
• 

• 

• 

I 
• 

I 

�Springe 



Springer 
New York 
Berlin 
Heidelberg 
Barcelona 
Budapest 
Hong Kong 
London 
Milan 
Paris 
Santa Clara 
Singapore 
Tokyo 

Graduate Texts in Mathematics 96 
Editorial Board 

S. Axler F. W. Gehring P. R. Halmos 



John B. Conway 

A Course in 
Functional Analysis 
Second Edition 

Springer 



John B. Conway 
Department of Mathematics 
University of Tennessee 
Knoxville, TN 37996 
USA 

Editorial Board 
S. Axler 
Department of 

Mathematics 
Michigan State University 
East Lansing, MI 48824 
USA 

With 1 Illustration. 

F.W. Gehring 
Department of 

Mathematics 
University of Michigan 
Ann Arbor, MI 48 109 
USA 

P.R. Halmos 
Department of 

Mathematics 
Santa Clara University 
Santa Clara, CA 95053 
USA 

Mathematical Subject Classification: 46-01, 46L05, 47B15, 47B25 

Library of Congress Cataloging-in-Publication Data 
Conway, John B. 

A course in functional analysis/John B. Conway.-2nd ed. 
p. cm.-(Graduate texts in mathematics; 96) 

Includes bibliographical references. 
ISBN 0-387-97245-5 (alk. paper) 
1. Functional analysis. I. Title. II. Series. 

QA320.C658 1990 
515.7-dc20 90-9585 

Printed on acid-free paper. 

© 1990 Springer-Verlag New York, Inc. 
All rights reserved. This work may not be translated or copied in whole or in part without the 
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New 
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. 
Use in connection with any form of information storage and retrieval, electronic adaptation, 
computer software, or by similar or dissimilar methodology now known or hereafter developed is 
forbidden. 
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the 
former are not especially identified, is not to be taken as a sign that such names, as understood by 
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. 

Production managed by Francine McNeill; manufacturing supervised by Genieve Shaw. 
Typeset by Thomson Press (India) Limited, New Delhi. 
Printed and bound by R.R. Donnelley & Sons, Harrisonburg, VA. 
Printed in the United States of America. 

9 8 7 6 5 4 (Corrected fourth printing, 1997) 
ISBN 0-387-97245-5 Springer-Verlag New York Berlin Heidelberg 
ISBN 3-540-97245-5 Springer-Verlag Berlin Heidelberg New York SPIN 10558495 



For Ann (of course) 



Preface 

Functional analysis has become a sufficiently large area of mathematics that it 
is possible to find two research mathematicians, both of whom call themselves 
functional analysts, who have great difficulty understanding the work of the 
other. The common thread is the existence of a linear space with a topology or 
two (or more). Here the paths diverge in the choice of how that topology is 
defined and in whether to study the geometry of the linear space, or the linear 
operators on the space, or both. 

In this book I have tried to follow the common thread rather than any 
special topic. I have included some topics that a few years ago might have been 
thought of as specialized but which impress me as interesting and basic. Near 
the end of this work I gave into my natural temptation and included some 
operator theory that, though basic for operator theory, might be considered 
specialized by some functional analysts. 

The word "course" in the title of this book has two meanings. The first is 
obvious. This book was meant as a text for a graduate course in functional 
analysis. The second meaning is that the book attempts to take an excursion 
through many of the territories that comprise functional analysis. For this 
purpose, a choice of several tours is offered the reader-whether he is a tourist 
or a student looking for a place of residence. The sections marked with an 
asterisk are not (strictly speaking) necessary for the rest of the book, but will 
offer the reader an opportunity to get more deeply involved in the subject at 
hand, or to see some applications to other parts of mathematics, or, perhaps, 
just to see some local color. Unlike many tours, it is possible to retrace your 
steps and cover a starred section after the chapter has been left. 

There are some parts of functional analysis that are not on the tour. Most 
authors have to make choices due to time and space limitations, to say nothing 
of the financial resources of our graduate students. Two areas that are only 
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briefly touched here, but which constitute entire areas by themselves, are 
topological vector spaces and ordered linear spaces. Both are beautiful 
theories and both have books which do them justice. 

The prerequisites for this book are a thoroughly good course in measure 
and integration-together with some knowledge of point set topology. The 
appendices contain some of this material, including a discussion of nets in 
Appendix A. In addition, the reader should at least be taking a course in 
analytic function theory at the same time that he is reading this book. From 
the beginning, analytic functions are used to furnish some examples, but it is 
only in the last half of this text that analytic functions are used in the proofs of 
the results. 

I t  has been traditional that a mathematics book begin with the most general 
set of axioms and develop the theory, with additional axioms added as the 
exposition progresses. To a large extent I have abandoned tradition. Thus the 
first two chapters are on Hilbert space, the third is on Banach spaces, and the 
fourth is on locally convex spaces. To be sure, this causes some repetition 
(though not as much as I first thought it would) and the phrase "the proof is 
just like the proof of . . .  " appears several times. But I firmly believe that this 
order of things develops a better intuition in the student. Historically, 
mathematics has gone from the particular to the general-not the reverse. 
There are many reasons for this, but certainly one reason is that the human 
mind resists abstraction unless it first sees the need to abstract. 

I have tried to include as many examples as possible, even if this means 
introducing without explanation some other branches of mathematics (like 
analytic functions, Fourier series, or topological groups). There are, at the end 
of every section, several exercises of varying degrees of difficulty with different 
purposes in mind. Some exercises just remind the reader that he is to supply a 
proof of a result in the text; others are routine, and seek to fix some of the ideas 
in the reader's mind; yet others develop more examples; and some extend the 
theory. Examples emphasize my idea about the nature of mathematics and 
exercises stress my belief that doing mathematics is the way to learn 
rna them a tics. 

Chapter I discusses the geometry of Hilbert spaces and Chapter II begins 
the theory of operators on a Hilbert space. In Sections 5-8 of Chapter II, the 
complete spectral theory of normal compact operators, together with a 
discussion of multiplicity, is worked out. This material is presented again in 
Chapter IX, when the Spectral Theorem for bounded normal operators is 
proved. The reason for this repetition is twofold. First, I wanted to design the 
book to be usable as a text for a one-semester course. Second, if the reader 
understands the Spectral Theorem for compact operators, there will be less 
aifficulty in understanding the general case and, perhaps, this will lead to a 
greater appreciation of the complete theorem. 

Chapter III is on Banach spaces. It has become standard to do some of this 
material in courses on Real Variables. In particular, the three basic principles, 
the Hahn-Banach Theorem, the Open Mapping Theorem, and the Principle of 
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IX 

Uniform Boundedness, are proved. For this reason I contemplated not 
proving these results here, but in the end decided that they should be proved. I 
did bring myself to relegate fo the appendices the proofs of the representation 
of the dual of LP (Appendix B) and the dual of C0(X) (Appendix C). 

Chapter IV hits the bare essentials of the theory of locally convex spaces
enough to rationally discuss weak topologies. It is shown in Section 5 that the 
distributions are the dual of a locally convex space. 

Chapter V treats the weak and weak-star topologies. This is one of my 
favorite topics because of the numerous uses these ideas have. 

Chapter VI looks at bounded linear operators on a Banach space. 
Chapter VII introduces the reader to Banach algebras and spectral theory and 
applies this to the study of operators on a Banach space. It is in Chapter VII 
that the reader needs to know the elements of analytic function theory, 
including Liouville's Theorem and Runge's Theorem. (The latter is proved 
using the Hahn-Banach Theorem in Section III.8.) 

When in Chapter VIII the notion of a C*-algebra is explored, the emphasis 
of the book becomes the theory of operators on a Hilbert space. 

Chapter IX presents the Spectral Theorem and its ramifications. This is 
done in the framework of a C*-algebra. Classically, the Spectral Theorem has 
been thought of as a theorem about a single normal operator. This it is, but it is 
more. This theorem really tells us about the functional calculus for a normal 
operator and, hence, about the weakly closed C*-algebra generated by the 
normal operator. In Section IX.8 this approach culminates in the complete 
description of the functional calculus for a normal operator. In Section IX. l 0 
the multiplicity theory (a complete set of unitary invariants) for normal 
operators is worked out. This topic is too often ignored in books on operator 
theory. The ultimate goal of any branch of mathematics is to classify and 
characterize, and multiplicity theory achieves this goal for normal operators. 

In Chapter X unbounded operators on Hilbert space are examined. The 
distinction between symmetric and self-adjoint operators is carefully de
lineated and the Spectral Theorem for unbounded normal operators is 
obtained as a consequence of the bounded case. Stone's Theorem on one 
parameter unitary groups is proved and the role of the Fourier transform in 
relating differentiation and multiplication is exhibited. 

Chapter XI, which does not depend on Chapter X, proves the basic 
properties of the Fredholm index. Though it is possible to do this in the context 
of unbounded operators between two Banach spaces, this material is 
presented for bounded operators on a Hilbert space. 

There are a few notational oddities. The empty set is denoted by D. A 
reference number such as (8. 10) means item number 10 in Section 8 of the 
present chapter. The reference (IX.8. 10) is to (8. 10) in Chapter IX. The 
reference ( A. 1 . 1 ) is to the first i tern in the first section of Appendix A. 

There are many people who deserve my gratitude in connection with 
writting this book. In three separate years I gave a course based on an evolving 
set of notes that eventually became transfigured into this book. The students 
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in those courses were a big help. My colleague Grahame Bennett gave me 
several pointers in Banach spaces. My ex-student Marc Raphael read final 
versions of the manuscript, pointing out mistakes and making suggestions for 
improvement. Two current students, Alp Eden and Paul McGuire, read the 
galley proofs and were extremely helpful. Elena Fraboschi typed the final 
manuscript. 

John B. Conway 

' 
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The most significant difference between this edition and the first is  that the last 
chapter, Fredholm Theory, has been completely rewritten and simplified. The 
major contribution to this simplification was made by Hari Bercovici who 
showed me the most simple and elegant development of the Fredholm index I 
have seen. 

Other changes in this book include many additional exercises and 
numerous comments and bibliographical notes. Several of my friends have 
been helpful here. The greatest contributor, however, has been Robert B. 
Burckel; in addition to pointing out mistakes, he has made a number of 
comments that have been pertinent, scholarly, and very enlightening. Several 
others have made such comments and this is a good opportunity to publicly 
thank them: G.D. Bruechert, Stephen Dilworth, Gerald A. Edgar, Lawrence C. 
Ford, Fred Goodman, A.A. Jafarian, Victor Kaftall, Justin Peters, John 
Spraker, Joseph Stampfli, J.J. Schaffer, Waclaw Szymanski, James E. Thom
son, Steve Tesser, Bruce Watson, Clifford Weil, and Pei Yuan Wu. 

Bloomington, Indiana 
December 7, 1989 

John B. Conway 
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CHAPTER I 

Hilbert Spaces 

A Hilbert space is the abstraction of the finite-dimensional Euclidean spaces 
of geometry. Its properties are very regular and contain few surprises, though 
the presence of an infinity of dimensions guarantees a certain amount of 
surprise. Historically, it was the properties of Hilbert spaces that guided 
mathematicians when they began to generalize. Some of the properties and 
results seen in this chapter and the next will be encountered in more general 
settings later in this book, or we shall see results that come close to these 
but fail to achieve the full power possible in the setting of Hilbert space. 

§ 1 .  Elementary Properties and Examples 

Throughout this book F' will denote either the real field, JR., or the complex 
field, CC. 

1 .1 .  Definition. Iff£ is a vector space over F', a semi-inner product on f£ is 
a function u: f£ x f£--+ F' such that for all a, p in F', and x, y, z in f£, the 
following are satisfied: 

(a) u(ax + py, z) = au(x, z) + Pu(y, z), 
(b) u(x, ay + Pz) = au(x, y) + Pu(x, z), 
(c) u(x, x) � 0, --
(d) u(x, y) = u(y, x). 

Here, for a in F', a. = a if F' = 1R and a. is the complex conjugate of a if 
F' =<C. If ae<C, the statement that a� 0 means that aeJR and a is non-negative. 

Note that if a= 0, then property (a) implies that u(O, y) = u(a ·O, y) = 
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au(O, y) = 0 for all y in f!l'. This and similar reasoning shows that for a 
semi-inner product u, 
(e) u(x, 0) = u(O, y) = 0 for all x, y in f!l'. 
In particular, u(O, 0) = 0. 

An inner product on f!l' is a semi-inner product that also satisfies the 
following: 

(f) If u(x, x) = 0, then x = 0. 

An inner product in this book will be denoted by 

( x, y )  = u(x, y). 
There is no universally accepted notation for an inner product and the reader 
will often see (x, y) and (x I y) used in the literature. 

1.2. Example. Let f!l' be the collection of all sequences {an: n � 1 }  of scalars 
an from F' such that an = 0 for all but a finite number of values of n. If addition 
and scalar multiplication are defined on f!l' by 

{an } + { Pn } = {an + Pn}, 
a {  an } = { aan } ,  

then f!l' is a vector space over F'. 
If u( {an } ,  {Pn } )  = z:,: 1 a2nP2m then u is a semi-inner product that is not 

an inner product. On the other hand, 
00 

( {an } ,  {Pn } )  = L anPn, 
n = l 

00 

( {an } ,  {Pn } )  = L n5anPn, 
n = l 

all define inner products on f!l'. 
1.3. Example. Let (X, !l, JL) be a measure space consisting of a set X, a 
a-algebra Q of subsets of X, and a countably additive measure Jl defined 
on Q with values in the non-negative extended real numbers. If f and 
gEL2(JL) = L2(X, Q, JL), then Holder's inequality implies f g EL1 (JL). If 

(f, g )  = f f{jdJ.l, 
then this defines an inner product on L2(JL). 

Note that Holder's inequality also states that I J fgdJL I � [Jif l 2 dJL] 1 12 • 
[ J l g l 2 dJLJ1'2• This is, in fact, a consequence of the following result on 
semi-inner products. 
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1.4. The Cauchy-Bunyakowsky-Schwarz Inequality. If ( · , - ) is a semi-inner 
product on PI, then 

l ( x, y ) l 2 � ( x, x ) (y, y ) 

for all x and y in PI. Moreover, equality occurs if and only if there are scalars 
� and p, both not 0, such that ( Px + �y, Px + �y ) = 0. 

PROOF. If �EF' and x and yEPI, then 

O � (x - �y, x - �y ) 
= ( x, x ) - � (y, x ) - a. (x, y )  + l � l 2 ( y, y ) .  

Suppose ( y, x )  = bei8, b � 0, and let � = e - i8t, t in R. The above inequality 
becomes 

0 � ( x, x ) - e- i8tbei8 - ei8tbe - i8 + t2 ( y, y ) 
= ( x, x ) - 2bt + t2 ( y, y )  
= c - 2bt + at2 _ q(t), 

where c = ( x, x )  and a = ( y, y ) .  Thus q(t) is a quadratic polynomial in the 
real variable t and q(t) � 0 for all t. This implies that the equation q(t) = 0 
has at most one real solution t. From the quadratic formula we find that 
the discriminant is not positive; that is, 0 � 4b2 - 4ac. Hence 

0 � b2 - ac = I ( x, y )  1 2 - (x, x )  (y, y  ) , 
proving the inequality. 

The proof of the necessary and sufficient condition for equality is left to 
the reader. • 

The inequality in ( 1 .4) will be referred to as the CBS inequality. 

1.5. Corollary. If ( · , · ) is a semi-inner product on PI and II x II = ( x, x )  1 12 for 
all x in PI, then 
(a) l l x + y l l � l l x ii + I I Y I I for x, y in PI, 
(b) I I �x I I = 1 � 1 I I x I I for � in F' and x in PI. 
If ( · , - ) is an inner product, then 
(c) I I x I I  = 0 implies x = 0. 

• 

PROOF. The proofs of (b) and (c) are left as an exercise. To see (a), note that 
for x and y in PI, 

I I x + y I I 2 = (x + y, x + y )  
= I I X 1 1 2 + < y, X> + <X, y > + I I y 1 1 2 
= II x 1 1 2 + 2 Re ( x, y ) + II y 1 1 2 • 
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By the CBS inequality, Re (x, y )  � I  ( x, y )  I �  II x II I I  y I I - Hence, 

I I  X + y 1 1 2 � II X 1 1 2 + 2 1 1 X I I I I y I I + I I y 1 1 2 

= ( I I X I I + I I  y I I )2 • 

The inequality now follows by taking square roots. • 

If ( ·, · ) is a semi-inner product on f!t and if x, y e f!t, then as was shown in 
the preceding proof, 

l l x + Y l l 2 = l l x l l 2 + 2 Re ( x, y ) + I I Y I I 2 • 

This identity is often called the polar identity. 
The quantity I I  x I I  = ( x, x )  1 12 for an inner product ( · , · ) is called the norm 

of x. If f!t = F'd(Rd or ([d) and ( {an} , {Pn} )  = L�= 1 anPm then the correspond
ing norm is I I {an } I I = [L�= 1 1 an l 2] 1 12 • 

The virtue of the norm on a vector space f!l' is that d(x, y) = I I x - y I I defines 
a metric on f!l' [by ( 1 .5) ] so that f!l' becomes a metric space. In fact, d(x, y) = 
I I  x - Y I I = I I  (x - z) + (z - y) I I � I I x - z I I + I I  z - y I I = d(x, z) + d(z, y). The other 
properties of a metric follow similarly. If f!l' = P' and the norm is defined as 
above, this distance function is the usual Euclidean metric. It is sometimes 
useful to note that with this metric the inner product becomes a continuous 
function from [!( x f!l' into JR. 
1 .6. Definition. A Hilbert space is a vector space :Yf over F' together 
with an inner product ( ·, · ) such that relative to the metric d(x, y) = I I x - y I I 
induced by the norm, :Yf is a complete metric space. 

If :Yf = L2(J1) and (f, g )  = J fgdJ1, then the associated norm is I I  f I I  = 
[J I / I 2 dJ1] 1 12 • It is a standard result of measure theory that L2(J1) is a Hilbert 
space. It is also easy to see that F'd is a Hilbert space. 

Remark. The inner products defined on L2(J1) and F'd are th� "usual" ones. 
Whenever these spaces are discussed these are the inner products referred 
to. The same is true of the next space. 

1 .7. Example. Let I be any set and let l2(I) denote the set of all functions x: 
I --+  F' such that x(i) = 0 for all but a countable number of i and L ie1 l x(i) l 2 < oo. 

For x and y in l2(I) define 

( x, y )  = L x(i)y(i). 
i 

Then l2(I) is a Hilbert space (Exercise 2). 
If I = N, 12(I) is usually denoted by 12 • Note that if Q = the set of all subsets 

of I and for E in n, J1(E) = oo if E is infinite and J1(E) = the cardinality of E 
if E is finite, then l2(I) and L2(I, n, /1) are equal. 
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Recall that an absolutely continuous function on the unit interval [0, 1] 
has a derivative a.e. on [0, 1]. 

1.8. Example. Let :Yf = the collection of all absolutely continuous functions 
f: [0, 1] -+F such that f(O) = 0 and f'EL2(0, 1 ). If (f , g ) = J� f'(t)g'(t)dt for 
f and g in :Yf, then :Yf is a Hilbert space (Exercise 3). 

Suppose f!l' is a vector space with an inner product ( · , · ) and the norm is 
defined by the inner product. What happens if (f!l', d)(d(x, y) = I I x - y II ) is not 
complete? 

1 .9. Proposition. If f!l' is a vector space and ( · , · ) � is an inner product on f!l' 
and if :Yf is the completion of f!l' with respect to the metric induced by the norm 
on f!l', then there is an inner product ( · , · ) Jf on :Yf such that ( x, y )  Jf = ( x, y )  2r 
for x and y in f!l' and the metric on :Yf is induced by this inner product. That 
is, the completion of f!l' is a Hilbert space. 

The preceding result says that an incomplete inner product space can be 
completed to a Hilbert space. It is also true that a Hilbert space over 1R can 
be imbedded in a complex Hilbert space (see Exercise 7). 

This section closes with an example of a Hilbert space from analytic 
function theory. 

1.10. Definition. If G is an open subset of the complex plane cr, then L;(G) 
denotes the collection of all analytic functions f: G -+  ([ such that 

JL lf(x + iyWdxdy < oo. 

L;(G) is called the Bergman space for G. 

Several alternatives for the integral with respect to two-dimensional 
Lebesgue measure will be used. In addition to JJ6 f(x + iy)dx dy we will also 
see 

• 

Note that L;(G) c L2(J1), where J.l = AreajG, so that L;(G) has a natural 
inner product and norm from L2(J1). 

1 .1 1 .  Lemma. Iff  is analytic in a neighborhood of B(a; r), then 
1 If f(a) =-2 f. nr B(a;r) 

[Here B(a; r) = {z: lz- al < r} and B(a; r) = {z: lz - al � r}.] 
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PROOF. By the mean value property, if O < t � r, f(a) = (l/2n)J� 1t f(a + tei6)d8 . 
Hence 

(nr2) - 1J' f f = (nr2) - 1 f' t[f" f(a + tei�d(}]dt J B(a;r) J 0 - 1t 

= (2/r2) J: tf(a)dt = f(a). • 

1 .12. Corollary. Iff EL ;(G), aEG, and 0 < r < dist (a, oG), then 
1 I f(a) l � r.: I I  f l l 2 · r-y n 

PROOF. Since B(a; r) c G, the preceding lemma and the CBS inequality imply 

l f(a) l = --; J' f f ·l 1tr J B(a;r) 

· 1 .13. Proposition. L ;(G) is a Hilbert space. 

• 

PRooF. If Jl = area measure on G, then L2(Jl) is a Hilbert space and 
L ;(G) c L2(Jl). So it suffices to show that L ;(G) is closed in L2(JL). Let {fn } 
be a sequence in L ;(G) and let f EL2(JL) such that J l in - f l 2 dJl �o as n � oo. 

Suppose B(a; r) c G and let 0 < p < dist (B(a; r), oG). By the preceding 
corollary there is a constant C such that I fn(z) - f m(z) I � C I I fn - f m 1 1 2 for all 
n, m and for l z - a l � p. Thus {In} is a uniformly Cauchy �equence on any 
closed disk in G. By standard results from analytic function theory (Montel's 
Theorem or Morera's Theorem, for example), there is an analytic function 
g on G such that fn(z) � g(z) uniformly on compact subsets of G. But since 
J l fn - f l 2 dJl �o, a result of Riesz implies there is a subsequence {Ink } such 
that fnk(z) � f(z) a.e. [JL]. Thus f = g a.e. [Jl] and so f EL ;(G). • 

EXERCISES 
1 .  Verify the statements made in Example 1 .2. 

2. Verify that 12(1) (Example 1 .7) is a Hilbert space. 

V 3. Show that the space Jf in Example 1 .8 is a Hilbert space. 

4. Describe the Hilbert spaces obtained by completing the space PI in Example 1 .2 
with respect to the norm defined by each of the inner products given there. 



§2. Orthogonality 7 

5. (A variation on Example 1 .8) Let n � 2 and let Yf = the collection of all function 
f: [0, 1] --+ IF such that (a) f(O) = 0; (b) for 1 � k � n - 1 ,  j<k>(t) exists for all t in 
[0, 1] and J<k> is continuous on [0, 1] ; (c) j<n -t> is absolutely continuous and 
J<n> E L2(0, 1 ). For f and g in Yf, define 

< f, g > = J, f j<kl(t)g<kl(t)dt. 

Show that Yf is a Hilbert space. 

6. Let u be a semi-inner product on f!l and put AI =  {xef!l: u(x, x) = 0}. 

(a) Show that AI is a linear subspace of f!l. 
(b) Show that if 

( x  + Al, y +AI)= u(x, y) 

for all x + AI and y + AI in the quotient space f!l I AI, then < ·, · ) is a 
well-defined inner product on f!l I AI. 

7. Let Yf be a Hilbert space over R and show that there is a Hilbert space % over 
<C and a map U: Yf --+%such that (a) U is linear; (b) < Uhb Uh2 ) = ( h 1 , h2 ) for 
all h 1 , h2 in Yf; (c) for any k in % there are unique hb h2 in Yf such that 
k = Uh 1 + iUh2 

· (% is called the complexification of Yf.) 

8. If G = {ze<C: 0 < l z l  < 1 }  show that every f in L;(G) has a removable singularity 
at z = 0. 

9. Which functions are in L;(<C)? 

10. Let G be an open subset of <C and show that if aeG, then {! eL;(G): f(a) = 0} 
is closed in L;(G). 

1 1 . If {hn} is a sequence in a Hilbert space Yf such that Ln II hn II < oo, then show 
that L:= 1 hn converges in Yf. 

§2. Orthogonality 

The greatest advantage of a Hilbert space is its underlying concept of 
orthogonality. 

2.1 . Definition. If Jf is a Hilbert space and/, gEJf, thenfand g are orthogonal 
if < f, g )  = 0. In symbols, f j_ g. If A, B c Jf, then A j_ B iff _Lg for every f 
in A and g in B. · 

If Jf = R 2 , this is the correct concept. Two no�-zero vectors in R 2 are 
orthogonal precisely when the angle between them is n/2. 

2.2. The Pythagorean Theorem. Jff1 , f2 , • • •  ,fn are pairwise orthogonal vectors 
in Jf, then 
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PROOF. If f1 .lf2, then 

II ft + f2 ll2 = < ft + f2, f1 + f2 > = I I  ft ll2 + 2 Re < ft,f2 > + I I f2 ll2 
by the polar identity. Since f1 .l f2, this implies the result for n = 2. The 
remainder of the proof proceeds by induction and is left to the reader. • 

Note that iff .l g, thenf .l - g, so I I  f - g 1 12 = I I f 1 1 2 + I I g 1 12. The next result 
is an easy consequence of the Pythagorean Theorem iff and g are orthogonal, 
but this assumption is not needed for its conclusion. 

2.3. Parallelogram Law. If Jt is a Hilbert space and f and gEJf, then 
I I f + g 112 + II f - g 11 2 = 2( I I  f 1 1 2 + I I g 11 2). 

PROOF. For any f and g in Jt the polar identity implies 

Now add. 

I I f + g 112 = II f 1 12 + 2 Re < f, g > + II g 1 12, 
II f - g 112 = II f 112 - 2 Re < f, g > + I I g 1 1 2 . 

• 

The next property of a Hilbert space is truly pivotal. But first we need a 
geometric concept valid for any vector space over F'. 
2.4. Definition. If f!l is any vector space over F' and A c f!l, then A is a convex 
set if for any x andy in A and 0 � t � 1 ,  tx + ( 1 - t)yEA. 

Note that { tx + ( 1  - t)y: 0 � t � 1 } is the straight-line segment joining x 
and y. So a convex set is a set A such that if x and yEA, the entire line 
segment joining x and y is contained in A. 

If f!l is a vector space, then any linear subspace in f!l is a convex set. A 
singleton set is convex. The intersection of any collection of convex sets is 
convex. If Yt' is a Hilbert space, then every open ball B(f ; r) = {gEJf: 
II f - g II < r} is convex, as is every closed ball. 

2.5. Theorem. If Jt is a Hilbert space, K is a closed convex nonempty subset 
of Jt, and hEJt, then there is a unique point k0 in K such that 

ll h - k0 ll = dist (h, K) = inf{ l l h - kl l : k E K}. 
PROOF. By considering K - h = {k - h: kEK} instead of K, it suffices to 
assume that h = 0. (Verify!) So we want to show that there is a unique vector 
k0 in K such that 

I I ko I I = dist (O, K) = inf{ I I k I I : kEK} . 
Let d = dist (O, K). By definition, there is a sequence { kn} in K such that 
II kn 11 --+ d. Now the Parallelogram Law implies that 

kn - km 2 1 k 2 2 kn + km 2 
2 

= 2< II n II + II km II ) -
2 
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Since K is convex, �(kn + km)eK . Hence, II �(kn + km) 11 2 � d2. If e > 0, choose N 
such that for n � N, II kn 11 2 < d2 + ! e2• By the equation above, if n, m � N, then 

kn - km 2 
< � (2d2 + �s2) - d2 = !e2. 

2 

Thus, II kn - km II < e for n, m � N and { kn } is a Cauchy sequence. Since Je is 
complete and K is closed, there is a k0 in K such that II kn - k0 II --+ 0. Also 
for all kn, 

d � II ko II = II k o - kn + kn II 
� II k o - kn II + II kn II --+ d. 

Thus II ko II = d. 
To prove that k0 is unique, suppose h0 eK such that II h0 II = d. By convexity, 

�(k0 + h0)eK. Hence 

d � I I � (h o + k o) II � � ( II ho II + II ko II )= d. 

So II �(h0 + k0) II = d. The Parallelogram Law implies 

hence h0 = k0• 

d2 = 
h o + k o 

2 
= d2 -

ho - ko 
2
. 

2 2 ' 

• 

If the convex set in the preceding theorem is in fact a closed linear subspace 
of Je, more can be said. 

2.6. Theorem. I f .A is a closed linear subspace of Je, he.Ye, andf0 is the unique 
element of .A such that II h -f0 II = dist (h, .A), then h -f0 l_ .A. Conversely, if 
f0e.A such that h -f0 l_ .A, then II h - f0 II = dist (h, .A). 

PROOF. Suppose f0e.A and II h - fo II = dist (h, .A). If fe.A, then 
fo + fe.A and so II h -fo 11

2 �II h - (fo +f) 11 2 =II (h - fo) -f 11 2 = II h - fo 11
2 

- 2 Re ( h-f0, f)+ ll fll 2• Thus 

2 Re ( h -f o, f) � II f 11 2 

for any fin .A. Fix fin .A and substitute tei8 ffor fin the preceding inequality, 
where ( h - f0, f)= rei8, r � 0. This yields 2 Re { te - i8rei8 } � t 2 11 f 11 2, or 
2tr � t 2 11 f 11 2• Letting t --+  0, we see that r = 0; that is, h - fo l_ f. 

For the converse, suppose f0e.A such that h - fo l_ .A. If f e.A, then 
h- fol_ f0 - f so that 

II h -f 11 2 = II (h - fo) + (fo -f) 11 2 

= II h -fo 11
2 + II fo -f 11 2 

� II h -fo 11
2• 

Thus II h -f0 II = dist (h, .A). • 
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If A c Je, Let A .l = { f e.Ye:f l_ g for all gin A}. It is easy to see that A .lis 
a closed linear subspace of :?e. 

Note that Theorem 2.6, together with the uniqueness statement in 
Theorem 2.5, shows that if .A is a closed linear subspace of Je and he.Ye, 
then there is a unique elementf0 in .A such that h -f0e.A.l. Thus a function 
P: Je--+ .A can be defined by Ph = fo· 

2.7. Theorem. If .A is a closed linear subspace of Je and he.Ye, let Ph be the 
unique point in .A such that h - Ph l_ .A. Then 

(a) P is a linear transformation on Je, 
(b) II Ph II � I I  h II for every h in Je, 
(c) P2 = P (here P2 means the composition of P with itself), 
(d) ker P = .A.l and ran P = .A. 

PROOF. Keep in mind that for every h in .Ye, h - Phe.A .l and I I h - Ph I I = 
dist (h, .A). 

(a) Let h 1 , h2 e.Ye and cx 1 , cx2 elF. If f e.A, then ( [cx 1 h 1 + cx2h2] - [cx 1 Ph 1 + 
cx2Ph2], f ) = cx 1 ( h 1 - Ph 1 , f ) + cx2 ( h2 - Ph2, f ) = 0. By the uniqueness 
statement of (2.6), P(cxh 1 + cx2h2) = cx 1 Ph 1 + cx2Ph2. 

(b) If he.Ye, then h = (h - Ph) + Ph, ·Phe.A, and h - Phe .A.l. Thus 
II h 1 1 2 = II h - Ph 1 1 2 + II Ph 1 1 2 � II Ph 1 1 2 . 

(c) If fe.A, then Pf =f. For any h in .Ye, Phe.A; hence P2h = P(Ph) = Ph. 
That is, P2 = P. 

(d) If Ph = 0, then h = h - Phe.A.l. Conversely, if heM .1, then 0 is the unique 
vector in .A such that h - 0 = h l_ .A. Therefore Ph = 0. That ran P = .A  
is clear. • 

2.8. Definition. If .A is a closed linear subspace of Je and P is the linear 
map defined in the preceding theorem, then P is called the orthogonal 
projection of Je onto .A. If we wish to show this dependence of P on .A, 
we will denote the orthogonal projection of Je onto .A by P�H· 

I 

It also seems appropriate to introduce the notation .A � Je to signify 
that .A is a closed linear subspace of :?e. We will use the term linear manifold 
to designate a linear subspace of Je that is not necessarily closed. A linear 
subspace of Je will always mean a closed linear subspace. 

2.9. Corollary. If .A �  Je, then ( .A.l).l = .A. 

PROOF. If I is used to designate the identity operator on Je (viz., Ih = h) 
and P = P.,u, then I - P is the orthogonal projection of Je onto .A .l 

(Exercise 2). By part (d ) of the preceding theorem, (J/ .l).l = ker(I - P). But 
0 = (I - P)h iff h = Ph. Thus (J/.l).l = ker(l - P) =ran P = .A. • 

2.10. Corollary. If A c: .Ye, then (A J.)J. is the closed linear span of A in .Ye. 
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The proof is left to the reader; see Exercise 4 for a discussion of the term 
"closed linear span." 

2.1 1 . Corollary. JfCiJ/ is a linear manifold in Jf, then CiJ/ is dense in Jf if! CiJ/  .l = (0). 
PROOF. Exercise. 

EXERCISES 
1 .  Let Jf be a Hilbert space and suppose f and g are linearly independent vectors 

in Jf with II f I I = II g II = 1 .  Show that II tf + ( 1  - t)g II < 1 for 0 < t < 1 .  What does 
this say about {heX: II h II � 1 }? 

2. If vii � Jf and P = P .,��, show that I - P is the orthogonal projection of Jf onto 
vlll.. 

3. If vii � Jf, show that vii n vii l. = (0) and every h in Jf can be written as h = f + g 
where f evil and gevll 1.. If vii+ vii l. = { (f, g): f evil, gevll l.} and T: 
vii + vii l.--+ Jf is defined by T(f , g) = f + g, show that T is a linear bijection and 
a homeomorphism if vii + vii l. is given the product topology. (This is usually 
phrased by stating the vii and vii l. are topologically complementary in Jf.) 

4. If As; Jf, let VA= the intersection of all closed linear subspaces of Jf that contain 
A. VA is called the closed linear span of A. Prove the following: 

(a) VA � Jf and VA is the smallest closed linear subspace of Jf that contains A. 
(b) VA = the closure of {1:�=1 rxkfk: n � 1 ,  rxkeiF, fkeA} .  

5. Prove Corollary 2. 10. 

6. Prove Corollary 2. 1 1 . 

§3 .  The Riesz Representation Theorem 

The title of this section is somewhat ambiguous as there are at least two 
Riesz Representation Theorems. There is one so-called theorem that 
represents bounded linear functionals on the space of continuous functions 
on a compact Hausdorff space. That theorem will be discussed later in this 
book. The present section deals with the representation of certain linear 
functionals on Hilbert space. But first we have a few preliminaries to dispose 
of. 

3�1.  Proposition. Let Jf be a Hilbert space and L: Jf --+  F' a linear functional. 
• 

The following statements are equivalent. 

(a) L is continuous. 
(b) L is continuou$ at 0. 
(c) L is continuous at some point. 
(d) There is a constant c > 0 such that I L(h) l � c I I  h I I  for every h in Jf. 

PROOF. It is clear that (a)�(b)�(c) and (d)�(b). Let's show that (c)�(a) 
and (b)�(d). 
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(c)�(a) : Suppose L is continuous at h0 and h is any point in :?e. If hn--+ h 
in .Ye, then hn- h+ h0--+ h0• By assumption, L(h0) = 1im[L(hn- h+ h0)] = 
lim[L(hn)- L(h) + L(h0)] = limL(hn) -L(h) + L(h0). Hence L(h) = limL(hn). 

(b) �(d): The definition of continuity at 0 implies that L - 1 ( { �eF' :  1 � 1 < 1}) 
contains an open ball about 0. So there is a � > 0 such that 
B(O;�)cL- 1 ({�eF': 1�1 < 1}). That is, ll hll <� implies IL(h)l < 1. If h is an 
arbitrary element of Je and e > 0, then I I�( II h II + e)- 1 h II < �- Hence 

thus 

1 > L[ �h J - 1> h) · 
II h II + e 

-
II h II + 

t: I L( I ,  

1 
IL(h)l <-( II h II + e). 

� 

Letting e--+0 we see that (d) holds with c = 1/E>. • 

3.2. Definition. A bounded linear functional L on Je is a linear functional for 
which there is a constant c>O such that IL(h)l �cll hll for all h in :If. In 
light of the preceding proposition, a linear functional is bounded if and only 
if it is continuous. 

For a bounded linear functional L: Je--+ F', define 

II L II = sup{ IL(h) l : II h II � 1 }. 

Note that by definition, II L II < oo; II L II is called the norm of L. 

3.3. Proposition. If L is a bounded linear functional, then 

IlLII = sup{IL(h) l : ll hll = 1} 

= sup{IL(h)l/ll hll : he.Ye, h :1= 0} 

= inf {c > o: IL(h)l � c II h II, h in .Ye}. 

Also, I L(h) I � II L 11 1 1 h II for every h in :?e. 

PROOF. Let�= inf {c > 0 :  IL(h)l �ell h I I, h in .Ye}. It will be shown that Il LII = �; 
the remaining equalities are left as an exercise. If e > 0, then the definition 
of IlLII shows that IL(( II hll +e) - 1h) l � IlLI I. Hence IL(h) l � IILII ( II hll +e). 
Letting e--+ 0 shows that I L(h) I � II L II II h II for all h. So the definition of � 
shows that �� II L 11 .  On the other hand, ifiL(h) l � c I I  h II for all h, then II L II �c. 
Hence II L II � �- • 

Fix an h0 in Je and define L: Je--+ F' by L(h) = ( h, h0 ). It is easy to see 
that L is linear. Also, the CBS inequality gives that I L(h) I = I ( h, h0) I � 
II h II II h0 11. So L is bounded and II L II � II h0 1 1 . In fact, L(ho/ II ho II ) = 
< h0/ II h0 II , h0) = I I  h0 I I, so that II L II = I I h0 1 1 . The main result of this section 
provides a converse to these observations. 
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3.4. The Riesz Representation Theorem. If L :  Jf --+  F' is a bounded linear 
functional, then there is a unique vector h0 in Jf such that L(h) = ( h, h0 ) for 
every h in Jf. Moreover, I I  L I I = I I h0 1 1 . 

PROOF. Let � = ker L. Because L is continuous � is a closed linear subspace 
of Jf. Since we may assume that � =F Jf, � .l =F (0). Hence there is a vector 
fo in �.l such that L(/0) = 1 .  Now if heJf and � = L(h), then 
L(h - �/0) = L(h) - � = 0; so h - L(h)f0e�. Thus 

0 = (h - L(h)/0, /0 ) 
= < h, f o > - L( h) I I  f o 1 1 2 • 

So if h0 = I I /0 1 1 - 2/0, L(h) = ( h, h0 ) for all h in Jf. 
If h�eJf such that ( h, h0 ) = ( h, h� ) for all h, then h0 - h� l_ Jf. In 

particular, h0 - h� l_ h0 - h� and so h� = h0• The fact that I I L I I = I I h0 I I was 
shown in the discussion preceding the theorem. • 

3.5. Corollary. If (X, 0., Jt) is a measure space and F: L2 (Jt) --+ F' is a bounded 
linear functional, then there is a unique h0 in L2(Jt) such that 

F(h) = f hh0 djl 

for every h in L2(Jt). 

Of course the preceding corollary is a special case of the theorem on 
representing bounded linear functionals on Il'(Jt), 1 � p < oo.  But it is 
interesting to note that it is a consequence of the result for Hilbert space 
[and the result that L2(Jt) is a Hilbert space]. 

EXERCISES 
1 .  Prove Proposition 3.3. 

• 

2. Let Jf = /2 (N). If N � 1 and L: Jf -+  F is defined by L( { oc,.} ) = ocN, find the vector 
h0 in Jf such that L(h) = ( h, h0) for every h in Jf. 

3. Let Jf = /2 (N u {0} ). (a) Show that if { oc,. } e:K, then the power series I::'=0oc,.z" has 
radius of convergence � 1 .  (b) If Ill < 1 and L: Jf -+ F is defined by 
L( {oc,.} ) = I::'=0oc,.l", find the vector h0 in Jf such that L(h) = ( h, h0 ) for every h 
in Jf. (c) What is the norm of the linear functional L defined in (b)? 

4. With the notation as in Exercise 3, define L: Jf -+  F by L( { oc,.} )  = I::'= 1 noc,.l"- 1 , 
where Il l < 1 .  Find a vector h0 in Jf such that L(h) = ( h, h0 ) for every h in Jf. 

5. Let Jf be the Hilbert space described in Example 1 .8. If 0 < t � 1, define L: Jf-+ F 
by L(h) = h(t). Show that L is a bounded linear functional, find II L I I , and find the 
vector h0 in Jf such that L(h) = ( h, h0 ) for all h in Jf. 

6. Let Jf = L2(0, 1) and let c<o be the set of all continuous functions on [0, 1] that 
have a continuous derivative. Let te [O, 1 ]  and define L:  c<t>-+ F by L(h) = h'(t). 
Show that there is no bounded linear functional on Je that agrees with L on co>. 
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§4. Orthonormal Sets of Vectors and Bases 

It will be shown in this section that, as in Euclidean space, each Hilbert 
space can be coordinatized. The vehicle for introducing the coordinates is 
an orthonormal basis. The corresponding vectors in F'd are the vectors 
{e 1 , e2 , • • •  , ed} ,  where ek is the d-tuple having a 1 in the kth place and zeros 
elsewhere. 

4.1.  Definition. An orthonormal subset of a Hilbert space Jf is a subset 8 
having the properties: (a) fore in 8, II e II = 1; (b) if e1 , e2 e8 and e 1 =F e2, then 
e1_ie2. 

A basis for Jf is a maximal orthonormal set. 

Every vector space has a Hamel basis (a maximal linearly independent 
set). The term "basis" for a Hilbert space is defined as above and it relates 
to the inner product on Yt. For an infinite-dimensional Hilbert space, a basis 
is never a Hamel basis. This is not obvious, but the reader will be able to 
see this after understanding several facts about bases. 

4.2. Proposition. If 8 is an orthonormal set in Jf, then there is a basis for Jf 
that contains 8. 

The proof of this proposition is a straightforward application of Zorn's 
Lemma and is left to the reader. 

4.3. Example. Let Jf = L� [0, 2n] and for n in 7l define en in Jf by 
en(t) = (2n) - 1 12 exp (int). Then {en: ne'll} is an orthonormal set in Jf. (Here 
L� [O, 2n] is the space of complex-valued square integrable functions.) 

It is also true that the set in (4.3) is a basis, but this is best proved after 
a bit of theory. 

4.4. Example. If Yt = F'd and for 1 � k � d, ek = the d-tuple with 1 in the kth 
place and zeros elsewhere, then { e 1 , . • .  , ed} is a basis for :Yt. 

4.5. Example. Let Jf = l2 (I) as in Example 1.7. For each i in I define e; in 
Jf by e;(i) = 1 and e;(j) = 0 for j =F i. Then { ei: iei} is a basis. 

The proof of the next result is left as an exercise (see Exercise 5). It is very 
useful but the proof is not difficult. 

4.6. The Gram-Schmidt Orthogonalization Process. If Yt is a Hilbert space 
and { hn: neN} is a linearly independent subset of Jf, then there is an 
orthonormal set {en : ne N} such that for every n, the linear space of { e 1 , . . •  , en} 
equals the linear span of { h1 , • • •  , hn}· 

Remember that VA is the closed linear span of A (Exercise 2.4). 
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4. 7. Proposition. Let { e 1 , . • • , en} be an orthonormal set in Jf and let 
.A = V { e 1 , . • •  , en} · If P is the orthogonal projection of Jf onto .A, then 

n 
Ph = � ( h, ek ) ek 

k = 1 
for all h in Jf. 

PROOF. Let Qh = L�= 1 ( h, ek ) ek. If 1 �j�n, then ( Qh, ei ) = 
L� = 1 ( h, ek )  ( ek, ei )  = ( h, ei )  since ek l. ei for k =F j. Thus ( h - Qh, ei )  = 0 for 
1 �j � n. That is, h - Qh l. .A for every h in Jf. Since Qh is clearly a vector 
in .A, Qh is the unique vector h0 in .A such that h - h0 l. .A (2.6). Hence 
Qh = Ph for every h in Jf. • 

4.8. Bessel's Inequality. If { en: n e N} is an orthonormal set and heJf, then 
00 

� l ( h, en ) l 2 � l l h l l 2 • 
n = 1 

PROOF. Let hn = h - L� = 1 (h, ek )ek . Then hn l. ek for 1 � k � n (Why?) By the 
Pythagorean Theorem, 

n 2 
II h 1 1 2 = II hn 1 1 2 + � < h, ek > ek k = 1 

n 
= l l hn l l 2 + � l ( h, ek ) l 2 

k = 1 
n 

� � I ( h, ek ) l 2• 
k = 1 

Since n was arbitrary, the result is proved. • 

4.9. Corollary. If tf is an orthonormal set in Jf and heJf, then ( h, e ) =F 0 for 
at most a countable number of vectors e in tf. 

PROOF. For each n � llet tfn = {ee&: l ( h, e ) l  � 1/n}. By Bessel's Inequality, 
tfn is finite. But U: 1 Gn = {ee&: (h, e ) =FO}. • 

4.10. Corollary. If tf is an orthonormal set and heJf, then 

� l ( h, e ) l 2 � l l h l l 2 • 
eel 

This last corollary is just Bessel's Inequality together with the fact (4.9) 
that at most a countable number of the terms in the sum differ from zero. 

Actually, the sum that appears in (4.10) can be given a better inter
pretation-a mathematically precise one that will be useful later. The 
question is, what is meant by L {hi: iei} if hie.Ye and I is an infinite, possibly 
uncountable, set? Let !F be the collection of all finite subsets of I and order 



16 
.. 

I . Hilbert Spaces 

!? by inclusion, so !? becomes a directed set. For each F in :?, define 

hp = "£ {hi: ieF} . 

Since this is a finite sum, hp is a well-defined element of Jf. Now {hp: Fe:?} 
is a net in Jf. 

4.1 1 .  Definition. With the notation above, the sum L {hi: iei} converges if 
the net { hp: F e/F} converges; the value of the sum is the limit of the net. 

If Jf = F', the definition above gives meaning to an uncountable sum of 
scalars. Now Corollary 4.10 can be given its precise meaning; namely, 
L { I ( h, e ) 1 2 : ee&} converges and the value � I I  h 1 1 2 (Exercise 9). 

If the set I in Definition 4.11 is countable, then this definition of convergent 
sum is not the usual one. That is, if { hn } is a sequence in Jf, then the 
convergence of L { hn: neN} is not equivalent to the convergence of :L: 1 hn . 
The former concept of convergence is that defined in ( 4.11) while the latter 
means that the sequence {:L� = 1 hk }:  1 converges. Even if Jf = F', these 
concepts do not coincide (see Exercise 12). If, however, L { hn: neN} converges, 
then :L: 1 hn converges (Exercise 10). Also see Exercise 11. 

4.12. Lemma. If &is an orthonormal set and heJf, then 

L { ( h, e ) e: ee&} 
converges in Jf. 

PROOF. By (4.9), there are vectors eh e2, . . .  in G such that { ee&: 
( h, e ) :t:O} = {e 1 , e2, • • •  } .  We also know that :L: 1 l ( h, en ) l 2 � l l h l l 2 < oo. So 
if e > 0, there is anN such that :L: N l ( h, en ) l 2 < e2 • Let F0 = {eh . . .  , eN - 1 } 
and let !? = all the finite subsets of &. For F in !? define hp = L { ( h, e ) e: 
eeF} . IfF and Ge/F and both contain F0, then 

I I  hp - hG 1 1 2 = L { I ( h, e ) 1 2 : ee(F\G) u (G\F) } 
/ 

n = N  

So {hF: Fe§"} is a Cauchy net in Jf. Because Jf is complete, this net 
converges. In fact, it converges to :L: 1 ( h, en )  en . • 

4.13. Theorem. If & is an orthonormal set in Jf, then the following statements 
are equivalent. 

(a) 8 is a basis for Jf. 
(b) If he.Ye and h .l 8, then h = 0. 
(c) V 8 = .Ye. 
(d) If he.Ye, then h = :L { ( h, e ) e: ee8}. 
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(e) If g and he.Ye, then 

(g, h ) = L { (g, e ) <  e, h ) : eetC}. 

(f) If he.Ye, then l l h i i 2 = L { I ( h, e ) l 2 : eetC} (Parsevars Identity). 

PROOF. (a)=> (b): Suppose h l. tC and h =F 0; then tC u { h/ II h II} is an orthonormal 
set that properly contains tC, contradicting maximality. 

(b)<=>( c): By Corollary 2.11, V tC = Je if and only if tC J. = (0). 
(b)=>(d): If he.Ye, then f = h - L { ( h, e ) e: eetC} is a well-defined vector 

by Lemma 4.12. If e 1 etC, then ( f, e 1 ) = ( h, e1 ) - L { ( h, e ) ( e, e 1 ) :  
eetC} = < h, e 1 ) - < h, e 1 ) = 0. That is, f etCJ.. Hence f = 0. (Is everything 
legitimate in that string of equalities? We don't want any illegitimate 
equalities.) 

(d) =>(e): This is left as an exercise for the reader. 
(e)=> (f): Since II h 1 1 2 = < h, h ) , this is immediate. 
(f)=>(a): If tC is not a basis, then there is a unit vector e0 ( I I  e0 II = 1) in Je 

such that e0 l. tC. Hence, 0 = L { I <  e0, e ) 1 2 : eetC}, contradicting (f). • 

Just as in finite dimensional spaces, a basis in Hilbert space can be used 
to define a concept of dimension. For this purpose the next result is pivotal. 

4.14. Proposition. If Je is a Hilbert space, any two bases have the same 
cardinality. 

PROOF. Let tC and � be two bases for Je and put e =the cardinality of tC, 
'1 = the cardinality of�- If e or '1 is finite, then e = '1 (Exercise 15). Suppose 
both e and '7 are infinite. Fore in tC, let �e = {fe �: (e,f) =F 0} ; so �e is 
countable. By (4.13b), each f in � belongs to at least one set �e' e in tC. 
That is, � = u { � e: eetC }. Hence '1 � e · �0 =e. Similarly, e � '1· • 

4.15. Definition. The dimension of a Hilbert space is the cardinality of a basis 
and is denoted by dim .Ye. 

If (X, d) is a metric space that is separable and {Bi = B(xi; ei ): iei} is a 
collection of pairwise disjoint open balls in X, then I must be countable. 
Indeed, if D is a countable dense subset of X, Bi nD =F D for each i in I. 
Thus there is a point xi in Bi nD. So {xi: iei}  is a subset of D having the 
cardinality of I; thus I must be countable. 

4.16. Proposition. If Je is an infinite dimensional Hilbert space, then Je is 
separable if and only if dim Je = �0• 
PROOF. Let tC be a basis for Je. If e 1 , e2 etC, then I I  e 1 - e2 l l 2 =II e 1 l l 2 + 

I I  e2 l l 2 = 2. Hence {B(e; 1/.ji): eetC} is a collection of pairwise disjoint open 
balls in .Ye. From the discussion preceding this proposition, the assumption 
that :Yf is separable implies 8 is countable. The converse is an exercise. • 
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EXERCISES 
1 .  Verify the statements in Example 4.3. 

2. Verify the statements in Example 4.4. 

3. Verify the statements in Example 4.5. 

4. Find an infinite orthonormal set in the Hilbert space of Example 1 .8. 

5. Using the notation of the Gram-Schmidt Orthogonalization Process, show that 
up to scalar multiple e1 = h 1 / I I h 1 I I  and for n � 2, e,. = II h,. - /,. l l - 1 (h,. - /,.), where 
j,. is the vector defined formally by 

< h,. - h h,.- 1 > < h,., h,. - 1 > 
h,. - 1 0 

In the next three exercises, the reader is asked to apply the Gram-Schmidt 
Orthogonalization Process to a given sequence in a Hilbert space. A reference for 
this material is pp. 82-96 of Courant and Hilbert [ 1 953]. 

6. If the sequence 1, x, x2, • • • is orthogonalized in L2( - 1 ,  1 ), the sequence 
e,.(x) = [! (2n + 1 ) ] 1 '2P,.(x) is obtained, where 

P,.{x) = - - (x2 - 1 )". 
1 ( d )" 

2"n! dx 

The functions P ,.(x) are called Legendre polynomials. 

7. If the sequence e- x212, xe- x212, x2e- x212, • • • is orthogonalized in L2( - oo, oo), the 
sequence e,.(x) = [2"n!Jn] - 1 12 H,.(x)e-x212 is obtained, where 

2( d )" 2 H,.(x) = ( - 1 )"ex 
dx 

e-x . 

The functions H,. are Hermite polynomials and satisfy H�(x) = 2nH,. _ 1(x). 

8. If the sequence e- x/2, xe- xl2, x2e - x12 , • • •  is orthogonalized in L2(0, oo), the sequence 
e,.(x) = e - x/2 L,.(x)/n! is obtained, where 

� 

L.(x) = ex
(!)" 

(x"e- x). 

The functions L,. are called Laguerre polynomials. 

9. Prove Corollary 4. 10 using Definition 4. 1 1 . 

10. If { h,. } is a sequence in Hilbert space and L {h,.: neJN} converges to h (Definition 
4. 1 1  ), then lim,. L� = 1 hk = h. Show that the converse is false. 

1 1 . If { h,.} is a sequence in a Hilbert space and l::'= 1 II h,. l l < oo, show that L { h,.: n e JN} converges in the sense of Definition 4. 1 1 .  

1 2. Let {(X,. }  be a sequence in F and prove that the following statements are equivalent: 
(a) L {(X,.: neN} converges in the sense of Definition 4. 1 1 . (b) Ifn is any permutation 
of N, then 1::= 1 (Xft(n) converges (unconditional convergence). (c) 1::= 1 I (X,. I < oo .  
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1 3. Let 8 be an orthonormal subset of Jf and let .A = V 8. If P i s  the orthogonal 
projection of Jf onto .A, show that Ph = "L { ( h, e ) e: eel} for every h in Jf. 

14. Let A. =  Area measure on {ze<C: lzl < 1 }  and show that 1 ,  z, z2, • • •  are orthogonal 
vectors in L2(A.). Find I I z" I I , n � 0. If en = II z" 1 1 - 1 z", n � 0, is { e0, e1 , • • •  } a basis 
for L2(A.)? 

1 5. In the proof of (4. 14), show that if either e or '1 is finite, then e = '1· 
16. If Jf is an infinite dimensional Hilbert space, show that no orthonormal basis 

for Jf is a Hamel basis. Show that a Hamel basis is uncountable. 

1 7. Let d � 1 and let f.l be a regular Borel measure on Rd. Show that L2(J,L) is separable. 

1 8. Suppose L2(X, 0, f.l) is separable and { Ei: ieJ} is a collection of pairwise disjoint 
subsets of X, Eie!l, and 0 < J,L(Ei) < oo for all i .. Show that I is countable. Can 
you allow J,L(E;) = oo? 

19. If {heJf: I I h I I � 1 }  is compact, show that dim Jf < oo.  
20. What is the cardinality of a Hamel basis for 12? 

§5. Isomorphic Hilbert Spaces and the Fourier 
Transform for the Circle 

Every mathematical theory has its concept of isomorphism. In topology 
there is homeomorphism and homotopy equivalence; algebra calls them 
isomorphisms. The basic idea is to define a map which preserves the basic 
structure of the spaces in the category. 

5.1 .  Definition. If :Yt and :It are Hilbert spaces, an isomorphism between :Yt 
and :It is a linear surjection U: :Yt � :It  such that 

( Uh, Ug ) = ( h, g )  

for all h, g in :Yt. In this case :Yt and :It are said to be isomorphic. 

It is easy to see that if U: :Yt � :It  is an isomorphism, then so is u - 1 : 
:It �  :Yt. Similar such arguments show that the concept of "isomorphic" is 
an equivalence relation on Hilbert spaces. It is also certain that this is the 
correct equivalence relation since an inner product is the essential ingredient 
for a Hilbert space and isomorphic Hilbert spaces have the "same" inner 
product. One might object that completeness is another essential ingredient 
in the definition of a Hilbert space. So it is ! However, this too is preserved 
by an isomorphism. An isometry between metric spaces is a map that preserves 
distance. 

5.2. Proposition. If V: :Ye � .Yt' is a linear map between Hilbert spaces, then 
V is an isometry if and only if ( Vh, V g )  = ( h, g )  for all h, g in :?e. 
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PROOF. Assume ( Vh, V g) = (h, g) for all h, g in Jf. Then II Vh 11 2 = ( Vh, Vh) = 
( h, h ) = II h 1 1 2 and V is an isometry. 

Now assume that V is an isometry. If h, ge:Yf and A.e:F, then 
II h + A.g 1 1 2 = II Vh + A.  V g 11 2 • Using the polar identity on both sides of this 
equation gives 

But II Vh II = II h II and II v g II = II g II , so this equation becomes 

- -

Re .A. ( h, g )  = Re A.(  Vh, Vg ) 

for any A. in :F. If :F = R, take A. =  1 .  If :F = <C, first take A. =  1 and then take 
A. = i to find that ( h, g )  and ( Vh, V g )  have the same real and imaginary 

��- . 

Note that an isometry between metric spaces maps Cauchy sequences into 
Cauchy sequences. Thus an isomorphism also preserves completeness. That 
is, if an inner product space is isomorphic to a Hilbert space, then it must 
be complete. 

5.3. Example. Definite S: 12 � 12 by S(cx1 , cx2, • • •  ) = (0, cx1 , cx2 , • • •  ). Then S is an 
isometry that is not surjective. 

The preceding example shows that isometries need not be isomorphisms. 
A word about terminology. Many call what we call an isomorphism a 

unitary operator. We shall define a unitary operator as a linear transformation 
U: Jf � Jt  that is a surjective isometry. That is, a unitary operator is an 
isomorphism whose range coincides with its domain. This may seem to be 
a minor distinction, and in many ways it is. But experience has taught me 
that there is some benefit in making such a distinction, or at least in being 
aware of it. 

5.4. Theorem. Two Hilbert spaces are isomorphic if and only if they have the 
same dimension. 

PROOF. If U: Jf � .Yt  is an isomorphism and 8 is a basis for Jf, then it is 
easy to see that U8 = { Ue: ee8} is a basis for .Yt. Hence, dim Jf = dim .Yt. 

Let Jf be a Hilbert space and let 8 be a basis for Jf. Consider the Hilbert 
space /2(8). If he:Yf, define h: 8 � :F by h(e) = ( h, e ) . By Parseval's Identity 
he l2(8) and II h II = II h 1 1 . Define U: Jf � 12(8) by Uh = h. Thus U is linear 
and an isometry. I t  is easy to see that ran U contains all the functions f in 
12(8) such that f(e) = 0 for all but a finite number of e; that is, ran U is dense. 
But U, being an isometry, must have closed range. Hence U: Jf � 12(8) is 
an isomorphism. 
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If :tl is a Hilbert space with a basis IF, :tl is isomorphic to l2(1F). If 
dim Jr = dim :tl, 8 and IF have the same cardinality; it is easy to see that 
12(8) and l2(1F) must be isomorphic. Therefore Jr and :tl are isomorphic . 

• 

5.5. Corollary. All separable infinite dimensional Hilbert spaces are iso
morphic. J 

This section concludes with a rather important example of an isomor
phism, the Fourier transform on the circle. 

T!le proof of the next result can be found as an Exercise on p. 263 of 
Conway [ 1 978] . Another proof will be given latter in this book after the 
Stone-Weierstrass Theorem is proved. So the reader can choose to assume 
this for the moment. Let D =  {ze<C: l zl < 1 } . 

5.6. Theorem. Iff :  oD--+ <C is a continuous function, then there is a sequence 
{Pn(z, Z) }  of polynomials in z and z such that Pn(z, Z)--+ f(z) uniformly on oD. 

Note that if zeoD, z = z- 1 . Thus a polynomial in z and z on oD becomes 
a function of the form 

k = - m 

If we put z = ei8, this becomes a function of the form 

Such functions are called trigonometric polynomials. 
We can now show that the orthonormal set in Example 4.3 is a basis for 

L�[O, 2n] . This is a rather important result. 

5.7. Theorem. If for each n in 7L, en(t) = (2n) - 1 12 exp(int), then {en : nelL} is a 
basis for L� [O, 2n] . 

PROOF. Let ff = {L� =  - n ak ek: ake<C, n � 0} . Then ff is a subalgebra of 
Ccc[O, 2n], the algebra of all continuous <C-valued functions on [0, 2n] . Note 
that if f eff, f(O) = f(2n). We want to show that the uniform closure of ff 
is rc = {f eCcc[O, 2n] : f(O) = f(2n) } . Tq do this, let f e<:C and define F: oD--+ <C 
by F(ei') = f(t). F is continuous. (Why?) By (5.6) there is a sequence of 
polynomials in z and z, { Pn(z, z) } ,  such that Pn(z, z) --+ F(z) uniformly on oD. 
Thus Pn(ei', e - i1) --+f(t) uniformly on [0, 2n] . But Pn(ei', e - i')eff. 

Now the closure of rc in L� [O, 2n] is all of L� [O, 2n] (Exercise 6). Hence 
V {en: neZ} = L� [0, 2n] and {en} is thus a basis (4. 1 3). • 

Actually, it is usually preferred to normalize the measure on [0, 2n]. That 
is, replace dt by (2n) - 1 dt, so that the total measure of [0, 2n] is 1 . Now define 
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en(t) = exp(int). Hence {en : neZ} is a basis for Jr = L�( [0, 2n], (2n) - 1 dt). If 
f eJr, then 

5.8 
.-.. 1 I 

2n . f(n) = ( f, en ) = - f(t)e -mtdt 
2n 0 

is called the nth Fourier coefficient of f, n in Z. By (5.7) and (4. 1 3d), 

5.9 n = - oo 

where this infinite series converges to f in the metric defined by the norm 
of Jr. This is called the Fourier series of f. This terminology is classical and 
has been adopted for a general Hilbert space. 

If Jr is any Hilbert space and 8 is a basis, the scalars { ( h, e ) ;  ee8} are 
called the Fourier coefficients of h (relative to 8) and the series in (4. 1 3d) is 
called the Fourier expansion of h (relative to 8). 

Note that Parseval's Identity applied to ( 5.9) gives that 'L: _ oo l f(n) 1 2 < oo. 

This proves a classical result. 

5.10. The Riemann-Lebesgue Lemma. Iff eL�[O, 2n], then J�nf(t)e - intdt --+ 0  
as n --+  + oo. 

If f eL�[O, 2n], then the Fourier series of f converges to f in L2-norm. 
It was conjectured by Lusin that the series converges to f almost everywhere. 
This was proved in Carleson [ 1966] . Hunt [ 1 967] showed that if 
f eL� [O, 2n], 1 < p � oo, then the Fourier series also converges to f a.e. 
Long before that, Kolmogoroff had furnished an example of a function f in 
L�[O, 2n] whose Fourier series a.e. does not converge to f. 

For f in L� [0, 2n ], the function J: Z --+ <C is called the Fourier transform 
off; the map U: L� [O, 2n] --+ l2(Z) defined by U f = J is the Fourier transform. 
The results obtained so far can be applied to this situation to yield the 
following. 

5.1 1 .  Theorem. The Fourier transform is a linear isometry from L� [0, 2n] 
onto l2 (Z). 

PROOF. Let U: L� [O, 2n] --+ l2(Z) be the Fourier transform. That U maps 
L2 = L� [O, 2n] into l2(Z) and satisfies II U f II = II f II is a consequence of 
Parseval's Identity. That U is linear is an exercise. If {an} e /2(Z) and an = 0 
for all but a finite number of n, then f = 'L:= _ oo aneneL2 • It is easy to check 

.... 

that f(n) = an for all n, so U f = {an} · Thus ran U is dense in l2(Z). But U is 
an isometry, so ran U is closed; hence U is surjective. • 

Note that functions in L� [O, 2n] can be defined on oD by letting 
f(e;8) = f(O). The ambiguity for (} = 0 and 2n (or ei8 = 1 )  might cause us to 
pause, but remember that elements of L�[O, 2n] are equivalence classes of 
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functions-not really functions. Since {0, 2n} has zero measure, there is really 
no ambiguity. In this way L� [O, 2n] can be identified with L�(oD), where 
the measure on oD is normalized arc-length measure (normalized so that 
the total measure of oD is 1 ). So L�[O, 2n] and L�(iJD) are (naturally) 
isomorphic. Thus, Theorem 5. 1 1  is a theorem about the Fourier transform 
of the circle. 

The importance of Theorem 5. 1 1  is not the fact that L�[O, 2n] and l 2 (Z) 
are isomorphic, but that the Fourier transform is an isomorphism. The fact 
that these two spaces are isomorphic follows from the abstract result that 
all separable infinite dimensional Hilbert spaces are isomorphic (5.5). 

EXERCISES 
1 .  Verify the statements in Example 5.3. 

2. Define V: L2(0, oo )-+ L2(0, oo) by (Vf) (t) = f(t - 1 )  if t > 1 and (Vf)(t) = 0 if t � 1 .  
Show that V is an isometry that is not surjective. 

3. Define V: L2(R) -+ L2(R) by (Vf)(t) = f(t - 1 )  and show that V is an isomorphism 
(a unitary operator). 

4. Let :K be the Hilbert space of Example 1 .8 and define U: :K -+  L2(0, 1 )  by U f = f'. 
Show that U is an isomorphism and find a formula for U - 1 . 

5. Let (X, 0, ,u) be a a-finite measure space and let u: X -+  F be an 0-measurable 
function such that sup { I  u(x) I :  xe X} < oo. Show that U: L2(X, 0, ,u) -+ L2(X, 0, ,u) 
defined by Uf = uf is an isometry if and only if l u(x) l = 1 a.e. [,u], in which case 
U is surjective. 

6. Let rtJ = {! eC[O, 2n] : f(O) = f(2n) } and show that rtJ is dense in L2[0, 2n] . 

7. Show that { ( 1/fo), ( 1/Jn ) cos nt, ( 1/Jn ) sin nt: 1 � n < oo} is a basis for 
L2[ - n, n]. 

8. Let (X, 0) be a measurable space and let ,u, v be two a-finite measures defined on 
(X, 0). Suppose v << ,u and <P is the Radon-Nikodym derivative of v with respect 
to ,u (</J = dv/d,u). Define V: L2(v) -+L2(,u) by Vf = fif. Show that V is a 
well-defined linear isometry and V is an isomorphism if and only if ,u << v (that is, 
,u and v are mutually absolutely continuous). 

9. If :K and $' are Hilbert spaces and U: :K-+ $' is a surjective function such that 
< U f, U g ) = (f, g )  for all vectors f and g in £, then U is linear . 

• 

§6. The Direct Sum of Hilbert Spaces 

Suppose .Ye and :tt are Hilbert spaces. We want to define Jf � :tt so that 
it becomes a Hilbert space. This is not a difficult assignment. For any vector 
spaces !!£ and OJJ, !!£ � 0# is defined as the Cartesian product !!£ x OJJ where 
the operations are defined on !!£ x OJJ coordinatewise. That is, if elements of 
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ff ffi CiJ/  are defined as {x ffi y: xef£, yeCiJ/}, then (x 1 ffi y1) + (x2 ffi Y2 ) = 
(x 1 + x2) ffi (y 1 + Y2), and so on. 

6.1 .  Definition. If .Yf and g are Hilbert spaces, :(f ffi g = { h ffi k: he.Yf, 
keg} and 

It must be shown that this defines an inner product on .Yf ffig and that 
.Yf ffi g is complete (Exercise). 

Now what happens if we want to define .Yf 1 ffi .Yf 2 ffi · · · for a sequence of 
Hilbert spaces .Yf 1 , .Yf 2, • • •  ? There is a problem about the completeness of 
this infinite direct sum, but this can be overcome as follows. 

6.2. Proposition. If .Yf 1 , .Yf 2, . . •  are Hilbert spaces, let .Yf = { (hn):' 1 : hne.Yf n 
for all n and 'L:' 1 1 1 hn 1 1 2 < oo } .  For h = (hn) and g = (gn) in .Yf, define 

00 

6.3 ( h, g )  = L (hm gn ) . 
n = 1 

Then ( · , · ) is an inner product on .Yf and the norm relative to this inner product 
is II h II = ['L;' 1 I I  hn 1 1 2] 1 12 . With this inner product .Yf is a Hilbert space. 

PROOF. If h = (hn) and g = (gn)E.Yf, then the CBS inequality implies 
'L I <  h"' g" > I � 'L I I  h" I I  I I  g" II � ('L I I  h" I I 2)

1 12('L II g" 1 1 2)
1 12 < oo. Hence the series 

in (6.3) converges absolutely. The remainder of the proof is left to the reader . 
• 

6.4. Definition. If .Yf h .Yf 2, • • .  are Hilbert spaces, the space .Yf of Proposition 
6.2 is called the direct sum of .Yf 1 , .Yf 2, .  • • and is denoted by 
.Yf = .Yf 1 ffi .Yf 2 ffi . . . . 

This is part of a more general process. If { .Yf i: i E J} is a collection of 
Hilbert spaces, .Yf = ffi { .Yfi: iel} is defined as the collection of functions h: 
I -+  u { .Yfi: iel} such that h(i)e.Yfi for all i and 'L { I I  h(i) II 2 : ieJ} < oo. If h, ge.Yf, 
( h, g ) =  'L { < h(i), g(i) ) : ieJ} ; .Yf is a Hilbert space. 

The main reason for considering direct sums is that they provide a way 
of manufacturing operators on Hilbert space. In fact, Hilbert space is a rather 
dull subject, except for the fact that there are numerous interesting questions 
about the linear operators on them that are as yet unresolved. This subject 
is introduced in the next chapter. 

EXERCISES 
1 .  Let { (Xh Qh Jli): ieJ} be a collection of measure spaces and define X, Q, and Jl as 

follows. Let X =  the disjoint union of {Xi: ieJ}  and let Q = {A c X: A n XieQi for 
all i} . For A in Q put JL(A) = LiJli(A n Xi) Show that (X, Q, JL) is a measure space 
and L2(X, Q, JL) is isomorphic to G) {L2(X, nb Jli): ieJ}. 
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2. Let (X, Q) be a measurable space, let f.,L1 , f.l1 be a-finite measures defined on (X, Q), 
and put f.l = f.l t + f.,l1. Show that the map V:  L1(X, Q, f.l) --+ L1(X, Q, f.,l 1 ) E9 L1(X, Q, f.,l1) 
defined by V f = /1 Ef) /1, where fi is the equivalence class of L1(X, Q, Jli) 
corresponding to f, is well defined, linear, and injective. Show that V is an 
isomorphism iff f.lt and f.,l1 are mutually singular. 



CHAPTER II 
Operators on Hilbert Space 

A large area of current research interest is centered around the theory of 
operators on Hilbert space. Several other chapters in this book will be devoted 
to this topic. 

There is a marked contrast here between Hilbert spaces and the Banach 
spaces that are studied in the next chapter. Essentially all of the information 
about the geometry of Hilbert space is contained in the preceding chapter. 
The geometry of Banach space lies in darkness and has attracted the attention 
of many talented research mathematicians. However, the theory of linear 
operators (linear transformations) on a Banach space has very few general 
results, whereas Hilbert space operators have an elegant and well-developed 
general theory. Indeed, the reason for this dichotomy is related to the opposite 
status of the geometric considerations. Questions concerning operators on 
Hilbert space don't necessitate or imply any geometric difficulties. 

In addition to the fundamentals of operators, this chapter will also present 
an interesting application to qifferential equations in Section 6. 

§ 1 .  Elementary Properties and Examples 

The proof of the next proposition is similar to that of Proposition I.3. 1 and 
is left to the reader. 

1.1 .  Proposition. Let .Ye and g be Hilbert spaces and A: .Ye --+  g a linear 
transformation. The following statements are equivalent. 

(a) A is continuous. 
(b) A is continuous at 0. 
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(c) A is continuous at some point. 
(d) There is a constant c > 0 such that II Ah I I � c II h II for all h in Jt. 

As in (1.3.3), if 

then 
II A l l = sup { I I Ah l l : he:Yt, l l h l l � 1}, 

I I  A I I = sup { I I  Ah I I : I I  h I I  = 1 } 
= sup { I I  Ah I l l I I h I I : h # 0} 
= inf{ c > 0: I I  Ah I I � c I I  h I I , h in Jt}. 
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Also, II Ah II � II A II II h I I  . II A I I  is called the norm of A and a linear 
transformation with finite norm is called bounded. Let fJI(Jt, $") be the set 
of bounded linear transformations from Jt into $". For Jt = $", 
fJI(Jt, Jt) = fJI(Jt). Note that fJI(Jt, F) = all the bounded linear functionals 
on Jt. 

1 .2. Proposition. (a) If A and BefJI(Jt, $"), then A +  BefJI(Jt, $"), and 
I I A + B I I � I I  A l l + I I B I I . 
(b) If a elF and A efJI(Jt, $"), then aA efJI(Jt, $") and I I etA I I = I a I I I  A I I . 
(c) If AefJI(Jt, $") and BerJI($", 2), then BAefJI(Jt, 2) and I I BA I I � I I B I I  I I  A I I . 

PROOF. Only (c) will be proved; the rest of the proof is left to the reader. If 
ke$", then II Bk II � II B II I I k 1 1 . Hence, if he:Yt, k = Ahe$" and so 
I I  BAh I I � I I  B I I I I Ah I I  � I I B I I I I  A I I I I h I I . • 

By virtue of preceding proposition, d(A, B) = I I A - B I I  defines a metric on 
fJI(Jt, $"). So it makes sense to consider fJI(Jt, $") as a metric space. This 
will not be examined closely until later in the book, but later in this chapter 
the idea of the convergence of a sequence of operators will be used. 

1 .3. Example. If dim Jt = n < oo and dim $" = m < oo, let { e 1 ,  • • •  , en} be an 
orthonormal basis for Jt and let { e1 , • • .  , em} be an orthonormal basis for 
$". It can be shown that every linear transformation from Jt into $" is 
bounded (Exercise 3). If 1 �j � n, 1 � i � m, let aii = ( Ae i' ei ). Then the m x n 
matrix (aii) represents A and every such matrix represents an element of 
fJI(Jt, $"). 

• 

1 .4. Example. Let 12 = 12 (1N) and let e 1 , e2 , • • •  be its usual basis. If AefJI(/2), 
form aii = ( Ae i' ei ) .  The infinite matrix ( aii) represents A as finite matrices 
represent operators on finite dimensional spaces. However, this representa
tion has limited value unless the matrix has a special form. One difficulty is 
that it is unknown how to find the norm of A in terms of the entries in the 
matrix. In fact, if 4 < n < oo, there is no known formula for the norm of an 
n x n matrix in terms of its entries. (This restriction on the values of n is due 
to our inability to solve polynomial equations of degree greater than 4.) See 
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Exercise 1 1 . A sufficient condition for the boundedness of an infinite matrix 
that is useful is known. (See Exercise 9.) Another sufficient condition for a 
matrix to be bounded can be found on page 6 1  of Maddox [ 1980]. 

1 .5. Theorem. Let (X, Q, Jl) be a u-finite measure space and put 
Jf = L2(X, Q, Jl) = L2(Jl). If </JEL00(Jl), define Mq,: L2(Jl) � L2(Jl) by Mq,/ = l/Jf. 
Then Mq,egj(L2(Jl)) and I I  Mq, I I = I I <P I I oo · 
PROOF. Here I I <P I I oo is the Jl-essential supremum norm. That is, 

II <P II oo = inf {sup { I </J(x) l : x¢N} :  N en, Jl(N) = 0} 
= inf { c > 0: Jl( { x EX: I </J( x) I > c }  ) = 0} . 

Thus I I <P I I oo is the infimum of all c > 0 such that I </J(x) l � c a.e. [Jl] and, 
moreover, I </J(x) l � II <P II oo a.e. [Jl] . Thus we can, and do, assume that <P is a 
bounded measurable function and I </J(x) l � I I <P I I  oo for all x. So iff eL2(Jl), then 
J I <Pf l 2 dJl � 1 1 </J I I ! J I / I 2 dJl. That is, Mq,egj(L2(Jl)) and I I Mq, l l  � 1 1 </J I I oo · If 
e > 0, the u-finiteness of the measure space implies that there is a set � in 
n, 0 < Jl(�) < oo ,  such that I </J(x) I � II <P I I  oo - e on �- (Why?) Iff = (Jl(�)) - 1 12XA, 
then f EL2(Jl) and I I f l l 2 = 1 .  So I I Mq, 1 1 2 � I I </J/ 1 1  � = (Jl(�)) - 1 JA I  </J I 2 dJl � 
( I I  <P I I  oo - e)2 . Letting e � o, we get that I I  Mq, I I � I I  <P I I  oo · • 

The operator M q, is called a multiplication operator. The function <P is its 
symbol. 

If the measure space (X, n, Jl) is not u-finite, then the conclusion of 
Theorem 1 .5 is not necessarily valid. Indeed, let Q = the Borel subsets of 
[0, 1 ] and define Jl on Q by Jl(�) = the Lebesgue measure of � if 0¢� and 
Jl(�) = oo if Oe�. This measure has an infinite atom at 0 and, therefore, is 
not u-finite. Let <P = Xto}· Then </J EL 00(Jl) and I I <P I I oo = 1 .  If f eL2(Jl), then 
oo > J I f 1 2 dJl � I f(O) I 2Jl( {0} ). Hence every function in L2(Jl) vanishes at 0. 
Therefore M q, = o and I I  M q, I I  < I I  <P I I  oo · 

There are more general measure spaces for which ( 1 .5) is valid-the 
decomposable measure spaces (see Kelley [ 1 966] ). 

1 .6. Theorem. Let (X, Q, Jl) be a measure space and suppose k: X x X � F' is 
an Q x Q-measurable function for which there are constants c 1 and c 2 such that 

L i k(x, y) l dJl(y) � c1 a.e. lfl], 

L i k(x, y) i dJl(x) � c2 a.e. [J.t]. 

If K: L2(Jl) � L2(Jl) is defined by 

(Kf)(x) = I  k(x, y)f(y) dJl(y), 

then K is a bounded linear operator and I I  K I I  � (c 1c2) 1 1
2 • 
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PROOF. Actually it must be shown that Kf eL2(tt), but this will follow from 
the argument that demonstrates the boundedness of K. Iff eL2(tt), 

Hence 

I Kf(x) I :::;; II k(x, y) l l f(y) l dJl(Y) 

= II k(x, y) l 1 12 1 k(x, y) 1 1 12 1 f(y) l dJl(y) 

:::;; [ II k(x, y) I dJl(y) J 1 12 [ II k(x, y) I I  f(YW dJl(Y) J 1 12 
:::;; c � 12 [ II k(x, y) l l  f(yW dJl(Y) J 1 12• 

I I Kf(xW dJl(x) :::;; c 1 I II k(x, y) l l f(YW dJl(y)dJl(X) 

= C1 II f(YW II k(x, y) l dJl(x) dJl(Y) 

� ctc2 l l f l l 2· 
Now this shows that the formula used to define Kfis finite a.e. [Jl], Kf e L2(tt), 
and II Kf 1 1 2 � c 1c2 II f 1 1 2 - • 

The operator described above is called an integral operator and the 
function k is called its kernel. There are conditions on the kernel other than 
the one in ( 1 .6) that will imply that K is bounded. 

A particular example of an integral operator is the Volterra operator 
defined below. 

1 .7. Example. Let k: [0, 1 ]  x [0, 1 ] --+ R be the characteristic function of 
{ (x, y): y < x} . The corresponding operator V :  L2(0, 1 ) -+ L2(0, 1 )  defined by 
Vf(x) = J� k(x, y)f(y) dy is called the Volterra operator. Note that 

Vf(x) = I: f(y) dy. 

Another example of an operatot was defined in Example 1 .5.3. The 
nonsurjective isometry defined there is called the unilateral shift. It will be 
studied in more detail later in this book. Note that any isometry is a bounded 
operator with norm 1 .  

EXERCISES 
1 .  Prove Proposition 1 . 1 .  

2. Prove Proposition 1 .2. 
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3. Suppose { e 1 , e2 , • • •  , }  is an orthonormal basis for .1f and for each n there is a 
vector Ae" in Jf such that L I I Ae" I I  < oo. Show that A has an unique extension 
to a bounded operator on Jf. 

4. Proposition 1 .2 says that d(A , B) = II A - B II is a metric on BI(Jf, %). Show 
that BI(Jf, %) is complete relative to this metric. 

5. Show that a multiplication operator Mt�> ( 1 .5) satisfies M� = Mt�> if and only if 4> 
is a characteristic function. 

6. Let (X, Q, Jl) be a a-finite measure space and let k 1 , k2 be two kernels satisfying 
the hypothesis of ( 1 .6). Define 

k: X x X -+ F by k(x, y) = J k 1 (x, z)k2(z, y) d�-J(z). 

(a) Show that k also satisfies the hypothesis of ( 1 .6). (b) If K, K h K 2 are the 
integral operators with kernels k, k 1 , k2, show that K = K 1 K 2• What does this 
remind you of? Is more going on than an analogy? 

7. If (X, Q, Jl) is a measure space and keL2(Jl x Jl), show that k defines a bounded 
integral operator. 

8. Let { e"} be the usual basis for 12 and let { (l"} be a sequence of scalars. Show that 
there is a bounded operator A on 12 such that Ae" = (l"e" for all n if and only if 
{ (l"} is uniformly bounded, in which case I I  A I I  = sup { I  (l" 1: n � 1 } . This type of 
operator is called a diagonal operator or is said to be diagonalizable. 

9. (Schur test) Let { (lii} �= 1 be an infinite matrix such that (lii � 0 for all i,j and 
such that there are scalars P; > 0 and {J, y > 0 with 

00 L (lijPi � {Jpj , 
i = 1 

00 L (lijPj � YPi j= 1 

for all i,j � 1 .  Show that there is an operator A on l2(N) with ( Ae j' e; ) = (lii and 
I I A 1 1 2 � {Jy. 

10. (Hilbert matrix) Show that ( Aei, e; ) = (i + j + 1 ) -
1 for 0 � i,j < oo defines a 

bounded operator on l2(N u { 0} ) with II A I I  � n. (See also Choi [ 1983] and 
Redheffer and Volkmann [ 1983].) 

1 1 . If A = [: :J. put tx = [ l a l 2 + I W  + l c l2 + l d l 2] 1 12 and show that II A I I = 

t((l2 + J (l4 - 4c52), where c52 = det A* A. 

12. (Direct sum of operators) Let { .K;} be a collection of Hilbert spaces and let 
Jf = e;>;.Yf;. Suppose A;EBI(.K;) for all i. Show that there is a bounded operator 
A on Jf such that A I Jf i = Ai for all i if and only if sup; I I A; II < oo. In this case, 
II A I I  = sup; II Ai 1 1 . The operator A is called the direct sum of the operators { Ai} 
and is denoted by A =  �iA1• 
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1 3. (Bari [ 195 1] ) Call a sequence of vectors {fn} in a Hilbert space Jf a Bessel sequence 
if L I ( f,fn ) l 2 < oo for every f in Jf. Show that a sequence {fn} of vectors in Jf 
is a Bessel sequence if and only if the infinite matrix ( ( fm,fn> )  defines a bounded 
operator on 12• (Also see Shapiro and Shields [ 1961], p. 524.) 

