we replace the operators Rt by the operators

Atf(x) =
1

t

∑
n≤t

∑
j≤J

e(nαj)f(x+ n).

This replacement is possible if we prove the following two inequalities∫
Z

∑
t>δ−2

|Atf −Rtf |2 ≤ c ·
∫
Z
|f |2. (B.14)

and ∫
Z

sup
t>Q4

|Atf |2 ≤ c ·
∫
Z
|f |2. (B.15)

Let us start with proving (B.14). By Parseval’s formula, we need to prove

sup
α

∑
t

|Ât(α)− R̂t(α)|2 <∞.

Fix α. Without loss of generality we can assume that of the αj, the point α1

is closest to α. Possibly dividing the sum on j into two and reindexing them,
we also assume that α1 < α2 < · · · < αJ . Using the separation hypothesis
|αi − αj| > δ for i 6= j, we have that |α− αj| > (j − 1)δ for j > 1.
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For t ≤ 1/|α−α1| we can thus estimate (recall that Ût(β) = 1/t
∑

n≤t e(nβ))
as

|Ât(α)− R̂t(α)| ≤ |Ût(α− α1)|+
∑

2≤j≤J

|Ût(α− αj)| by (B.3) and (B.4)

≤ c ·

(
t|α− α1|+

∑
2≤j≤J

1

t(j − 1)δ

)
≤ c · (t|α− α1|+ log J/(δt))

≤ c ·
(
t|α− α1|+ δ−2/t

)
where we used in the last estimate that J ≤ δ−1. Summing this estimate
over t ∈ I with δ−2 ≤ t ≤ 1/|α−α1| we get a finite bound independent of α.

For t > 1/|α− α1|, we have

|Ât(α)− R̂t(α)| ≤
∑

1≤j≤J

|Ût(α− αj)| ≤ c · δ
−2

t
,

which, upon summing over the full range δ−2 < t, again gives a finite bound
independent of α.

Let us single out a consequence of inequality (B.14): there is a constant
c so that ∫

Z
|Atf |2 ≤ c ·

∫
Z
|f |2; t > δ−2. (B.16)

Our only remaining task is to prove inequality (B.15).
For a given t, let q be the largest integer so that qQ2 ≤ t. Note that

q ≥ Q2 since t > Q4. We can estimate as∣∣∣∑
n≤t

∑
j≤J

e(nαj)f(x+ n)
∣∣∣

≤
∣∣∣ ∑
n≤qQ2

∑
j≤J

e(nαj)f(x+ n)
∣∣∣+
∣∣∣ ∑
qQ2<n≤t

∑
j≤J

e(nαj)f(x+ n)
∣∣∣. (B.17)

We estimate the second term on the right trivially as∣∣∣ ∑
qQ2<n≤t

∑
j≤J

e(nαj)f(x+ n)
∣∣∣ ≤ J ·

∑
qQ2<n≤(q+1)Q2

∣∣f(x+ n)
∣∣.
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With this, we have

sup
t>Q4

(1

t

∣∣∣ ∑
qQ2<n≤t

∑
j≤J

e(nαj)f(x+ n)
∣∣∣)2

≤ sup
q≥Q2

( J

qQ2
·

∑
qQ2<n≤(q+1)Q2

|f(x+ n)|
)2

by Cauchy’s inequality

≤ sup
q≥Q2

J2 ·Q2

qQ2
·
∑

qQ2<n≤(q+1)Q2 |f(x+ n)|2

qQ2

≤
∑
q≥Q2

J2

q2
· 1

Q2

∑
qQ2<n≤(q+1)Q2

|f(x+ n)|2

Integrating the last line, we obtain the bound∑
q≥Q2

J2

q2
·
∫
Z
|f |2 ≤ c · J

2

Q2

∫
Z
|f |2 ≤ c ·

∫
Z
|f |2.

since J ≤ Q.
Let us now handle the first term on the right of (B.17). Since e(αj)

satisfies e((mQ2 + h)αj) = e(hαj) (this is the first and last time we use that
the e(αj) are Q-th roots of unities), we can write, defining Tg(x) = g(x+Q2),∣∣∣1

t

∑
n≤qQ2

∑
j≤J

e(nαj)f(x+ n)
∣∣∣ ≤ ∣∣∣1

q

∑
m≤q

Tm
1

Q2

∑
h≤Q2

∑
j≤J

e(hαj)f(x+ h)
∣∣∣.

By the ergodic maximal inequality, applied to T , the `2 norm of our maximal
operator is bounded by the `2 norm of

1

Q2

∑
h≤Q2

∑
j≤J

e(hαj)f(x+ h).

But the estimate in (B.14) says, the `2 norm of the above is bounded inde-
pendently of Q since Q2 > δ−2 by assumption.

B.6 Notes

More details More details and references can be found in [RosW]. In par-
ticular, the circle method and the transference principle are described
in complete details—though no proof of the main inequality of Bour-
gain, Theorem B.4, is given. The inequalities (B.6) and (B.7) appear
as (4.23) and (4.24) in [RosW].
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Theorem B.1 The result is due to Bourgain ([Bou1]). He later extended
the result to f ∈ Lp, p > 1; cf [Bou2]. The case p = 1 is the most
outstanding unsolved problem in this subject.

Idea of proof The basic structure of the proof is that of Bourgain’s ([Bou2])
but we used ideas from Lacey’s paper [La] as well—not to mention some
personal communication with M. Lacey.

Other sequences The sequence of primes is discussed in [Wi]. But we’d
like to emphasize that the L2 theory of the primes is identical to the
case of the squares. The only difference is in the estimates in (B.6) and
(B.7).

A characterization of sequences which are good for the pointwise and
mean ergodic theorems can be found in [BoQW].

Acknowledgment. The authors thank E. Lesigne for useful comments.
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[ET] P. Erdős and P. Turán, On some sequences of integers, J. London Math.
Soc. 11 (1936), 261–264.

[Fø] E. Følner, On groups with full Banach mean values, Math. Scand. 3
(1955), 243–254.

[FrK] N. Frantzikinakis and B. Kra, Polynomial averages converge to the prod-
uct of integrals, to appear in Israel J. Math.

[Fu1] H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963),
477–515.

[Fu2] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem
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[Sz] E. Szemerédi, On sets of integers containing no k elements in arithmetic

progression, Acta Arith. 27 (1975), 199–245.
[T] A. Taylor, A canonical partition relation for finite subsets of ω, J. Com-

bin. Theory (Ser. A) 17 (1974), 1–11.
[vdW1] B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch.

Wisk. 15 (1927), 212–216.
[vdW2] B. van der Waerden, How the proof of Baudet’s conjecture was found,

Studies in Pure Mathematics presented to Richard Rado (1971), L.
Mirsky, ed., Academic Press, London, 251–260.

[Wag] S. Wagon, The Banach-Tarski Paradox, Cambridge University Press,
Cambridge, 1985.

146



[Wal] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New
York, 1982.
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