§2. The Adjoint of an Operator 

2.1 .  Definition. If :K and :ft are Hilbert spaces, a function u: :K x :ft --+ F' 
is a sesquilinear form if for h, g in :K, k, f in :ft, and a, P in F', 

(a) u(ah + pg, k) = au(h, k) + Pu(g, k); 
(b) u(h, ak + Pf) = au(h, k) + Pu(h, f). 

The prefix "sesqui" is used because the function is linear in one variable 
but (for F' = <C) only conjugate linear in the other. ("Sesqui" means 
"one-and -a-half.") 

A sesquilinear form is bounded if there is a constant M such that 
l u(h, k) l � M I I h l l l l k l l  for all h in :K and k in :ft. The constant M is called 
a bound for u. 

Sesquilinear forms are used to study operators. If A ePA(:K, %), then 
u(h, k) = ( Ah, k )  is a bounded sesquilinear form. Also, if BeBI(:ft, :K), 
u(h, k) = ( h, Bk ) is a bounded sesquilinear form. Are there any more? Are 
these two forms related? 

2.2. Theorem. If u: :K x :ft --+  F' is a bounded sesquilinear form with bound M, 
then there are unique operators A in BI(:K, %) and B in Bl(:ft, :K) such that 

2.3 u(h, k) = ( Ah, k ) = ( h, Bk ) 
,. 

for all h in :K and k in :ft and I I A I I , I I  B I I � M. 

PROOF. Only the existence of A will be shown. For each h in :K, define Lh: 
:ft --+  F' by Lh(k) = u(h, k). Then Lh is linear and I Lh(k) I � M II h I I  I I k 1 1 . By the 
Riesz Representation Theorem there is a unique vector f in :ft such 
that( k, f ) = Lh(k) = u(h, k) and I I f II � M II h 1 1 . Let Ah =f. It is left as an 
exercise to show that A is linear (use the uniqueness part of the Riesz 

• 

Theorem). Also, ( Ah, k )  = ( k, Ah ) = (k, f )  = u(h, k). 
If A 1 eBI(:K, :ft) and u(h, k) = ( A 1h, k ), then ( Ah - A 1h, k ) = O  for all k; 

thus Ah - A 1h = 0 for all h. Thus, A is unique. • 

2.4. Definition. If A e&I(:K, %), then the unique operator B in 31(%, :K) 
satisfying (2.3) is called the adjoint of A and is denoted by B = A*. 

The adjoint of an operator will usually be used for operators in BI(:K), 
rather than &I(.Te, �). There is one notable exception. 
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2.5. Proposition. If U e�(Yt', %), then U is an isomorphism if and only if U 
is invertible and U - 1 = U*. 

PROOF. Exercise. 

From now on we will examine and prove results for the adjoint of operators 
in �(Yt'). Often, as in the next proposition, there are analogous results for 
the adjoint of operators in �(Yt', %). This simplification is justified, however, 
by the cleaner statements that result. Also, the interested reader will have 
no trouble formulating the more general statement when it is needed. 

2.6. Proposition. If A, Be�(Yt') and aeF', then: 

(a) (aA + B)* = aA* + B*. 
(b) (AB)* = B*A*. 
(c) A** = (A*)* = A. 
(d) If A is invertible in �(Yt') and A - 1 is its inverse, then A* is invertible and 

(A*) - 1 = (A - 1)*. 

The proof of the preceding proposition is left as an exercise, but a word 
about part (d) might be helpful. The hypothesis that A is invertible in �(Yt') 
means that there is an operator A - 1 in �(Yt') such that AA - 1 = A  - 1 A =  I. 
It is a remarkable fact that if A is only assumed to be bijective, then A is 
invertible in �(Yt'). This is a consequence of the Open Mapping Theorem, 
which will be proved later. 

2.7. Proposition. If Ae�(Yt'), II A l l = II A* I I = I I A*A I I 1 12 . 

PROOF. For h in Yt', l l h l l  � 1 ,  I I Ah l l 2 = ( Ah, Ah ) = (A*Ah, h )  � 
I I A* Ah I I I I h I I � I I A* A I I � I I A* I I I I  A 1 1 . Hence I I A 1 1 2 � I I A* A I I � I I A* I I I I A 1 1 . 
Using the two ends of this string of inequalities gives I I A II � I I A* I I when 
II A I I is cancelled. But A =  A** and so if A* is substituted for A, we get 
II A* I I � I I A** I I = II A 1 1 . Hence II A I I = II A* 1 1 . Thus the string of inequalities 
becomes a string of equalities and the proof is complete. • 

2.8. Example. Let (X, n, J.t) be a a-finite measure space and let Met> be the 
multiplication operator with symbol 4> ( 1 .5). Then M; is M�, the multi
plication operator with symbol cf>. 

If an operator on JFd is presented by a matrix, then its adjoint is represented 
by the conjuagate transpose of the matrix. 

2.9. Example. If K is the integral operator with kernel k as in ( 1 .6), then K* 
is the integral operator with kernel k*(x, y) = k(y, x). 

2.10. Proposition. If S: 12 --+ 12 is defined by S(a1 , a2 , . . .  ) = (0, a1 , a2 , . . .  ), then 
S is an isometry and S*(a1 , a2 , • • •  ) = (a2 , a3 , • • •  ). 
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PROOF. It has already been mentioned that S is an isometry (1.5 .3). For (an) 
and (Pn) in 12, ( S*(an), (Pn) ) = ( (an), S(Pn) ) = ( (a t, a2 , . . .  ), (0, P 1 ' P2 , . . .  ) ) = 
a2P1 + a3P2 + · · ·  = ( (a2, a3 , • • •  ), (P1 , P2 , • . . ) ). Since this holds for every (Pn), 
the result is proved. • 

The operator S in (2. 1 0) is called the unilateral shift and the operator S* 
is called the backward shift. 

The operation of taking the adjoint of an operator is, as the reader may 
have seen from the examples above, analogous to taking the conjugate of a 
complex number. It is good to keep the analogy in mind, but do not become 
too religious about it. 

2.1 1. Definition. If A e�(�), then: (a) is hermitian or self-adjoint if A* = A; 
(b) A is normal if AA* = A* A. v 

In the analogy between the adjoint and the complex conjugate, hermitian 
operators become the analogues of real numbers and, by (2.5), unitaries are 
the analogues of complex numbers of modulus 1 .  Normal operators, as we 
shall see, are the true analogues of complex numbers. Notice that hermitian 
and unitary operators are normal. 

In light of (2.8), every multiplication operator M q, is normal; M q, is 
hermitian if and only if 4> is real-valued; M q, is unitary if and only if I 4> I = 1 
a.e. [JL] .  By (2.9), an integral operator K with kernel k is hermitian if and only 
if k(x, y) = k(y, x) a.e. [JL x JL]. The unilateral shift is not normal (Exercise 6). 

2.12. Proposition. If Jf is a CL-Hilbert space and Ae�(Jf), then A is hermitian 
if and only if ( Ah, h ) eRfor all h in Jf. 

PROOF. If A =  A*, then (Ah, h ) = ( h, Ah ) = (Ah, h ); hence ( Ah, h ) eR. 
For the converse, assume ( Ah, h ) is real for every h in Jf. If aecr and 

h, geJf, then (A(h + rxg), h + ag )  = (Ah, h ) + a (Ah, g)  + a (Ag, h )  + 
I a 1 2 ( Ag, g )  eR. So this expression equals its complex conjugate. Using the 
fact that ( Ah, h ) and ( Ag, g )  eR yields 

a ( Ag, h ) + a( Ah, g )  = a ( h, Ag ) + a (g, Ah ) 
= a ( A*h, g )  + a ( A*g, h ). 

By first taking a = 1 and then a = i, we obtain the two equations 

. ( Ag, h ) + (Ah, g )  = ('A*h, g )  + ( A*g, h ), 
i ( Ag, h ) - i ( Ah, g )  = - i( A*h, g )  + i ( A*g, h ). 

A little arithmetic implies ( Ag, h ) = ( A*g, h ), so A =  A*. • 

The preceding proposition is false if it is only assumed that Jf is an 

R-Hilbert space. For example, if A = [ 0 1 J on R 2, then ( Ah, h )  = 0 for 
- 1  0 
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all h in JR. 2• However, A* is the transpose of A and so A* =F A. Indeed, for 
any operator A on an JR-Hilbert space, ( Ah, g ) eJR. 

2.13. Proposition. If A = A*, then 

II A ll = sup { I ( Ah, h ) l : l l h l l = 1 } . 

PROOF. Put M = sup { I < Ah, h ) 1 : I I  h I I  = 1 } . If I I  h I I = 1 ,  then I < Ah, h ) I � I I  A I I ; 
hence M � I I A 1 1 . On the other hand, if I I  h I I  = I I g I I  = 1 ,  then 

( A(h + g), h + g ) =  (Ah, h ) + ( Ah, g )  + ( Ag, h ) +  ( Ag, g )  
= ( Ah, h )  + (Ah, g )  + ( g, A*h )  + ( Ag, g ). 

Since A =  A*, this implies 

( A(h + g), h + g ) =  ( Ah, h ) + 2 Re ( Ah, g )  + ( Ag, g ). 

Subtracting one of these two equations from the other gives 

4 Re ( Ah, g )  = ( A(h + g), h + g ) - (A(h - g), h - g ). 

Now it is easy to verify that I <  Af ,f ) I � M I I f 1 1 2 for any fin :K. Hence using 
the parallelogram law we get 

4 Re < Ah, g )  � M( I I h + g 1 1 2 + I I h - g 1 1 2) 
= 2M( I I h 1 1 2 + I I g 1 1 2) 
= 4M 

since h and g are unit vectors. Now suppose (Ah, g ) = ei8 1 ( Ah, g )  1 . Replacing 
h in the inequality above with e - iBh gives I ( Ah, g ) l � M  if l l h l l  = l l g l l = 1 .  
Taking the supremum over all g gives I I Ah I I � M when I I h I I = 1 .  Thus 
II A ll � M. • 

2.14. Corollary. If A = A* and < Ah, h ) = 0 for all h, then A = 0. 

The preceding corollary is not true unless A = A*, as the example given 
after Proposition 2. 1 2  shows. However, if a complex Hilbert space is present, 
this hypothesis can be deleted. 

2.15. Proposition. If :K is a <C-Hilbert space and Ae81(:K) such that 
< Ah, h ) = 0 for all h in :K, then A = 0. 

The proof of (2. 1 5) is left to the reader. 
If :K is a <r-Hilbert space and Ae81(.Ye), then B = (A + A*)/2 and 

C = (A - A *)/2i are self-adjoint and A = B + iC. The operators B and C are 
called, respectively, the real and imaginary parts of A. 

2.16. Proposition. If Ae8l(�), the following statement are equivalent. 

(a) A is normal. 
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(b) I I  Ah I I = I I  A *h I I  for all h. 

35 

If Jf is a <r-Hilbert space, then these statements are also equivalent to: 
(c) The real and imaginary parts of A commute. 

PROOF. If h eJf, then I I Ah 1 1 2 - II A*h 11 2 = ( Ah, Ah ) - ( A*h, A*h ) = 
( (A* A - AA *)h, h ). Since A* A - AA * is hermitian, the equivalence of (a) and 
(b) follows from Corollary 2. 14. 

If B, C are real and imaginary parts of A, then a calculation yields 

A* A = B2 - iCB + iBC + C2, 
AA* = B2 + iCB - iBC + C2

• 

Hence A* A =  AA* if and only if CB = BC, and so (a) and (c) are equivalent. 
• 

2.17. Proposition. If Ae�(Jf), the following statements are equivalent. 

(a) A is an isometry. 
(b) A*A = I. 
(c) ( Ah, Ag ) = ( h, g ) for all h, g in Jf. 
PROOF. The proof that (a) and (c) are equivalent was seen in Proposition 1.5.2. 
Note that if h, geJf, then ( A* Ah, g ) = ( Ah, Ag ). Hence (b) and (c) are easily 
seen to be equivalent. • 

2.18. Proposition. If Ae�(Jf), then the following statements are equivalent. 

(a) A* A =  AA* = I. 
(b) A is unitary. (That is, A is a surjective isometry.) 
(c) A is a normal isometry. 

PROOF. (a) => (b): Proposition 1.5.2. 
(b) => (c): By (2. 1 7), A* A =  I. But it is easy to see that the fact that A is a 

surjective isometry implies that A - 1 is also. Hence by (2. 1 7) I = (A - 1 )*A - 1 = 
(A*) - 1A - 1 = (AA*) - 1 ; this implies that A*A = AA* = I. 

(c) =>(a): By (2. 1 7), A* A =  I. Since A is also normal, AA* = A* A =  I and 
so A is surjective. • 

We conclude with a very important, though easily proved, result. 
• 

2.19. Theorem. If Ae�(Jf), then ker A =  (ran A*).l . 

PROOF. If heker A and geJf, then ( h, A*g ) = ( Ah, g ) = O, so ker A c 
(ran A*).l. On the other hand, if h l_ ran A* and geJf, then (Ah, g ) = 
( h, A*g ) = 0; so (ran A *) .l c ker A. • 

Two facts should be noted. Since A** = A, it also holds that ker A* = 
(ran A).l. Second, it is not true that (ker A).l = ran A* since ran A* may not 
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be closed. All that can be said is that (ker A) J. = cl (ran A*) and 
(ker A*) .L = cl (ran A). 

EXERCISES 
1 .  Prove Proposition 2.5. 

2. Prove Proposition 2.6. 

3. Verify the statement in Example 2.8. 

4. Verify the statement in Example 2.9. 

5. Find the adjoint of a diagonal operator (Exercise 1 .8). 

6. Let S be the unilateral shift and compute SS* and S* S. Also compute S" S*" and 
S*"S" . 

7. Compute the adjoint of the Volterra operator V ( 1 .7) and V + V*. What is 
ran (V  + V*)? 

8. Where was the hypothesis that Jf is a Hilbert space over <C used in the proof 
of Proposition 2. 12? 

9. Suppose A = B + iC, where B and C are hermitian and prove that B = 
(A + A *)/2, C = (A - A *)/2i. 

10. Prove Proposition 2. 1 5. 

1 1 . If A and B are self-adjoint, show that AB is self-adjoint if and only if AB = BA. 

12. Let L�ocxnz" be a power series with radius of convergence R, 0 < R � oo .  If 
A e�(Jf) and I I A I I  < R, show that there is an operator T in 36(Jf) such that for 
any h, g in Jf, ( Th, g )  = L�ocxn ( A"h, g ) . [If f(z) = LCXnz", the operator T is 
usually denoted by f(A).] 

1 3. Let A and T be as in Exercise 12 and show that I I  T - L� = o cxkAk I I  -+ 0  as n -+  oo. 
If BA = AB, show that BT = T B. 

14. lff(z) = exp z = L�0 z"/n! and A is hermitian, show that f(iA) is unitary. 

1 5. If A is a normal operator on Jf, show that A is injective if and only if A has 
dense range. Give an example of an operator B such that ker B = (0) but ran B 
is not dense. Give an example of an operator C such that C is surjective but 
ker C :1: (0). 

16. Let M"' be a multiplication operator ( 1 .5) and show that ker M"' = 0 if and only 
if JJ. (  {x: cp(x) = 0} ) = 0. Give necessary and sufficient conditions on cp that ran M"' 
be closed. 

§3 . Projections and Idempotents; Invariant and 
Reducing Subspaces 

3.1.  Definition. An idempotent on :Ye is a bounded linear operator E on :Ye 
such that E2 = E. A projection is an idempotent P such that ker P = (ran P)1.. 
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If Jt � :K, then P Jt is a projection (Theorem I.2.7). It is not difficult to 
construct an idempotent that is not a projection (Exercise 1 ). 

Let E be any idempotent and set Jt = ran E and .% = ker E. Since E is 
continuous, .% is a closed subspace of :K. Notice that (/ - E)2 = I - 2E + E2 = 
I - 2E + E = I - E; thus I - E  is also an idempotent. Also, 0 = (I - E)h = 
h - Eh, if and only if Eh = h. So ran E => ker(/ - E). On the other hand, if 
he ran E, h = Eg and so Eh = E2g = Eg = h; hence ran E = ker(/ - E). 
Similarly, ran (/ - E) = ker E. These facts are recorded here. 

3.2. Proposition. (a) E is an idempotent if and only if I - E  is an idempotent. 
(b) ran E = ker(/ - E), ker E = ran(/ - E), and both ran E and ker E are closed 
linear subs paces of :K. (c) If Jt = ran E and .% = ker E, then Jt n.% = (0) 
and Jt + .% = :K. � 

The proof of part (c) is left as an exercise. There is also a converse to (c). 
If Jt, .% � :K, Jt n.% = (0), and Jt + .% = :K, then there is an idempotent 
E such that Jt = ran E and .% = ker E; moreover, E is unique. The difficult 
part in proving this converse is to show that E is bounded. The same fact is 
true in more generality (for Banach spaces) and so this proof will be 
postponed. 

Now we turn our attention to projections, which are peculiar to Hilbert 
space. 

3.3. Proposition. If E is an idempotent on :K and E # 0, the following statements 
are equivalent. 

(a) E is a projection. 
(b) E is the orthogonal projection of :K onto ran E. 
(c) I I E I I = 1 .  
(d) E is hermitian. 
(e) E is normal. 
(f) ( Eh, h )  � 0  for all h in :K. 

PROOF. (a) => (b): Let Jt = ran E and P = P Jt· If he:K, Ph = the unique vector 
in Jt such that h - PheJt.l = (ran E) .l = ker E by (a). But h - Eh = (I - E)he 
ker E. Hence Eh = Ph by uniqueness. 

(b) => (c): By (I.2.7), I I E I I � 1 .  But Eh = h for h in ran E, so I I E I I = 1 .  
(c) => (a): Let he(ker E) .l. Now ran(J - E) = ker E, so h - Eheker E. Hence 

0 = ( h - Eh, h·) = I I  h I I  2 - ( Eh, h ) . Hence I I  h I I  2 = ( E h, h ) � I I  E h I I  I I  h I I  � 
l l h l l 2 • So for h in (ker E) .l, 1 1 Eh l l = l l h i i = (Eh, h ) 1 12 • But then for h 
in (ker E) .l, 

I I  h - Eh II 2 = II h I I  2 - 2 Re ( Eh, h ) + I I  Eh II 2 = 0. 

That is, (ker E).l c: ker(/ - E) = ran E. On the other hand, if geran E, 
g = g 1 + g2, where g 1 eker E and g2 e(ker E).l . Thus g = Eg = Eg2 = g2; that 
is, ran E � (ker E).L . Therefore ran E = (ker E).L and E is a projection. 
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(b) => (f): If heJt', write h = h1 + h2, h 1 eran E, h2 eker E = (ran E).l . Hence 
( Eh, h )  = ( E( h 1 + h2), h 1 + h 2 ) = ( Eh 1 , h 1 ) = ( h 1 , h 1 ) = I I  h 1 1 1 2 � 0. 

(f)=> (a): Let h 1 eran E and h2 eker E. Then by (f), O � ( E(h1 + h2), 
h 1 + h2 ) = ( h 1 , h 1 ) + ( h1 , h2 ) . Hence - I I h1 1 1 2 � ( h 1 , h2 ) for all h 1 in 
ran E and h2 in ker E. If there are such h 1 and h2 with ( h 1 , h2 ) = a # 0, then 
substituting k2 = - 2a- 1 II h 1 l l 2h2 for h2 in this inequality, we obtain 
- I I h1 1 1 2 � - 2 1 1  h 1 l l 2, a contradiction. Hence ( h 1 , h2 ) = 0 whenever 
h 1 eran E and h2 eker E. That is, E is a projection. 

(a) => (d): Let h, ge.Ye and put h = h1 + h2 and g = g1 + g2, where 
h 1 , g 1 eran E and h2, g2 eker E = (ran E).l. Hence ( Eh, g ) = ( h1 , g 1 ) . Also, 
( E*h, g )  = ( h, Eg )  = ( h 1 , g 1 ) = ( Eh, g ) . Thus E = E*. 

(d)=> (e): clear. 
(e) => (a): By (2. 16), I I Eh I I = I I  E*h II for every h. Hence ker E = ker E*. But 

by (2. 19), ker E* = (ran E).l, so E is a projection. • 

Note that by part (b) of the preceding proposition, if E is a projection 
and Jt = ran E, then E = P Jt· 

Let P be a projection with ran P = Jt and ker P = ..¥. So both Jt and 
.A' are closed subspaces of .Ye and, hence, are also Hilbert spaces. As in 
(1.6. 1 ), we can form Jt � ..¥. If U: Jt � .A' -+  .Ye is defined by U(h � g) =  h + g 
for h in Jt and g in ..¥, then it is easy to see that U is an isomorphism. 
Making this identification, we will often write .Ye = eA � ..¥. 

More generally, the following will be used. 

3.4. Definition. If { eA i } is a collection of pairwise orthogonal subs paces of 
.Ye, then 

�i J(i = v iJ(i · 

If Jt and .A' are two closed linear subspaces of .Ye, then 

Jt 8..¥ = Jt n ..¥.1. 

This is called the orthogonal difference of Jt and ..¥. 
Note that if Jt, .A' � .Ye and Jt l. .A', then Jt + .A' is closed. (Why?) 

Hence Jt � .A'  = Jt + ..¥. The same is true, of course, for any finite collection 
of pairwise orthogonal subspaces but not for infinite collections. 

3.5. Definition. If A e81(Jt') and Jt � Jt', say that Jt is an invariant subspace 
for A if AheeA whenever he eA. In other words, if AJI c Jt. Say that eA is 
a reducing subspace for A if AJI c Jt and AJI .L c Jt .1. 

If Jt � .Ye, then .Ye = eA � eA .1. If A e81( .Ye), then A can be written as a 
2 x 2 matrix with operator entries, 

3.6 A = [w x], 
y z 

where We�(.A), Xe�(.A1., .A), Ye81(.A, .A.l), and Ze81(JI1.). 
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3.7. Proposition. If A E�(Yf), vH � Yf, and P = P -A' then statements (a) through 
(c) are equivalent. 

(a) vH is invariant for A. 
(b) PAP = AP. 
(c) In (3.6), Y = 0. 

Also, statements (d) through (g) are equivalent. 

(d) vH reduces A. 
(e) PA = AP. 
(f) In (3.6), Y and X are 0. 
(g) vH is invariant for both A and A*. 

PROOF. (a) => (b): If hEYf, PhEvH. So APhEvH. Hence, P(APh) = APh. That 
is, PAP = AP. 

(b) =>(c): If P is represented as a 2 x 2 operator matrix relative to 
Yf = vH e1 Jt1., then 

P = [� �J 
Hence, 

PAP = [� �] = AP = [; �J 
So Y = 0. 

(c) =>(a): If Y = 0 and hEvH, then 

(d) =>(e): Since both vH and vH l. are invariant for A, (b) implies that 
AP = PAP and A( I - P) = (I - P)A(l - P). Multiplying this second equation 
gives A - AP = A - AP - P A + PAP. Thus P A = PAP = AP. 

(e) => (f): Exercise. 
(f) => (g): If X =  Y = 0, then 

A = [: ; J and A* = [ �* ;. J 
By (c), vH is invariant for both A and A*. 

(g) =>(d): If hEvH l. and gEvH, then ( g, Ah ) = ( A *g, h ) = 0 since A *gEvH. 
Since g was an arbitrary vector in Jt, AhEJtl.. That is, AMl. c J/ 1.. • 

If vH reduces A, then X = Y = 0 in (3.6). This says that a study of A is 
reduced to the study of the smaller operators W and Z. This is the reason 
for the terminology. 

If A E�(�) and vH is an invariant subspace for A, then A I vH is used to 
denote the restriction of A to Jt. That is, A I Jt is the operator on Jt defined 
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by (A I A)h = Ah whenever hEA. Note that A I AE�(A) and I I A l A I I � I I A 1 1 . 
Also, if A is invariant for A and A has the representation (3.6) with Y = 0, 
then W = A l A. 

EXERCISES 
1 .  Let Jf be the two-dimensional real Hilbert space R 2, let .A =  { (x, O)eR 2: xeR} 

and let % = { (x, x tan 0): xeR} , where 0 < lJ < i n. Find a formula for the 
idempotent E0 with ran E0 = .A and ker E0 = %. Show that I I E0 l l  = (sin 0) - 1 . 

2. Prove Proposition 3.2 (c). 

3. Let {.A;: i e/ }  be a collection of closed subspaces of Jf and show that n {.A/: 
ieJ} = [ V {.A;: ieJ} ] 1. and [n {.A;: ie/} ] 1. = V {.A;.L: ie/} .  

4.  Let P and Q be projections. Show: (a) P + Q is a projection if and only if 
ran P _L ran Q. If P + Q is a projection, then ran(P + Q) = ran P + ran Q and 
ker(P + Q) = ker P n ker Q. (b) PQ is a projection if and only if PQ = QP. If PQ 
is a projection, then ran PQ _ ran P n ran Q and ker PQ = ker P + ker Q. 

5. Generalize Exercise 4 as follows. Suppose {.A;: ie/}  is a collection of subspaces 
of Jf such that .A; _L .Ai if i =F j. Let P; be the projection of Jf onto .A; and 
show that for all h in Jf, 'L { P;h: ie/}  converges to Ph, where P is the projection 
of Jf onto V {.A;: ie/ } .  

6. If P and Q are projections, then the following statements are equivalent. (a) P - Q 
is a projection. (b) ran Q £; ran P. (c) PQ = Q. (d) QP = Q. If P - Q is a projection, 
then ran(P - Q) = (ran P) 8 (ran Q) and ker(P - Q) = ran Q + ker P. 

7. Let P and Q be projections. Show that PQ = QP if and only if P + Q - PQ is a 
projection. If this is the case, then ran (P + Q - PQ) = ran P + ran Q and 
ker(P + Q - PQ) = ker P n ker Q. 

8. Give an example of two noncommuting projections. 

9. Let Ae&l(Jf) and let % = graph A c Jf � Jf. That is, Ji! = {h � Ah: he:Yf}.  
Because A i s  continuous and linear, % � Jf � Jf. Let .A =  Jf � (0) � Jf � Jf. 
Prove the following statements. (a) .A n % = (0) if and only if ker A = (0). 
(b) .A + %  is dense in Jf � Jf if and only if ran A is dense in Jf. 
(c) .A + % =  Jf � Jf if and only if A is surjective. 

10. Find two closed linear subs paces .A, % of an infinite dimensional Hilbert space 
Jf such that .A n % = (0) and Jt + %  is dense in Jf, but .A + %  =F Jf. 

1 1 . Define A: l2(Z) --+ l2(Z) by A( . . .  , tX _ 1 , �0, tXh · · ·) = (  . . .  , � _ 1 , tX0, tX 1 , • • .  ), where " sits 
above the coefficient in the 0-place. Find an invariant subspace of A that does 
not reduce A. This operator is called the bilateral shift. 

1 2. Let Jl = Area measure on D = {ze<C: l z l < 1 }  and define A: L2(J1) --+ L2(J1) by 
(Af)(z) = zf(z) for l z l  < 1 and f in L2(J1). Find a nontrivial reducing subspace for 
A and an invariant subspace that does not reduce A. 
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§4. Compact Operators 
It turns out that most of the statements about linear transformations on 
finite dimensional spaces have nice generalizations to a certain class of 
operators on infinite dimensional spaces-namely, to the compact operators, 
Let ball Je denote the closed unit ball in Je. 

4.1. Definition. A linear transformation T: Je � .Yt is compact if T(ball Je) 
has compact closure in .Yt. The set of compact operators from Je into .Yt 
is denoted by �0(Je, .Yt), and �0(.Ye) = �0(Jtl, Je). 

4.2. Proposition. (a) �0(Je, .Yt) c �(Je, .Yt). 
(b) �0(Je, .Yt) is a linear space and if { Tn} c �0(Jtl, .Yt) and TE�(Je, .Yt) such 

that I I Tn - T I I � 0, then TE�0(Jtl, .Yt). 
(c) If A E�(Jtl), BE�(.Yt), and TE�0(Jtl, .Yt), then TA and BTE�0(Jtl, .Yt). 

PROOF. (a) If TE�0(Je, .Yt), then cl [T(ball Je)] is compact in .Yt. Hence 
there is a constant C > O  such that T(ball Je) c {kE.Yt: l l k i i � C} . Thus 
I I T I I � C. 

(b) It is left to the reader to show that �0(Je, .Yt) is a linear space. For 
the second part of (b), it will be shown that T(ball Je) is totally bounded. 
Since .Yt is a complete metric space, this is equivalent to showing that 
T(ball Je) has compact closure. Let e > 0 and choose n such that 
I I T - Tn I I  < e/3. Since Tn is compact, there are vectors h 1 , • • •  , hm in ball Je 
such that Tn(ball Je) c Uj 1 B(Tnhi ; e/3). So if I I h I I � 1 ,  there is an hi with 
I I Tnhi - Tnh I I  < ef3. Thus · 

I I  Thj - Th I I � I I Thj - Tnhj I I  + I I Tnhj - Tnh I I  + I I  Tnh - Th I I 
< 2 1 1  T - Tn I I + e/3 
< e. 

Hence T(ball Je) c Uj 1 B(Thi; e). 
The proof of (c) is left to the reader. • 

4.3. Definition. An operator T on Je has finite rank if ran T is finite 
dimensional. The set of continuous finite rank operators is denoted by 
�oo(:Ye, .Yt); �oo(.Ye) = �oo(:Ye, .Ye). 

It is easy to see that �00(Je, .Yt) is a linear space and �00(Je, .Yt) c 
�0(Je, .Yt) (Ex'ercise 2). Before giving other examples of compact operators, 
however, the next result should be proved. 

4.4. Theorem. If TE�(Je, .Yt), the following statements are equivalent. 

(a) T is compact. 
(b) T* is compact. 
(c) There is a sequence { Tn} of operators of finite rank such that I I  T - Tn I I -+ 0. 
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PROOF. (c) => (a): This is immediate from (4.2b) and the fact that 
eloo(:?f, f) c elo(:?f, f). 

(a) => (c): Since cl [ T(ball Jf)] is compact, it is separable. Therefore 
cl (ran T) = 2 is a separable subspace of %. Let { e 1 , e2, . • .  } be a basis for 
2 and let Pn be the orthogonal projection of $' onto V {ei 1 � j � n} . Put 
Tn = P n T; note that each Tn has finite rank. It will be shown that I I Tn - T I I -+ 0, 
but first we prove the following: 

Claim. If hEJf, I I Tnh - Th I I -+ 0. 

In fact, k = ThEIR, so II Pnk - k 1 1 -+ 0  by (I.4. 1 3d) and (I.4.7). That is, 
I I p nTh - Th I I -+ 0 and the claim is proved. 

Since T is compact, if e > 0, there are vectors h 1 , . . .  , hm in ball Jf such 
that T(ball Jt') c Uj 1 B(Thi; e/3). So if I I h I I � 1 ,  choose hi with 
II Th - Thi I I < e/3. Thus for any integer n, 

I I Th - Tnh I I � II Th - Thj II + I I Thj - Tnhj I I + I I Pn(Thj - Th) II 
� 2 1 1  Th - Thj I I + II Thj - Tnhj I I 
� 2ej3 + II Thi - Tnhj 1 1 . 

Using the claim we can find an integer n0 such that I I  Thi - Tnhi I I < ej3 for 
1 � j � m and n � n0 • So I I Th - Tnh I I < e uniformly for h in ball Jt'. Therefore 
I I T - Tn I I < e for n � n0 • 

(c) => (b): If { Tn} is a sequence in � 00 ( Jf, %) such that I I Tn - T II -+ 0, then 
II T: - T* I I = I I Tn - T l l -+ 0. But T: Eeloo (:?f, f) (Exercise 3). Since (c) 
implies (a), T* is com pact. 

(b) =>(a): Exercise. • 

A fact emerged in the proof that (a) implies (c) in the preceding theorem 
that is worth recording. 

4.5. Corollary. If TE840(Jf, f), then cl (ran T) is separable and if {en } is a 
basis for cl (ran T) and Pn is the projection of % onto V {ei : 1 � j � n} , then 
II P n T - T II -+ 0. 

4.6. Proposition. Let Jf be a separable Hilbert space with basis {en } ;  let 
{ �n } c F' with M = sup { I an I : n � 1 }  < oo. If A en = cxnen for all n, then A extends 
by linearity to a bounded operator on Jf with II A I I = M. The operator A is 
compact if and only if an -+ 0 as n -+ oo. 

PROOF. The fact that A is bounded and II A II = M is  an exercise; such an 
operator is said to be diagonalizable (see Exercise 1 .8). Let P n be the projection 
of Jf onto V { e 1 ,  • • •  , en} .  Then An = A - AP n is seen to be diagonalizable 
with Anei = cxiei if j > n and Anei = 0 if j � n. So APnE�00(Jf) and 
II An II = sup { I  cxi I : j > n } .  If an -+ 0, then II An I I -+ 0 and so A is compact since 
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it is the limit of a sequence of finite-rank operators. Conversely, if A is 
compact, then Corollary 4.5 implies II An II -+ 0; hence cxn -+ 0. • 

4.7. Proposition. If (X, n, Jl.) is a measure space and keL2(X X X, n X n, Jl X JJ.), 
then 

(Kf)(x) = f k(x, y)f(y)dJ-L(y) 

is a compact operator and I I K I I � I I k I I  2 . 

The following lemma is useful for proving this proposition. The proof is 
left to the reader. 

4.8. Lemma. If { ei: iei} is a basis for L2(X, D., JJ.) and 

c/>ii(x, y) = ei(x)ei(Y) 

for i, j in I and x, y in X, then { cf>ii : i, jei} is an orthonormal set in L2(X x X, 
n X n, Jl X Jl.). If k and K are as in the preceding proposition, then 
( k, c/> ii ) = ( K e i' e i ) . 

PROOF OF PROPOSITION 4.7. First we show that K defines a bounded operator. 
In fact, if f eL2(JJ.), I I  Kf I I  2 = J I J k(x, y)f(y)dJJ.(Y) 1 2 dJJ.(x) � J ( J I k(x, y) 1 2 dJJ.(Y) ) · 
(J i f(y) l 2dJJ.(Y) ) dJJ.(x) = l l k l l 2 l l f l l 2 • Hence K is bounded and I l K I I � l l k l l 2 • 

Now let { ei } be a basis for L2(JJ.) and define cf>ii as in Lemma 4.8 . Thus 

II k II 2 � L I ( k, c/> ii ) 1 2 = L I ( K e i' e i ) 1 2 . i,j i,j 

Since keL2(Jl x Jl.), there are at most a countable number of i and j such 
that ( k, cf>ii ) # 0; denote these by { t/Jkm: 1 � k, m < oo } .  Note that ( Kei, ei )  = 0 
unless cf>iie {t/lkm }· Let t/lkm(x, y) = ek(x)em(y), let Pn be the orthogonal projection 
onto V {ek: 1 � k � n} , and put Kn = KPn + PnK - PnKPn; so Kn is a finite 
rank operator. We will show that II K - Kn II -+ 0  as n -+  oo, thus showing that 
K is compact. 

Let f eL2(JJ.) with II f II 2 � 1 ;  so f = 'Licxiei. Hence 

I I Kf - Knf I I 2 = L I ( Kf - Knf, ei ) l 2 i 
t 

= L L cxi ( (K - Kn)ei, ei )  
i j 

k m 

2 

2 
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� I I f 1 1 2 L L I ( Kem, ek ) - ( KPnem, Pnek ) k m 

00 

= L k = n + 1 m = n + 1 
00 

= L k = n + 1 m = n + 1 
Since l:k,m I ( k, t/1 km ) 1 2 < oo,  n can be chosen sufficiently large such that for 
any e > 0 this last sum will be smaller than e2 • Thus I I K - Kn 1 1 -+ 0. • 

In particular, note that the preceding proposition shows that the Volterra 
operator ( 1 .7) is comP.act. 

One of the dominant tools in the study of linear transformation on 
finite dimensional spaces is the concept of eigenvalue. 

4.9. Definition. If A e8l(J'P), a scalar ex is an eigenvalue of A if ker(A - ex) # (0). 
If h is a nonzero vector in ker(A - ex), h is called an eigenvector for ex; thus 
Ah = exh. Let a p(A) denote the set of eigenvalues of A. 

4.10. Example. Let A be the diagonalizable operator in Proposition 4.6. Then 
a p(A) = { ex 1 , ex2, • • •  } .  If exea p(A), let J a = { jeN: exi = ex} . Then h is an 
eigenvector for ex if and only if he V { ei : jeJ a } · 

4.1 1 .  Example. The Volterra operator has no eigenvalues. 

4.12. Example. Let he.J'P = L�( - n, n) and define K: J'P -+  J'P by (�f)(x) = 
(2n) - 1 12 J� n h(x - y)f(y)dy. If An = (2n) - 1 12 J� n h(x) exp( - inx)dx = h(n), the 
nth Fourier coefficient of h, then Ken = Anen , where en(x) = (2n) - 1 12 exp( - inx). 

The way to see this is to extend functions in L�( - n, n) to JR. by periodicity 
and perform a change of variables in the formula for (Ken)(x). The details are 
left to the reader. 

Operators on finite dimensional spaces over <C always have eigenvalues. 
As the Volterra operator illustrates, the analogy between operators on finite 
dimensional spaces and compact operators breaks down here. If, however, 
a compact operator has an eigenvalue, several nice things can be said if the 
eigenvalue is not zero. 

4.13. Proposition. If Te810(J'P), AEa p(T), and A # 0, then the eigenspace 
ker(T - A) is finite dimensional. 

PROOF. Suppose there is an infinite orthonormal sequence {en} in ker(T - A). 
Since T is compact, there is a subsequence {enk} such that {Tenk }  converges. 



§4. Compact Operators 45 

Thus, { Tenk }  is a Cauchy sequence. But for nk -:F ni, I I Tenk - Tenj l l 2 = 
I I A.enk - A.enj 1 1 2 = 2 1 A. 1 2 > 0 since A. #- 0. l"his contradiction shows that 
ker(T - A.) must be finite dimensional. • 

The next result on the existence of eigenvalues is not a practical way to 
show that a specific example has a nonzero eigenvalue, but it is a good 
theoretical tool that will be used later in this book (in particular, in the next 
section). 

4.14. Proposition. If T is a compact operator on Yf, A. #- 0, and inf { II (T - A.)h I I : 
I I  h I I  = 1 }  = 0, then A.Ea p(T). 

PROOF. By hypothesis, there is a sequence of unit vectors { hn} such that 
II (T - A.)hn I I � 0. Since T is compact, there is a vector f in Yf and a sub
sequence {hnk }  such that II Thnk - f II � o. But hnk = A  - 1 [ (A - T)hnk + ThnkJ -+  
A - 1f. So 1 = I I A. - 1f l l = I A I - 1 I I f l l  and f #; O. Also, it must be that 
Thnk � A.  - 1 Tf. Since Thnk � f, f = A.  - 1 Tf, or Tf = A.f. That is, fEker (T- A.) 
and f # 0, so A.Ea p(T). • 

4.15. Corollary. If T is a compact operator on Yf, A. -:1= 0, A.¢ap(T), and 
A.¢a p (T*), then ran(T - A) = Yf and (T - A.) - 1 is a bounded operator on Yf. 

PRooF. Since A.¢a p( T), the preceding proposition implies that there is a constant 
c > 0 such that I I  (T - A.)h II � c II h II for all h in Yf. If f Eel ran(T - A), then 
there is a sequence { hn } in Yf such that (T - A.)hn -+ f. Thus 
I I hn - hm I I � c - 1 I I (T - A.)hn - (T - A)hm I I and so { hn } is a Cauchy sequence. 
Hence hn -+ h for some h in Yf. Thus (T - A.)h = f. So ran(T - A.) is closed 
and, by (2. 1 9), ran (T - A.) = [ker (T - A.)*] l. = Yf, by hypothesis. 

So for f in Yf let Af = the unique vector h such that (T - A.)h = f. Thus 
(T - A.)Af = f for all f in Yf. From the inequality above, c II Af II � 
II (T - A.)Af II = II f 1 1 . So II Af II � c - 1 II f II and A is bounded. Also, 
(T - A.)A(T - A.)h = (T - A.)h, so 0 = (T - A.) [A(T - A.)h - h] . Since A.¢a p(T), 
A(T - A.)h = h. That is, A =  (T - A.)- 1 . • 

It will be proved in a later chapter that if A.¢a p(T) and A. -:1= 0, then A.¢a p(T*). 
More will be shown about arbitrary compact operators in Chapter VI. 

In the next section the theory of compact self-adjoint operators will be 
explored. 

• 

EXERCISES 
1 .  Prove Proposition 4.2(c). 

2. Show that every operator of finite rank is compact. 

3. If TeBioo(.Tf, %), show that T* e9100 (%, Jf) and dim(ran T) = dim(ran T*). 

4. Show that an idempotent is compact if and only if it has finite rank. 
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5. Show that no nonzero multiplication operator on L2(0, 1) is compact. 

6. Show that if T: Jf --.... .Yr is a compact operator and {en} is any orthonormal 
sequence in Jf, then I I Ten 1 1 --.... 0. Is the converse true? 

7. If T is compact and .A is an invariant subspace for T, show that T I.A is compact. 

8. If h, ge.Yr, define T: Jf --.... Jt by Tf = ( f, h )g. Show that T has rank 1 [that is, 
dim(ran T) = 1] .  Moreover, every rank 1 operator can be so represented. Show 
that if T is a finite rank operator, then there are orthonormal vectors e 1 , . . .  , en 
and vectors g 1 , . . .  , gn such that Th = 'L�= l ( h, ei )gi for all h in Jf. In this case 
show that T is normal if gi = Aiei for some scalars A1 , . • .  , An. Find u p(T). 

9. Show that a diagonalizable operator is normal. 

10. Verify the statements in Example 4. 10. 

1 1 . Verify the statement in Example 4. 1 1 . 

1 2. Verify the statement in Example 4. 1 2. (Note that the operator K in this example 
is diagonalizable.) 

13 . If Tneei(Jf n), n � 1 ,  with supn II Tn I I  < 00 and T = EB:'= 1 Tn on Jf = EB:'= 1 Jf"' 
show that T is compact if and only if each Tn is compact and I I  Tn I I  --.... 0. 

14. In Lemma 4".8, show that if L2(X, 0., Jl) is separable, then { cpii }  is a basis for 
L2(X x X, 0. x 0., J1 x Jl). What if L2(X, 0., Jl) is not separable? 

§5* .  The Diagonalization of Compact 
Self-Adjoint Operators 

This section and the remaining ones in this chapter may be omitted if the 
reader intends to continue through to the end of this book, as the material 
in these sections (save for Section 6) will be obtained in greater generality 
in Chapter IX. It is worthwhile, however, to examine this material even if 
Chapter IX is to be read, since the intuition provided by this special case is 
valuable. 

The main result of this section is the following. 

5.1 .  Theorem. If T is a compact self-adjoint operator on Jf, then T has only 
a countable number of distinct eigenvalues. If{ A1 , A2, • . •  } are the distinct nonzero 
eigenvalues of T, and Pn is the projection of Jf onto ker(T - An), then 
PnP m = P mpn = 0 if n # m, each An is real, and 

5.2 

where the series converges to T in the metric defined by the norm of �(K). 
[Of course, (5.2) may be only a finite sum.] 
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The proof of Theorem 5. 1 requires a few preliminary results. Before begin
ning this process, let's look at a few consequences. 

5.3. Corollary. With the notation of (5. 1 ): 

(a) k�r T = [ V { Pn.Yf: n ;;;: 1 } ]  j_ = (ran T) j_; 
(b) each P n has finite rank; 
(c) I I  T II = sup { I An I : n ;;;: 1 } and An � 0 as n � oo.  

PROOF. Since pn j_ p m for n # m, if heJf, then (5.2) implies I I  Th 1 1 2 = 
�;'= 1 I I  AnPnh 1 1 2 = �;'- 1 1 An l 2 l l  Pnh 1 1 2 • Hence Th = 0 if and only if Pnh = 0 for 
all n. That is, heker T if and only if h j_ PnJf for all n, whence (a). 

Part (b) follows by Proposition 4. 1 3 . 
For part (c), if !£ = cl [ran T], !£ is invariant for T. Since T = T*, 

!£ = (ker T)j_ and !£ reduces T. So we can consider the restriction of T to 
!£, T l !£. Now !£ =  V {PnJf: n ;;;: 1 }  by (a). Let {e�n>: 1 �j � Nn} be a basis 
for PnJf = ker(T - An), so Te�n> = Ane�n> for 1 �j � Nn. Thus {e�n>: 1 �j � Nm 
n ;;;: 1 }  is a basis for !£ and T I !£ is diagonalizable with respect to this basis. 
Part (c) now follows by (4.6). • 

The proof of (c) in the preceding corollary revealed an interesting fact that 
deserves a statement of its own. 

5.4. Corollary. If T is a compact self-adjoint operator, then there is a sequence 
{Jln} of real numbers and an orthonormal basis {en} for (ker T) j_ such that for 
.all h, 

00 

Th = L Jln ( h, en ) en. 
n = l 

Note that there may be repetitions in the sequence {Jln} in (5.4). How 
many repetitions? 

5.5. Corollary. If Tef!I0(Jf), T = T*, and ker T = (0), then Jf is separable. 

Also note that by (4.6), if (5.2) holds, T ef!I0(Jf). 
To begin the proof of Theorem 5. 1 ,  we prove a few results about not 

necessarily compact operators. 

5.6. Proposition. If A is a normal operator and AEF, then ker(A - A) = 
ker(A - A)* and ker(A - A) is a reducing subspace for A. 

PROOF. Since A is normal, so is A - A. Hence I I (A - A)h I I  = I I (A - A)* h I I  (2. 1 6). 
Thus ker(A - A) = ker(A - A)*. If heker(A - A), Ah = Ah eker(A - A). Also 
A*h = Ah eker(A - A). Therefore ker(A - A) reduces A. • 

5.7. Proposition. If A is a normal operator and A, Jl are distinct eigenvalues of 
A, then ker(A - A) l. ker(A - Jl) . 

., 
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PROOF. If hEker(A - A) and gEker(A - p.), then the fact (5.6) that 
A*g = jig implies that A (  h,-g )  = (Ah, g ) = ( h, A*g ) = ( h, jig ) = p.( h, g ). 
Thus (A - p.) ( h, g ) = 0. Since A - p. i= 0, h j_ g. • 

5.8. Proposition. lf A = A* and A E a p( A), then A is a real number. - -
PROOF. If Ah = Ah, then Ah = A*h = Ah by (5.6). So (A - A)h = 0. Since h can 
be chosen different from 0, A = A. • 

The main result prior to entering the proof of Theorem 5. 1 is to show 
that a compact self-adjoint operator has nonzero eigenvalues. If (5.3c) is 
examined, we see that there is a An in a p(T) with I An I = I I T 1 1 . Since the 
preceding proposition says that AnEIR, it must be that An = + II T 1 1 . That is, 
either + I I T I I Ea p(T). This is the key to showing that a p(T) is non void. 

5.9. Lemma. If T is a compact self-adjoint operator, then either + II T II is an 
eigenvalue of T. 

PROOF. If T = 0, the result is clear. So suppose T i= 0. By Proposition 2. 1 3  
there is a sequence { hn } of unit vectors such that I ( Thn , hn ) I -+ I I T 1 1 . By 
passing to a subsequence if necessary, we may assume that ( Thm hn ) --+ A, where 
I A I = I I T 1 1 . It will be shown that AEa p(T). Since I A I = I I T I I , 0 � I I (T - A)hn 1 1 2 = 
I I Th,;ll 2 - 2A ( Thn, hn ) + A  2 � 2A 2 - 2A( Thm hn ) --+ 0. Hence I I (T - A)hn II --+ 0. 
By (4. 14), AE(J p(T). • 

PROOF OF THEOREM 5. 1 .  By Lemma 5.9 there is a real number At in a p(T) 
with I At I = II T 1 1 . Let &t = ker(T - At), P t = the projection onto &t , Jf 2 = &f. 
By (5.6) &t reduces T, so Jf 2 reduces T. Let T2 = T l Jf 2; then T2 is a 
self-adjoint compact operator on Jf 2. (Why?) 

By (5.9) there is an eigenvalue A2 for T2 such that I A2 1 = II T2 l l - Let 
8 2 = ker(T2 - A2). Note that (0) i= 8 2 c ker(T - A2). If it were the case that 
At = A2, then 8 2 c ker(T - At) =  8 t · Since 8 t j_ 8 2, it must be that At i= A2• 
Let P 2 = the projection of Jf onto 8 2 and put £3 = (& t e1 8 2)1. . Note that 
I I T2 l l � I I T I I so that I A2 l � I A t I · 

Using induction (give the details) we obtain a sequence {An} of real 
eigenvalues of T such that 

(i) I A t I � I A2 l � · · · ; 
(ii) If &n = ker (T - An), I An +  t l = I I T l (&t e1 · · · e1 8n) j_ 1 1 . 

By (i) there is a nonnegative number rx such that I An I -+ rx. 

Claim. rx = 0; that is, lim An = 0. 

In fact, let en E8 m II en I I  = 1 .  Since T is compact, there is an h in Jf and a 
subsequence { enj } such that I I  Tenj - h I I -+ 0. But en j_ em for n i= m and 
TenJ = Ani enr Hence I I Teni - Teni 1 1 2 = A.;i + A.;i � 2rx2• Since { Teni} is a 
Cauchy sequence, rx = 0. 
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Now put Pn = the projection of :Ye onto tffn and examine T - 'L'J= 1 A.iPi. 
If het!k, 1 � k � n, then (! - 'L'J= 1 A.iPi)h = Th - A.kh = 0. Hence tff 1 (f) · · ·  (f) 
Cn c ker(T- 'L'J= 1 A.iPi). If he(tff 1 (f) · · · <f> tffn) j_ , then Pih = O for 1 �j � n; 
so (T - 'L'J= 1 A.iPi)h = Th. These two statements, together with the fact that 
(t! 1 (f) · · · (f) tff n) .l reduces T, imply that 

n 
T - L A,jpj = II T I (tff 1 (f) · · · (f) tff n) j_ I I 

j = 1 
= I An + 1 I -+ O. 

Therefore the series 'L: 1 A.nPn converges in the metric of �(:?e) to T. • 

Theorem 5. 1 is called the Spectral Theorem for compact self-adjoint 
operators. Using it, one can answer virtually every question about compact 
hermitian operators, as will be seen before the end of this chapter. 

If in Theorem 5. 1 it is assumed that T is normal and compact, then the 
same conclusion, except for the statement that each An is real, is true provided 
that :Ye is a <C-Hilbert space. The proof of this will be given in Section 7. 

EXERCISES 
1 .  Prove Corollary 5.4. 

2. Prove Corollary 5.5. 

3. Let K and k be as in Proposition 4. 7 and suppose that k(x, y) = k(y, x). Show that 
K is self-adjoint and if {,un} are the eigenvalues of K, each repeated dim ker(K - Jln) 
times, then I: � l ,un l 2 < oo. 

4. If T is a compact self-adjoint operator and {en} and {,un} are as in (5.4) and if h is a 
given vector in Jf, show that there is a vector f in Jf such that Tf = h if and 
only if h _L ker T and I:n,u; 2 l ( h, en ) l 2 < oo. Find the form of the general vector f 
such that Tf = h. 

5. Let T, {,un}, and {en} be as in (5.4). If A. "# 0 and A. "# Jln for any Jlm then for every 
h in Jf there is a unique f in Jf such that (A. - T)f = h. Moreover, 
f = A. - 1 [h + I::= 1 A.n(A. - A.n) - 1 ( h, en ) enJ .  Interpret this when T is an integral 
operator. 

§6* .  An Application: Sturm-Liouville Systems 

In this section, [a, b] will be a proper interval with - oo < a <  b < oo.  C[a, b] 
denotes the continuous functions/: [a, b] ---+ R and for n � 1 ,  c<n> [a, b] denotes 
those functions in C[a, b] that have n continuous derivatives. C�[a, b] denotes 
the corresponding spaces of complex-valued functions. We want to consider 
the differential equation 

6.1 - h" + qh - A.h = f, 
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where A. is a given complex number, qeC[a, b], and/ eL2 [a, b], together with 
the boundary conditions 

6.2 
{ (a) exh(a) + ex 1 h'(a) = 0 
(b) Ph( b) + P1h'(b) = o' 

where ex, exh p, and P1 are real numbers and ex2 + exi > 0, P2 + Pi > 0. 
Equation (6. 1 ) together with the boundary conditions (6.2) is called a 

(regular) Sturm-Liouville system. Such systems arise in a number of physical 
problems, including the description of the motion of a vibrating string. In 
this section we will discuss solutions of the Sturm-Liouville system by relating 
the system to a certain compact self-adjoint integral operator. 

Recall that an absolutely continuous function h on [a, b] has a derivative 
a.e. and h(x) = J: h'(t) dt + h(a) for all x. 

Define 
q)a = {hec� > [a,b] : h' is absolutely continuous, 

h" eL2 [a, b], and h satisfies (6.2a) } .  

q)b is defined similarly but each h in q)b satisfies (6.2b) instead of (6.2a). The 
space q) = P) a n q)b· 

Define L :  q) -+ L2 [a, b] by 

6.3 Lh = - h" + qh. 

L is called a Sturm-Liouville operator. 
Note that q) is a linear space and L is a linear transformation. The 

Sturm-Liouville problem thus becomes: if A.e<C and feL2 [a, b] , is there an 
h in q) with (L - A.)h =f. Equivalently, for which A. is f in ran(L - A.)? 

By placing a suitable norm on q), L can be made into a bounded operator. 
This does not help much. The best procedure is to consider (L - A.) - 1 . 
Integration is the inverse of differentiation, and it turns out that (L - A.) - 1 
(when we can define it) is an integral operator. 

Begin by considering the case when A. = 0. (Equivalently, replace q by 
q - A..) To define L - 1 (even if only on the range of L), we need that L is 
injective. Thus we make an assumption; 

6.4 if heq) and Lh = 0, then h = 0. 

The first lemma is from ordinary differential equations and says that 
certain initial-value problems have nontrivial (nonzero) solutions. 

6.5. Lemma. If ex, exh p, /31 eR, ex2 + exi > 0, and P2 + Pi >  0, then there are 
functions ha, hb in q) a' q)b, respectively, such that L(ha) = 0 and L(hb) = 0 and 
ha, hb are real-valued and not identically zero. 

The Wronskian of ha and hb is the function 

W = det [:� :�] = hah� - h:hb. 
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Note that W' = hah; - h;hb = ha(qhb) - (qha)hb = 0. Hence W(x) = W(a) for 
all x. 

6.6. Lemma. Assuming (6.4), W(a) -I= 0 and so ha and hb are linearly independent. 

PROOF. If W(a) = 0, then linear algebra tells us that the column vectors in 
the matrix used to define W(a) are linearly dependent. Thus there is a A. in 
R such that hb(a) = A.ha(a) and h�(a) = A.h�(a). Thus hbe!!) and L(hb) = 0. By (6.4), 
hb = 0, contradiction. • 

Put c =  - W(a) and define g: [a, b] x [a, b] � R  by 

6.7 
{c - 1 ha(x)hb(y) if a �  x � y � b 

g(x, y) = 
- 1 . c ha(y)hb(x) If a �  y � x � b. 

The function g is the Green function for L. 

6.8. Lemma. The function g defined in ( 6. 7) is real-valued, continuous, and 
g(x, y) = g(y, x). 

PROOF. Exercise. 

6.9. Theorem. Assume (6.4). If g is the Green function for L defined in (6.7) 
and G: L2 [a, b] � L2 [a, b] is the integral operator defined by 

(Gf)(x) = r g(x, y)f(y) dy, 

then G is a compact self-adjoint operator, ran G = !!), LGf = f for all f in 
L2 [a, b], and GLh = h for all h in !!). 

PROOF. That G is self-adjoint follows from the fact that g is real-valued and 
g(x, y) = g(y, x); G is compact by (4.7). Fix f in L2 [a, b] and put h =  Gf. It 
must be shown that he!!). 

Put 

Then 

Ha(x) = c - 1 LX ha(y)f(y) dy and Hb(x) = c - 1 r hb(y)f(y) dy. 

h(x) = r g(x, y)f(y)dy 

= c - 1 LX ha(y)hb(x)f(y) dy + c - 1 r ha(x)hb(y)f(y) dy. 

That is, h = Hahb + haHb. Differentiating this equ�!i�-.�' = (c - 1 haf)hb + 

Hah� + h�Hb + ha( - C - 1hbf) = Hah� + h�Hb .�OlHaft6ui-JJiflb-!s absolutely 
continuous, as part of showing that he£f'{�qvan_t to �AQ.w l1{t f\,llowing. 
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Claim. h' = Hah� + h�Hb everywhere. 

Put <P = Hah� + h�Hb and put 1/J(x) = h(a) + J:</J(y) dy. So <P and 1/1 are 
absolutely continuous, h(a) = 1/J(a), and h' = 1/J' a.e. Thus h = 1/J everywhere. 
But 1/1 has a continuous derivative </J, so h does too. That is, the claim is 
proved. 

Differentiating h' = Hah� + h�Hb gives that a.e., h" = (c - 1 haf)h� + Hah; + 
h;Hb + h�( - c - 1hbf); since each of these summands belongs to L2[a, b] , 
h" eL2 [a, b ] .  

Because Ha(a) = 0 and hae�a' exh(a) + ex 1h'(a) = exha(a)Hb(a) + ex 1h�(a)Hb(a) = 
[exha(a) + ex 1 h�(a)]Hb(a) = 0. Hence he� a· Similarly, he�b· Thus he�. Hence 
ran G c: �-

Now to show that LGf =f. If h = Gf, L(h) = - h" + qh = - (c - 1 hah�f + 
Hah; + h;Hb - c- 1h�hbf] + q(Hahb + haHb) = ( - h; + qhb)Ha + ( - h; + qha)Hb + 
c- 1 (h�hb - hah�)f = f since L(ha) = L(hb) = 0 and h�hb - hah� = W = c. 

If he�, then LheL2[a, b] . So by the first part of the proof, LGLh = Lh. 
Thus 0 = L(GLh - h). Since ker L = (0), h = GLh and so heran G. • 

6.10. Corollary. Assume (6.4). If he�, Ae<C\ {0} , and Lh = Ah, then Gh = A  - 1 h. 
If heL2 [a, b] and Gh = A  - 1 h, then he� and Lh = Ah. 

PROOF. This is immediate from the theorem. • 

6.1 1 .  Lemma. Assume (6.4). If exea p(G) and a =F 0, then dim ker(G - ex) = 1 .  

PROOF. Suppose there are linearly independent functions h 1 , h2 in ker (G - ex). 
By (6. 10), h 1 , h2 are solutions of the equation 

- h" + (q - ex- 1 )h = 0. 

Since this is a second-order linear differential equation, every solution of it 
must be a linear combination of h 1 and h2• But h 1 , h2 e� so they satisfy (6.2). 
But a solution can be found to this equation satisfying any initial conditions 
at a-and thus not satisfying (6.2). This contradiction shows that linearly 
independent h 1 , h2 in ker(G - ex) cannot be found. • 

6.12. Theorem. Assume (6.4). Then there is a sequence {A 1 , A2 , • • • } of real 
numbers and a basis { e 1 , e 2 , . . •  } for L2 [a, b] such that 

(a) o < I A 1 I < I A 2 1 < · · · and I An I ---+ oo . 
(b) ene� and Len = Anen for all n. 
(c) If A -I= An for any An and f eL2[a, b ], then there is a unique h in � with 

Lh - Ah =f. 
(d) If A =  Anfor some n andf eL2 [a, b] , then there is an h in � with Lh - Ah =f 

if and only if ( f, en ) =  0. If ( f, en ) = 0, any two solutions of Lh - Ah =f 
differ by a multiple of en. 

PROOF. Parts (a) and (b) follow by Theorem 5. 1 , Corollary 6. 10, and 
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Lemma 6. 1 .  For parts (c) and (d), first note that 

6.13 Lh - A.h =f if and only if h - A.Gh = Gf. 
This is, in fact, a straightforward consequence of Theorem 6.9. 

(c) The case where A. =  0 is left to the reader. If A. -:1= An for any n, A. - 1 ¢a p(G). 
Since G = G*, Corollary 4. 1 5  implies G - A.  - 1 is bijective. So iff eL2 [a, b], 
there is a unique h in L2 [a, b] with Gf = (A. - 1 - G)h. Thus he� and (6. 1 3) 
implies L(h/A.) - A.(h/A.) =f. 

(d) Suppose A =  An for some n. If Lh - A.nh = f, then h - A.nGh = Gf. 
Hence ( Gf, en ) = ( h, en ) - An( Gh, en ) = ( h, en ) - An ( h, Gen ) = ( h, en ) 
AnA; 1 ( h, en ) = 0. So 0 = ( G f, en ) = ( f, Gen ) = An ( f, en ). Hence f l. en. 

Since <C en = ker (G - A.; 1 ), [en] .l = JV reduces G. Let G1 = G l%. So G1 is 
a compact self-adjoint operator on JV and A.; 1 ¢ap(G1 ). By (4. 1 5), 
ran (G1 - A.; 1 ) = JV. As in the proof of (c), iff l. en, there is a unique h and JV 
such that Lh - A.nh =f. Note that h + aen is also a solution. If hb h2 are two 
solutions, h1 - h2 eker(L - A.n), so h1 - h2 = aen. • 

What happens if ker L -:1= (0)? In this case it is possible to find a real number 
Jl such that ker(L - J-t) = (0) (Exercise 6). Replacing q by q - J-l, Theorem 6. 1 2  
now applies. More information on this problem can be found in Exercises 2 
through 5. 

EXERCISES 
1 .  Consider the Sturm-Liouville operator Lh = - h" with a =  0, b = 1, and for each 

of th�ollowing boundary conditions find the eigenvalues { A.n}, the eigenvectors 
{en}, nd the Green function g(x, y): (a) h(O) = h( 1) = 0; (b) h'(O) = h'( 1 ) = 0; (c) 
h(O) = an_d h'( 1 )  = 0; (d) h(O) = h'(O) and h( 1) = - h'( 1 ). 

2. In Theorem 6. 12  show that "L:= 1 A.; 2 < oo (see Exercise 5.3). 

3. In Theorem 6. 12 show that he!!} if and only if he/.} [a, b] and "L:= 1 A.; l ( h, en ) l2 < oo. 
If he!!}, show that h(x) = "L:= 1 (h, en ) en(x), where this series converges uniformly 
and absolutely on [a, b] . 

4. In Theorem 6. 12(c), show that h(x) = "L:= 1 (An - A.) - 1 ( f, en ) en(x) and this series 
converges uniformly and absolutely on [a, b]. 

5. In Theorem 6. 12(d), show that if f l_ en and Lh - A.nh =f, then h(x) = 
Li*n(A.i - A.n) - 1 ( f, ei ) ei(x) + llen{x) for some IX, where the series converges 
uniformly and absolutely on [a, b]. • 

6. This exercise demonstrates how to handle the case in which ker L #= (0). (a) If 
h, gec< l ) [a, b] with h', g' absolutely continuous and h", g" eU [a, b], show that 

f (h" g - hg") = [h'(b)g(b) - h(b)g'(b)] - [h'(a)g(a) - h(a)g'(a)] . 

(b) If h, ge!!), show that (Lh, g )  = (h, Lg ). (The inner product is in L2 [a, b ] .) 
(c) If h, ge!!) and A., peR, A. =F Jl, and if heker(L- A.), geker(L- p), then h j_ g. 
(d) Show that there is a real number Jl with ker(L - p) = (0). 



54 II. Operators on Hilbert Space 

§7* .  The Spectral Theorem and Functional Calculus 
for Compact Normal Operators 

We begin by characterizing the operators that commute with a diagonalizable 
operator. If one considers the definition of a diagonalizable operator ( 4.6), 
it is possible to reformulate it in a way that is more tractable for the present 
purpose and closer to the form of a compact self-adjoint operator given in 
(5.2). Unlike (4.6), it will not be assumed that the underlying Hilbert space 
is separable. 

7.1 .  Proposition. Let {Pi: iei} be a family of pairwise orthogonal projections 
in 81(£'). (That is, Pi Pi = PiPi = 0 for i # j.) If he£', then Li { Pih: iei} 
converges in £' to Ph, where P is the projection of £' onto V {Pi£': iei} .  

This appeared as Exercise 3 .5 and its proof is left to the reader. 
If {Pi: iei} is as in the preceding proposition and Jti = Pi£', then with 

the notation of Definition 3.4, P is the projection of £' onto (f) iJ/ i· Write 
P = LiPi. A word of caution here: Ph = LiPih, where the convergence is in 
the norm of £'. However, Li pi does not converge to P in the norm of 81(£'). 
In fact, it never does unless I is finite (Exercise 1 ). 

7.2. Definition. A partition of the identity on £' is a family {Pi: iei} of pairwise 
orthogonal projections on £' such that V ipi£' = £'. This might be indicated 
by 1 = Lipi or 1 = <t> iPi. [Note that 1 is often used to denote the operator 
on £' defined by 1 (h) = h for all h. Similarly if aeF', a is the operator defined 
by a( h) = ah for all h.] 

7.3. Definition. An operator A on £' is diagonalizable if there is a partition 
of the identity on £', {Pi: iei} ,  and a family of scalars {ai: iei} such that 
supd ad < oo and Ah = aih whenever he ran Pi. 

It is easy to see that this is equivalent to the definition given in (4.6) when 
£' is separable (Exercise 2). Also, II A II = supi I ai 1 . 

To denote a diagonalizable operator satisfying the conditions of (7.3), write 

A = � a -P .  or A = ffi .rx .P -l.J l l w l l ,.  i 

Note that it was not assumed that the scalars ai in (7.3) are distinct. There 
is no loss in generality in assuming this, however. In fact, if ai = a i' then we 
can replace Pi and Pi with Pi +  Pi. 

7.4. Proposition. An operator A on £' is diagonalizable if and only if there is 
an orthonormal basis for £' consisting of eigenvectors for A. 

PROOF. Exercise. 

Also note that if A =  (d?)irxiPi, then A* = a?JliiPi and A is normal (Exercise 5). 
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7.5. Theorem. If A =  (f);cx;P; is diagonalizable and all the ex; are distinct, then 
an operator B in �(Jf) satisfies AB = BA if and only if for each i, ran P; reduces 
B. 

PROOF. If all the ex; are distinct, then ran P; = ker(A - ex;). If AB = BA and 
Ah = cx;h, then ABh = BAh = B(cx;h) = cx;Bh; hence Bheran P; whenever 
heran P;. Thus ran P; is left invariant by B. Therefore B leaves V {ran Pi: 
j -:1= i} = .AI; invariant. But since (f);P; = 1 ,  .AI; = (ran P;) .l. Thus ran P; reduces 
B. 

Now assume that B is reduced by each ran P;. Thus BP; = P;B for all i. 
If he.Yf then Ah = "" ·CX ·P·h Hence BAh = ""  .cx .BP .h = "" .a.P .Bh = ABh ' L..J r r r • L..J r r r L..J r ' r • 

(Why is the first equality valid?) • 

Using the notation of the preceding theorem, if AB = BA, let B; = B l ran Pi. 
Then it is appropriate to write B = (f) iBi on Yf = (f) ;(Pi.Yf). One might 
paraphrase Theorem 7.5 by saying that B commutes with a diagonalizable 
operator if and only if B can be "diagonalized with operator entries." 

7.6. Spectral Theorem for Compact Normal Operators. If T is a compact 
normal operator on the complex Hilbert space Yf, then T has only a countable 
number of distinct eigenvalues. If { A. 1 , A.2 , • • .  } are the distinct nonzero eigenvalues 
of T, and Pn is the projection of Yf onto ker(T - A.n), then PnP m = P mpn = 0 
if n  # m  and 

7.7 

where this series converges to T in the metric defined by the norm on �Yf). 
PROOF. Let A = (T + T*)/2, B = (T - T*)/2i. So A, B are compact self-adjoint 
operators, T = A + iB, and AB = BA since T is normal. The idea of the proof 
is rather simple. We'll get started in this proof together but the reader will 
have to complete the details. 

By Theorem 5 . 1 ,  A =  I:� cxnE"' where cxneR, an -I= cxm if n -I=  m, and En is the 
projection of Yf onto ker(A - an). Since AB = BA, the idea is to use 
Theorem 7.5 and Theorem 5. 1 applied to B to diagonalize A and B 
simultaneously; that is, to find an orthonormal basis for Yf consisting of 
vectors that are simultaneously eigenvectors of A and B . 

• 

Since BA = AB, En.Yt = .Pn reduces B for every n (7.5). Let Bn = B I .Pn; 
then Bn = B! and dim .Pn < oo .  Applying (5. 1 )  (or, rather, the corresponding 
theorem from linear algebra) to Bn, there is a basis { e<n>: 1 �j � dn} for 2 n 
and real numbers {p�n>: 1 �j � dn} such that Bne�n> = p�n>e�n>. Thus 
T e�n> = Ae�n> + iBe�n> == ( cxn + if3�n>)e�n>. 

Therefore { e�n>: 1 �j � d"' n � 1 }  is a basis for cl (ran A) consisting of 
eigenvectors for T. It may be that cl (ran A) # cl (ran T). Since B is reduced 
by ker A = (ran A)J. and B0 = B i ker A is a compact self-adjoint operator there 
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is an orthonormal basis { e}
0>: j � 1 }  for cl (ran B0) and scalars {/3}0>: j � 1 }  

such that Be<.o> = p<.0>e<.
0>. It follows that Te<.o> = if3<.0>e<.0>. Moreover, J J J J J J 

ker T* => ker A nker B0 so cl (ran T) c cl (ran A) (f) cl (ran B0). 
The remainder of the proof now consists in a certain amount ofbookeeping 

to gather together the eigenvectors belonging to the same eigenvalues of T 
and the performing of some light housekeeping chores to obtain the 
convergence of the series (7.7) • 
7.8. Corollary. With the notation of (7.6): 

(a) ker T = [ V  {PnJf: n � 1 }  ] .l; 
(b) each P n has finite rank; 
(c) I I  T I I  = sup { I An 1 : n � 1 }  and either {An} is finite or An ---+ 0 as n ---+ oo.  

The proof of (7.8) is similar to the proof of (5.3). 

7.9. Corollary. If T is a compact operator on a complex Hilbert space, then 
T is normal if and only if T is diagonalizable. 

If T is a normal operator which is not necessarily compact, there is a 
spectral theorem for T which has a somewhat different form. This theorem 
states that T can be represented as an integral with respect to a measure 
whose values are not numbers but projections on a Hilbert space. 
Theorem 7.6 will be a consequence of this more general theorem and 
correspond to the case in which this projection-valued measure is "atomic." 

The approach to this more general spectral theorem will be to develop a 
functional calculus for normal operators T. That is, an operator l/J(T) will 
be defined for every bounded Borel function l/J on <C and certain properties 
of the map l/J�l/J(T) will be deduced. The projection-valued measure will 
then be obtained by letting Jl(�) = X&(T), where X& is the characteristic function 
of the set �. These matters are taken up in Chapter IX. 

At this point, Theorem 7.6 will be used to develop a functional calculus 
for compact normal operators. For the remainder of this section Jf is a 
complex Hilbert space. 

7.10. Definition. Denote by l00(<C) all the bounded functions l/J: <C ---+ <C. If T 
is a compact normal operator satisfying (7.7), define l/J(T): Jf ---+ Jf by 

00 

l/J(T) = L l/J(An)P n + l/J(O)P o, 
n = l 

where P0 = the projection of Jf onto ker T. 
Note that l/J(T) is a diagonalizable operator and l l l/J(T) I I  = sup { l l/J(O) I , 

l l/J(A 1 ) I , . . .  } (4.6). Much more can be said. 

7.1 1 .  Functional Calculus for Compact Normal Operators. If T is a compact 
normal operator on a ([-Hilbert space :K, then the map 4>�4>(T) of 
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l00(<C) -+ 81(Jt') has the following properties: 
(a) l/J�l/J(T) is a multiplicative linear map of l00(<C) into 81(Jt'). If l/J = 1 ,  

l/J(T) = 1 ;  if l/J(z) = z on a p(T) u {0}, then l/J(T) = T. 
(b) l l l/J(T) I I  = sup { l l/J(A.) I : A.ea p(T) } . 
(c) l/J(T)* = l/J*(T), where l/J* is the function defined by l/J*(z) = l/J(z). 
(d) If Ae81(£) and AT = T A, then Al/J(T) = l/J(T)A for all l/J in l00(<C). 
PROOF. Adopt the notation of Theorem 7.6 and (7. 10). 

(a) If l/J, I/Jel00(<C), then (l/JI/I)(z) = l/J(z)I/J(z) for z in <C. Also, l/J(T)I/J(T)h = 
[ l/J(O)P 0 + L l/J(An)P nJ [1/J (O)P 0 + L 1/J(A.m)P mJ h = [ l/J(O)P 0 + LnQJ(An)P nJ 
[1/J(O)P oh + Lmi/J(A.m)P mh]. Since p np m = 0 when n # m, this gives that 
l/J(T)I/J(T)h = l/J(O)I/J(O)P0h + LnlP(An)I/J(A.n)Pnh = (l/JI/J)(T)h. Thus l/J�l/J(T) is 
multiplicative. The linearity of the map is left to the reader. If l/J(z) = 1, then 
l/J(T) = 1 (T) = p 0 + L: 1 p n = 1 since { p 0' p 1 ' 0 0 0 }  is a partition of the 
identity. If l/J(z) = z, l/J(A.n) = An and so l/J(T) = T. 

Parts (b) and (c) follow from Exercise 5. 
(d) If AT = T A, Theorem 7.5 implies that P 0Jt', P 1 Jt', . . .  all reduce A. 

Fix hn in Pn.Jt', n � 0. If l/JEl00(<C), then AhnePn.Jt' and so l/J(T)Ahn = 
l/J(A.n)Ahn = A(l/J(A.n)hn) = Al/J(T)hn. If he.Jt', then h = L: 0 h"' where hnEPn. 
Hence l/J(T)Ah = L: 0 l/J(T)Ahn = L:_ 0 Al/J(T)hn = Al/J(T)h. (Justify the first 
equality.) • 

Which operators on Jt' can be expressed as l/J(T) for some l/J in l00(<C)? 
Part (d) of the preceding theorem provides the answer. 

7.12. Theorem. If T is a compact normal operator on a <C-Hilbert space, then 
{ l/J(T): l/Je l00(<C) }  is equal to 

{Be81(Jt'): BA = AB whenever AT = T A}. 
PROOF. Half of the desired equality is obtained from (7. 1 1d). So let Be81(Jt') 
and assume that BA = AB whenever AT = T A. Thus, B must commute with 
T itself. By (7.5), B is reduced by each Pn.Jt' = Jt'n, n � 0; put Bn = B I .Jt'n. Fix 
n � 0 for the moment and let An be any bounded operator in 81(£n). Define 
Ah = Anh if h e.Jt' n and Ah = 0 if he.Jt' m' m # n, and extend A to Jt' by linearity; 
so A =  ffi:= o Am where Am = 0 if m # n. By (7.5), AT = T A; hence BA = AB. 
This implies that BnAn = AnBn. Since An was arbitrarily chosen from 81(£ n), 
Bn = Pn for some Pn (Exercise 7). If (/J: <C-+ <C is defined by l/J(O) = /30 and 
c/>(A.n) = Pn for n � 1 ,  then B = l/J(T). • 

7.13. Definition. If A e81(Jt'), then A is positive if ( Ah, h )  � 0 for all h in Jt'. 
In symbols this is denoted by A � 0. 

Note that by Proposition 2. 12  every positive operator on a complex Hilbert 
space is self-adjoint. 
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7.14. Proposition. If T is a compact normal operator, then T is positive if and 
only if all its eigenvalues are non-negative real numbers. 
PROOF. Let T = L� AnPn. If T � 0 and hePnJt with I I h I I = 1 ,  then Th = Anh. 
Hence An = < Th, h ) � 0. Conversely, assume each An � 0. If heJt, 
h = h0 + "L: 1 hn, where h0eker T and hnePnJt for n � 1. Then Th = L� Anhn. 
Hence (Th, h ) = <L: 1 Anhn, ho + "L:= 1 hm ) = L:: 1 L::= oAn(h"' hm) = 
"L: 1 An I I  hn 1 1 2 � 0 since ( h,., hm ) = 0 when n # m. • 

7.15. Theorem. If T is a compact selfadjoint operator, then there are unique 
positive compact operators A, B such that T = A - B and AB = BA = 0. 

PROOF. Let T = "L: 1 AnPn as in (7.6). Define l/J, 1/J: <C ---+ <C by l/J(An) = An if 
An > 0, l/J(z) = 0 otherwise; 1/J(An) = - An if An < 0, 1/J(z) = 0 otherwise. Put 
A =  l/J(T) and B = 1/J(T). Then A =  L {AnPn: An > 0} and B = '22 { - AnPn: 
An < 0} . Thus T = A - B. Since l/Jt/1 = 0. AB = BA = 0 by (7. 1 1 a). Since 
l/J, 1/1 � 0, A, B � 0 by the preceding proposition. It remains to show that 
A, B are unique. 

Suppose T = C - D  where C, D are compact positive operators and CD = 
DC = 0. It is easy to check that C and D commute with T. Put A-0 = 0 and 
P 0 = the projection of Jt onto ker T. Thus C and D are reduced by P nJt = Jt n 
for all n ;::: 0. Let Cn = C l :Ytn and Dn = D I Jtn. So CnDn = DnCn = 0, 
AnPn = T I :Ytn = Cn - D"' and C"' Dn are positive. Suppose An > O and let heJtn. 
Since CnDn = 0, ker Cn => cl [ran Dn] = (ker Dn)j_ . So if he(ker Dn)j_, then 
A,.h = - D,.h. Hence An I I  h 1 1 2 = - ( Dnh, h ) � 0. Thus h = 0 since An > 0. That 
is, kerDn = Jfn. Thus Dn = O = B I Jtn anq Cn = AnPn = A I Jt,.. Similarly, if 
An < O, Cn = O = A I Jtn and Dn = - AnPn = B I Jtn. On Jt0, T I Jf0 = 0 =  
C0 - D0• Thus C0 = D0• But 0 = C0D0 = C�. Thus 0 = ( C�h, h ) =  I I  C0h 1 1 2 , 
so C0 = 0 = A I Jt 0 and D0 = 0 = B I Jt 0• Therefore C = A  and D = B. • 

Positive operators are analogous to positive numbers. With this in mind, 
the next result seems reasonable. 

7.16. Theorem. If T is a positive compact operator, then there is a unique 
positive compact operator A such that A 2 = T. 

PROOF. Let T = 'L: 1 AnP n as in the Spectral Theorem. Since T ;::: 0, An > 0 
for all n (7. 1 4). Let l/J(An) = A� /2 and l/J(z) = 0 otherwise; put A =  l/J(T). It is 
easy to check that A ;::: 0; A =  L� A� I2Pn so that A is compact; and A2 = T. 

The proof of uniqueness is left to the reader. • 

EXERCISES 
1 .  If { P,. } is a sequence of pairwise orthogonal nonzero projections and P = L P ,., 

show that II P - L�= 1 Pi II = 1 for all n. 

2. If Je is separable, show that the definitions of a diagonalizable operator in (4.6) 
and (7.3) are equivalent. 
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3. If A = L rxiPi as in (7.3), show that A is compact if and only if: (a) rxi = 0 for all 
but a countable number of i; (b) Pi has finite rank whenever rxi # 0; (c) if 
{ cx 1 , rx2, . . .  } = { rxi: rxi # 0}, then rx,. --+ 0 as n --+  oo. 

4. Prove Proposition 7.4. 

5. If A =  Ef)irxiPi, show that A* = Ef)i liiP;, A is normal, and II A I I = sup { l rxd :  ie/} .  

6. Give the remaining details in the proof of (7.6). 

7. If A eBI(Jt') and A T = T A for every compact operator T, show that A is a multiple 
of the identity operator. 

8. Suppose T is a compact normal operator on a <C-Hilbert space such that 
dim ker(T - A.) � 1 for all A. in <C. Show that if AeBI(Jt') and AT = T A, then 
A = l/J(T) for some l/J in /00(<C). 

9. Prove a converse to Exercise 8: if T is a compact normal operator such that 
{ AeBI(Jt'): A T = T A} = { l/J(T): QJE I00(<C) }, then dim ker(T - A.) � 1 for all A. in <C. 

10. Let T be a compact normal operator and show that dim ker(T - A.) � 1 for 
all A. in <C if and only if there is a vector h in Jt' such that {p(T)h: p is a poly
nomial in one variable} is dense in Jt'. (Such a vector h is called a cyclic vector 
for T.) 

1 1 . If A.e<C, let £5;. be the unit point mass at A.; that is, £5;. is the measure on <C such 
that £5 ;.(L\) = 1 if A.el\ and £5 ;.(L\) = 0 if A.¢L\. If { A. 1 , A.2 , . • .  } is a bounded sequence 
of distinct complex numbers and { rx, } is a sequence of real numbers with rx,. > 0 
and L,.rx,. < oo, let Jl = L;'= 1 rx,£5 ;."; so Jl is a finite measure. If QJEi00(<C), let M q, be 
the multiplication operator on L2(Jl). Define T: L2(Jl) --+ L2(Jl) by (Tf)(A.,) = A.,.f(A.,.). 
Prove: (a) T is a normal operator; (b) T has a cyclic vector (see Exercise 10); (c) 
if AeBI(Jt') and A T = T A, then A =  M c/J for some l/J in /00(<C); (d) T is compact 
if and only if A., --+ 0. (e) If T is compact, find all of the cyclic vectors for T. (f) If 
T is compact, find the decomposition (7.7) for T. 

1 2. Using the notation of Theorem 7. 1 1 , give necessary and sufficient conditions on 
T and l/J that l/J(T) be compact. (Hint: consider separately the cases where ker T 
is finite or infinite dimensional.) 

1 3. Prove the uniqueness part of Theorem 7 . 1 6. 

14. If TeBI(Jt'), show that T* T � 0. 

1 5. Let T be a compact normal operator and show that there is a compact positive 
operator A and a unitary operator U such that T = U A = A U. discuss the 
uniqueness of A and U. ' 

1 6. (Polar decomposition of compact operators.) Let T e810(Jt') and let A be the unique 
positive square root of T* T [(7. 1 6) and Exercise 14]. (a) Show that II Ah II = II Th I I 
for all h in Jt'. (b) Show that there is a unique oprator U such that I I Uh II = I I  h I I 
when h .l ker T, Uh = 0 when heker T, and UA = T. (c) If U and A are as in (a) 
and (b), show that T = A U if and only if T is normal. 

1 7. Prove the following uniqueness statement for the functional calculus (7. 1 1 ). If T 
is a compact normal operator on a CC-Hilbert space .K and r: l00(CC) --+ &�(�) is 
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a multiplicative linear map such that I I  r(c/J) I I  = sup { I c/J(A.) I : A.eu p(T) } , r( l )  = 1 ,  and 
r(t/1) = T whenever t/J(z) = z on u p(T) u {0}, then r(c/J) = c/J(T) for every cfJ in /00(<C). 

§8* .  Unitary Equivalence for Compact 
Normal Operators 

In Section 1.5 the concept of an isomorphism between Hilbert spaces was 
defined as the natural equivalence relation on Hilbert spaces. This equivalence 
relation between the spaces induces a natural equivalence relation between 
the operators on the spaces. 

8.1. Definition. If A, B are bounded operators on Hilbert spaces Jf, $', then 
A and B are unitarily equivalent if there is an isomorphism U: Jf -+  $' such 
that U AU- 1 = B. In symbols this is denoted by A "' B. 

Some of the elementary properties of unitary equivalence are contained 
in Exercises 1 and 2. Note that if UAU- 1 = B, then UA = BU. 

The purpose of this section is to give necessary and sufficient conditions 
that two compact normal operators be unitarily equivalent. Later, in Section 
IX. 10, necessary and sufficient conditions that any two normal operators be 
unitarily equivalent are given and the results of this section are subsumed 
by those of that section. 

8.2. Definition. If T is a compact operator, the multiplicity function for T is 
the cardinal number valued function mT defined for every complex number 
A. by mT(A.) = dim ker(T - A.). 

Hence mT(A.) � 0 for all A. and mT(A.) > 0 if and only if A. is an eigenvalue 
for T. Note that by Proposition 4. 1 3, mT(A.) < oo if A. :;C 0. 

If, T, S are compact operators on Hilbert spaces and U: Jf -+  $' is an 
isomorphism with UTU- 1 = S, then U ker(T - A.) = ker(S - A.) for every A. 
in <C. In fact, if Th = A.h, then SUh = UTh = A.Uh and so Uheker(S - A.). 
Conversely, if keker(S - A.) and h = u- 1k, then Th = TU- 1k = u- 1Sk = A.h. 
In particular, it must be that mT = m5• If S and T are normal, this condition 
is also sufficient for unitary equivalence. 

8.3. Theorem. Two compact normal operators are unitarily equivalent if and 
only if they have the same multiplicity function. 

PROOF. Let T, S be compact normal operators on Hilbert spaces Jf, $'. If 
T "' S, then it has already been shown that mT = m5• Suppose now that 
mT = m5• We must manufacture a unitary operator U: Je -+  $' such that 
uru- 1 = S. 

Let T =  'L: 1 AnPn and let S =  'L: 1 JlnQn as in the Spectral Theorem (7.6). 
So if n =I= m, then An =I= Am and Jln ¥ Jlm, and each of the projections P n and Qn 
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has finite rank. Let P 0, Q0 be the projections of Jf, $' onto ker T, ker S; so 
Po = CL � Pn) j_ and Qo = (L � Qn)j_. Put A0 = Jlo = 0. 

Since mT = m5, 0 < mT(An) = m5(An). Hence there is a unique Jli such that 
Jli = An. Define n: :N -+  :N by letting Jl1t(n) = An. Let n(O) = 0. Note that 1t is 
one-to-one. Also, since 0 < ms(Jln) = m-r(Jln), for every n there is a j such that 
n(j ) = n. Thus n: :N u { 0} -+ :N u { 0} is a bijection or permutation. Since 
dim Pn = mT(An) = ms(Jl1t(n) ) = dim Q1t(n) ' there is an isomorphism Un: Pn:Yf -+  
Q1t<n>$' for n � 0. Define U: Jf -+ $' by letting U = U n on P n:Yf and extending 
by linearity. Hence U = CD: 0 U n· It is easy to check that U is an 
isomorphism. Also, if hePn:Yf, n � 0, then UTh = AnUh = Jl1t<n>Uh = SUh. 
Hence UTU - 1 = S. • 

If V is the Volterra operator, then mv = O  (4. 1 1 ) and V and the zero 
operator are definitely not unitarily equivalent, so the preceding theorem 
only applies to compact normal operators. There are no known necessary 
and sufficient conditions for two arbitrary compact operators to be unitarily 
equivalent. In fact, there are no known necessary and sufficient conditions 
that two arbitrary operators on a finite-dimensional space be unitarily 
equivalent. 

EXERCISES 
1 .  Show that "unitary equivalence" is an equivalence relation on f!l(Jt'). 

2. Let U: Jt' --+  f be an isomorphism and define p: f!l(Jt') --+ f!l(f) by p(A) = U A U - 1 • 
Prove: (a) I I  p(A) I I = I I A I I , p(A *) = p(A *), and p is an isomorphism between the 
two algebras f!l(Jt') and f!l(f). (b) p(A)ef!l0(f) if and only if Aef!l0(Jt'). (c) If 
Tef!l(Jt'), then AT = T A if and only if p(T)p(A) = p(A)p(T). (d) If Aef!l(Jt') and 
A � Jt', then A is invariant (reducing) for A if and only if U A is invariant 
(reducing) for p(A). 

3. Say that an operator A on Jt' is irreducible if the only reducing subspaces for A 
are (0) and Jt'. Prove: (a) The Volterra operator is irreducible. (b) The unilateral 
shift is irreducible. 

4. Suppose A = $ {A;: iei} and B = $ { B; : iei} where each A; and B; is irreducible 
(Exercise 3). Show that A ,._ B if and only if there is a bijection n:: I --+  I such that 
A; ,._ B nCif 

5. If T is a compact normal operator and mr = m is its multiplicity function, prove: 
(a) {A.: m(A.) > 0} is countable and 0 is its only possible cluster point; (b) m(A.) < oo 
if A. #  0. Show that if m: <C --+  N u {0, ro} is any function satisfying (a) and (b), then 
there is a compact normal operator T such that mr = m. 

6. Show that two projections P and Q are unitarily equivalent if and only if 
dim(ran P) = dim(ran Q) and dim(ker P) = dim (ker Q). 

7. Let A: L2(0, 1) --+ L2(0, 1) be defined by (Af)(x) = xf(x) for f in L2(0, 1) and x in 
(0, 1 ). Show that A ,._ A 2 • 

8. Say that a compact normal operator T is simple if mr � 1 .  (See Exercises 7. 10 
and 7. 1 1 .) Show that every compact normal operator T on a separable Hilbert 
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space is unitarily equivalent to CD:= 1 Tn, where each Tn is a simple compact 
normal operator and mr" � mr n +  1 for all n. Show that I I Tn I I -+ 0. (Of course, there 
may only be a finite number of Tn.) 

9. Using the notation of Exercise 8, suppose also that S is a compact normal operator 
and s ,._ EB:= 1 Sn, where sn is a simple compact normal operator and m8" � m8" + 1 

for all n. Show that T ,._ S if and only if Tn ,._ Sn for all n. 

10. If T is a compact normal operator on a separable Hilbert space, show that there 
are simple compact normal operators T1 , T2 , • • •  such that T ,._ 0 EB T1 EB T�2> EB 
T�3> 6:) · · · , where: (a) for any operator A, A<n> = A  6:) · · · EB A (n times); (b) 0 is the 
zero operator on an infinite dimensional space; (c) for n i= k, m r"m rk = 0; and 
(d) if ker T is infinite dimensional, then ker Tn = (0) for all n. (Of course not all 
of the summands need be present.) Show that I I Tn I I -+ 0. 

1 1 . Using the notation of Exercise 10, let S be a compact normal operator and let 
0 EB S 1 EB S�2 > EB · · · be the corresponding decomposition. Show that T ,._ S if and 
only if Tn ,._ Sn and ker T and ker S have the same dimension. 

1 2. If T is a non-zero compact normal operator, show that T and T EB T are not 
unitarily equivalent. 

1 3. Give an example of a nontrivial operator T such that T � T EB T. Show that if 
T ,._ T 6:) T, then T ,._ T EB T EB • · · .  Characterize the diagonalizable normal 
operators T such that T ,._ T EB T. 

14. Let Jf be the space defined in Example 1. 1 .8  and let U: Jf -+  L2(0, 1) be the 
isomorphism defined by U f = f' (Exercise 1 . 1 .4). If (Af) (x) = xf(x) for f in Jf, 
what is U A U - 1? 



CHAPTER III 
Banach Spaces 

The concept of a Banach space is a generalization of Hilbert space. A Banach 
space assumes that there is a norm on the space relative to which the space 
is complete, but it is not assumed that the norm is defined in terms of an 
inner product. There are many examples of Banach spaces that are not 
Hilbert spaces, so that the generalization is quite useful. 

§ 1 .  Elementary Properties and Examples 

1 .1 .  Definition. If !!( is a vector space over F, a seminorm is a function 
p: !!( -+ [0, oo) having the properties: 

(a) p(x + y) � p(x) + p(y) for all x, y in !!t. 
(b) p(C(x) = I C( I p(x) for all C( in F and x in !!t. 

It follows from (b) that p(O) = 0. A norm is a seminorm p such that 

(c) x = 0 if p(x) = 0. 

Usually a norm is denoted by I I  · I I . 
The norm on a Hilbert space is a norm. Also, the norm on &I(�) is a norm. 
If !!( has a norm, then d(x, y) = I I  x - y I I  defines a metric on !!t. 

1.2. Definition. A normed space is a pair (!!t, I I · I I ), where !!t is a vector space 
and I I · I I  is a norm on !!t. A Banach space is a normed space that is complete 
with respect to the metric defined by the norm. 

1 .3. Proposition. If !!( is a normed space, then 

(a) the function !!( x PI -+ !!( defined by (x, y)t-+x + y is continuous; 
(b) the function F x PI -+ PI defined by (a, x)t-+C(X is continuous. 
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PROOF. If Xn -+ X and Yn -+ y, then I I (xn + Yn) - (x + y) I I  = I I  (xn - x) + (Yn - y) I I  � 
I I  x" - x I I + I I Yn - y I I -+ 0 as n -+  oo. This proves (a). The proof of (b) is left to 
the reader. • 

The next lemma is quite useful. 

1 .4. Lemma. If p and q are seminorms on a vector space PI, then the following 
statements are equivalent. 

(a) p(x) � q(x) for all x. (That is, p � q.) 
(b) {xePI: q(x) < 1 ) } c {xePI: p(x) < 1 } . 
(b') p(x) < 1 whenever q(x) < 1 .  
(c) {x: q(x) � 1 } c {x: p(x) � 1 } .  
(c') p(x) � 1 whenever q(x) � 1 .  
(d) {x : q(x) < 1 }  c {x : p(x) � 1 } .  
(d') p(x) � 1 whenever q(x) < 1 .  

PROOF. It is clear that (b) and (b'), (c) and (c'), and (d) and (d') are equivalent. 
It is also clear that (a) implies all of the remaining conditions and that both 
(b) and (c) imply (d). It remains to show that (d) implies (a). 

Assume that (d) holds and put q(x) = oc. If e > 0, then q((oc + e) - 1 x) = 
(oc + e) - 1 oc < 1 .  By (d), 1 � p((oc + e)- 1 x) = (oc + e)- 1 p(x), so p(x) � oc + e = q(x) + e. 
Letting e -+ 0  shows (a). • 

If 1 1 · 1 1 1 and 1 1 · 1 1 2 are two norms on PI, they are said to be equivalent norms 
if they define the same topology on PI. 

1 .5. Proposition. If 1 1 · 1 1 1 and 11 · 1 1 2 are two norms on PI, then these norms are 
equivalent if and only if there are positive constants c and C such that 

for all x in PI. 

PROOF. Suppose there are constants c and C such that c II x 1 1 1 � II x 1 1 2 � C II x 11 1 
for all x in PI. Fix x0 in PI, e > 0. Then 

{xePI: I I  x - x0 1 1 1 < e/C} c {xePI: II x - x0 1 1 2 < e}, 
{xePI: I I  x - x0 1 1 2 < ce} c {xePI: I I  x - x0 1 1 1 < e} .  

This shows that the two topologies are the same. Now assume that the two 
norms are equivalent. Hence { x: I I  x 1 1 1 < 1 }  is an open neighborhood of 
0 in the topology defined by 11 · 1 1 2 • Therefore there is an r > 0 such that 
{x: l l x l l 2 < r} c {x: l l x l l 1 < 1 } . If q(x) = r- 1 l l x l l 2 and p(x) = l l x l l 1 , the 
preceding lemma implies II x II 1 � r- 1 I I  x 1 1 2 or c I I  x I I  1 � I I  x 1 1 2 , where c = r. The 
other inequality is left to the reader. • 

There are two types of properties of a Banach space: those that are 
topological and those that are metric. The metric properties depend on the 
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precise norm; the topological ones depend only on the equivalence class of 
norms (see Exercise 4). 

1.6. Example. Let X be any Hausdorff space (all spaces in this book are 
assumed to be Hausdorff unless the contrary is specified) and let Cb(X) = all 
continuous functions f: X -+  IF such that l lf l l = sup { lf(x) l :  x E X} < oo. For 
f, g in Cb(X), define (f + g): X -+  F by (f + g)(x) = f(x) + g(x); for rx in F 
define (rxf)(x) = rxf(x). Then Cb(X) is a Banach space. 

The proofs of the &tatements in ( 1 .6) are all routine except, perhaps, 
for the fact that Cb(X) is complete. To see this, let {fn } be a Cauchy 
sequence in Cb(X). So if e > 0, there is an integer N8 such that for n, m � N8, 
e > I I  fn - fm I I  = sup { lfn (x) -. fm(x) l :  xeX}.  In particular, for any x in 
X, lfn (x) - fm(x) l � I I fn - fm I I  < e when n, m � N8• So {fn (x) } is a Cauchy 
sequence in F. Let f(x) = lim fn(x) if xeX. Now fix x in X. If n, m � N8, then 
l f(x) - fn(x) l � l f(x) - fm(x) l + I I fm - fn I I < lf(x) - fm(x) l + e. Letting m -+  00 
gives that l f(x) - fn(x) l � e when n � N8• This is independent of x. Hence 
I I f - fn I I  � e for n � N 8• 

What has been just shown is that I I  f - fn I I  -+ 0 as n -+  oo. Note that this 
implies that fn(x) -+ f(x) uniformly on X. It is standard that f is continuous. 
Also, I I f I I � II f - fn I I + I I fn I I < oo.  Hence f eCb(X) and so Cb(X) is complete. 

Note that a linear subspace OJ/ of a Banach space f!I that is topologically 
closed is also a Banach space if it has the norm of f!I. 

1.7. Proposition. If X is a locally compact space and C0 (X) = all continuous 
functions f: X -+ F  such that for all e > 0, {xeX: l f(x) l � e} is compact, then 
C0 (X) is a closed subspace of Cb(X) and hence is a Banach space. 
PROOF. That C0(X) is a linear manifold in Cb(X) is left as an exercise. It will 
only be shown that C0(X) is closed in Cb(X). Let {fn } c C0(X) and suppose 
fn -+ f in Cb(X). If e > 0, there is an integer N such that I I  fn - f I I < e/2; that 
is, l fn(x) - f(x) l < e/2 for all n � N  and x in X. If lf(x) l � e, then 
e � lf(x) - fn(x) + fn(x) l � ej2 + l fn(x) l for n � N; so l fn(x) l � e/2 for n � N. 
Thus, {xeX: lf(x) l � e} c {xeX:  l fN(x) l � e/2} so that feC0(X). • 

The space C0(X) is the set of continuous functions on X that vanish at 
infinity. If X = R, then C0(R) = all of the continuous functions f: R -+  F such 
that limx_ ± 00/(x) = 0. If X is compact, C0 (X) = Cb(X) = C(X). 

If I is any set, then give I the discrete topology. Hence I becomes locally 
compact. Also any function on I is continuous. Rather than Cb(l), the 
customary notation is 1 00 (/). That is, 1 00 (/) = all_bounded_functions f: I -+_F' 
wi��JllJL::__s.up {Jffill: ie/ } . c0(/) consists of all functions f: I -+  F such that 
for every e > 0, { ie/ : lf(i) l � e} is finite. If l = IN", the �sual notation for these 
spaces is 1 00  ��1!4 _c0 •  Note that 1 00  consists of all bounded sequences of scalars 

------ - --- _,. . ��- . 

and c0 consists of all sequences that converge to 0. .. ,.., 
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1 .8. Example. If (X, n, Jl) is a measure space and 1 � p � oo, then LP(X, n, Jl) 
is a Banach space. 

The preceding example is usually proved in courses on integration and 
no proof is given here. 

1 .9. Example. Let I be a set and 1 � p < oo. Define [P(I) to be the set of 
all functions f: I --+  F such that L { l f(i) I P : iei} < oo;  and define I I f l i P = 
(L { l f(i) IP: iei}  )1 1P . Then [P(I) is a Banach space. If I =  N, then [P(N) = [P . 

If n = all subsets of I and for each � in n, Jl(�) = the number of points 
in L\ if � is finite and Jl(�) = 00 otherwise, then [P(I) = LP(I, n, Jl). So the 
statement in ( 1 .9) is a consequence of the one in ( 1 .8). 

1 .10. Example. Let n � 1 and let c<"> [o, 1 ]  = the collection of functions 
f: [0, 1 ] --+ F such that f has n continuous derivatives. Define II f II = 
SUPo � k � n {sup { l f(k)(x) l : 0 � X �  1 }  } .  Then c<n> [o, 1 ]  is a Banach space. 

1 .1 1 .  Example. Let 1 � p < oo and n � 1 and let w;[o, 1 ]  = the functions 
f: [0, 1 ] --+ F such that f has n - 1 continuous derivatives, f<n - l )  is absolutely 
continuous, and f<n>eLP[O, 1] .  For f in w;[o, 1 ], define 

1 1 ! 1 1 = i·o [J: I J<kl(x) IP dx J 'P
. 

Then w;[o, 1 ]  is a Banach space. 

The following is a useful fact about seminorms. 

1 .12. Proposition. If p is a seminorm on PI, l p(x) - p(y) l � p(x - y) for all x, y 
in PI. If 1 1 · 1 1  is a norm, then I l l x I I  - I I y I l l �  I I  x - y I I for all x, y in PI. 
PROOF. Of course, the inequality for norms is a consequence of the one for 
seminorms. Note that if x, yeP£, p(x) = p(x - y + y) � p(x - y) + p(y), so 
p(x) - p(y) � p(x - y). Similarly, p(y) - p(x) � p(x - y). • 

There is the concept of"isomorphism" for the category of Banach spaces. 

1 .13. Definition. If PI and OJ/ are normed spaces, PI and OJ/ are isometrically 
isomorphic if there is a surjective linear isometry from PI onto OJ/. 

'• 

The term isomorphism in Banach space theory is reserved for linear 
bijections T: PI --+ OJ/ that are homeomorphisms. 

EXERCISES 
1 .  Complete the proof of Proposition 1 .3. 

2. Complete the proof of Proposition 1 .5. 
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3. For 1 � p < oo and x = (x 1 , • . .  , xd) in Fd, define II x l i P = [L�= 1 1 xi i
P] 1 1P; define 

l l x l l oo  = sup { l xi l: 1 �j � d}. Show that all of these norms are equivalent. For 
1 � p, q � oo, what are the best constants c and C such that c II x II P � II x l l q � C I I x I I P 
for all x in P? 

4. If 1 � p � oo and II · l i P is defined on R 2 as in Exercise 3, graph { xeR 2 : II x l i P = 1 } .  
Note that if 1 < p < oo, I I  x l i P = I I  y l i P = 1 ,  and x # y, then for 0 < t < 1 , 
I I  tx + (1  - t)y l i P < 1. The same cannot be said for p = 1, oo. 

5. Let c = the set of all sequences { lX, } � , ll,. in F, such that lim lX, exists. Show that 
c is a closed subspace of I oo and hence is a Banach space. 

6. Let X = { n - 1 : n � 1 }  u { 0} . Show that C(X) and the space of c of Exercise 5 are 
isometrically isomorphic. 

(a) Show that if 1 � p < oo and I is an infinite set, then IP(I) has a dense set of 
the same cardinality as I. 

(b) Show that if 1 � p < oo, IP(I) and IP(J) are isometrically isomorphic if and 
only if I and J have the same cardinality. 

7. If I00 (I) and I00 (J) are isometrically isomorphic, do I and J have the same 
cardinality? 

v 8. Show that I oo is not se�l2l_e_! __ 

9. Complete the proof of Proposition 1 .7. 

10. Verify the statements in Example 1 . 1 0. 

1 1 . Verify the statements in Example 1 . 1 1 .  

1 2. Let X be locally compact and let X oo = X u { oo } be the one-point compactification 
of X. Show that C0(X) and {feC(X 00 ): f(oo) = 0}, with the norm it inherits as 
a subspace of C(X 00 ), are isometrically isomorphic Banach spaces. 

1 3 . Let X be locally compact and define Cc{X) to be the continuous functions/: X--+ F 
such that spt f = cl {xeX: f(x) # 0} is compact (spt f is the support of f). Show 
that Cc{X) is dense in C0(X). 

14. If w;[o, 1]  is defined as in Example 1 . 1 1 and f e w; [o, 1], let 1 1 1 ! 11 1 = 
, [J if(x) IP dx] 1 1P + [J if<">(x) IP dx] 1 1P. Show that 1 1 1 · 1 1 1 is equivalent to the norm 

defined on w; [0, 1] .  
..... 

1 5. Let f!l be a normed space and let f!l be its completion as a metric space. Show 
..... 

that f!l is a Banach space. 

1 6. Show that the norm on C( [0, 1] ) = Cb( [0, 1] ) does not come from an inner product 
by showing that it does not satisfy the parallelogram law. 

§2. Linear Operators on Normed Spaces 

This section gathers together a few pertinent facts and examples concerning 
linear operators on normed spaces. A fuller study of operators on Banach 
spaces will be pursued later. 
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The proof of the first result is similar to that of Proposition 1.3. 1 and is 
left to the reader. [Also see (11. 1 . 1 ) .] �(�, CW) = all continuous linear trans
formations A :  � --+  CW. 

2.1 .  Proposition. If � and CW are normed spaces and A :  �--+  CW is a linear 
transformation, the following statements are equivalent. 

(a) Ae�(�, CW). 
(b) A is continuous at 0. 
(c) A is continuous at some point. 
(d) There is a positive constant c such that II Ax II � c II x II for all x in �-

If Ae�(�, CW) and 

then 
II A II = sup { II Ax I I : I I x I I � 1 } , 
I I A I I = sup { I I  Ax I I : I I x I I = 1 }  

= sup { I I Ax 1 1 / 1 1 x II : x '# 0} 

= inf { c > 0: I I  Ax I I � c I I  x I I for x in �}. 

I I  A I I is called the norm of A and �(�, CW) becomes a normed space if 
addition and scalar multiplication are defined pointwise. �(�, CW) is a Ban/ach 
space if CW is a Banach space (Exercise 1 ). A continuous linear operator is 
also called a bounded linear operator. 

The following examples are reminiscent of those that were given in 
Section 11. 1 .  

2.2. Example. lf (X, Q, Jl) is a a-finite measure space and cpeL 00 (X, Q, Jl), define 
Mq,:  LP(X, n, Jl) --+ LP(X, n, Jl), 1 � p � oo, by Mq,f = cpf for all f in IJ'(X, n, Jl). 
Then Mq,e�(LP(X, !l, Jl) ) and I I Mq, l l = ll c/J I I oo · 

2.3. Example. lf (X, !l, Jl), k, c 1 , and c2 are as in Example 11. 1 .6 and 1 � p � oo, 

then K:  LP(Jl) --+ LP(Jl), defined by 

(Kf)(x) = I k(x, y)f(y) dJl(Y) 

for all f in Il'(Jl) and x in X, is a bounded operator on LP(Jl) and I I K I I � c ! 1qc�1P, 
where 1/p + 1/q = 1 .  

2.4. Example. If X and Y are compact spaces and r :  Y--+  X is a continuous 
map, define A :  C(X) --+ C(Y) by (Af)(y) = f(r(y)). Then Ae�(C(X), C(Y) ) and 
II A l l = t .  

EXERCISES 
1 .  Show that for al(g(, F) '#; (0), al(g(, qv) is a Banach space if and only if qv is a Banach 

space. 
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A 

2. Let PI be a normed space, let OJ/ be a Banach space, and let PI be the completion 
A 

of PI. Show that if p :  BI(PI, OJ/) -+ BI(PI, OJ/) is defined by p(A) = A I PI, then p is an 
isometric isomorphism. 

3. If (X, Q, JL) is a u-finite measure space, Q>: X -+  F is an !l-measurable function, 
1 � p � oo, and Q>feLP(JL) whenever feLP(JL), then show that QJEL00(JL). 

4. Verify the statements in Example 2.2. 

5. Verify the statements in Example 2.3. 

6. Verify the statements in Example 2.4. 

7. Let A and t be as in Example 2.4. (a) Give necessary and sufficient conditions on 
t that A be injective. (b) Give such a condition that A be surjective. (c) Give such 
a condition that A be an isometry. (d) If X =  Y, show that A2 = A  if and only if 
t is a retraction. 

8. (Wilansky [ 195 1] )  Assume that A:  PI -+ OJ/  is an additive mapping (that is, 
A(x1 + x2 ) = A(x 1 ) + A(x2) for all x1 and x2 in PI) and show that conditions (b), (c), 
and (d) in Proposition 2. 1 are equivalent to the continuity of A. 

§3 .  Finite Dimensional Normed Spaces 

In functional analysis it is always good to see what significance a concept 
has for finite dimensional spaces. 

3.1. Theorem. If f!l is a finite dimensional vector space over F', then any two 
norms on f!l are equivalent. 

PRooF. Let { e 1 , . . .  , ed } be a Hamel basis for f!l. For x = 'L1= 1 xiei , define 
I I  x I I  oo = max { l xi l : 1 �j � d} .  It is left to the reader to verify that 1 1 · 1 1  oo is a 
norm. Let 1 1 · 1 1 be any norm on f!l. It will be shown that 1 1 · 1 1  and 1 1 · 1 1 oo are 
equivalent. 

If x = Lixiei , then I I  x I I  � Li l xi l l l  ei II � C II x I I oo ' when C = Li II ei 1 1 .  To 
show the other inequality, let !T be the topology defined on f!l by 1 1 · 1 1  oo and 
let diJ be the topology defined on f!l by 1 1 · 1 1 . Put B = {xef!l: I I  x II oo � 1 } .  The 
first part of the proof implies !T => OIJ. Since B is !T -compact and !T => OIJ, B 
is OIJ-compact and the relativizations of the two topologies to B agree. Let 
A =  {xef!l: II x I I  oo < 1 } .  Since A is !T -bpen, it is open in (B, OIJ). Hence there 
is a set U in diJ such that U n B = A. Thus Oe U and there is an r > 0 such 
that {xef!l: I I x I I < r} c U. Hence 
3.2 I I  x I I  < r and I I  x I I  oo � 1 implies I I  x I I  oo < 1 .  

Claim. I I  x I I  < r implies I I  x I I  oo < 1 .  

Let I I  x I I  < r and put x = "Lxiei, � = I I x II oo · So II xj� II oo = 1 and xj�eB. If 
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et � 1 ,  then I I  x/et I I  < r/et � r, and hence I I  x/et I I  oo < 1 by (3.2), a contradiction. 
Thus II x II oo = et < 1 and the claim is established. 

By Lemma 1 .4, II x II oo � r- 1 1 1  x I I  for all x and so the proof is complete . 
• 

3.3. Proposition. If f!£ is a normed space and .A is a finite dimensional linear 
manifold in f!£, then .A is closed. 

PROOF. Using a Hamel basis { e 1 , • • •  , en } for .A, define a norm II · I I oo on .A 
as in the proof of Theorem 3. 1 .  It is easy to see that .A is complete with 
respect to this new norm. But then Theorem 3. 1 implies that .A is complete 
with respect to its original norm and hence must be a closed subspace off!£ . 

• 

3.4. Proposition. Let f!£ be a finite dimensional normed space and let OJ/ be any 
normed space. If T: f!£--+  OJ/ is a linear transformation, then T is continuous. 

PROOF. Since all norms on f!£ are equivalent and T: f!£ --+  OJ/ is continuous 
with respect to one norm on f!£ precisely when it is continuous with respect 
to any equivalent norm, we may assume that I I 'L1= 1 eiei I I  = max { l ej l : 1 �j � d} ,  
where { ei} is a Hamel basis for f!£. Thus, for x = 'Leiei, I I  Tx II = II Li ei Tei I I  � 
Lj l ej l l l Tej I I  � c I I  X I I ' where c = Lj I I  Tej I I . By (2. 1 ), T is continuous. • 

EXERCISES 
1 .  Show that if PI is a locally compact normed space, then fi is finite dimensional. 

(This same result, due to F Riesz, is valid in the more general topological vector 
spaces-see IV. 1 . 1  for the definition. For a nice proof of this look at Pitcairn [ 1966] .) 

2. Show that 1 1 · 1 1 oo defined in the proof of Theorem 3. 1 is a norm. 

§4. Quotients and Products of Normed Spaces 

Let f!£ be a normed space, let .A be a linear manifold in f!£, and let Q: f!£--+  f!£ /.A 
be the natural map Qx = x + .A. We want to make f!£/.A into a normed 
space, so define 

4.1 I I  x + .A II = inf { I I x + y I I : ye.A}. 

Note that because .A is a linear space, I I  x + .A  I I = inf { I I  x - y I I : ye.A} = 
dist (x, .A), the distance from x to .A. It is left to the reader to show that 
(4. 1 )  defines a seminorm on f!£j.A. But if .A is not closed in f!£, (4. 1 )  cannot 
define a norm. (Why?) If, however, .A is closed, then ( 4. 1 )  does define a norm. 

4.2. Theorem. If .A � f!£ and I I  x + .A I I  is defined as in ( 4. 1 ), then 1 1 · 1 1  is a norm 
on f!£j.A. Also : 

(a) I I  Q(x) I I � I I  x II for all x in PI and hence Q is continuous. 
(b) If E£ is a Banach space, then so is El'j.A. 



§4. Quotients and Products of Normed Spaces 7 1  

(c) A subset W of f!I/.A is open relative to the norm if and only if Q - 1 (W) 
is open in f!I. 

(d) If U is open in f!I, then Q(U) is open in f!Ij.A. 
PROOF. It is left as an exercise to show that (4. 1 )  defines a norm on f!Ij.A. 
To show (a), I I Q(x) I I = I I x + .A I I � I I x I I since Oe.A; Q is therefore continuous 
by (2. 1 ). 

(b) Let { xn + .A} be a Cauchy sequence in f!Ij.A. There is a subsequence 
{ xnk + .A} such that 

I I (xnk + .A) - (xnk + 1 + .A) I I = I I Xnk - Xnk + 1 + .A I I  < 2 - k . 
Let y 1 = 0. Choose y2 in .A such that 

I I Xn 1 - Xn2 + Y2 l l � I I Xn 1 - Xn2 + .A II + 2 - 1 < 2 · 2 - 1 · 
Choose y3 in .A such that 

I I (xn2 + Y2 ) - (xn3 + Y3 ) II � I I Xn2 - Xn3 + .A II + 2 - 2 < 2 · 2 - 2 . 

Continuing, there is a sequence {Yk } in .A such that 

I I (xnk + Yk) - (xnk + 1 + Yk + 1 ) I I < 2 · 2 - k · 
Thus { xnk + Yk } is a Cauchy sequence in f!I (Why?). Since f!I is complete, 
there is an x0 in f!I such that xnk + Yk-+x0 in f!I. By (a), xnk + .A =  Q(xnk + Yk)-+  
Qx0 = x0 + .A. Since { xn + .A} is a Cauchy sequence, xn + .A --+  x0 + .A and 
f!I I .A is complete (Exercise 3). 

(c) If W is open in f!I I .A, then Q - 1 ( W) is open in f!I because Q is continuous. 
Now assume that W c f!Ij.A and Q - 1 (W) is open in f!I. Let r > O  and put 
Br = {xef!I: l l x l l < r} . It will be shown that Q(Br) = {x + .A: ll x + .A II < r} .  
In fact, if I I  x I I  < r, then I I  x + .A I I  � I I  x I I  < r. On the other hand, if 

' II x + .A II < r, then there is a y in .A such that I I x + y I I < r. Thus x + .A = 
Q(x + y)eQ(Br)· If x0 + .Ae W, then x0 eQ - 1 (W). Since Q - 1 (W) is open, there 
is an r > 0 such that x0 + Br = {x: I I x - x0 I I < r} c Q - 1 (W). The preceding 
argument now implies that W = QQ - 1 (W) � Q(x0 + Br) = {x + .A: I I x 
x0 + .A I I < r} . Hence W is open. 

(d) If U is open in f!I, then Q- 1 (Q(U)) = U + .A = {u + y: ue U, ye.A} = 
u {U + y: ye.A}. Each U + y is open, so Q- 1 (Q(U)) is open in f!I. By (c), 
Q(U) is open in f!I /.A. • 

Because Q is an open map [part (d)], it does not follow that Q is a closed 
map (Exercise 4). 

4.3. Proposition. If f!I is a normed space, .A � f!I, and % is a finite dimensional 
subspace of f!I, then .A + % is a closed subspace of f!I. 
PROOF. Consider f!I/.A and the quotient map Q: f!I -+ f!Ij.A. Since 
dim Q(%) � dim % < oo, Q(%) is closed in f!I/.A. Since Q is continuous 
Q - 1 (Q(%)) is closed in f!I; but Q - 1 (Q(%)) = A  + %. • 
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Now for the product or direct sum of normed spaces. Here there is a 
difficulty because, unlike Hilbert space, there is no canonical way to proceed. 
Suppose {Iri : ie/}  is a collection of normed spaces. Then 0 {Iri : ieJ}  is a 
vector space if the linear operations are defined coordinatewise. The idea is 
to put a norm on a linear subspace of this product. 
Let 11 · 1 1 denote the norm on each Iri. For 1 � p < oo ,  define 

$pX; = { xeQX; : l l x l l = [ � l l x(i) I I P JIP < oo } · 

Define 

E11ooX; = { XE Q X; : I I  X I I  = s�p II x(i) I I  < oo } · 

If { Ir1 , Ir2 , • . .  } is a sequence of normed spaces, define 

E11oXn = { X E f1
1 
Xn : I I  x(n) I I -+ 0 } ; 

give E90£rn the norm it has as a subspace of E9oo£rn. 
The proof of the next proposition is left as an exercise. 

4.4. Proposition. Let { Iri : ieJ} be a collection of normed spaces and let 
Ir = E9p£l"i , 1 � p � 00 .  

(a) Ir is a normed space and the projection Pi : Ir--+  Iri is a continuous linear 
map with II Pi(x) I I � II x I I  for each x in Ir. 

(b) Ir is a Banach space if and only if each Iri is a Banach space. 
(c) Each projection Pi is an open map of Ir onto Iri . 

A similar result holds for E9oil"n, but the formulation and proof of this is 
left to the reader. 

EXERCISES 
1 .  Show that if .A �  PI, then (4. 1 )  defines a norm on PI/.A. 

2. Prove that PI is a Banach space if and only if whenever {xn } is a sequence in PI 
such that L I I Xn I I  < oo, then I::'= 1 xn converges in PI. 

3. Show that if (X, d) is a metric space and { xn } is a Cauchy sequence such that 
there is a subsequence {xnk } that converges to x0 , then Xn -+ x0 .  

4. Find a Banach space PI and a closed subspace .A such that the natural map 
Q: PI -+  PI I .A is not a closed map. Can the natural map ever be a closed map? 

5. Prove the converse of (4.2b): If PI is a normed space, .A �  Jf, and both .A and 
PI/.A are complete, then PI is complete. (This is an example of what is called a 
"two-out-of-three" result. If any two of PI, .A, and PI /.A are complete, so is the 
third.) 

6. Let .A =  {xelP: x(2n) = 0  for all n}, 1 � p �  oo .  Show that [Pj.A is isometrically 
isomorphic to lP. 
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7. Let X be a normal locally compact space and F a closed subset of X. If 
.A = {! eC0(X): f(x) = 0 for all x in F}, then C0(X)/.A is isometrically isomorphic 
to C0(F). 

8. Prove Proposition 4.4. 

9. Formulate and prove a version of Proposition 4.4 for <f>o�n· 

10. If { �1 , • • •  , �n} is a finite collection of normed spaces and 1 � p � oo, show that 
the norms on <f>p�k are all equivalent. 

1 1 . Here is an abstraction of Proposition 4.4. Suppose { �i : iei} is a collection of 
normed spaces and Y is a normed space contained in F1. Define � =  {xeni�i: 
there is a y in Y with I I  x(i) I I  � y(i) for all i} . If xe�, define I I  x I I  = inf { I I  y I I : I I  x(i) I I  � 
y(i) for all i} . Then (�, I I · I I ) is a normed space. Give necessary and sufficient 
conditions on Y that each of the parts of (4.4) be valid for �-

1 2. Let � be a normed space and .A � �- (a) If � is separable, so is �/.A. (b) If 
�/.A and .A are separable, then � is separable. (c) Give an example such that 
�/.A is separable but � is not. 

1 3. Let {�i: iei}  be a collection of non-zero normed spaces. For 1 � p < oo, put 
� = <f>p�i ·  Show that � is separable if and only if I is countable and each !!(i is 
separable. Show that <f>oo�i is separable if and only if I is finite and each �i is 
separable. 

14. Show that <f>o�n is separable if and only if each �n is separable. 

1 5. Let J c I, and � =  <f>P {�i :  iei} ,  .A =  {xe�: x(j) = 0 for j in J} .  Show that �/.A 
is isometrically isomorphic to <f>p{�i : jeJ} . 

16. Let Jf be a Hilbert space and suppose .A �  Jf. Show that if Q :  Jf -+ .Yf/.A is 
the natural map, then Q: .A .l -+  Jf 1 .A is an isometric isomorphism. 

§5 .  Linear Functionals 

Let PI be a vector space over F'. A hyperplane in PI is a linear manifold Jt 
in PI such that dim (PI I Jt) = 1 .  Iff: PI--+ F' is a linear functional and f =/= 0, 
then kerf is a hyperplane. In fact, f induces an isomorphism between PI lker f 
and F'. Conversely, if Jt is a hyperplane, let Q: PI--+ PI I Jt be the natural 
map and let T: PIIJt -+F' be an isomorphism. Then f = ToQ is a linear 
functional on PI and kerf = Jt. 

• 

Suppose now that f and g are linear functionals on PI such that 
kerf = ker g. Let x0 ePI such thatf(x0) = 1 ;  so g(x0) =F 0. If xef!l" and a =  f(x), 
then x - ax0 eker f = ker g. So 0 = g(x) - ag(x0), or g(x) = (g(x0 ))a = 
(g(xo) )f(x). Thus g = Pf for a scalar p. This is summarized as follows. 

5.1 .  Proposition. A linear manifold in PI is a hyperplane if and only if it is the 
kernel of a non-zero linear functional. Two linear functionals have the same 
kernel if and only if one is a non-zero multiple of the other. 
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Hyperplanes in a normed space fall into one of two categories. 

5.2. Proposition. If f!£ is a normed space and .A is a hyperplane in f!£, then 
either .A is closed or .A is dense. 
PROOF. Consider cl.A, the closure of .A. By Proposition 1 .3, cl.A is a linear 
manifold in f!£. Since Jt c cl.A and dimf!l"/.A = 1 ,  either cl.A = .A  or 
ciA =  f!£. • 

If f!l" = c0 and f: !!£-+F' is defined by f(a.1 , a.2
, • . .  ) = a. 1 , then ker f = 

{ (a.n)ec0 : a.1 = 0} is closed in c0 . To get an example of a dense hyperplane, 
let f!£ = c0 and let en be the element of c0 such that en(k) = 0 if k =F n and 
en(n) = 1 .  (It is best to think of c0 as a collection of functions on N.) Let 
x0 (n) = 1/n for all n; so x0 ec0 and {x0, e 1 , e2 , . . •  } is a linearly independent set in c0 . Let fJI = a  Hamel basis in c0 which contains { x0, e 1 , e2 , • • .  } .  Put 
f11 = {x0, e 1 , e2 , . . .  } u {bi : iei } , bi =F x0 or en for any i or n. Define f: c0 -+F' 
by f(a.0x0 + 'L:= 1 a.nen + LiPibi) = rx0 • (Remember that in the preceding 
expression at most a finite number of the a.n and Pi are not zero.) Since 
eneker f for all n � 1 ,  ker f is dense but clearly ker f =F c0 . 
The dichotomy that exists for hyperplanes should be reflected in a 

dichotomy for linear functionals. 

5.3. Theorem. Iff!£ is a normed space and f: f!£ -+  F is a linear functional, then 
f is continuous if and only if ker f is closed. 
PROOF. If f is continuous, ker f = f - 1 ( {0} ) and so ker f must be closed. 
Assume now that ker f is closed and let Q: !!l' -+ f!£ jker f be the natural map. 
By (4.2), Q is continuous. Let T: f!l"/ker f-+ F be an isomorphism; by (3.4), 
T is continuous. Thus, if g = ToQ : f!£ -+F, g is continuous and ker f = ker g. 
Hence (5. 1 )  f = a.g for some a. in F and so f is continuous. • 

Iff: f!£ -+ F is a linear functional, then f is a linear transformation and so 
Proposition 2. 1 applies. Continuous linear functionals are also called bounded 
linear functionals and 

II f I I = sup { l f(x) l : II x I I � 1 } . 
The other formulas for I I f I I  given in (2. 1 ) are also valid here. Let f!£* = the 
collection of all bounded linear functionals on f!£. Iff, gef!£* and a.eF, define 
(a.f + g)(x) = a.f(x) + g(x); f!£* is called the dual space of f!£. Note that 
f!£* = fJI(f!£, F). 

5.4. Proposition. If f!£ is a normed space, f!£* is a Banach space. 
PROOF. It is left as an exercise for the reader to show that f!£* is a normed 
space. To show that f!£* is complete, let B = { xef!£: II x II � 1 } .  Iff ef!£* , define 
p(f): B-+ F by p(f) (x) = f(x); that is, p(f) is the restriction off to B. Note 
that p: f!£* -+ Cb(B) is a linear isometry. Thus to show that PI* is complete, 
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it suffices, since Cb(B) is complete ( 1 .6), to show that p(P£*) is closed. Let 
{fn } c !!£* and suppose geCb(B) such that II p(fn) - g II --+ 0 as n--+ oo. Let 
xeP£. If a, peJF, rx, p =#= 0, such that rxx, PxeB, then a - 1 g(ax) = lim a - 1fn(ax) = 

lim p- tfn (Px) = p- t g(px). Define f: f!£--+ JF by lettingf(x) = rx - 1 g(rxx) for any 
rx :#: 0 such that axe B. It is left as an exercise for the reader to show that 
f eP£* and p(f) = g. • 

Compare the preceding result with Exercise 2. 1 .  
I t should be emphasized that it is not assumed in the preceding proposition ....... 

that P£ is complete. In fact, if P£ is a normed space and P£ is its completion ....... 
(Exercise 1 . 1 6), then P£* and P£* are isometrically isomorphic (Exercise 2.2). 

S.S. Theorem. Let (X, n, Jl) be a measure space and let 1 < p < oo.  If 
1/p + 1/q = 1 and gELq(X, n, Jl), define F g: LP(Jl) --+ JF by 

F11 (f) = f f g dJl. 

Then FgeLP(Jl)* and the map g�---+Fg defines an isometric isomorphism of Lq(Jl) 
onto LP(Jl)* . 

Since this theorem is often proved in courses in measure and integration, 
the proof of this result, as well as the next two, is contained in the Appendix. 
See Appendix B for the proofs of (5.5) and (5.6). 

5.6. Theorem. If (X, Q, Jl) is a a-finite measure space and geL 00(X, Q, Jl), define 
F g: L1 (Jl) --+ JF by 

Fg(f) = f fg dJl. 
Then FgEL1 (J1)* and the map g�---+Fg defines an isometric isomorphism of L00(J1) 
onto L1 (Jl)* . 

.. 
Note that when p = 2 in Theorem 5. 5, there is a little difference between 

(5.5) and (1.3 .5) owing to the absence of a complex conjugate in (5. 5). Also, 
note that ( 5.6) is false if the measure space is not assumed to be a-finite 
(Exercise 3). 
If X is a locally compact space, M(X) denotes the space of all IF-valued 

regular Borel measures on X with the total variation norm. See Appendix 
C for the definitions as well as the proof of the next theorem. 

5.7. Riesz Representation Theorem. If X is a locally compact space and 
J1EM(X), define F11 : C0(X)-+JF by 

Fp(f) = f f dJl. 
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Then F 11eC0 (X)* and the map Jl --. F 11 is an isometric isomorphism of M(X) 
onto C0(X)* . 

There are special cases of these theorems that deserve to be pointed out. 

5.8. Example. The dual of c0 is isometrically isomorphic to 1 1 • In fact, 
c0 = C0(N), if N is given the discrete topology, and 1 1 = M(N). 

5.9. Example. The dual of 1 1 is isometrically isomorphic to [00 • In fact, 
1 1 = L1 (N, 2N, Jl), where Jt(L\) = the number of points in �. Also, 1 00 = 
L 00 (N, 2N, Jl). 

5.10. Example. If 1 < p < oo,  the dual of [P is lq , where 1 = 1/p + 1/q. 

What is the dual of L oo (X, n, Jt)? There are two possible representations. 
One is to identify L 00 (X, n, Jl)* with the space of finitely additive measures 
defined on n that are "absolutely continuous" with respect to Jl and have 
finite total variation (see Dunford and Schwartz [ 1958], p. 296). Another 
representation is to obtain a compact space Z such that L 00 (X, n, Jl) is 
isometrically isomorphic to C(Z) and then use the Riesz Representation 
Theorem. This will be done later in this book (VIII.2. 1 ). 

What is the dual of M(X)? For this, define L00(M(X)) as the set of all F 
in O{L00(Jt) : JteM(X) }  such that if Jl << v, then F(Jl) = F(v) a.e. [Jt] . This is 
an inverse limit of the spaces L 00 (Jl), Jl in M(X). 

5.1 1 .  Lemma. If FeL00(M(X)), then 
I I  F II = sup I I F(Jt) II oo < oo. 

ll 

PROOF. If I I  F I I  = oo ,  then there is a sequence {Jln } in M(X) such that 
I I F(Jln) l l  00 � n. Let Jl = L: 1 2 - n i Jln i / I I Jln l l . Then Jln << Jl for all n, so F(Jln) = F(Jl) 
a.e. [Jtn] for each n. Hence I I F(Jt) I I  oo � I I  F(Jln) I I  oo � n for each n, a 
contradiction. • 

5.12. Theorem. If X is locally compact and FeL00(M(X)), define ct>F : M(X) �F 
by 

CI»F(Jl) = I F(JL) dJL. 

Then ct>FeM(X)* and the map Fr-+ct>F is an isometric isomorphism of L 00 (M(X)) 
onto M(X)* . 

PROOF. It is easy to see that ct>F is linear. Also, I CI>F(Jl) l � J I F(Jt) l d i Jl l � 
I I  F(Jt) I I  oo I I  Jl I I  � I I  F I I I I Jt l l . Thus ct>Fe M(X)* and I I  ct>F I I  � I I F 1 1 . 

Now fix ct> in M(X)* . If JlEM(X) and feL1 ( 1 Jl l ), then v = fJteM(X). (That 
is, v(&) = J4f dJ.l for every Borel set &.) Also II v I I = J lf ld i Jt l . In fact, the 
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Radon-Nikodym Theorem can be interpreted as an identification 
(isometrically isomorphic) of L1 ( l ,u l ) with {17eM(X): '7 << l ,u l } .  Thusfr+CI>(f,u) 
is a linear functional on L 1 ( I ,u I ) and I Cl>(f ,u) I � I I ct> I I  f I f I d I ,u 1 . Hence there is 
an F(,u) in L00 ( l ,u l ) such that ct>(f,u) = ffF(,u) d,u for every f in L1 ( l ,u l ) and 
II F(,u) II oo � I I ct> I I . (We have been a little nonchalant about using ,u or I ,u I ,  but 
what was said is perfectly correct. Fill in the details.) In particular, taking 
f = l gives ct>(,u) = fF(,u) d,u. It must be shown that FeL00(M(X)); it then 
follows that ct> = ct>F and I I ct>F I I � I I F II oo .  

To show that FeL00(M(X) ), let ,u and v be measures such that v << ,u. 
By the Radon-Nikodym Theorem, there is an f in L1 ( l ,u l ) such that 
v = f,u. Hence if geL1 ( I v l ), then gfeL1 ( I ,u l ) and fg dv = fgf d,u. Thus, 
fgF(v) dv = ct>(gv) = ct>(gf,u) = fgfF(,u) d,u = fgF(,u) dv. So F(v) = F(,u) a.e. [v] 
and FeL00(M(X)). • 

EXERCISES 
1 .  Complete the proof of Proposition 5.4. 

2. Show that fl'* is a normed space. 

3. Give an example of a measure space (X, n, Jl) that is not u-finite for which the 
conclusion of Theorem 5.6 is false. 

4. Let {fl'i : ieJ} be a collection of normed spaces. If 1 � p < oo ,  show that the dual 
space of (f>pfl'i is isometrically isomorphic to <f>qfl'i* ,  where 1/p + 1/q = 1 .  

5. If fl'1 , fl'2 , • • •  are normed spaces, show that ( <f>ofl'n)* is isometrically isomorphic to 
<f>t fl'n* • 

6. Let n ;;:;  1 and let c<n>[o, 1] be defined as in Example 1 . 1 0. Show that I I  f I I  = 
L:: � IJ<k>(O) I + sup { I J<">(x) l :  0 � x � 1 }  is an equivalent norm on c<n>[o, 1] .  Show 
that Le(c<n>[o, 1 ] )* if and only if there are scalars (X0 , (X1 , • • •  , (Xn - t and a measure 
Jl on [0, 1] such that L(f) = L::  � (Xkj<k>(O) + J j<n> dJl . If c<n>[o, 1 ]  is given this new 
norm, find a formula for I I  L I I  in terms of I (Xo I , I (X 1 1 , . . . , I (Xn - t l, and II JJ. I I ? 

7. Give fl' = C( [O, 1 ] )  the norm I I I I I = J lf(t) l dt and define L: fl' -+ F  by L(f) = /(�). 
Show directly (without using Theorem 5.6) that L is not bounded. Now prove this 
as a consequence of (5.6). 

§6. The Hahn-Banach Theorem 
• 

The Hahn-Banach Theorem is one of the most important results in 
mathematics. It is used so often it is rightly considered as a cornerstone of 
functional analysis. It is one of those theorems that when it or one of its 
immediate consequences is used, it is used without quotation or reference 
and the reader is assumed to realize that it is being invoked. 

6.1.  Definition. If fi is a vector space, a sublinear functional is a function 
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q: f!£ � R such that 

(a) q(x + y) � q(x) + q(y) for all x, y in f!£; 
(b) q(etx) = etq(x) for x in f!£ and et � 0. 

III. Banach Spaces 

Note that every seminorm is a sublinear functional, but not conversely. 
In fact, it should be emphasized that a sublinear functional is allowed to 
assume negative values and that (b) in the definition only holds for et � 0. 

6.2. The Hahn-Banach Theorem. Let f!£ be a vector space over R and let q 
be a sub linear functional on f!£. If .A is a linear manifold in f!£ and f: .A �  R 
is a linear functional such that f(x) � q(x) for all x in .A, then there is a linear 
functional F: f!£ � R such that F I .A =  f and F(x) � q(x) for all x in f!£. 

Note that the substance of the theorem is not that the extension exists 
but that an extension can be found that remains dominated by q. Just to 
find an extension, let {ei } be a Hamel basis for .A and let {yi } be vectors 
in f!£ such that {ei } u {yi } is a Hamel basis for f!£. Now define F: f!£ �R by 
F(Lietiei + LiPiYi) = Lietif(ei) = f(Lietiei ). This extends f. If {Yi } is any 
collection of real numbers, then F(Lietiei + LiPiYi) = f(Lietiei ) + LiPiYi is 
also an extension of f. Moreover, any extension of f has this form. The 
difficulty is that we must find one of these extensions that is dominated by q. 

Before proving the theorem, let's see some of its immediate corollaries. 
The first is an extension of the theorem to complex spaces. For this a lemma 
is needed. Note that if f!£ is a vector space over <C, it is also a vector space 
over R. Also, if f : f!£ � <C is <C-linear, then Re f: f!£ � R is R-linear. The 
following lemma is the converse of this. 

6.3. Lemma. Let f!£ be a vector space over <C. 
(a) Iff: f!£ � R is an R-linear functional, then](x) = f(x) - if(ix) is a <C-linear 

functional and f = Re ]. 
(b) If g: f!£ � <C is <C-linear, f = Re g, and J is defined as in (a), then J = g. 
(c) If p is a seminorm on f!£ and f and J are as in (a), then lf(x) l � p(x) for 

all x if and only if l f(x) l � p(x) for all x. 
(d) If f!£ is a normed space and f and J are as in (a), then I I f I I = 1 1 1 1 1 . 
PROOF. The proofs of (a) and (b) are left as an exercise. To prove (c), suppose 
l f(x) l � p(x). Thenf(x) = Re f(x) � l f(x) l � p(x). Also, - f(x) = Ref( - x) � 
If( - x) l � p(x). Hence l f(x) l � p(x). Now assume that l f(x) l � p(x). Choose lJ 
such that f(x) = ei8 l f(x) l . Hence l f(x) l = f(e- i8x) = Re ](e - i8x) = f(e- i8x) � 
p(e - i8x) = p(x). 

Part (d) is an easy application of (c). • 

6.4. Corollary. Let f!£ be a vector space, let .A be a linear manifold in f!£, and 
let p:  PI �  [0, oo) be a seminorm. Iff: .A �  F' is a linear functional such that 
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l f(x) l � p(x) for all x in Jt, then there is a linear functional F: � � F' such 
that F I JI =  f and I F(x) l � p(x) for all x in �-

PROOF. Case 1 :  F' = R. Note that f(x) � lf(x) l � p(x) for x in J/. By (6.2) 
there is an extension F: � � R of f such that F(x) � p(x) for all x. Hence 

- F(x) = F( - x) � p( - x) = p(x). Thus I F I � p. 
Case 2: F' = <C. Let f1 = Re f. By (6.3c), l f1 1 � p. By Case 1 ,  there is an 

R-linear functional F 1 : � � R such that F 1 1 Jt = f1 and I F 1 1 � p. Let 
F(x) = F 1 (x) - iF 1 (ix) for all x in �- By (6.3c), I F I � p. Clearly, F l Jt = f  . 

• 

6.5. Corollary. If � is a normed space, Jt is a linear manifold in �, and 
f: Jt �F' is a bounded linear functional, then there is an F in �* such that 
F I Jl = f and II F II = II f 1 1 . 

PROOF. Use Corollary 6.4 with p(x) = I I  f I I I I  x 11 . • 

6.6. Corollary. If� is a normed space, {x 1 , x2 , • • •  , xd } is a linearly independent 
subset of �, and cx 1 , cx2 , • • •  , cxd are arbitrary scalars, then there is an f in �* 
such that f(xi) = cxi for 1 �j � d. 

PROOF. Let Jt = the linear span of x 1 , • • •  , xd and define g: Jt � F' by 
g('LiPixi) = LiPicxi . So g is linear. Since Jt is finite dimensional, g is 
continuous. Let f be a continuous extension of g to �- • 

6.7. Corollary. If � is a normed space and xe�, then 

I I x I I = sup { I f (x) I : f E �* and II f II � 1 } . 

Moreover, this supremum is attained. 

PROOF. Let cx = sup { l f(x) l : fe�* and l l f l l  � 1 } . lffe�* and l l f l l � 1 ,  then 
l f(x) l .� l l f l l  II x I I � II x I I ; hence ex � II x 1 1 . Now let Jt = {Px: PeF'} define 
g: Jt �F' by g(px) = P II x 1 1 . Then geJ/* and I I g I I = 1. By Corollary 6.5, there 

. is an f in �* such that l l f l l = 1 and f(x) = g(x) = I I x 1 1 . • 

This introduces a certain symmetry in the definitions of the norms in � 
and �* that will be explored later (§ 1 1  ). 

6.8. Corollary. If� is a normed space, •JI � �, x0e�\JI, and d = dist (x0, J/), 
then there is an f in �* such that f(x0) = 1 ,  f(x) = 0 for all x in Jt, and 
l l f l l = d - 1 • 

PROOF. Let Q : � � �/Ji be the natural map. Since l l x0 + J/ II = d, by the 
preceding corollary there is a g in (�/Ji)* such that g(x0 + J/) = d and 
ll g I I = 1 .  Let f = d - 1 g o Q: � � F'. Then f is continuous, f(x) = 0 for x in J/, 
and f(xo ) = 1 .  Also, lf(x) l = d - 1 l g(Q(x) ) l � d - 1 11 Q(x) I I � d - 1 1 1  x I I ; hence 
I I f I I � d - 1 • On the other hand, I I g I I = 1 so there is a sequence { xn } such 
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that l g(xn + �) I -+ 1 and I I  Xn + � II < 1 for all n. Let YnE� such that 
l l xn + Yn l l < 1 .  Then l f(xn + Yn) l = d - 1 l g(xn + �) l -+ d - 1 , SO l l f l l = d - 1 . • 

To prove the Hahn-Banach Theorem, we first show that we can extend 
the functional to a space of one dimension more. 

6.9. Lemma. Suppose the hypothesis of (6.2) is satisfied and, in addition, 
dim f!I I� = 1 .  Then the conclusion of ( 6.2) is valid. 

PROOF. Fix x0 in f!I\�; so f!I = � v {x0 } = {tx0 + y: teR, ye�}. For the 
moment assume that the extension F: f!I-+ R of f exists with F � q. 
Let's see what F must look like. Put cx0 = F(x0). If t > 0 and y 1 E�, 
then F(tx0 + y1 ) = tcx0 + f(y 1 ) � q(tx0 + y 1 ). Hence cx0 � - t- 1f(y 1 ) + 
t - 1 q(tx0 + y 1 ) = - f(y1 /t) + q(x0 + y1 /t) for every y1 in �- Since y1 /te�, 
this gives that. 

6.10 

for all y 1 in �. Also note that if cx0 satisfies ( 6. 1 0), then by reversing the 
preceding argument, it follows that tcx0 + f(y 1 ) � q(tx0 + y 1 ) whenever t � 0. 

If t � 0 and y2 e� and if F exists, then F( - tx0 + y2 ) = - tcx0 + f(y2) � 
q( - tx0 + y2). As above, this implies that 

6.1 1  

for all y2 in �- Moreover, (6. 1 1 )  is sufficient that - tcx0 + f(y2) � q( - tx0 + y2) 
for all t � 0 and y2 in �-

Combining (6. 10) and (6. 1 1 ) we see that we must show that cx0 can be 
chosen satisfying (6. 10) and (6. 1 1 )  simultaneously. Thus we must show that 

6.12  

for all y 1 , y2 in �- But this means we want to show that f(y 1 + y2 ) � 
q(xo + Y1 ) + q( - Xo + Y2). But 

f(y1 + Y2) � q(y1 + Y2 ) = q((y1 + Xo ) + ( - Xo + Y2) )  

� q(y 1 + Xo) + q( - Xo + Y2), 

so (6. 1 2) is satisfied. If cx0 is chosen with sup {f(y2) - q( - x0 + Y2) : Y2 EA} � 
cx0 � inf { -f(y1 ) + q(x0 + y1 ) :  y 1 e�} and F(tx0 + y) = tcx0 + f(y1 ), F satisfies 
the conclusion of ( 6.2). • 

PROOF OF THE HAHN-BANACH THEOREM. Let !7 be the collection of all pairs 
(�1 , f1 ), where �1 is a linear manifold in f!I such that �1 => � and 
f1 : �1 -+R is a linear functional with f1 1� = f and/1 � q on �1 - If (�1 , f1 ) 
and (�2, f2)e!7, define (�1 , f1 ) � (�2 , f2 ) to mean that �1 c �2 and 
f2 1 �1 = f1 . So (Y, � ) is a partially ordered set. Suppose Cfi = { (�; , f;) :  ieJ} 
is a chain in Y. If JV = u {A;:  ie/} ,  then the fact that Cfi is a chain implies 
that JV is a linear manifold. Define F: % -+  R by setting F(x) = fi(x) if xe.Ai. 
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It is easily checked that F is well defined, linear, and satisfies F � q on .AI. 
So (JV, F)eY' and (%, F) is an upper bound for Cfi. By Zorn's Lemma, Y' 
has a maximal element (OJ/, F). But the preceding lemma implies that OJ/ =  f£. 
Hence F is the desired extension. • 

This section concludes with one important consequence of the Hahn
Banach Theorem. It will be generalized later (IV.3. 1 1 ), but it is used so often 
it is worth singling out for consideration. 

6.13. Theorem. Iff£ is a normed space and uH is a linear manifold in f£, then 

cl uH = n {ker f: jeff* and uH c ker f} .  

PROOF. Let JV = n {ker f: f ef£* and uH c ker f} . If f ef£* and uH c ker f, 
then the continuity of f implies that cl uH c ker f. Hence cl uH £ .AI. If 
x0 �cl uit, then d = dist (x0 , uit) > 0. By Corollary 6.8 there is an f in f£* such 
that f(x0) = 1 and f(x) = 0 for every x in uit. Hence x0�JV. Thus JV c cl uH 
and the proof is complete. • 

6.14. Corollary. If f£ is a normed space and uH is a linear manifold in f£, then 
uH is dense in f£ if and only if the only bounded linear functional on f£ that 
annihilates uH is the zero functional. 

EXERCISES 
1 .  Complete the proof of Lemma 6.3. 

2. Give the details of the proof of Corollary 6.5. 

3. Show that c* is isometrically isomorphic to 1 1 • Are c and c0 isometrically 
isomorphic? 

4. If Jl is a Borel measure on [0, 1] and J xn dJl(X) = O for all n � 0, show that Jl = 0. 

5. If n � 1 ,  show that there is a measure Jl on [0, 1 ]  such that for every polynomial 
p of degree at most n, 

I p dp = J, p<kl(k/n ). 

6. If n � 1, does there exist a measure Jl on [0, 1] such that p'(O) = J p dJl for every 
polynomial of degree at most n? 

7. Does there exist a measure Jl on '[0, 1] such that J p dJl = p'(O) for every 
polynomial p? 

· 8. Let K be a compact subset of <C and define A(K) to be {/ eC(K): f is analytic 
on int K} . (Functions here are complex valued.) Show that if aeK, then there is 
a probability measure Jl supported on oK such that f(a) = J f dJl for every f in 
A(K). (A probability measure is a nonnegative measure Jl such that II Jl l l = 1 .) 

9. If K = cl D (D = { l z l  < 1 } )  and aeK, find the measure Jl whose existence was 
proved in Exercise 8. 
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10. Let P = {p j aD: p = an analytic polynomial } and consider P as a manifold in 
C(aD). Show that if p, is a real-valued measure on an such that J p dp, =  0 for 
every p in P, then p, = 0. Give an example of a complex-valued measure p, such 
that p, =F 0 but J p dp, = 0 for every p in P. 

§7* .  An Application: Banach Limits 

If x = {x(n) } ec, define L(x) = lim x(n). Then L is a linear functional, II L II = 1 ,  
and, if for x in c, x' is defined by x' = (x(2), x(3), . . .  ), then L(x) = L(x'). Also, 
if x � 0 [that is, x(n) � 0 for all n], then L(x) � 0. In this section it will be 
shown that these properties of the limit functional can be extended to 100 • 
The proof uses the Hahn-Banach Theorem. 

7.1.  Theorem. There is a linear functional L: 1 00 -+ F' such that 

(a) II L II = 1 .  
(b) If xec, L(x) = lim x(n). 
(c) If xel00 and x(n) � 0 for all n, then L(x) � 0. 
(d) If xel00 and x' :::: (x(2), x(3), . . .  ), then L(x) = L(x'). 

PROOF. First assume F = R; that is, 1 00 = lR_. If xel00 , let x' denote the element 
of 100 defined in part (d) above. Put .A =  {x - x' : xel00 } .  Note that (x + cxy)' = 
x' + C(y' for any x, y in l oo and ex in R; hence .A is a linear manifold in l oo . 
Let 1 denote the sequence ( 1 ,  1 ,  1 ,  . . .  ) in /00 • 

7.2. Claim. dist ( 1 ,  .A) = 1 .  

Since Oe.A, dist ( 1 ,  .A) � 1 .  Let x� l00 ; if (x - x') (n) � 0 for any n, then 
1 1 1 - (x - x') l l  oo � 1 1 - (x(n) - x'(n))l � 1 .  Suppose 0 � (x- x')(n) = x(n) - x'(n) = 
x(n) - x(n + 1 )  for all n. Thus x(n + 1 )  � x(n) for all n. Since xel00 , ex =  lim x(n) 
exists. Thus lim(x - x' ) (n) = 0 and I l l - (x - x' ) l l oo � 1 .  This proves the claim. 

By Corollary 6.8 there is a linear functional L: 100 -+ R such that II L I I = 1 ,  
L( 1 )  = 1 ,  and L(.A) = 0. So this functional satisfies (a) and (d) of the theorem. 
To prove (b), we establish the following. 

7.3. Claim. c0 c ker L. 

If xec0, let x< 1 > = x' and let x<n +  1 > = (x<n>y for n � 1 .  Note that 
x<n + 1 > - x = [x<n + 1 > - x<">] + · · · + [x' - x] e.A. Hence L(x) = L(x<">) for all 
n � 1 .  If e > 0, then let n be such that l x(m) l < e for m > n. Hence 
IL(x) l = I L(x<"> ) l � I I  x<n> I I  00 = sup { l x(m) l : m > n} < e. Thus xeker L. Condition 
(b) is now clear. 

To show (c), suppose there is an x in 100 such that x(n) � 0 for all n and 
L(x) < 0. If x is replaced by x/ I I  x I I  00 , it remains true that L(x) < 0 and it is 
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also true that 1 � x(n) � 0 for all n. But then I l l - x I I oo � 1 and L( l - x) = 
1 - L(x) > 1 ,  contradicting (a). Thus (c) holds. 

Now assume that F' = <C. Let L1 be the functional obtained on IR_ . If xel�, 
then x = x1 + ix2 where x1 , x2 elR_ . Define L(x) = L1(x 1 ) + iL1 (x2). It is left as 
an exercise to show that L is <C-linear. It's clear that (b), (c), and (d) hold. It 
remains to show that I I  L I I = 1 .  

Let Eb . . .  , Em be pairwise disjoint subsets of N and let C( 1 , • . .  , C(mE<C with 
I C(k l � 1 for all k. Put x = L:� 1 C(kXEk; so xeloo and I I x I I  oo � 1 .  Then 
L(x) = LkC(kL(XEk) = LkC(kLt (XEk). But Lt (XEk) � 0 and LkLt(XEk) = Lt (XE), 
where E = UkEk. Hence LkL1 (XEk) � 1 .  Because I C(k l � 1 for all k, I L(x) l � 1 .  
If x is an arbitrary element of 1 00, I I  x I I oo � 1 ,  then there is a sequence {x, }  of 
elements of 100 such that II x, - x I I  oo --+ 0, I I  x, I I  oo � 1 ,  and each x, is the type 
of element of 100 just discussed that takes on only a finite number of values 
(Exercise 3). Clearly, II L I I  � 2, so L(x,) --+ L(x). Since I L(x,) I � 1 for all n, 
I L(x) l � 1 .  Hence I l L I I � 1 .  Since L( l ) =  1 ,  I l L I I = 1 .  • 

A linear functional of the type described in Theorem 7. 1 is called a Banach 
limit. They are useful for a variety of things, among which is the construction 
of representations of the algebra of bounded operators on a Hilbert space. 

EXERCISES 
1 .  If L is a Banach limit, show that there are x and y in t� such that L(xy) =F L(x)L(y). 

2. Let X be a set and !l a a-algebra of subsets of X. Suppose f.J. is a complex-valued 
countably additive measure defined on !l such that I I  f.J. I I  = f.J.(X) < oo.  Show that 
f.J.(�) � 0 for every � in !l. (Though it is difficult to see at this moment, this fact is 
related to the proof of (c) in Theorem 7. 1 for the complex case.) 

3. Show that if xE /00, I I x I I 00 � 1 ,  then there is a sequence {xn} ,  xn in /00 such that 
II Xn I I  00 � 1 , II Xn - x I I  00 -+  0, and each Xn takes on only a finite number of values. 

§8* .  An Application: Runge's Theorem 

The symbol <Coo denotes the extended complex plane. 

8.1 .  Runge's Theorem. Let K be a compact subset of <C and let E be a subset 
of <Coo \K that meets each component oj<Coo \K. Iff is analytic in a neighborhood 
of K, then there are rational functions f, whose only poles lie in E such that 
f, --+ f uniformly on K. 

The main tool in proving Runge's Theorem is Theorem 6. 1 3. (A proof 
that does not use functional analysis can be found on p. 1 89 of Conway 
[ 1978].) To do this, let R(K, E) be the closure in the space C(K) of the rational 
functions with poles in E. By (6. 1 3) and the Riesz Representation Theorem, 
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it suffices to show that if J.lEM(K) and J gdJ.l = 0 for each g in R(K, E), then 
Jfd)l = 0. 

Let R > 0 and let A. be area measure. Pick p > 0 such that B(O; R) c B(z; p) 
for every z in K. Then for z in K, 

I l z - w l - 1 dA.(w) � I l z - w l - 1dA.(w) 
B(O;R) B(z;p) 

f 21t fp 
= 

0 0 
drdlJ = 2np. 

If J.lEM(K), define jl: ([ --+  [0, oo] by 

jl(w) = f d l J.l l(z) 
l z - w l 

when the integral is finite, and jl(w) = oo otherwise. The inequality above 
implies 

I jl(w)dA.(w) = f I d i JL I (z) dA.(w) 
B(O;R) B(O;R) K I z - w I 

Thus jl(w) < oo a.e. [A.] . 

= f I dA(w) 
d iJL I (z) 

K B(O;R) l z - W I 

� 2np I I  JJ II -

8.2. Lemma. If J.lEM(K), then 

fi(w) = f dJ.l(z) 
z - w  

is in L1 (B(O; R), A.) for any R > 0, [l is analytic on ([oo \K, and fi( oo) = 0. 

PROOF. The first statement follows from what came before the statement 
of this lemma. To show that fi is analytic on ([oo \K, let w, w0e<C\K and note 
that 

fi(w) - fi(w0) f dJ.l(z) 
w - w0 

-
K(z - w) (z - w0)

. 

As w � w0, [(z - w)(z - w0)] - 1 � (z - w0) - 2 uniformly for z in K, so that fi 
has a derivative at w0 and 

�(wo) = (z - w0) - 2dJJ(z). d " f dw K 
So fi is analytic on CC\K. To show that it is analytic at infinity, note that 
ft(z)-+ 0 as z � oo , so infinity is a removable singularity. • 
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It is not difficult to see that for w0 in <C\K, 

8.3 (
d
: )"jl(w0) = n !  J (z - w0) - " - 1dJ.l(z) 

85 

Also, we can easily find the power series expansion of P, at infinity. Indeed, 

P,(w) = f 1 
dJL(z) = - _!_ J( 1 - !_) - t dp.(z). 

z - w w w 

Choose w near enough to infinity that l z/w l < 1 for all z in K. Then 

8.4 

1 oo J( z )" P,(w) = - - L - dJ.l(z) 
W n = O  W 
oo a 

= - L w": � . n = O  
where an = J z" dJ.l(z). 

Now assume J.lEM(K) and J gdJ.l = 0 for every rational function g with 
poles in E. Let U be a component of <Coo \K, and let w0eE n U. If w0 =I= oo, 

then the hypothesis and (8.3) imply that each derivative of P, at w0 vanishes. 
Hence P, = 0 on U. If w0 = oo, then (8.4) implies P, = 0 on U. Thus P, = 0 on 
Coo \K. 

Iff is analytic on an open set G containing K, let Y b  . . .  , Yn be straight-line 
segments in G\K such that 

f(z) = f �I f(w) 
dw 

k =  1 2nz w - z }'k 

for all z in K. (See p. 195 of Conway [ 1978] .) Thus 

I n 1 I I f(w) 
f(z)dJ.l(z) = L -. dwdJ.l(z) 

K k = 1 2nz K Yk w - z 

= - f �I f(w)P,(w)dw 
k = 1 2nz Yk 

by Fubini's Theorem. But P,(w) = 0 on Yk ( c <C\K), so Jf dJ.l = 0. By (6. 1 3), 
f E R(K, E). This proves Runge's Theorem. • 

8.5. Corollary. If K is compact and <C\K is connected and iff is analytic in a 
neighborhood of K, then there is a sequence of polynomials that converges to 
f uniformly on K. 

EXERCISES /"l 
1 .  Let J.l be a compactly supported measure on <C that is boundedly absolutely 

continuous with respect to area measure. Show that p. is continuous on <C00• 

2. Let m = Lebesgue measure on [0, 1] .  Show that 1fl is not continuous at any point 
of [0, 1] .  
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§9*.  An Application: Ordered Vector Spaces 

In this section only vector spaces over R are considered. 
There are numerous spaces in which there is a notion of � in addition 

to the vector space structure. The 11' spaces and C(X) are some that spring 
to mind. The concept of an ordered vector space is an attempt to study such 
spaces in an abstract setting. The first step is to abstract the notion of the 
positive elements. 

9.1 .  Definition. An ordered vector space is a pair (�, � ) where � is a vector 
space over R and � is a relation on � satisfying 

(a) x � x for all x; 
(b) if x � y and y � z, then x � z; 
(c) if x � y and ze�, then x + z � y + z; 
(d) if x � y and cxe[O, oo ), then cxx � cxy. 

Note that it is not assumed that � is antisymmetric. That is, it is not 
assumed that if x � y and y � x, then x = y. 

9.2. Definition. If � is a real vector space, a wedge is a nonempty subset P 
of � such that 

(a) if x, yeP, then x + yeP; 
(b) if xeP and cxe[O, oo ), then cxxeP. 

9.3. Proposition. (a) If(�, � ) is an ordered vector space and P = {xe�: x � 0}, 
then P is a wedge. (b) If P is a wedge in the real vector space � and � is 
defined on � by declaring x � y if and only if y - xeP, then (�, � ) is an 
ordered vector space. 

PROOF. Exercise. 

If (�, � ) is an ordered vector space, P = {xe�: x � 0} is called the wedge 
of positive elements. The next result is also left as an exercise. 

9.4. Proposition. If (�, � )  is an ordered vector space and P is the wedge of 
positive elements, � is antisymmetric if and only if P n ( - P) = (0). 

9.5. Definition. A cone in � is a wedge P such that P n ( - P) = (0). 

9.6. Definition. If (�, � ) is an ordered vector space, a subset A of � is cofinal 
if for every x � 0 in � there is an a in A such that a � x. An element e of 
� is an order unit if for every x in f£ there is a positive integer n such that 
- ne � x � ne. 
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If X is a compact space f!I = C(X), then any non-zero constant function 
is an order unit. (f � g if and only if f(x) � g(x) for all x.) If f!I = C(R), all 
real-valued continuous functions on R, then f!I has no order unit (Exercise 4). 
If e is an order unit, then { ne: n � 1 }  is co final. 

9.7. Definition. If (f!£, � )  and (0§, � )  are ordered vector spaces and T: f!I � 0§ 
is a linear map, then Tis positive (in symbols T � 0) if Tx � 0 whenever x � 0. 

The principal result of this section is the following. 

9.8. Theorem. Let (ff, � )  be an ordered vector space and let 0§ be a linear 
manifold in f!I that is confinal. Iff: 0§ � R is a positive linear functional, then - -
there is a positive linear functional f: f!I � R such that f I 0§ =f. 

PROOF. Let P = {xef!£: x � 0} and put f!I 1 = OJ/ + P - P. It is easy to see that 
f!I 1 is a linear manifold in f!I. If there is a positive linear functional g: f!I 1 � R -
that extends f, let f be any linear functional on f!I that extends g (use a 
Hamel basis). If x � 0, then xeP c f!I 1 so that ](x) = g(x) � 0. Hence 1 is 
positive. Thus, we may assume that f!I = 0§ + P - P. 

9.9. Claim. f!I = 0§ + P = 0§ - P. 

Let xef!I; so x = y + p1 - p2, y in 0§, p1 , p2 in P. Since 0§ is confinal there 
is a y1 in 0§ such that y1 � p1 . Hence p1 = y1 - ( y 1 - p1)e0§ - P. Thus 
x = y - p2 + p1 e(O§ - P) + (OJJ - P) c 0§ - P. So f!I = 0§ - P. Also, f!I = - f!I = 
- oy + p = oy + P. 

9.10. Claim. If xef!I, there are y1 , y2 in 0§ such that y2 � x � y1 • 

In fact, Claim 9.9 states that We can write x = Y1 - P1 = y2 + P2, P1 , P2 eP 
and y1 , y2 e0§. Thus y2 � x � y1 • 

By Claim 9. 10, it is possible to define for each x in f!I, 

q(x) = inf {f( y): yeO§ and y > x } .  

9.1 1.  Claim. The function q is a sublinear functional on f!I. 

The proof of (9 . 1 1 ) is left as an exercise. 
For y in 0§, let y1 eOJJ such that y1 � y. Because f is positive,f( y) �f( y 1). 

Hence f( y) � q( y) for all y in 0§. The Hahn-Banach Theorem implies that 
there is a linear functional ]: f!I � R such that ] I 0§ = f and 1 � q on f!I. If 
xeP, then - x � 0 (and OeO§). Hence q( - x) � f(O). Thus -](x) = 
f( - x) � q( -�) � 0, or 1(x) � 0. Therefore 1 is positive. • 

9.12. Corollary. Let (f!I, � )  be an ordered vector space with an order unit e. 
If 0§ is a linear manifold in f!I and eeO§, then any positive linear functional 
defined on 0§ has an extension to a positive linear functional defined on f!I. 
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EXERCISES 
1 .  Prove Proposition 9.3. 

2. Prove Proposition 9 .4. 

3. Show that e is an order unit for (�, � )  if and only if for every x in � there is a 
£5 > 0 such that e + tx � 0 for 0 � t � £5. 

4. Show that C(R), the space of all continuous real-valued functions on R, has no 
order unit. 

5. Prove (9. 1 1 ). 

6. Characterize the order units of Cb(X). Does Cb(X) always have an order unit? 

7. Characterize the order units of C0(X) if X is locally compact. Does C0(X) always 
have an order unit? 

8. Let � = M 2(R), the 2 x 2 matrices over R. Define A in M 2(R) to be positive if 
A =  A* and (Ax, x) � 0 for all x in 1R2• Characterize the order units of M2 (1R). 

9. If 1 � p < oo and � =  LP(O, 1), define f � g to mean thatf(x) � g(x) a.e. Show that 
� is an ordered vector space that has no order unit. 

§ 10. The Dual of a Quotient Space and a Subspace 

Let f!I be a normed space and .A � f!I. If f ef!I*, then f I .A, the restriction 
off to .A, belongs to .A* and I I / I .A II � II ! 1 1 . According to the Hahn-Banach 
Theorem, every bounded linear functional on .A is obtainable as the 
restriction of a functional from f!I*. In fact, more can be said. 

Note that if .A 1. = {gef!£*: g(Jit) = 0} (note the analogy with Hilbert space 
notation); then .A 1. is a closed subspace of the Banach space f!I*. Hence 
f!I* I .A 1. is a Banach space. Moreover, if f + .A 1. ef!I* I .A 1., then f + .A 1. 
induces a linear functional on uit, namely f luit. 

10.1 .  Theorem. If uH � f!I and uitl. = {gef!£*: g(.A) = 0} , then the map p: 
f!I* I uH 1. � .A* defined by 

p(f + ui!j_) =! lui! 
is an isometric isomorphism. 

PROOF. It is easy to see that p is linear and injective. If f ef!I* and geuit 1., 
then ll f i.A II = I I (! + g) IJI/ 1 1 � II! + g il . Taking the infimum over all g we 
get that I I f iJI/ II � I I ! +  uif .l  1 1 . Suppose cf>euit*. The Hahn-Banach Theorem 
implies that there is an f in f!I* such that f I .A = cf> and I I f II = II cf> 1 1 . Hence 
4> = p(f + .A j_) and I I 4> I I = II f I I � I I f + uit j_ 1 1 . • 

Now consider !!I lui!; what is (!!II .A)*? Let Q: f!I--+ !!I lui! be the natural 
map. If fe(f!IIui!)*, then f oQef!I* and l l f o Q II � 1 1 / 1 1 . (Why?) This gives a 
way of mapping (f!£ 1 A)* --+ !!£*. What is its image? Is it an isometry? 



§ 1 1 . Reflexive Spaces 89 

10.2. Theorem. If A � f!l and Q: f!l -+ f!liA is the natural map, then 
p(f) = f o Q defines an isometric isomorphism of (f!l I A)* onto A j_. 

PROOF. If fe(f!liA)* and yeA, then f oQ( y) = 0, so f o QeAj_. Again, it is 
easy to see that p: (f!l I A)* -+ A j_ is linear and, as was seen earlier, 
II p(f) II � I I  f I I . Let { xn + A} be a sequence in f!l I A such that I I xn + A II < 1 
and lf(xn + vii) I -+ l l f 1 1 . For each n there is a Yn in A such that I I xn + Yn II < 1 .  
Thus I I  p(f) I I  � I p(f)(xn + Yn) l = lf(xn + A) I -+ I I ! I I , so p is an isometry. 

To see that p is surjective, let geA j_; then gef!l* and g(A) = 0. Define f: 
f!liA -+F' by f(x + A) = g(x). Because g(A) = O, f is well defined. Also, if 
xef!l and yeA, lf(x + A) I = l g(x) l = l g(x + y) l � I I g I I  II x + y I I . Taking the 
infimum over all y gives lf(x + A) I � II g II II x + A I I . Hence f e(f!l I A)*, 
p(f) = g, and I I f I I  � I I p(f) I I . • 

§ 1 1 .  Reflexive Spaces 

If f!l is a normed space, then we have seen that f!l* is a Banach space (5.4). 
Because f!l* is a Banach space, it too has a dual space (f!l*)* = f!l** and f!l** 
is a Banach space. Hence f!l** has a dual. Can this be kept up? 

Before answering this question, let's examine a curious phenomenon. If 
xef!l, then x defines an element x of f!l**; namely, define .X: f!l* -+ F' by 

1 1. 1  x(x*) = x*(x) 

for every x* in f!l*. Note that Corollary 6. 7 implies that II x II = II x II for all 
x in f!l. The map x -+  x of f!l -+  f!l** is called the natural map of f!l into its 
second dual. 

1 1.2. Definition. A normed space f!l is reflexive if f!l** = { .X: xef!l} ,  where x 
is defined in ( 1 1 . 1 ). 

First note that a ��fl�-:�Jve space f!l is isometrically isomorphic to f!l**, and 
hence must be � . .  �anach space� It is not true however, that a Banach space 
f!l that is isometric to f!l** is reflexive. The definition of reflexivity stipulates 
that the isometry be the natural embedding of f!l into f!l**. In fact, James 
[ 195 1 ]  gives an example of a nonrefl.exive space f!l that is isometric to f!l**. 

1 1.3. Example. If 1 < p < 00 ,  LP(X, n, J.l) is reflexive. v' 

1 1.4. ExamPle. c0 is not reflexive. We know that c� = 11 , so c�* = (1 1 )* = rX). 
With these identifications, the natural map c0 -+ c�* is precisely the inclusion 
map c0 -+ 100 • 

A discussion of reflexivity is best pursued after the weak topology is 
understood (Chapter V). Until that time, we will say adieu to reflexivity. 



90 Ill. Banach Spaces 

EXERCISES 
1 .  Show that (q'*)** and (q"**)* are equal. 

2. Show that for a locally compact space X, Cb(X) is reflexive if and only if X is finite. 

3. Let vii � PI and let p ,r: q- -+  q'** and p Jt :  vii -+ vii** be the natural maps. If i: 
vii -+ q- is the inclusion map, show that there is an isometry l/J: vii** -+ q'** such 
that the diagram 

commutes. Prove that l/J(vll**) = (vii ..L)..L = {x** eq'** :  x**(vii ..L) = 0} .  

4. Use Exercise 3 to show that if q' is reflexive, then any closed subspace of q' is 
also reflexive. See Yang [ 1967] . 

§ 12. The Open Mapping and Closed 
Graph Theorems 

12.1.  The Open Mapping Theorem. If f!l, C1JJ are Banach spaces and A:  f!l -+  C1JJ 
is a continuous linear surjection, then A( G) is open in OJ/ whenever G is open in f!l. 

PROOF. For r > 0, let B(r) = {xef!l: I I x I I < r} . 

12.2. Claim. Oeint cl A(B(r)). 

Note that because A is surjective, C1JJ = U;' 1 cl [A(B(kr/2))] = 

U;'_ 1 k cl [A(B(r/2))] .  By the Baire Category Theorem, there is a k � 1 such 
that k cl [A(B(r/2))] has nonempty interior. Thus V = int { cl [A(B(r/2))] } # D. 
If y0e V, let s > 0 such that { yet??/: I I y - Yo I I < s} c V c::: cl A(B(r/2)). Let yeC1JJ, 
I I y I I < s. Since y0ecl A(B(r/2)), there is a sequence {x,.} in B(r/2) such that 
A(x,.) -+ y0• There is also a sequence { z,. } in B(r /2) such that A(z,.) -+ Yo + y. 
Thus A(z,. - x,.) -+ y and {z,. - x,.} c B(r); that is, { yeCIJ/ : I I y I I < s} c cl A(B(r)). 
This establishes Claim 12.2. 

It will now be shown that 

12.3 cl A(B(r /2)) c A(B(r)). 

Note that if ( 12.3) is proved, then Claim 1 2.2 implies that Oeint A (B(r) ) 
for any r > 0. From here the theorem is easily proved. Indeed, if G is an 
open subset of f!l, then for every x in G let r x > 0 such that B(x; r x) c G. But 
Oeint A(B(r x)) and so A(x)eint A(B(x; r x) ). Thus there is an sx > 0 such that 
u X = {yeOJ/: I I y - A(x) I I < sx } c A(B(x; r x)). Therefore A( G) :::) u { u x= xeG} .  
But A(x)e Ux, so A(G) = u { Ux : xeG}  and hence A(G) is open. 
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To prove ( 1 2.3), fix y 1 in cl A (B(r/2) ). By (1 2.2), Oeint [cl A(B(2 - 2r) )] . Hence 
[y1 - cl A(B(2 - 2r) ) ]  n A(B(r/2) ) # D. Let x 1 eB(r/2) such that A(x 1 )e 
[y1 - cl A(B(2 - 2 r) ) ] ; now A(x 1 ) =  y 1 - y2 , where y2 ecl A (B(2 - 2r) ). Using 
induction, we obtain a sequence {xn } in !!£ and a sequence {Yn } in OJ/ such that 

12.4 

(i) Xn E B(2 - "r), 

(ii) 

(iii) 
YnEcl A (B(2 - nr) ), 

Yn + 1 = Yn - A(xn). 

But I I  Xn I I  < 2 - "r, so L: f I I  Xn I I  < oo; hence x = L:;'= 1 Xn exists in !!£ and 
I I  x I I  < r. Also, 

n n 
L A(xk) =  L (yk - Yk + l ) = y l - Yn + l · k = l k = l 

But (1 2.4ii) implies I I  Yn I I  � I I  A 1 1 2 - nr; hence Yn --+0. Therefore y1 = L:�= 1 A (xk) = 
A (x)eA(B(r) ), proving (1 2.3) and completing the proof of the theorem. • 

The same method used to prove the Open Mapping Theorem can also 
be used to prove the Tietze Extension Theorem. See Grabiner [1 986] . 

The Open Mapping Theorem has several applications. Here are two 
important ones. 

12.5. The Inverse Mapping Theorem. If !!£ and OJ/ are Banach spaces and 
A :  !!£ --+ OJ/  is a bounded linear transformation that is bijective, then A - 1 is 
bounded. 

PROOF. Because A is continuous, bijective, and open by Theorem 1 2. 1 , A is 
a homeomorphism. • 

12.6. The Closed Graph Theorem. If!!£ and OJ/ are Banach spaces and A :  !!£ --+ OJ/  
is a linear transformation such that the graph of A, 

gra A - {x Ee Axe!!£ <:91 OJ/: xef!I} 

is closed, then A is continuous. 

PROOF. Let t§ = gra A. Since !!£ <:91 OJ/ is a Banach space and t§ is closed, t§ 
is a Banach space. Define P: � --+  !!£ by P(x Ee Ax) = x. It is easy to check 
that P is bounded and bijective. (Do it). By the Inverse Mapping Theorem, 
p- l : !!£ --+  t§ is continuous. Thus A :  !!£ --+ OJ/  is the composition of the 
continuous map P - 1 : !!£ --+  t§ and the continuous map of t§ --+  OJ/ defined by 
x Ee Ax�-+ Ax; A is therefore continuous. • 

Let !!£ = all functions f: [0, 1 ] --+ F such that the derivative f' exists and 
is continuous on [0, 1] .  Let OJ/ =  C[O, 1 ]  and give both f!l and OJ/ the supremum 
norm: I I  f I I  = sup { l f(t) l : t e [O, 1 ]  } .  So f!l is not a Banach space, though 
dJ/ is. Define A :  !!I -+  OJ/ by Af = f' . Clearly, A is linear. If {fn } c:. f!{ and 
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(fn , f�) -+ (f, g) in f!l x ({#, then f� -+ g uniformly on [0, 1 ] .  Hence 

fn(t) - fn(O) = If�(s) ds -+ I g(s) ds. 

But fn(t) - fn(O) -+ f(t) - f(O), SO 

f(t) = f(O) + I g(s) ds. 

Thus f' = g and gra A is closed. However, A is not bounded. (Why?) 
The preceding example shows that the domain of the operator in the 

Closed Graph Theorem must be assumed to be complete. The next example 
(due to Alp Eden) shows that the range must also be assumed to be complete. 

Let f!l be a separable infinite-dimensional Banach space and let { ei : iei } 
be a Hamel basis for f!l with I I ei I I = 1 for all i. Note that a Baire Category 
argument shows that I is uncountable. If xef!l, then x = Lictiei , cxieF', and 
cxi = 0 for all but a finite number of i in I. Define I I x 1 1 1 = I:d cxi 1 . It is left as 
an exercise for the reader to show that 1 1 · 1 1 1 is a norm on f!l. Since II ei II = 1 
for all i, II x I I � Li I cxi I = I I x 1 1 1 • Let oy = f!l with the norm 1 1 · 1 1 1 and let T: oy -+ f!l 
be defined by T(x) = x. Note that it was just shown that T: oy -+  f!l is a 
contraction. Therefore gra T is closed and hence so is gra T- 1 • But T- 1 is 
not continuous because if it were, then T would be a homeomorphism. Since 
f!l is separable, it would follow that oy is separable. But oy is not separable. 
To see this, note that II ei - ei 1 1 1 = 2 for i "# j and since I is uncountable, oy 
cannot be separable. 

When applying the Closed Graph Theorem, the following result is useful. 

12.7. Proposition. If f!l and oy are normed spaces and A :  f!l -+  oy is a linear 
transformation, then gra A is closed if and only if whenever xn -+ 0 and Axn -+ y, 
it must be that y = 0. 

PROOF. Exercise 3. 

Note that ( 1 2.7) underlines the advantage of the Closed Graph Theorem. 
To show that A is continuous, it suffices to show that if xn -+ 0, then Axn -+ 0. 
By ( 1 2.7) this is eased by allowing us to assume that { Axn } is convergent. 

It is possible to give a measure-theoretic solution to Exercise 2.3, but here 
is one using the Closed Graph Theorem. Let (X, n, p,) be a a-finite measure 
space, 1 � p � oo, and l/J :  X -+  F' an n-measurable function such that l/J f e LP(p,) 
whenever f el!(p,). Define A :  l!(p,) -+ I!(p,) by Af = l/Jf. Thus A is linear and 
well defined. Suppose fn -+ 0 and l/Jfn -+ g in LP(p,). If 1 � p < oo, then fn -+ 0 
in measure. By a theorem of Riesz, there is a subsequence {ink } such that 
fnk(x) -+ 0 a.e. [p,] . Hence l/J(x)fnk(x) -+ 0 a. e. [p,] . ·This implies g = 0 and so 
gra A is closed. If p = oo, then fn(x) -+ 0 a.e. [p,] and the same argument 
implies gra A is closed. By the Closed Graph Theorem, A is bounded. Clearly, 
it may be assumed that II A II = 1 . If t5 > 0, let E be a measurable subset of 
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{x : I Q>(x) l � 1 + £5} with J.l(E) < oo. We want to show that J.l(E) = 0. But if 
f = XE, then J.l(E) = 1 1 1 1 1 : � I I A/ I I : = 1 1 4>! 1 1 : = JE I Q> I P dJ.l � ( 1  + £5)PJ.l(E). Hence 
J.l(E) = 0. Since E was arbitrary it follows that Q> is an essentially bounded 
function and I I 4> I I oo � 1 .  • 
12.8. Definition. If f£, OJ/ are Banach spaces, an isomorphism of fi and OJ/ is 
a linear bijection T: fi --+  OJ/ that is a homeomorphism. Say that fi and OJ/ 
are isomorphic if there is an isomorphism of fi onto OJ/. 

Note that the Inverse Mapping Theorem says that a continuous bijection 
is an isomorphism. 

The use of the word "isomorphism" is counter to the spirit of category 
theory, but it is traditional in Banach space theory. 

EXERCISES 
1 .  Suppose PI and OJ/ are Banach spaces. If A ePA( PI, OJ/) and ran A is a second category 

space, show that ran A is closed. 

2. Give both c< l ) [O, 1] and C[O, 1 ]  the supremum norm. If A:  c< l ) [O, 1 ] -+ C[O, 1] is 
defined by Af = f' , show that A is not bounded. 

3. Prove Proposition 1 2. 7. 

4. Let Pr be a vector space and suppose 1 1 · 1 1 1 and 1 1 · 1 1 2 are two norms on PI and that 
J1 and J2 are the corresponding topologies. Show that if PI is complete in both 
norms and J1 => J2, then J1 = J2 . 

5. Let PI and OJ/ be Banach spaces and let Aef4(q;, OJ/). Show that there is a constant 
c > 0 such that I I Ax I I � c I I x I I for all x in PI if and only if ker A = (0) and ran A is 
closed. 

6. Let X be compact and suppose that PI is a Banach subspace of C(X). If E is a 
closed subset of X such that for every g in C(E) there is an f in PI with !I E = g, 
show that there is a constant c > 0 such that for each g in C(E) there is an f in 
PI with f iE = g and max { lf(x) l :  xeX} � c max { l g(x) l :  xeE}. 

7. Let 1 � p � oo and suppose (aii) is a matrix such that (Af)(i) = Lf== 1 aiif(j) defines 
an element Af of fP for every f in fP. Show that Ae&l(IP). 

8. Let (X, Q, JL) be a a-finite measure space, 1 � p < oo, and suppose that k:  X x X -+  F 
is an Q x Q measurable function such that for f in LP(JL) and a.e. x, k(x, ·)f( · )eL1 (JL) 
and (Kf)(x) = J k(x, y)f(y) dJL(Y) defines an element Kf of LP(JL). Show that 
K: LP(JL) -+ LP(JL) is a bounded operato'r. 

§ 1 3 . Complemented Subspaces of a Banach Space 

If fi is a Banach space and A �  f£, say that A is algebraically complemented 
in fi if there is an % � fi such that A n %  = (0) and A + % = f£. Of course, 
the definition makes sense in a purely algebraic setting, so the requirement 
that A and % be closed seems fatuous. Why is it made? 
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If A is a linear manifold in a vector space f!l (a Banach space or not), 
then a Hamel-basis argument can be fashioned to produce a linear manifold 
..¥ such that A n ..¥  = (0) and A + ..¥ = f!l. So the requirement in the 
definition that A and ..¥ be closed subspaces of the Banach space f!l makes 
the existence problem more interesting. Also, since we are dealing with the 
category of Banach spaces, all definitions should involve only objects in that 
category. 

If A and ..¥ are algebraically complemented closed subs paces of a normed 
space f!l, then A :  A <:91 ..¥ -+  f!l defined by A(m Ee n) = m + n is a linear 
bijection. Also, I I  A(m Ee n) I I  = I I  m + n I I � I I  m I I + I I  n I I  = I I  m Ee n 1 1 . Hence A is 
bounded. Say that A and ..¥ are topologically complemented if A is a 
homeomorphism; equivalently, if I l l  m + n I l l  = I I  m I I  + I I  n I I  is an equivalent 
norm. If f!l is a Banach space, then the Inverse Mapping Theorem implies 
A is a homeomorphism. This proves the following. 

13.1. Theorem. If two subspaces of a Banach space are algebraically 
complementary, then they are topologically complementary. 

This permits us to speak of complementary subspaces of a Banach space 
without modifying the term. The proof of the next result is left to the reader. 

13.2. Theorem. (a) If A and ..¥ are complementary subspaces of a Banach 
space f!l and E: f!l -+ f!l  is defined by E(m + n) = m for m in A and n in ..¥, 
then E is a continuous linear operator such that E2 = E, ran E = A, and 
ker E = ..¥. (b) If Ee�(f!l) and E2 = E, then A =  ran £ and ..¥ =  ker E are 
complementary subspaces of f!l. 

If A �  f!l and A is complemented in f!l, its complementary subspace may 
not be unique. Indeed, finite dimensional spaces furnish the necessary 
examples. 

A result due to R.S. Phillips [ 1 940] is that c0 is not complemented in zoo . 
A straightforward proof of this can be found in Whitley [ 1 966]. Murray 
[ 1 937] showed that /P, p "# 2, p > 1 has uncomplemented subspaces. This seems 
to be the first paper to exhibit uncomplemented subs paces of a Banach space. 

Lindenstrauss [ 1 967] showed that if A is an infinite dimensional sub
space of zoo that is complemented in z oo , then A is isomorphic to zoo . This 
same result holds if zoo is replaced by /P, 1 � p < oo,  c, or c0 . 

Does there exist a Banach space f£ such that every closed subspace of f!l 
is complemented? Of course, if f!l is a Hilbert space, then this is true. But 
are there any Banach spaces that have this property and are not Hilbert 
spaces? Lindenstrauss and Tzafriri [ 1 97 1] proved that if f!l is a Banach space 
and every subspace of f£ is complemented, then f£ is isomorphic to a Hilbert 
space. 
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EXERCISES 
1 .  If PI is a vector space and Jt is a linear manifold in PI, show that there is a linear 

manifold JV in PI such that Jt n JV = (0) and Jt + JV = PI. 

2. Let PI be a Banach space and let E; PI -+  PI be a linear map such that E2 = E and 
both ran E and ker E are closed. Show that E is continuous. 

3. Prove Theorem 1 3 .2. 

4. Let PI be a Banach space and show that if Jt is a complemented subspace of PI, 
then every complementary subspace is isomorphic to PI I Jt. 

5. Let X be a compact set and let Y be a closed subset of X. A simultaneous extension 
for Y is a bounded linear map T: C( Y) -+ C(X) such that for each g in C( Y), 
T(g) I Y = g. Let C0(X\ Y) = {! e C(X): f(y) = 0 for all y in Y}. Show that if there 
is a simultaneous extension for Y, then C0(X\ Y) is complemented in C(X). 

6. Show that if Y is a closed subset of [0, 1 ], then there is a simultaneous extension 
for Y (see Exercise 5). (Hint : Write [0, 1]\ Y as the union of disjoint intervals.) 

7. Using the notation of Exercise 5, show that if Y is a retract of X, then C0(X\ Y) 
is complemented in C(X). 

§ 14. The Principle of Uniform Roundedness 

There are several results that may be called the Principle of Uniform 
Boundedness (PUB) and all of these are called the PUB by various mathe
maticians. In this book the PUB will refer to any of the results of this section, 
though in a formal way the next result plays the role of the founder of the 
family. 

14.1. Principle of Uniform Roundedness (PUB). Let PI be a Banach 
space and OJ/ a normed space. If d c PA(PI, OJ/) such that for each x in PI, 
sup { I I  Ax I I : A ed} < oo, then sup { II A I I : Aed} < oo.  

PROOF. (Due to William R. Zame, 1978. Also see J. Hennefeld [ 1980].) For 
each x in PI let M(x) = sup { I I  Ax I I : A ed}, so I I  Ax I I  � M(x) for all x in PI. 
Suppose sup { II A I I : Aed} = oo. Then there is a sequence {An } c d and a 
sequence {xn} of vectors in PI such that I I  xn I I = 1 and I I Anxn I I  > 4n. Let 
Yn = 2- nxn ; thus I I  Yn I I = 2 - n and I I  An.Yn I I > 2n . 

14.2. Claim. There is a subsequence {Ynk } such that for k �  1 :  

(a) I I  Ank + 1 Ynk +i I I  > 1 + k + L�= 1 M(yni ); 
(b) II y nk + 1 I I  < 2 - k - 1 [sup { I I  Ani I I  : 1 � i � k} J - 1 . 

The proof of ( 14.2) is by induction. Let n 1 = 1 . The induction step is valid 
since I I  Yn I I -+ 0 and I I  AnYn I I -+ oo . The details are left to the reader. 
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Since Lk I I  Ynk II < oo, LkYnk = y in f!l (here is where the completeness of f!l 
is used.) Now for any k � 1 ,  

k 00 

L Ank + t Yni + Ank + t Ynk + t  + L Ank + t Yni j = l j = k + 2 

00 

k 00 

L Ank + 1 Yni + L Ank + t Yni j = l j = k + 2 

� 1 + k - L 2-j 
j = k + 2 

� k. 

That is, M(y) � k for all k, a contradiction. • 

14.3. Corollary. If f!l is a normed space and A c f!l, then A is a bounded set 
if and only if for every f in f!l* , sup { l f(a) l : aeA} < oo .  

PROOF. Consider f!l as a subset of fJI(f!l* , F) ( = f!l**) by letting x(f) = f(x) 
for every f in f!l* . Since f!l* is a Banach space and II x I I = II x I I for all x, the 
corollary is a special case of the PUB. • 

14.4. Corollary. If f!l is a Banach space and A c f!l* , then A is a bounded set 
if and only if for every x in f!l, sup { l f(x) l : feA} < oo.  

PROOF. Consider f!l* as fJI(f!l, F). • 

Using Corollary 14.3, it is possible to prove the following improvement 
of ( 14. 1 ). 

14.5. Corollary. If f!l is a Banach space and oy is a normed space anq if 
d c fJI(f!l, ({Y) such that for every x in f!l and g in ({Y*, 

sup { l g(A(x)) l : Aed} < oo,  

then sup { I I A I I : Aed} < oo.  

PROOF. Fix x in f!l. By the hypothesis and Corollary 14.3, sup { I I A(x) I I : 
Aed} < oo .  By ( 14. 1 ), sup { I I A I I : Aed} < oo.  • 

A special form of the PUB that is quite useful is the following. 

14.6. The Banach-Steinhaus Theorem. If PI and OJ/ are Banach spaces and 



§ 14. The Principle of Uniform Boundedness 97 

{An } is a sequence in PA(?£, qJ/) with the property that for every x in !!( there 
is a y in qy such that I I Anx - y II -+ 0, then there is an A in PA(?£, qJ/) such that 
II Anx - Ax II -+ 0 for every x in ?£ and sup II An I I < oo. 

PROOF. If x E?£, let Ax = lim Anx. By hypothesis A :  ?£ -+  qy is defined and it 
is easy to see that it is linear. To show that A is bounded, note that the PUB 
implies that there is a constant M > 0 such that I I  An I I  � M for all n. If XE?£ and 
I I x I I  � 1 ,  then for any n � 1 ,  I I  Ax I I  � I I  Ax - Anx I I  + I I  Anx I I  � I I  Ax - Anx I I + M. 
Letting n -+  oo shows that I I Ax II � M whenever II x II � 1 .  • 

The Banach-Steinhaus Theorem is a result about sequences, not nets. 
Note that if I is the identity operator on ?£ and for each n � 1 ,  An = n - t I 
and for n � 0, An = ni, then {An : nEZ} is a countable net that converges in 
norm to 0, but the net is not bounded. 

14.7. Proposition. Let X be local/ y compact and let { fn } be a sequence in 
C0(X). Then J fn dJ.l -+ J f dJ.l for every J.l in M(X) if and only if supn I I  fn I I  < oo 
and fn(x) -+ f(x) for every x in X. 

PROOF. Suppose J fn dJ.l -+ J f dJ.l for every J.l in M(X). Since M(X) = C0(X)*, 
( 14.3) implies that supn I I  fn I I  < oo. By letting J.l = �x' the unit point mass at 
x, we see that J fn d�x = fn(x) -+ f(x). The converse follows by the Lebesgue 
Dominated Convergence Theorem. • 

EXERCISES 
1 .  Here is another proof of the PUB using the Baire Category Theorem. With the 

notation of ( 14. 1 ), let Bn = { XE�: I I Ax I I � n for all A in d}. By hypothesis, 
U := t Bn = �. Now apply the Baire Category Theorem. 

2. If 1 < p < oo and { xn } c [P, then L]: t xn(j)y(j) --+ 0 for every y in lq, 1/p + 1/q = 1 ,  
if and only if supn I I  Xn I I  P < oo and Xn(j) --+ 0 for every j � 1 .  

3 .  If { Xn } c I t , then L]: t Xn(j)y(j) --+ 0 for every y in c0 if and only if supn I I  Xn l i t < oo 
and xn(j) --+ 0 for every j � 1 .  

4. If (X, !l, Jl) is a measure space, 1 < p < oo, and {fn }  c LP(X, !l, Jl), then Jfng djl --+ 0  
for every g in Lq(Jl), 1/p + 1/ q = 1 ,  if and only if sup { I I  fn I I  P: n � 1 } < oo and for 
every set E in Q with Jl(E) < oo, J Efn dJl -+ 0 as n --+  oo. 

5. If (X, Q, /l) is a a-finite measure space and {fn }  is a sequence in Lt (X, !l, Jl), then 
J fng dJl --+ 0 for every g in L 00(/l) if and only if sup { I I  fn l i t :  n � 1 } < oo and 
J Efn djl -+  0 for every E in n. 

6. Let .Yf be a Hilbert space and let 8 be an orthonormal basis for .Yf. Show that 
a sequence {hn } in .Yf satisfies ( hn, h )  --+ 0  for every h in .Yf if and only if 
sup { I I hn I I : n� 1 } < oo and < hn , e )  --+ 0 for every e in 8. 

7. If X is locally compact and {ttn }  is a sequence in M(X), then L(Jln) --+ 0 for every 
L in M (X)* if and only if sup { II Jln I I : n � 1 } < oo and Jln(E) --+ 0 for every Borel set E. 

8. In ( 14.6), show that I I  A II � lim inf II An 1 1 . 
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9. If (S, d) is a metric space and PI is a normed space, say that a function f: S -+  ?I 
is a Lipschitz function if there is a constant M > 0 such that I I  f(s) - f(t) I I  � Md(s, t) 
for all s, t in S. Show that if f: S -+  PI is a function such that for all L in PI* , 
Lo f: S -+  IF is Lipschitz, then f: S -+  PI is a Lipschitz function. 

10. Let PI be a Banach space and suppose {xn } is a sequence in PI such that for each 
x in PI there are unique scalars {1Xn } such that limn .... oo I I x - L� =  1 1lkxk I I = 0. Such 
a sequence is called a Schauder basis. (a) Prove that PI is separable. (b) Let 
CW = { {1Xn } e1FN: L:= 1 1XnXn converges in PI} and for y = {1Xn } in CW define 
II y II = sup" II L� = 1 1lkxk 1 1 . Show that CW is a Banach space. (c) Show that there is 
a bounded bijection T: PI -+  CW. (d) If n � 1 and fn: PI -+  IF is defined by 
fn(L�= 1 1lkxk) = 1Xn , show that fnePI* .  (e) Show that Xn� the closed linear span of 
{xk : k =F n} .  



CHAPTER IV 

Locally Convex Spaces 

A topological vector space is a generalization of the concept of a Banach 
space. The locally convex spaces are encountered repeatedly when discussing 
weak topologies on a Banach space, sets of operators on Hilbert space, or 
the theory of distributions. This book will only skim the surface of this theory, 
but it will treat locally convex spaces in sufficient detail as to enable the 
reader to understand the use of these spaces in the three areas of analysis 
just mentioned. For more details on this theory, see Bourbaki [ 1 967] , 
Robertson and Robertson [ 1 966], or Schaefer [ 1 97 1 ] . 

§ 1 . Elementary Properties and Examples 

A topological vector space is a vector space that is also a topological space 
such that the linear structure and the topological structure are vitally 
connected. 

1 .1 .  Definition. A topological vector space (TVS) is a vector space ?£ together 
with a topology such that with respe�t to this topology 

(a) the map of ?£ x ?£ -+ ?I  defined by (x, y)Hx + y is continuous; 
(b) the map of F' x ?£ -+ ?I  defined by (a, x)Hax is continuous. 

It is easy toAee that a norme�t_sp�ce is a TVS (Proposition 111. 1 .3). 
Suppose ?£ is a vector space and 9 is a family of seminorms on ?£. Let 

!T be the topology on ?£ that has as a subbase the sets { x :  p(x - x0) < e } ,  
where pe9, x0e?£, and e > 0. Thus a subset U of f!( is open if and only if 
for every x0 in U there are p1 , • . .  , Pn in @ and e 1 , • . .  , en > 0 such that 
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nj= 1 {xe�: Pi(x - Xo) < 6j } c U. It is not difficult to show that � with this 
topology is a TVS (Exercise 2). 

1.2. Definition. A locally convex space (LCS) is a TVS whose topology is 
defined by a family of seminorms 9 such that npe&> {x: p(x) = 0} = (0). 

The attitude that has been adopted in this book is that all topological 
spaces are Hausdorff. The condition in Definition 1 .2 that npe&> {x: p(x) = 

0} = (0) is imposed precisely so that the topology defined by 9 be Hausdorff. 
In fact, suppose that x "# y. Then there is a p in 9 such that p(x - y) "# 0; let 
p(x - y) > 6 > 0. If U = {z: p(x - z) < �6 }  and V = {z : p(y - z) < �6 } ,  then 
U n V = D and U and V are neighborhoods of x and y, respectively. 

If � is a TVS and x0e�, then x�x + x0 is a homeomorphism of �; also, 
if aeF' and a "#  0, x�ax is a homeomorphism of � (Exercise 4). Thus the 
topology of � looks the same at any point. This might make the next 
statement less surprising. 

1.3. Proposition. Let � be a TVS and let p be a seminorm on �- The following 
statements are equivalent. 

(a) p is continuous. 
(b) { xe�: p(x) < 1 }  is open. 
(c) Oeint { xe� : p(x) < 1 } . 
(d) Oeint { xe�: p(x) � 1 } . 
(e) p is continuous at 0. 
(f) There is a continuous seminorm q on � such that p � q. 

PROOF. It is clear that (a) �(b) �(c) �(d). 
(d) implies (e): Clearly (d) implies that for every 6 > 0, Oeint {xe�: p(x) � 6 } ;  

so if {xi } is a net in � that converges to 0 and 6 > 0, there is an i0 such that 
xie { x: p(x) � 6 }  for i � i0; that is, p(xi) � 6 for i �  i0 • So p is continuous at 0. 

(e) implies (a): If xi � x, then I p(x) - p(xi) I � p(x - xi). Since x - xi � 0, 
(e) implies that p(x - xi) � o. Hence p(xi) � p(x). 

Clearly (a) implies (f). So it remains to show that (f) implies (e). If xi �o  
in �' then q(xi) � o. But 0 � p(xi) � q(xi), so p(xi) � o. • 

1 .4. Proposition. If� is a TVS and p1 , • . • 
, Pn are continuous seminorms, then 

p1 + · · ·  + Pn and maxi(Pi(x) ) are continuous seminorms. If { Pi } is a family of 
continuous seminorms such that there is a continuous seminorm q with Pi � q 
for all i, then x�supi {Pi(x) } defines a continuous seminorm. 

PROOF. Exercise. 

If 9 is a family of seminorms of � that makes � into a LCS, it is often 
convenient to enlarge 9 by assuming that 9 is closed under the formation 
of finite sums and supremums of bounded families [as in ( 1 .4)] .  Sometimes 
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it is convenient to assume that f!JJ consists of all continuous seminorms. In 
either case the resulting topology on !!£ remains unchanged. 

1.5. Example. Let X be completely regular and let C(X) = all continuous 
functions from X into F. If K is a compact subset of X, define 
PK(f) = sup { l f(x) l : xeK} . Then {pK: K  compact in X }  is a family of semi
norms that makes C(X) into a LCS. 

1.6. Example. Let G be an open subset of <C and let H(G) be the subset of 
Ccr(G) consisting of all analytic functions on G. Define the seminorms of ( 1 .5) 
on H(G). Then H(G) is a LCS. Also, the topology defined on H(G) by these 
seminorms is the topology of uniform convergence on compact subsets-the 
usual topology for discussing analytic functions. 

1.7. Example. Let !!£ be a normed space. For each x* in !!£*, define 
Px•(x) = l x*(x) l . Then Px• is a seminorm and if f!JJ = { Px• = x* e!!£* }, f!JJ makes 
!!£ into a LCS. The topology defined on !!£ by these seminorms is called the 
weak topology and is often denoted by a(!!£, !!£*). 

1.8. Example. Let !!£ be a normed space and for each x in !!£ define Px= !!£* --+ 
[0, oo )  by Px(x*) = l x*(x) l . Then Px is a seminorm and f!JJ = {px : xe!!£ } makes 
!!£* into a LCS. The topology defined by these seminorms is called the 
weak-star (or weak* or wk*) topology on !!£*. It is often denoted by a(!!£*, !!£). 

The spaces !!£ with its weak topology and !!£* with its weak* topology 
are very important and will be explored in depth in Chapter V. 

Recall the definition of convex set from (I.2.4). If a, be!!£, then the line 
segment from a to b is defined as [a, b] = {tb + ( 1 - t)a : O � t � 1 } . So a set 
A is convex if and only if [a, b] c: A whenever a, b E  A. The proof of the next 
result is left to the reader. 

1.9. Proposition. (a) A set A is convex if and only if whenever x1 , . . •  , xn eA 
and t 1 , . . •  , tn e [O, 1 ]  with Liti = 1 ,  then LitixieA. (b) If {Ai : iel } is a collection 
of convex sets, then n iAi is convex. 

1.10. Definition. If A c: !!£, the convex hull of A, denoted by co (A ), is the 
intersection of all convex sets that contain A. If !!£ is a TVS, then the closed 

• 

convex hull of A is the intersection of all closed convex subsets of !!£ that 
contain A ;  it is denoted by co (A). 

Since a vector space is itself convex, each subset of !!£ is contained in a 
convex set. This fact and Proposition 1 .9(b) imply that co (A) is well defined 
and con vex. Also, co (A ) is a closed con vex set. 

If !!£ is a normed space, then {x: II x II � 1 }  and { x :  II x II < 1 }  are both 
convex sets. If fe!!£*, {x: l f(x) l � 1 } , {x: Re f(x) � 1} , {x: Re f(x) > 1 }  are 
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all convex. In fact, if T: f£--+  OJJ is a real linear map and C is a convex subset 
of CiJI, then T - 1 (C) is convex in f£. 

1.1 1. Proposition. Let f£ be a TVS and let A be a convex subset of f£. Then 
(a) cl A is convex; (b) if aeint A and becl A, then [a, b) = { tb + ( 1  - t) 
a: 0 � t < 1 }  c: int A. 

PROOF. Let ae A, becl A, and 0 � t � 1. Let {xi } be a net in A such that 
xi --+ b. Then txi + ( 1  - t)a --+ tb + ( 1  - t)a. This shows that 

1.12 b in cl A and a in A imply [a, b] c: cl A. 

Using ( 1 . 1 2) it is easy to show that cl A is convex. To prove (b), fix t, 
0 < t < 1 ,  and put c = tb + ( 1  - t)a, where aeint A and becl A. There is an 
open set V in f£ such that Oe V and a + V c: A. (Why?) Hence for any d in A 

A => td + ( 1  - t)(a + V) 
= t(d - b) + tb + ( 1 - t)(a + V) 
= [t(d - b) + ( 1 - t)V] + c. 

If it can be shown that there is an element d in A such that Oet(d - b) + 
( 1 - t)V = U, then the preceding inclusion shows that ce int A since U is 
open (Exercise 4). Note that the finding of such a d in A is equivalent to 
finding a d such that Oe t - 1 ( 1 - t)V + (d - b) or deb - t- 1 ( 1 - t)V. But 
Oe - t - 1 ( 1 - t) V and this set is open. Since becl A, d can be found in A. • 

1.13. Corollary. If A c: f£, then co (A ) is the closure of co(A). 

A set A c: f£ is balanced if CtxeA whenever xeA and I Ct l � 1 .  A set A is 
absorbing if for each x in f£ there is an e > 0 such that txeA for 0 � t < e . 
Note that an absorbing set must contain the origin. If aeA, then A is absorbing 
at a if the set A - a is absorbing. Equivalently, A is absorbing at a if for 
every x in f£ there is an e > 0 such that a + txeA for 0 � t < e . 

If f£ is a vector space and p is a seminorm, then V = {x: p(x) < 1 }  is a 
convex balanced set that is absorbing at each of its points. It is rather 
remarkable that the converse of this is true. This fact will be used to giv� an 
abstract formulation of a LCS and also to explore some geometric conse
quences of the Hahn-Banach Theorem. 

1.14. Proposition. If f£ is a vector space over 1F and V is a nonempty convex, 
balanced set that is absorbing at each of its points, then there is a unique 
seminorm p on f£ such that V = { xef£: p(x) < 1 } .  

PROOF. Define p(x) by 

p(x) = inf { t : t � 0 and xet V} . 

Since V is absorbing, f!l = U: 1 n V, so that the set whose infimum is p(x) is 
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nonempty. Clearly p(O) = 0. To see that p(ax) = l a l p(x), we can suppose that 
a =I- 0. Hence, because V is balanced, 

p(ax) = inf { t � 0: axet  V} 

= inf { t � O: xE t(� V) } 
= inf { t � o: XEtC�

, 
v) } 

= l a l inf {-
t 

: XE-
t 

v} 
I a I I a I 

= l a l p(x). 

To complete the proof that p is a seminorm, note that if a, P � 0 and 
a, be V, then 

aa + Pb = (a + P)( a 
a + 

p b)e(a + P) V  
a + P a + P 

by the convexity of V. If x, yefl', p(x) = a, and p(y) = p, let � > 0. Then 
xe(oc + �) V and ye(P + �) V. (Why?) Hence x + ye(a + �) V + (p + �) V = 
(a + p + 2�) V (Exercise 1 1 ). Letting ��o shows that p(x + y) � a + p = p(x) + 
p(y). 

It remains to show that V = {x : p(x) < 1 } .  If p(x) = a <  1 ,  then a <  p < 1 
implies x E p V c: V since V is balanced. Thus V :::::> { x: p( x) < 1 } . If x E V, then 
p(x) � 1 .  Since V is absorbing at x, there is an e > 0 such that for 0 < t < e, 
x + tx = ye V. But x = (1 + t) - 1 y, ye V. Hence p(x) = (1 + t) - 1 p( y) � 
( 1  + t) - 1 < 1 .  

Uniqueness follows by (111. 1 .4). • 

The seminorm p defined in the preceding proposition is called the 
M inkowski function of V or the gauge of V. 

Note that if fl' is a TVS space and V is an open set in fl', then V is 
absorbing at each of its points. 

Using Proposition 1 . 14, the following characterization of a LCS can be 
obtained. The proof is left to the reader. 

1.15. Proposition. Let ?£ be a TVS and let OIJ be the collection of all open 
convex balanced subsets of ?£. Then fl' is locally convex if and only if OIJ is a 
basis for the neighborhood system at 0. 

EXERCISES 
1 .  Let PI be a TVS and let OU be all the open sets containing 0. Prove the following. 

(a) If U eOU, there is a V in OU such that V + V c U. (b) If U eOU, there is a V in 
OU such that V c  U and oc V c  V for all l oc i � 1 .  (V is balanced.) 
(Hint: If WeOU and ocW c U for l oc i � 8, then 8 W s;; {JU  for I P I � 1 .) 
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2. Show that a LCS is a TVS. 

3. Suppose that PI is a TVS but do not assume that PI is Hausdorff. (a) Show that PI 
is Hausdorff if and only if the singleton set {0} is closed. (b) If PI is Hausdorff, 
show that PI is a regular topological space. 

4. Let PI be a TVS. Show: (a) if x0ePI, the map x...._.. x + x0 is a homeomorphism 
of PI onto PI; (b) if a elF and a #  0, the map x...._.. ax is a homeomorphism. 

5. Prove Proposition 1 .4. 

6. Verify the statements made in Example 1 .5. Show that a net {fd in C(X) 
converges to f if and only if fi --+ f uniformly on compact subsets of X. 

7. Show that the space H(G) defined in ( 1 .6) is complete. (Every Cauchy net 
converges.) 

8. Verify the statements made in Example 1 .7. Give a basis for the neighborhood 
system at 0. 

9. Verify the statements made in Example 1 .8. 

10. Prove Proposition 1 .9. 

1 1 . Show that if A is a convex set and a, f3 > 0, then aA + f3A = (a + f3)A, Give an 
example of a nonconvex set A for which this is untrue. 

1 2. If PI is a TVS and A is closed, show that A is convex if and only if � (x + y)e A 
whenever x and yeA. 

1 3. Let s = the space of all sequences of scalars. Thus s = all functions x: N --+  IF. 
Define addition and scalar multiplication in the usual way. If x, yes, define 

d(x, y) = f 2 _ . l x(n) - y(n) l 
. 

n =  1 1 + l x(n) - y(n) l 

Show that d is a metric on s and that with this topology s is a TVS. Also show 
that s is complete. 

14. Let (X, n, Jt) be a finite measure space, let Jt be the space of Q-measurable 
functions, and identify two functions that agree a.e. [Jt] . If f, gevH, define 

d(f ) = I I f  - g I 
d ' 9 1 + I f - g I 
Jt. 

Then d is a metric on Jt and (Jt, d) is a complete TVS. Is there a relationship 
between this example and the space s of Exercise 1 3? 

1 5. If PI is a TVS and A c PI, then cl A =  n {A + V: Oe V and V is open} . 

16. If PI is a TVS and Jt is a closed linear space, then PI/vH with the quotient 
topology is a TVS. If p is a seminorm on PI, define p on PI /vH by 
p(x + Jt) = inf{ p(x + y): yevll} Show that p is a seminorm on PI/vii. Show that 
if PI is a LCS, then so is PI/ vii. 

1 7. If {!ri : i el }  is a family of TVS's, then fr = ll{Pii: iel }  with the product topology 
is a TVS. If each fr i is a LCS, then so is fr. If fr is a LCS, must each fr i be a LCS? 
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18. If PI is a finite-dimensional vector space and 3h 32 are two topologies on PI 
that make PI into a TVS, then 31 = 32• 

19. If PI is a TVS and vii is a finite dimensional linear manifold in PI, then A is 
closed and CiJ/ + A is closed for any closed subspace CiJ/ of PI. 

20. Let PI be any infinite dimensional vector space and let 3 be the collection of all 
subsets W of PI such that if xe W, then there is a convex balanced set U with 
x + U c W and U n vii open in A for every finite dimensional linear manifold 
vii in PI. (Each such vii is given its usual topology.) Show: (a) (PI, 3) is a LCS; 
(b) a set F is closed in PI if and only if F n vii is closed for every finite dimensional 
subspace vii of PI; (c) if Y is a topological space and f: PI --+  Y (not 
necessarily linear), then f is continuous if and only if fl vii is continuous for every 
finite dimensional space vii; (d) if CiJ/ is a TVS and T: PI --+  CiJ/ is a linear map, then 
T is continuous. 

2 1 .  Let X be a locally compact space and for each ¢ in C0(X), define p cJ>(f) = I I ¢ f I I  oo 

for f in Cb(X). Show that p 4> is a semi norm on Cb(X). Let p = the topology defined 
by these seminorms. Show that (Cb(X), p) is a LCS that is complete. p is called 
the strict topology. 

22. For 0 < p < 1 ,  let /P = all sequences x such that I::= 1 l x(n) I P < oo.  Define 
d(x, y) = I::= 1 1 x(n) - y(n) I P (no pth root). Then d is a metric and (/P, d) is a TVS 
that is not locally convex. 

23. Let PI and CiJ/ be locally convex spaces and let T: PI --+  CiJ/ be a linear transformation. 
Show that T is continuous if and only if for every continuous seminorm p on CiJ/, 
po T  is a continuous seminorm on PI. 

24. Let PI be a LCS and let G be an open connected subset of PI. Show that 
G is arcwise connected. 

§2. Metrizable and Normable Locally Convex Spaces 
• 

Which LCS's are metrizable? That is, which have a topology which is defined 
by a metric? Which LCS's have a topology that is defined by a norm? Both 
are interesting questions and both answers could be useful. 

If & is a family of seminorms on !!( and !!£ is a TVS, say that & determines 
the topology on !!£ if the topology of !!£ is the same as the topology induced 
by &. 

2.1. Proposition. Let { p1 , p2, • • •  } be a sequence of seminorms on !!£ such that 
n: 1 {x: Pn(x) = 0} = (0). For X and y in !!£, define 

d(x, y) = f: 2 - " Pn(x - y) 
. n =  1 1 + Pn(X - y) 

Then d is a metric on !!£ and the topology on f£ defined by d is the topology 
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on PI defined by the seminorms {p 1 • p2, • • •  } .  Thus a LCS is metrizable if and 
only if its topology is determined by a countable family of seminorms. 

PROOF. It is left as an exercise for the reader to show that d is a metric and 
induces the same topology as { Pn } · If PI is a LCS and its topology is 
determined by a countable family of seminorms, it is immediate that PI is 
metrizable. For the converse, assume that PI is metrizable and its metric is 
p. Let U n = { x: p(x, 0) < 1/n }. Because PI is locally convex, there are 
continuous seminorms q 1 , • • •  , qk and positive numbers e 1 , • • •  , ek such that 
n �= 1 {x: qi(x) < ei } c: Un. If Pn = e ; 1q 1 + · · ·  + e; 1qk, then xe Un whenever 
Pn(x) < 1 .  Clearly, Pn is continuous for each n. Thus if xi--+ 0 in PI, then 
for each n, Pn(xi) --+  0 as j --+  oo. Conversely, suppose that for each n, 
Pn(xi) --+  0 as j --+  oo. If e > 0, let n > e - 1 . Then there is a j0 such that for 
j � io, Pn(xj) < 1 .  Thus, for j � io, XjE u n c { x: p(x, 0) < e }. That is, p(xj , 0) < e 
for j � j 0 and so xi --+ 0 in PI. This shows that { Pn} determines the topology 
on PI. (Why?) • 

2.2. Example. If C(X) is as in Example 1 .5, then C(X) is metrizable if and 
only if X =  U :_ 1 Kn , where each Kn is compact, K 1 c K 2 c · · · ,  and if K is 
any compact subset of X, then K c Kn for some n. 

2.3. Example. If X is locally compact and C(X) is as in Example 1 .5, then 
C(X) is metrizable if and only if X is u-compact (that is, X is the union of a 
sequence of compact sets). If H(G) is as in Example 1 .6, then H(G) is metrizable. 

If PI is a vector space and d is a metric on PI, say that d is translation 
invariant if d(x + z, y + z) = d(x, y) for all x, y, z in PI. Note that the metric 
defined by a norm as well as the metric defined in (2. 1 )  are translation 
invariant. 

2.4. Definition. A Frechet space is a TVS f£ whose topology is defined by a 
translation invariant metric d and such that (PI, d )  is complete. 

It should be pointed out that some authors include in the definition of a 
Frechet space the assumption that PI is locally convex. 

2.5. Definition. If f£ is a TVS and B c PI, then B is bounded if for every open 
set U containing 0, there is an e > 0 such that eB c U. 

If PI is a normed space, then it is easy to see that a set B is bounded if 
and only if sup { l i b I I : beB} < oo, so the definition is intuitively correct. 

Also, notice that if 1 1 · 1 1 is a norm, { x: I I  x I I  < 1 }  is itself bounded. This is 
not true for seminorms. For example, if C(R) is topologized as in ( 1 .5), let 
p(f) = sup { l f(t) l : O � t � l } . Then p is a continuous seminorm. However, 



§2. Metrizable and Normable Locally Convex Spaces 107 

{f: p(f) < 1 }  is not bounded. In fact, if/0 is any function in C(R) that vanishs 
on [0, 1] , { af0: aeR} c: {f: p(f) < 1 }. The fact that a normed space posseses 
a bounded open set is characteristic. 

2.6. Proposition. If !!£ is a LCS, then !!£ is normable if and only if !!£  has a 
nonempty bounded open set. 

PROOF. It has already been shown that a normed space has a bounded open 
set. So assume that !!£ is a LCS that has a bounded open set U. It must be 
shown that there is norm on !!£ that defines the same topology. By translation, 
it may be assumed that Oe U (see Exercise 4i). By local convexity, there is a 
continuous seminorm p such that { x: p(x) < 1 }  = V c: U(Why?). It will be 
shown that p is a norm and defines the topology on !!£. 

To see that p is a norm, suppose that xe!!£ , x # 0. Let W0, Wx be disjoint 
open sets such that Oe W0 and xe Wx. Then there is an e > 0 such that 
W0 => eU => e V. But e V = {y: p(y) < e } .  Since x¢ W0, p(x) � e. Hence p is a norm. 

Because p is continuous on !!£, to show that p defines the topology of !!£ 
it suffices to show that if q is any continuous seminorm on !!£, there is an 
a >  0 such that q � ap (Why?). But because q is continuous, there is an e > 0 
such that { x: q(x) < 1 }  => eU => e V. That is, p(x) < e implies q(x) < 1 .  By 
Lemma 111. 1 .4, q � e -

1p. • 

EXERCISES 
1 .  Supply the missing details in the proof of Proposition 2. 1 .  

2. Verify the statements in Example 2.2. 

3. Verify the statements in Example 2.3. 

4. Let PI be a TVS and prove the following: (a) If B is a bounded subset of PI, then 
so is cl B. (b) The finite union of bounded sets is bounded. (c) Every compact set is 
bounded. (d) If B c PI, then B is bounded if and only if for every sequence { xn} 
contained in B and for every {ex"} in c0, cx"x" --+ 0 in PI. (e) If CiJ/ is a TVS, T: PI --+  CiJ/ 
is a continuous linear transformation, and B is a bounded subset of PI, then T(B) is 
a bounded subset of CiJ/. (f) If PI is a LCS and B c PI, then B is bounded if and only 
if for every continuous seminorm p, sup {p(b): beB} < oo. (g) If PI is a normed 
space and B c PI, then B is bounded if and only if sup { II b I I : beB} < oo. (h) If PI 
is a Frechet space, then bounded sets have finite diameter, but not conversely. (i) 
The translate of a bounded set is bounded. 

5. If PI is a LCS, show that PI is metrizable if and only if PI is first countable. Is this 
• 

equivalent to saying that {0} is a Gd set? 

6. Let X be a locally compact space and give Cb(X) the strict topology defined in 
Exercise 1 .2 1 .  Show that a subset of Cb(X) is P-bounded if and only if it is norm 
bounded. /I 

7. With the notation of Exercise 6, show that (Cb(X), p) is metrizable if and only if 
X is compact. 

8. Prove the Open Mapping Theorem for Frechet spaces. 
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§3 .  Some Geometric Consequences of the 
Hahn-Banach Theorem 

In order to exploit the Hahn-Banach Theorem in the setting of a LCS, it is 
necessary to establish some properties of continuous linear functionals. The 
proofs of the relevant propositions are similar to the proofs of the 
corresponding facts about linear functionals on normed spaces given in §111.5 . 
For example, a hyperplane in a TVS is either closed or dense (see 111. 5.2). 
The proof of the next fact is similar to the proof of (111.2. 1 )  and (111.5.3) and 
will not be given. 

3.1. Theorem. If !!£ is a TVS and f: !!£ � F is a linear functional, then the 
following statements are equivalent. 

(a) f is continuous. 
(b) f is continuous at 0. 
(c) f is continuous at some point. 
(d) kerf is closed. 
(e) x � lf(x) l is a continuous seminorm. 

If!!£ is a LCS and f!JJ is a family of seminorms that defines the topology on 
!!£, then the statements above are equivalent to the following: 

(f) There are p1 , . . .  , Pn in f!JJ and positive scalars cx 1 , . • •  , ex" such that 
I f(x) l � L�= 1 cxkpk(x) for all x. 

The proof of the next proposition is similar to the proof of Proposition 1 . 14 
and will not be given. 

3.2. Proposition. Let !!£ be a TVS and suppose that G is an open convex subset 
of !!£ that contains the origin. If 

q(x) = inf{ t: t � 0 and xe tG}, 

then q is a non-negative continuous sub linear functional and G = { x: q(x) < 1 } .  

Note that the difference between the preceding proposition and ( 1 . 14) is 
that here G is not assumed to be balanced and the consequence is a sublinear 
functional (q(cxx) = cxq(x) if ex �  0) that is not necessarily a seminorm. 

The geometric consequences of the Hahn-Banach Theorem are achieved 
by interpreting that theorem in light of the correspondence between linear 
functionals and hyperplanes and between sublinear functionals and open 
convex neighborhoods of the origin. The next result is typical. 

3.3. Theorem. If !!£ is a TVS and G is an open convex nonempty subset of !!£ 
that does not contain the origin, then there is a closed hyperplane .A such that 
. II n G = D. 
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PROOF. Case 1 .  f!£ is an R-linear space. Pick any x0 in G and let H = x0 - G. 
Then H is an open convex set containing 0. (Verify). By (3.2) there is a 
continuous nonnegative sub linear functional q: f!£ ---+ R such that H = 
{ x: q(x) < 1 } .  Since x0¢H, q(x0) � 1 .  

Let OJ/ =  { (XX0: (XER} and define f0: OJ/ ---+ R by f0((Xx0) = (Xq(x0). If (X �  0, 
thenf0 ((Xx0) = (Xq(x0) = q((Xx0); if (X <  0, thenf0 ((Xx0) = (Xq(x0) � (X <  0 � q((XX0). 
So fo � q on OJ/. Let f: f!£ ---+ R be a linear functional such that f I OJ/ =  fo and 
f � q on f!£. Put vH = kerf. 

Now ifxeG, then x0 - xEH and sof(x0) -f(x) = f(x0 - x) � q(x0 - x) < 1 .  
Therefore f(x) > f(x0) - 1 = q(x0) - 1 � 0 for all x in G. Thus vH n G = 0. 

Case 2. f!£ is a <C-linear space. Lemma 111.6.3 will be used here. Using Case 
1 and the fact that f!£ is also an R-linear space, there is a continuous R.-linear 
functional f: f!£ ---+ R such that G n kerf = 0. If F(x) = f(x) - if(ix), then F 
is a <C-linear functional and f = Re F (111.6.3). Hence F(x) = 0 if and only if 
f(x) = f(ix) = 0; that is, vH = ker F = ker f n [i ker f]. So vH is a closed 
hyperplane and vH n G = 0. • 

An affine hyperplane in f!£ is a set vH such that for every x0 in Jt, vH - x0 
is a hyperplane. (See Exercise 3.) An affine manifold in f!£ is a set OJ/ such that 
for every x0 in OJ/, OJ/ - x0 is a linear manifold in f!£. An affine subspace of a 
TVS f!£ is a closed affine manifold. 

3.4. Corollary. Let f!£ be a TVS and let G be an open convex nonempty subset 
of f!£. If OJ/ is an affine subspace of f!£ such that OJ/ n G = 0, then there is a 
closed affine hyperplane vH in f!£ such that OJ/ c vH and vH n G = 0. 
PROOF. By considering G - x0 and OJ/ - x0 for any x0 in OJ/, it may be assumed 
that OJ/ is a linear subspace of f!£. Let Q: f!£ ---+ f!£ jOJ/ be the natural map. Since 
Q - 1 (Q(G) ) = {y + G: yeOJ/}, Q(G) is open in f!IjOJ/. It is easy to see that Q(G) 
is also convex. Since OJ/ n G  = 0, O¢Q(G). By the preceding theorem, there 
is a closed hyperplane % in f!£ jOJ/ such that % n Q( G) = o. Let vH = Q - 1 (%). 
It is easy to check that vH has the desired properties. • 
There is a great advantage inherent in a geometric discussion of real TVS's. 
Namely, iff :  f!£ ---+ R is a nonzero continuous R-linear functional, then the 
hyperplane ker f disconnects the space. That is, f!I\ker fhas two components 
(see Exercises 4 and 5). It thus becomes convenient to make the following 
definitions. 

• 

3.5. Definition. Let f!£ be a real TVS. A subset S of f!£ is called an open 
half-space if there is a continuous linear functional f: f!£ ---+ R. such that 
S = {xef!I: f(x) > (X} for some ex. S is a closed half-space if there is a continuous 
linear functionaff : f!£ ---+ R such that S = { xef!£: f(x) � (X} for some (X. 

Two subsets A and B of f!£ are said to be strictly separated if they are 
contained in disjoint open half-spaces; they are separated if they are contained 
in two closed half-spaces whose intersection is a closed affine hyperplane. 
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3.6. Proposition. Let f£ be a real TVS. 

(a) The closure of an open half-space is a closed half-space and the interior of 
a closed half-space is an open half-space. 

(b) If A, B c f£, then A and B are strictly separated (separated) if and only if 
there is a continuous linear functional f: f£ ---+ R and a real scalar (X such 
thatf(a) > (X  for all a in A andf(b) < (X  for all b in B (f(a) � (X  for all a in 
A andf(b) � (X for all b in B). 

PROOF. Exercise 6. 

In many ways, the next result is the most important "separation" theorem 
as the other separation theorems follow from this one. However, the most 
used separation theorem is Theorem 3.9 below. 

3.7. Theorem. If f£ is a real TVS and A and B are disjoint convex sets with 
A open, then there is a continuous linear functional f: f£ ---+ R and a real 
scalar (X such that f(a) < (X  for all a in A and f(b) � (X  for all b in B. If B is 
also open, then A and B are strictly separated. 

PROOF. Let G = A - B = {a - b: aeA, beB}; it is easy to verify that G is convex 
(do it!). Also, G = u {A - b: beB}, so G is open. Moreover, because A n B = 0, 
O¢G. By Theorem 3 .3 there is a closed hyperplane Jt in f£ such that 
Jt n G = D.  Let f: f£ ---+ R be a linear functional such that Jt = ker f. Now 
f(G) is a convex subset of R and O¢f(G). Hence either f(x) > 0 for all x in 
G or f(x) < 0 for all x in G; suppose f(x) > 0 for all x in G. Thus if aeA and 
beB, 0 <f(a - b) = f(a) -f(b); that is, f(a) > f(b). Therefore there is a real 
number (X such that 

sup {f(b): beB} � (X � inf{f(a): aeA} .  

But f(A) and f(B) are open intervals if B is open (Exercise 7), so f < (X  on B 
and f > (X on A. • 

3.8. Lemma. If f£ is a TVS, K is a compact subset of f£, and V is an open 
subset off£ such that K c V, then there is an open neighborhood ofO, U, such 
that K + U c V. 

PROOF. Let 0110 = all of the open neighborhoods of 0. Suppose that for each 
U in 0110, K + U is not contained in V. Thus, for each U in 0110 there is a 
vector xu in K and a Yu in U such that xu + YuEfr\ V. Order 0110 by reverse 
inclusion; that is, U 1 � U 2 if U 1 c U 2 •  Then 0110 is a directed set and {xu} 
and {Yu} are nets. Now Yu ---+ 0 in f£. Because K is compact there is an x in 
K such that Xu ---+ x ( {xu} cluster at x). Hence Xu +  Yu ---+ x + 0 = x. (Why?) cl cl 
Hence xecl (f£\ V) = fr\ V, a contradiction. • 

The condition that K be compact in the preceding lemma is necessary; it 
is not enough to assume that K is closed. (What is a counterexample?) 
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3.9. Theorem. Let f£ be a real LCS and let A and B be two disjoint closed 
convex subsets of f£. If B is compact, then A and B are strictly separated. 

PROOF. By hypothesis, B is a compact subset of the open set fr\A. The 
preceding lemma implies there is an open neighborhood U 1 of 0 such that 
B + U 1 c fr\A. Because f£ is locally convex, there is a continuous seminorm 
p on f£ such that {x: p(x) < 1 } c U1 • Put U = {x: p(x) < �} .  Then 
(B + U)n (A + U) = D (Verify!), and A + U and B + U are open convex 
subsets of f£ that contain A and B, respectively. (Why?) So the result follows 
from Theorem 3.7. • 

The fact that one of the two closed convex sets in the preceding theorem 
is assumed to be compact is necessary. In fact, if f£ =  R 2, A =  { (x, y)eR 2: 
y � 0}, and B = { (x, y)eR 2: y � x - 1 > 0}, then A and B are disjoint closed 
convex subsets of R 2 that cannot be strictly separated. 

The next result generalizes Corollary III.6.8, though, of course, the metric 
content of (III.6.8) is missing. 

3.10. Corollary. If f£ is a real LCS, A is a closed convex subset of f£, and 
x¢A, then x is strictly separated from A. 

3.1 1 .  Corollary. Iff£ is a real LCS and A c f£, then co (A) is the intersection of 
the closed half-spaces containing A. 

PROOF. Let Yf be the collection of all closed half-spaces containing A. Since 
each set in Yf is closed and convex, co (A) c n { H: H e:Yf}. On the other hand, 
ifx0¢co (A), then (3. 10) implies there is a continuous linear functional 
f: f£ ---+ R and an (X in R such that f(x0) > (X  and f(x) < (X  for all x in 
co (A). Thus H = {x: f(x) � (X} belongs to Yf and x0 ¢H. • 

The next result generalizes Theorem III.6. 1 3. 

3.12. Corollary. If f£ is a real LCS and A c f£, then the closed linear span of 
A is the intersection of all closed hyperplanes containing A. 

If f£ is a complex LCS, it is also a real LCS. This can be used to formulate 
and prove versions of the preceding results. As a sample, the following 
complex version of Theorem 3.9 is presented . 

• 

3.13. Theorem. Let f£ be a complex LCS and let A and B be two disjoint 
closed convex subsets of f£. If B is compact, then there is a continuous linear 
functional f: �---+ <C, an ex in R, and an e > 0 such that for a in A and b in B, 

Re f(a) � (X <  ex +  e � Re f(b). 

3.14. Corollary. If f!£ is a LCS and o.Y is a linear manifold in f!£, then o.Y is 
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dense in PI if and only if the only continuous linear functional on PI that vanishes 
on OJ/ is the identically zero functional. 

3.15. Corollary. If PI is a LCS, OJ/ is a closed linear subspace of PI, and x0EPI\ OJ/, 
then there is a continuous linear functional f: PI -+  F' such that f(y) = 0 for all 
y in OJ/ and f(x0) = 1 .  

These results imply that on a LCS there are many continuous linear 
functionals. Compare the results of this section with those of §III.6. 

The hypothesis that PI is locally convex does not appear in the results 
prior to Theorem 3.9. The reason for this is that in the preceding results the 
existence of an open convex subset of !!£ is assumed. In Theorem 3.9 such a 
set must be manufactured. Without the hypothesis of local convexity it may 
be that the only open convex sets are the whole space itself and the empty set. 

3.16. Example. For 0 < p < 1 ,  let LP(O, 1 )  be the collection of equivalence 
classes of measurable functions f: (0, 1 ) -+ R such that 

( (f) )P = 11 lf(x) IP dx < oo.  

I t  will be shown that d(f, g) = ((f - g) )p is a metric on LP(O, 1 )  and that with 
this metric LP(O, 1 )  is a Frechet space. It will also be shown, however, that 
LP (0, 1 )  has only one nonempty open convex set, namely itself. So I! (0, 1 ), 
0 < p < 1 ,  is most emphatically not locally convex. The proof of these facts 
begins with the following inequality. 

3.17  For s, t in [O, oo) and O < p <  1 ,  (s + t)P � sP + tP. 

To see this, let f(t) = sP + tP - (s + t)P for t � 0, s fixed. Then 
f'(t) = ptp - t - p(s + t)P - 1 • Since p - 1 < 0 and s + t � t, f'(t) � 0. Thus 
0 = f(O) �f(t). This proves (3. 1 7) 

If d(f, g) = ( (f - g) )p for f, g in LP(O, 1 ), then (3. 1 7) implies that 
d(f, g) � d(f, h) + d(h, g) for all f, g, h in LP (O, 1 ). It follows that d is a metric 
on LP (0, 1 ). Clearly d is translation invariant. 

3.18  1!(0, 1 ), 0 < p < 1 ,  is complete. 

The proof of this is left as an exercise. 

3.19 LP(O, 1 ) is a TVS. 

The continuity of addition is a direct consequence of the translation 
in variance of d. If fn -+ f and an -+ a, an in 1R, d(anf,, a f) = ( (anfn - a f) )p � 
((anfn - aJ))p + ((aJ - af))p = l an iP((fn -f))p + I an - a iP((f))p � C((fn -f))p + 
I an - a jP((f) )p, where C is a constant independent of n. Hence anfn -+ af. 
Thus LP(O, 1 )  is a Frechet space. 
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If G is a nonempty open convex subset of U(O, 1 ), then 

3.20 G = U(O, 1 ). 

To see this, first suppose f e U(O, 1 )  and ( (/) )p = r < R. As a function of t, 
J� lf (x) I P dx is continuous, assumes the value 0 at t = 0, and assumes the value 
r at t = 1 .  Let 0 < t < 1 such that J� I f(x) I P dx = r/2. Define g, h: (0, 1 ) ---+ R by 
g(x) = f(x) for x � t and 0 otherwise; h(x) = f(x) for x � t and 0 otherwise. 
Now f = g + h = �(2g + 2h) and ( (2g))p = ( (2h))p = 2P(r/2) = r/2 1 - P. Hence 
f eco B(O; R/2 1 - P). This implies that B(O; R) c co B(O; R/2 1 - P), or, equivalently, 
B(O; 2 1 - PR) c co B(O, R). Hence B(O; 4 1 - PR) c co B(O; 2 1 - PR) c coB(O; R). 
Continuing we see that for all n, B(O; 2n< 1 - P> R) c co B(O;R). 

So if G is a nonempty open convex subset of LP(O, 1 ), then by translation 
it may be assumed that OeG. Thus there is an R > 0 with B(O; R) c G. By 
the preceding paragraph, B(0; 2n< 1 - P>R) c co B(O; R) c G  for all n � 1 .  
Therefore LP(O, 1 )  c G. 

Also note that this says that the only continuous linear functional on 
U(O, 1 ), 0 < p < 1 ,  is the identically zero functional. 

EXERCISES 
1 .  Prove Theorem 3. 1 .  

2. Let p be a su blinear functional, G = { x: p(x) < 1 } , and define the su blinear , 
functional q for the set G as in Proposition 3.2. Show that q(x) = max(p(x)), 0) 
for all x in f!I. 

3. Let Jt s; f!I, a TVS, and show that the following statements are equivalent : 
(a) Jt is an affine hyperplane; (b) there exists an x0 in Jt such that Jt - x0 is a 
hyperplane; (c) there is a non-zero linear function f: f!I -+  F and an ex in F such 
that Jt = { xef!I: f(x) = ex} . 

4. Let f!I be a real TVS. Show: (a) if G is an open connected subset of f!I, then G is 
arcwise connected; (b) iff: f!I -+  R is a continuous non-zero linear functional, then 
f!I\ker f has two components, { x: f(x) > 0} and { x: f(x) < 0}. 

5. If f!I is a complex TVS and f: f!I-+ <C is a nonzero continuous linear function, 
show that f!I\ker f is connected. 

6. Prove Proposition 3.6. 

7. Iff: f!I -+  R is a continuous R-linear functional and A is an open convex subset 
of f!I, then f(A) is an open interval. 

8. Prove Corollary 3. 1 2. • 

9. Prove Theorem 3. 1 3 . 

10. State and prove a version of Theorem 3.7 for a complex TVS. 
/1 

1 1 . State and prove a version of Corollary 3. 1 1  for a complex LCS. 

12. State and prove a version of Corollary 3. 1 2  for a complex LCS. 

1 3. Prove (3. 1 8). 
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14. Give an example of a TVS f!I that is not locally convex and a subspace OJ/ 
of f!I such that there is a continuous linear functional f on OJ/ with no 
continuous extension to f!I. 

1 5. Let f!I be a real LCS and let A and B be disjoint compact convex subsets of f!I. 
Suppose OJ/ is a subspace of f!I and f0: OJ/ -+  R is a continuous linear functional 
such thatf0(a) < 0 for a in A n  OJ/ andf0(b) > 0 for b in B n OJ/. Show by an example 
that it is not always possible to extend fo to a continuous linear functional on 
f!I such that f(a) < 0 or a in A and f(b) > 0 for b in B. (Hint: Let f!I = R3 and let 
OJ/ be the plane.) 

§ 4* .  Some Examples of the Dual Space of a 
Locally Convex Space 

As with a normed space, if f£ is a LCS, f£* denotes the space of all continuous 
linear functionals f: f£......., F'. PI* is called the dual space of f£. 

4.1. Proposition. Let X be completely regular and let C(X) be topologized as 
in Example 1 .5. If L: C(X) ......., F' is a continuous linear functional, then there is 
a compact set K and a regular Borel measure J.l on K such that L(f) = JKf dJ.l 
for every fin C(X). Conversely, each such measure defines an element ofC(X)*. 

PROOF. It is easy to see that each measure J.l supported on a compact set K 
defines an element of C(X)*. In fact, if PK(f) = sup { lf(x) l : xeK} and 
L(f) = JK f dJ.l, then I L(f) l � I I  J.l l l PK(f), and so L is continuous. 

Now assume LeC(X)*. There are compact sets K 1 , • • •  , Kn and positive 
numbers cx 1 , . . .  , cxn such that I L(f) l � Lj= 1cxipKj(f) (3. 1 f). Let K = Uj= 1Ki 
and ex =  max {cx1 :  1 � j � n} . Then I L(f) l � cxpK(f). Hence if feC(X) and 
f iK = 0, then L(f) = 0. 

Define F: C(K) ......., F' as follows. If geC(K), let g be any continuous extension 
of g to X and put F(g) = L(g). To check that F is well defined, suppose that 
g1 and g2 are both extensions of g to X. Then g1 - g2 = 0 on K, and hence 
L(g 1 ) = L(g 2). Thus F is well defined. It is left as an exercise for the reader 
to show that F: C(K) ......., F' is linear. If geC(K) and g is an extension in C(X), 
then I F(g) l = I L(g) l � cxpK(g) = ex  I I g I I , where the norm is the norm of C(K). By 
(111.5.7) there is a measure J.l in M(K) such that F(g) = JKgdJ.l. If f eC(X), 
then g = f iKeC(K) and so L(f) = F(g) = JK f dJ.l. • 

If y: [0, 1 ]  ......., <C is a rectifiable curve and f is a continuous function defined 
on the trace of y, y( [O, 1 ] ), then J1 f is the line integral off over y. That is, 
J1f = J�f(y(t) ) dy(t). (See Conway [ 1978] .) The next result generalizes to 
arbitrary regions in the plane, but for simplicity it is stated only for the disk 
D. Recall the definition of H(D) from Example 1 .6. 

4.2. Proposition. LeH(ID)* if and only if there is an r < 1 and a unique function 
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g analytic on <Coo \B(O; r) with g( oo) = 0 such that 

L(f) =
2�f fg 

'Ttl }' 

4.3 

for every f in H(D), where y(t) = pei', 0 � t � 2n, and r < p < 1 .  
PROOF. Let g be given and define L as in (4.3). If K = {z: l z l = p}, then 

I L(f) l = __!_ (2" f(pei')g(pei')ipei' dt 
2n J o 
1 

� - PK (f)pK(g)2np . 
2n 

So if c = PPK(g), I L(f) l � cpK(f), and LEH(D)*. 

1 1 5 

Now assume that LEH(D)*. The Hahn-Banach Theorem implies there 
is an F in C(D)* such that F IH(D) = L. By Proposition 4. 1 there is a compact 
set K contained in D and a measure ! ! vl! K such that L(f) = JK f dJ1 for every 
f in H(D). Define g: <C00\K --+ <C  by g(oo) = O  and g(z) = - JK 1j(w - z) dJ1(w) 
for z in <C\K. By Lemma III.8.2, g is analytic on <Coo \K. Let p < 1 such that 

# 

K c B(O; p). Ify(t) = pei', 0 � t � 2n, then Cauchy's Integral Formula implies 

/(w) = � I f(z) 
dz 

2nz Y z - w 

for I w I < p; in particular, this is true for w in K. Thus, 

L(f) = L f(w) d�t(w) 

= f [!!__ ( 2" f�pei') 
ei' dt] dJ,l(w) 

K 2n J 0 pe'' - w 

= !!__ ( 2" f(pei') ei' [ f ;, 1 d�t(w)J dt 
2n J o K pe - w 

= � I f(z)g(z) dz. 
2nz Y 

This completes the proof except for the uniqueness of g (Exercise 3). • 
• 

EXERCISES 
1 .  Let {�;: ie/} be a family of LCS's and give � =  0 {�;: ie/} the product topology. 

(See Exercise 1 . 1 7.) Show that Le�* if and only if there is a finite subset F 
contained ini' and there are x� in �� for j in F such that L(x) = LieFx� (x(j)) for 

h . 

J J J 
eac x tn �-

2. Show that the space s (Exercise 1 . 1 3) is linearly homeomorphic to C(JN) and 
describe s*. 
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3. Show that the function g obtained in Proposition 4.2 is unique. 

4. Show that LeH(D)* if and only if there are scalars b0 , b 1 , • • •  in <C such that 
lim sup I bn 1 1 1" < 1 and L(f) = L,:= 0 1/(n!)j<">(O)bn . 

5. If G is an annulus, describe H(G)* . 

6. (Buck [1958] ). Let X be locally compact and let p be the strict topology on Cb(X) 
defined in Exercise 1 .2 1 .  (Also see Exercises 2.6 and 2.7.) Prove the following 
statements: (a) If Jl.EM(X) and en �O, then there are compact sets K 1 , K2 , • • •  such 
that for each n ;::::: 1, Kn c int Kn + 1 and I JL I (X\Kn) < en .  (b) If Jl.EM(X), then there 
is a l/> in C0 (X ) such that ljJ ;::::: 0, I JL I (X\{x: lj>(x) > 0} ) = 0, 1/l/>eL1 ( I JL I ), and 
J 1/l/> d iJL I  � 1 .  (c) Show that if Jl.EM(X) and L(f) = J f dJL for f in Cb(X), then 
Le(Cb(X), P)* .  (d) Conversely, if Le(Cb(X), P)* ,  then there is a Jl in M(X) such that 
L(f) = Jf dJL for f in Cb(X) . 

7. Let X be completely regular and let Jt be a linear manifold in C(X). Show that 
if for every compact subset K of X, Jt iK  = {f i K: f eJt} is dense in C(K), then 
Jt is dense in C(X). 

§5* .  Inductive Limits and the 
Space of Distributions 

In this section the most general definition of an inductive limit will not be 
presented. Rather one that removes certain technicalities from the arguments 
and yet covers the most important examples will be given. For the more 
general definition see Kothe [ 1969] , Robertson and Robertson [ 1966], or 
Schaefer [ 197 1] .  

5.1 .  Definition. An inductive system is a pair (q', { q'i : ieJ} ), where q- is a 
vector space, q-i is a linear manifold in q- that has a topology ffi suc!1 that 
(q'i, ffi) is a LCS, and, moreover : 

(a) I is a directed set and q-i c q-i if i �j; 
(b) if i �j and Uieffi, then Uin q'ieffi; 
(c) q- = u { q'i : ieJ} .  

Note that condition (b) is equivalent to the condition that the inclusion 
map q-i � q-i is continuous. 

5.2. Example. Let d � 1 and let Q be an open subset of Rd. Denote by c�oo > (Q) 
all the functions l/J :  Q --+  F' such that ljJ is infinitely differentiable and has 
compact support in Q. (The support of ljJ is defined by spt ljJ = cl {x : l/J(x) =1= 0} . )  
If K is a compact subset of Q, define �(K) = { ljJeC�oo>(Q) : spt ljJ c K} .  Let 
�(K) have the topology defined by the seminorms 

PK,m(l/J) = sup { l lJJ<k>(x) l :  l k l � m, xeK}, 
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Then (C�oo>(Q), { �(K): K is compact in Q} ) is an inductive system. The space 
c�oo)(Q) is often denoted in the literature by �(Q), as it will be in this book. 

This example of an inductive system is the most important one as it is 
connected with the theory of distributions (below). In fact, this example was 
the inspiration for the definition of an inductive limit given now. 

5.3. Proposition. If (PI, { Pri, !Ti } )  is an inductive system, let fJI = all convex 
balanced sets V such that V n Prie!Ti for all i. Let !T = the collection of all 
subsets U of PI such that for every x0 in U there is a V in fJI with x0 + V c U. 
Then (PI, !T) is a (not necessarily Hausdorff) LCS. 

Before proving this proposition, it seems appropriate to make the following 
definition. 

5.4. Definition. If (PI, { Pri } )  is an inductive system and !T is the topology 
defined in (5.3), !T is called the inductive limit topology and (PI, !T) is said to 
be the inductive limit of { Pri } · 

5.5. Lemma. With the notation as in (5.3), fJI c !T. 

PROOF. Fix V is fJI. It will be shown that V is absorbing at each of its points. 
Indeed, if x0e V and xef£, then there is an Pri and an Pri such that x0ef£i 
and xefii . Since I is directed, there is a k in I with k � i, j. Hence x0 , xefik . 
But V n Prke!Tk . Thus there is an e > 0 such that x0 + (XXE V n Prk c V for 
I (X I < e. 

Since V is convex, balanced, and absorbing at each of its points, there is 
a seminorm p on PI such that V = {xef£: p(x) < 1 }  ( 1 . 14). So if x0e V, 
p(x0) = r0 < 1 .  Let W = { xef£: p(x) < � ( 1  - r0) } .  Then W = � ( 1  - r0) V and so 
W efJI. Since x0 + W c V, V e!T. • 

PROOF OF PROPOSITION 5.3. The proof that !T is a topology is left as an 
exercise. To see that (PI, !T) is a LCS, note that Lemma 5.5 and Theorem 
1 . 14 imply that !T is defined by a family of seminorms. • 

• 

For all we know the inductive limit topology may be trivial. However, 
the fact that this topology has not been shown to be Hausdorff need not 
concern us, sii)Ge we will concentrate on a particular type of inductive limit 
which will be shown to be Hausdorff. But for the moment we will continue 
at the present level of generality. 

5.6. Proposition. Let (�, { �i } ) be an inductive system and let !T be the inductive 
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limit topology. Then 

(a) the relative topology on Pii induced by !Y (viz., /Y I PIJ is smaller than !Yi ; 
(b) if OIJ is a locally convex topology on PI such that for every i, OIJ I Pii c !Yi, 

then OIJ c !Y; 
(c) a semi norm p on f£ is continuous if and only if p I Pii is continuous for each i. 

PROOF. Exercise 3. 

5.7. Proposition. Let (f£, /Y) be the inductive limit of the spaces { (Pii , /Yi): iei } . 

If OJ/ is a LCS and T: PI --+  OJ/ is a linear transformation, then T is continuous 
if and only if the restriction of T to each fri is !Yi-continuous. 

PROOF. Suppose T: f£ --+  OJ/ is continuous. By (5.6a), the inclusion map 
(Pii, /Yi) --+  (f£, /Y) is continuous. Since the restriction of T to fri is the 
composition of the inclusion map Pii --+ PI and T, the restriction is continuous. 

Now assume that each restriction is continuous. If p is a continuous 
seminorm on OJ/, then po T l Pii is a !Yccontinuous seminorm for every i. By 
(5.6c), p o T is continuous on PI. By Exercise 1 .23, T is continuous. • 

It may have occurred to the reader that the definition of the inductive 
limit topology depends on the choice of the spaces fri in more than the 
obvious way. That is, if PI =  UiOJJi and each OJ/i has a topology that is 
"compatible" with that of the spaces { Pii }, perhaps the inductive limit 
topology defined by the spaces { OJ/i } will differ from that defined by the { Pii } . 

This is not the case. 

5.8. Proposition. Let (PI, { (Pii , !YJ} )  and (PI, { (OJ/i, OIJi) } )  be two inductive 
systems and let !Y and OIJ be the corresponding inductive limit topologies on PI. 
If for every i there is a j such that Pii c OJ/i and OIJi I Pii c !Yi, then OIJ c !Y. 

PROOF. Let V be a convex balanced subset of PI such that for every j, 
V n OJ/ieOIJi. If Pii is given, let j be such that fri c OJ/i and 0/Ji l  fri c !Yi. Hence 
V n Pii = (V n OJ/i) n ffie/Yi. Thus V e.11 [as defined in (5.3)] . It now follows 
that OIJ c !Y. • 

5.9. Example. Let PI be any vector space �nd let { ffi : iei } be all of . the 
finite dimensional subspaces of PI. Give each Pii the unique topology from 
its identification with a Euclidean space. Then (PI, { Pii } )  is an inductive system. 
Let !Y be the inductive limit topology. If OJ/ is a LCS and T: PI --+  OJ/ is a 
linear transformation, then T is !Y -continuous. 

5.10. Example. Let X be a locally compact space and let {Ki : iei } be the 
collection of all compact subsets of X. Let fri = all f in C(X) such that 
spt f c Ki . Then U ifri = Cc(X), the continuous functions on X with compact 
support. Topologize each fri by giving it the supremum norm. Then 
( Cc(X), { Pii } )  is an inductive system. 
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Let { Ui } be the open subsets of X such that cl Ui is compact. Let C0(Ui) 
be the continuous functions on Ui vanishing at oo with the supremum norm. 
If feC0(Ui) and f is defined on X by letting it be identically 0 on X\Ui, 
then f eCc(X). Thus (Cc(X), { C0(Ui) } )  is an inductive system. Proposition 
5.8 implies that these two inductive systems define the same inductive limit 
topology on Cc(X). 

5.1 1 . Example. Let d � 1 and put Kn = {x eRd : I I  x I I  � n}. Then (£t(Rd), 
{ EZ(Kn) }  := 1 ) is an inductive system. By (5.9), the inductive limit topology 
defined on EZ(Rd) by this system equals the inductive limit topology defined 
by the system given in Example 5.2. 

If Q is any subset of Rd, then Q can be written as the union of a sequence 
of compact SUQsets { Kn } such that Kn c int Kn+ 1 •  It follows by (5.9) that 
{ EZ(Kn) }  defines the same topology on £t(Q) as was defined in Example 5.2. 

The preceding example inspires the following definition. 

5.12. Definition. A strict inductive system is an inductive system 
(q', {�n, ffn} := 1 ) such that for every n � 1 ,  �n c �n + 1 ,  ffn + 1 1 �n = ffn, and 
�n is closed in �n + 1 .  The inductive limit topology defined on � by such a 
system is called a strict inductive limit topology and � is said to be the strict 
inductive limit of { �n} .  

Example 5. 1 1  shows that EZ(R d), indeed £t(Q), is a strict inductive limit. 
The following lemma is useful in the study of strict inductive limits as 

well as in other situations. 

5.13. Proposition. If � is a LCS, CfJI � �' and p is a continuous seminorm on 
OJI, then there is a continuous semi norm p on � such that p I  CfJI = p. 

PROOF. Let U = {ye@f : p(y) < 1 } .  So U is open in @!; hence there is an open 
subset V1 of � such that V1 n CfJI = U. Since Oe V1 and � is a LCS, there is 
an open convex balanced set V in � such that V c V1 . Let q = the gauge of 
V. So if yeOJI and q(y) < 1 ,  then p(y) < 1 .  By Lemma III. 1 .4, p � q iCW. 

Let W = co (U u V); it is easy to see that W is convex and balanced since 
both U and V are. It will be shown that W is open. First observe that 
W = {tu + ( 1 - t)v: O � t � 1 ,  ue U, ve V} (verify). Hence W = u {tU + 
( 1  - t) V: 0 � t � 1 } .  Put W, = tU + ( 1  - t) V. So W0 = V, which is open. If 
0 < t < 1 ,  w, = u { tu + ( 1  - t) V: UE U}, and hence is open. But w1 = U, which 
is not open. However, if ue U, then there is an e > 0 such that eue V. For 
0 < t < 1 ,  let �,= t - 1 [ 1 - e + te] u (eez?/). As t --+ 1 ,  Yr --+ u. Since U is open in 
CW, there is a t, 0 < t < 1 ,  with Yr in U. Thus u = tyt + ( 1  - t)(eu)E W,. Therefore 
W = u { W,: 0 � t < 1 }  and W is open. 

5.14. Claim. W n CfJI = U. 
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In fact, U c W, so U c W nOJI. If WE W nOJI, then w = tu + ( 1 - t)v, u in U, 
v in V, 0 � t � 1 ;  it may be assumed that 0 < t < 1 .  (Why?) Hence, 
v = ( 1 - t) - 1 (w - tu)EOJI. So vE V n CfJI c U; hence WE U. 

Let p = the gauge of W. By Claim 5 . 14, {yECfJ/: p(y) < 1 }  = {yEOJI: p(y) < 1 } .  
By the uniqueness of the gauge, p iOJI = p. • 

5.15. Corollary. If PI is the strict inductive limit of {Ern} ,  k is fixed, and Pk is 
a continuous seminorm on Elk , then there is a continuous seminorm p on PI such 
that p i Elk = Pk · In particular, the inductive limit topology is Hausdorff and the 
topology on PI when restricted to Elk equals the original topology of Elk . 

PROOF. By (5. 1 3) and induction, for every integer n > k, there is a continuous 
seminorm Pn such that Pn lf£n _ 1 = Pn - 1 • If X EEl, define p(x) = Pn(x) when XEEln . 
Since Pin c Pin +  1 for all n, the properties of {Pn } insure that p is well defined. 
Clearly p is a seminorm and by (5.6c) p is continuous. 

If xEP£ and x =I= 0, there is a k � 1 such that xEElk. Thus there is a 
continuous seminorm Pk on Elk such that Pk(x) =I= 0. Using the first part of 
the corollary, we get a continuous seminorm p on PI such that p(x) =I= 0. Thus 
(PI, ff) is Hausdorff. The proof that the topology on PI when relativized to 
Elk equals the original topology is an easy application of (5. 1 3). • 

5.16. Proposition. Let PI be the strict inductive limit of {Ern} · A subset B of PI 
is bounded if and only if there is an n � 1 such that B c Pin and B is bounded 
in Pin. 

The proof will be accomplished only after a few preliminaries are settled. 
Before doing this, here are a few consequences of (5. 1 6). 

5.17. Corollary. If PI is the strict inductive limit of {Ern}, then a subset K of 
PI is compact if and only if there is an n � 1 such that K c Pin and K is con,pact 
in Pin. 

5.18. Corollary. If PI is the strict inductive limit of Frechet spaces {Pin }, CfJI is 
a LCS, and T: PI --+  CJ.Y is a linear transformation, then T is continuous if and 
only if T is sequentially continuous. 

PROOF. By Proposition 5.7, T is continuous if and only if TIPin is continuous 
for every n. Since each Pin is metrizable, the result follows. • 

Note that using Example 5. 1 1  it follows that for an open subset Q of Rd, 
£t(Q) is the strict inductive limit of Frechet spaces [each £t(Kn) is a Frechet 
space by Proposition 2. 1 ] .  So (5. 1 8) applies. 

5.19. Definition. If Q is an open subset of Rd, a distribution on Q is a 
continuous linear functional on fi}(Q). 



§ 5. Inductive Limits and the Space of Distributions 1 2 1  

Distributions are, in a certain sense, generalizations of the concept of 
function as the following example illustrates. 

5.20. Example. Let f be a Lebesgue measurable function on Q that is locally 
integrable (that is, JK if l dA. < oo for every compact subset K of Q-here A, is 
d-dimensional Lebesgue measure). If L1 : �(Q) --+ lF is defined by L1(l/J) = 
J f l/J dA., L 1 is a distribution. 

From Corollary 5. 1 8  we arrive at the following. 

5.21. Proposition. A linear functional L: �(Q) --+ lF is a distribution if and only 
if for every sequence { l/Jn } in �(Q) such that cl [ U :' 1 spt l/JnJ = K is compact 
in Q and l/J�k>(x) --+ 0  uniformly on K as n --+ oo for every k = (k1 , • • •  , kd ), it 
follows that L( l/Jn) --+  0. 

Proposition 5.2 1 is usually taken as the definition of a distribution in 
books on differential equations. There is the advantage that (5.21 ) can be 
understood with no knowledge of locally convex spaces and inductive limits. 
Moreover, most theorems on distributions can be proved by using (5.2 1 ). 
However, the realization that a distribution is precisely a continuous linear 
functional on a LCS contributes more than cultural edification. This 
knowledge brings power as it enables you to apply the theory of LCS's 
(including the Hahn-Banach Theorem). 

The exercises contain more results on distributions, but now we must 
return to the proof of Proposition 5. 1 6. To do this the idea of a topological 
complement is needed. We have seen this idea in Section III. 1 3. 

5.22. Proposition. If fi is a TVS and rtY � f£, the following statements are 
equivalent. 

(a) There is a closed linear subspace 2' of fi such that rtY n 2' = (0), rtY + 2' = f£, 
and the map of Ci.!J x 2' --+  !!£ given by (y, z)....-+ y + z is a homeomorphism. 

(b) There is a continuous linear map P: fi --+  fi such that Pf£ = Ci.!J and P2 = P. 

PRooF. (a) => (b) : Define P: fi --+ f£  by P(y + z) = y, for y in rtY and z in 2'. 
It is easy to verify that P is linear and Pf£ = C!Y. Also, P2 (y + z) = PP(y + z) = 
Py = y = P(y + z); so P2 = P. If {Yi + zt} is a net in !!£ such that Yi + zi --+ y + z, 
then (a) implies that Yi --+ y (and zi --+ z). Hence P(yi + zi) --+  P(y + z) and P is 
continuous. 

(b) => (a) : If P is given, let 2' = ker P. So 2' � f£. Also, x = Px + (x - Px) 
and y = Pxec?Y:and z = x - Px has Pz = Px - P2x = Px - Px = 0, so ze2'. 
Thus, Ci.!J + 2' = f£. If xec?Y n 2', then Px = 0 since xe2'; but also x = Pw for 
some w in fi since xec?Y = P!!£. Therefore 0 = Px = P2w = Pw = x; that is, 
c?Y n � = (0). Now suppose that {yi } and { zi } are nets in c?Y and !l'. If Yi --+ y 
and z1 --+ z, then Yi + zi --+ y + z because addition is continuous. If, on the other 
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hand, it is assumed that Yi + zi --+ y + z, then y = P(y + z) = lim P(yi + z;) = 
lim Yi and zi = (Yi + zi) - Yi --+ z. This proves (a). • 

5.23. Definition. If f£ is a TVS and OJ/ � f£, OJ/ is topologically complemented 
in f£ if either (a) or (b) of (5.22) is satisfied. 

5.24. Proposition. If f£ is a LCS and OJ/ � f£ such that either dim OJ/ < oo or 
dim fl'/OJI < oo,  then OJ/ is topologically complemented in f£. 

PROOF. The proof will only be sketched. The reader is asked to supply the 
details (Exercise 9). 

(a) Suppose d = dim OJ/ < oo and let y1 , • • •  , yd be a basis for OJ/. By the 
Hahn-Banach Theorem (III.6.6), there are !1 , . . .  , fd in f£* such that fi(Yi) = 1 
if i = j and 0 otherwise. Define Px = L1= 1 fi(x)yi . 

(b) Suppose d = dim fl'/OJI < oo,  Q: f£--+  fl'/OJI is the natural map, and 
z 1 ,  . • .  , zdef£ such that Q(z 1 ), • . .  , Q(zd) is a basis for f£ jOJI. Let � =  v { z 1 , . . .  , zd } · 

• 

PROOF OF PROPOSITION 5. 1 6. Suppose f£ is the strict inductive limit of 
{ (fl'n , ffn} )  and B is a bounded subset of f£. It must be shown that there is 
an n such that B c fl'n (the rest of the proof is easy). Suppose this is not the 
case. By replacing { fl'n} by a subsequence if necessary, it follows that for each 
n there is an xn in (B nfl'n+ 1 )\ffn . Let p1 be a continuous seminorm on f£1 
such that p1 (x 1 ) = 1 .  

5.25. Claim. For every n � 2 there is a continuous seminorm Pn on fl'n such 
that Pn(xn) = n and Pn l ffn - 1 = Pn - 1 • 

The proof of (5.25) is �y induction. Suppose Pn is given and let OJ/ =  fl'n v 
{xn + 1 } .  By (5.24), fl'n and v {xn + 1 } are topologically complementary in OJ/. 
Define q: OJ/ --+ [O, oo) by q(x + �xn + 1 ) = Pn(x) + (n + 1 ) 1 � 1 , where xefl'n and 
�EF'. Then q is a continuous seminorm on (OJ/, ffn + 1 I OJ/). (Verify !) By 
Proposition 5. 1 3  there is a continuous seminorm Pn + 1 on fl'n + 1 such that 
Pn + 1 I OJ/ = q. Thus Pn + 1 l fl'n = Pn and Pn + 1 (xn + 1 ) = n + 1 .  This proves the claim. 

Now define p: f£ --+  [0, oo) by p(x) = Pn (x) if xefl'n . By (5.25), p is well defined. 
It is easy to see that p is a continuous seminorm. However, sup {p(x): xeB} = oo, 
so B is not bounded (Exercise 2.4f). • 

EXERCISES 
1 .  Verify the statements made in Example 5.2. 

2. Fill in the details of the proof of Proposition 5.3. 

3. Prove Proposition 5.6. 

4. Verify the statements made in Example 5.9. 

5. Verify the statements made in Example 5. 10. 
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6. Verify the statements made in Example 5. 1 1 . 

7. With the notation of (5. 10), show that if X is a-compact, then the dual of Cc(X) 
is the space of all extended F-valued measures. 

8. Is the inductive limit topology on Cc(X) (5. 10) different from the topology of 
uniform convergence on compact subsets of X ( 1 .5)? 

9. Prove Proposition 5.24. 

10. Verify the statements made in Example 5.20. 

For the remaining exercises, !l is always an open subset of Rd, d � 1 .  

1 1 . If Jl is a measure on !l, 4>� J 4> dJl is a distribution !l. 

1 2. Let f: !l --+  F be a function with continuous partial derivatives and let L1 be 
defined as in (5.20). Show that for every 4> in .@(!l) and 1 �j � d, L1(olj>joxi) = 
- L9(l/>), where g = ofjoxi . (Hint : Use integration by parts.) 

1 3. Exercise 1 2  motivates the following definition. If L is a distribution on !l, define 
oL/oxi : .@(!l) --+ F by iJLjoxi(l/>) = - L(olj>joxi) for all 4> in .@(!l). Show that iJLjoxi 
is a distribution. 

14. Using Example 5.20 and Exercise 1 3, one is justified to talk of the derivative of 
any locally integrable function as a distribution. By Exercise 1 1  we can differentiate 
measures. Let f: R --+  R be the characteristic function of [0, oo) and show that 
its derivative as a distribution is £50, the unit point mass at 0. [That is, £50 is the 
measure such that t50(A) = 1 if OeA and t50 (A) = 0 if O¢A.] 

1 5. Let f be an absolutely continuous function on R and show that (L1)' = Lr . 

16. Let f be a left continuous nondecreasing function on R and show that (L 1 )' is 
the distribution defined by the measure Jl such that Jl[a, b) = f(b) - f(a) for all 
a <  b. 

1 7. Let f be a coo function on !l and let L be a distribution on .@(!l). Show that 
M(¢) = L(l/>f), 4> in .@(!l), is a distribution. State and prove a product rule for 
finding the derivative of M. 

• 



CHAPTER V 

Weak Topologies 

The principal objects of study in this chapter are the weak topology on a 
Banach space and the weak-star topology on its dual. In order to carry out 
this study efficiently, the first two sections are devoted to the study of the 
weak topology on a locally convex space. 

§ 1 . Duality 

As in §IV.4, for a LCS f£, let f£* denote the space of continuous linear 
functionals on f£. If x* , y* ef£* and tXelF, then (tXx* + y* ) (x) = tXx*(x) + y*(x), 
x in f£, defines an element tXx* + y* in f£* . Thus f£* has a natural vector-space 
structure. 

It is convenient and, more importantly, helpful to introduce the notation 

( x, x* ) 

to stand for x*(x), for x in f£ and x* in f£* . Also, because of a certain 
. 

symmetry, we will use ( x* , x ) to stand for x* (x). Thus 

x*(x) = ( x, x* ) = ( x* , x ). 

We begin by recalling two definitions (IV. 1 .7 and IV. l .8). 

1 .1 .  Definition. If f£ is a LCS, the weak topology on f£, denoted by "wk" or 
u(f£, f£*), is the topology defined by the family of seminorms {Px•: x* ef£* } , 
where 

Px•(x) = I ( x, x* ) 1 . 
The weak-star topology on f£* , denoted by "wk*" or u(f£* , �), is the 
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topology defined by the seminorms {px : xe�}, where 

Px(x* )  = I ( x, x* ) 1 . 
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So a subset U of � is weakly open if and only if for every x0 in U there 
is an e > 0 and there are x!, . . .  , x: in �· such that 

n 
n {xe�: l ( x - x0 , x: ) l < e} c U. 
k = 1 

A net {xi } in � converges weakly to x0 if and only if (xi , x* > --. (x0 , x* > 
for every x* in �· . (What are the analogous statements for the weak-star 
topology?) 

Note that both (�, wk) and (�*, wk*) are LCS's. Also, � already possesses 
a topology so that wk is a second topology on �- However, f£* has no 
topology to begin with so that wk* is the only topology on f£* . Of course 
if � is a normed space, this last statement is not correct since fl'* is a Banach 
space (111.5.4). The reader should also be cautioned that some authors abuse 
the language and use the term weak topology to designate both the weak 
and weak-star topologies. Finally, pay attention to the positions of f£ and 
�· in the notation u(f£, f£*) = wk and u(�* , f£) = wk* .  

If {xi } i s  a net in f£ and xi --. 0 in f£, then for every x* in �·, (xi , x*  > --. 0. 
So if ff is the topology on �, wk c ff (A.2.9) and each x* in f£* is weakly 
continuous. The first result gives the converse of this. 

1.2. Theorem. If � is a LCS, (f£, wk)* = �·. 

PROOF. Since every weakly open set is open in the original topology, each 
f in (�, wk)* belongs to �· . The converse is even easier. • 

1.3. Theorem. If f£ is a LCS, (�*, wk*)* = �-

PROOF. Clearly if xe�, x* --. ( x, x* > is a wk* continuous functional on f£* . 
Hence f£ c (f£*, wk*)*. Conversely, if fe(fl'*, wk*)*, then (IV.3. 1 )  implies 
there are vectors x 1 , • • .  , xn in � such that I f(x*) I � I:� = 1 I ( xk , x* > I for all 
x* in f£* . This implies that n {ker xk : 1 � k � n} c ker f. By (A. l .4) there are 
scalars � 1 , . • •  , �n such that f = I:� = 1 �kxk ; hence f E�. • 

So � is the dual of a LCS-(�*, wk*)-and hence has a weak-star 
topology-a((�, wk*), �*). As an exercise in notational juggling, note that 
u((f£, wk*), �*) = u(�, �*). 

All unmodified topological statements about � refer to its original 
topology. So if A c � and we say that it is closed, we mean that A is closed 
in the originartopology of �- To say that A is closed in the weak topology 
of fl' we say that A is weakly closed or wk-closed. Also cl A means the closure 
of A in the original topology while wk - cl A means the closure of A in the 
weak topology. The next result shows that under certain circumstances this 
distinction in unnecessary. 
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1.4. Theorem. If !!£ is a LCS and A is a convex subset of !!£, then 
cl A = wk - cl A. 

PROOF. If §' is the original topology of !!£, then wk c §', hence 
cl A c wk - cl A. Conversely, if xe!!£\cl A, then (IV.3. 1 3) implies that there is 
an x* in !!£* , an ex in R, and an e > 0 such that 

Re ( a, x* ) � ex < ex + e � Re ( x, x* ) 

for all a in cl A. Hence cl A c B = {ye!!£ : Re (y, x* ) � ex} . But B is clearly 
wk-closed since x* is wk-continuous. Thus wk - cl A c B. Since x¢B, 
x¢wk - ci A. • 

1.5. Corollary. A convex subset of!!£ is closed if and only if it is weakly closed. 

There is a useful observation that can be made here. Because of (111.6.3) 
it can be shown that if !!£ is a complex linear space, then the weak topology 
on !!£ is the same as the weak topology it has if it is considered as a real 
linear space (Exercise 4). This will be used in the future. 

1.6. Definition. If A c !!£, the polar of A, denoted by A o , is the subset of !!£* 
defined by 

A0 = {x* e!!£* : l ( a, x* ) l � 1 for all a in A} .  

If B c !!£* , the pre polar of B, denoted by o B, is the subset of !!£ defined by 

0B = {xe!!£ : l ( x, b* ) l � 1 for all b* in B} . 

If A c !!£ the bipolar of A is the set 0(A 0). If there is no confusion, then it is 
also denoted by o A o . 

The prototype for this idea is that if A is the unit ball in a normed space, 
A0 is the unit ball in the dual space. 

1.7. Proposition. If A c !!£, then 

(a) A o is convex and balanced. 
(b) If A 1 c A, then Ao c A� . 
(c) If exeJF and ex =F 0, (exA)0 = ex - 1 A0 • 
(d) A c 0A0 • 
(e) Ao = (o Ao )o . 

PROOF. The proofs of parts (a) through (d) are left as an exercise. To prove 
(e) note that A c 0A0 by (d), so (0A0)0 c A0 by (b). But A0 c 0(A0)0 by an 
analog of (d) for prepolars. Also, 0(A 0)0 = (0 A 0)0 • • 

There is an analogous result for prepolars. In fact, it is more than analogy 
that is at work here. By Theorem 1 .3, (!!£*, wk*)* = !!£. Thus the result for 
prepolars is a consequence of the preceding proposition. 
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If A is a linear manifold in !!£ and x* E A o, then ta E A for all t > 0 and a 
in A. So 1 � I  ( ta, x* ) I = t l ( a, x* ) 1 .  Letting t � oo show that A0 = A  1., where 

A J. = { x* in !!£*: ( a, x* ) = 0 for all a in A} .  

Similarly, if B is a linear manifold in !!£*, o B = 1. B, where 
J. B = { x in g(: ( x, b* ) = 0 for all b* in B} . 

The next result is a slight generalization of Corollary IV.3. 12. 

1 .8. Bipolar Theorem. If g( is a LCS and A c !!£, then o A o is the closed convex 
balanced hull of A. 

PROOF. Let A 1 be the intersection of all closed convex balanced subsets of 
gr that contain A. It must be shown that A 1 = o A0• Since o A0 is closed, convex, 
and balanced and A c o A0, it follows that A 1 c o A0• 

Now assume that x0 e!!£\A1 • A 1 is a closed convex balanced set so by 
(IV.3. 1 3) there is an x* in !!£*, an � in R, and an e > 0 such that 

Re ( a1 , x* ) < � < � + e < Re (x0, x * ) 

for all a 1 in A 1 • Since OeA 1 , 0 = (O, x* ) < �. By replacing x* with �- 1x* it 
follows that there is an e > 0 (not the same as the first e) such that 

Re ( a1 , x* ) < 1 < 1 + e < Re (x0 , x* ) 

for all a 1 in A 1 • If a 1 eA 1 and ( a1 , x* ) = l ( a1 , x* ) l e - i8 , then e- i8a 1 eA 1 and 
so 

l ( a 1 , x* ) l  = Re ( e - i8a 1 , x* ) < 1 < Re ( x0, x* ) 
for all a1 in A 1 • Hence x* eA� , and x0 ¢ 0A0• That is, !!£\A 1 c !!£\0A0• • 

1 .9. Corollary. If !!( is a LCS and B c !!£*, then (0B)0 is the wk* closed convex 
balanced hull of B. 

Using the weak and weak* topologies and the concept of a bounded 
subset of a LCS (IV.2.5), it is possible to rephrase the results associated with 
the Principle of Uniform Boundedness (§III. 14). As an example we offer the 
following reformulation of Corollary III. 1 4.5 (which is, in fact, the most 
general form of the result). 

• 

1 .10. Theorem. If g{ is a Banach space, CJ.Y is a normed space, and d c fA(g(, CJ.Y) 
such that for every x in !!£, {Ax: A ed} is weakly bounded in CJ.Y, then d is 
norm bounded in PA ( !!£, CJ.Y). 

EXERCISES 
1 .  Show that wk is the smallest topology on !!C such that each x*  in  !!C* is continuous. 

2. Show that wk* is the smallest topology on !!C* such that for each x in !!C, 
x* � ( x, x* ) is continuous. 
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3. Prove Theorem 1 .3 . 

4. Let f£ be a complex LCS and let f£� denote the collection of all continuous real 
linear functionals on f£. Use the elements off£� to define seminorms on f£ and let 
a(f£, f£�) be the corresponding topology. Show that a(f£, f£*) = a(f£, f£�). 

5. Prove the remainder of Proposition 1 .  7. 

6. If A c: f£, show that A is weakly bounded if and only if Ao is absorbing in f£*. 

7. Let f£ be a normed space and let { xn} be a sequence in f£ such that xn --+ x weakly. 
Show that there is a sequence {Yn }  such that Yn eco {x1 , x2 , . • •  , xn }  and 
II Yn - x I I -+ 0. (Hint: use Theorem 1 .4.) 

8. If .Yf is a Hilbert space and { hn}  is a sequence in .Yf such that hn --+ h weakly and 
II hn I I -+ I I  h I I , then II hn - h I I -+ 0. (The same type of result is true for LP-spaces if 
1 < p < oo. See W.P. Novinger [ 1972].) 

9. If f£ is a normed space show that the norm on f£ is lower semicontinuous for 
the weak topology and the norm of f£* is lower semicontinuous for the weak-star 
topology. 

10. Suppose f£ is an infinite-dimensional normed space. If S = {xef£: II x II = 1 }, then 
the weak closure of S is { x: II x II � 1 } .  

§2. The Dual of a Subspace and a Quotient Space 

In §III.4 the quotient of a normed space !!£ by a closed subspace Jt was 
defined and in (III. 1 0.2) it was shown that the dual of a quotient space !!£/Ji 
is isometrically isomorphic to Jt .L .  These results are generalized in this 
section to the setting of a LCS and, moreover, it is shown that when (!!£/eA)* 
and Jt .L are identified, the weak-star topology on (!!£ jJt)* is precisely the 
relative weak -star topology that Jt .L receives as a subspace of !!£*. 

The first result was presented in abbreviated form as Exercise IV. 1 . 1 6. 

2.1 .  Proposition. If p is a seminorm on !!£, Jt is a linear manifold in !!£, and 
p: !!£ /eA -+ [O,oo) is defined by 

p(x + Jt) = inf{p(x + y): y eeA}, 

then p is a seminorm on !!£/eA. If !!£ is a locally convex space and f!lJ is the 
family of all continuous seminorms on !!£, then the family f!lJ = {p: pef!IJ} defines 
the quotient topology on !!£/eA. 

PRooF. Exercise. 

Thus if PI is a LCS and Jt � PI, then !!£jJt is a LCS. Let fe(PI/Ji)* . If 
Q: PI -+PI/vlt is the natural map, then foQ e!!£*. Moreover, f oQ eeA .L .  Hence 
ft-+ f o Q is a map of (PI /vlt)* -+ Jt .J.. c PI*. 
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2.2. Theorem. If fi is a LCS, vH � f£, and Q: fi ---+fflvit is the natural map, 
thenft--+foQ defines a linear bijection between (fflvit)* and vif.l. If (fflvit)* 
has its weak-star topology a( (f£ I .A)*, fi I .A) and .A .l has the relative weak-star 
topology a(fi*, fi) I vit .L, then this bijection is a homeomorphism. If fi is a 
normed space, then this bijection is an isometry. 

PROOF. Let p: (f£ 1 .A)* ---+ .A ..L be defined by p(f) = f o Q. It was shown prior 
to the statement of the theorem that p is well defined and maps (f£ I .A)* into 
vH .1. It is easy to see that p is linear and if 0 = p(f) = f o Q, then f = 0 since 
Q is surjective. So p is injective. Now let x* e.A .l and define f :  fflvit ---+ F 
by f(x + .A) =  (x, x*  ). Because .A c: ker x*, f is well defined and linear. 
Also, Q - 1 {x + .A: l f(x + .A) I < 1 }  = {x ef£: l ( x, x* ) l < 1 }  and this is open 
in fi since x* is continuous. Thus {x + .A: l f(x + .A) I < 1 }  is open in fflvit 
and so f is continuous. Clearly p(f) = x*, so p is a bijection. 

If fi is a normed space, it was shown in (111. 1 0.2) that p is an isometry. 
It remains to show that p is a weak-star homeomorphism. Let wk* = a(f£*, f£) 
and let a* = a((fflvit)*, fflvit). If {fi } is a net in (ffi.A)* and fi ---+ O(a*), then 
for each x in f£, ( x, p(fi) ) = fi( Q(x)) ---+ 0. Hence p(fi) ---+ O(wk*). Conversely, 
if p(fi) ---+ O(wk*), then for each x in f£, fi(x + .A) = ( x, p(fi) ) ---+ 0; hence 
fi ---+ 0( a*). • 

Once again let .A � f£. If x* ef£*, then the restriction of f£* to .A, x* I .A, 
belongs to .A*. Also, the Hahn-Banach Theorem implies that the map 
x*t--+x* l vit is surjective. If p(x*) = x* l vit, then p: f£* ---+ vit* is clearly linear 
as well as surjective. It fails, however, to be injective. How does it fail? 
It's easy to see that ker p = vH .1. Thus p induces a linear bijection 
jj: fi*IvH .l ---+ vif*. 

2.3. Theorem. If fi is a LCS, vH � f£, and p: f£* ---+ .A* is the restriction map, 
then p induces a linear bijection p :  f£* I vH .l ---+ .A*. Iff£* I vH .l has the quotient 
topology induced by a(f£*, f£) and .A* has its weak-star topology a( .A*, .A), 
then p is a homeomorphism. If fi is a normed space, then p is an isometry. 

PROOF. The fact that p is an isometry when fi is a normed space was shown 
in (111. 10. 1 ). Let wk* = a( .A*, .A) and let Yl* be the quotient topology on 
f£* I vH .l defined by a( f£*, f£). Let Q :  f£* ---+ f£* I vH .l be the natural map. 
Therefore the diagram 

commutes. If y evlt, then the commutativity of the diagram implies that 

Q - 1 (fi - l { y* evil*:  I ( y, y* > 1 < 1 } ) = Q - l { x* + vii .l :  I (y, x* > I  < 1 } 
= {x* e�*: l (y, x* ) l < 1 } , 
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which is weak-star open in f£*. Hence p: (ff*I.A l., 17*) .....,. (.A*, wk*) is 
continuous. 

How is the topology on f£* I .A l. defined? If x ef£, Px(x*) = I ( x, x* ) I is a 
typical seminorm on f£*. By Proposition 2. 1 ,  the topology on ff*I.A l. is 
defined by the seminorms {px: x ef£}, where 

Px(x* + .A l.) = inf{ l ( x, x* + z* ) l : z* e.A 1. } . 

2.4. Claim. If x¢.A, then Px = 0. 

In fact, let fl' = {cxx: cx eF} . If x¢.A, then fl' n .A  = (0). Since dim fl' < oo, 

.A is topologically complemented in fl' + .A. Let x* ef£* and define f: 
fl' + .A  .....,.F by f(cxx + y) = (y, x* ) for y in .A and ex in F. Because .A is 
topologically complemented in fl' + .A, if cxix + Yi .....,. 0, then Yi .....,. 0. Hence 
f(cxix + yi) = ( yh x* ) .....,. O. Thus f is continuous. By the Hahn-Banach 
Theorem, there is an xf in f£* that extends f. Note that x* - xf e.A 1.. Thus 
Px(x* + .A  l.) = Px(xf + .A  l.)  � Px(xf) = I ( x, x f )  I = 0. This proves (2.4). 

Now suppose that { x� + .A l. }  is a net in f£* I .A l. such that 
p(xr + .Aj_) = x� I .A ....... o(wk*) in .A*. If x ef£ and x ¢.A, the Claim (2.4) 
implies that Px(x� + .A  l.) = 0. If x e.A, then Px(x� + .A  l.) � I ( x, x� ) I ....,. 0. 
Thus x� + .A  l. .....,. 0 (17*) and p is a weak-star homeomorphism. • 

EXERCISES 
1 .  In relation to Claim 2.4, show that if � � f!I, dim � < oo ,  and vii � f!I, then � + vii 

is closed. 

2. Show that if vii � f!I and vii is topologically complemented in f!I, then vii j_ is 
topologically complemented in f!I* and that its complement is weak-star and 
linearly homeomorphic to f!I* I vii j_ .  

§3 .  Alaoglu's Theorem 

If fi is any normed space, let's agree to denote by ball fi the closed unit ball 
in f£. So ball fi = {x ef£: I I  x I I  � 1 } .  

3.1 .  Alaoglu's Theorem. If fi is a normed space, then ball f£* is weak-star 
compact. 

PROOF. For each x in ball f£, let Dx = {cx eF: l rx l � 1 }  and put D =  
ll{Dx: x eball f£}. By Tychonoff's Theorem, D is compact. Define r: 
ball f£* .....,. D by 

r(x*)(x) = (x, x* ). 

That is, r(x*)  is the element of the product space D whose x coordinate is 
(x, x* ) . It will be shown that r is a homeomorphism from (ball �·, wk*) 
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onto r(ball �*) with the relative topology from D, and that r(ball �*) is 
closed in D. Thus it will follow that r(ball �*), and hence ball f£*, is compact. 

To see that r is injective, suppose that r(xf) = r(x!). Then for each x in 
ball �, ( x, x f )  = ( x, x! >· It follows by definition that xf = x! .  

Now let { xr } be a net in ball f£* such that xr ---+ x*. Then for each X in 
ball �' r(xr) (x) = < X, xr > ---+ < X, x*  > = r(x*)(x). That is, each coordinate of 
{ r(xr) } converges to r(x*). Hence r(xr) ---+ r(x*) and r is continuous. 

Let xr be a net in ball �*, let feD, and suppose r(xr) -+ f in D. So 
f(x) = lim (x, xr > exists for every x in ball �. If x E�, let ex >  0 such that 
II cxx I I � 1 .  Then define f(x) = cx - 1f(cxx). If also P > 0 such that II Px II � 1 ,  then 
cx - 1f(cxx) = cx - 1 lim ( cxx, xr > = p - 1 lim ( px, xr > = p- 1f(Px). So f(x) is well 
defined. It is left as an exercise for the reader to show that f: � ---+ F' is a 
linear functional. Also, if l l x l l  � 1 ,  f(x) E Dx so lf(x) l � 1 .  Thus x* E ball 
�· and r(x*) = f. Thus r(ball �*) is closed in D. This implies that r(ball 
�*) is compact. The proof that r - 1 is continuous is left to the reader. • 

EXERCISES 
1 .  Show that the functional f occurring in the proof of Alaoglu's Theorem is linear. 

2. Let f£ be a LCS and let V be an open neighborhood ofO. Show that vo is weak-star 
com pact in f£*. 

3. If f£ is a Banach space, show that there is a compact space X such that f£ is 
isometrically isomorphic to a closed subspace of C(X). 

§ 4. Reflexivity Revisited 

In § 111. 1 1 a Banach space � was defined to be reflexive if the natural 
embedding of � into its double dual, �**, is surjective. Recall that if xEf£, 
then the image of x in �**, x, is defined by (using our recent notation) 

( x*, x ) = (x, x* )  

for all x* in �·. Also recall that the map x ...-+ x is an isometry. 
To begin, note that �**, being the dual space of �·, has its weak-star 

topology a(�**, �*). Also note that if � is considered as a subspace of �**, 
then the topology a(�**, �*) when relativized to � is a(�, f£*), the weak 
topology on �. This will be important later when it is combined with 
Alaoglu's Theorem applied to �·· in the discussion of reflexivity. But now 
the next result must occupy us. 

/1 

4.1. Proposition. If fi is a normed space, then ball � is a(�**, �*) dense in 
ban .¥••. 

PROOF. Let B = the a(�**, f£*) closure of ball fi in f£**; clearly, B c ball f£**. 
If there is an x�* in ball f£**\B, then the Hahn-Banach Theorem implies 
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there is an x* in f£*, an a in R, and an e > 0 such that 

Re (x, x* ) < a <  a +  e < Re (x*, x�* ) 

for all x in ball f£. (Exactly how does the Hahn-Banach Theorem imply 
this?) Since Oeball f£, 0 < a. Dividing by a and replacing x* by a - 1 x*, it may 
be assumed that there is an x* in f£* and an e > 0 such that 

Re ( x, x* ) < 1 < 1 + e < Re ( x*, x�* ) 

for all x in ball f£. Since ei8x e ball fi whenever x eball f£, this implies that 
l ( x, x* ) l � 1 if l l x l l  � 1 .  Hence x* eball f£*. But then 1 + e < Re ( x*, x�* ) � 
I ( x*, x�* ) I � I I  x�* I I  � 1 , a contradiction. • 

4.2. Theorem. If fi is a Banach space, the following statements are equivalent. 

(a) fi is reflexive. 
(b) f£* is reflexive. 
(c) u(f£*, f£) = u(f£*, f£**). 
(d) ball fi is weakly compact. 

PROOF. (a) => (c): This is clear since fi = f£* *. 
(d) => (a): Note that u(ff**, ff* ) l f£ = u(ff, f£*). By (d), ball f£ is u(ff**, f£*) 

closed in ball f£**. But the preceding proposition implies ball fi is u(f£**, f£*) 
dense in ball f£**. Hence ball fi = ball f£** and so fi is reflexive. 

(c) =>(b): By Alaoglu's Theorem, ball f£* is u(f£*, f£)-compact. By (c), ball 
f£* is u(f£*, f£**) compact. Since it has already been shown that (d) implies 
(a), this implies that f£* is reflexive. 

(b) =>(a): Now ball fi is norm closed in f£** ;  hence ball fi is u(f£**, f£***) 
closed in f£** (Corollary 1 .5). Since f£* = f£*** by (b), this says that ball fi 
is u(f£**, f£*) closed in f£**. But, according to (4. 1 ), ball fi is u(f£**, f£*) 
dense in ball f£**. Hence ball fi = ball f£** and fi is reflexive. 

(a) => (d): By Alaoglu's Theorem, ball f£** is u(f£**, f£*) compact. Since 
fi = f£**, this says that ball fi is u(f£, f£*) compact. • 

4.3. Corollary. If fi is a reflexive Banach space and vH � f£, then vH is a 
reflexive Banach space. 

PRooF. Note that ball vH = vH n [ball f£], so ball vH is u(f£, f£*) compact. It 
remains to show that u(f£, f£*) I vH = u(vit, vit*). But this follows by (2.3). 
�o�) • 

Call a sequence {xn} in fi a weakly Cauchy sequence if for every x* in 
f£*, { (xm x* ) }  is a Cauchy sequence in lF. 

4.4. Corollary. If fi is reflexive, then every weakly Cauchy sequence in fi 
converges weakly. That is, fi is weakly sequentially complete. 

PROOF. Since { ( xn, x*) } is a Cauchy sequence in F for each x* in f£*, {xn} 
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is weakly bounded. By the PUB there is a constant M such that I I  xn I I  � M 
for all n � 1 .  But {x eq-: II x II � M} is weakly compact since q- is reflexive. 
Thus there is an x in q- such that xn ci • x weakly. But for each x* in q-•, 
lim ( Xn, x* ) exists. Hence ( Xn , x* ) -+  ( x, x* ), so xn -+ x weakly. • 

Not all Banach spaces are weakly sequentially complete. 

4.5. Example. C[O, 1 ]  is not weakly sequentially complete. In fact, let 
fn(t) = ( 1  - nt) if 0 � t � 1/n and fn(t) = 0 if 1/n � t � 1 .  If Jl EM[O, 1 ], then 
JfndJl -+ JL( {0} ) by the Monotone Convergence Theorem. Hence {fn} is a 
weakly Cauchy sequence. However, {fn} does not converge weakly to any 
continuous function on [0, 1 ] .  

4.6. Corollary. If q- is a reflexive Banach space, .A � q-, and x0 eq-\Jt, then 
there is a point Yo in .A such that I I x0 �Yo I I = dist (x0 , .A). 
PROOF. X H I I  x - x0 I I is weakly lower semicontinuous (Exercise 1 .9). If 
d = dist (x0 , .A), then .A n  {x: II x - x0 II � 2d} is weakly compact and a lower 
semicontinuous function attains its minimum on a compact set. • 

It is not generally true that the distance from a point to a linear subspace 
is attained. If .A c q-, call .A proximinal if for every x in q- there is a y in 
.A such that I I x - y I I = dist (x, .A). So if q- is reflexive, Corollary 4.6 implies 
that every closed linear subspace of q- is proximinal. If q- is any Banach 
space and .A is a finite dimensional subspace, then it is easy to see that .A 
is proximinal. How about if dim(q-/Jt) < oo? 

4.7. Proposition. Jfq- is a Banach space and x* eq-*, then ker x* is proximinal 
if and only if there is an x in q-, I I x I I = 1 ,  such that ( x, x* ) = II x* 1 1 . 

PROOF. Let .A =  ker x* and suppose that Jf is proximinal. If f: q-;Jt -+F' 
is defined by f(x + .A) =  (x, x* ), then f is a linear functional and 
I I f I I = II x* 1 1 . Since dim q-;Jt = 1 ,  there is an x in q- such that I I x + .A  II = 1 
and f(x + .A) = I I f 1 1 . Because .A is proximinal, there is a y in .A such that 
1 = II x + .A  II = II x + y 1 1 . Thus ( x + y, x* ) = ( x, x* ) = f(x + .A) =  II f II = 
I I x* 1 1 . 

Now assume that there is an x0 in q- such that II x0 II = 1 and 
( x0, x* ) = II x* 1 1 . If x eq- and I I x + .A II = ex > 0, then I I ex - 1 x + .A II = 1 .  But 
also I I  x0 + .A  II = 1 .  (Why?) Since dim X/.A = 1 ,  there is a f3 in F', 1 /3 1 = 1 ,  
such that cx - 1x + .A =  f3(x0 + .A). Hence cx - 1x - f3x0 e.A, or, equivalently, 
x - cx{3x0 e.A. However, I I  x - (x - cxf3x0) II = I I cxf3x0 II = ex =  dist (x, .A). So the 
distance from x to .A is attained at x - cxf3x0 • • 

/I 

4.8. Example. If L: C[O, 1 ]  -+F is defined by i l /2 f l  
L(f) = f(x)dx - f(x)dx, 

0 1/2 
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then ker L is not proximinal. 
There is a result in James [ 1 964b] that states that a Banach space is 

reflexive if and only if every closed hyperplane is proximinal. This result is 
very deep. A nice reference on reflexivity is Yang [ 1 967] . 

EXERCISES 
1 .  Show that if PI is reflexive and vii � PI, then PI I vii is reflexive. 

2. If PI is a Banach space, vii � PI, and both vii and PI I .A are reflexive, must PI be 
reflexive? 

3. If (X, n, ,u) is a a-finite measure space, show that L 1 (X, n, ,u) is reflexive if and only 
if it is finite dimensional. 

4. Give the details of the proofs of the statements made in Example 4.5. 

5. Verify the statement made in Example 4.8. 

6. If (X, n, ,u) is a a-finite measure space, show that L 00 (,U) is weak-star sequentially 
complete but is reflexive if and only if it is finite dimensional. 

7. Let X be compact and suppose there is a norm on C(X) that is given by an inner 
product making C(X) into a Hilbert space such that for every x in X the functional 
jH f(x) on C(X) is continuous with respect to the Hilbert space norm. Show that 
X is finite. 

§5 .  Separability and Metrizability 

The weak and weak-star topologies on an infinite dimensional Banach space 
are never metrizable. It is possible, however, to show that under certain 
conditions these topologies are metrizable when restricted to bounded sets. 
In applications this is often sufficient. 

5.1 .  Theorem. If fi is a Banach space, then ball f£* is weak-star metrizable if 
and only if fi is separable. 

PROOF. Assume that fi is separable and let {xn} be a countable dense subset 
ofball f£. For each n let Dn = {cx eF: l rx l � 1 } . Put X =  0;' 1 Dn; X is a compact 
metric space. So if (ball f£*, wk*) is homeomorphic to a subset of X, ball f£* 
is weak -star metrizable. 

Define r: ball f£* ---+ X by r(x*) = { ( xn, x* ) } .  If {x� } is a net in ball f£* 
and x� -+ x* (wk*), then for each n � 1 ,  ( xn, x� ) ---+ ( Xn, x* ); hence 
r(x�) ---+ r(x*) and r is continuous. If r(x*) = r(y*), ( xn, x* - y* ) = 0 for all 
n. Since {xn } is dense, x* - y* = 0. Thus r is injective. Since ball f£* is wk* 
compact, r is a homeomorphism onto its image (A.2.8) and ball f£* is wk* 
metrizable. 

Now assume that (ball f£*, wk* )  is metrizable. Thus there are open sets 
{ Un : n � 1 }  in (ball �*, wk*) such that O eUn and n: 1 Un = (0). By the 
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definition of the relative weak -star topology on ball fl'*, for each n there is 
a finite set Fn contained in fl' such that {x* Eball fl'* : l ( x, x* ) l < 1 for all x 
in Fn} c Un . Let F = U: 1 Fn; so F is countable. Also, .l(F .l) is the closed 
linear span of F and this subspace of fl' is separable. But if x* E F .1, then for 
each n � 1 and for each x in F n , I < x, x* I I I x* I I  ) I = 0 < 1 .  Hence x* I I I x* I I  E U n 
for all n � 1 ; thus x* = 0. Since p.l  = (0), .l(F.l )  = fl' and fl' must be separable . 

• 

Is there a corresponding result for the weak topology? If fl'* is separable, 
then the weak topology on ball fl' is metrizable. In fact, this follows from 
Theorem 5. 1 if the embedding of fl' into fl'** is considered. This result is not 
very useful since there are few examples of Banach spaces fl' such that fl'* 
is separable. Of course if fl' is separable and refle-xive, then fl'* is separable 
(Exercise 3), but in this case the weak topology on fl' is the same as its 
weak-star topology when fl' is identified with fl'**. Thus (5. 1 )  is adequate 
for a discussion of the weak topology on the unit ball of a separable reflexive 
space. If fl' = c0, then fl'* = 1 1 and this is separable but not reflexive. This is 
one of the few nonreflexive spaces with a separable dual space. 

If fl' is separable, is (ball fl', wk) metrizable? The answer is no, as the 
following result of Schur demonstrates. 

5.2. Proposition. If a sequence in 11 converges weakly, it converges in norm. 

PROOF. Recall that l 00 = ( 1 1 )*. Since 1 1 is separable, Theorem 5. 1 implies that 
ball l00 is wk* metrizable. By Alaoglu's Theorem, ball /00 is wk* compact. 
Hence (ball zoo, wk*) is a complete metric space and the Baire Category 
Theorem is applicable. 

Let { In } be a sequence of elements in 1 1 such that fn ....... o weakly and let 
e > 0. For each positive integer m let 

It is easy to see that F m is wk* closed in ball /00 and, because fn .....,. O (wk), 
U:= 1 Fm = ball l00 • By the theorem of Baire, there is an Fm with non-empty 
weak-star interior. 

An equivalent metric on (ball zoo, wk*) is given by 
• 

00 d(4J, t/J) = L 2 -i i 4J(i) - t/l(i) l j = 1 

(see Exercise 4}� Since F m has a nonempty wk* interior, there is a 4J in F m 

and a £5 > 0 such that { t/1 Eball l 00 :  d(4J, t/1) < £5} c F m ·  Let J � 1 such that 
2- <J - t > < £5. Fix n � m and define t/1 in !00 by t/J(j) = l/J(j) for 1 � j  � J and 
t/J(j) = sign(fn(j) ) for j > J. Thus t/J(j)fn(i) = l fn(i) l  for j > J. It is easy to see 
that t/Jeball l00 • Also, d(l/J, t/1) = 'L} J + 1 2 - i l l!J(j) - t/J(j) l � 2·2 - J  = 2 - <J - 1 >  < b. 
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So t/feF m and hence I (t/1, fm> f � e/3 for n � m. Thus 

5.3 
J oo e 7 .. 1 l/JU>fnU> + 

j 
t+ 1 

lfnU) I � 3 
for n � m. But there is an m 1 � m such that for n � m 1 ,  Lf= 1 ffnU) f  < e/3. 
(Why?) Combining this with (5.3) gives that 

00 

1 / fn I f = L ffnU) f 
j = 1 

e < - +  3 
00 J J 
L l fnU) I + L c/JU)fnU) + L l/>U)fnU) 

j = J + 1 j = l j = l 

< 2e + t l fnU> I 
3 j = 1 

< e  
whenever n � m 1 •  • 

So if (ball / 1 , wk) were metrizable, the preceding proposition would say 
that the weak and norm topologies on 11 agree. But this is not the case 
(Exercise 1 . 1  0). 

Also, note that the preceding result demonstrates in a dramatic way that 
in discussions concerning the weak topology it is essential to consider nets 
and not just sequences. 

A proof of (5.2) that avoids the Baire Category Theorem can be found in 
Banach [ 1955], p. 21 8. 
EXERCISES 
1 . 1ft B = ball M[0, 1]  and for JL, v in M[O, l] define d(JL, V) = L� o 2 - " I J� x"dJL 

J 0 x" dv l . Show that d is a metric on M[O, 1] that defines the weak-star topology 
on B but not on M[O, 1]. 

2. Let X be a compact space and let c1Jt = { (U, V): U, V are open subsets of X and 
cl U £ V}. For u = (U, V) in c1J/, let fu: X -+  [0, 1] be a continuous function such 
that fu = 1 on cl U and fu = 0 on X\ V. Show: (a) the linear span of {fu: uec1J/} is 
dense in C(X); (b) if X is a metric space, then C(X) is separable; (c) if X is a 
a-compact metrizable locally compact space, then C0(X) is separable. (X is 
a-compact if X is the union of a countable number of compact subsets.) 

3. If !!£ is a Banach space and !!£* is separable, show that (a) !!£ is separ�.ble; (b) if K 
is a weakly compact subset of !!£, then K with the relative weak topology is 
metrizable. 

4. If B = ball l00, show that d(t/>, t/1) = L �  1 2 -i l t/>U) - t/JU) I  defines a metric on B and 
that this metric defines the weak-stcfr topology on B. 

5. Use the type of argument used in the proof of the Principle of Uniform Boundedness 
to obtain a proof of Proposition 5.2 that does not need the Baire Category Theorem. 

6. Show that Proposition 5.2 fails for l" if 1 < p < oo. 
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Let X be any topological space and consider the Banach space Cb(X). Unless 
some assumption is made regarding X, it may be that Cb(X) is "very small." 
If, for example, it is assumed that X is completely regular, then Cb(X) has 
many elements. The next result says that this assumption is also necessary 
in order for Cb(X) to be "large." But first, here is some notation. 

If xeX, let �x : Cb(X)__. F  be defined by �x(f) = f(x) for every f in Cb(X). 
It is easy to see that �xe Cb(X)* and I I  �x I I  = 1 .  Let �: X ___. Cb(X)* be defined 
by �(x) = �x· If {xi } is a net in X and xi __.x, then f(xi) __.  f(x) for every f 
in Cb(X). This says that �xi ___. �x (wk*) in Cb(X)*. Hence �: X ___. ( Cb(X)*, wk*) 
is continuous. Is � a homeomorphism of X onto �(X)? 

6.1. Proposition. The map �: X _. (�(X), wk*) is a homeomorphism if and only 
if X is completely regular. 

PROOF. Assume X is completely regular. If x1 # x2 , then there is an f in 
Cb(X) such that f(x 1 ) = 1 and f(x2 ) = 0; thus �x. (f) # �x2 (/). Hence � is 
injective. To show that �: X _. (�(X), wk*) is an open map, let U be an open 
subset of X and let x0 e U. Since X is completely regular, there is an f in 
Cb(X) such that f(x0) = 1 and f = 0 on X\ U. Let V1 = {JLeCb(X)*: (/, u ) > 0} . 
Then V1 is wk* open in Cb(X)* and V1 n �(X) = { �x: f(x) > 0} . So if 
V =  V1 n �(X), V is wk* open in �(X) and �xoe V c �(U). Since x0 was 
arbitrary, �(U) is open in �(X). Therefore �: X _. (�(X), wk*) is a homeo
morphism. 

Now assume that � is a homeomorphism onto its image. Since 
(ball Cb(X)*, wk*) is a compact space, it is completely regular. Since 
�(X) c ball Cb(X)*, �(X) is completely regular (Exercise 2). Thus X is 
completely regular. • 

6.2. Stone-Cech Compactification. If X is completely regular, then there is a 
cvmpact space px such that: 

(a) there is a continuous map �= X ___. px with the property that �: X ___. �(X) 
is a homeomorphism; 

(b) �(X) is dense in px; 
(c) iff eCb(X), then there is a continuous mapjfl: px ___. F such thatJflo � = f. 

Moreover, if n is a compact space having these properties, then 0 is 
homeomorphic to px. 

/' 
PROOF. Let �: X �  Cb(X)* be the map defined by �(x) = �x and let px = the 
weak-star closure of �(X) in Cb(X)*. By Alaoglu's Theorem and the fact that 
I I �" I I = 1 for all x, px is compact. By the preceding proposition, (a) holds. 
Part (b) is true by definition. It remains to show (c). 
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Fix f in Cb(X) and define j/J: f3X --+ 1F by j/J(r) = (f, r )  for every r in f3X. 
[Remember that f3X c Cb(X)*, so that this makes sense.] Clearly j/J is 
continuous and j/J o �(x) = j/J(bx) = (f, bx ) = f(x). So j/J o � = f and (c) holds. 

To show that f3X is unique, assume that Q is a compact space and n: 
X --+  Q is a continuous map such that: 

(a') n: X --+  n(X) is a homeomorphism; 
(b') n( X) is dense in Q; 
(c') if f eCb(X), there is an ] in C(Q) such that ] o n = f. 

Define g :  �(X) --+ Q by g(�(x) ) = n(x). In other words, g = n o�- 1 . The idea 
is to extend g to a homeomorphism of f3X onto Q. If r0 ef3X, then (b) implies 
that there is a net {xi } in X such that �(xi) --+ r 0 in f3X. Now { n(xJ } is a net 
in Q and since Q is compact, there is an w0 in � such that n(xi) ci w0 . 
If FeC(Q), let f = Fon; so feCb(X) (and F = f). Also, f(xi) =  (f, bxi ) --+ 
(f, r0 ) = j/J(r0). But it is also true that f(xd = F(n(xi)) ci • F(w0). Hence 
F(w0 ) = j/J(r0) for any F in C(Q). This implies that w0 is the unique cluster 
point of { n(xJ } ;  thus n(xi) --+ w0 (A.2.7). Let g(r0) = w0 •  It must be shown 
that the definition of g(r0) does not depend on the net {xi } in X such that 
�(xi) --+ r0 . This is left as an exercise. To summarize, it has been shown that 

There is a function g: f3X --+ Q 
6.3 such that if f e Cb(X), then j/J = ] o g. 

To show that g: f3X --+ !l  is continuous, let {r i } be a net in f3X such that 
ri --+ r. If FeC(Q), let f = Fon; so feCb(X) and ] = F. Also, j/J(rd --+ j/J(r). 
But F(g(rJ) = j/J(ri) --+ j/J(r) = F(g(r) ). It follows (6. 1 )  that g(ri) --+ g(r) in Q. 
Thus g is continuous. 

It is left as an exercise for the reader to show that g is injective. Since 
g(f3X) ::::> g(�(X) ) = n(X), g(f3X) is dense in Q. But g(f3X) is compact, so g is 
bijective. By (A.2.8), g is a homeomorphism. • 

The compact set f3X obtained in the preceding theorem is called the 
Stone-Cech compactification of X. By properties (a) and (b), X can be 
considered as a dense subset of f3X and the map � can be taken to be the 
inclusion map. With this convention, (c) can be interpreted as say.ing 
that every bounded continuous function on X has a continuous extension 
to px. 

The space f3X is usually very much larger than X. In particular, it is 
almost never true that f3X is the one-point compactification of X. For 
example, if X =  (0, 1], then the one-point compactification of X is [0, 1] .  
However, sin ( 1 /x)eCb(X) but it has no continuous extension to [0, 1] , so 
px # [O, 1] .  

To obtain an idea of how large f3X\X is, see Exercise 6, which indicates 
how to show that if IN has the diserete topology, then f3IN\IN has 
2 �o pai rwise disjoint open sets. The best source of information on the 
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Stone-Cech compactification is the book by Gillman and Jerison [ 1 960], 
though the approach to px is somewhat different there than here. Two recent 
works on the Stone-Cech compactification are Johnstone [ 1 982] and Walker 
[ 1 974] . 

6.4. Corollary. if X is completely regular and JlEM(PX), define Lll: Cb(X) --+ F' 
by 

for each fin Cb(X). Then the map Jlt--+ Lil is an isometric isomorphism of M(PX) 
onto Cb(X)*. 

PROOF. Define V: Cb(X) --+ C(PX) by Vf = fP. It is easy to see that V is linear. 
Considering X as a subset of px, the fact that px = cl X implies that V is 
an isometry. If ge C(PX) and f = g I X, then g = fP = Vf; hence V is surjective. 

If JlEM(PX) = C(PX)*, it is easy to check that Lll e Cb(X)* and I I Lil l i = I I Jl ll 
since V is an isometry. Conversely, if Le Cb(X)*, then Lo  v- 1 eC(PX)* and 
I I  L a  v- 1 

I I  = I I  L 1 1 . Hence there is a Jl in M(PX) such that Jfg dJl = L a  v- 1(g) 
for every g in C( PX). Since v- 1g = I X, it follows that L = Lw • 

The next result is from topology. It may be known to the reader, but it 
is presented here for the convenience of those to whom it is not. 

6.5. Partition of Unity. If X is normal and { U 1 ,  . . .  , U n } is an open covering 
of X, then there are continuousfunctionsf1 , • • •  , fn from X into [0, 1 ]  such that 

(a) L� = 1fk(x) = 1 for all x in X; 
(b) fk(x) = O  for x in X\Uk and 1 � k � n. 

PROOF. First observe that it may be assumed that { U 1 , . . .  , U n } has no proper 
subcover. The proof now proceeds by induction. 

If n = 1 ,  let f1 = 1 .  Suppose n = 2. Then X\ U 1 and X\ U 2 are disjoint 
closed subsets of X. By Urysohn's Lemma there is a continuous function f1 : 
X --+  [0, 1 ]  such that f1 (x) = 0 for x in X\ U 1 and f1 (x) = 1 for x in X\ U 2 .  
Let f2 = 1 - f1 and the proof of this case is complete. 

Now suppose the theorem has been proved for some n � 2 and 
{ U  1 ,  . . .  , U n + 1 }  is an open cover of X that is minimal. Let F = X\ Un + 1 ;  then 
F is closed, nonempty, and F c U�=·1 Uk. Let V be an open subset of X such 
that F c V c cl V c U�= 1 Uk. Since cl V is normal and { U  1 ncl V, . . .  , Un ncl V} 
is an open cover of cl V, the induction hypothesis implies that there are 
continuous fu�ctions g 1 ,  . . .  , gn on cl V such that L� = 1 gk = 1 and for 1 � k � n, 
0 � gk � 1 ,  and gk(cl V\ U k) = 0. By Tietze's Extension Theorem there are 
continuous functions g 1 ,  . . .  , gn on X such that gk = gk on cl V and 0 � gk � 1 
for 1 � k � n. 

Also, there is a continuous function h: X --+  [0, 1 ] such that h = 0 on X\ V 
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and h = 1 on F. Put fk = gkh for 1 � k � n and let fn +  1 = 1 - L� = 1fk · Clearly 
0 � fk � 1 if 1 � k � n. If xecl V, then fn +  1 (x) = 1 - (L� = 1 gk(x) )h(x) = 1 -
h(x); so 0 � fn +  1 (x) � 1 on cl V. If xEX\ V, then fn +  1 (x) = 1 since h(x) = 0. 
Hence O � fn + 1 � 1 .  

Clearly (a) holds. Let 1 � k � n; if xeX\Uk, then either xe(cl V)\Uk or 
xe(X\cl V)\ U k· If the first alternative is the case, then gk(x) = 0, so fk(x) = 0. 
If the second alternative is true, then h(x) = 0 so that fk(x) = 0. If 
xeX\Un + 1 = F, then h(x) = 1 and so fn + 1 (x) = 1 - I:� = 1 gk(x) = 0. • 

Partitions of unity are a standard way to put together local results to 
obtain global results. If {fk} is related to { U k }  as in the statement of (6.5), 
then {fk }  is said to be a partition of unity subordinate to the cover { U k } · 

6.6. Theorem. If X is completely regular, then Cb(X) is separable if and only 
if X is a compact metric space. 

PROOF. Suppose X is a compact metric space with metric d. For each n, 
let { u�n> : 1 � k � N n} be an open cover of X by balls of radius 1/n. Let 
{f�n> :  1 � k � Nn } be a partition of unity subordinate to {U�n> :  1 � k � Nn} · 
Let OJ/ be the rational (or complex-rational) linear span of {f�n> : n � 1 ,  
1 � k � Nn }; thus OJ/ is countable. I t  will be shown that OJ/ is dense in C(X). 

Fix f in C(X) and e > 0. Since f is uniformly continuous there is a � > 0 
such that l f(x 1 ) - f(x2 ) l < e/2 whenever d(x 1 , x2 ) < �. Choose n > 2/� and 
consider the cover { u�n> : 1 � k � N n } •  If x 1 ' x2 E u�n>, d(x 1 ' x2 ) < 2/n < �; hence 
l f(x 1 ) - f(x2 ) 1 < e/2. Pick xk in u�n> and let <Xk E<Q + i<Q such that 
l etk - f(xk) l < e/2. Let g = Lk<Xkf�n>, so geO!J. Therefore for every x in X, 

lf(x) - g(x) l = L f(x)f�n>(x) - L etkf�n>(x) 
k k 

� L l f(x) - <Xk l f�n> (x). 
k 

Examine each of these summands. If xe u�n>, then l f(x) - ttk l � lf(x) 
f(xk) l + l f(xk) - etk l < e. If x¢ U�n>, then f�n>(x) = 0. Hence l f(x) - g(x) l < 
Lkef�n>(x) = e. Thus I I  f - g I I < e and OJ/ is dense in C(X). This shows that 
C(X) is separable. 

Now assume that Cb(X) is separable. Thus (ball Cb(X)*, wk*) is metrizable 
(5. 1 ). Since X is homeomorphic to a subset of ball Cb(X)* (6. 1 ), X is metrizable. 
It also follows that px is metrizable. It must be shown that X =  px. 

Suppose there is a r in PX\X. Let {xn} be a sequence in X such that 
xn --+ r. It can be assumed that Xn -:1: Xm for n -:1: m. Let A = {xn : n is even} and 
B = {xn : n is odd} .  Then A and B are disjoint closed subsets of X (not closed 
in px, but in X) since A and B contain all of their limit points in X. Since 
X is normal, there is a continuous function f: X --+  [0, 1 ]  such that f = 0 on 
A and f = 1 on B. But then Jfl(r) = lim f(x2n) = 0 and Jfl(r) = lim f(x2n +  1 ) = 
1 ,  a contradiction. Thus fJX\X = D. • 
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EXERCISES 
1 .  If xeX and �x(f) = f(x) for all f in Cb(X), show that II �x I I  = 1 .  

2. Prove that a subset of a completely regular space is completely regular. 

3. Fill in the details of the proof of Theorem 6.2. 

4. If X is completely regular, 0 is compact, and f: X -+  0 is continuous, show that 
there is a continuous map Jfl: px -+ 0 such that jP I X = f.  

5. If X is completely regular, show that X is open in px if and only if X is locally 
compact. 

6. Let .IN have the discrete topology. Let {rn : ne.IN} be an enumeration of the rational 
numbers in [0, 1] .  Let S = the irrational numbers in [0, 1]  and for each s in S let 
{rn : neNs}  be a subsequence of {rn}  such that s = lim {rn : n eNs} ·  Show: (a) if s, teS 
and s '# t, Ns n Nt is finite; (b) if for each s in S, cl Ns = the closure of Ns in P.IN 
and As = (cl Ns)\.IN, then {As: seS} are pairwise disjoint subsets of P.IN\.IN that are 
both open and closed. 

7. Show that if X is normal, repx, and there is a sequence {xn } in X such that xn -+ t  
in px, then reX. If X is not normal, is the result still true? 

8. Let X be the space of all ordinals less than the first uncountable ordinal and give 
X the order topology. Show that px = the one point compactification of X. (You 
can find the pertinent definitions in Kelley [1955] .) 

§ 7. The Krein-Milman Theorem 

7.1 .  Definition. If K is a convex subset of a vector space PI, then a point a 
in K is an extreme point of K if there is no proper open line segment that 
contains a and lies entirely in K. Let ext K be the set of extreme points of K. 

Recall that an open line segment is a set of the form (x 1 , x2 ) = { tx2 + 
( 1 - t)x 1 : 0 < t < 1 }, and to say that this line segment is proper is to say that 
x t '# x2 . 

7.2. Examples. 

(a) If � = R2 and K = { (x, y)eR2 : x2 + y2 � 1 }, then ext K = { (x, y): 
x2 + y2 = 1 } .  , 

(b) If � =  R 2 and K = { (x, y)ER 2: x � 0}, then ext K = 0.  
(c) If � =  R 2 and K = { (x, y)ER� : x < 0} u { (0, 0) } , then ext K = { (0, 0) } . 
(d) If K = the �losed region in R 2 bordered by a regular polygon, then 

ext K = the vertices of the polygon. 
(e) If � is any normed space and K = {xe�: I I x I I � 1 } ,  then ext K c 

{x: I I  x I I  = 1 }, though for all we know it may be that ext K = 0. 
(f) If � = L1 [0, 1] and K = {feL1 [0, 1] :  1 1 / 1 1 1 � 1 }, then ext K = D. This 
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last statement requires a bit of proof. Let f eL1 
[0, 1 ]  such that I I  f 1 1 1 = 1 .  

Choose x in [0, 1 ]  such that J� l f(t) l dt = � · Let h(t) = 2f(t) if t � x and 0 

otherwise; let g(t) = 2f(t) if t � x and 0 otherwise. Then I I  h 1 1 1 = I I  g l l 1 = 1 

and f = �(h + g). So ball L1
[0, 1 ]  has no extreme points. 

The next proposition is left as an exercise. 

7.3. Proposition. If K is a convex subset of a vector space .!l" and a e K, then 
the following statements are equivalent. 

(a) aeext K .  
(b) Ifx b x2 e .?l and a =  �(x 1 + x2 ), then either x 1  � K  or x2 �K  or x 1  = x2 = a. 
(c) If x 1 , x 2 e .?l', 0 < t < 1 ,  and a =  tx 1 + ( 1 - t)x 2 ,  then either x 1  � K, x2 � K, 

or x 1  = x2  = a. 
(d) If x 1 ,  • • •  , xn e K and a eco {x 1 , • • •  , xn } , then a = xk for some k. 
(e) K\ {a }  is a convex set. 

7.4. The Krein-Milman Theorem. If K is a nonempty compact convex subset 
of a LCS .U£, then ext K i= D and K = co (ext K). 

PRooF. (Leger [ 1  968] .) Note that (7.3e) says that a point a is an extreme 
point if and only if K \  { a }  is a relatively open convex subset. We thus look 

for a maximal proper relatively open convex subset of K. Let OIJ be all the 
proper relatively open convex subsets of K. Since f!l" is a LCS and K # D 
(and let's assume that K is not a singleton), 011 # D .  Let OIJ 0 be a chain in OIJ 
and put U 0 = u { U : U eOIJ 0 } . Clearly U 0 is open, and since OIJ 0 is a chain, U 0 
is convex. If U 0 = K, then the compactness of K implies that there is a U 
in OIJ 0 with U = K, a contradiction to the property of U. Thus U 0 E OIJ. By 
Zorn's Lemma, OIJ has a maximal element U. 

If  x e K  and 0 � ) .. � 1 ,  let Tx,;. :  K --+  K be defined by Tx, ;.( Y) = ) .. y + ( 1  - A)x. 
Note that Tx. ;.  is continuous and Tx, ;.(Lj= 1 cxiyi) = 'Lj= 1 cxi Tx,;.( Yi) whenever 

y 1 , . . . , Yn E K,  cx 1 , . . .  , cxn � 0, and L,j= 1 cxi = 1 .  (This means that Tx, ;.  is an affine 
map of K into K.) If  x e U and 0 � A <  1 ,  then Tx, ;.( U) c U. Thus U c T;i (U) 
and T;l (U) is an open convex subset of K. If ye(cl U)\ U, Tx, ;.( y) e [x, y) c U 
by Proposition IV. t . 1 1 .  So cl U c r- � ( U) and hence the maximality of U 

X, A. 

implies T;l ( U) = K. That is, 

7.5 Tx. ;.(K )  c U if x e U and 0 � ) .. < 1 .  

Claim. I f  V is any open convex subset of K, then either V u  U = U or 
V u  U = K. 

In  fact, (7. 5) implies that V u  U is convex so  that the claim follows from 
the maximality of U. 

It now follows from the claim that K\ U is a singleton. In fact, if a, be  K\ U 
and a ·-:j:. b, let Va , Vb be disjoint open convex subsets of K such that ae Va 
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and be Vb . By the claim Va u U = K since a¢ U. But b¢ Va u U, a 
contradiction. Thus K\ U = {a} and aeext K by (7.3e). Hence ext K =I= 0. 

Note that we have actually proved the following. 

7.6 If V is an open convex subset of !!I and ext K c V, then K c V. 
Assume (7.6) is false. That is, assume there is an open convex subset V of 

!!I such that ext K c V but V n K =1= K. Then V n K ed/1 and is contained in 
a maximal element U of o/1. Since K\U = {a} for some a in ext K, this is a 
contradiction. Thus (7.6) holds. 

Let E = co (ext K). If x* e!!£*, aeR, and E c {xe!!£: Re < x, x*) < ex} =  V, 
then K c V by (7.6). Thus the Hahn-Banach Theorem (IV.3. 1 3) implies 
E = K. • 

The Krein-Milman Theorem seems innocent enough, but it has wide
spread application. Two such applications will be seen in Sections 8 and 10; 
another will occur later when C*-algebras are studied. Here a small applica
tion is given. 

If !!I is a Banach space, then ball !!£* is weak* compact by Alaoglu's 
Theorem. By the Krein-Milman Theorem, ball !!£* has many extreme points. 
Keep this in mind. 

7. 7. Example. c0 is not the dual of a Banach space. That is, c0 is not iso
metrically isomorphic to the dual of a Banach space. In light of the preceding 
comments, in order to prove this statement, it suffices to show that ball c0 
has few extreme points. In fact, ball c0 has no extreme points. Let xeball c0 . 
It must be that 0 = lim x(n). Let N be such that lx(n) l < � for n � N. Define 
y1 , y2 in c0 by letting y1 (n) = y2 (n) = x(n) for n � N, and for n > N  let 
y1 (n) = x(n) + 2 - n and y2 (n) = x(n) - 2 - n. It is easy to check that y1 and 
y2 eball c0 , � (y 1 + y2 ) = x, and y1 =I= x. 

In light of Example 7.2(f), L1 [0, 1 ]  is not the dual of a Banach space. 
The next two results are often useful in applying the Krein-Milman 

Theorem. Indeed, the first is often taken as part of that result. 

7.8. Theorem. If !!I is a LCS, K is a compact convex subset of!!£, and F c K 
such that K = co (F), then ext K c cl F. 

PROOF. Clearly it suffices to assume that F is closed. Suppose that there is 
an extreme point x0 of K such that x0¢F. Let p be a continuous seminorm 
on !!I such that F n {xe!!£: p(x - x0) < 1 }  = 0. Let U 0 = {xe!!£: p(x) < j } . So 
(x0 + U 0 )n (F + U 0) = D; hence x0¢cl (F + U 0 ). 

Because F is compact, there are y1 , • . .  , Yn in F such that F c U�= 1 (yk + U 0). 
Let Kk = co (Fh(yk + U 0) ). Thus Kk c Yk + cl U 0 (Why?), and Kk c K. Now 
that fact that K 1 , . . .  , Kn are compact and convex implies that co (K 1 u · · · u Kn) = 
co (K1 u · · · u Kn) (Exercise 8). Therefore 

K = co (F) = co(K1 u · · · u Kn). 
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Since x0 EK, x0 = L�= 1 etkxk , xkEKk, etk � 0, et1 + · · · + etn = 1 .  But x0 is an 
extreme point of K. Thus, x0 = xkEKk for some k. But this implies that 
x0 E Kk c Yk + cl U 0 c cl ( F + U 0), a contradiction. • 

You might think that the set of extreme points of a compact convex subset 
would have to be closed. This is untrue even if the LCS is finite dimensional, 
as Figure V- 1 illustrates. 

Figure V- 1 

7.9. Proposition. If K is a compact convex subset of a LCS !!£, CiJJ is a LCS, 
and T: K --+  CiJJ is a continuous affine map, then T(K) is a compact convex subset 
of CiJJ and if y is an extreme point of T(K), then there is an extreme point x of 
K such that T(x) = y. 

PROOF. Because T is affine, T(K) is convex and it is compact by the continuity 
of T. Let y be an extreme point of T(K). It is easy to see that r- 1 ( y) is 
compact and convex. Let x be an extreme point of T - 1( y). It now follows 
that xEext K (Exercise 9). • 

Note that it is possible that there are extreme points x of K such that 
T(x) is not an extreme point of T(K). For example, let T be the orthogonal 
projection of R 3 onto R 2 and let K = ball R 3 . 

EXERCISES 
1 .  If (X, Q, J.L) is a a-finite measure space and 1 < p < oo, then the set of extreme 

points of ball Il'(J.L) is {! ell'(J.L): II f l i P = 1 } .  

2. If  (X, Q, J.L) is  a a-finite measure space, the set of extreme points of ball L1 (J.L) is 
{(XxE: E is an atom of J.L, (XEF, and I (X I  = J.L(E) - 1 } .  

, 

3. If (X, Q, J.L) is a a-finite measure space, the set of extreme points of ball L 00(J.L) is 
{f E L 00(J.L): I f(x) I = 1 a.e. [J.L] } . 

4. If X is completely regular, the set of extreme points of ball Cb(X) is {! eCb(X): 
l f(x) l = 1 for all x}. So ball Ctt[O, 1] has only two extreme points. 

5. Let X be a totally disconnected compact space. (That is, X is compact and if 
xeX and U is an neighborhood of x, then there is a subset V of X that is both 
open and closed and such that x e V � U. The Cantor set is an example of such 
a space.) Show that ball C(X) is the norm closure of the convex hull of its extreme 
points. (If IF =  <C, the result is true for all compact Hausdorff spaces X (Phelps 
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[ 1965] ). If F = R, then this characterizes totally disconnected compact spaces 
(Goodner [1964] ).) 

6. Show that ball / 1 is the norm closure of the convex hull of its extreme points. 

7. Show that if X is locally compact but not compact, then ball C0(X) has no 
extreme points. 

8. If fl' is a LCS and K 1 ,  . . .  , Kn are compact convex subsets of f£, then 
co (K 1 u · · · u Kn) = co(K 1 u · · · u Kn) and this convex hull is compact. 

9. Let K be convex and let T: K -+ OJJ be an affine map. If y is an extreme point of 
T(K) and x is an extreme point of r- 1 ( y), then x is an extreme point of K. 

10. If Jf is a Hilbert space and either T or T* is an isometry, show that T is an 
extreme point of the closed unit ball of 81(£'). (The converse of this is also true, 
but it may be hard unless you use the Polar Decomposition of operators 
(VIII.3. 1 1 ). ) 

§8. An Application: The Stone-Weierstrass 
Theorem 

If f: X --+  <C is a function, then f denotes the function from X into 
<C whose value at each x is the complex conjugate of f(x), f(x). 

8.1 .  The Stone-Weierstrass Theorem. If X is compact and d is a closed sub
algebra of C(X) such that: 

(a) 1 Ed; 
(b) if x, yEX and x =F y, then there is an f in d such that f(x) =F f(y); 
(c) iff Ed, then fEd; 

then d = C(X). 

If C(X) is the algebra of continuous functions from X into JR., then 
condition (c) is not needed. Also, an algebra in C(X) that has property (b) 

' is said to separate the points of X (see Exercise 1 ). 
The proof of this result that will be presented here makes use of the Krein

Milman Theorem and is due to L. de Branges [ 1959] . 

PROOF OF THE STONE-WEIERSTRASS THEOREM. To prove the theorem it suffices 
t 

to show that d J. = (0) (III.6. 14). Suppose d J. =F (0). By Alaoglu's Theorem, 
ball dJ. is weak* compact. By the Krein-Milman Theorem, there is an 
extreme point Jl of ball d J.. Let K = the support of Jl· That is, 

�K = X\ U { V: V is open and I Jt i (V) = 0} . 

Hence l ,u l (X\K) = 0 and Sf d,u = SKf dJt for all continuous functions f on X. 
Since d J. =F (0), I I  Jt l l = 1 and K =F D. Fix x0 in K. It will be shown that 
K = {x0 }. 
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Let xeX, x "I= x0 • By (b) there is an /1 in d such that /1 (x0) "I= /1 (x) = p. 
By (a), the function Ped. Hence /2 = /1 - Ped, /2 (x0) "I= 0 = f2 (x). By 
(c), '/3 = l /2 1 2 = /2 /2 Ed. Also, /3 (x) = 0 < /3 (x0 ) and /3 � 0. Put f = 
( 1 1 /3 1 1 + 1 ) - 1/3 . Then fed, f(x) = O, f(x0) > 0, and O � f <  1 on X. 
Moreover, because d is an algebra, gf and g( 1 - /)Ed for every g in d. 
Because Jl,Ed.l, 0 =  Jgfdf.l = Jg(1 - f)df.l for every g in d. Therefore ff.l and 
( 1  - f)f.J,Ed .l. 

(For any bounded Borel function h on X, hf.l denotes the measure whose 
value at a Borel set L\ is J4hdf.l. Note that I I hf.l l l = J l h l d l f.l l .) 

Put et = I I !J.l l l = Jfd l f.l l . Since f(x0) > 0, there is an open neighborhood 
U of x0 and an e > 0 such that f(y) > e for y in U. Thus, 
et = Jfd l f.l l � Jufd l f.l l � e i J.l i (U) > 0 since U n K  "I= D. Similarly, since f(x0) < 
1 ,  et < 1 .  Therefore, 0 < et < 1 .  Also, 1 - et = 1 - Jfd l f.l l = J(1 - f)d l f.l l = I I ( 1 - f)J.l l l . Since 

Jl = 
0: [ II� II J + (l - o:) L �� =��: II J 

and Jl is an extreme point of ball d .l, Jl = f J.l l l f J.l ll - 1 = et- 1 f Jl. But the only 
way that the measures Jl and et - 1 !Jl can be equal is if et- 1 f = 1 a.e. [J.l]. 
Since f is continuous, it must be that f = et on K. Since x0 eK, f(x0) = et. 
But f(x0) > f(x) = 0. Hence x¢K. This establishes that K = {x0 } and so 
Jl = ybxo where I y I = 1 .  But f.J,Ed .l and 1 Ed, so 0 = J 1 df.l = y, a contradiction. 
Therefore d.l = (0) and d = C(X). • 

With an important theorem it is good to ask what happends if part of 
the hypothesis is deleted. If x0eX and d = {! E C(X): f(x0) = 0}, then d is 
a closed subalgebra of C(X) that satisfies (b) and (c) but d -:1: C(X). This is 
the worst that can happen. 

8.2. Corollary. If X is compact and d is a closed subalgebra of C(X) that 
separates the points of X and is closed under complex conjugation, then either 
d = C(X) or there is a point x0 in X such that d = {feC(X): f(x0) = 0} . 

PROOF. Identify F' and the one-dimensional subspace of C(X) consisting of 
the constant functions. Since d is closed, d + F' is closed (III.4.3). It is easy 
to see that d + F' is an algebra and satisfies the hypothesis of the 
Stone-Weierstrass Theorem; hence d + F' = C(X). Suppose d "I= C(X). Then 
C(X)/d is one dimensional; thus d.l is one dimensional (Theorem 2.2). Let 
f.J,Ed.l, II f.l ll = 1 .  If fed, then ff.lEd.l; hence there is an et in F' such that 
!Jl = CtJ.l. This implies that each f in d is constant on the support of f.l· But 
the functions in d separate the points of X. Hence the support of Jl is a 
single point x0 and so d.l = {Pbx0 : peF'}. Thus d = d.l = {feC(X): 
f(x0) = 0} . • 

There are many examples of subalgebras of C(X) that separate the points 
of X, contain the constants, but are not necessarily closed under complex 
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conjugation. Indeed, a subalgebra of C(X) having these properties is called 
a uniform algebra or function algebra and their study forms a separate area 
of mathematics (Gamelin [ 1969] ). One example (the most famous) is obtained 
by letting X be a subset of <C and letting d = R(X) = the uniform closure 
of rational functions with poles off X. 

Let x0 , x 1 eX, x0 # x 1 , and let d = {feC(X): f(x0) = f(x 1 ) } .  Then d is 
a uniformly closed subalgebra of C(X), contains the constant functions, and 
is closed under conjugation. In a certain sense this is the worst that can 
happen if the only hypothesis of the Stone-Weierstrass Theorem that does 
not hold is that d fails to separate the points of X (see Exercise 4). 

If X is only assumed to be locally compact, then the story is similar. 

8.3. Corollary. If X is locally compact and d is a closed subalgebra of C0(X) 
such that 

(a) for each x in X there is an f in d such that f(x) # 0; 
(b) d separates the points of X; 
(c) fe d whenever fed; 

then d = C0(X). 

PROOF. Let X oo = the one point compactification of X and identify C0(X) 
with {feC(X00 ): f(oo) = O}. So d becomes a subalgebra of C(X00 ). Now 
apply Corollary 8.2. The details are left to the reader. • 

What are the extreme points of the unit ball of M(X)? The characterization 
of these extreme points as well as the extreme points of the set P(X) of 
probability measures on X is given in the next theorem. [A probability measure 
is a positive measure Jl such that J,t(X) = 1 .] 

8.4. Theorem. If X is compact, then the set of extreme points of ball M(X) is 

{ cu5 x : I et I = 1 and x e X}. 

The set of extreme points of P(X), the probability measures on X, is 

{bx : x eX}. 

PROOF. It is left as an exercise for the reader to show that if x eX, bx is an 
extreme point of P(X) and etbx is an extreme point of ball M(X) (Exercise 3). 

It will now be shown that if Jl is an extreme point of P(X), then Jl is an 
• 

extreme point of ball M(X). Thus the first part of the theorem implies the 
second. Suppose Jl is an extreme point of P(X) and v 1 , v2 e ball M(X) such 
that Jl = �(v 1 + v2). Then 1 = I I  J.t ll � �( I I  v 1 l l + I I  v2 l l ) � 1; hence I I V 1 I I  + 
I I  v2 l l = 2 andAo I I V 1 I I = I I v2 l l = 1 .  Also, 1 = J,t(X) = �(v 1 (X) + v2 (X)). Now 
l v 1 (X) I , l v2 (X) I � 1 and 1 is an extreme point of {et eF: I tt l � 1 } . Hence for 
k = 1 ,  2, I I  vk I I = vk(X) = 1 .  By Exercise 111.7.2, vk eP(X) for k = 1 ,  2. Since 
J,teext P(X), Jl = v 1 = v2 • So Jl is an extreme point of ball M(X). Thus it 
suffices to prove the first part of the theorem. 
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Suppose that J.l is an extreme point of ball M(X) and let K be the support 
of J.l. It will be shown that K is a singleton set. 

Fix x0 in K and suppose there is a second point x in K, x =1= x0 . Let U 
and V be open subsets of X such that x0 e U, xe  V, and cl U n cl V = D . By 
Urysohn's Lemma there is an f in C(X) such that 0 � f � 1 ,  f(y) = 1 for y 
in cl U, and f(y) = 0 for y in cl V. Consider the measures !J.l and ( 1  - f)J.l. 
Put et = I I !JJ I I  = J l f l d i JJ I = Jfd i JJ I . Then et = Jfd i JJ I � I I JJ I I = 1 and et = 

Jfd i JJ I � I JJ I (U) > 0 since U is open and U n K  =I= o. Also, 1 - et = 1 - Jfd i JJ I = 

J( 1 - f)d i JJ I = I I ( 1 - f)JJ I I and so 1 - et � Jv( 1 - f)d i JJ I = I JJ I (V) > o since 
x eK. Hence 0 < et < 1 .  

But !JJ/et and ( 1  - f)JJ/( 1 - et} E ball M(X) and 

Jl = �[!: J + ( 1 - �>[ <\-!�Jl J. 
Since J.l is an extreme point of ball M(X) and et =1= 0, J.l = f JJ/et. This can only 
happen if f = et < 1 a.e. [JJ] . But f = 1 on U and I JJ I (U) > 0, a contradiction. 
Hence K = {x0 } .  

Since the only measures whose support can be the singleton set {x0 } have 
the form etbxo' et in F', the theorem is proved. • 

EXERCISES 
1 .  Suppose that d is a subalgebra of C(X) that separates the points of X and 1 ed. 

Show that if x 1 , . . .  , xn are distinct points in X and (Xb  . . .  , (Xn eF, there is an f in d  
such that f(xi) = (Xi for 1 � j  � n. 

2. Give the details of the proof of Corollary 8.3. 
3. If X is compact, show that for each x in X, bx is an extreme point of P(X) and 

(Xbx, I (X I = 1 ,  is an extreme point of ball M(X). 

4. Let X be compact and let d be a closed subalgebra of C(X) such that 1 ed and 
d is closed under conjugation. Define an equivalence relation � on X by declaring 
x � y if and only if f(x) = f(y) for all f in d. Let X/ � be the corresponding 
quotient space and let n: X -+  X/ � be the natural map. Give X/ � the quotient 
topology. (a) Show that if f ed, then there is a unique function n*(f) in C(X I� )  
such that n*(f) o n  = f. (b) Show that n* : d-+ C(X/ � )  is an isometry. (c) Show 
that n* is surjective. (d) Show that d = {fe C(X): f(x) = f(y) whenever x � Y.} · 

5. (This exercise requires Exercise IV.4.7.) Let X be completely regular and topologize 
C(X) as in Example IV . l .5. If d is a closed subalgebra of C(X) such that 1 e d, 
d separates the points of X, and fe d whenever fed, then d = C(X). 

6. Let X, Y be compact spaces and show that if feC(X x Y) and e > 0, then there 
are functions g 1 , . . .  , gn in C(X) and h 1 , . • .  , hn in C( Y) such that l f(x, y) 
L� = 1 gk(x)hk(Y) I < e for all (x, y) in X x Y. 

7. Let d be the uniformly closed subalgebra of Cb(R) generated by sin x and cos x. 
Show that d = {f eCb(R): f(t) = f(t + 2n) for all t in R} . 

8. If K is a compact subset of <C, f eC(K), and e > 0, show that there is a polynomial 
p(z, Z) in z and z such that 1/(z) - p(z, i) l  < e for all z in K. 
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§9* .  The Schauder Fixed Point Theorem 

Fixed-point theorems hold a fascination for mathematicians and they are 
very applicable to a variety of mathematical and physical situations. In this 
section and the next two such theorems are presented. 

The results of this section are different from the rest of this book in an 
essential way. Although we will continue to look at convex subsets of Banach 
spaces, the functions will not be assumed to be linear or affine. This is a 
small part of nonlinear functional analysis. 

To begin with, recall the following classical result whose proof can be 
found in any algebraic topology book. (Also see Dugundji [ 1966].) 

9.1. Brouwer's Fixed Point Theorem. If 1 � d < oo, B = the closed unit ball 
ofR d, and f :  B --+  B is a continuous map, then there is a point x in B such that 
f(x) = x. 

9.2. Corollary. If K is a nonempty compact convex subset of a finite dimensional 
normed space f!E and f :  K --+  K is a continuous function, then there is a point 
x in K such that f(x) = x. 

PROOF. Since f!E is isomorphic to either (Cd or Rd, it is homeomorphic to 
either R ld or Rd. So it suffices to assume that f!E = R d, 1 � d < oo. If 
K = {x ERd: I I x I I � r} , then the result is immediate from Brouwer's Theorem 
(Exercise). If K is any compact convex subset of Rd, let r > 0 such that 
K c B = {x ERd: l l x I I � r} . Let l/J: B --+ K  be the function defined by l/J(x) = the 
unique point y in K such that II x - y II = dist (x, K) (1.2.5). Then l/J is 
continuous (Exercise) and l/J(x) = x for each x in K. (In topological parlance, 
K is a retract of B.) Hence fo l/J :  B --+ K  c B is continuous. By Brouwer's 
Theorem, there is an x in B such that f(l/J(x)) = x. Since fol/J(B) c K, x EK. 
Hence l/J(x) = x and f(x) = x. • 

Schauder's Fixed Point Theorem is a generalization of the preceding 
corollary to infinite dimensional spaces. 

9.3. Definition. If f!E is a normed space and E c !!£, a function f: E --+  f!E is 
said to be compact if f is continuous and cl f(A) is compact whenever A is 
a bounded subset of E. 

• 

If E is itself a compact subset of !!£, then every continuous function from 
E into f!E is compact. 

The following lemma will be needed in the proof ofSchauder's Theorem. 

9.4. Lemma. If K is a compact subset of the normed space !!£, e > 0, and A is 
a finite subset of K such that K c U { B( a; e): a E A} ,  define l/J A :  K --+ f!E by 

l/J A(x) = L {ma(x)a: a EA} , 
L{ma(x): a eA} 
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where ma(x) = 0 if I I  x - a I I  � e and ma(x) = e - I I  x - a I I  if II x - a II � e. Then 
l/J A is a continuous function and 

for all x in K. 

PROOF. Note that for each a in A, ma(x) � 0 and L { ma(x): a E A} > 0 for all 
x in K. So l/J A is well defined on K. The fact that l/J A is continuous follows 
from the fact that for each a in A, rna: K --+  [0, e] is continuous. (Verify! ) 

If x EK, then 

""' ( 
L {ma(x) [a - x] : aEA} 

'PA x) - x =  . 
L {ma(x): aEA} 

If ma(x) > 0, then I I  X - a I I  < e. Hence 

I I  ""' ( ) I I  
L { ma(x) I I  a - x I I : a E A}  

'PA X  - X  � < e. 
L {ma(x): a EA}  

This concludes the proof. • 

9.5. The Schauder Fixed Point Theorem. Let E be a closed bounded convex 
subset of a normed space !!£. Iff: E --+  f!E is a compact map such that f(E) c E, 
then there is an x in E such that f(x) = x. 

PROOF. Let K = cl f(E), so K c E. For each positive integer n let An be a 
finite subset of K such that K c U {B(a; 1/n): a EAn} · For each n let l/Jn = l/J An 
as in the preceding lemma. Now the definition of l/Jn clearly implies that 
l/Jn(K) c co(K) c E since E is convex; thus fn = l/Jn of maps E into E. Also, 
Lemma 9.4 implies 

9.6 I I  fn(x) - f(x) I I  < 1/n for x in E. 

Let !!En be the linear span of the set An and put En = E nf!En. So !!En is a 
finite dimensional normed space, En is a compact convex subset of !!Em and 
fn: En --+ En (Why?) is continuous. By Corollary 9.2, there is a point xn in En 
SUCh that fn(Xn) = Xn. 

Now {f(xn) }  is a sequence in the compact set K, so there is a point x0 
and a subsequence {f(xni) }  such that f(xni) --+  x0 • Since fni(xni) = xni' (9.6) 
implies 

Thus xni --+ x0• Since f is continuous, f(x0) = lim f(xnj) = x0• • 

There is a generalization of Schauder's Theorem where f£ is only assumed 
to be a LCS. See Dunford and Schwartz [ 1 958], p. 456. 
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EXERCISE 
1 .  Let E = { xel2(N): I I x I I � 1 }  and for x in E define f(x) = (( 1 - I I x I I 2) 1 12, x( 1), x(2), . . .  ). 

Show that f(E) c E, f is continuous, and f has no fixed points. 

§ 10* . The Ryll-Nardzewski Fixed Point Theorem 

This section begins by proving a fixed point theorem that in addition to 
being used to prove the result in the title of this section has some interest 
of its own. Recall that a map T defined from a convex set K into a vector 
space is said to be affine if T('Lrxixi) = 'LrxiT(xi) when xiEK, rxi � 0, and 
'Lrxj = t .  

10.1. The Markov-Kakutanf Fixed Point Theorem. If K is a nonempty 
compact convex subset of a LCS f!E and :#' is a family of continuous affine 
maps of K into itself that is abelian, then there is an x0 in K such that T(x0) = x0 
for all T in :#'. 

PROOF. If T E:#' and n � 1 ,  define y<n> : K --+  K by 

y<n) = ! n'Il 
Tk. 

n k = o 

If S and TE:#' and n, m � 1 �  then it is easy to check that s<n> y<tr.> = r<m>s<n>. 
Let f = { r<n>(K): TE:#', n � 1 } .  Each set in f is compact and convex. 
If T1 , . . .  , TPE:#' and n1 , • • .  , nP � 1 ,  then the commutativity of :#' implies 
that T\nd · · · T�P>(K) c nr= 1 T)ni>(K). This says that .Yt has the finite inter
section property and hence there is an Xo in n {B: BE%}. It is claimed that 
x0 is the desired common fixed point for the maps in :#'. 

If TE:#' and n � 1 ,  then x0 E T<n>(K). Thus there is an x in K such that 

1 
X0 = y<n>(x) = -[x + T(x) + · · · + yn- 1(x)] .  

n 

Using this equation for x0, it follows that 

T(x0) - x0 = ! [T(x) + · · · + P(x)] 
n 

• 

- ! [x + T(x) + . . .  + rn - 1 (x)] 
n 

1 
= - [Tn(x) - x] 

n 

1 
E- [K - K]. 
n 
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Now K is compact and so K - K is also. If U is an open neighborhood 
of 0 in !!£, there is an integer n � 1 such that n - 1 [K - K] c U. Therefore 
T(x0) - x0 E U for every open neighborhood U of 0. This implies that 
T(x0) - x0 = 0. • 

If p is a seminorm on f!E and A c !!£, define the p-diameter of A to be the 
number 

p-diam A =  sup {p(x - y): x, y EA} .  

10.2. Lemma. If f!E is a LCS, K is a nonempty separable weakly compact 
convex subset of!!£, and p is a continuous seminorm on !!£, then for every e > 0 
there is a closed convex subset C of K such that: 

(a) C ¥- K; 
(b) p-diam(K\C) � e. 

PROOF. Let S =  {xEf!£: p(x) � e/4} and let D = the weak closure of the set of 
extreme points of K. Note that D c K. By hypothesis there is a countable 
subset A of K such that D c K c U {a + S: aEA} .  Now each a + S is weakly 
closed. (Why?) Since D is weakly compact, there is an a in A such that 
(a + S) n D  has interior in the relative weak topology of D (Exercise 2). Thus, 
there is a weakly open subset W of f!E such that 

10.3 (a + S)n D  � W nD  ¥- D. 

Let K1 = co (D\ W) and K2 = co (D n W). Because K 1 and K2 are compact 
and convex and K 1 u K 2 contains the extreme points of K, the Krein-Milman 
Theorem and Exercise 7.8 imply K = co(K 1 u K2). 

1 0.4. Claim. K 1 ¥- K. 

In fact, if K 1 = K, then K = co(D\ W) so that ext K c D\ W (Theorem 7.8). 
This implies that D c D\ W, or that W n D = 0, a contradiction to ( 1 0.3). 

Now ( 10.3) implies that K2 c a +  S; so the definition of S implies that 
p-diam K2 � ej2. Let 0 < r � 1 and define fr : K 1 x K2 x [r, 1 ] --+ K by 
fr(x 1 , x2 , t) = tx 1 + ( 1 - t)x2 • So fr is continuous and Cr = fr(K1 x K2 x 
[r, 1 ] ) is weakly compact and convex. (Verify!) 

10.5. Claim. Cr ¥- K for 0 < r � 1 .  

In fact, if Cr = K and eEext K, then e = tx 1 + ( 1  - t)x2 for some t, r � t � 1 ,  
xi in K i· Because e is an extreme point and t ¥- 0, e = x 1 • Thus ext K c K 1 
and K = K 1 , contradicting ( 10.4). 

Let y E K\ Cr . The definition of Cr and the fact that K = co(K 1 u K 2 ) 
imply y = tx 1 + ( 1  - t)x2 with xi in Ki and 0 � t < r. Hence p(y - x2 ) = 
p(t(x 1 - x2 )) = tp(x 1 - x2 ) � rd, where d = p-diam K. Therefore, if y' = t'x'1 + 
( 1 - t')x� EK\Cr, then p(y - y') � p(y - x2) + p(x2 - x�) + p(x� - y') � 2rd + 
p-diam K 2 � 2rd + e/2. Choosing r = ej4d and putting C = Cr, we have proved 
the lemma. • 
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10.6. Definition. Let f!l be a LCS and let Q be a nonempty subset of f!l. If 
g; is a family of maps (not necessarily linear) of Q into Q, then g; is said to 
be a noncontracting family of maps if for two distinct points x and y in Q, 

0¢cl { T(x) - T(y): TEg;} . 
The next lemma has a straightforward proof whose discovery is left to 

the reader. 

10.7. Lemma. If f!l is a LCS, Q c f!l, and g; is a family of maps of Q into Q, 
then g; is a noncontracting family if and only if for every pair of distinct points 
x and y in Q there is a continuous seminorm p such that 

inf {p(T(x) - T(y) ): TEg;} > 0. 

10.8. The Ryii-Nardzewski Fixed Point Theorem. If!!l is a LCS, Q is a weakly 
compact convex subset of f!l, and g; is a noncontracting semigroup of weakly 
continuous affine maps of Q into Q, then there is a point x0 in Q such that 
T(x0) = x0 for every T in g;. 

PROOF. The proof begins by showing that every finite subset of g; has a 
common fixed point. 

10.9. Claim. If { T1 , • . .  , Tn} c g;, then there is an x0 in Q such that Tkxo = x0 
for 1 � k � n. 

Put T0 = (T1 + · · · + Tn)/n; so T0 : Q -+  Q and T0 is weakly continuous and 
affine. By ( 10. 1 ), there is an x0 in Q such that T0(x0 ) = x0 • It will be shown 
that Tk(x0) = x0 for 1 � k � n. In fact, if Tk(x0 ) #= x0 for some k, then by 
renumbering the Tk, it can be assumed that there is an integer m such that 
Tk(x0) ¥- x0 for 1 � k � m and Tk(x0 ) = x0 for m < k � n. Let T� = 

(T1 + · · · + Tm)/m. Then 

Hence 

Xo = To(Xo ) 
1 (n - m) 

= 
n 

[Tl (xo) + . . .  + Tm(xo)J + 
n 

Xo . 

= Xo . 
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Thus it may be assumed that Tk(x0) # x0 for all k, but T0(x0) = x0• Make 
this assumption. 

By Lemma 10.7, there is an e > 0 and there is a continuous seminorm p 
on f!E such that for every T in !/ and 1 � k � n, 

10.10 

Let !l' 1 = the semigroup generated by { T1 , T2 , • • .  , Tn} · So !l' 1 £ !l' and 
!/ l = { T1 1 • • • T1m: m � 1 ,  1 � li � n} . Thus !/ 1 is a countable subsemigroup of 
!/. Put K = co { T(x0): TE!/ 1 } .  Therefore K is a weakly compact convex 
spbset of Q and K is separable. By Lemma 10.2, there is a closed convex 
subset C of K such that C # K and p-diam(K\ C) � e. 

Since C # K, there is an S in !/ 1 such that S(x0) E K\ C. Hence 

1 
S(x0) = ST0(x0) = - [ST1 (x0) + · · · + STn(x0)] EK\C. n 

Since C is convex, there must be a k, 1 � k � n, such that STk(x0) EK\C. But 
this implies that p(S(Tk(x0)) - S(x0)) � p-diam(K\C) � e, contradicting ( 10. 10). 
This establishes Claim 10.9. 

Let � =  all finite nonempty subsets of!/. If FE�, let QF = {x EQ: T(x) = x 
for all T in F}. By Claim 10.9, QF ¥= D for every F in �. Also, since each 
T in !/ is weakly continuous and affine, QF is convex and weakly compact. 
It is easy to see that { QF: FE�} has the finite intersection property. Therefore, 
there is an Xo in n { QF: FE�}. The point Xo is the desired common fixed 
point for !/. • 

The original reference for this theorelll is Ryll-Nardzewski [ 1967]; the 
treatment here is from Namioka and Asplund [1 967] . Another proof can be 
found in Hansel and Troallic [ 1976] . An application of this theorem is given 
in the next section. 

EXERCISES 
1 .  Was local convexity used in the proof of Theorem 10. 1? 
2. Show that if X is locally compact and X = U := 1 F n '  where each F n is closed in 

X, then there is an integer n such that int F" =F 0. (Hint: Look at the proof of the 
Baire Category Theorem.) 

§1 1 * .  An Application: Haar Measure on a 
Compact Group 

In this section the operation in all semigroups and groups is multi
plication and is denoted by juxtaposition. 
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1 1 .1 .  Definition. A topological semigroup is a semigroup G that also 
is a topological space and such that the map G x G --+  G defined by 
(x, y)H xy is continuous. A topological group is a topological semi group that 
is also a group such that the map G --+  G defined by xHx- 1 is continuous. 

So a topological group is both a group and a topological space with a 
property that ties these two structures together. 

R�0  means the set of non-negative real numbers. 

1 1 .2. Examples 

(a) N and R�0  are topological semigroups under addition. 
(b) ll, R, and ([ are topological groups under addition. 
(c) oD is a topological group under multiplication. 
(d) If X is a topological space and G = {fEC(X): f(X) c oD}, define 

(fg) (x) = f(x)g(x) for f, g in G and x in X. Then G is a group. If G is 
given the topology of uniform convergence on X, G is a topological group. 

(e) For n � 1 ,  let Mn(<C) = the n x n matrices with entries in <C; O(n) = 
{ AEMn(<C): A is invertible and A - 1 = A*}; SO(n) = { AEO(n): det A =  1 } .  
If Mn(<C) is given the usual topology, O(n) and SO(n) are compact 
topological groups under multiplication. 

There are many more examples and the subject is a self-sustaining area 
of research. Some good references are Hewitt and Ross [ 1 963] and Rudin 
[ 1 962] . 

1 1 .3. Definition. If S is a semigroup and f: S --+  JF, then for every x in S define 
fx: S --+  1F and xf: S --+  1F by fx(s) = f(sx) and xf(s) = f(xs) for all s in S. If S 
is also a group, let f#(s) = f(s - 1 ) for all s in S. 

1 1 .4. Theorem. If G is a compact topological group, then there is a unique 
positive regular Borel measure m on G such that 

(a) m(G) = 1 ;  
(b) if U is a nonempty open subset of G, then m(U) > 0; 
(c) if L\ is any Borel subset of G and xEG, then m(L\) = m(L\x) = m(xl\) = 

m(L\ - 1), where L\x = {ax: aEL\}, xi\ = {xa: aEL\}, and L\ - 1 = {a- 1 : aEL\} . 

The measure m is called the Haar m£asure for G. If G is locally compact, 
then it is also true that there is a positive Borel measure m on G satisfying 
(b) and such that m(L\x) = m(L\) for all x in G and every Borel subset L\ of 
G. It is not necessarily true that m(L\) = m(xl\), let alone that m(L\) = m(L\ - 1 ) 
(see Exercise 4). The measure m is necessarily unbounded if G is not compact, 
so that (a) is not possible. Uniqueness, however, is still true in a modified 
form: if m1 , m2 are two such measures, then m1 = rxm2 for some rx > 0. 

By using the Riesz Representation Theorem for representing bounded 
linear functionals on C(G), Theorem 1 1 .4 is equivalent to the following. 
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1 1 .5. Theorem. If G is a compact topological group, then there exists a unique 
positive linear functional I :  C(G) --+ 1F such that 

(a) I( 1 )  = 1 ;  
(b) iff EC(G), f ?:;  0, and f # 0, then I(f) > 0; 
(c) iffEC(G) and xEG, then I(f) = I(fx) = I(xf) = I(f#). 

Before proving Theorem 1 1 .5, we need the following lemma. For a compact 
topological group G, if xEG, define Lx: M(G) --+ M(G) and Rx: M(G) --+ M(G) 
by 

(f, Lx(Jl} ) = fxfdp., 

(f, Rx(p.) )  = f fxdJl 

for f in C(G) and 11 in M(G). Define S0 : M(G) --+ M(G) by 

(f, So(P.) )  = f f#dp. 

for f in C(G) and 11 in M(G). It is easy to check that Lx, Rx, and S0 are linear 
isometries of M (G) onto M (G) (Exercise 5). 

1 1 .6. Lemma. If G is a compact topological group, JlEM(G), and p: G x G --+  
(M(G), wk*) is defined by p(x, y) = LxRy(/1), then p is continuous. Similarly, if 
p0 : G x G --+  (M(G), wk*) is defined by p0(x, y) = S0LxRy(/1), then p is 
continuous. 

PROOF. Let f EC(G) and let e > 0. Then (Exercise 10) there is a neighborhood 
U of e (the identity of G) such that l f(x) - f( y) l < e whenever xy - 1 E U or 
x - 1 yE U. Suppose { (xi , Yi) }  is a net in G x G such that (xh Yi) --+  (x, y). Let i0 
be such that for i ?:;  i0 , xix - 1 E U  and yi- 1 yEU. If xEG, then lf(xizyi) - f(xzy) l � 
l f(xizyi) - f(xzyi) l + lf(xzyi) - f(xzy) l . But if i ?:; i0 and zEG, (xizyi)(xzyi) - 1 = 
xix- 1 E U and (xzyi) - 1 (xzy) = y i- 1 YE U. Hence I f(xizyi - f(xzy) I < 2e for 
i ?:;  i0 and for all z in G. Thus limi J f(xizyi)dJl(z) = J f(xzy)dJl(z). Since f was 
arbitrary, this implies that p(xb Yi) --+  p(x, y) wk* in M(G). The proof for p0 
is similar. • 

PROOF OF THEOREM 1 1 .5 . If e = the identity of G, then 

1 1.7 

LxRy = RyLx 
LxLy = Lyx 
RxRy = Rxy 
S� = Le = Re = the identity on M(G) 
S0LxRy = Ly - 1 Rx- 1 So 
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for x, y in G. Hence 

(SoLxR,)(SoLuRv) = (L, - 1 Rx _ 1 So) (SoLuRv) 
= L, - 1 Rx - 1 LuRv 
= L, - 1 LuRx - 1 Rv 
= Luy - 1 Rx - 1 v · 

Hence if S1 = the identity on M(G), 

g; = { SiLxR,: i = 0, 1 ;  x, yeG} 
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is a group of surjective linear isometries of M(G). Let Q = the probabili ty 
measures on G; that is, Q = {JleM(G): Jl � 0 and Jl(G) = 1 } . So Q is a convex 
subset of M(G) that is wk* compact. Furthermore, T(Q) c Q for every T in g;_ 

1 1 .8. Claim. If JleM(G) and Jl ¥= 0, then 0¢ the weak* closure of { T(Jl): 
reg;}. 

In fact, Lemma 1 1 .6 implies that { T(Jl): Teg;} is weak* closed. Since each 
T in g; is an isometry, T(Jl) ¥= 0 for every T in g;_ 

By Claim 1 1 .8, g; is a noncontracting family of affine maps of Q into 
itself. Moreover, if T = S0LxR, and {Jli } is a net in Q such that Jli --+ Jl(wk*), 
then for every f in C(G), (f, T(Jli) ) = Jf(xs - 1y)dJli(s) --+ Jf(xs - 1y)dJl = 
(f, T(Jl) ). So each T in g; in wk* continuous on Q. By the Ryll-Nardzewski 
Fixed Point Theorem, there is a measure m in Q such that T(m) = m for all 
T in g;_ 

By definition, (a) holds. Also, for any x in G and f in C( G), J f(xs)dm(s) = 
(f, Lx(m) ) = Jfdm. By similar equations, (c) holds. Now suppose feC(G), 
f � 0, and f ¥= 0. Then there is an e > 0 such that U = {xeG: f(x) > e} is 
nonempty. Since U is open, G = u { U x: xeG}, and G is compact, there are 
x1 , x2 , • • •  , xn in G such that G c U � = 1 Uxk. (Why is Ux open?) Define 
gk(x) = f(xx;- 1 ) and put g = L:�= 1 gk . Then geC(G) and J gdm = L�= 1 J gkdm = 
n J fdm by (c). But for any x in G there is an xk such that xx; 1 e U; hence 
g(x) � gk(x) = f(xx; 1 ) > e. Thus 

f fdm = : J gdm � e/n > 0. 

This proves (b). . 

To prove uniqueness, let Jl be a probability measure on G having properties 
(a), (b), (c). If f eC(G) and xeG, then J fdJl = J xfdJl. Hence 

f fdfl = f[f f( y)dJ1( Y) ]dm(x) 

= f[f f(xy)dJl( Y) ]dm(x) 



1 58 V. Weak Topologies 

Hence JJ = m. 

= f[ f f(xy)dm(x)JdJl( Y) 

= f[f f(x)dm(x)JdJl( Y) 

= f fdm. 

For further information on Haar measure see Nachbin [1 965] . 

• 

What happens if G is only a semigroup? In this case Lx and Rx may not 
be isometries, so {LxRy: x, yEG} may not be noncontractive. However, there 
are measures for some semigroups that are invariant (see Exercise 7). For 
further reading see Greenleaf [ 1 969] . 

EXERCISES 
1 .  Let G be a group and a topological space. Show that G is a topological group 

if and only if the map of G x G --+  G defined by (x, y)� x - 1 y is continuous. 

2. Verify the statements in ( 1 1 .2). 

3. Show that Theorems ( 1 1 .4) and ( 1 1 .5) are equivalent. 

4. Let G be a locally compact group. If m is a regular Borel measure on G, show 
that any two of the following properties imply the third: (a) m(Ax) = m(A) for 
every Borel set A and every x in G; (b) m(xA) = m(A) for every Borel set A and 
every x in G; (c) m(A) = m(A - 1 ) for every Borel set A. 

5. Show that the maps S0 , Lx, Rx are linear isometries of M(G) onto M(G). 

6. Prove ( 1 1 .  7). 

7. Let S be an abelian semigroup and show that there is a positive linear functional 
L: l00(S) -+ IF  such that (a) L( 1 ) = 1 ,  (b) L(fx) = L(f) for every f in l00(S). 

8. If S = N, what does Exercise 7 say about Banach limits? 

9. If G is a compact group, f: G --+  IF is a continuous function, and 8 > 0, show that 
there is a neighborhood U of the identity in G such that lf(x) - f(y) l < 8 whenever 
xy- 1 e U. (Note that this say that every continuous function on a compact group 
is uniformly continuous.) 

10. If G is a locally compact group and f e Cb(G), let (!)(j) = the closure of {fx : xeG} 
in Cb(G). Let AP(G) = {fe Cb(G): (!)(j) is compact} .  Functions in AP(G) are called 
almost periodic. (a) Show that every periodic function in Cb(R) belongs to AP(R). 
(b) If G is compact, show that AP(G) = C(G). (c) Show that if f eCb(R), then 
f eAP(R) if and only if for every 8 > 0 there is a positive number T such that in 
every interval of length T there is a number p such that lf(x) - f(x + p) l < 8 for 
all x in R. (d) If G is not compact, then the only function in AP(G) having compact 
support is the zero function. For more information on this topic, see Exercise 1 3.5 
below. 
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§ 12* .  The Krein-Smulian Theorem 

Let A be a convex subset of a Banach space P£. If A is weakly closed, then 
for every r > 0, A n  { xef£: I I x I I � r} is weakly closed; this is clear since each 
of the sets in the intersection is weakly closed. But the converse of this is 
also true: if A is convex and A n  {X ef£: II x II � r} is weakly closed for every 
r > 0, then A is weakly closed. In fact, because A is convex it suffices to prove 
that A is norm closed (Corollary 1 .5). If { xn ) c A and I I Xn - x0 I I -+ 0, 
then there is a constant r such that II xn II � r for all n. By hypothesis, 
A n {xef£: l l x l l  � r} is weakly closed and hence norm closed. Thus x0eA. 

Now let A be a convex subset of P£*, P£ a Banach space. If A n  
{x* ef£*: I I  x* I I  � r} is weak-star closed for every r > 0, is A weak-star closed? 
If P£ is reflexive, then this is the same question that was asked and answered 
affirmatively in the preceding paragraph. If P£ is not reflexive, then the 
preceding argument fails since there are norm closed convex subsets of P£* 
that are not weak-star closed. (Example: let x**ef£**\f£ and consider 
A =  ker x**.) Nevertheless, even though the argument fails, the statement is 
true. ' 

12.1.  The Krein-Smulian Theorem. If P£ is a Banach space and A is a convex 
subset of P£* such that A n  { x* ef£*: I I x* I I � r} is weak-star closed for every 
r > 0, then A is weak-star closed. 

To prove this theorem, two lemmas are needed. 

12.2. Lemma. If P£ is a Banach space, r > 0, and !Fr is the collection of all 
finite subsets of {xef£: I I  x I I  � r- 1 } ,  then 

n {Fo: Fe!Fr} = {x* ef£*: l l x* l l � r} .  

PROOF. Let E = n { Fo: F e!Fr } ;  it is easy to see that r(ball P£*) c E. If x* ¢ 
r(ball P£*), then there is an x in ball P£ such that I ( x, x* ) I > r. Hence 
l ( r - 1x, x* ) l > 1 an<f x* ¢E. • 

12.3. Lemma. If A and P£ satisfy the hypothesis of the Krein-Smulian Theorem 
and, moreover, A n  ball P£* = 0, then there is an x in P£ such that 

Re ( x, x* ) � 1 
for all x* in A. • 

PROOF. The proof begins by showing that there are finite subsets F 0, F 1 , • . •  

of P£ such that 

12.4 
{ (i) nF n c ball P£; 
(ii) n(ball f£*) n n: - �F� nA = D. 

To establish ( 12.4) use induction as follows. Let F 0 = (0). Suppose that 
F 0, • • •  , Fn _ 1 have been chosen satisfying ( 1 2.4) and set Q = [(n + 1 )ball �*] n 
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n�- �F� n A. Note that Q is wk* compact. So if Q nFo =F 0 for every finite 
subset F of n - 1 ball PI, then D =F Q n n { Fo: F is a finite subset of 
n - 1 (ball PI) } = Q n [n(ballPI*)] by the preceding lemma. This contradicts 
( 1 2.4ii). Therefore there is a finite subset Fn of n - 1 (ball PI) such that 
Q n F� = D . This proves ( 1 2.4). 

If { Fn }: 1 satisfies ( 1 2.4), then A n n: 1 F� = D. Arrange the elements of 
U: 1 Fn in a sequence and denote this sequence by {xn } · Note that 
lim l l xn i i = O. Thus if x* ePI*, { ( xn, x*) } ec0 • Define T: PI* -+ c0 by 
T(x*) = { ( x"' x*) }. It is easy to see that T is linear (and bounded, though 
this fact is unnecessary). Hence T(A) is a convex subset of c0 • Also, from the 
construction of { xn } = U: 1 F "' for each x* in A, II T(x*) I I  = sup" I (xn , x*) I > 
1 .  That is, T(A) n ball c0 = D . Thus Theorem IV.3.7 applies to the sets T(A) 
and int [ball c0] and there is an f in 1 1 = c� and an rx in R such that 
Re ( </J, f )  < rx � Re ( T(x*), f )  for every <P in int [ball c0] and x* in A. That . 
IS 

12.5 
00 00 

Re L </J(n)f(n) < rx � Re L ( xn, x* ) f(n) 
n = l n = l 

for every <P in c0 with II <P II < 1 and for every x* in A. Replacing f by f I II f I I 
and rx by rx/ 1 1 f I I , it is clear that it may be assumed that ( 1 2.5) holds with 
l l f l l = 1 .  If </J ec0 ,  1 1 </J I I < 1 , let JlEF such that IJl l = 1 and ( Jl</J, f) = 1 ( </J, f ) l . 
Applying this to ( 1 2.5) and taking the supremum over all <P in int [ball c0] 
gives that 1 � Rei:: 1 ( xn , x* )f(n) for all x* in A. But fe l1 so x =  
'L: 1f(n)xnePI and 1 � Re ( x, x*) for all x* in A. • 

Where was the completeness of PI used in the preceding proof? 

PROOF OF THE KREI�-SMULIAN THEOREM . Let x� ePI*\A ; it will be shown 
that x�¢wk* - cl A. It is easy to see that A is norm closed. So there is an 
r > 0 such that { x* ePI*: I I x* - x� I I � r} n A = D. But this implies that 
ball PI* n [r - 1 (A - x�)]  = o .  With this it is easy to see that r- 1 (A - x�) 
satisfies the hypothesis of the preceding lemma. Therefore there i s  an x in PI 
such that Re(x, x* ) � 1 for all x* in r - 1 (A - x� ). In particular, 
O¢wk* - cl [r - 1 (A - x6)J and hence x� ¢wk* - cl A. • 

12.6. Corollary. If PI is a Banach space and OJ/ is a linear manifold in !!(*, then 
OJ/ is weak-star closed if and only if OJ/ n ball PI* is weak-star closed. 

12.7. Corollary. If PI is a separable Banach space and A is a convex subset 
of PI* that is weak-star sequentially closed, then A is weak-star closed. 

PROOF. Because PI is separable, r(ball PI*) is weak-star metrizable for every 
r > 0 (Theorem 5. 1 ). So if A is weak-star sequentially closed, A n  [r(ball �*)] 
is weak-star closed for every r > 0. Hence the Krein-Smulian Theorem 
applies. • 
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This last corollary is one of the most useful forms of the Krein-Smulian 
Theorem. To show that a convex subset A of !!£* is weak-star closed it is 
not necessary to show that every weak-star convergent net from A has its 
limit in A; it suffices to prove this for sequences. 

12.8. Corollary. If !!£ is a separable Banach space and F: !!£* � F' is a linear 
functional, then F is weak-star continuous if and only if F, is weak-star 
sequentially continuous. 

PROOF. By Theorem IV.3. 1 ,  F is wk* continuous if and only if ker F is wk* 
closed. This corollary is, therefore, a direct consequence of the preceding 
one. • 

A proof of Corollary 12.8 that is independent of The Krein-Smulian 
Theorem can be fqund as a lemma in Whitley [ 1 986] .  

There is a misinterpretation of the Krein-Smulian Theorem that the reader 
shoulq be warned about. If A is a weak-star closed convex balanced subset 
of ball !!£*, let .A =  U {rA: r > 0} . It is easy to see that Jt is a linear manifold, 
but it does not follow that Jt is weak -star closed. What is true is the following. 

12.9. Theorem. Let !!£ be a Banach space and let A be a weak-star closed 
subset of!!£*. If Cf!J = the linear span of A, then Cf!J is norm closed in !!£* if and 
only if OJ/ is weak-star closed. 

The proof will not be presented here. The interested rea9er can consult 
Dunford and Schwartz [ 1 958], p. 429. 

There is a method for finding the weak-star closure of a linear manifold 
that is quite useful despite its seemingly bizarre appearance. Let !!£ be a 
Banach space and let Jt be a linear manifold in !!£*. For each ordinal number 
a define a linear manifold Jt a as follows. Let Jt 1 = Jt. Suppose a is an 
ordinal number and Jt fJ has been defined for each ordinal p < a. If a has an 
immediate predecessor, a - 1 ,  let Jta be the weak-star sequential closure of 
Jt a - 1 •  If a is a limit ordinal and has no immediate predecessor, let Jt a = 
U {A p:  {3 < a} .  In each case A a is a linear manifold in !!£* and A fJ c A a if 
{3 � a. 

12.10. Theorem. If!!£ is a separable Banach space, A is a linear manifold in 
!!£*, and A a is defined as above for every ordinal number a, then An is the 
weak-star closure of A, where n is the first uncountable ordinal. Moreover, 
there is an ordinal number a < Q such that A a = An· 
PROOF. By Corollary 12.7 it suffices to show that An is weak-star sequentially 
closed. Let { x: } be a sequence in An such that x: -+ x* (wk*). Since 
An = U {A a :  a <  !l}, for each n there is an an < Q such that x: eA an · But 
a =  supn an < Q. Hence x: eA a for all n; thus x* eA a + 1 c An and An is 
weak -star closed. 
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To see that An = A ex for some rx < n, let { x: } be a countable wk* dense 
subset of ball An· For each n there is an rxn such that x: eA ex" · But rx = 
supn rxn. So { x: } c ball A ex· But ball An is a compact metric space in the 
weak-star topology, so { x: } is wk* sequentially dense in ball An· Therefore 
ball An c ball A ex+ 1 and An = A ex + 1 . • 

When is A weak-star sequentially dense in !!£*? The following result of 
Banach answers this question. 

12.1 1. Theorem. If!!£ is a separable Banach space and A is a linear manifold 
in !!£*, then the following statements are equivalent. 

(a) A is weak-star sequentially dense in !!£*. 
(b) There is a positive constant c such that for every x in !!£, 

I I  x II � sup { I ( x, x* ) 1 : x* eA, II x* II � c} . 

(c) There is a positive constant c such that if x* eball !!£*, there is a sequence 
{ xt } in A, I I  xt I I  � c, such that xt -+ x* (wk*). 

PROOF. It is clear that (c) implies (a). The proof will consist in showing that 
(a) implies (c) and that (b) and (c) are equivalent. 

(a) => (c): For each positive integer n, let An = the wk* closure of n(ball A). 
If x* e!!£*, let {xt } be a sequence in A such that xt -+ x* (wk*). By the PUB, 
there is an n such that II xt I I  � n for all k. Hence x* eAn. That is, U: 1 An = !!£*. 
Clearly each An is norm closed, so the Baire Category Theorem implies that 
there is an An that has interior in the norm topology. Thus there is an x� 
in An and an r > 0 such that An :::::> {x* e!!£*: I I  x* - x� I I � r} . Let {xt } c 
n(ball A) such that xt -+ x� (wk*). If x* eball !!£*, then x� + rx* eAn; hence 
there is a sequence { yt } in n(ball A} such that Yt -+  x� + rx* (wk*). Thus 
r -

1 ( yt - xt) -+ x* (wk*) and r -

1 ( yt - xt)ec(ball A), where c = 2n/r is 
independent of x*. 

(c) => (b): If xe!!£, then Alaoglu's Theorem implies there is an x* in ball !!£* 
such that ( x, x* ) = l l x l l . By (c), there is a sequence {xt } in c(ball A) such 
that xt -+ x* (wk*). Thus (xt, x) -+ I I x I I  and (b) holds. 

(b) => (c): According to (b), ball !!£ :::::> 0 [c(ball A)]. Hence ball !!£* = 
(ball !!£)0 c 0[c(ball A)]0• By ( 1 .8), 0[c(ball A)]o = the weak-star closure of 
c(ball A). But bounded subsets of !!£* are weak-star metrizable (5. 1 )  and 
hence (c) follows. • 

EXERCISES 
1 .  Suppose fi is a normed space and that the only hyperplanes Jt in f£* such that 

Jt n ball f£* is weak-star closed are those that are weak-star closed. Prove that 
fi is a Banach space. 

2. (von Neumann) Let A be the subset of 12 consisting of all vectors { xmn : 
1 � m < n < oo }  where Xmn(m) = 1 ,  Xmn(n) = m, and Xmn(k) = 0 if k � m, n. Show that 
Oewk - cl A but no sequence in A converges weakly to 0. 
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3. Where were the hypotheses of the separability and completeness of PI used in the 
proof of Theorem 12. 1 1? 

4. Let PI be a separable Banach space. If Jt is a linear manifold in PI* give necessary 
and sufficient conditions that every functional in wk* - cl Jt be the wk* limit of 
a sequence from Jt. 

5. Let PI be a normed space and let ff be a locally convex topology on PI such that 
ball PI is ff -compact. Show that there is a Banach space OJ/ such that PI is isometric
ally isomorphic to OJ/*. (Hint: Let OJ/ =  {x*ePI*: x* l ball PI is §'-continuous}.) 

6. If X is a compact connected topological space that is not a singleton, show that 
C(X) is not the dual of a Banach space. (For CR.(X) this is a consequence of 
Exercise 7.4. For the complex case, show that if C(X) is a dual space, then CR.(X) 
is a weak* closed real linear subspace of C(X). Hint (S. Axler): Suppose { ui } is a 
net in ball CR.(X) such that ui --+ u + iv weak*. If v(x) = t > 0, choose n such that 
1 + n2 < (n + t)2 and examine the net {ui + in} .) 

§ 1 3* . Weak Compactness 

In this section, two results are stated without proof. These results are among 
the deepest in the study of weak topologies. 

13.1 .  The Eberlein-Smulian Theorem. If PI is a Banach space and A s;  PI, then 
the following statements are equivalent. 

(a) Each sequence of elements of A has a subsequence that is weakly convergent. 
(b) Each sequence of elements of A has a weak cluster point. 
(c) The weak closure of A is weakly compact. 

An elementary proof of the Eberlein-Smulian Theorem can be found in 
Whitley [ 1 967] and Kremp [ 1986] . Another proof can be found in Dunford 
and Schwartz [1 958], p. 430. The serious student should examine Chapter V 
of Dunford and Schwartz [ 1 958] for several results not presented here as 
well as for some of the history behind the material of this chapter. 

The following is a consequence of the Eberlein-Smulian Theorem. 

13.2. Corollary. If PI is a Banach space and A c PI, then A is weakly compact 
if and only if A n  A is weakly compact for every separable subspace A of PI . 

• 

If PI is Banach space and A is a weakly compact subset of PI, then for 
each x* in PI* there is an x0 in A such that l ( x0 , x*) l  = sup { l ( x, x*) l : xeA} .  
It is a rather deep fact due to R.C. James [ 1 964a] that the converse is true. 

13.3. James's Theorem. If PI is a Banach space and A is a closed convex subset 
of PI such that for each x* in PI* there is an x0 in A with 

l (x0 , x*) l = sup { l (x, x*) l : xeA},  
then A is weakly compact. 
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A proof of James's Theorem can be found in Pyrce [ 1966] . Another 
reference for a proof of this theorem as well as a number of other equivalent 
formulations of weak compactness and reflexivity is James [ 1964b]. Also, if 
.£ is only assumed to be a normed space in Theorem 1 3.2, the conclusion is 
false (see James [ t  97 t ] ). 

The next result, presented with proof, is also called the Krein-Smulian 
Theorem and must not be confused with the theorem of the preceding section. 

13.4. Krein-Smulian Theorem. If .rJ: is a Banach space and K is a weakly 
compact subset o.f .if, then co (K) is weakly compact. 

PROOF. Case 1 :  .¥ is separable. Endow K with the relative weak topology; 
so M(K) = C(K)*. If JlEM(K), define F 11 : .0£* --+ F by 

F p(x*) = L (x, x* )dJL(X). 

It is easy to see that F 11 is a bounded linear functional on f£* and I I F 11 I I  � 
l l ,u l l sup { l l x l l : XEK} .  

13.5. Claim. F 11 : PI* --+ F is  weak-star continuous. 

By ( 1 2.8) it suffices to show that F 11 is weak* sequentially continuous. Let 
{x: } be a sequence in PI* such that x: -+x* (wk*). By the PUB, M = 
supn I I  x: I I  < oo.  Also, (x, x: ) --+ (x, x*) for every x in K. By the Lebesgue 
Dominated Convergence Theorem, F 11(x:) = J (x, x: ) df.l(X) --+ F 11(x*). So 
( t  3.5) is established. 

By ( 1 .3 ), F 11EPI. That is, there is an x11 in f£ such that F 11(x*) = (x11, x* ). 
Define T: M(K) --+ f£ by T(Jl) = x11 • 

13.6. Claim. T: (M(K), wk*) --+ (PI, wk) is continuous. 

In fact, this is clear. If Jli --+ 0 weak* in M(K), then for each x* in PI*, 
x* I KEC(K). Hence (T(Jl;), x*) = J (x, x* ) dJli(x) --+ 0. 

Let f!JJ = the probability measures on K. By Alaoglu's Theorem f!JJ is weak* 
compact. Thus T(&>) is weakly compact and convex. However, if xEK, 
< T(c5x), x* ) = (x, x*); that is, T(c5x) = x. So T(f!JJ) => K. Hence T(f!JJ) => co (K) 
and co (K) must be compact. 

Case 2: PI is arbitrary. Let {xn } be a sequence in co (K). So for each n 
there is a finite subset F n of K such that XnEco(F n). Let ·p = U := 1 F n and let 
.ff = V F. Then K1 = K n vlt  is weakly compact and {xn } c co (K 1 ). Since 
. /11 is separable, Case 1 implies that co (K 1 ) is weakly compact. By the 
Eberlein-Smulian Theorem, there is a subsequence {x,.k } and an x in co(K 1 ) c 
co (K) such that x,.k -+ x. Thus co (K) is weakly compact. • 
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Another proof of the Krein-Smulian Theorem that avoids 1 3 . 1  and 1 2.8 
can be found in Simons [ 1 967] . 

EXERCISES 
1 .  Prove Corollary 1 3.2. 

2. If PI is a Banach space and K is a compact subset of PI, prove that co (K) is 
compact. (This will be proved in Theorem VI.4.8 below.) 

3. In the proof of ( 1 3.4), if fYJ = the probability measures on K, show that T(fYJ) = 

co(K). 

4. Prove the Eberlein-Smulian Theorem in the setting of Hilbert space. 

5. Refer to the notation of Exercise 1 1 . 1  0. Prove that there is a bounded linear 
functional L: AP(G) --+ F such that L( 1 )  = 1 ,  L(f) � 0 if f �  0, and L(fx) = L(f) for 
all f in AP(G) and x in G. 

• 



CHAPTER VI 

Linear Operators on a Banach Space 

As has been said before in this book, the theory of bounded linear operators 
on a Banach space has seen relatively little activity owing to the difficult 
geometric problems inherent in the concept of a Banach space. In this chapter 
several of the general concepts of this theory are presented. When combined 
with the few results from the next chapter, they constitute essentially the 
whole of the general theory of these operators. 

We begin with a study of the adjoint of a Banach space operator. Unlike 
the adjoint of an operator on a Hilbert space (Section Il.2), the adjoint of a 
bounded linear operator on a Banach space does not operate on the space 
but on the dual space. 

§ 1 . The Adjoint of a Linear Operator 

Suppose f!{ and OJ/ are vector spaces and T: f!{ --+  OJ/ is a linear transformation. 
Let OJ/' = all of the linear functionals of OJ/ -+  F'. If y' eOJI', then y' o T: f!{ --+  F' is 
easily seen to be a , linear functional on f!f. That is, y' o T e(!['. This 
defines a map 

T' : OJ/' --+ f!{' 

by T'(y' ) = y' o T. The first result shows that if f!{ and OJ/ are Banach spaces, 
then the map T' can be used to determine when T is bounded. Another 
equivalent formulation of boundedness is given by means of the 
weak topology. 

1 .1 .  Theorem. If f!{ and OJ/ are Banach spaces and T: f!{ --+  OJ/ is a linear 
transformation, then the following statements are equivalent. 
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(a) T is bounded. 
(b) T'(CW*) c f!f*. 
(c) T: (f!f, weak) -+ (CW, weak) is continuous. 

1 67 

PROOF. (a) => (b) : If y*eCW*, then T'(y* )ef!f' ;  it must be shown that T'(y*)ef!f*. 
But I T'(y* ) (x) l = l y* o T(x) l = I ( T(x), y* ) l � I I T(x) l l  I I Y* I I  � I I T i l l l y* l l  l l x l l . 
So T'(y* )ef!f*. 

(b) =>(c) : If {xi } is a net in f!( and xi --+0  weakly, then for y* in CW*, 
< T(xi), y* ) = T' (y*)(xi) --+  0 since T' (y*)ef!f*. Hence T(xi) --+  0 weakly in CW. 

(c) => (b): If y* eCW*, then y* o T: f!( -+F'  is weakly continuous by (c). Hence 
T' (y*) = y* o T ef!f* by (V. 1 .2). 

(b) => (a): Let y* eCW* and put x* = T'(y*). So x* ef!f* by (b). So if xeball f!f, 
I <  T(x), y* ) I = I ( x, x* ) I �  I I  x* I I . That is, sup { I <  T(x), y* ) 1 :  xeball f!f }  < oo .  
Hence T(ball f!f) is weakly bounded; by the PUB, T(ball f!f) is norm 
bounded and so II T II < oo . • 

The preceding result is useful, though strictly speaking it is not necessary 
for the purpose of defining the adjoint of an operator A in gJ(f!f, CW), which 
we now turn to. If A egJ(f!f, CW) and y* eCW*, then y*- o A = A'(y*)ef!f*. This 
defines a map A* :  CW* --+ f!f*, where A* = A' I CW*. Hence 

1 .2 ( x, A*(y*) ) = ( A(x), y* ) 

for x in f!( and y* in CW*. A* is called the adjoint of A. 
Before exploring the concept let's see how this compares with the definition 

of the adjoint of an operator on Hilbert space given in §11.2. There is a 
difference, but only a small one. When Jf is identified with Jf*, the dual 
space of Jf, the identification is not linear but conjugate linear (if F' =  <C). 
The isometry h� Lh of Jf onto Jf*, where Lh(f) = (f, h ) , satisfies Lrth = a.Lh . 
Thus the definition of A* given in ( 1 .2) above is not the same as the adjoint 
of an operator on Hilbert space, since in ( 1 .2) A* is defined on CW* and not 
some conjugate-linear isomorphic image of it. In particular, if the definition 
( 1 .2) is applied to a matrix A acting on <Cd considered as a Banach space, its 
adjoint corresponds to the transpose of A. If (Cd is considered as a Hilbert 
space, then the matrix of A* is the conjugate transpose of the matrix of A. 
This difference will not confuse us but it will serve to explain minor differences 
that will appear in the treatment of the two types of adjoints. The first of 
these occurs in the next result. 

• 

1 .3. Proposition. If f!( and CW are Banach spaces, A, BegJ(f!f, CW), and a., PeF', 
then (a,A + PB)* = a,A* + PB*. Moreover, A*: (CW*, wk*) -+ (f!f*, wk*) is 
continuous. 

Note the absence of conjugates. The proof is left to the reader. 
If A egJ(f!f, CW), then it is easy to see that A* egJ(CW*, f!f*). In fact, if y* E 

ball dJ/* and xeball PI, then l (x, A*y*) I = I (Ax, y*) l � I I Ax l l � I I A I I . Hence 
I I  A* y* II � I I A I I  if y* E ball OJJ *, so that I I  A* I I  � I I  A I I . This implies that 
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(A* )* = A** can be defined, 

A** : f!I** ---+ CiJJ **, 
( A* *x**, y* ) = ( x**, A*y* ) 

for x** in f!I** and y* in CiJJ *. 
Suppose xef!I and consider x as an element of f!I** via the natural 

embedding of f!I into its double dual. What is A**(x)? For y* in CiJJ *, 

( A** (x), y* ) = (x, A*y* ) 
= ( Ax, y* ) .  

That is, A** I f!I = A. This is the first part of the next proposition. 

1 .4. Proposition. If f!I and CiJJ are Banach spaces and A egJ(f!I, CiJJ ), then : 

(a) A** l f!I = A ; 
(b) II A* I I  = I I  A II ; 
(c) if A is invertible, then A* is invertible and (A* ) - 1 = (A - 1 )* ; 
(d) if fZ is a Banach space and BegJ(CiJJ, !Z), then (BA)* = A*B*. 

PROOF. Part (a) was proved above. It was shown that I I  A* I I  � I I A I I . Thus 
II A** II � II A* I I . So if xeball f!I, then (a) implies that II Ax II = II A **x II � 
I I A** I I  � I I A* I I  . Hence I I A I I  � I I  A* I I  . 

• 

The remainder of the proof is left to the reader. • 
• 

1 .5. Example. Let (X, n, Jl) and M q, :  LP(Jl) ---+ LP(Jl) be as in Example III.2.2. 
If 1 � p < oo and 1 /p + 1 /q = 1 ,  then M� : Lq(Jl) ---+ Lq(Jl) is given by 
M�f = ¢f. That is, M� = M <P · 

1 .6. Example. Let K and k be as in Example III.2.3. If 1 � p < oo and 
1 /p + 1 /q = 1 ,  then K* :  Lq(Jl) ---+ Lq(Jl) is the integral operator with kernel 
k* (x, y) = k(y, x). 

1 .7. Example. Let X, Y, r, and A be as in Example III.2.4. Then A* : M(Y) ---+ 
M(X) is given by 

(A*Jl)(A) = Jl(r - 1 (A)) 
for every Borel subset A of X and every Jl in M(Y). 

Compare ( 1 .5) and ( 1 .6) with (II.2.8) and (II.2.9) to see the contrast between 
the adjoint of an operator on a Banach space with the adjoint of a Hilbert 
space operator. 

1 .8. Proposition. If AegJ(f!I, CW), then ker A* = (ran A)J.  and ker A =  J. (ran A* ). 

The proof of this useful result is similar to that of Proposition II.2. 1 9 and 
is left to the reader. 
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This enables us to prove the converse of Proposition 1 .4c. 

1 .9. Proposition. If A effl(q", �), then A is invertible if and only if A* is 
invertible. 

PROOF. In light of ( 1 .4c) it suffices to assume that A* is invertible and show 
that A is invertible. Since A* is an open mapping, there is a constant c > 0 
such that A* (ball �*) => {x* eq"* : I I  x* I I  � c } .  So if xeq", then 

II Ax II = sup { I ( Ax, y* ) 1 : y* eball �* } 
= sup { I ( x, A *y* ) 1 : y* eball �* } 
� sup { l ( x, x* ) l : x* eq"* and l l x* I I � c} 
= c-1 l l x l l . 

Thus ker A = (0) and ran A is closed. (Why?) On the other hand, 
(ran A ).l  = ker A* = (0) since A* is invertible. Thus ran A is also dense. This 
implies that A is surjective and thus invertible. • 

This section concludes with the following useful result that seems to be 
somewhat unfamiliar to parts of the mathematical community. 

1.10. Theorem. If q- and � are Banach spaces and Ae�(ff, �), then the 
following statements are equivalent. 

(a) ran A is closed. 
(b) ran A* is weak* closed. 
(c) ran A* is norm closed. 

PROOF. It is clear that (b) implies (c), so it will be shown that (a) implies (b) 
and (c) implies (a). Before this is done, it will be shown that it suffices to 
prove the theorem under the additional hypothesis that A is injective and 
has dense range. 

Let � = cl (ran A ). Thus A :  q" --+  � induces a bounded linear map B: 
q-/ker A --+ � defined by B(x + ker A) = Ax. If Q :  q- --+  ff /ker A is the natural 
map, the diagram 

commutes. (Why is B bounded?) It is easy to see that B is injective and that 
B has dense range. In fact, ran B = ran A, so ran A is closed if and only if 
ran B is closed. Let's examine B* : �* --+ (q" /ker A)*. By (V.2.2), (q" /ker A)* = 
( ker  A ) .l  = wk*cl (ran A*) c q"* by ( 1 .8). Also by (V.2.3), since � � �' 
.:! * = !If* I 5 .l = �Y * /(ran A).l  = <W* /ker A*  by ( 1 .8). Thus, 

B* : <W* /ker A* --+ (ker A).l . 
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1.1 1. Claim. B* (y* + ker A* ) = A *y* for all y* in OJJ *. 

To see this, let x ef!£ and y* eOJJ *. Making the appropriate identifications 
as in (V.2.2) and (V.2.3) gives ( x + ker A, B*(y* + ker A*) ) = ( B(x + 
ker A), y* + ker A*  ) = (Ax, y* + (ran A)  .l ) = ( Ax, y* ) = ( x, A* y* ) = ( x + 
J. (ran A* ), A*y* ) = ( x + ker A, A*y* ) .  Since x was arbitrary. ( 1 . 1 1 )  is 
established. 

Note that Claim 1 . 1 1 implies that ran B* = ran A*. Hence ran A* is weak* 
(resp., norm) closed if and only if ran B* is weak* (resp., norm) closed. 

This discussion shows that the theorem is equivalent to the analogous 
theorem in which there is the additional hypothesis that A is injective and 
has dense range. It is assumed, therefore, that ker A =  (0) and cl (ran A) = OJJ. 

(a) =>(b): Since ran A is closed, the additional hypothesis implies that A is 
bijective. By the Inverse Mapping Theorem, A - 1 e�( OJJ, f!£). Hence A* is 
invertible ( 1 .4c). Since A* is invertible, ran A* = f!£* and hence is weak* closed. 

(c)=> (b): Since ran A is dense in OJJ, ker A* = (ran A)J.  ( 1 .8) = (0). Thus 
A* :  OJJ * --+  ran A* is a bijection. Since ran A* is rlorm closed, it is a Banach 
space. By the Inverse Mapping Theorem, there is a constant c > 0 such that 
I I A*y* I I � c I I  y* I I for all y* in OJJ *. 

To show that ran A* is weak* closed, the Krein-Smulian Theorem (V. 1 2.6) 
will be used. Thus suppose {A*yj } is a net in ran A* with I I A*yi I I � 1 such 
that A*yj -+ x*u(f!I*, f!£) for some x* in f!£*. Thus I I Yi I I � c - 1 for all yj . By 
Alaoglu's Theorem there is a y* in OJJ * such that y:" , y* u(OJJ *, OJJ ). Thus 

l cl 
( 1 . 3), A*yi , A*y* u(f!I*, f!£), and so x* = A*y* e ran A*. By (V. 1 2.6), 

cl 
ran A *  is weak* closed. 

(b) =>(a): Since ran A* is weak* closed, ran A * = (ker A)l. = f!£*. Also 
ker A * = (ran A)J.  = (0) since A has dense range. Thus A*  is a bijection and 
is thus invertible. By Proposition 1 .9, A is invertible and thus has closed 
range. • 

A proof that condition (c) in the preceding theorem implies (a) which 
avoids the weak* topology can be found in Kaufman [ 1966] . 

EXERCISES 
1 .  Prove Proposition 1 .3. 

2. Complete the proof of Proposition 1 .4. 

3. Verify the statement made in ( 1 .5). 

4. Verify the statement made in ( 1 .6). 

5. Verify the statement made in ( 1 .7). 

6. Let 1 � p < oo and define S: lP -+ lP by S((X 1 , (X2 , • • •  ) = (0, (X 1 , (X2 , . • •  ). Compute S*. 
/ 

7. Let AeBI(co) and for n � 1 ,  define en in Co by en(n) = 1 and en(m) = 0 for m '# n. 
Put (Xmn = (Aen) (m) for m, n � 1 .  Prove: (a) M = SUPmL:= 1 I (Xmn l < oo ;  (b) for every 
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n, tXmn -+ 0 as m -+ oo .  Conversely, if { tXmn: m, n � 1 }  are scalars satisfying (a) and (b), 
then 

00 

(Ax)(m) = L tXmnx(n) 
n = t 

defines a bounded operator A on c0 and II A II = M. Find A*. 

8. Let AE81(/ t ) and for n � 1 define en in I t by en(n) = 1 ,  en(m) = 0 for m =#=  n. Put 
tXmn = (Aen)(m) for m, n � 1. Prove: (a) M = SUPnL,:'= t l tXmn l < oo ;  (b) for every m, 
supn I tXmn I < oo .  Conversely, if { tXmn: m, n � 1 }  are scalars satisfying (a) and (b), then 

00 

(A/) (m) = L tXmnf(n) 
n = t 

defines a bounded operator A on I t and II A II = M. Find A *. 

9. (Bonsall [ 1 986] ) Let f£ be a Banach space, Z a nonempty set, and u :  Z -+ fl'. If 
there are positive constants M t and M 2 such that (i) I I u(z) I I � M t for all z in Z 
and (ii) for every x* in f£, sup { I  ( u(z), x* ) I :  zeZ} � M 2 1 1 x* l l ; then for every x 
in f£ there is an f in / t (z) such that ( • )x = L {f(z)u(z): zeZ} and 
M 2 inf I I f li t � I I x I I � M t inf I I f I I t , where the infimum is taken over all f in I t (Z) 
such that ( • ) holds. (Hint: define T: / t (Z) -+ fl'  by Tf = L {f(z)u(z): zeZ} . ) 

10. (Bonsall [ 1986] ) Let m be normalized Lebesgue measure on oD and for l z l < 1 
and l w l = 1 let pz(w) = ( 1  - l z l 2 )1 1 1 - zw l2• So Pz is the Poisson kernel. Show that 
if feLt (m), then there is a sequence {zn }  c D and a sequence {An }  in I t such 
that ( • )/ = L:= t AnPz" · Moreover, II f li t = inf L:= t I An I ,  where the infimum is 
taken over all { An }  in I t such that ( • ) holds. (Hint : use Exercise 9.) 

1 1 . If f£ and OJ/ are Banach spaces and Be8l(OJJ *, f£*), then there is an operator A 
in 8l(f£, OJ/) such that B = A * if and only if B is wk*-continuous. 

12. If f£ is a Banach space and A and ..¥ are closed subspaces, show that the 
following statements are equivalent. (a) A + ..¥  is closed. (b) the range of the 
linear transformation x-+  (x + A) a;> (x + ..¥) from f£ into f£ I A a;> f£ I..¥ is closed. 
(c) A j_ + ..¥ j_ is norm closed in f£*. (d) A j_ + ..¥ j_ is weak* closed in f£*. 

§2* .  The Banach-Stone �heorem 

As an application of the adjoint of a linear map, the isometries between 
spaces of the form C(X) and C(Y) will be characterized. Note that if X and 
Y are compact spaces, r : Y--+  X is continuous map, and Af = fo r for f in 
C(X), then ( 111.2.4) A is a bounded linear map and II A II = 1 .  Moreover, A 
is an isometry if and only if r is surjective. If A is a surjective isometry, then 
_r must be a homeomorphism. Indeed, suppose A is a surjective isometry; it 
must be shown that r is injective. If y0 , y t e Y and y0 =1= y 1 , then there is a g 
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in C(Y) such that g(y0) = 0 and g(y 1 ) = 1 .  Let f eC(X) such that Af = g. 
Thus f(r(y0 ) )  = g(y0 )  = 0 and f(r(y1 ) ) = 1 .  Hence r(y0) =F r(y1 ). 

So if r :  Y � X  is a homeomorphism and ex : Y � F is a continuous function, 
with l ex(y) l = 1 ,  then T: C(X) -+ C(Y) defined by (Tf)(y) = ex(y)f(r(y)) is a 
surjective isometry. The next result gives a converse to this. 

2.1. The Banach-Stone Theorem. If X and Y are compact and T: C(X) � C( Y) 
is a surjective isometry, then there is a homeomorphism r : Y � X  aNd a function 
ex in C(Y) such that l ex(y) l = 1 for all y and 

(Tf)(y) = ex(y)f(r(y) )  

for all f in C(X) and y in Y. 

PROOF. Consider T* : M(Y) � M(X). Because T is a surjective isometry, T* 
is also. (Verify.) Thus T* is a weak* homeomorphism of ball M(Y) onto ball 
M(X) that distributes over convex combinations. Hence (Why?) 

T* (ext [ball M(Y)] ) = ext [ball M(X)] .  

By Theorem V.8.4 this implies that for every y in Y there is a unique r(y) in 
X and a unique scalar ex(y) such that l ex(y) l = 1 and 

T* (t5y) = ex(y)t5t(y) · 

By the uniqueness, ex :  Y-+  F and r :  Y � X  are well-defined functions. 

2.2. Claim. ex: Y � F is continuous. 

If { Yi } is a net in Y and Yi -+ y, then t5Yi � l5Y weak* in M(Y). Hence 
ex(yi)t5t(Yi ) = T*(t5y) -+  T*(l5y) = ex(y)t5t(y) weak* in M(X). In particular, ex(yi ) = 
( 1 ,  T* (t5yJ ) � ( 1 ,  T*(t5y) ) = ex(y), proving (2.2). 

2.3. Claim. r :  Y � X  is a homeomorphism. 

As in the proof of (2.2), if Yi -+ y in Y, then ex(yi)t5t(Yd � ex(y)t5t<Y> weak* in 
M(X). Also, ex(yi) � ex(y) in F by (2.2). Thus t5t(Yd = ex(yi) - l [ex(yi)t5t(yd] � t5t(y)· 
By (V.6. 1 )  this implies that r(yi) -+  r(y), so that r: Y -+  X is continuous. 

If Y1 , y2 e Y and y1 =F y2 , then ex(y1 )by 1 =F ex(y2 )i5y2 •  Since T* is injective, it 
is easy to see that r(y1 ) i= r(y2 ) and so r is one-to-one. If xeX, then the fact 
that T* is surjective implies that there is a J1 in M ( Y) such that T* J1 = bx. 
It must be that J1Eext [ball M(Y)] (Why?), so that J1 = /3l5y for some y in Y 
and f3 in F with 1 /3 1 = 1 .  Thus l5x = T* (/3by) = f3ex(y)£5t(y) · Hence f3 = ex(y) and 
r(y) = x. Therefore r: Y � X  is a continuous bijection and hence must be a 
homeomorphism (A.2.8). This establishes (2.3). 

If feC(X) and yeY, then T(f) (y) /( Tf, by ) = (f, T*by ) = (f, ex(y)bt<Y> > = 
cx(y)f(r(y) ). • 
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§3. Compact Operators 

The following definition generalizes the concept of a compact operator from 
a Hilbert space to a Banach space. 

3.1. Definition. If PI and OJJ are Banach spaces and A :  PI --+  OJJ is a linear 
transformation, then A is compact if cl A (ball PI) is compact in OJJ. 

The reader should become reacquainted with Section II.4. 
It is easy to see that compact operators are bounded. 
For operators on a Hilbert space the following concept is equivalent to 

compactness, as will be seen. 

3.2. Definition. If PI and OJJ are Banach spaces and Ae81(PI, OJJ), then A is 
completely continuous if for any sequence { xn } in PI such that xn --+ x weakly 
it follows that I I  Axn - Ax II --+ 0. 

3.3. Proposition. Let PI and OJJ be Banach spaces and let A e81(PI, OJJ). 

(a) If A is a compact operator, then A is completely continuous. 
(b) If PI is reflexive and A is completely continuous, then A is compact. 

PROOF. (a) Let { xn } be a sequence in PI such that xn --+ 0 weakly. By the PUB, 
M = supn I I  xn I I  < oo .  Without loss of generality, it may be assumed that 
M � 1 .  Hence { Axn } c cl A (ball PI). Since A is compact, there is a subse
quence {xnk } and a y in OJJ such that I I Axnk - y l l --+ 0. But xnk --+0  (wk) and 
A :  (PI, wk) --+ (OJJ, wk) is continuous ( l . l c). Hence Axnk --+ A(O) = 0 (wk). Thus 
y = 0. Since 0 is the unique cluster point of { Axn } and this sequence is con
tained in a compact set, II Axn I I --+ 0. 

(b) First assume that PI is separable; so (ball PI, wk) is a compact metric 
space. So if {xn } is a sequence in ball PI there is an x in PI and a subs�quence 
{ xnk } such that xnk --+ x weakly. Since A is completely continuous, I I  Axnk -
Ax I I -+ 0. Thus A (ball PI) is sequentially compact; that is, A is a compact 
operator. 

Now let PI be arbitrary and let {xn } c ball PI. If PI 1 = the closed linear 
span of { Xn } ,  then PI 1 is separable and reflexive. If A 1 = A I PI 1 , then 
A 1 : PI 1 --+ OJJ is easily seen to be completely continuous. By the first paragraph, 
A 1 is compact. Thus {Axn } = {A 1 xn } has a convergent subsequence. Since 
{xn } was arbitrary, A is a compact operator. • 

In the proof of (3.3b), the fact that A(ball PI) is compact, and hence closed, 
is a consequence of the reflexivity of PI. 

By Proposition V.5.2, every operator in 81{1 1 ) is completely continuous. 
However, there are noncom pact operators in 81{1 1 ) (for example, the identity 
operator). 
· 

There has been relatively little study of completely continuous operators 
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that I am aware of. Most of the effort has been devoted to the study of 
compact operators and this is the direction we now pursue. 

3.4. Schauder's Theorem. If A effl(q", �), then A is compact if and only if A *  
is compact. 

PROOF. Assume A is a compact operator and let { y:} be a sequence in ball �*. 
It must be shown that {A*y: }  has a norm convergent subsequence or, 
equivalently, a cluster point in the norm topology. By Alaoglu's Theorem, 
there is a y* in ball �* such that y: • y* (weak* ). It will be shown that 
A*y: • A*y* in norm. 

ci 

cl 

Let e > 0 and fix N � 1 .  Because A(ball q") has compact closure, there are 
vectors y 1 , • • •  , Ym in � such that A(ball q") c U�- 1 { ye�: I I  y - Yk I I  < e/3 } .  
Since y: • y* (weak*), there is an n � N such that I ( yk , y* - y: ) I < e/3 

cl 
for 1 � k � m. Let x be an arbitrary element in ball q' and choose Yk such 
that I I  Ax - Yk I I  < e/3. Then 

I < x, A*  y* - A*  y: ) I = I < Ax, y* - y: ) I 

Thus I I A *y - A *y: l l � e . 

� I <  Ax - Yk, y* - Y: )  I + I <  Yk, y* - Y: )  I 
� 2 1 1 Ax - Yk I I  + e/3 < e. 

For the converse, assume A*  is compact. By the first half of the proof, 
A** :  q'** --+ �** is compact. It is easy to check that A =  A** I q- is 
compact. • 

For Banach spaces q- and �' (fl0(q", �) denotes the set of all compact 
operators from q- into �; (f40(q") = (fl0(q", q"). 

3.5. Proposition. Let q", �' and !!' be Banach spaces. 

(a) �0(q", �) is a closed linear subspace of (fl(q", �). 
(b) If K e(fl0(q", �) and A e(fl(�, !!'), then AK e(fl0(q", !!'). 
(c) If K e(fl0(q", �) and Ae(fl(!l', q"), then KA e(fl0(!!', �). 

The proof of (3.5) is left as an exercise. 

3.6. Corollary. If q- is a Banach space, (f40(q") is a closed two-sided ideal in 
the algebra (fl(q"). 

Let (fl00(!!f, �) = the bounded operators T: q- --+  � for which ran T is finite 
dimensional. Operators in (f400(q", �) are called operators with finite rank. 
It is easy to see that �00(!!£, �) c PIJ0(!!£, �) and by (3.5a) the closure of 
3100(!!£, �) is contained in 310(!!£, �). Is �00(!!£, �) dense in 310(!!£, �)? 
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It was shown in (11.4.4) that if Je is a Hilbert space, then 810(Jf') is indeed 
the closure of 8l00(Jf'). Note that the availability of an orthonormal basis 
in a Hilbert space played a significant role in the proof of this theorem. There 
is a concept of a basis for a Banach space called a Schauder basis. Any 
Banach space f!£ with a Schauder basis has the property that 8100(!!£) is dense 
in 810(!!£). Enflo [1973] gave an example of a separable reflexive Banach 
space f!£ for which 8100(!!£) is not dense in 810(!!£), and, hence, Jf' has no 
Schauder basis. Davie [ 1973] and [1 975] have simplifications of Enflo's 
proof. For the classical Banach spaces, however, every compact operator is 
the limit of a sequence of finite-rank operators. 

The remainder of this section is devoted to proving that for X compact, 
8l00(C(X)) is dense in 8l0(C(X)). This begins with material that may be 
familiar to many readers but will be presented for those who are unacquainted 
with it. 

3.7. Definition. If X is completely regular and §' c C(X), then §' is 
equicontinuous if for every B > 0 and for every x0 in X there is a neighborhood 
U of x0 such that l f(x) - f(x0) 1 < B for all x in U and for all f in §'. 

Note that for a single function f in C(X), §' = {!} is equicontinuous. 
The concept of equicontinuity states that one neighborhood works for all f 
in §'. 

3.8. The Arzela-Ascoli Theorem. If X is compact and §' c C(X), then f7 is 
totally bounded if and only if§' is bounde5f and equicontinuous. 

PROOF. Suppose f7 is totally bounded. It is easy to see that f7 is bounded. 
If e > 0, then there are !1 ' . . .  ' fn in f7 such that f7 c u�= 1 {! EC(X): 
I I  f - fk I I  < e/3} .  If x0eX, let U be an open neighborhood of x0 such that 
for 1 � k � n and x in U, l fk(x) - fk(x0) 1 < e/3. If fef7, let fk be such that 
I I  f - fk I I  < e/3. Then for x in U, 

l f(x) - f(xo) l � l f(x) - fk(x) l + lfk(x) - fk(xo ) l 
+ l fk(xo) - f(xo ) l 

< B . 
• 

Hence §' is equicontinuous. 
Now assume that §' is equicontinuous and f7 c ball C(X). Let B > 0. For 

each x in X, let U x be an open neighborhood of x such that lf(x) - f(y) l < e/3 
for f in §' and y in U x · Now { U x : xeX } is an open covering of X. Since X 
is compact, there are points x 1 , . . .  , xn in X such that X =  Ui= 1 U x · 

Let { �1 , . . •  , �m} c D such that cl D c U�= 1 {�: I � - �k l < e/6} .  Consider the 
collection B of those ordered n-tuples b = (P 1 , • • •  , Pn) for which there is a 
function fb in §' such that lfb(xi) - Pi I < e/6 for 1 �j � n. Note that B is 
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not empty since f(x) c cl D for every f in �- In fact, each f in � gives rise 
to such a b in B. Moreover B is finite. Fix one function fb in � associated 
as above with b in B. 

3.9. Claim. � c UbeB {f: l l f - fb l l < e } .  

Note that (3.9) implies that � is totally bounded. 
If f E�, there is a b in B such that l f(xi) - fb(xi) l < e/3 for 1 �j � n. 

Therefore if xeX, let xi be chosen such that xeU Xj "  Thus l f(x) - fb(x) l � 
l f(x) - f(xi) l + l f(xi) - fb(xi) l + l fb(xi) - fb(x) l < B. Since x was arbitrary, 
l l f - fb l l < B. • 

3.10. Corollary. If X is compact and � c C(X), then � is compact if and only 
if� is closed, bounded, and equicontinuous. 

3.1 1. Theorem. If X is compact, then 8l00(C(X)) is dense in 8l0(C(X)). 

PROOF. Let Te810(C(X)). Thus T(ball C(X)) is bounded and equicontinuous 
by the Arzela-Ascoli Theorem. If B > 0 and xeX, let U x be an open neigh
borhood of x such that I (Tf)(x) - (Tf)(y) l < B for all f in ball C(X) and 
y in Ux . Let {x 1 , . . .  , xn } c X such that X c U}= 1 Uxi · Let {</J 1 , . . . , </Jn } 
be a partition of unity subordinate to { Ux 1 ,  • • •  , Ux" } .  Define Te : C(X) --+ 
C(X) by 

n 
Tef = L (Tf)(xi)</Ji . 

j = 1 

Since ran Te c V { </J 1 , • . .  , <Pn } ,  TeE8l00(C(X)). 
If feball C(X) and xeX, then 

n 
I (Tef)(x) - (Tf)(x) l = L [ (Tf)(xi) - (Tf)(x)] l/>i(x) 

j= 1 
n 

� L I (Tf)(xi) - (Tf)(x) I </Ji(x) 
j = 1 

< B. • 

If X is locally compact, then the operators on C0(X) of finite rank are 
dense in 8l0(C0(X)). See Exercise 1 8. 

EXERCISES 
1 .  If f£ is reflexive and Ae8l(f£, CW), show that A(ball f£) is closed in CW. 

2. Prove Proposition 3.5. 

3. If A EPA 0(�, �), show that cl [ran A] is separable. 
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4. If A e810(Ir, CW) and ran A is closed, show that ran A is finite dimensional. 

5. If A e810(Ir) and A is invertible, show that dim Ir < oo .  

6. Let (X, !l, Jl) be a finite measure space, 1 < p < oo ,  and 1 /p + 1 /q = 1 .  If 
k :  X x X --+ F  is an Q x !l-measurable function such that sup { J i k(x, y) l qdJl(y): 
xeX }  < oo, then (Kf) (x) = J k(x, y)f(y)dJl(Y) defines a compact operator on 
LP(Jl ). 

7. Let (X, !l, Jl) be an arbitrary measure space, 1 < p < oo, and 1 /p + 1 /q = 1 .  
If k :  X x X --+  F is an Q x !l-measurable function such that M = 
[J ( J I k(x, y) I P dJl(x))qfp dJl(y)] l fq < oo and if (Kf)(x) = J k(x, y)f(y)dJl(y), then 
K e810(LP(Jl)) and II K I I � M. 

8. Let X be a compact space and let Jl be a positive Borel measure on X. Let 
Te8l(LP(Jl), C(X)) where 1 < p < oo .  Show that if A :  LP(Jl) --+ LP(Jl) is defined by 
Af = Tf, then A is compact. 

9. (B.J. Pettis) If Ir is reflexive and Te8l(Ir, f 1 ), then T is a compact operator. Also, 
if CW is reflexive and Te8l(c0 , CW), T is compact. 

10. If X is compact and {f1 , • • •  , fn, gh  . . .  , gn} £; C(X), define k(x, y) = 'L�= t fi(x)gi(Y) 
for x, yeX. Let Jl be a regular Borel measure on X and put Kf(x) = 
J k(x, y)f(y) dJl(y). Show that Ke8l(C(X)) and K has finite rank. 

1 1 . If X is compact, ke C(X x X), and Jl is a regular Borel measure on X, show that 
Kf(x) = J k(x, y)f(y)dJl(Y) defines a compact operator on C(X). 

1 2. Let (X, !l, Jl) be a a-finite measure space and for 4> in L 00 (Jl) let M 4>:  LP(Jl) --+ LP(Jl) 
be the multiplication operator defined in Example III.2.2. Give necessary and 
sufficient conditions on (X, !l, Jl) and 4> for M <P to be compact. 

1 3. Let -r : [0, 1] --+ [0, 1] be continuous and define A :  C [O, 1] --+ C[O, 1] by Af = fo -r .  
Give necessary and sufficient conditions on -r for A to be compact. 

14. Let Ae&l(c0) and let ((Xmn) be the corresponding matrix as in Exercise 1 .7. Give 
necessary and sufficient conditions on ((Xmn) for A to be compact. 

1 5. Let A e8l(f l ) and let ((Xmn) be the corresponding matrix as in Exercise 1 .8. Give 
a necessary and sufficient condition on ((Xmn) for A to be compact. 

16. If (X, d) is a compact metric space and §' £;  C(X), show that §' is equicontinuous 
if and only if for every e > 0 there is a � > 0 such that lf(x) - f(y) l < e whenever 
d(x, y) < � and f e§'. 

1 7. If X is locally compact and §' £; C0(X), show that §' is totally bounded if and 
only if (a) §' is bounded; (b) §' is eq\licontinuous; (c) for every e > 0 there is a 
compact subset K of X such that 1/(x) l < e for all f in §'  and x in X \K. 

1 8 . If X is locally compact and Ae810(C0(X)), then there is a sequence {An } of finite
rank operators such that II An - A I I --+ 0. 

1 9. Let Ir be a Banach space and suppose there is a net {Fi }  of finite-rank operators 
on Ir such that (a) supi II Fi II < oo; (b) I I Fix - x II --+ 0 for all x in Ir. Show that if 
Ae810(Ir), then I I FiA - A I I  --+ 0  and hence there is a sequence {An } of finite-rank 
operators on Ir such that II An - A II --+ 0. 
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20. Let 1 � p � oo and let (X, !l, p.) be a a-finite measure space. If Ae810(LP(p.)), show 
that there is a sequence {A,. } of finite-rank operators such that I I A,. - A I I -+ 0. 
(Hint: Use Exercise 19.) 

2 1 .  Let X be compact and let diJ be the collection of all pairs (C, F) where 
C = { U 1 , • • •  , U,. } is a finite open cover of X and F = { x 1 , . . .  , x,. } £; X such that 
xie Ui for 1 �j � n. If (C1 , F 1 ) and (C2 , F 2 )ed/J, define (C 1 , F 1 ) � (C2 , F 2 ) to mean: 
(a) C2 is a refinement of C 1 ; that is, each member of C2 is contained in some 
member of C 1 • (b) F 1 £; F 2 • If tX = (C, F)ed/J let { l/> 1 , • • •  , l/>,. } be a partition of unity 
subordinate to C. If F = { x b . . .  , x,. } ,  define Ta.: C(X) -+ C(X) by 

II 

(Ta.f)(x) = L f(xi)lPi(x). 
j =  1 

Then: (a) Ta.e8100(C(X)); (b) I I Ta. l l = 1 ;  (c) (d/J, � ) is a directed set and {Ta.: tXediJ } 
is a net ; (d) I I  Ta.f - f 1 1 -+0  for each f. Now apply Exercise 19  to obtain a new 
proof of Theorem 3. 1 1 . 

§4. Invariant Subspaces 

4.1 .  Definition. If f£ is a Banach space and Te�(f£), an invariant subspace 
for T is a closed linear subspace .A of f£ such that Txe.A whenever xe.A . 
.A is nontrivial if .A '#  (0) or f£. Lat T = the collection of all invariant 
subspaces for T. If d c �(f£), then Lat d = n {Lat T: Ted } .  

This generalizes the corresponding concept of invariant subspace for an 
operator on Hilbert space (11 .3 .5). Note that the idea of a reducing subspace 
for an operator on a Hilbert space has no generalization to Banach spaces 
since there is no concept of an orthogonal complement in Banach spaces. 

4.2. Proposition. 

(a) If .A 1 ,  .A 2eLat T, then .A 1 v .A 2 = cl (.A 1 + .A 2)eLat T and .A 1 A 
.A 2 = .A 1 n .A  2 eLat T. 

(b) If { .Ai : iei } c Lat T, then V { .Ai : iei } ,  the closed linear span of Ui.Ai, 
and 1\ { .Ai : iei } = ni.Ai belong to Lat T. 

The proof of this proposition is left as an exercise. The proposition, 
however, does justify the use of the symbol "Lat'' to denote the collection 
of invariant subspaces. With the operations v and A , Lat T is a lattice 
(a) that is complete (b). Moreover, Lat T has a largest element, f£, and a 
smallest element, (0). 

The main question is : does Lat T have any elements besides (0) and f£? 
In other words, does T have a nontrivial invariant subspace? C.J. Read 
[1984] showed the existence of a Banach space and an operator on the 
Banach space having no non-trivial invariant subspaces. This was preceded 
by some work of P Enflo (not published, but circulated) which did the same 
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thing. Later B Beauzamy [ 1985] sorted out Enflo's ideas and gave an 
exposition and simplification of Enflo's construction. Enflo's work eventually 
appeared in Enflo [ 1987] .  Read [ 1 986] gave a self contained exposition 
showing that there is a bounded operator on 1 1 having no nontrivial invariant 
subspace. This deep work does not completely settle the matter. Which 
Banach spaces f!I have the property that there is a bounded operator on f!I 
with no nontrivial invariant subspaces? If f!I is reflexive, is Lat T nontrivial 
for every T in 81(f!I)? The question is unanswered even if f!I is a Hilbert 
space. However, for certain specific operators and classes of operators it has 
been shown that the lattice of invariant subs paces is not trivial. In this section 
it will be shown that any compact operator has a nontrivial invariant 
subspace. This will be obtained as a corollary of a more general result of V. 
Lomonosov. But first some examples. 

4.3. Example. If f!I is a finite dimensional space over ([ and Te81(f!I), then 
Lat T is not trivial. In fact, let f!I = ([d and let T = a  matrix. Then 
p(z) = det(T - z/) is a polynomial of degree d. Hence it has a zero, say ex. If 
det (T - ex/) = 0, then (T - ex/) is not invertible. But in finite dimensional 
spaces this means that T - ex/ is not injective. Thus ker (T - ex/) # (0). Let 
.A � ker(T - cx/) such that .A #  (0). If xe.A, then Tx = cxxe.A, so .AeLat T. 

4.4. Example. If T = [ � -� J on R 2, then Lat T is trivial. Indeed, if Lat T 

is not trivial, there is a one-dimensional space .A in Lat T. Let 
.A = {cxe: cxeR} .  Since .AeLat T, Te = Ae for some A in R. Hence 
T2e = T(Te) = ATe = A2e. But T2 = - I, so - e = A2e and it must be that 
A 2 = - 1 if e # 0. But this cannot be if A is real. 

If d � 3, however, and T e81(R d), then Lat T is not trivial (Exercise 6). 

4.5. Example. If V: L2 [0, 1 ]  -+ L2 [0, 1 ]  is the Volterra operator, Vf(x) = 
J� f(t)dt, and 0 � ex � 1 ,  put A a =  {feL2 [0, 1 ] :  f(t) = 0 for 0 � t � ex } .  Then 
.A aE Lat V. Moreover, it can be shown Lat V = {.A a: 0 � ex � 1 } .  (See 
Donoghue [ 1 957], and Radjavi and Rosenthal [ 1973], p. 68.) 

4.6. Example. If S : /P -+ fP is defined by S(cx 1 , cx2 , • . •  ) = (0, cx 1 , cx2 , • . .  ), and 
.An = {xe/P: x(k) = 0 for 1 � k � n } ,  then .AneLat S . 

• 

4.7. Example. Let (X, n, ,u) be a a-finite measure space and for ljJ in L 00 (,U) 
let M t/J denote the multiplication operator on LP(,u ), 1 � p � oo .  If L\ en, let 
.A A =  {! eLP(,u): f = 0 a.e. [,u] off L\ }. Then for each ljJ in L 00 (,U), 
.AAeLat Mt/J . 

It is a difficult if not impossible task to determine all the invariant subspaces 
of a specific operator. The Volterra operator and the shift operator are 
examples where all the invariant subspaces have been determined. But there 
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are multiplication operators M t/J for which there is no characterization of 
Lat M t/J as well as some M t/J for which such a characterization has been 
achieved. One such example follows: let J.l = Lebesgue area measure on D 
and let (Af)(z) = zf(z) for f in L 2 (J.l). There is no known characterization of 
Lat A .  

It is necessary at this point to return to the geometry of Banach spaces 
to prove the following classical theorem, which appeared as Exercise V. 1 3.2. 

4.8. Mazur's Theorem. If fi is a Banach space and K is a compact subset of 
f£, then co (K) is compact. 

PROOF. It suffices to show that co (K) is totally bounded. Let e > 0 and 
choose x1 , . . .  , xn in K such that K c Uj= 1 B(xi ; e/4). Put C = co {x 1 , . . . , xn } ·  
It is easy to see that C is compact (Exercise V.7.8). Hence there are vectors 
y1 , . . .  , Ym in C such that C c U� 1 B(yi ; e/4). If weco (K), there is a z in co (K) 
with I I  w - z II < e/4. Thus z = L�= 1 cxPkP, where kPeK, cxP � 0, and L cxP = 1 .  
Now for each kP there is an xi<P> with I I  kP - xi<P> I I  < e/4. Therefore 

l 
z - L (XpXj(p) -p= l 

l 
L cxp(kp - x i<P> ) p= 1 

l 
� L cxP I I  kP - xi<P> I I p= 1 
< ej4. 

But Lpcxpxi<P> eC so there is a Yi with II Lpcxpxi<P> - ydl < ej4. The triangle 
inequality now shows that co (K) c U� 1 B(yi ; e) and so co (K) is totally 
bounded. • 

The next result is from Lomonosov [ 1973] . When it appeared it caused 
great excitement, both for the strength of its conclusion and for the simplicity 
of its proof. The proof uses Schauder's Fixed-Point Theorem (V.9.5). 

4.9. Lomonosov's Lemma. If d is a subalgebra of 81(f£) such that 1 ed and 
Lat d = { (0), fi}  and if K is a nonzero compact operator on f£, then there is 
an A in d such that ker(AK - 1) 1= (0). 

PROOF. It may be assumed that I I  K II = 1 .  Fix x0 in fi such that II Kx0 I I  > 1 
and put S =  {xef£: I I x - x0 I I � 1 } .  It is easy to check that 

4.10 O�S and O�cl K(S). 

Now if xef£ and x 1= 0, cl {Tx: Ted } is an invariant subspace for d (because 
d is an algebra) that contains the nonzero vector x (because 1 ed). By 
hypothesis, cl { Tx: Ted} = f£. By (4. 10) this says that for every y in cl K(S) 
there is a T in d with I I  Ty - x0 I I  <1 .  Equivalently, 
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cl K(S) c U { y: I I  Ty - x0 I I  < 1 } .  
Te d 

Because cl K (S) is compact, there are T1 , . . .  , Tn in .91 such that 

4.1 1  
n 

cl K (S) c U { y: I I  Tiy - x0 I I  < 1 } .  j= 1 

1 8 1  

For y in cl K(S) and 1 �j � n, let ai(y) = max {0, 1 - I I Tiy-x0 II } .  By (4. 1 1 ), 
Lj= 1 ai(y) > 0  for all y in cl K(S). Define bi: cl K(S) -+R by 

and define 1/1 :  S --+ f£ by 

b .( ) = 
ai(y) 

1 Y n ' 

L ai(Y) i = 1 

n 

t/J(x) = L bi(Kx)TiKx. j = 1  
It is easy to see that ai: cl K(S) --+ [0, 1 ]  is a continuous function. Hence bi 
and 1/1 are continuous. 

If xeS, then KxeK(S). If bi(Kx) > 0, then ai(Kx) > 0 and so 
I I TiKx - x0 I I < 1 .  That is, TiKxeS whenever bi(Kx) > 0. Since S is a convex 
set and Lj= 1 bi(Kx) = 1 for x in S, 

t/J(S) c S. 
Note that TiK e810(f£) for eachj so that Uj= 1 1jK(S) has compact closure. 

By Mazur's Theorem, co (Uj= 1 1jK(S)) is compact. But this convex set 
contains t/J(S) so that cl t/J(S) is compact. This is, 1/1 is a compact map. By the 
Schauder Fixed-Point Theorem, there is a vector x 1 in S such that 1/J(x 1 ) = x 1 • 

Let Pi = bi(Kx 1) and put A = Lj= 1 {3iTi . So Aed and AKx1 = t/J(x 1) = x 1 • 
Since x1 # 0 (Why?), ker(AK - 1) # 0. • 

4.12. Definition. If T e8l(f£), then a hyperinvariant subspace for T is a subspace 
vH of f£ such that Avlt c vH for every operator A in the commutant of T, 
{ T}'; that is, Avlt c vH whenever AT = T A. 

Note that every hyperinvariant subspace for T is invariant. 
• 

4.13. Lomonosov's Theorem. If f£ is a Banach space over <C, Te8l(f£), T is 
not a multiple of the identity, and TK = KT for some nonzero compact operator 
K, then T has a nontrivial hyperinvariant subspace. 
PROOF. Let .91 = { T} '. We want to show that Lat .91 # { (0), fl'} . If this is not 
the case, then Lomonosov's Lemma implies that there is an operator A in 
.$?1 such that .AI = ker(AK - 1 )  # (0). But .AI E Lat (AK) and AK I .AI is the 
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identity operator. Since AKE�0(�), AK I %e�0(%). Thus dim % < oo .  

Since . AKed = {T} ', for any x in %, AK(Tx) = T(AKx) = Tx; hence 
T% c %. But dim % < oo so that T l % must have an eigenvalue A.. Thus 
ker(T - A.) = vH 1= (0). But vH 1= � since T is not a multiple of the identity. 
It is easy to check that vH is hyperinvariant for T. • 

A proof of a slightly weaker version of Lomonosov's Theorem that avoids 
Schauder's Fixed Point Theorem can be found in Michaels [ 1977]. 

4.14. Corollary. (Aronszajn-Smith [ 1954].) If K E�0(�), then Lat K is 
nontrivial. 

The next result appeared in Bernstein and Robinson [ 1966], where it is 
proved using nonstandard analysis. Halmos [ 1966] gave a proof using 
standard analysis. Now it is an easy consequence of Lomonosov's Theorem. 

4.15. Corollary. If� is infinite dimensional, A E�(�), and there is a polynomial 
in one variable, p, such that p(A)E�0(�), then Lat A is nontrivial. 
PROOF. If p(A) 1= 0, then Lomonosov's Theorem applies. If p(A) = 0, let p(z) = 
CXo + (X 1 z + . . .  + (XnZn' (Xn 1= 0. For X 1= 0, let vi{ = v {X, Ax ' . . .  ' An - 1 X} . Since 
An = - ex; 1 [cx0 + cx 1 A + · · · + cxn _ 1 An - 1 ], A ELat A. Since XEA, A 1= (0); 
since dim vH < oo, vH 1= �. • 

4.16. Corollary. If K 1 , K2 E�0(�) and K 1K2 = K2K 1 , then K1 and K2 have 
a common nontrivial invariant subspace. 

EXERCISES 
1 .  Let A, B, T Eel(�) such that T A = BT. Show that graph (T)E Lat(A 61 B). 

2. Prove that ..A E Lat T if and only if ..A J.. E Lat T* . What does the map ..A r-+ ..A l. 
of Lat T into Lat T* do to the lattice operations? 

3. Let {e 1 , e2, e3 }  be the usual basis for F3 and let �X 1 , �X2, 1X3EF. Define T: F3 � F3 

by Tei = �Iiei, 1 �j � 3. (a) If �X 1 , �X2, �X3 are all distinct, show that ..A ELat T if and 
only if ..A =  V E, where E c { e1 , e2, e3} .  (b) If �X 1 = �X2 =F �X3, show that ..A E Lat T 
if and only if ..A = % + 2, where % �  V {e 1 , e2} and 2 � {�Ie3: �XEF} .  

4. Generalize Exercise 3 by characterizing Lat T, where T is defined by Tei = �Iiei, 
1 �j � d, for any choice of scalars �X 1 , . . .  , �Id and where { e 1 , . . .  , ed} is the usual 
basis for P. 

5. Let { e 1 , • • •  , ed} be the usual basis for Fd, let { �X 1 , • . .  , 1Xd _ 1 } c F with no �Xi = 0. If 
Tei = �Iiei+ 1 for 1 �j � d - 1 and Ted = 0, find Lat T. 

6. If T Eei(R. d) and d � 3, show that T has a nontrivial subspace. 
/ 

7. Show that if TEPA( PI) and PI is not separable, then T has a nontrivial invariant 
subspace. 
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8. Give an example of an invertible operator T on a Banach space fl' and an invariant 
subspace ..A for T such that ..A is not invariant for r - 1• 

9. Let fl' be a Banach space over <C, let K eg.J0(fl') and show that if � is a maximal 
chain in Lat K, then � is a maximal chain in the lattice of all subspaces of fl'. 

§5. Weakly Compact Operators 

5.1 .  Definition. If f!I and CiJ/ are Banach spaces, an operator T in Bl(f!I, CiJ/) is 
weakly compact if the closure of T(ball f!I) is weakly compact. 

Weakly compact operators are generalizations of compact operators, but 
the hypothesis is not sufficiently strong to yield good information about their 
structure. 

Recall that in a reflexive Banach space the weak closure of any bounded 
set is weakly compact. Also, a bounded operator T: f!I --+  CiJ/ is continuous if 
both f!I and dJI have their weak topologies ( 1 . 1 ). With these facts in mind, 
the proof of the next result becomes an easy exercise for the reader. 

5.2. Proposition. 

(a) If either f!I or CiJ/ is reflexive, then every operator in Bl(f!I, CiJ/) is weakly 
compact. 

(b) If T: f!I --+ CiJJ is weakly compact and Ae&I(CiJ/, �), then AT is weakly 
compact. 

(c) If T: f!I --+ CiJJ is weakly compact and Be81(�, f!I), then TB is weakly 
compact. 

This proposition shows that assuming that an operator is weakly compact 
is not that strong an assumption. For example, if f!I is reflexive, every operator 
in BI(El) is weakly compact. In particular, every operator on a Hilbert space 
is weakly compact. So any theorem about weakly compact operators is a 
theorem about all operators on a reflexive space. 

In fact, there is a degree of validity for the converse of this statement. In 
a certain sense, theorems about operators on reflexive spaces are also 
theorems about weakly compact operators. The precise meaning of this 
statement is the content of Theorem 5.4 below. �ut before we begin to prove 
this, a lemma is needed. 

Let OJ/ be a Banach space and let W be a bounded convex balanced subset 
of CiJJ. For n > 1 put U n = 2n W + 2 - n int [ball CiJ/]. Let Pn = the gauge of U n 
(IV. l . l 4). Because Un � 2- n int [ball CiJ/], it is easy to check that Pn is a norm 
on OJ/. In fact, Pn and 1 1 · 1 1  are equivalent norms. To see this note that if 
I I  y I I < 1 ,  then 2 - nye u n so that Pn( Y) < 2n. Hence Pn( Y) � 2n I I  y I I - Also, because 
W is bounded, Un must be bounded; let M > sup { II y l l : ye Un} · So if Pn( Y) < 1 , 
l l y I I  < M. Thus I I y I I � Mpn( y), and I I · I I  and Pn are equivalent norms. 
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5.3. Lemma. For a Banach space OJJ let W, Um and Pn be as above. Let [Jlt = the 
set of all y in OJJ such that I l l Y lll = [L: 1Pn( y)2] 1 12 < oo .  Then 
(a) W c { y: I I I Y II I < 1 } ; 
(b) ([Jlt, 111 · 111 ) is a Banach space and the inclusion map A: [Jlt -+  0§ is continuous; 
(c) A**: [Jlt** -+ 0§** is injective and (A**) - 1(0JJ) = [Jlt; 
(d) [Jlt is reflexive if and only if cl W is weakly compact. 

PROOF. (a) lf we W, then 2nwe Un. Hence 1 > Pn(2nw) = 2npn(w), so Pn(w) < 2 - n. 
Thus ll l w ll l 2 < Ln(2 - n)2 < 1 .  

(b) Let OJJ n = OJJ with the norm Pn and put fi = � 20JJ n (111 .4.4). Define <1>: 
[Jlt -+  fi by <I>( y) = ( y, y, . . .  ). It is easy to see that <I> is an isometry though it 
is clearly not surjective. In fact, ran <I> =  { ( Yn)ef£: Yn = Ym for all n, m}. Thus 
[Jlt is a Banach space. Let P 1 = the projection of fi onto the first coordinate. 
Then A = P 1 o <I> and hence A is continuous. 

(c) With the notation from the proof of (b), it follows that f£** = � 20JJ:* 
and <1>**: [Jlt** -+ f£** is given by <l>**( y**) = (A**y**, A**y**, . . .  ). Now the 
fact that <I> is an isometry implies that Cl>* is surjective. (This follows in two 
ways. One is by a direct argument (see Exercise 2). Also, ran <I>* is closed 
since ran <I> is closed ( 1 . 10), and ran <I>* is dense since _!_(ran <I>*) = ker <I> =  (0).) 
Hence ker <I>** = (ran <1>*) 1_ = (0); that is, <I>** is injective. Therefore A** is 
injective. 

Now let y** eA** - 1 (0JJ). It follows that <I>**y** = xef£. Let {Yi } be a net 
in [Jlt such that I I Ydl � II y** II for all i and Yi -+ y** u([Jlt**, [Jlt*) (V.4. 1 ). Thus 
<l>**( yi) -+ <l>**( y**) u(fi**, f£*). But <l>**( yi) = <l>( yi) ef£ and <l>**( y**) = x. 
Hence <l>( yi) -+  x u(f£, f£*). Since ran <I> is closed, xeran <I>; let <l>( y) = x. Then 
0 = <l>**( y** - y). Since <I>** is injective, y** = ye[Jlt. 

(d) An argument using Alaoglu's Theorem shows that A **(ball [Jlt**) = the 
u(O§**, OJJ*) closure of A(ball [Jlt). Put C = A(ball [Jlt). Suppose cl W is weakly 
compact. Now C c 2n cl W + 2 - n ball OJJ** and this set is u(OJJ**, OJJ*) com
pact. From the preceding comments, A**(ball [Jlt**) c 2n cl W + 2- n ball 0§**. 
Thus, 

CX) 

A **(ball &l**) c n [2n cl W + 2- n ball OJJ**] 
n = 1 

CX) 

c n [0§ + 2 - n ball OJJ**] 
n = 1 

= OJJ. 

By (c), [Jlt** = [Jlt and 9l is reflexive. 
Now assume [Jlt is reflexive; thus ball 9l is u([Jlt, Bl*)-compact. Therefore 

C = A(ball [Jlt) is weakly compact in 0§. By (a), cl W is weakly compact. • 

The next theorem, as well as the preceding lemma, are from Davis, Figiel, 
Johnson, and Pelczynski [ 1974] . 
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5.4. Theorem. If f£, OJ/ are Banach spaces and T e14(f£, OJ/), then T is weakly 
compact if and only if there is a reflexive space f!Jt and operators A in &l(f!Jt, OJ/) 
and B in &l(f£, f!Jt) such that T = AB. 
PROOF. If T = AB, where A, B have the described form, then T is weakly 
compact by Proposition 5.2. 

Now assume that T is weakly compact and put W = T(ball f£). Define [#i 
as in Lemma 5.3. By (5.3d), f!Jt is reflexive. Let A: f!Jt -+  OJ/ be the inclusion 
map. Note that if xeball f£, then Txe W. By (5.3a), II I Tx l l l < 1 whenever 
I I  x I I � 1 .  So B: f£ -+  [#i defined by Bx = Tx is a bounded operator. Clearly 
AB = T. • 

The preceding result can be used to prove several standard results from 
antiquity. 

5.5. Theorem. If f£, OJ/ are Banach spaces and T e&l(f£, OJ/), the following 
statements are equivalent. 
(a) T is weakly compact. 
(b) T**(f£**) c OJ/. 
(c) T* is weakly compact. 
PROOF. (a) => (b): Let f!Jt be a reflexive space, Ae&l(f!Jt, OJ/), and Be14(f£, f!Jt) such 
that T = AB. So T** = A** B**. But A**: f!Jt -+  OJ/** since f!Jt** = [#i. Hence 
A** = A. Thus T** = AB**, and so ran T** c ran A c OJ/. 

(b) => (a): T**(ball f£**) is a( OJ/**, OJ/*) compact by Alaoglu's Theorem and 
the weak* continuity of T**. By (b), T**(ball f£**) = C is a( OJ/, OJ/*) compact 
in OJ/. Hence T(ball f£) c C and must have weakly compact closure. 

(c) => (a): Let f/ be a reflexive space, Ce&I(OJ/*, 9'), De&I(Y, f£*) such that 
T* = DC. So T** = C*D*, D*: f£** -+ f/*, and C*: 9'* -+ OJ/**. Put 
[#i = cl D*(f£) and B = D* I f£; then B: f£ -+  f!Jt and f!Jt is reflexive. Let A =  C* I f!Jt; 
so A: f!Jt -+  OJ/**. But if xef£, ABx = C* D*x = T**x = TxeOJJ. Thus A: [#i -+  OJ/. 
Clearly AB = T. 

(a) =>(c): Exercise. • 

EXERCISES 
1 .  Prove Proposition 5.2. 

. ' 

2. If Bit and fi are Banach spaces and (f): Bit -+  fi is an isometry, give an elementary 
proof that (f)* is surjective. 

3. Let fi be a Banach space and recall the definition of a weakly Cauchy sequence 
(V.4.4). (a) Show that every bounded sequence in c0 has a weakly Cauchy 
subsequence, but not every weakly Cauchy sequence in c0 converges. (b) Show 
that if Te�(c0) and T is weakly compact, then T is compact. 

4. Say that a Banach space f!£ is weakly compactly generated (WCG) if there is a 
weakly compact subset K of f!£ such that f!£ is the closed linear span of K. Prove 
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(Davis, Figiel, Johnson, and Pelczynski, [ 1974]) that fl' is WCG if and only if 
there is a reflexive space and an injective bounde4 operator T:Blt --+ fl' such that 
ran T is dense. (Hint: The Krein-Smulian Theorem (y. 1 3.4) may be useful.) 

5. If (X, O, Jl) is a finite measure space, keLCX)(X x X, O x O, Jl x Jl), and K: 
L1(Jl) --+ L1 (Jl) is defined by (Kf)(x) = J k(x, y)f( y)dJl(y), show that K is weakly 
compact and K2 is compact. 

6. Let OJ/ be a weakly sequentially complete Banach space. That is, if { y,. } is a sequence 
in OJ/ such that { ( y,., y* ) }  is a Cauchy sequence in F fqr every y* in OJ/*, then 
there is a y in OJ/ such that y,. --+ y weakly [see (V.4.4)]. (a) If Te34(fl', OJ/) and 
x** efl'** such that x** is the u(fl'**, fl'*) limit of a sequence {x:*} from fl'** such 
that T**(x**)eOJ/ for every n, show that T**(x**)eOJ/. Let X be a compact space 

rt 

and put !F = all subsets of X that are the union of a countable number of compact 
Gd sets. Let cP = the linear span of {xF: Fe!F} considered as a subset of 
M(X)* = C(X)**. (b) Show that if Te34(C(X), OJ/), then T**(cP) � OJ/. (c) 
(Grothendieck [ 1953].) If Te34(C(X), OJ/), then T is weakly compact. [Hint (Spain 
[ 1976]): Use James's Theorem V. l 3.3).] 



CHAPTER VII 

Banach Algebras and Spectral Theory for 
Operators on a Banach Space 

The theory of Banach algebras is a large area in functional analysis with 
several subdivisions and applications to diverse areas of analysis and the rest 
of mathematics. Some monographs on this subject are by Bonsall and Duncan 
[ 1973] and C.E. Rickart [ 1 960]. 

A significant change occurs in this chapter that will affect the remainder 
of this book. In order to prove that the spectrum of an element of a Banach 
algebra is nonvoid (Section 3), it is necessary to assume that the underlying 
field of scalars F is the field of complex numbers <C. It will be assumed from 
Section 3 until the end of this book that all vector spaces are over <C. This 
will also enable us to apply the theory of analytic functions to the study of 
Banach algebras and linear operators. 

In this chapter only the rudiments of this subject are discussed. Enough, 
however, is presented to allow a treatment of the basics of spectral theory 
for operators on a Banach space. 

§ 1 .  Elementary Properties and Examples 
• 

An algebra over F is a vector space .91 over F that also has a multiplication 
defined on it that makes .91 into a ring such that if aeF and a, bed, 
a(ab) = (aa)b = a(ab). 

1.1. Definition. A Banach algebra is an algebra .91 over F that has a norm 
I I · I I  relative to which .91 is a Banach space and such that for all a, b in d, 

1 .2 I I  ab II � I I  a I I  I I  b 1 1 . 
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If d has an identity, e, then it is assumed that I I  e I I  = 1 .  
The fact that ( 1 .2) is satisfied is not essential. If d is an algebra and has 

a norm relative to which d is a Banach space and is such that the map of 
d x d -+  d defined by (a, b)t--+ab is continuous, then there is an equivalent 
norm on d that satisfies ( 1 .2) (Exercise 1 ). 

If d has an identity e, then the map cxt--+cxe is an isomorphism of F into 
d and I I  cxe I I  = I ex 1 . So it will be assumed that F c d via this identification. 
Thus the identity will be denoted by 1 .  

The content of the next proposition is that if d does not have an identity, 
it is possible to find a Banach algebra d1 that contains d, that has an 
identity, and is such that dim d1 /d = 1 .  

1 .3. Proposition. If d is a Banach algebra without an identity, let d1 = d x F. 
Define algebraic operations on d1 by 
(i) (a, ex) + (b, {3) = (a + b, ex + {3); 
(ii) f3(a, ex) = ({3a, f3cx); 
(iii) (a, cx)(b, {3) = (ab + cxb + f3a, cxf3). 
Define I I  (a, ex) I I  = I I  a I I  + l ex I . Then d1 with this norm and the algebraic 
operations defined in (i), (ii), and (iii) is a Banach algebra with identity (0, 1 )  
and at--+ (a, 0) is an isometric isomorphism of d into d 1 • 

PROOF. Only ( 1 .2) will be verified here; the remaining details are left to the 
reader. If (a, ex), (b, {3)Ed1 , then I I (a, cx) (b, {3) II = I I (ab + {3a + cxb, cxf3) II = I I  ab + 
f3a + cxb I I + l cxf3 1 � I I a I I  I I  b I I + I P i l l  a I I + I a i i i b I I + l cx i i P I  = I I (a, ex) I I  I I  (b, P> 1 1 . 

• 

1 .4. Example. If X is a compact space, then d = C(X) is a Banach algebra 
if (f g) (x) = f(x)g(x) whenever f, ged and x EX. Note that d is abelian and 
has an identity (the constantly 1 function). 

If X is completely regular and d = Cb(X), then d is also a Banach algebra. 
In fact, Cb(X) "-� C(f3X) (V.6) so that this is a special case of Example 1 .4. 
Another special case is lex) . 

1 .5. Example. If X is a locally compact space, d = C0 (X) is a Banach algebra 
when the multiplication is defined pointwise as in the preceding example. d 
is abelian, but if X is not compact, d does not have an identity. If X oo is 
the one-point compactification of X, then C(X 00 ) => C0 (X) and C (X 00 ) is a 
Banach algebra with identity. 

Note that c0 is a special case of Example 1 .5 .  

1 .6. Example. If (X, Q, p) is a a-finite measure space and d = L 00 (X, 0, p), 
y' 

then d is an abelian Banach algebra with identity if the operations are 
defined pointwise. 
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1 .7. Example. Let PI be a Banach space and put d = �(PI). If multiplication 
is defined by composition, then d is a Banach algebra with identity, 1 .  If 
dim PI � 2, d is not abelian. 

1 .8. Example. If PI is a Banach space and d = �0(PI), the compact operators 
on PI, then d is a Banach algebra without identity if dim PI =  oo. In fact, 
�0 (PI) is an ideal of �(PI). 

Note that a special case of Example 1 .7 occurs when d = Mn(F), the n x n 
matrices, where d is given the norm resulting when M n (F) is identified with 
�(JFn). 

1 .9. Example. Let G be a locally compact topological group and let 
M(G) = all finite regular Borel measures on G. If Jl, veM(G), define 
L: C0(G) -+ 1F  by 

L(f) = f f f(xy) dJL(x) dv(y) = f f f(xy) dv(y) dJL(x). 

Then L is a linear functional on C0 (G) and 

I L(f) I � f f I f (X y) I d I ll  I (X) d I v I  (y) 

� I I f I I I I �t i l I I v 1 1 . 
So Le C0 (G)* = M(G). Define Jl* v by L(f) = J f dJl * v for fin C0(G). That is, 

1.10 f f dJL* V = f f f(xy) dJL(x) dv(y). 

Note that I I Jl * V I I = I l L I I � I I Jt l l l l v l l . If follows that M(G) is a Banach algebra 
with this definition of multiplication. The product Jl * v is called the convolution 
of Jl and v. 

Let e = the identity of G and let be = the unit point mass at e. Iff eC0 (G), 
then 

f f dJL* be = f f f(xy) dJL(x) dbe(y) 

= f J(xe) dJL(X) 

= f fdJL. 

So Jl * be = Jl,; similarly, be * Jl = JL Hence be is the identity for M(G). 
· If x, yeG, then it is easy to check that bx * by = bxy and M(G) is abelian if 
and only if G is abelian. 
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1.1 1. Example. Let G be a a-compact locally compact group and let m = right 
Haar measure on G. That is, m is a non-negative regular Borel measure on 
G such that m(U) > 0 for every nonempty open subset U of G and 
J f(xy)dm(x) = J f(x)dm(x) for every f in Cc(G) (the continuous functions f: 
G -+  1F with compact support). If G is compact, the existence of m was 
established in Section V. l l . If G is not compact, m exists but its existence 
must be established by nonfunctional analytic methods. If G is not assumed 
to be a-compact, then a Haar measure exists but it is not regular in the sense 
defined in this book. (See Nachbin [ 1 965] .) 

If f, gEL1 (m), let Jl = fm and v = gm as in the proof of (V.8 . 1 ). Then 
Jl, VEM(G) and I I J.l l l = ll f l l 1 , l l v l l = l l g l l 1 . In fact, the Radon-Nikodym 
Theorem makes it possible to identify L1(m) with a closed subspace of M(G). 
Is it a closed subalgebra? 

Let c/> E C c( G). Then 

f f/JdJ1 * V = f f f/J(xy)f(x)g( y)dm(x)dm(y) 

= f g(y{f f/J(xy)f(x)dm(x) }m(y) 

= fg( y{f f/J(x)f(xy- 1 )dm(x)}m(y) 

= f f/J(x{ f f(xy- 1 )g(y)dm(y) }m(x) 

= f f/J(x)h(x)dm(x), 

where h(x) = J f(xy- 1 )g( y)dm( y), x in G. It follows that heL1(m) (see 
Exercise 4). Thus Jl * v = hm, so L1(m) is a Banach subalgebra of M(G). In fact, 
the preceding discussion enables us to define f •g in L1 (m) forf, g in L1 (m) by 

f • g(x) = f f(xy- 1 )g( y)dm(y). 

The algebra L1(m) is denoted by L1 (G). 
It can be shown that L1(G) is abelian if and only if G is abelian and L1 (G) 

has an identity if and only if G is discrete (in which case L1(G) = M(G)-what 
is m?). This algebra is examined more closely in Section 9. 

If { dJ is a collection of Banach algebras, let Et>odi = {ae0idi: for all 
c: > O, { i: l l a(i) l l � c:} is finite} . 

1.12. Proposition. If { dJ is a collection of Banach algebras, Et>odi and Et> oodi 
are Banach algebras. 

PROOF. Exercise. 
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EXERCISES 
1 .  Let d be an algebra that is also a Banach space and such that if aed, the maps 

x......_. ax and x......_. xa of d � s�  are continuous. Let d1 = d x IF as in 
Proposition 1 .3. If aed, define La: d 1 � d 1 by La(x, e) = (ax + ea, 0). Show that 
LaefJI(d d and if Ill a Ill = II La I I , then 11 · 111 is equivalent to the norm of d and d with 
11 · 111 is a Banach algebra. 

2. Complete the proof of Proposition 1 .3. 

3. Verify the statements made in Examples ( 1 .4) through ( 1 .9) and ( 1 . 1 1). 

4. Let G be a locally compact group. (a) If lfoeCc(G) and 8 > 0, show that there is an 
open neighborhood U of e in G such that I I  lfox - l/Jy I I  < 8 whenever xy - 1 e U. [Here 
lfox(z) = l/J(xz).] (b) Show that if f ell'( G), 1 � p < oo, and 8 > 0, there is an open 
neighborhood U of e in G such that l l fx -!Y l i P < 8 whenever xy - 1 e U. (c) Show 
that if f eL1(G) and geL00(G), h(x) = J f(xy - 1)g( y)dm(y) defines a bounded 
continuous function h: G � IF. (d) Iff, geL1(G) and h is defined as in (c), show that 
heL1(G). 

5. Prove Proposition 1 . 12. 

6. Let { di: ie/} be a collection of Banach algebras. (a) Show that $0di is a closed 
ideal of $00di. (b) Show that $ 00di has an identity if and only if each di has 
an identity. (c) Show that $0di has an identity if I is finite and each di has an 
identity. 

7. If X, Y are completely regular, show that Cb(X) $ 00Cb(Y) is isometrically 
isomorphic to Cb(X $ Y), where X $  Y is the disjoint union of X and Y. 

8. If X and Y are locally compact, show that C0(X)$ 00C0(Y) is isometrically 
isomorphic to C0(X $ Y). 

9. Let {Xi: ie/} be a collection of locally compact space� and let X =  the disjoint 
union of these spaces furnished with the topology { U c X: U n Xi is open in Xi 
for all i} . Show that X is locally compact and $0C0(Xi) is isometrically isomorphic 
to C0(X). 

§2. Ideals and Quotients 

If d is an algebra, a left ideal of d is a subalgebra .A of d such that axe.A 
whenever aed, xe.A. A right ideal of d is a sub�lgebra .A such that xae.A 
whenever aed, xe.A. A (bilateral) ideal is a subalgebra of d that is both 
a left ideal and a right ideal. 

If aed and d has an identity l , say that a is left invertible if there is an 
x in d with xa = 1 .  Similarly, define right invertible and invertible elements. 
If a is invertible and x, yed such that xa = 1 = ay, then y = 1y  = (xa)y = x(ay) = 
x l  = x. So if a is invertible, there is a unique element a - 1 such that 
aa - 1 = a- 1 a = 1 .  

If .A is a left ideal in d, ae.A, and a is left invertible, then .A =  d. In 
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fact, if xa = 1 ,  then 1 EJI since Jt is a left ideal. Thus for y in d, y = y1  EJI. 
This forms a link between ideals and invertibility. 

In the case of a Banach algebra some bonuses occur due to the interplay 
of the norm and the algebra. The results of this section will be for Banach 
algebras with an identity. To discuss invertibility this is, of course, the only 
feasible setting. For Banach algebras without an identity some analogous 
results can be obtained, however, by a consideration of the algebra obtained 
by adjoining an identity ( 1 .3). The concept of a modular ideal and a modular 
unit can also be employed (see Exercise 6). 

The next proof is based on the geometric series. 

2.1 .  Lemma. If d is a Banach algebra with identity and xEd such that 
II x - 1 II < 1 ,  then x is invertible. 

PROOF. Let y = 1 - x; so I I  y I I  = r < 1 .  Since I I yn I I  � I I  y I I  n = rn (Why?)� 
'L: 0 I I  yn I I  < oo. Hence z = 'L: 0 yn converges in d. If zn = 1 + y + y2 
+ . . . + yn, 

z n( 1 _ y) = ( 1 + y + . . . + yn) _ ( y + y2 + . . .  + Yn + 1 ) = 1 _ Yn + 1 . 

But I I  yn + 1 I I  � rn + 1 , so yn + 1 -+ 0 as n -+ oo . Hence z( 1 - y) = lim zn( 1  - y) = 1 .  
Similarly, ( 1 - y)z = 1 .  So ( 1 - y) is invertible and ( 1 - y) - 1 = z = L� yn. But 
1 - y = 1 - ( 1  - x) = x. • 

Note that completeness was used to show that � yn converges. 

2.2. Theorem. If d is a Banach algebra with identity, G1 = {a Ed: a is left 
invertible}, G, = {aEd: a is right invertible}, and G = {aEd: a is invertible}, 
then G, G,, and G are open subsets of d. Also, the map a�a- 1 of G -+  G is 
co11tinuous. 

PROOF. Let a0 EG1 and let b0 Ed such that b0a0 = 1 .  If I I  a - a0 I I  < I I  b0 I I  - 1 , 
then I I  b0a - 1 I I  = I I  b0(a - a0) I I  < 1 . By the preceding lemma, x = b0a is 
invertible. If b = x - 1b0, then ba = 1 .  Hence G1 � { a  Ed: I I  a - a0 I I < II b0 II - 1 } 
and G, must be open. Similarly, G, is open. Since G = Gi n G, (Why?), G is open. 

To prove that a�a- 1 is a continuous map of G -+  G, first assume that 
{an} is a sequence in G such that an -+ 1 .  Let 0 < b < 1 and suppose 
I I an - 1 II < b. From the preceding lemma, a; 1 = ( 1  - ( 1  - an)) - 1 = 
L� o( 1  - an)k = 1 + L� 1 ( 1  - an)k. Hence 

00 

I I  a; 1 - 1 I I  = L ( 1 - an)k 
k = 1 
00 

� L I I  1 - an I I  k 
k = 1 

< £5/( 1 - £5). 
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If B > 0 is given, then b can be chosen such that bl( 1 - b) <  B. So I I  an - 1 1 1 < b 
implies I I  a; 1 - 1 1 1 < B. Hence lim a; 1 = 1 .  

Now let aEG and suppose {an} is a sequence in G such that an -+ a. Hence 
a- 1an -+ 1 .  By the preceding paragraph, a; 1a = (a - 1an) - 1 -+ 1 .  Hence 
a; 1 = a; 1 aa - 1 --t a - 1 . • 

Two facts surfaced in the preceding proofs that are worth recording for 
the future. 

2.3. Corollary. Let d be a Banach algebra with identity. 

(a) If l l a - 1 1 1 < 1 ,  then a-1 = Lk 0 ( 1  - a)k. 
(b) If bo ao = 1 and I I  a - a0 I I  < I I  b0 1 1 - 1 ,  then a is left invertible. 

A maximal ideal is a proper ideal that is contained in no larger proper ideal. 

2.4. Corollary. If d is a Banach algebra with identity, then 

(a) the closure of a proper left, right, or bilateral ideal is a proper left, right, 
or bilateral ideal; 

(b) a maximal left, right, or bilateral ideal is closed. 

PROOF. (a) Let Jlt be a proper left ideal and let G1 be the set of left-invertible 
elements in d. It follows that Jlt n G1 = D. (See the introduction to this 
section.) Thus Jlt £ d\G1• By the. preceding theorem, d\G1 is closed. Hence 
cl Jlt £ d\G1; and thus cl Jlt =1= d. It is easy to check that cl Jlt is an ideal. 
The proof of the remainder of (a) is similar. 

(b) If Jlt is a maximal left ideal, cl Jlt is a proper left ideal by (a). Hence 
Jlt = cl Jlt by maximality. • 

If d does not have an identity, then d may contain some proper, dense 
ideals. For example, let d = C0(R). Then Cc(R), the continuous functions 
with compact support, is a dense ideal in C0(R). There is something that 
can be said, however (see Exercise 6). 

2.5. Proposition. If d is a Banach algebra with identity, then every proper left, 
right, or bilateral ideal is contained in a maximal ideal of the same type. 

The proof of the preceding prop6sition is an exercise in the application 
of Zorn's Lemma and is left to the reader. Actually, this is a theorem from 
algebra and it is not necessary to assume that d is a Banach algebra. 

Let d be a Banach algebra and let Jlt be a proper closed ideal. Note that 
diJit becomes an algebra. Indeed, (x + Jlt) ( y  + A) =  xy + Jlt is a 
well-defined multiplication on diJit. (Why?) 

- 2.6. Theorem. If d is a Banach algebra and Jlt is a proper closed ideal in .91, 
then .91 I .A is a Bana�h algebra. If .91 has an identity, so does .91 I .A. 
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PROOF. We have already seen that d/.A is a Banach space and, as was 
mentioned prior to the statement of the theorem, d I .A is an algebra. If 
x, yed and u, ve.A, then (x + u) ( y  + v) = xy + (xv + uy + uv)exy + .A. 
Hence I I  (x + .A)(y + .A) II = l l xy + .A ll � l l (x + u)( y + v) l l � l l x + u l l I I  y + v i i . 
Taking the infimum over all u, v in .A gives that I I  (x + .A)(y + .A) I I � l l x + .A ll 
I I y + .A I I . The remainder of the proof is left to the reader. • 

It may be that d/.A has an identity even if d does not. For example, 
let d = C0(R) and let .A =  { cf>eC0(R): cf>(x) = 0 when l x l � 1 } .  If c/>0EC0(R) 
such that c/>0(x) = 1 for l x l � 1 ,  then c/>0 + .A is an identity for dj.A. In fact, 
if c/>EC0(R), (c/>c/>0 - c/>)(x) = 0 if l x l � 1 .  Hence (c/> + .A)(c/>0 + .A) =  cf> + .A 
(see Exercises 6 through 9) . 

.. 
EXERCISES 
1 .  Let d be a Banach algebra and let !l' be all of the closed left ideals in d. If I 1 ,  

I 2 e!l', define I 1 v I 2 = cl (J 1 + I  2) and I 1 " I 2 = I 1 n I 2 •  Show that with these 
definitions !l' is a complete lattice with a largest and a smallest element. 

2. Let X be locally compact. For every open subset U of X, let J(U) = { cJ>eC0(X): 
cJ> = 0 on X\ U}. Show that U......,.. J( U) is a lattice monomorphism of the collection 
of open subsets of X into the lattice of close ideals of C0(X). (It is, in fact, surjective, 
but the proof of that should wait.) 

3. Let (X, Q, Jl) be a u-finite measure space and let I be an ideal in L 00(X, Q, Jl) that 
is weak* closed. Show that there is a set L\ in Q such that I =  { cJ>eL 00(X, Q, Jl): 
c/> = 0 a. e. on L\}.  

4. Let d = {[; �J a, peF} and let .H = {[� �J PeF}- Show that d is a 

Banach algebra and .A is a maximal ideal in d. 

5. Show that for n � 1 ,  M "(<C) has no nontrivial ideals. How about M iR)? 

6. Let d be a Banach algebra but do not assume that d has an identity. If I is a 
left ideal of d, say that I is a modular left ideal if there is a u in d such that 
d(1 - u) = {a - au: aed} c I; call such an element u of d a right modular unit 
for I. Similarly, define right modular ideals and left modular units. Prove the 
following. (a) If u is a right modular unit for the left ideal I and uel, then I =  d. 
(b) Maximal modular left ideals are maximal left ideals. (c) If I is a proper modular 
left ideal, then I is contained in a maximal left ideal. (d) If I is a proper modular 
left ideal and u is a modular right unit for I, then I I u - x I I � 1 for all x in I and 
cl I is a proper modular left ideal. (e) Every maximal modular left ideal of d is 
closed. 

7. Using the terminology of Exercise 6, let I be an ideal of d. Show: (a) if u is a 
right modular unit for I and v is a left modular unit for I, then u - vel. (b) If I 
is closed, d 1 I has an identity if and only if there is a right modular unit and a 
left modular unit for I. Call an ideal I such that d I I has an identity a modular 
ideal. An element u such that u + I is an identity for d I I is called a modular 
identity for I. 
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8. If d is a Banach algebra, a net { e;} in d is called an approximate identity for 
d if sup; I I  ei I I  < oo and for each a in d, eia -+ a and aei -+ a. Show that d has 
an approximate identity if and only if there is a bounded subset E of d such 
that for every e > 0 and for every a in d there is an e in E with 
I I  ae - a II + I I ea - a II < e. See Wichmann [ 1 973] for more information. 

9. Show that if X is locally compact, then C0(X) has an approximate identity. 

10. If Jf is a Hilbert space, show that &10(£) has an approximate identity. 

1 1 . If G is a locally compact group, show that L1(G) ( 1 . 1 1 )  has an approximate identity. 
[Hint: Let rJU = all neighborhoods U of the identity e of G such that cl U is 
compact. Order rJU by reverse inclusion. For U in OU, let fu = m(U) - 1Xu· Then 
{fu: U erJU} is an approximate identity for L1(G).] 

1 2. For 0 < r < 1 ,  let P,: oD -+ [0, 00) defined by P,(z) = L:= - <X)rln lzn (the Poisson 
kernel). Show that { P,} is an approximate identity for L1(oD) (under convolution). 

1 3 . If Jf is a Hilbert space and P is a projection, show that &10(Jf)P is a closed 
modular left ideal of &10(£). What is the associated right modular unit? 

14. Find the minimal proper left ideals of M "(F). 

1 5. Find the minimal closed proper left ideals of &10(£), Jf a Hilbert space. How 
about for &10(�), � a  Banach space? 

16. What are the maximal modular left ideals of &10(£), Jf a Hilbert space? 

§3 .  The Spectrum 

3.1. Definition. If d is a Banach algebra with identity and aed, the spectrum 
of a, denoted by a(a), is defined by 

a(a) = {exeF': a - ex  is not invertible} .  

The left spectrum, a1(a), is the set { exeF': a - ex is not left invertible}; the right 
spectrum, a,(a), is defined similarly. 

The resolvent set of a is defined by p(a) = F'\a(a). The left and right 
resolvents of a are p1(a) = F'\a1(a) and p,(a) = F'\a,(a). 

3.2. Example. Let X be compact. If f eC(X), then a(f) = f(X). In fact, if 
ex =  f(x0), then f - ex has a zero and �annot be invertible. So f(X) c a(f). On 
the other hand, if ex¢f(X), f - ex is a nonvanishing continuous function on 
X. Hence (f - ex) - 1 eC(X) and so f - ex is invertible. Thus ex¢a(f). 

3.3. Example. If PI is a Banach space and A e�(PI), then a( A) = { exeF': either 
ker(A - ex) =I= (0) or ran (A - ex) =1= PI} . In fact, this means that p(A) = F'\a(A) = 
{ exeF': A - ex is bijective}. If exep(A), there is an operator T in &�(PI) such that 

· T(A - ex) = (A - ex)T = 1 ;  clearly, A - ex is bijective. On the other hand, if 
A - ex is bijective, (A - ex) - 1 eat(�) by the Inverse Mapping Theorem. 
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3.4. Example. If Jt is a Hilbert space and AE&I(Jt), then u1(A) = {ex ElF: 
inf{ II (A - ex)h I I : I I h I I = 1 }  = 0}. In fact, suppose BE&I(Jt) such that 
B(A - ex) = 1 .  If I I  h I I = 1 ,  then 1 = I I h I I = I I B(A - ex)h II � I I B 1 1 1 1 (A - ex)h 1 1 . So 
I I (A - ex)h II � II B I I - 1 whenever I I  h I I  = 1 .  

Conversely, suppose I I  (A - ex)h I I  � b > 0 whenever I I h I I  = 1 .  Note that 
ker(A - ex) = (0). It will now be shown that ran(A - ex) is closed. In fact, assume 
that (A - ex)f,. -+ g. Then b 1 1 /,. - fm I I � I I (A - ex)(/,. - fm) I I = I I (A - ex)f,. 
(A -ex)fm l l - Thus {!,.}  is a Cauchy sequence. Let f,. -+f. Then 
g = lim(A - ex)f,. = (A - ex)f; hence gEran(A - ex). Let $' = ran(A - ex); so 
(A - ex): Jt -+  $' is a bijection. Thus (A - ex) - 1

: $' -+  Jt is bounded. Define 
B: Jt -+ :Yt  by letting B(k + h) =  (A - ex)- 1k when kE% and hE .ffj_. Thus 
BE&I(Jt) and B(A - ex) = 1 .  

[0 - 1] 3.5. Example. If d = M 2(R) and A =  
1 0 

, then a( A)= 0. In fact, A - ex 

is not invertible if and only if 0 = det (A - ex) =  ex2 + 1 ,  which is impossible 
in R. 

The phenomenon of the last example does not occur if d is a Banach 
algebra over <C. 

3.6. Theorem. If d is a Banach algebra over <C with an identity, then for each 
a in d, a( a) is a nonempty compact subset of <C. Moreover, if l ex l > II a I I , ex¢u(a) 
and zr--+-(z - a) - 1  is an d -valued analytic function defined on p(a). 

Before beginning the proof, a few words on vector-valued analytic 
functions are in order. If G is a region in <C and f£ is a Banach space, define 
the derivative of f: G -+  f£ at z0 to be limh-+O h - 1  [f(z0 + h) - f(z0)] if the 
limit exists. Say that f is analytic if f has a continuous derivative on G. The 
whole theory of analytic functions transfers to this situation. The statements 
and proofs of such theorems as Cauchy's Integral Formula, Liouville's 
Theorem, etc., transfer verbatim. Also, f: G -+  f£ is analytic if and only if for 
each z0 in G there is a sequence x0, x 1 , x2, • • •  in f£ such that 
f(z) = L�- o(Z - zotxk whenever Z EB(zo; r), where r = dist (zo, oG). Moreover, 
the convergence is uniform on compact subsets of B(z0; r). 

There is also a way of obtaining the vector-valued case as a consequence of 
the scalar-valued case (see Exercise 4). 

PROOF OF THEOREM 3.6. If l ex I > I I a I I , then ex - a =  ex( 1 - a/ex) and II a/ex I I < 1 .  
By Corollary 2.3, ( 1  - a/ex) is invertible. Hence ex - a is invertible and so 
ex¢u(a). Thus a( a) c { ex E<C: I ex I � II a I I } and a( a) is bounded. 

Let G be the set of invertible elements of d. The map exr--+-(ex - a) is a 
continuous function of <C -+  d. Since G is open and p(a) is the inverse image 
of G under this map, p(a) is open. Thus a( a) = <C\p(a) is compact. 

Define F: p(a) -+ .91 by F(z) = (z - a) - 1 • In the identity x - 1 - y- 1 = 
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x - 1( y - x)y - 1 , let x = (ex +  h - a) and y =  (ex - a), where exep(a) and he<L such 
that h #- 0 and ex + hep(a). This gives 

F(ex + h) - F(ex) (ex + h - a) - 1( - h)( ex - a) - 1 
-

h h 

= - (ex + h - a) - 1 (ex - a) - 1 • 

Since (ex + h - a) - 1 ----+ (ex - a) - 1 as h ----+ 0, F'(ex) exists and 

F'(ex) = - (ex - a) - 2. 

Clearly F': p(a) ----+ d is continuous, so F is analytic on p(a). 
From the first paragraph of the proof and Corollary 2.3, if I z I > I I  a I I , then 

F(z) = z - 1 ( 1 - ajz) - 1 . But as z ----+ oo, ( 1 - ajz) ----+ 1 and so ( 1 - ajz) - 1 ----+ 1 .  Thus 
F( z) ----+ 0 as z ----+ oo . 

Therefore if p(a) = <L, F is an entire function that vanishes at oo. By 
Liouville's Theorem F is constant. Since F' #- 0, this is a contradiction. Thus 
p(a) #- <L, or u(a) #- 0.  • 

Because the spectrum of an element of a complex Banach algebra is not 
empty, the following assumption is made. 

Assumption. Henceforward, all Banach spaces and all Banach algebras are 
over <L. 

3.7. Definition. If d is a Banach algebra with identity and aed, the spectral 
radius of a, r( a), is defined by 

r( a) = sup{ I ex I :  ex e u( a) } .  v-

Because u(a) #- D and is bounded, r(a) is well defined and finite; because u(a) 
is compact, this supremum is attained. 

Let d = M2(C[) and let A = [� �J Then A2 = 0  and u(A) = {O} ; so 

r(A) = 0. So it is possible to have r(A) = 0 with A #- 0. 

3.8. Proposition. If d is a Banach algebra with identity and aed, lim I I  an I I  1 1n 
exists and 

• 

r(a) = lim I I  an I I  l /n. � 

PROOF. Let G = {ze<L: z = 0 or z - 1 ep(a) } .  Define f: G ----+ d by f(O) = 0 and 
for z #- 0, f(z) = (z - 1 - a) - 1 • Since (a - ex) - 1 ----+ 0 as ex ----+ oo, f is analytic on 
G, and so f has a power series expansion. In fact, by Corollary 2.3, for 
l z l < l l a l l - 1 , 

00 00 

f(z) = L anf(z - 1 )n + 1 = z L znan. 
n = O n = O  
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From complex variable theory, this power series converges for I z I < 
R = dist (O,oG) = dist (O, u(a) - 1 ) (Here u(a) - 1 = {z- 1 : zeu(a) }). Thus R = , 
inf { l a l : a - 1 Eu(a) } = r(a) - 1 . Also, from the theory of power series, 
R - 1 = lim sup I I an l l 1 1n . Thus 

r(a) = lim sup II a" l l 1 1n. 

Now if ae<C and n � 1 , an - an = (a - a) (an - 1 + an - 2a + · · · + a" - 1 ) =  
(an - 1 + an - 2a + . . .  + an - 1 ) (a - a). So if an - an is invertible, a - a is invertible 
and (a - a) - 1 = (a" - an) - 1 (an - 1 + · · ·  + an - 1 ). So for a in u(a), a" - an is not 
invertible for every n � 1 .  By Theorem 3.6, l a i n � II a" 1 1 . Hence I a I � I I an l l 1 1n 

for all n � 1 and a in u(a). So if aeu(a), I a I � lim inf II an l l 1 1n. Taking the 
supremum over all a in u(a) gives that r(a) � lim inf l l an l l 1 1n � lim sup l l a" l l 1 1n = 
r(a). So r(a) = lim I I  an l l 1 1n . • 

3.9. Proposition. Let d be a Banach algebra with identity and let aed. 

(a) If aep(a), then dist (a, u(a)) � I I (a - a) - 1 1 1 - 1 . 
(b) If a, pep( a), then 

(a - a) - 1 - (P - a) - 1 = (P - a)(a - a) - 1 (P - a) - 1 

= (p - a) (p - a) - 1 (a - a) - 1 . 

PROOF. (a) By Corollary 2.3, if aep(a) and I I x - (a - a) I I  < I I (a - a) - 1 I I - 1 , x · 

is invertible. So if Pe<C and I P I  < l l (a - a) - 1 1 1 - 1 , (p + a - a) is invertible; that 
is, a + pep(a). Hence dist (a, u(a)) � I I  (a - a) - 1 l l - 1 . (b) This follows by letting 
x = a - a  and y = P - a  in the identity x - 1 - y- 1 = x- 1 ( y - x)y- 1 = 
y - 1 ( y - x)x - 1 . • 

The identity in part (b) of the preceding proposition is called the resolvent 
identity and the function aH(a - a) - 1 of p(a) -+ d is called the resolvent of a. 

EXERCISES 
1 .  Let S be the unilateral shift on 12 (11.2. 10). Show that S is left invertible but not 

right invertible. 

2. If d is a Banach algebra wi_th identity and aed and is nilpotent (that is, a" = 0 
for some n), then u(a) = {0} . 

3. Let (X, Q, Jl) be a u-finite measure space and let d = L00(X, Q, Jl) ( 1 .6). If c/>ed, 
show that the following are equivalent: (a) cxeu(cJ>); (b) 0 = sup {inf{ l c/>(x) - cx l : 
xeX\�}: �en and Jl(�) = 0} ;  (c) if e > 0, Jl( {xeX: l c/>(x) - cx l  < e} ) > 0; (d) if v is 
the measure defined on the Borel subsets of <C by v(�) = Jl( 4>- 1 (�) ), then ex e the 
support of v. 

4. If G is an open subset of <C and f: G --+  PI is a function such that for each x* in 
PI*, x* o f: G --+  <C is analytic, then f is analytic. If the word "continuous" is 
substituted for both occurrences of the word "analytic", is the preceding statement 
still true? 
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5. If .91 is a Banach algebra with identity, {an} £ .91, an --+ a, �nea(an), and �n --+ �, then 
cxea(a). 

6. If .91 is a Banach algebra with identity and r: .91 --+  [0, oo) is the spectral radius, 
show that r is upper semicontinuous. If aed such that r(a) = 0, show that r is 
continuous at a. 

7. If .91 is a Banach algebra with identity, a, bed, and � is a nonzero scalar such 
that (� - ab) is invertible, show that (� - ba) is invertible and (� - ba) - 1 = 
�- 1 + � - 1b(� - ab) - 1a. Show that a(ab) u {0} = a(ba) u {0} and give an example 
such that a(ab) ¥= a(ba). 

§4. The Riesz Functional Calculus 

Before coming to the main course of this section, it is necessary to have an 
appetizer from complex analysis. Many of these topics can be found in 
Conway [1 978] with complete proofs. Only a few results are presented here. 

If y is a closed rectifiable curve in <C and a¢ { y} = { y(t): 0 � t � 1 } , then 
the winding number of y about a is defined to be the number 

n(y; a) = � f 1 dz. 
2nz Y z - a 

The number n(y; a) is always an integer and is constant on each component 
of <C\{y} and vanishes on the unbounded component of <C\{y}. 

Let G be an open subset of <C and let fi be a Banach space. If f: G � fi 
is analytic and x* ef£*, then z �--+> (f(z), x* ) is analytic on G and its derivative 
is (f '(z), x* ) . By Exercise 4 of the preceding section, iff: G � fi is a function 
such that z �--+> (f(z), x* ) is analytic for each x* in f£*, thenf: G � fi is analytic. 
These facts will help in discussing and proving many of the results below. 

If y is a rectifiable curve in G and f is a continuous function defined in a 
neighborhood of { y} with values in f£, then J Yf can be defined as for a 
scalar-valued f as the limit in fi of sums of the form 

L [y(t) - y(tj _ 1 )Jf(y(tj)), j 
where { t0, t 1 , • • • , tn} is a partition of• [O, 1] .  Hence JYf = J�f(y(t))dy(t)ef£. It 
is easy to see that for every x* in f£*, < JYf, x*) = JY<f( · ), x* ) . 

4.1 .  Cauchy's Theorem. If fi is a Banach space, G is an open subset of <C, f: 
G � !!t is an analytic function, and y 1 , • • • , Ym are closed rectifiable curves in G 
such that 'Lj- 1n(yi; a) = Ofor all a in <C\G, then 'Lj 1 Jy1f = 0. 

- PROOF. If x*ef£*, then (L,j_ 1 Jy1/, x* ) = L,j 1 Jy1 (/( · ), x* ) = 0 by the 
scalar-valued version of Cauchy's Theorem. Hence L,j_ 1 J YJ! = 0. • 
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4.2. Cauchy's Integral Formula. If fi is a Banach space, G is an open subset of 
<L,f: G � fi is analytic, y is a closed rectifiable curve in G such that n(y; a) = 0 
for every a in <L\G, and A.eG\{y} , thenfor every integer k � O, 

k ! f 
n(y; A.)fJk>(A.) = -. (z - A.) - <k + 1 > f(z)dz. 

· 2nz )' 

4.3. Definition. _A closed rectifiable curve y is positive I y oriented if for every 
a in G\ {y } , n(y; a) is either 0 or 1 .  In this case the inside of y, denoted by 
ins y, is defined by 

ins y = { ae<L\ {y } :  n(y; a) = 1 } .  

The outside of y, denoted by out y, is defined by 

out y = { ae<L\ {y } :  n(y; a) = 0 } .  

Thus <L = {y} u ins y u out y. 
A curve y: [0, 1 ]  � <r is simple if y(s) = y(t) implies that either s = t or s =  0 

and t = 1 .  The Jordan Curve Theorem says that if y is a simple closed 
rectifiable curve, then <L\ {y} has two components and {y} is the boundary 
of each. Hence n(y; a) takes on only two values and one of these must be 0; 
the other must be + 1 .  

If r = {y 1 , • . .  , Ym} is a collection of closed rectifiable curves, then r is 
positively oriented if: (a) {Yi} n {yi} = D for i "# j; (b) for a in <L\Uj 1 {yi} ,  
n(r; a) = Lj 1 n(yi; a) is either 0 or 1 ;  (c) each Yi is a simple curve. The inside 
of r, ins r, is defined by 

ins r � {a: n(r; a) = 1 } .  

The outside of r, out r, is defined by 

out r = {a: n(r; a) = 0} . 

Let {r} = u{yi: 1 � j � m}. 

4.4. Proposition. If G is an open subset of <L and K is a compact subset of G, 
then there is a positively oriented system of curves r = {y 1 , • . •  , Ym} in G\K 
such that K c ins r and <L\G c out r. The curves y 1 , • • •  ,ym can be found such 
that they are infinitely differentiable. 

The proof of this proposition can be found on p. 1 95 of Conway [ 1 978], 
though some details are missing. 

If r = { y 1 , . • .  , y m} and each y i is rectifiable, define 

whenever f is continuous in a neighborhood of {r} . 
Let d be a Banach algebra with identity and let aed. One of the principal 
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uses of Proposition 4.4 in this book will occur when K = u(a). Iff: G --+  <C is 
analytic and u(a) c G, we will define an element f(a) in .91 by 

4.5 f(a) = � r f(z)(z - a) - 1dz 2nz J r 
where r is as in Proposition 4.4 with K = u(a). But first it must be shown 
that (4.5) does not depend on the choice of r. That is, it must be shown that 
f (a) is well defined. 

4.6. Proposition. Let .91 be a Banach algebra with identity, let aed, and let 
G be an open subset of <C such that u(a) c G. If r = {y 1 , • • •  , Ym} and 
A =  { A. 1 , • • •  , A.k} are two positively oriented collections of curves in G such that 
u(a) c ins r c G and u(a) c ins A c G and iff: G --+  <C is analytic, then 

L f(z)(z - a) - 1dz = L f(z)(z - a) - 1dz. 

PROOF. For 1 � j � k, let Ym +  i = ;,i- 1 ; that is, Ym+  i(t) = A.i( 1 - t) for 0 � t � 1 .  
If z¢G\u(a), then either ze<C\G or  zeu(a). If ze<C\G, then Lj+

1
kn(yi; z) = 

n(r; z) - n(A; z) = 0 - 0 = 0. If zeu(a), then Lj-
+
1
k n(yi; z) = n(r; z) - n(A; z) = 

1 - 1 = 0. Thus I: =  {yi: 1 � j � m + k} is a system of closed curves in 
U = G\u(a) such that n(I:; z) = 0 for all z in <C\ U. Since ZH f(z) (z - a) - 1 is 
analytic on U, Cauchy's Theorem implies 

0 = 1 /(z) (z - a) - 1 dz = L f(z) (z - a) - 1dz - L f(z) (z - a) - 1dz. • 

As was pointed out before, Proposition 4.6 implies that ( 4.5) gives a 
well-defined element f(a) of .91 whenever f is analytic in a neighborhood of 
u(a). Let Hol (a) = all of the functions that are analytic in a neighborhood of 
u(a). Note that Hol (a) is an algebra where if f, geHol(a) and f and g have 
domains D(f) and D(g), then fg and f + g have domain D(f) n D(g). Hol (a) 
is not, however, a Banach algebra. 

4.7. The Riesz Functional Calculus. Let .91 be a Banach algebra with identity 
and let aed. 

(a) The map fH f(a) of Hol (a) --+ .91  is an algebra homomorphism. 
(b) If f(z) = L� o(lkzk has radius of. convergence > r(a), then f E Hol(a) and 

f(a) = L� o(lka
k. 

(c) If f(z) = 1 ,  then f(a) = 1 .  
(d) If f(z) = z for all z, f(a) = a. 
(e) Iff, f1 , /2 , • • •  are all analytic on G, u(a) c G, and fn(z) --+ f(z) uniformly on 

compact subsets of G, then l l fn(a) -f(a) l l --+ 0  as n -+  oo . 

. PROOF. (a) Let f, geHol (a) and let G be an open neighborhood of u(a) on 
which both f and g are analytic. Let r be a positively oriented system of 
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closed curves in G such that u(a) c ins r. Let A be a positively oriented system 
of closed curves in G such that (ins r) u {r} = cl (ins r) c ins A. Then 

f(a)g(a) = - 4:2 [L f(z) (z - a) - 1dz J[Lo(()(( - a) - 1 d( J 
= - � r I f(;)g(()(z - a) - 1(( - a) - 1d(dz 4n Jr  A 

[by (3.9b)] = � �  r I f(z)g(()[ (z - a) - 1 - (, - a) - 1 Jd,dz 4n J r  A ( - z 
= - � r f(z)[ I g(() d(] (z - a) - 1dz 4n J r  A ( - z 

+ �I g(()[ r f(z) dz] (' _ a) - 1d(. 4n A J r  ( - z 
But for ( on A, (eout r and hence Jr[f(z)/(( - z)]dz = 0 (Cauchy's Theorem). 
If ze {r} ,  then zeins A and so JA[g(()/(( - z)]d( = 2nig(z). Hence 

f(a)g(a) = � I f(z)g(z)(z - a) - 1 dz 2nz r 
= (fg) (a). 

The proof that (rxf + f3g) (a) = rxf(a) + f3g(a) is left to the reader. 
(c) and (d). Let f(z) = zk, k � 0. Let y(t) = R exp (2nit), 0 � t � 1 , where 

R >  l l a l l .  So u(a) c ins y, and bene� 

f(a) = � f zk(z � a) - 1dz 2nz Y 

= � f zk - 1 ( 1 - a) - ldz 2nz Y z 
= � f zk - 1 f anjzndz, 2nz y n = O  

since I I afz I I  < 1 for l z l = R. Since this infinite series converges uniformly for 
z on y, 

If n # k, then z - <n - k + 1 >  has a primitive and hence Jyz - <n - k + 1 >dz = 0. For 
n = k this integral becomes Jyz - 1  dz = 2ni. Hence f(a) = ak. 

(e) Let r = { y 1 , • • •  , Ym} be a positively oriented system of closed curves in 
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G such that u(a) c ins r. Fix 1 � k � m; then 

f fn(z)(z - a) - 1 dz - f f(z)(z - a) - 1dz 
Yk Yk 

= Ll [fn(Yk(t)) -f(yk(t))] [yk(t) - a] - 1dyk(t) 

:;;;; f lfn(Yk(t)) -f(yk(t)) l l l [yk(t) - a] - 1 l l d l yk l (t). 

203 

Now tr-+ II [yk(t) - a] - 1 I I  is continuous on [0, 1] and hence bounded by some 
constant, say M. Thus 

f fn(z)(z - a) - 1dz - f f(z)(a - a) - 1dz 
Yk Yk 

� M I I Yk I I  max { lfn(z) - f(z) l : ze {yk } }, 

where I I  Yk I I  is the total variation (length) of Yk· By hypothesis it follows that 
I I  fn( a) -f (a) I I  � 0 as n � oo . 

(b) If p(z) = L�= o�kzk is a polynomial, then (a), (c), and (d) combine to 
give that p(a) = L� = o�kak. Now letf(z) = L� o�kz

k have radius of convergence 
R > r(a), the spectral radius of a. If Pn(z) = L�= o�kzk, Pn(z) � f(z) uniformly 
on compact subsets of {z: l z l < R} .  By (e), Pn(a) � f(a). So (b) follows. • 

The Riesz Functional Calculus is used in the study of Banach algebras 
and is especially useful in the study of lin�ar operators on a Banach space 
(Sections 6 and 7). Now our attention must focus on the basic properties of 
this functional calculus. The first such property is its uniqueness. 

' 

4.8. Proposition. Let .91 be a Banach algebra with identity and let aed. Let 
r: Hol (a) � .91 be a homomorphism such that (a) r( 1 )  = 1 ,  (b) r(z) = a, (c) if {fn} 
is a sequence of analytic functions on an open set G such that u(a) c G and 
fn(z) � f(z) uniformly on compact subsets of G, then r(fn) � r(f). Then 
r(f) = f(a) for every f in Hol(a). 

PROOF. The proof uses Runge's Theorem (111.8. 1 ), but first it must be shown 
that r(f) = f(a) whenever f is a rational function. If n � 1 ,  r(z") = r(z)" = a"; 

• 

hence r(p) = p(a) for any polynomial p. Let q be a polynomial such that q 
never vanishes on u(a), so 1/qeHol (a). Also, 1 = r( 1 )  = r (q · q - 1 ) = r(q)r(q - 1 ) = 
q(a)r(q - 1 ). Hence q(a) is invertible and q(a) - 1 = r(q - 1 ). But using the Riesz 
Functional Calculus, a similar argument shows that q(a) - 1 = ( 1/q) (a). Thus 
r(q - 1 ) = ( 1/q)(a). Therefore if f = pjq, where p and q are polynomials and q 
never vanishes on u(a), r(f) = r(p · q - 1 ) = r(p)r(q - 1 ) = p(a)( 1jq)(a) = f(a). 

_ Now let f eHol (a) and suppose f is analytic on an open set G such that 
u(a) c G. By Runge's theorem there are rational functions {in} in Hol (a) such 
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that fn(z) � f(z) uniformly on compact subsets of G. By (c) of the hypothesis, 
t(fn) � t(f). But t(fn) = fn(a) and fn(a) � f(a) by (4.7e). Hence t(f) = f(a). • 

A fact that has been implicit in the manipulations involving the functional 
calculus is that f(a) and g(a) commute for all f and g in Hol (a). In fact, if t :  
Hol(a) � d is defined by t(f) = f(a), then f(a)g(a) = t(f g) =  t(gf) = g(a)f(a). 
Still more can be said. 

4.9. Proposition. If a, bed, ab = ba, and f E Hol(a), then f(a)b = b f(a). 

PROOF. An algebraic exercise demonstrates thatf(a)b = bf(a) iff is a rational 
function with poles ofT u(a). The general result now follows by Runge's 
Theorem. • 

4.10. The Spectral Mapping Theorem. If aed and f E Hol(a), then 

u(f(a)) = f(u(a)). / 

PROOF. If �eu(a), let ge Hol (a) such that f(z) - f(�) = (z - �)g(z). If it were 
the case that f(�)¢u(f(a)), then (a - �) would be invertible with inverse 
g(a)[f(a) - f(�)] - 1 • Hence f(�)eu(f(a)); that is, f(u(a)) c u(f(a)). 

Conversely, if f3¢f(u(a)), then g(z) = [f(z) - {3] - 1 eHol (a) and so 
g(a)[f(a) - {3] = 1 .  Thus f3¢u(f(a)); that is, u(f(a)) c f(u(a)). • 

This section closes with an application of the functional calculus that is 
typical. 

4.1 1 . Proposition. Suppose aed and u(a) = F 1 u F 2, where F 1 and F 2 are 
disjoint nonempty closed sets. Then there is a nontrivial idempotent e in d 
such that 

(a) if ba = ab, then be = eb; 
(b) if a 1 = ae and a2 = a( 1 - e), then a =  a 1 + a2 and a1a2 = a2a 1 = 0; 
(c) u(a 1) = F 1 u {0}, u(a2) = F 2 u {0} . 

PROOF. Let G 1 , G2 be disjoint open subsets of ([ such that Fi c Gi, j = 1 ,  2. 
Let r be a positively oriented system of closed curves in G 1 such that 
F 1 c ins r, F 2 c out r. If f = the characteristic function of G1 , f eHol(a); let 
e = f(a). Since f2 = f, e2 = e. Part (a) follows from (4.9). 

Note that e( 1 - e) = 0 = ( 1  - e)e. Hence (b) is immediate. Let f1 (z) = zf(z), 
f2(z) = z( 1 - f(z)). It follows from (4.7a) that ai = fi(a), j = 1 ,  2. Hence the 
Spectral Mapping Theorem implies that u(ai) = fi(u(a)) = Fiu {0} . The proof 
that e is neither 0 nor 1 is left to the reader. • 

Part (c) of the preceding proposition has the somewhat unattractive 
conclusion that u(a 1 ) = F 1 u {0} . It would be much neater if the conclusion 
were that u(a1 ) = F 1 • This is, in a sense, the case. Since a1 ( 1  - e) = 0 and 
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1 - e "# 0, a 1 cannot be invertible. However, consider the algebra d 1 = {bed: 
ab = ba and be = eb = b} . It is left to the reader to show that d 1 is a Banach 
algebra and e is the identity for d 1 . If a 1 is considered as an element of the 
algebra d 1 ,  then its spectrum as an element of d 1 is F 1 • This is an illustration 
of how the spectrum depends on the Banach algebra (the subject of the next 
section; also see Exercise 9). 

EXERCISES 
1 .  Let d = C(X), X compact (see Example 3.2). If ge C(X) and feHol (g), show that 

J(g) = fog. 

2. Let a be a nilpotent element of d. For f, g in Hol(a), give a necessary and 
sufficient condition on f and g that f(a) = g(a). 

3. Let d ;:;  1 and let AeMd(<C). Give a necessary and sufficient condition on f in 
Hol (A) such that f(A) = 0. (Hint : Consider the Jordan canonical form for A.) 

4. If d is a Banach algebra with identity, aed, f eHol (a), and g is analytic in a 
neighborhood of f(a(a)), then g o  feHol(a) and g(f(a)) = go  f(a). 

5. If PI is a Banach space, A efJl(Pl'), and Jt � PI  such that (A - �) - 1 Jt £ Jt for all 
� in p(A), show that f(A)Jt £ Jt whenever f e Hol(A). 

6. If PI is a Banach space, AefJl(Pl'), and feHol(A), show that f(A)* = f(A*). (See 
(6. 1 )  below.) 

-

7. If Je is a Hilbert space, A efJl(Je), and f e Hol(A), show that f(A)* = f(A *), where 
f(z) = f(z) (See (6. 1 )  below.) 

-

8. If Je is a Hilbert space, A is a normal operator on Je, and f e Hol (A), show that 
f(A) is normal. 

9. Let PI be a Banach space and let A efJl(Pl'). Show that if a( A) = F 1 u F 2 where 
F 1 , F 2 are disjoint closed subsets of <C, then there are topologically complementary 
subspaces P£1 , P£2 of PI such that (a) BPI'j £ Prj (j = 1 ,  2) whenever BA = AB; (b) if 
A j = A  I Prj, a( A j) = Fj; (c) there is , an invertible operator R: PI -+  P£1 l£B1 P£2 such 
that RAR - 1 = A 1 l£B A2 • 

10. Let A eMd(<C), a(A) = {� 1 , • • •  , �" } , where �i =F �j for i =F j. Show that for 1 �j  � n 
there is a matrix A j in M dj (<C) such that a( A j) = { �j } and A is similar to 
A 1 l£fJ • • · tB An. 

1 1 . If d is a Banach algebra, I is an ideal of d (not necessarily closed), ael, and 
feHol(a) such that f(O) = 0, show that f(a)el . 

• 

§5. Dependence of the Spectrum on the Algebra 

If aD = {ze<C: l z l = 1 }, let 81 = the uniform closure of the polynomials in 
C(aD). (Here "polynomial" means a polynomial in z.) If d = C(aD), then 
the spectrum of z as an element of d is aD (Example 3.2). That is, 

(J .. c�(z) = an. 



206 VII. Banach Algebras and Spectral Theory 

Now zErJI and so it has a spectrum as an element of this algebra; denote 
this spectrum by u �(z). There is no reason to believe that u �(z) = u s�(z). In 
fact, they are not equal. 

5.1. Example. If rJI = the closure in C(a[)) of the polynomials in z, then 
u �(z) = cl [). 

To see this first note that II z II = 1 ,  so that u .sf(z) c cl [) by Theorem 3 .6. 
If I A. I � 1 and A.¢u.'M(z), there is an f in rJI such that (z - A.)f = 1 .  Note that 
this implies that I A. I < 1 .  Because f ErJI, there is a sequence of polynomials 
{Pn } such that Pn -+ f uniformly on a[). Thus for every e > 0 there is a N 
such that for m, n ?:; N, e >  I I Pn - Pm l l aD = sup { I Pn (z) - pn(z) l : zEa[)} . By the 
Maximum Principle, e > I I  Pn - Pm l l ct D for m, n '?:; N. Thus g(z) = lim Pn(z) is 
analytic on [) and continuous on cl [); also, g I a[) = f. By the same argument, 
since Pn(z) (z - A.) -+ 1 uniformly on a[), Pn(z) (z - A.) -+ 1 uniformly on [). Thus 
g(z) (z - A.) = 1 on [). But 1 = g(A.) (A. - A.) = 0, a contradiction. Thus, 
cl [) c u .sf(z). 

Thus the spectrum not only depends on the element of the algebra, but 
also on the algebra. Precisely how this dependence occurs is given below, 
but it can be said that the example above is typical, both in its statement 
and its proof, of the general situation. To phrase these results it is necessary 
to introduce the polynomially convex hull of a compact subset of <C. 

5.2. Definition. If A is a set and f: A -+ <C, define 

I I f I I A = sup { l f(z) l : zEA } .  

If K is a compact subset of <C, define the polynomially convex hull of K to 
be the set KA given by 

KA = {zE<C: l p(z) l � I I  p I l K for every polynomial p}. 

The set K is polynomially convex if K = KA . 

Note that the polynomially convex hull of a[) is cl [). This is, again, quite 
typical . If K is any compact set, then <C\K has a countable number of 
components, only one of which is unbounded. The bounded components are 
sometimes called the holes of K; a few pictures should convince the reader 
of the appropriateness of this terminology. 

-

5.3. Proposition. If K is a compact subset of <C, then <C\KA is the unbounded 
component of <C\K. Hence K is polynomially convex if and only if <C\K is 
connected. 

PROOF. Let U 0 , U 1 , . . .  be the components of <C\K, where U 0 is unbounded. 
Put L = <C\ u 0 ; hence L = K u u := 1 u n • Clearly K c KA . If n '?:; 1 ' then u n is 
a bounded open set and a topological argument implies oU n c K. By the 
Maximum Principle u n c KA . Thus, L c KA . 
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If exe U 0 ,  (z - ex) - 1 is analytic in a neighborhood of L. By (111.8.5), there 
is a sequence of polynomials {Pn } such that I I  Pn - (z - ex) - 1 I l L  � o. If 
qn = (z - ex)pn, then I I qn - 1 I l L � 0. Thus for large n, I I  qn - 1 I l L < 1/2. Since 
K c L and l qn(ex) - 1 1 = 1 ,  this implies that ex¢KA . Thus KA c L. • 

5.4. Theorem. If d and rJI are Banach algebras with a common identity such 
that rJI c d and aerJI, then 

(a) u s�(a) c u .sf( a) and ou .sf( a) c ou s�(a). 
(b) u s�(a) A = u .sf(a) A. 
(c) If G is a hole of u s�(a), then either G c u .sf( a) or G n u  .sf( a) = D. 
(d) If rJI is the closure in d of all polynomials in a, then u .sf( a) = u s�(a) A. 

PROOF. (a) If ex¢u .sf( a), then there is a b in rJI such that b(a - ex) = (a - ex)b = 1 .  
Since rJI c d, ex¢u s�(a). Now assume that A.eou .sf( a). Since int u s�(a) c int u .sf( a), 
it suffices to show that A.eu s�(a). Suppose A.¢u s�(a); there is thus an x in d 
such that x(a - A.) = (a - A.)x = 1 .  Since A.eou .sf( a), there is a sequence {A.n } in 
<C\u .sf( a) such that An � A.. Let (a - An) - 1 be the inverse of (a - An) in rJI; so 
(a - An) - 1 ed. Since An � A., (a - An) �  (a - A.). By Theorem 2.2, (a - An) - 1 � x. 
Thus xerJI since rJI is complete. This contradicts the fact that A.eu .sf( a). 

(b) This is a consequence of (a) and the Maximum Principle. 
(c) Let G be a hole of u s�(a) and put G1 = G nu  .sf( a) and G2 = G\u .sf( a). 

So G = G 1 u G2 and G1 n G2 = D. Clearly G2 is open. On the other hand, 
the fact that ou .sf( a) c u s�(a) and Gnu s�(a) :::;: D implies that G 1 = Gnint u .sf( a), 
so G 1 is open. Because G is connected, either G 1 or G 2 is empty. 

(d) Let rJI be as in (d). From (a) and (b) it is known that 
u s�(a) c u .sf( a) c u s�(a) A. Fix A. in u s�(a) A. If A.¢u .sf( a), (a - A.) - 1 erJI c d. Hence 
there is a sequence of polynomials {Pn } such that Pn(a) � (a - A.) - 1 . Let 
qn(z) = (z - A.)pn(z). Thus II qn(a) - 1 II � o. By the Spectral Mapping Theorem, 
u s�(qn(a) ) = qn(u s�(a) ). Thus, because A.eu s�(a) A, 

I I  qn(a) - 1 I I  � r(qn(a) - 1) 

This is a contradiction. 
EXERCISES 

= sup { l z - 1 1 : zeu s�(qn(a) ) } 

= sup { I qn(w) - 1 1 : weu s�(a) } 

� l qn(A) - 1 1 

= 1 . 

• 

1 .  If K is a compact subset of <C, let P(K) be the closure of the polynomials in C(K). 
Show that the identity map on polynomials extends to an isometric isomorphism 
of P(K) onto P(KA ). 

2. If K is a compact subset of <C, let R(K) be the closure in C(K) of all rational 
functions with P .... oles off K. If f....eR(K), show that a R<K> (f) = f(K). If feP(K), . show 
that a P<K> (f) = f(KA ), where f is a natural extension of f to KA . 
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3. Let d, 81 be as in Theorem 5.4. If ae81 and a u1t(a) £ JR, show that a u1t(a) = a  .Clf(a). 

4. Let d be a Banach algebra with identity and let aed. If G 1 , G2, • • .  are the holes 
of a .tt(a) and 1 � n 1 � n2 , • • •  , show that there is a subalgebra 81 of d such that 
ae81 and a u1t(a) = a  .tt(a) u U �= 1 Gnk . 

5. If d, 81, and a are as in Theorem 5.4, d is not abelian, and 81 is a maximal abelian 
subalgebra of d, show that a .tt(a) = a  u1t(a). 

6. If K is a nonempty compact subset of <C that is polynomially convex, show that 
the components of int K are simply connected. 

§6. The Spectrum of a Linear Operator 

The proof of the first result is left as an exercise. 

6.1 .  Proposition. 

(a) If fi is a Banach space and Ae81(f£), u(A*) = u(A). 
(b) If :Yf is a Hilbert space and Ae81(:Yf), u(A*) = u(A)*, wherefor any subset 

A of <C, A* = {z: zeA} . 

In this section only results about operators on Banach spaces will be 
given. For the corresponding results about operators on a Hilbert space 
involving the adjoint, the reader is asked to supply the details. The preceding 
proposition should be kept in mind as a model of the probable differences. 

In this section and the next fi always denotes a Banach space over <C. 

6.2. Definition. If Ae81(f£), the point spectrum of A, u p(A), is defined by 

u p(A ) = { Ae<C: ker(A - A) i= (0) } .  

As in the case of operators on a Hilbert space, elements of u p(A) are called 
eigenvalues. If AEU p(A), non-zero vectors in ker(A - A) are called eigenvectors; 
ker(A - A) is called the eigenspace of A at A. 

6.3. Definition. If Ae81(f£), the approximate point spectrum of A, uap(A), is 
defined by 

uap(A) = { Ae<C: there is a sequence {xn } in PI 
such that I I  xn I I  = 1 for all n and I I (A - A)xn I I --+ 0} . 

Note that u p(A) c uap(A). 

6.4. Proposition. If A e81(P£) and AE<C, the following statements are equivalent. 

(a) A�uap(A ). 
(b) ker(A - A.) = (0) and ran (A - A.) is closed. 
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(c) There is a constant c > 0 such that I I  (A - A.)x I I  � c I I  x I I  for all x. 

PROOF. Clearly it may be assumed that A. = 0. 

209 

(a) =>(c) : Suppose (c) fails to hold; then for every n there is a non-zero 
vector Xn with I I  Axn I I � I I Xn I I  /n. If Yn = xn/ I I  Xn I I , I I  Yn I I  = 1 and I I Ayn I I  � 0. 
Hence 0Euap(A). 

(c) => (b) : Suppose II Ax II � c II x 1 1 . Clearly ker A = (0). If Axn � y, II xn - xm II � 
c - 1 I I Axn - Axm I I ' so { xn } is a Cauchy sequence. Let X =  lim xn; therefore 
Ax = y and ran A is closed. 

(b) => (a): Let OJ/ = ran A; so A :  f!l' � OJ/  is a continuous bijection. By the 
Inverse Mapping Theorem, there is a bounded operator B: OJ/ �  f!l' such that 
BAx = x for all x in f!l'. Thus if I I  x I I  = 1 ,  1 = I I  BAx II � I I  B II I I  Ax 1 1 . That is, 
II Ax I I � II B 1 1 - 1 whenever II x II = 1 .  Hence O¢uap(A). • 

It may be that up(A) is empty, but it will be shown that uap(A) is never 
empty. The first statement follows from the next result (or from other examples 
that have been presented); the second statement will be proved later. 

6.5. Proposition. If 1 � p � oo ,  define S: [P � [P by S(x 1 , x2 , . . .  ) = (O, x 1 , x2 , . . .  ). 
Then a(S) = cl [), up(S) = D ,  and uap(S) = 8[). Moreover, for l A. I < 1 ,  
ran (S - A.) is closed and dim [/Pjran(S - A.)] = 1 .  

PROOF. Let sp be the shift on /P. For 1 � p � 00 ,  define Tp: /P � /P by 
Tp(x 1 , x2 , . . .  ) = (x2 , x3 ,  . . .  ). It is easy to check that for 1 � p < oo and 
1/p + 1/q = 1 ,  s; = Tq . Since I I  sp II = 1 ,  u(Sp) c c1 D. 

Suppose x = (x 1 , x2 , . . .  )E /P, A. # O. If SPx = A.x, 0 = A.x 1 , x 1 = Ax2 , • • • • 
Hence 0 = x 1 = x2 = · · · . Since SP is an isometry, ker SP = (0). Thus 
up(Sp) = D . 

Let 1 � p � oo and l A. I < 1 .  Put xA = ( 1 ,  A., A2 , • • •  ). Then I I xA 1 1 : = 
:L:= o i A.P in < oo. Also, TPxA = (A., A-2 , • • •  ) = A.xk Hence AEup(Tp) and 
XAEker(Tp - A.). If 1 � p < 00 and 1/p + 1jq = 1 ,  Tq = s; ; so [) c u(Tq) = u(Sp). 
Also, S00 = T!, so [) c u(S00 ). Thus for all p, [) c u(Sp) c cl D. Since u(Sp) 
is necessarily closed, u(S p) = cl D. 

If l A. I # 1 and xE lP, I I (Sp - A.)x l i P = I I  SPx - A.x l i P � I l l SPx l i P - l A- I I I  x I I  P I = 
I I I  x I I  P - l A. I I I  x I I  P I = 1 1 - I A. I I  I I  x I I  p · By (6.4), A.¢uap(Sp). Hence Uap(S) c 8[). 
The fact that uap(Sp) = 8[) follows from the next proposition (6.7). 

Fix l A. I < 1 ;  we will show that dim ker(Tp - A.) = 1 for 1 � p � oo.  Indeed, 
if XE IP and Tpx = AX, then (x2 , x3 , · · · ) = (A.x1 , AX2 , • • • ). So xn + 1 = AXn for all 
n. Thus xn + 1 = A_nx 1 for n � 1 .  That' is, if xA = ( 1 , A., A.2, . . .  ), then x = x1 xA . 
Since it has already been shown that xAEker(Tp - A.), we have that the 
dimension of this kernel is 1 .  Therefore, if 1 � p < oo ,  1 = dim ker( Tq - A.) = 
dim ker(s; - A.) = dim [ran(SP- A.) j_] (VI. 1 . 8) = dim [/P jran(Sp- A.)]*  (Why?). 
But this implies that dim [/Pjran(SP - A.)] = 1 ,  completing the proof for the 
case where p is finite. The proof for p = oo is similar and is left to the reader. • 

6.6. Corollary. If 1 �p�  oo and T: lP� lP is defined by T(x 1 , x2 , • • •  ) = (x2 , x3 ,  . . .  ), 
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then u(T) = cl [) and for I A. I < 1 ,  ker(T - A.) is the one-dimensional space 
spanned by the vector ( 1 ,  A., A. 2, • • •  ). 

The next result shows that if S is as in (6.5), then 8[) c uap(S). 

6.7. Proposition. If AE�(�), then ou(A) � O"ap(A). 

PROOF. Let AEou(A) and let { .A.n} c <C\u(A) such that A.n -+ A.. 

6.8. Claim. I I  (A - .A.n) - 1 I I -+ oo as n -+  oo .  
In fact, if the claim were false, then by passing to a subsequence if necessary, 

it follows that there is a constant M such that I I  (A - .A.n) - 1 I I  � M for all n. 
Choose n sufficiently large that I A.n - A. I < M- 1 • Then I I  (A - A.) - (A - .A.n) I I  < 
I I  (A - .A.n) - 1 I I  - 1 . By (2.3b), this implies that (A - A.) is invertible, a contradiction. 
This establishes ( 6.8). 

Let II Xn I I = 1 such that an = II (A - .A.n) - 1 Xn I I > II (A - .A.n) - 1 I I  - n - 1 ' so 
an -+ 00 .  Put Yn = a; 1 (A - .A.n) - 1 xn; hence I I  Yn I I  = 1 .  Now 

(A - A)Yn = (A - A.,)yn + (A - An)Yn 
= a; 1 Xn + (A. - An)Yn · 

Thus I I  (A - A.)yn I I  � a; 1 + I A. - A.n I , so that I I  (A - A.)yn I I -+ 0 as n -+  00 . That 
is, AEU ap(A). • 

Let A E�(�) and suppose � is a clopen subset of u(A ); that is, � is a subset 
of u(A) that is both closed and relatively open. So u(A) = � u (u(A)\�). As 
in Proposition 4. 1 1  (and Exercise 4.9), 

1 
E(�) = E(�; A ) = -. J (z - A)- 1 dz, 

2nl r 
6.9 

where r is a positively oriented Jordan system such that � c ins r and 
u(A)\� c out r, is an idempotent. Moreover, E(�)B = BE(�) whenever 
AB = BA and if � 4 = E(�)�, u(A I �  J = �. Call E(�) the Riesz idempotent 
corresponding to �. If � = a singleton set {A.}, let E( A.) = E( {A.} ) and 
�A. = �  {A.} · Note that if A. is an isolated point of u(A), then {A.} is a clopen 
subset of u(A). 

6.10. Example. Let {an} E 100 ' 1 � p � 00 ,  and define A: JP -+ IP by 
(Ax)(n) = anx(n). Then u(A) = cl { �n} and u p(A) = {an} · For each k, define 
Nk = { nEIN; an = ak} and define Pk: IP -+ [P by Pkx = XNkx. If ak is an isolated 
point of u(A), then { ak} is a clopen subset of u(A) and E( { ak} ;  A) = Pk. 

Suppose A E81(�) and .A.0 is an isolated point in u(A). Hence E(.A.0) = E(A.0; A) 
is a well-defined idempotent. Also, A.0 is an isolated singularity of the analytic 
function z �-+ (z - A) - 1 on <C\u(A). Perhaps the nature of this singularity ( pole 
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or essential singularity) will reveal something of the nature of A.0 as an element 
of u(A). First it is helpful to get the precise form of the Laurent expansion 
of (z - A) - 1 about A.0. 

6.1 1 . Lemma. If A.0 is an isolated point of u(A), then 
00 

(z - A) - 1 =  L (z - A.o)nAn 
n = - oo 

for 0 < l z - A.0 1 < r0 = dist (A.0, u(A)\{A.}), where 

An = � f (z - A.0) - n - 1(z - A)- 1dz 
2nz Y 

for y = any circle centered at A.0 with radius < r0• 

The proof follows the lines of the usual Laurent series development 
(Conway [ 1 978] ). 

6.12. Proposition. If A.0 is an isolated point of u(A), then A.0 is a pole of(z - A) - 1 
of order n if and only if (A.0 - At E(A.0) = 0 and (A.0 - A)n - 1 E(A.0) # 0. 

PROOF. Let (z - A) - 1 = 'L:- _ 00(z - A.0tAn as is (6. 1 1 ). Now A.0 is a pole of 
order n if and only if A - n # 0 and A - k = 0 for k > n. Let r be a positively 
oriented system of curves such that u(A)\ { A.0} c ins r and A.0 Eout r. Let y 
be a circle centered at A.0 and contained in out r. Let e(z) = 1 in a 
neighborhood of y u ins y and e(z) = 0 in a neighborhood of r u ins r. So 
eEHol(A) and e(A) = E(A.0). If k � 1 ,  

A _ 1  = � f (z - A.0)k - 1(z - A) - 1dz 2nz Y 

= � f e(z) (z - A.0)k - 1 (z - A) - 1dz 2nz y + r  

= E(A.0) (A - A.0)k - 1 

since u(A) c ins (y + r) = ins y u ins r. The proposition now follows. • 

6.13. Corolla•·y. If A.0 is an isolated point of u(A) and is a pole of (z - A) - I , 
then A0Eu p(A). 

In fact, the preceding result implies that if n is the order of the pole, then 
(0) # (A.0 - A)n - 1 E(A.0)q" c ker(A - A.0). 

6.14. Example. A measurable function k: [0, 1]  x [0, 1] -+ <C is called a 
Volterra kernel if k is bounded and k(x, y) = 0 when x < y. If 1 � p � oo and 
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k is a Volterra kernel, define Vk: IJ(O, 1 ) -+ IJ(O, 1 )  by 

VJ(x) = I k(x, y)f(y)dy = J: k(x, y)f( y)dy. 

Then Vke�(ll') and I I vk I I � II k I I oo (111 .2.3). 
If k, h are Volterra kernels and 

(hk) (x, y) = I h(x, t)k(t, y)dt, 

then hk is a Volterra kernel, I I hk I I oo � I I h I I oo I I k I I 00 , and vhk = vh vk. Note that 
if k(x, y) is the characteristic function of { (x, y)e [O, 1 ]  x [0, 1 ] :  y < x }, then 
Vk is the Volterra operator (11. 1 .7). 

If k is a Volterra kernel, then 

u(Vk) = {0}. 

Indeed, from the preceding paragraph it is known that V� = Vk"· This will 
be used to show that the spectral radius of Vk is 0. 

6.15. Claim. l kn(x, y) l � ( I I k 1 1 �/(n - 1 ) !) (x - yt - 1 for y < x. 

This is proved by induction. Clearly it holds for n = 1 .  Suppose (6. 1 5) is 
true for some n � 1 .  Then 

I k" + 1 (x, y) I = {x k(x, t)k"(t, y)dt 

� {x I k(x, t) l l k"(t, y) l dt 

� I I k I I 00 (� ��t! Lx (t - Y)n - 1dt 

� I I k I I �+ 1 ( 
_ )n -..::: X y . n ! 

This establishes the claim. 
From ( 6. 1 5) it follows that 

I I v� I I � II k" I I oo � (��It! " 
Therefore I I v� l l 1 1n � I I k I I oo[(n - 1 ) !] - 1 tn. 

Since [(n - 1 ) !] - 1 1n -+ 0  as n -+  oo, r(Vk) = 0. Thus D ¥= u(Vk) c {A.e<C: l A. I �  0}; 
that is, u(Vk) = {0} . 

It is possible for ker Vk to be nontrivial. For example, if k(x, y) = x<0, 1 12>( y) 
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when y < x and 0 otherwise, then 

Vkf(x) = 
J: f( y)dy ifx � �. 

L112 f( y)dy ifx � �· 

So if f( y) = 0 for 0 � y � �' Vkf = 0. 

2 1 3  

On the other hand, the Volterra operator V [ = Vk for k(x, y) = the 
characteristic function of { (x, y): y < x} ] has ker V = (0). In fact, if 0 = Vf, 
then for all x, 0 = J�f( y)dy. Differentiating gives that f = 0. 

Is there an analogy between Vk for a Volterra kernel k and a lower 
triangular rna trix? 

EXERCISES 
1 .  Prove Proposition 6. 1 .  

2. Show that for fi a Banach space and A in �(f£), u1(A) = u,(A *). What happens 
in a Hilbert space? 

3. If :Yt is an infinite dimension Hilbert space and K is a non-empty compact subset 
of <C, show that there is an A in �(:Yt) such that a( A) = K. Can A be found such that 
u(A) = Uap(A) = K? 

4. Let K be a compact subset of <C. Does there exist an operator A in �(C[O, 1] ) 
such that a( A) = K? 

5. If fi is a Banach space and A e�(f£), show that A is left invertible if and only if 
ker A = (0) and ran A is a closed complemented subspace of f£. 

6. If fi is a Banach space and A e�(f£), show that A is right invertible if and only 
if ran A = fi and ker A is a complemented subspace of f£. 

7. If fi is a Banach space and T: fi � fi is an isometry, then either u(T) c oD or 
u(T) = cl D. 

8. Verify the statements made in Example 6. 10. 

9. Let 1 � p � oo and suppose 0 < tX 1 � tX2 · · · such that r = lim tXn < oo. Define A: 
IP � IP by A(x 1 , x2, • • •  ) = (0, tX 1 x 1 , tX2x2, • . •  ). Show that u(A) = (ze<C: l z l � r} and 
uap(A) = ou(A). If l A.  I <  r, then ran (A - A.) is closed and has codimension 1 .  Also, 
up(A) = D . 

• 

10. Verify the 'statements made in Example 6. 14. 

1 1 . Let 1 � p � oo and let (X, n, Jl) be a a-finite measure space. For 4> in L 00(Jl), define 
M q, on ll(Jl) as in Example III.2.2. Find u(M q,), u ap(M q,), and u p(M q,). 

1 2. If A E�(f£), f E Hol(A), and AEU p(A), is f(A.)eu  p(f(A))? If AEU ap(A), is 
f(A.)Euap(f(A))? Is there a relation between f(uap(A)) and uap(f(A))? 

1 3. If A e�(f£) say that a complex number A. has finite index if there is a positive 
integer k such that ker(A - A.)k = ker(A - A.)k 7 1 ; the index of A., denoted by v(A.) 
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or v A(A.), is the smallest such integer k. (a) Show that if A. is an isolated point of 
a( A) and a pole of order n of (z - A) - 1 , then v(A.) = n. (b) If v(A.) < oo, show that 

0 

1 0 

ker(A - A.)"0·) = ker(A - ;.y<l) + k for all k � 0. (c) If fi = <Cn and A =  1 . 

1 0 
then a(A) = {0} and v(O) = n. 

14. If V is the Volterra operator, show that 0 is an essential singularity of(z - V) - 1 • 

1 5. Let d be a Banach algebra with identity. If aed, define La, RaeBI(d) by 
La(x) = ax and Ra(x) = xa. Show that a(La) = a(Ra) = a( a). 

16. If E is a  projection on a Hilbert space and E is neither 0 nor 1 ,  then a( E) = {0, 1 } .  

17. (McCabe [ 1984] ) If fi i s  a complex Banach space and TeBI(f£), show that the 
following statements are equivalent. (a) r(T) < 1 .  (b) II Tm II < 1 for some positive 
integer m. (c) Ln I I Tn(x) I I  < oo for every x in f£. 

§7. The Spectral Theory of a Compact Operator 

' 

Recall that for a Banach space f!l', 810(f!l') is the algebra of all compact 
operators. This Banach algebra has no identity, so if AE810(f!l'), then u(A) 
refers to the spectrum of A as an element of 81(f!l'). Of course, if d = 810(f!l') + 
<C, then d is a Banach algebra with identity (Why?) and we could consider 
u Jat(A) for A in 810(f!l'). By Theorem 5.4, u(A) c u Jat(A), ou Jat(A) c u(A), and 
u(A) = u d(A). Below, in Theorem 7. 1 ,  it will be shown that u(A) is a countable 
set and hence u(A) = ou(A) = u(A) ". Thus u(A) = u Jat(A). 

7.1 .  Theorem. (F. Riesz) If dim f!l' = oo and A E810(f!l'), then one and only one 
of the following possibilities occurs. 

(a) u(A) = {0} . 
(b) u(A) = {0, A. 1 , . . .  , A.n } ,  where for 1 � k � n, A.k # 0, each A.k is an eigenvalue 

of A, and dim ker(A - A.k) < oo. 
(c) u(A) = {O, A. 1 , A.2 , • . .  } , where for each k � 1 , A.k is an eigenvalue of A, 

dim ker(A - A.k) < oo,  and, moreover, lim A.k = 0. 

The proof will use several lemmas. The first lemma was given in the case 
that f!l' is a Hilbert space in Proposition 11.4. 14. The proof is identical and 
will not be repeated here. 

7.2. Lemma. If A E810(q"), A. # 0, and ker(A - A.) =  (0), then ran (A - A.) is closed. 
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The proof of the next lemma is like that of Corollary II.4. 1 5. 

7.3. Lemma. If A e810(�), A. # 0, and A.eu(A), then either A.eu p(A) or A.eu p(A *). 
7.4. Lemma. If A � %, A # %, and e > 0, then there is a y in %  such that 
I I Y I I  = 1 and dist ( y, A) �  1 - e. 

PROOF. Let £5( y) = dist ( y, A) for every y in %. Now if y1 e%\A, there is 
an x0 in Jt such that £5( y1 ) � I I  x0 - y1 l l � ( 1  + e)£5( y1 ). Let y2 = y 1 - x0 . 
Then ( 1  + e)£5( y2 ) = ( 1  + e) inf { I I  y2 - x I I : xeA} = ( 1  + e) inf{ I I  Y1 - x0 - x I I : 
xeA} = ( 1  + e)£5( y1 ) since x0 eA. Thus ( 1  + e)£5( y2 ) > I I  x0 - y1 l l  = I I y2 l l . Let 
y =  I I Y2 I I - 1Y2 · So I I Y I I  = 1 ,  ye%, and if xeJ/, then 

II y - X I I  = 1 1 1 1  Y2 1 1 - 1 Y2 - X  I I  
= I I  Y 2 I I  - 1 I I  Y 2 - I I Y 2 I I  x I I  > [ ( 1 + e )£5 ( Y 2 ) ]  -

1 I I  Y 2 - I I  Y 2 I I  x I I  
� (1 + e) - 1 > 1 - e. • 

If Jt and % are finite dimensional in the preceding lemma, then y can 
be chosen in % such that II y II = 1 and dist ( y, A) = 1 (see Exercise 1 ). 

7.5. Lemma. If A e810(�) and { A.n } is a sequence of distinct elements in u p(A), 
then lim An = 0. 

PROOF. For each n let xneker(A - A.n) such that xn # 0. It follows that if 
Jln = V {x 1 , . . .  , xn } ,  then dim An = n  (Exercise). Hence J/n � An + 1 and 
Jt n # An + 1 . By the preceding lemma there is a vector Yn in An such that 
II Yn I I  = 1 and dist ( yn , A n - 1 ) > � · Let Yn = (X1 x 1 + . . .  + (XnXn . Hence 

(A - A.n)Yn = CX1 (A.1 - A.n)X t + · · · + cxn - 1 (A.n - 1 - A.n)Xn - 1 EJ/n - 1 · 
So if n > m, 

A(A.; 1 Yn) - A(A.m 1 Ym) = A.; 1 (A - A.n)Yn - A.� 1 (A - A.m)Ym + Yn - Ym 
= Yn - [Ynt + A.m 1 (A - A.m)Ym - A.; 1 (A - A.n)Yn]. 

But the bracketed expression belongs to A n - 1 · Hence I I A (A.; 1 Yn) 
A(A.m 1 Ym) I I � dist ( yn , A n - 1 ) > � · Therefore A(A.; 1 Yn) can have no convergent 
subsequence. But A is a compact operator so that if S is any bounded subset 
of PI, cl A (S) is compact. Thus it must be that {A.; 1 Yn } has no bounded 
subsequence. Since I I  Yn I I = 1 for all n1 it must be that II A.; 1 Yn I I = I A.n l - 1 --+ oo. 
That is, 0 = lim An . • 

PROOF OF THEOREM 7 . 1 .  The first step is to establish the following. 

7.6. Claim. If A.eu(A) and A. #  0, then A. is an isolated point of u(A). 

In fact, if { A.n } c u(A) and An --+ A, then each An belongs to either u P(A) or 
up(A*) (7.3). So either there is a subsequence {Ank } that is contained in up(A) 
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or there is a subsequence contained in u p(A *). If { A.nk } c u p(A), then 
Lemma 7.5 implies A.nk -+ 0, a contradiction. If { A.nk } c u p(A *), then the fact 
that A* is compact gives the same contradiction. Thus A. must be isolated if 
A. # 0. 

7.7. Claim. If AEu(A) and A. #  0, then AEu p(A) and dim ker(A - A.) <  oo. 
By (7.6), A. is an isolated point of u(A) so that E(A.) can be defined as in 

(6.9). Let PI;. = E(A.)PI and A;. = A I PI ;.· By Exercise 4.9 [also see (4. 1 1 )] ,  
u(A;.) = {A.} . Thus A;. is an invertible compact operator. By Exercise VI.3.5, 
dim PI;. < oo. If n = dim PI;., then A;. - A. is a nilpotent operator on an 
n-dimensional space. Thus (A;. - A.)n = 0. Let v = the positive integer such 
that (A ;. - A.)v = O  but (A;.- A.)v - t #0. Let xEPI;. such that O # (A;. - A.)v - 1x =  y; 
then (A - A.)y = 0. Thus A.Eu p(A). 

Also, ker (A - A.)E Lat A and A I ker(A - A.) is compact. But Ax = A.x for all 
x in ker(A - A.), so dim ker(A - A.) <  oo. 

Now for the denouement. If dim f!t = oo and A E810(PI), then A cannot be 
invertible (Exercise Vl.3.5). Thus 0Eu(A). If A.Eu(A) and A. #  0, then Claim 7.7 
says that A.Eu p(A) and dim ker(A - A.) '< oo. So if u(A) is finite, either (a) or 
(b) of(7. 1 )  hold. If u(A) is infinite, then Claim 7.6 implies that u(A) is countable. 
So let u(A) = {0, A t , A.2 , • • •  } .  By Lemma 7.5 and Claim 7.7, (c) holds. • 

Part of the following surfaced in the proof of the theorem. 

7.8. Corollary. If A E810(PI) and AEu(A) with A. #  0, then A. is a pole of (z - A) - I ,  

ker(A - A.) c E(A.)PI, and dim E(A.)PI < oo. 
PROOF. The only part of this corollary that did not appear in the preceding 
proof is the fact that ker(A - A.) c E(A.)PI. 

Let L\ = u(A)\ {A.} , f!t A =  E(L\)PI, AA = A  I f!t A· By Exercise 4.9, u(A&) = L\; so 
AA - A. is invertible on PI A· If xeker(A - A.), then x = E(A.)x + E(L\)x. Hence 
0 = (A - A.)x = (A - A.)E(A.)x + (A - A.)E(L\)x = (A;. - A.)E(A.)x + (A& - A.)E(L\)x. 
But PI;. and PI AELat A, so (A;. - A.)E(A.)x EPI;. and (A& - A.)E(L\)xEf!t A; since 
f!t;. n PI A = (0), 0 = (A;. - A.)E(A.)x = (A& - A.)E(L\)x. But AA - A. is invertible so 
E(L\)x = 0; that is, x = E(A.)x Ef!t ;.· Hence ker (A - A.) c f!t ;.· • 

If k is a Volterra kernel (6. 14), then Vk is a compact operator 
(Exercise VI.3 .6) and u(Vk) = {0}. So the first possibility of Theorem 7. 1 can 
occur. If V is the Volterra operator, then u p(V) = D. 

Let V be the Volterra operator on I!(O, 1 ), 1 < p < oo. If A t , . . .  , An E<C, let 
D: <Cn -+ <Cn be defined by D(z t , . . .  , zn) = (A t z t , . . .  , A.nzn). Then A = V <:9 D on 
I!(O, 1 ) <:9 <Cn is compact and u(A) = {0, A t , . . .  , A.n } · So the second possibility 
of (7. 1 )  occurs. If { A.n } c <C and lim An = 0, then define D: IP -+ /P ( 1  � p � oo) 
by (Dx)(n) = A.nx(n). If A =  V � D on IJ'(O, 1) te lP, A is compact and 
u(A) = {0, A t , A.2 , • • •  } (see Exercise 3). 



§7. The Spectral Theory of a Compact Operator 2 1 7  

The next result has a number of applications in the theory of integral 
equations. 

7.9. The Fredholm Alternative. If A E810(�), AE<r, and A. =f. 0, then ran(A - A.) 
is closed and dim ker(A - A.) =  dim ker(A - A.)* < oo. 
PROOF. It suffices to assume that AEu(A). Put � = u(A)\ {A.} ,  �A. = E(A.)�, 
�A = E(�)�, AA. = A I �A., and AA = A I �A· Now A.¢� = u(AA), so AA - A.  
is invertible. Thus ran(AA - A.) = �  A· Hence ran(A - A.) =  (A - A.)� A. + 
(A - A.)� A =  ran (AA. - A.) + � A· Since dim � A. <  oo, ran(A - A.) is closed 
(111.4.3). 

Also note that 

�/ran(A - A.) = (�A + �A.)/[ran (AA. - A.) + �A] 
� � A.!ran(AA. - A.). 

Since dim �A. < oo, dim [�/ran(A - A.)] = dim �A. - dim ran(AA. - A.) = 
dim ker(AA. - A.) = dim ker(A - A.) < oo since ker(A - A.) c �A. (7.8). But 
[� jran(A - A.)] * = [ran(A - A.)] j_ (111. 10.2) = ker(A - A.)*. Hence 
dim ker(A - A.) = dim ker(A - A.)*. • 

7.10. Corollary. If A E810(�), AE<r, and A. =f. 0, then for every y in � there is 
an x in � such that 

7.1 1  (A - A.)x = y 

if and only if the only vector x such that (A - A.)x = 0 is x = 0. If this condition 
is satisfied, then the solution to (7. 1 1 )  is unique. 

This corollary is a rephrasing of part of the Fredholm Alternative together 
with the fact that an operator has dense range if and only if its adjoint has 
a trivial kernel. 

The applications of the Fredholm Alternative occur by taking the compact 
operator to be an integral operator. 

EXERCISES 
1 .  If vii, %  are finite dimensional spaces and vii � %, vii =f:. ..¥, then there is a y in %  

such that I I Y I I = 1 and dist(y, vii) =  1 .  

2. Let AeBI(q') and let A 1 , • • •  , An be distinct points in a p(A). If xkeker(A - Ak), 
1 � k � n, and xk =f:. 0, show that { x 1 , • • •  , xn } is a linearly independent set. 

3. Let ,q-1 , ,q-2 . . .  be Banach spaces and put ,q' = Ef) P,q-n· Let AneBI(,q'n) such that 
supn i i An l l < oo and define A: ,q' -+ ,q' by A {xn } = {Anxn} · Show that AeBI(q') and 
II A II = supn II An 1 1 . Show that Ae810(q') if and only if each Ane810(,q") and 
lim II An II = o. 

4. Suppose A eBI(,q') and there is a polynomial p such that p(A)e810(,q'). What can 
be said about a(A)? 
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5. Suppose A e81(q") and there is an entire function f such that f(A)e810(q'). What 
can be said about a(A)? 

6. With the terminology of Exercise 6. 1 3, if Ae810(q'), AEa(A), and A =F 0, what can 
be said about the index of A? 

§8. Abelian Banach Algebras 

Recall that it is assumed that every Banach algebra is over <C. Also assume 
that all Banach algebras contain an identity. 

A division algebra is an algebra such that every nonzero element has a 
multiplicative inverse. It may seem incongruous that the first theorem in this 
section allows the algebra to be nonabelian. However, the conclusion is that 
the algebra is abelian-and much more. 

8.1 .  The Gelfand-Mazur Theorem. If d is a Banach algebra that is also a 
division ring, then d = <r ( = { A l :  Ae<C} ). 

PROOF. If aed, then u(a) # D. If Aeu(a), then a - A has no inverse. But d 
is a division ring, so a - A = 0. That is, a = A. • 

As a corollary of the preceding theorem, the algebra of quaternions, JH, 
is not a Banach algebra. That is, it is impossible to put a norm on 1H that 
makes it into a Banach algebra over <C. Can you show this directly? 

8.2. Proposition. If d is an abelian Banach algebra and Jt is a maximal ideal, 
then there is a homomorphism h: d � <C such that Jt = ker h. Conversely, if 
h: d -+ <C is a nonzero homomorphism, then ker h is a maximal ideal. Moreover, 
this correspondence hH ker h between homomorphisms and maximal ideals is 
bijective. 

PROOF. If vH is a maximal ideal, then Jt is closed (2.4b). Hepce d IJ! is a 
Banach algebra with identity. Let n: d -+ diJ! be the natural map. If aed 
and n(a) is not invertible in diJ!, then n(da) = n(a) [diJ!] is an ideal in 
diJ! that is proper. Let I =  {bed: n(b)en(da) } = n - 1(n(da)). Then I is a 
proper ideal of d and Jt c I. Since Jt is maximal, Jt = I. Thus 
n(ad) c n(I) = n(Jt) = (0). That is, n(a) = 0. This says that d I Jt is a field. 
By the Gelfand-Mazur Theorem d IJ! = <C = {A + J/: Ae<C} .  Define ii: 
d IJ! -+ <C by h(A + J/) = A  and define h: d -+  <C by h = h on. Then h is a 
homomorphism and ker h = eA. 

Conversely, suppose h: d -+  <C is a nonzero homomorphism. Then 
ker h = A is a nontrivial ideal and d I A � <C. (Why?) So Jt is maximal. 

If h, h' are two nonzero homomorphisms and ker h = ker h', then ther� is 
an ex in <C such that h = exh' (A. l .4). But 1 = h( l )  = exlt'( l )  = ex, so h = h'. • 
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8.3. Corollary. If d is an abelian Banach algebra and h: d -+  <r is a 
homomorphism, then h is continuous. 

PROOF. Maximal ideals are closed (2.4b ). • 

The next result improves the preceding corollary a little. Remember that 
by (8.3) if h: d -+  <r is a homomorphism, then hed* (the Banach space dual 
of d). 

8.4. Proposition. If d is abelian and h: d -+  <r is a non-zero homomorphism, 
then I I  h I I  = 1 .  

PROOF. Let aed and put A =  h(a). If I A. I > II a I I , then I I  aj A II < 1 .  Hence 1 - aj A 
is invertible. Let b = ( 1 - ajA.) - 1 , so 1 = b(1 - a/A) = b - bajA. Since h( 1 )  = 1 ,  
1 = h(b - bajA.) = h(b) - h(b)h(a)/A = h(b) - h(b) = 0, a contradiction. Hence 
I I  a l l � I A- 1  = l h(a) l ; so l l h l l � 1 .  Since h(1 ) = 1 ,  l l h l l = 1 .  • 

8.5. Definition. If d is an abelian Banach algebra, let I: = the collection of 
all nonzero homomorphisms of d -+  <C. Give I: the relative weak* topology 
that it has as a subset of d*. I: with this topology is called the maximal 
ideal space of d. 

8.6. Theorem. If d is an abelian Banach algebra, then its maximal ideal space 
I: is a compact Hausdorff space. Moreover, if aed, then a(a) = I:(a) = 
{h(a): he:!:} .  

PROOF. Since I: c ball d*, i t  suffices for the proof of the first part of the 
theorem to show that I: is weak* closed. Let {hi } be a net in I: and suppose 
he ball d* such that hi -+ h  weak*. If a, bed, then h(ab) = limi hi(ab) = 
limi hi(a)hi(b) = h(a)h(b). So h is a homomorphism. Since h(1 ) = limi hi( 1 )  = 1 ,  
he:!:. Thus I: i s  compact. 

If he I: and A =  h(a), then a - A.eker h. So a - A is not invertible and A.ea(a); 
that is, I:(a) c a(a). Now assume that A.ea(a); so a - A is not invertible and, 
hence, (a - A.)d is a proper ideal. Let Jt be a maximal ideal in d such that 
(a - A.)d c Jt. If he I: such that Jt = ker h, then 0 = h(a - A) = h(a) - A.; hence 
a( a) c I:( a). • 

Now it is time for an example. Here is one that is a little more than an 
example. If X is compact and xeX, let �x : C(X) -+ <C be defined by �x(f) = f(x). 
It is easy to see that �x is a homomorphism on the algebra C(X). 

8.7. Theorem. If X is compact and I: is the maximal ideal space of C(X), then 
the map Xl--+�x is a homeomorphism of X onto I:. 

PROOF. Let A: X -+  I: be defined by A(x) = c5x. As was pointed out before, 
A(X) c I:. It was shown in Proposition V.6. 1 that A: X -+ (A(X), weak*) is a 
homeomorphism. Thus it only remains to show that A(X) = I:. If he�, then 
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there is a measure Jl in M(X) such that h(f) = J fdJl for all f in C(X). Also, 
I I Jl l l = II h II = 1 and Jl(X) = J 1 dJl = h(1 )  = 1 . Hence Jl � 0 (Exercises III.7.2). 
Let xe support (Jl). It will be shown that h = [)x· 

Let Jt = {f eC(X): f(x) = 0}. So Jt is a maximal ideal of C(X). Note that 
if it can be shown that ker h c Jt, then it must be that ker h = Jt and so 
h = [)x· So let feker h. Because ker h is an ideal, l f l 2 = ffeker h. Hence 
0 = h( l f l 2) = J l f l 2 dJl. Since Jl � 0 and l f l 2 � 0, it must be that f = 0 a.e. [Jl] . 
Since f is continuous, f = 0 on support (Jl). In particular, f(x) = 0 and so 
feJt. • 

It follows from the preceding theorem that the maximal ideals of C(X) 
are all of the form {f  eC(X): f(x) = 0} for some x in X. 

8.8. Definition. Let d be an abelian Banach algebra with maximal ideal 
space I:. If aed, then the Gelfand transform of a is the function a: I: ---. <C 
defined by a(h) = h(a). 

8.9. Theorem. If d is an abelian Banach algebra with maximal ideal space I: 
and aed, then the Gelfand transform of a, a, belongs to C(I:). The map a...-+a 
of d into C(I:) is a continuous homomorphism of d into C(I:) of norm 1 and 
its kernel is 

n {Jt: J( is a maximal ideal of d}. 

Moreover, for each a in d, 

I I a II oo = lim I I an l l 1 1n. 
n-+ oo 

PROOF. If hi ___. h in I:, then hi ___. h weak* in d*. So if aed, a(hi) = hi(a) ___. 
h(a) = a(h). Thus aeC(I:). 

Define y: d ---. C(I:) by y(a) = a. If a, bed, then y(ab) (h) = lili(h) = h(ab) = A. 
h(a)h(b) = a(h)b(h). Therefore y(ab) = y(a)y(b). It is easy to see that y is linear, 
so y is a homomorphism. Also, by (8.4), if aed, l a(h) l = l h(a) l � I I  a I I ; thus 
I I y (a) I I oo = II a I I oo � I I a 1 1 . So y is continuous and I I  y I I � 1 . Since y( 1 ) = 1 , 
I I  y I I = 1 . 

Note that aeker y if and only if a =  0; that is, aeker y if and only if h(a) = 0 
for each h in I:. Thus aeker y if and only if a belongs to every maximal ideal 
of d. 

Finally, by Theorem 8.6, if aed, then I I  a I I  00 = sup { I A. I : A.ea(a) } .  The last 
part of this theorem is thus a consequence of this observation and 
Proposition 3.8 . • 

The homomorphism a...-+a of d into C(I:) is called the Gelfand trans
form of d. The kernel of the Gelfand transform is called the radical of d, 
rad d. So 

rad d = n {vlt: vii is a maximal ideal of d}. 
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If X is compact and I:, the maximal ideal space of C(X), is identified with 
X as in Theorem 8. 7, then the Gelfand transform C(X) -+ C(I:) becomes the 
identity map. 

If d is an abelian algebra, say that a in d is a generator of .91 if {p(a): p 
is a polynomial} is dense in d. 

Recall t��t if r: X -+  Y is a homeomorphism, then A :  C( Y) -+ C(X) defined 
by Af = f o r  is an isometric isomorphism (VI.2. 1 ). Denote the relationship 
between A and r by A = r#. 

8.10. Proposition. If d is an abelian Banach algebra with identity and a is a 
generator of d, then there is a homeomorphism r: I: -+  a( a) such that if y: 
d -+  C(I:) is the Gelfand transform and p is a polynomial, then y(p(a) ) = r#(p). 

PROOF. Define r: I: -+  a( a) by r(h) = h(a). By Theorem 8.6 r is surjective. It is 
easy to see that r is continuous. To see that r is injective, suppose r(h 1 ) = r(h2 ), 
so h1 (a) = h2 (a). Hence h1 (a

n ) = h2 (a
n) for all n ;;:::: 0. By linearity, h1 (p(a)) = 

h2 (p(a) ) for every polynomial p. Since a is a generator for d and h 1 and h2 
are continuous on d, h1 = h2 , and r is injective. Since I: is compact, r is a 
homeomorphism. 

The remainder of the proposition follows from the fact that y and r# are 
homomorphisms. Hence y(p(a) ) (h) = p(y(a) ) (h) = p(a) (h) = p(a(h) ) = p(r(h) ) = 
r#(p) (h). • 

8.1 1 . Corollary. If d has two elements a1 and a2 each of which is a generator, 
then a(a1 ) and a(a2 ) are homeomorphic. 

The converse to (8. 1 1 ) is not true. If d = C[ - 1 ,  1] , then f(x) = x defines 
a generator f for d. If g(x) = x2, then a(g) = g( [- 1 ,  1 ] ) = [0, 1] .  So a(f) 
and a(g) are homeomorphic. However, g is not a generator for d. In fact, 
the Banach algebra generated by g consists of the even functions in C[ - 1 ,  1] .  

8.12. Example. If V: L2(0, 1 ) -+ L2(0, 1 ) is the Volterra operator and d is the 
closure in �(L2(0, 1 ) )  of {p( V): p is a polynomial in z} , then d is an abelian 
Banach algebra and rad d = cl {p(V): p is a polynomial in z and p(O) = 0}. 
In other words, d has a unique maximal ideal, rad d. In fact, if 
� = �(L2(0, 1 ) ), Theorem 5.4 implies that oa d(V) c a £f(V) c a d(V). Since 
a £f(V) = {0} (6. 14), a d(V) = {0} . The statement above now follows by 
Proposition 8. 10. . 

8.13. Example. Let d be the closure in C(oD) of the polynomials in z. If I: 
is the maximal ideal space of d, then I: is homeomorphic to a d(z). (Here z 
is the function whose value at A in oD is A.) Now a d(z) = cl D as was shown 
in Example 5. 1 .  If fed, then the Maximum Modulus Theorem shows that 
f has a continuous extension to cl D that is analytic in D [see (5. 1 ) ] .  Also 
denote this extension by f. The proof of (8. 10) shows that the continuous 
homomorphisms on d are of the form f.-+ f(A.) for some A, in cl [). 
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In the next section the Banach algebra L1 (G) is examined for a locally 
compact abelian group and its maximal ideals are characterized. 

EXERCISES 
1 .  Let d be a Banach algebra with identity and let J be the smallest closed two-sided 

ideal of d containing {xy - yx: x, yed} . J is called the commutator ideal of d. 
(a) Show that d IJ is an abelian Banach algebra. (b) If I is a closed ideal of d 
such that d I I is abelian, then I => J. (c) If h: d -+  <C is a homomorphism, then - -
J c ker h and h induces a homomorphism h: d I J -+  <C such that h o n  = h, where 
n: d -+  d I J is the natural map. Hence I I  h I I  = 1 .  (d) Let 1: be the set of -
homomorphisms of d -+ <C and let 1: be the set of homomorphisms of d I J. Show - -
that the map h�h defined in (c) is a homeomorphism of 1: onto 1:. 

2. Using the terminology of Exercises 2.6 and 2.7, let d be an abelian Banach 
algebra without identity and show that if .A is a maximal modular ideal, then 
there is a homomorphism h: d -+  <C such that .A =  ker h. Conversely, if h: d -+  <C 
is a nonzero homomorphism, then ker h is a maximal modular ideal. Moreover, 
the correspondence h -+  ker h is a bijection between homomorphisms and maximal 
modular ideals. 

3. If d is an abelian Banach algebra and h: d -+  <C is a homomorphism .. then h is 
continuous and I I h I I � 1 .  If d has an approximate identity { ei } such that I I ei I I � 1 
for all i, then I I  h II = 1 (see Exercise 2.8). 

4. Let d be an abelian Banach algebra and let 1: be the set of nonzero homomor
phisms of d -+  <C. Show that 1: is locally compact if it has the relative weak* 
topology from d* (Exercise 3). 

5. With the notation of Exercise 4, assume that d has no identity and let d 1 be 
the algebra obtained by adjoining an identity. For a in d, let a( a) be the spectrum 
of a as an element of d 1 and show that a( a) =  { h(a): hel:} u {0} . Also, show that 
the maximal ideal space of d 1 , 1: 1 , is the one-point compactification of 1: . 

. 
6. With the notation of Exercise 4, for each a in d define a: 1: -+  <C by a(h) = h(a). 

Show that ae C0(l:) and the map a�a of d into C0(l:) is a contractive homo
morphism with kernel = n {.A: .A is a maximal modular ideal of d}. 

7 .  If X is locally compact, show that x�<5x is a homeomorphism of X onto the 
maximal ideal space of C0(X). 

8. Let X be locally compact and for each open subset U of X let C0(U).= {! eC0(X): 
f(x) = 0 for x in X\ U}. Show that C0(U) is a closed ideal of C0(X) and that every 
closed ideal of C0(X) has this form. Moreover, the map u�C0(U) is a lattice 
isomorphism from the lattice of open subsets of X onto the lattice of ideals of 
C0(X). 

9. With the notation of the preceding exercise, show that C0(U) is a modular ideal 
if and only if X\ U is compact. 

10. If d is an abelian Banach algebra and aed, say that a is a rational generator 
of d if {f(a): f is a rational function with poles off a( a) } is dense in d. Show 
that if a is a rational generator of d, then l: is homeomorphic to a(a). 
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1 1 . Verify the statements made in Example 8. 1 2. 

1 2. Say that a 1 , • • •  , an are generators of d if d is the smallest Banach algebra with 
identity that contains { a 1 , • • •  , an } · Show that a 1 , • • •  , an are generators of d if and 
only if d = cl {p(a b . . .  , an): p is a polynomial in n complex variables z 1 ,  . . . , zn }, 
and if I: is the maximal ideal space, then there is a homeomorphism r of I: onto 
a compact subset K of <Cn such that if p is a polynomial in n variables, then 
y(p(a 1 , . . .  , an)) = r#(p). 

1 3. Verify the statements made in Example 8. 1 3. 

14. (Zelazko [1968].) Let d be an algebra and suppose c/J :  d -+  <C is a linear functional 
such that c/J(a2) = c/J(a)2 for all a in d. Show that c/J is a homomorphism. 

1 5. Let d be an abelian Banach algebra with identity that is semisimple [that is, 
rad d = (0)] . If I I  · I I  is the norm on d and I I · I I 1 is another norm on d that also 
makes d into a Banach algebra, then these two norms are equivalent. (Hint: use 
the Closed Graph Theorem to show that the identity map i: (d, I I · I I ) -+  (d, I I · II 1 ) 
is continuous.) 

16. Let d be as in Example 8. 1 3  and let K = { c/Jed*: c/J( 1) = I I c/J I I  = 1 }. Show that 
ext K = {c5z : l z l  = 1 }. (See (V.7).) 

1 7. Show that f(x) = exp(nix) is a generator of C( [0, 1] ) but g(x) = exp(2nix) is not. 

1 8. Show that C(oD) does not have a single generator though it does have a single 
rational generator (that is, an element a such that {r(a): r is a rational function 
with poles off a( a) } is dense.) 

§9* .  The Group Algebra of a Locally Compact 
Abelian Group 

If G is a locally compact abelian group and m is Haar measure on G, then 
L1(G) = L1(m) is a Banach algebra (Example 1 . 1 1 ), where for f, g in L1 (G) the 
product f * g is the convolution of f and g: 

f •g(x) = L f(xy- 1 )g( y)dy. 

Note that dy is used to designate integration with respect to m rather than 
dm( y). Because G is abelian, L1(G) is abelian. In fact, g • f(x) = J g(xy- 1 )f(y)dy. 
If y- 1 x is substituted for y in this integral, the value of the integral does not 
change because Haar measure is translation invariant. Hence g • f(x) = 
J g(y)f(y - 1 x)dy = J g(y)f(xy - 1) dy = f •g(x). 

Let e denote the identity of G. If G is discrete, then c)eeL1 (G) and c)e is an 
identity for L1 (G). If G is not discrete, then L1(G) does not have an identity 
(Exercise 1 ). 

Some examples of nondiscrete locally compact abelian groups are R n and 
']['n, where '][' = the unit circle oD in ([ with the usual multiplication. Note 
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that yoo is also a compact abelian group while 1R oo fails to be locaUy compact. 
The Cantor set can be identified with the product of a countable number of 
copies of 7L2 and is thus a compact abelian group. Indeed, the product of a 
countable number of finite sets (with the discrete topology) is homeomorphic 
to the Cantor set, so that the Cantor set has infinitely many nonisomorphic 
group structures. 

For a topological group G, L1 (G) is called the group algebra for G. If G is 
discrete, the algebraists talk of the group algebra over a field K as the set of 
all f = LgeGagg, where ageK and ag # 0 for at most a finite number of g in 
G. If K = <C, this is the set of functions f: G ---. <C with finite support. Thus 
in the discrete case the group algebra of the algebraists can be identified with 
a dense manifold in L1(G) = l 1 (G). 

Unlike §V. 1 1 , if f: G ---. <C and xeG, define fx: G ---. <C by fx( Y) = f(yx - 1 ); 
so fx(y) = f(x - 1y) for G abelian. We want to examine the function x'r-+fx 
of G ---. IJ'( G), 1 � p < oo.  To do this we first prove the following (see 
Exercise V. 1 1 . 1  0). 

9.1 .  Proposition. If G is a topological group and f: G ---. <C is a continuous 
function with compact support, then for any e > 0 there is a neighborhood U 
of e such that l f(x) - f(y) l < e whenever x - 1 ye U. 

PROOF. Let OIJ be the collection of open neighborhoods U of e such that 
U = U - 1 . Note that if V is any neighborhood of e, then U = V n V - 1 eOIJ 
and U c V. Order OIJ by reverse inclusion. 

Suppose the result is false. Then there is an e > 0 such that for every U 
in OIJ there are points xu, Yu in G with xu 1 Yu in U and l f(xu) - f(Yu) l � e. 
Note that either Xu or Yu EK = support f. Since u = u - 1 , we may assume 
that Xu EK for every U in OIJ. Now {xu: U eOIJ} is a net in K. Since K is 
compact, there is a point x in. K such that xu ci • x. But xu 1 Yu ---. e. Since 
multiplication is continuous, Yu = xu(x u 1 Yu) ci • x. Therefore if W is any 
neighborhood of x, there is a U in OIJ with xu , Yu E W. But f is continuous 
at x so W can be chosen such that l f(x) - f(w) l < e/2 whenever w e W. With 
this choice of W, lf(xu) - f(Yu) l < e, a contradiction. • 

One can rephrase (9. 1 )  by saying that continuous functions on a topological 
group that have compact support are uniformly continuous. 

In the next result it is the case p = 1 which is of principal interest for us 
at this time. The proof of the general theorem is, however, no more difficult 
than this special case. 

9.2. Proposition. IfG is a locally compact group, 1 � p < oo, andfeLP(G), then 
the map x 'r-+ fx is a continuous function from G into LP( G). 

PROOF. Fix f in LP(G), x in G, and e > 0; it must be shown that there is a 
neighborhood V of x such that for y in V, I I fY - fx I I  P < e. First note that 
there is a continuous function l/J: G ---. ([ having compact support such that 



§9. The Group Algebra of a Locally Compact Abelian Group 225 

I I f - l/J  II P < e/3. Let K = spt l/J. Note that because Haar measure is translation 
invariant, for any y in G, I I  fY - l/Jy II P = I I f - l/J  II P < e/3 . Now by 
Proposition 9. 1 ,  there is a neighborhood U of e such that l l/J(y) - l/J(w) l < 
�e[2m(K)] - t fp whenever y - twe U. Put V = Ux. If ye V, then 

l l l/Jy - l/Jx u ;  = II f/J(zy- l ) - l/J(zx - t ) I Pdz. 

But y = ux for some u in U, so (zy - t ) - t (zx - t ) = yx - t = u eU. Thus 

l l l/Jy - l/Jx l l � = f l l/J (zy - t ) - ljJ(zx - t ) I Pdz 
KyuKx 

� G r [2m(K)] - l m(Ky u Kx) 

Therefore if Y E V, I I fx - fy l i P � I I  fx - l/Jx l i P + l l l/Jx - l/Jy l i P + l l l/Jy - fy l i P < e . 
• 

The aim of this section is to discuss the homomorphisms on Lt (G) when 
G is abelian and to examine the Gelfand transform. There is a bit of a 
difficulty here since L t (G) does not have an identity when G is not discrete. 
If [)e is the unit point mass at e, then [)e is the identity for M(G) and hence 
acts as an identity for Lt (G). Nevertheless [Je ¢Lt (G) if G is not discrete. All 
is not lost as L t (G) has an approximate identity (Exercise 2.8) of a nice type. 

9.3. Proposition. Iff E L t (G) and e > 0, then there is a neighborhood U of e 
such that if g is a non-negative Borel function on G that vanishes off U and 
has J g(x)dx = 1 ,  then II f - f * g l i t < e. 

PROOF. By the preceding proposition, there is a neighborhood U of e such 
that I I f - fY l i t < e whenever ye  U. If g satisfies the conditions, then 
f(x) - f * g(x) = J [f(x) - f(xy - t )]g(y)dy for all x. Thus, 

l l f - f•g l l l = f L [f(x) - f(xy- t )]g(y)dy dx 

� L g(y) fl f(x) - f(xy - t ) l dx dy 

= L g(y) I I  f - fy l i t dy 

• 

9.4. Corollary. There is a net {ei }  ofnon-negativefunctions in Lt (G) such that 
J e;dm = 1 for all i and II ei * f - f 1 1 1 ---. 0 for all f in Lt (G). 
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PROOF. Let OlJ be the collection of all neighborhoods of e and order OlJ by 
reverse inclusion. Let OlJ = { Vi : i ei} where i � j if and only if Vi c U;. For 
each i in I put e; = m(U;) - 1Xui ' so e; � 0 and J e;dm = 1 .  If feL1 (G) and e > 0, 
let U; be as in the preceding proposition. So if j � i, e i satisfies the conditions 
on g in (9.3) and hence l l f - f* ei l l 1 < e. • 

9.5. Corollary. If h: L1 (G) -+ <C is a nonzero homomorphism, then h is bounded 
and I I  h I I  = t .  

PROOF. The fact that h is bounded and I I h I I  � 1 is Exercise 8.3 . I n  light of 
the preceding corollary if h(f) # 0, h(f) = lim h(f * ei) = h(f) lim h(ei). Hence 
h(ei) -+  1 .  Since II ei II = 1 for all i, II h II = 1 .  • 

Even though Haar measure on most of the popular examples is a-finite, 
this is not true in general. For example, if D is an uncountable discrete group, 
the Haar measure on D is counting measure and, hence, not a-finite. Similarly, 
Haar measure on D x R is not a-finite. Nevertheless, it is true that 
L1 (G)* = L00(G) for any locally compact group because (G, m) is an example 
of a decomposable measure space, though L00(G) must be redefined to be 
the equivalence classes of bounded Borel functions that are equal a.e. on 
every set of finite Haar measure. This fact will be assumed here. The interested 
reader can consult Hewitt and Ross [ 1963]. 

9.6. Theorem. If G is a locally compact abelian group and y :  G -+  1r is a 
,A. 

continuous homomorphism, define f(y) by 

9.7 ](y) = f f(x)y(x - 1 )dx 

for every f in L1 (G). Then f'r--+ ](y) is a nonzero homomorphism on L1 (G). 
Conversely, if h: L1 (G) -+ <C is a nonzero homomorphism, there is a continuous 
homomorphism y :  G -+  1r such that h(f) = ](y). 

PROOF. First note that if y : G -+  1r is a homomorphism, y(xy) = y(x)y(y) and 
y(x - 1 ) = y(x) - 1 = y(x), the complex conjugate of y (x). If f, g eL1 (G), then 

f-;g(y) = J(f •g) (x)y(x - 1 )dx 

= Jy(x - 1 ) ft(xy- 1 )g(y)dydx 

= f g(y)y(y - 1{ft(xy- 1 )y( (xy - 1 ) - 1 )dx Jdy. 

But the in variance of the Haar integral gives that J f(xy- 1 )y( (xy- 1 ) - 1 )dx = 
J f(x)y(x - 1 )dx. Hence 
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...... 

So fH f(y) is a homomorphism. Since y is continuous and y(G) c lr, y eL 00(G) 
and I I  y I I  oo = 1 .  Thus fH f(y) is not identically zero. 

Now assume that h: L1 (G) -+ <C  is a nonzero homomorphism. Since h is a 
bounded linear functional, there is a ljJ in L 00 (G) such that h(f) = J f(x)l/J(x)dx 
and l l l/J I I  oo = I I  h I I  = 1 .  If f, g EL 1 (G), then h(f *g) = J (/ * g) (x)l/J(x)dx = 
Jg(y)[Jf(xy - 1 )l/J(x)dx] dy = Jg( y)h(fy)dy. [Note that yHh(fy) is a continuous 
scalar-valued function by Proposition 9.2.] But h(f *g) = h(f)h(g) = 
J g(y)h(f)l/J(y)dy. So 

0 = f g(y) [h(f,) - h(f)<fo(y)] dy 

for every g in L1 (G). But yHh(fy) - h(f)l/J(y) belongs to L 00(G), so for any 
f in L1 (G), 

9.8 h(fy) = h(f)l/J(y) 

for locally almost all y in G. Pick f in L 1 (G) such that h(f) =1= 0. By (9.8), 
l/J(y) = h(fy)/h(f) a.e. But the right-hand side of this equation is continuous. 
Hence we may assume that ljJ is a continuous function. Thus for every f in 
L1 (G), (9.8) holds everywhere. 

In (9.8), replace y by xy and we obtain h(f)ljJ(xy) = h(fxy) = h((fx))y). Now 
replace f in (9.8) by fx to get h(fx)l/J(y) = h(fxy). Thus h(f)l/J(xy) = h(fx)l/J(y) = 
[h(f)l/J(x)] l/J(y). If h(f) =I= 0, this implies l/J(xy) = l/J(x)l/J(y) for all x, y in G. 
Thus ljJ: G -+ <C is a homomorphism and l l/J(x) l � 1 for all x. But 
1 = l/J(e) = l/J(x)l/J(x - 1 ) = l/J(x)l/J(x) - 1 and l l/J(x) I , l l/J(x) - 1 1 � 1. Hence l l/J(x) I = 1 
for all x in G. If y(x) = ljJ(x - 1 ), then y: G -+  1r is a continuous homomorphism 
and h(f) = f(y) for all f in L1 (G). • 

Let I: be the set of nonzero homomorphisms on L1 (G), where G is assumed 
to be abelian (both here and throughout the rest of the chapter). So 
I: c ball L 1 (G)*. If he  ball L 1 (G)* and {hi } is a net in I: such that hi -+ h weak*, 
then it is easy to see that h is multiplicative. Thus the weak* closure of 
I: c I: u {0}. Hence the relative weak* topology on I: makes I: into a locally 
compact Hausdorff space (see Exercise 8.4). 

Let r = all the continuous homomorphisms y: G -+  lr. By Theorem 9.6, I: 
and r can be identified using formula (9. 7). In fact, the map defined in (9. 7) 
is the Gelfand transform when this identification is made. (Just look at the 
definitions.) Since � and r are identified and I: has a topology, r can be 
given a topology. Thus r becomes a locally compact space with this topology. 
(For another description of the topology, see Exercise 6.) The functions in 

...... 

r are called characters and are sometimes denoted by r = G and called the 
dual group. 
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Also notice that in a natural way r is a group. If y 1 , y2 er, then 
(Y t Y2 ) (x) = Y t (x)y2 (x) and Y 1 Y2 Er. 

9.9. Proposition. r is a locally compact abelian group. 

Clearly r is an abelian group and we know that r is a locally compact 
space. It must be shown that r is a topological group. To do this we first 
prove a lemma. 

9.10. Lemma. 

(a) The map (x, y)...-+y(x) of G x r -+  1r is continuous. 
(b) If {Yi } is a net in r and Yi -+ Y in r, then Yi(x) -+ y(x) uniformly for X 

belonging to any compact subset of G. 

PROOF. First note that if xeG  and feL1 (G), then for every y in r, 

Jx(Y) = f fx(y)y(y- 1 )dy 

= Jf(yx - 1 )y(y - 1 )dy 

= f f(z)y(z - 1 x - 1 )dz 

= y(x - t )J(y). 
So if y i -+ y in r and xi -+ X in G' 

"""' ....... ....... ....... 
l f(yi)Yi(xJ - f(y)y(x) l = lfx:- 1 (Yi) - fx- 1 (y) l 

l ....... ....... ....... ....... 
� I f - 1 (yi) - fx - 1 (Yi) l + lfx - 1 (Yi) - fx- . (y) l . x . 

l ...... ...... 1 But l fx :- 1 (Yi) - fx - 1 (Yi) l � I I fx:- 1 - fx - 1 l i t -+ 0 by (9.2). Because fx - 1 EL (G), 
...... l ...... l ...... ...... 
fx - 1 (Yi) -+ fx - 1 (y) since Yi -+ y. Thus f(yi)Yi(xJ -+ f(y)y(x). If f is chosen so that 
....... """"" ....... ....... 
f(y) # 0, then because f(yi) -+ f(y), there is an i0 such that f(Yi) # 0 for i ;::: i0 . 
Therefore Yi(xi) -+ y(x) and (a) is proven. 

Now let K be a compact subset of G and let {Yi } be a net in r such that 
Yi -+ Yo · Suppose { Yi(x) }  does not converge uniformly on K to y0(x). Then 
there is an e > 0 such that for every i, there is a ji ;::: i and an xi in K such 
that I Yii(xi) - y0(xi) l ;::: e. Now { Yii } is a net and Yii -+ Yo (Exercise). Since K is 
compact, there is an x0 in K such that xi ct , x0. Now part (a) implies that 
the map (x, y)...-+ (y(x), Yo(x) ) of G X r into 1r X 1r is continuous. Since 
(xi , YiJ cl , (xo , Yo ) in G X r, (yji (xi), Yo(xJ ) cl , (Yo(Xo), Yo(Xo) ). So for any io , 
there is an i ;::: i0 such that I Yii (xJ - y0(x0) 1 < e/2 and I Yo(xi) - Yo(xo) l < ej2. 
Hence I y ii(xi) - y0(xi) I < e, a contradiction. • 

PROOF OF PROPOSITION 9.9. Let {Yi } ,  {A.i } be nets in r such that Yi -+ Y and 
A.i -+ A.. It must be shown that yiA.i- 1 --+ yA. - 1 •  Let l/J eCc(G) and put K = spt l/J. 
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Then �(YiAi- 1 ) = JKl/J(x)yi(x - 1 )Ai(x) dx. By the preced�ng lemma, ..... Yi(x - 1 ) -+  
y(x - 1 ) and Ai(x) -+ A(x) uniformly for x in K. Thus l/J(yiAi- 1 ) -+  l/J(yA - 1 ). If 
f eL 1 (G) and e > 0, let l/J eCc(G) such that I I f - l/J  II 1 < e/3 . Then 

..... ..... 2e ..... ..... 
l f(yiAi- 1 ) - f(yA - 1 ) I < 3 + I c/J(y;A;- 1 ) - l/J(yA - 1 ) I . 

It follows that ](yiAi- 1 ) -+  ](yA - 1 ) for every f in L 1 ( G). Hence YiAi- 1 -+ yA - 1 
in r. • 

..... Since r is a locally compact abelian group, it too has a dual group. Let 
r be this dual group. If xeG, define p(x): r -+  1f by p(x) (y) = y(x). It is easy 
to see that p is a homomorphism. It is a rather deep fact, entitled the ..... 
Pontryagin Duality Theorem, that p: G -+  r is a homeomorphism and an 
isomorphism. That is, G "is" the dual group of its dual group. The interested 
reader may consult Rudin [1 962] . We turn now to some examples. 

9.1 1 . Theorem. If yeR, then yy(x) = eixy defines a character on R and every 
character on R has this form. The map y�---+ yy is a homeomorphism and an 
isomorphism ofR onto JR.. If yeR and feL1(R), then 

9.12  

the Fourier transform of f. 

PROOF. If y eR, then I Yy(x) l = 1 for all x and Yy(x 1 + x2 ) = Yy(x 1 )Yy(x2). So 
..... 

Yy ER...:. Also, Yy1 + y2 (x) = Yy 1 (x)yy2 (x). Hence y�---+ yy is a homomorphism of JR. 
into R. 

Now let y eJR. y(O) = 1 so that there is a £5 > 0 such that J�y(x)dx = a #  0. 
Thus 

ay(x) = y(x) I: y(t)dt 

= I: y(x + t)dt 

= Lx+<l 
y(t)dt. 

Hence y(x) = a - 1 J� + tSy(t) dt. Because y is continuous, the Fundamental 
Theorem of Calculus implies that y is differentiable. Also, 

y(x + � - y(x) 
= y(x

{ y(h�- 1 J 
So y' (x) = y'(O)y(x). Since y(O) = 1 and l y(x) l = 1 for all x, the elementary 
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theory of differential equations implies that y = yY for some y in JR. This 
implies that y�yY is an isomorphism of JR. onto JR. 

It is clear from (9.7) that (9. 12) holds. From here it is easy to see that 
A. 

y�yY is a homeomorphism of JR. onto JR. • 

So the preceding result says that JR. is its own dual group. Because of 
A. 

(9 . 1 2), the function f as defined in (9. 7) is called the Fourier transform of f. 
The next result lends more weight to the use of this terminology. 

A. 

9.13. Theorem. Ifn e'll, define Yn : 1f -+  1f by Yn(z) = zn. Then Yn Elf and the map 
A. 

n�yn is a homeomorphism and an isomorphism of 7l onto lf. If n e'll and 
feL1(1r), then 

9.14 

A. 

PROOF. It is left to the reader to check that Yn elf and n� Yn is an injective 
homomorphism of 7l into it. If y eit, define a: JR. -+  1f by a(t) = y(eit); i t follows 

A. • 

that a eJR. By (9. 1 1 ), a(t) = e'Yt for some y in JR. But a(t + 2n) = a(t), so 
e21tiy = 1 .  Hence y = n e'll. Thus y(ei8) = a(lJ) = eino, y = Yn , and n� Yn is an 

A. 

isomorphism of 7l onto lf. Formula (9. 14) is immediate from (9.7). The fact 
that n � yn is a homeomorphism is left as an exercise. • 

A. 

So 1f = 7l, a discrete group. This can be generalized. 
A. A. 

9.15. Theorem. If G is compact, G is discrete; if G is discrete, G is compact. 

PROOF. Put r = G. If G is discrete, then L1 (G) has an identity. Hence its 
maximal ideal space is compact. That is, r is compact. 

Now assume that G is compact. Hence r c L1 (G) since m(G) = 1 .  Suppose 
y E r and y # the identity for r, then there is a point Xo in G such that 
y(x0) # 1 .  Thus 

f y(x)dx = f y(xx� 1 x0)dx 

= y(x0) f y(xx� 1 )dx 

= y(x0) f y(x)dx, 

since Haar measure is translation invariant. Since y(x0) # 1 ,  this implies 
that 

L y(x)dx = 0 if y =1- 1 .  

Of course if y =  1 ,  J 1 dx = m(G) = 1 .  So if f =  1 on G, feL1 (G) and 



§9. The Group Algebra of a Locally Compact Abelian Group 23 1 

](y) = J y(x - 1 )dx = X{q (y). Since J is continuous on r, { 1 }  is an open set. By 
translation, every singleton set in r is open and hence r is discrete. • 

..... 
9.16. Theorem. If a Elr, define Ya : 7l -+  1r by Ya(n) = an. Then Ya E'll and the map ..... 
a�ya is a homeomorphism and an isomorphism of 1r onto 7l. If a Elr and 
f EL 1 (7l) = / 1 (7l), then 

9.17  
00 

f(Ya) = f(a) = L f(n)a - n. 
n = - oo 

..... 
PROOF. Again the proof that a�ya is a monomorphism of 1r -+7l is left to 
the reader. If y EZ, let y( 1 ) = a Elr. Also, y(n) = y( 1 )n = an, so y = Ya · Hence 
a�ya is an isomorphism. It is easy to show that this map is continuous and 
hence, by compactness, a homeomorphism. • 

For additional reading, consult Rudin [1 962] . 

EXERCISES 
1 .  Prov� that if L1 (G) has an identity, then G is discrete. 

2. Iff E L 00(G), show that X I--+ fx is a continuous function from G into (L 00 (G), wk*). 

3. Is there a measure J.L on R different from Lebesgue measure such that for f in 
L 1 (J.L), x 1--+ fx is continuous? Is there a measure for which this map is discontinuous? 

4. If fe C0(G), show that x�---+fx is a continuous map from G -+ C0(G). 

5. Iff eL 00(G) and f is uniformly continuous on G, show that X I--+ fx is a continuous 
function from G -+ L00(G). Is the converse true? See Edwards [ 1961] .  

6 .  If K is a compact subset of G, y0 er, and e > 0, let U(K, y0, e) = {y er: 
l y(x) - y0(x) l < e for all x in K}. Show that the collection of all such sets is a base 
for the topology of r. (This says that the topology on r is the compact-open 
topology.) 

7. Show that there is a discontinuous homomorphism y: R -+  T. If y: R -+  T is a 
homomorphism that is a Borel function, show that y is continuous. 

8. If G is a compact abelian group, show that the linear span ofr is dense in C(G). 

9. If G is a compact abelian group, show that r forms an orthonormal basis in L 2( G). 

10. If G is a compact abelian group, show that G is metrizable if and only if r is 
countable. • 

1 1 . Let { G«} be a family of compact abelian groups and G = ll«G« . If r « = G«, show 
that the character group of G is { {y« } en«r«: y« = e except for at most a finite 
number of a} .  



CHAPTER VIII 
C*-Algebras 

A C*-algebra is a particular type of Banach algebra that is intimately 
connected with the theory of operators on a Hilbert space. If Jf is a Hilbert 
space, then �(Jf) is an example of a C*-algebra. Moreover, if d is any 
C*-algebra, then it is isomorphic to a subalgebra of �(Jf) (see Section 5). 
Some of the general theory developed in this chapter will be used in the next 
chapter to prove the Spectral Theorem, which reveals the structure of normal 
operators. 

A more thorough treatment of C*-algebras is available in Arveson 1: 1976] 
or Sakai [ 1 97 1 ] . 

§ 1 .  Elementary Properties and Examples 

If d is a Banach algebra, an involution is a map a �a* of d into d such 
tpat the following properties hold for a and b in d and tX in <C: 

(i) (a*)* = a; 
(ii) (ab)* = b*a* ; 
(iii) (tXa + b)* = �a* + b*. 

Note that if d has involution and an identity, then 1 * · a = ( 1  * · a)** = 
(a* · 1 )* = (a* )* = a; similarly, a · 1 * = a. Since the identity is unique, 1 * = 1 .  
Also, for any tX in <C, tX* = �-

1 .1 .  Definition. A C*-algebra is a Banach algebra d with an involution such 
that for every a in d, 
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1 .2. Example. If Jf is a Hilbert space, d = fJI(Jf) is a C*-algebra where for 
each A in fJI(Jf), A* = the adjoint of A. (See Proposition II.2.7.) 

1 .3. Example. If Jf is a Hilbert space, f110(Jf) is a C*-subalgebra of fJI(Jf), 
though f110(Jf) does not have an identity if Jf is infinite dimensional. 

1 .4. Example. If X is a compact space, C(X) is a C*-algebra where 
f*(x) = f(x) for f in C(X) and x in X. 

1 .5. Example. If (X, n, Jl) is a a-finite measure space, L 00 (X, n, Jl) is a 
C*-algebra where the involution is defined as in ( 1 .4). 

1 .6. Example. If X is locally compact but not compact, C0(X) is a C*-algebra 
without identity. 

1 .7. Proposition. If d is a C*-algebra and a ed, then I I a* I I = I I  a 1 1 . 

PROOF. Note that I I  a 1 1 2 = I I  a* a I I � I I a* I I I I a I I ; so I I a I I � I I a* 1 1 . Since a =  a**, 
substituting a* for a in this inequality gives I I  a* I I  � II a I I . • 

1 .8. Proposition. If d is a C*-algebra and a ed, then 

II a II = sup { II ax II : x Ed, II x II � 1 } 
= sup { I I  xa I I : x ed, I I x I I  � 1 } .  

PROOF. Let (X =  sup { I I ax I I : xed, I I x I I  � 1 } .  Then I I  ax I I � I I  a I I  I I x I I  for any x 
in d; hence (X � I I a I I . If x = a*/ I I  a I I , then II x I I  = 1 by the preceding 
proposition. For this x, I I ax II = I I a I I , so (X = I I a I I . The proof of the other 
equality is similar. • 

This last proposition has an alternative formulation that is useful. If a ed, 
define La: d --+  d by La(x) = ax. By ( 1 .8), La efJI(d) and I I  La I I  = I I a I I . If p: 
d --+ fJI(d) is defined by p(a) = La, then p is a homomorphism and an 
isometry. That is, d is isometrically isomorphic to a subalgebra of fJI(d). 
The map p is called the left regular representation of d. 

The left regular representation can be used to discuss the process of 
adjoining an identity to d. Since d is isomorphic to a subalgebra fJI(d) 
and fJI(d) has an identity, why not just Jook at the subalgebra of fJI(d) 
generated by d and the identity operator? Why not, indeed. This is just 
what is done below. 

If d and rc are Banach algebras and v: d --+rc, then v is *-homomorphism 
if v is an algebra homomorphism such that v(a*) = v(a)* for all a in d. 

1 .9. Proposition. If d is a C*-algebra, then there is a C*-algebra d 1 with an 
identity such that d 1 contains .s4 as an ideal. If .s4 does not have an identity, 
then d 1/ .s4 is one dimensional. /fCC is a C*-algebra with identity, and v: d --+  CC 
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is a *-homomorphism, then v 1 : d 1 -+ �' defined by v 1 (a + C() = v(a) + C( for a 
in d and C( in <C, is a *-homomorphism. 

PROOF. It may be assumed that d does not have an identity. Let d 1 = {a + C(: 
a ed, C( E<C} (a + C( is just a formal sum). Define multiplication and addition 
in the obvious way. Let (a + C()* = a* + li and define the norm on d 1 by 

I I  a + C( l l = sup { I I  ax + C(X I I : x ed, l l x l l  � 1 } . 

Clearly, this is a norm on d 1 • It must be shown that I I  y*y I I  = I I  y 1 1 2 for every 
y in d 1 • 

Fix a in d and C( in <C. If e > 0, then there is an x in d such that I I x II � 1 and 

I I  a + C( 1 1 2 - e < I I  ax + C(X 1 1 2 = I I  (x*a* + !ix*)(ax + C(X) I I  
= I I x*(a + C()*(a + C()x I I  � I I  (a + C()*(a + C() 1 1 . 

Thus I I a + C( 1 1 2 � I I (a + C()* (a + C() 1 1 . 
It is left to the reader to prove that the norm on d 1 makes d 1 a 

Banach algebra. For the other inequality, note that I I  (a + C()*(a + C() I I  � 
I I  a + C()* 1 1 1 1  a + C( 1 1 . So the proof will be complete if it can be shown that 
I I (a + C()* II � II a + C( 1 1 . Now if x, yed and I I x I I , I I y II � 1 ,  then I I y(a + C()*x II = 
I I  ya*x + !iyx I I = I I  x*ay* + C(x*y* I I  = I I  x*(a + C()y* I I  � I I  a + C( 1 1 . Taking the 
supremum over all such x, y gives the desired inequality. 

It remains to prove the statement concerning the *-homomorphism v, that 
v(a*) = v(a)*. The details are left to the reader. • 

If d is a C*-algebra with identity and aed, then a(a), the spectrum of 
a, is well defined. If d does not have an identity, a(a) is defined as the 
spectrum of a as an element of the C*-algebra d 1 obtained in Proposition 1 .9. 

1 .10. Definition. If d is a C*-algebra and aed, then (a) a is hermitian if 
a =  a* ; (b) a is normal if a* a =  aa*; (c) a is unitary if a* a =  aa* = 1 (this only 
makes sense if d has an identity). 

1 .1 1 .  Proposition. Let d be a C*-algebra and let a ed. 

(a) If a is invertible, then a* is invertible and (a*) - 1 = (a - 1 )*. 
(b) a =  x + iy where x and y are hermitian elements of d. 
(c) If u is a unitary element of d, I I  u I I  = 1 .  
(d) If &I is a C*-algebra and p: d -+  81 is a *-homomorphism, then I I  p(a) I I  � J l a 1 1 . 
(e) If a =  a*, then I I  a I I  = r(a). 

PROOF. The proofs of (a), (b), and (c) are left as exercises. 
(e) Since a* = a, II a2 l l = I I a* a I I  = I I  a 1 1 2 ; by induction, I I  a2" I I  = I I  a 1 1 2" for 

n � 1 .  That is, I I  a2" 1 1 1 1 2" = I I  a I I  for n � 1 .  Hence r(a) = lim I I  a2" 1 1 1 12" = I I  a 1 1 . 
(d) If .91 has an identity, it is not assumed that p( 1 ) = the identity of 81. 

However, it is easy to see that p( 1 )  is the identity for cl p(d). If d does not 
have an identity, then p can be extended to a *-homomorphism p 1 : d 1 -+ 811 
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such that p 1 ( 1 )  = 1 ( 1 .9). Thus it suffices to prove the proposition under the 
additional assumption that d and 11 have identities and p ( l ) = 1 .  

If xed, then it follows that cr(p(x) ) c cr(x) (Verify!) and hence r(p(x) ) � r(x). 
So, using part (e) and the fact that a* a is hermitian, I I  p(a) 1 1 2 = I I p(a*a) I I  = 
r(p(a*a) ) � r(a*a) = I I a* a I I  = I I a 1 1 2 • • 

1 .12. Proposition. If d is a C*-algebra and h: d � <C is a non-zero homomor
phism, then: 

(a) h(a)eR whenever a =  a*; 
(b) h(a*) = h(a) for all a in d; 
(c) h(a*a) ;;;:: 0 for all a in d; 
(d) if l ed and u is unitary, then l h(u) l = 1 .  

PROOF. If d has no identity, extend h to d 1 by letting h( l )  = 1 .  Thus, we 
may assume that d has an identity. By Exercise VII.8. 1 ,  I I  h I I  = 1 .  If a = a* 
and teR, 

l h(a + it) l 2 � I I a +  it 1 1 2 = I I (a + it)*( a + it) I I  
= I I (a - it) (a + it) I I  
= I I a2 + t2 l l � I I a 1 1 2 + t2 • 

If h(a) = ex + i/3, ex, f3 in R, then this yields 

I I a 1 1 2 + t2 ;;;:: l ex + i(/3 + t) l 2 

= (X2 + ([3 + t)2 

= (X2 + [32 + 2f3t + t2 ; 

hence I I a 1 1 2 ;;;:: cx2 + {32 + 2f3t for all t in R. If f3 # 0, then letting t � + oo, 
depending on the sign of [3, gives a contradiction. Therefore f3 = 0 or h(a)eR. 
This proves (a). 

Let a =  x + iy, where x and y are hermitian. Since h(x), h( y)eR by (a) and 
a* = x - iy, (b) follows. Also, h(a*a) = h(a*)h(a) = I h(a) 1 2 ;;;:: 0, so (c) holds. 
Finally, if u is unitary, l h(u) l 2 = h(u*)h(u) = h(u*u) = h( l )  = 1 .  • 

Note that part (b) of the preceding proposition implies that any 
homomorphism h: d � <C is a *-homomorphism. This, coupled with (VII.8.6), 
gives the following corollary. 

• 

1 .13. Corollary. If d is an abelian C*-algebra and a is a hermitian element 
of .91, then a( a) c R. 

This corollary is short-lived as the conclusion remains valid even if .91 is 
not abelian. 

1 .14. Proposition. Let .91 and f!A be C*-algebras with a common identity and 
norm such that .91 c f!A. If aed, then u �<=�(a) = u �(a). 
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PROOF. First assume that a is hermitian and let � = C*(a), the C*-algebra 
generated by a and 1 .  So � is abelian. By Corollary 1 . 1 3  a�(a) c JR. By 
Theorem VII.5.4, a s�(a) c a�(a) = oa�(a) c a s�(a); so a s�(a) = a�(a) c JR. By 
similar reasoning, a �(a) = a�(a), and hence a s�(a) = a  �(a). 

Now let a be arbitrary. It suffices to show that if a is invertible in 11, a 
is invertible in d. So suppose there is a b in 11 such that ab = ba = 1 .  Thus, 
(a*a) (bb*) = (bb*) (a*a) = 1 .  Since a* a is hermitian, the first part of the proof 
implies a* a is invertible in d. But inverses are unique, so bb* = (a*a) - 1 ed. 
Hence b = b(b*a*) = (bb*)a* ed. • 

This result must, of course, be contrasted with Theorem VII.5.4. 

EXERCISES 
1 .  Verify the statements made in Examples 1 .2 through 1 .6. 

2. Let .stl = {! EC(cl D): f is analytic in D} and for f in .stl define f* by f*(z) = f(z). 
Show that .stl is a Banach algebra, /* Ed when f E.stl, and II f* II = II f II , but .st1 is 
not a C*-algebra. 

3. If {.stli: iEI} is a collection of C*-algebras, show that E9 oo .st/i and Eeo .stli are 
C*-algebras. 

4. Let X be a locally compact space and let .stl be a C*-algebra. If Cb(X, .st/) = the 
collection of bounded continuous functions from X -+  .stl, show that Cb(X, .st/) is 
a C*-algebra. Let C0(X, .st/) = all of the continuous functions f: X -+  .stl such that 
for every e > 0, {xEX: II f(x) II � e} is compact. Show that C0(X, .st/) is a C*-algebra. 

§2. Abelian C*-Algebras and the Functional 
Calculus in C*-Algebras 

The next theorem is the basic result of this section. It will be used to develop 
a functional calculus for normal elements that extends the Riesz Functional 
Calculus. 

2.1.  Theorem. If d is an abelian C*-algebra with identity and I: is its maximal 
ideal space, then the Gelfand transform y: d --+  C(I:) is an isometric *-isomorphism 
of d onto C(I:). 

PROOF. By Theorem VII.8.9, I I x I I oo � II x II for every x in d. But I I x I I  oo is the 
spectral radius of x, so by ( 1 . 1 1e), I I x II = II x I I oo for every hermitian element 
x of d. In particular, I I x*x II = II x*x II 00 for every x in d. 

If aed and he I:, then a*(h) = h(a*) = h(a) = a(h) . That is, � = a. 
Equivalently, y(a*) = y(a)* since the involution on C(I:) is defined by complex 
conjugation. Thus, y is a *-homomorphism. Also, I I  a 1 1 2 = I I a*a I I = I I  a*a I I oo = 
I l l a 1 2 1 1 oo = I I a I I  � ;  therefore I I  a I I  = I I  a I I  oo and y is an isometry. 
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Because y is an isometry, it has closed range. To show that y is surjective, 
therefore, it suffices to show that it has dense range. This is accomplished 

..... 

by applying the Stone-Weierstrass Theorem. Note that 1 = 1 ,  so y(d) is a 
subalgebra of C(I:) containing the constants. Because y preserves the 
involution, y(d) is closed under complex conjugation. It remains to show 
that y(d) separates the points of I:. But if h1 and h2 are distinct homomor
phisms in I:, they are distinct because there is an a in d such that h1 (a) =F h2 (a). 
Hence a(h 1 ) =F a(h2 ). • 

By combining the preceding theorem with Proposition 1 .9 and 
Exercise VII.8.6, the following is obtained. 

2.2. Corollary. If d is an abelian C*-algebra without identity and I: is its 
maximal ideal space, then the Gelfand transform y: d -+  C0 (I:) is an isometric 
*-isomorphism of d onto C0(I:) . 

In order to focus our attention on the key concepts and not be distracted 
by peripheral considerations, we now make the following. 

Assumption. All C*-algebras that are considered have an identity. 

Let B4 be an arbitrary C*-algebra and let a be a normal element of BJ. So 
if d = C*(a), the C*-algebra generated by a (and 1 ), d is abelian. Hence 
d "' C(I:), where I: is the maximal ideal space of d. So by Theorem 2. 1 if 
f E C(I:), there is a unique element x of d such that .X = f. We want to think 
of x as f(a) and thus define a functional calculus for normal elements of a 
C*-algebra. To be useful, however, we should have a ready way of identifying 
I:. Moreover, since d = C*(a) and thus depends on a, it should be that I: 
depends on a in a clear way. The idea embodied in Proposition VII.8. 10  that 
I: and a(a) are homeomorphic via a natural map is the key here, although 
(VII.8. 1 0) is not directly applicable here since a is not a generator of C*(a) 
as a Banach algebra but only as a C*-algebra. [If a =  a*, then a is a generator 
of C*(a) as a Banach algebra.] Nevertheless the result is true. 

2.3. Proposition. If d is an abelian C*-algebra with maximal ideal space I: 
and aed such that d = C*(a), then the map r: I: -+  a( a) defined by r(h) = h(a) 
is a homeomorphism. If p(z, z) is a polynomial in z and z and y: d -+  C(I:) is 

• 

the Gelfand transform, then y(p(a, a*)) = p o r. 

The proof of this result follows, with a few variations, along the lines of 
the proof of Proposition VII. 8. 10 and is left to the reader. 

If r: I: -+ a( a) is defined as in the preceding proposition, then r#: C (a( a)) -+ 
C(I:) is defined by r#(f) = f o r. Note that r# is a *-isomorphism and an 
isometry, because r is a homeomorphism. Note that d = C*(a) is the closure 
of {p(a, a*): p(z, z) is a polynomial in z and z} . Now such a polynomial p(z, z) 
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is, of course, a function on a(a). [Just evaluate the polynomial at any z in 
a( a).] The last part of (2.3) says that y(p(a, a*)) = r#(p). We define a map p: 
C(a(a) ) � C*(a) so that the following diagram commutes: 

2.4 
y 

C*( a) • C(I:) 

� � 
C(a(a)) 

Note that if 11 is any C*-algebra and a is a normal element of 11, then 
d = C*(a) is an abelian C*-algebra contained in 11 and so (2.4) applies. 
Moreover, in light of Proposition 1 . 1 4, the spectrum of a does not depend 
on whether a is considered as an element of d or 11. The following definition 
is, therefore, unambiguous. 

2.5. Definition. If 11 is a C*-algebra with identity and a is a normal element 
of 11, let p: C(a(a) ) � C*(a) c 11 be as in (2.4). If f eC(a(a) ) define 

f(a) = p(f). 

The map f� f(a) of C(a(a) ) � 11 is called the functional calculus for a. 
Note that if p(z, z) is a polynomial in z and z, then p(p(z, z) ) = p(a, a*). In 

particular, p(znzm) = ana*m so that p(z) = a  and p(z) = a*. Also, p( 1 ) = 1 .  
The properties of this functional calculus can be obtained from the fact 

that p is an isometric *-isomorphism of C(a(a) ) into 11-with one exception. 
How does this functional calculus compare with the Riesz Functional 
Calculus? If feHol(a), f l a(a)eC(a(a) ); so f(a) has two possible 
interpretations. Or does it? 

2.6. Theorem. If 11 is a C*-algebra and a is a normal element of 11, then the 
functional calculus has the following properties. 

(a) f� f(a) is a *-monomorphism. 
(b) I I  f (a) I I  = I I f I I oo • 

(c) f� f(a) is an extension of the Riesz Functional Calculus. 

Moreover, the functional calculus is unique in the sense that if r: C(a(a) ) � 
C*(a) is a *-homomorphism that extends the Riesz Functional Calculus, then 
r(f) = f(a) for every f in C(a(a) ). 

PROOF. Let p: C(a(a) ) � C*(a) be the map defined by p(f) = f(a). From (2.4), 
(a) and (b) aJ;e immediate. 

Let n: Hol (a) � d c 11 denote the map defined by the Riesz Functional 
Calculus. Since p(z) = n(z) = a, an algebraic manipulation gives that p(f) = 
n(f) for every rational function f with poles off a( a). If f E Hol(a), then by 
Runge's Theorem there is a sequence {fn } of such rational functions such 
that fn(z) � f(z) uniformly in a neighborhood of a( a). Thus n(fn) � n(f). By 
(b), p(fn) � p(f). Thus p(f) = n(f). 

To prove uniqueness, let r: C(a(a) ) � f!l be a *-homomorphism that extends 
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the Riesz Functional Calculus. If jEC(a(a)), then there is a sequence {Pn } of 
polynomials in z and z such that Pn(z, z) --+ f(z) uniformly on a( a). But 
r(pn) = Pn(a, a*), r(pn) --+  r(f) ( 1 . 1 1 d), and Pn(a, a*) --+ f(a). Hence r(f) = f(a) . 

• 

Because of the uniqueness statement in the preceding theorem, it is not 
necessary to remember the form of the functional calculus Jr-. f(a), but only 
the fact that it is an isometric •-monomorphism that extends the Riesz 
Functional Calculus. Indeed, by the uniqueness of the Riesz Functional 
Calculus, it suffices to have that Jr-. f(a) is an isometric •-monomorphism 
such that iff(z) = 1 ,  thenf(a) = 1 ,  and iff(z) = z, thenf(a) = a. Any properties 
or applications of the functional calculus can be derived or justified using 
only these properties. There may, however, be an occasion when the precise 
form of the functional calculus [viz., (2.4)] facilitates a proof. There are also 
situations in which the definition of the functional calculus gets in the way 
of a proof and the properties in (2.6) give the clean way of applying this 
powerful tool. 

2.7. Spectral Mapping Theorem. If d is a C*-algebra and a is a normal element 
of d, then for every f in C(a(a) ), 

a(f(a) ) = f(a(a) ). 

PROOF. Let p: C(a(a) ) --+ C*(a) be defined by p(f) = f(a). So p is a 
•-isomorphism. Hence a(f(a) ) = a(p(f)) = a(f). But a(f) = f(a(a) ) (VII.3.2) . 

• 

Once again ( 1 . 1 4) was used implicitly in the preceding proof. 

EXERCISES 
1 .  Prove a converse to Proposition 2.3. If K is a compact subset of <C, C(K) is a 

singly generated C*-algebra. 

2. If d is an abelian C*-algebra with a finite number of C*-generators a 1 , . . .  , an , 
then there is a compact subset X of <Cn and an isometric •-isomorphism p: d --+  
C(X) such that p(ak) = zk, 1 � k � n, where zk(A. 1 , . . .  , A.n) = A.k (see Exercise VII.8. 1 2). 

3. If X is a compact Hausdorff space, show that X is totally disconnected if and only 
if C(X) is the closed linear span of its projections ( = hermitian idempotents) . 

• 

4. I! sing the terminology of Exercise 3, show that if (X, n, JJ.) is a a-finite measure 
space, the maximal ideal space of L oo (X, n, J1.) is totally disconnected. 

5. If d is a C*-algebra with identity and a =  a*, show that exp(ia) = u is unitary. Is 
the converse true? 

6. Let X be compact and fix a point x0 in X. Let d = { {fn } : fneC(X), supn I I  fn I I < oo, 
and {fn(x0) }  is a convergent sequence} . Show that d is an abelian C*-algebra 
with identity and find its maximal ideal space. 
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7. If X is completely regular, then Cb(X) is a C*-algebra and its maximal ideal space 
...., 

is the Stone-Cech compactification of X. 

§3 .  The Positive Elements in a C*-Algebra 

This section is an application of the functional calculus developed in the 
preceding section. The results here are very useful in the study of opera
tors on Hilbert space and they demonstrate the power of the functional 
calculus. 

If d is a C*-algebra, let Re d denote the hermitian elements of d. 

3.1 .  Definition. If d is a C*-algebra and a Ed, then a is positive if a ERe d 
and a( a) c [0, oo ). If a is positive, this is denoted by a �  0. Let d + be the 
set of all positive elements of d. 

3.2. Example. If d = C(X), then f is positive in d if and only if f(x) � 0 
for all x in X. 

3.3. Example. If d = L 00(J1) and f EL 00(J1), then f � 0 if and only if f(x) � 0 
a.e. [J1] . 

3.4. Proposition. If a ERe d, then there are unique positive elements u, v in d 
such that a = u - v and uv = vu = 0. 

PROOF. Let f(t) = max(t, 0), g(t) = - min (t, 0). Then f, gEC(R) and 
f(t) - g(t) = t. Using the functional calculus, let u = f(a) and v = g(a). So u 
and v are hermitian and by the Spectral Mapping Theorem u, v � 0. Also, 
u - v =f(a) - g(a) = a  and uv = vu = (gf)(a) = O  since fg = O. 

To show uniqueness, let u 1 , v 1 Ed + such that u 1 - v 1 = a  and u 1 v 1 = 
v 1 u 1 = 0. Let {Pn } be a sequence of polynomials such that Pn(O) = 0 for all n 
and Pn(t) --+ f(t) uniformly on a( a). Hence Pn(a) --+ u in d. But u 1 a =  au 1 • So 
u 1 pn(a) = Pn(a)u 1 for all n; hence u 1 u = uu 1 • Similarly, it follows that a, u, v, u 1 , 
and v 1 are pairwise commuting hermitian elements of d. Let PJJ = the 
C*-algebra generated by a, u, v, u 1 , and v 1 ; so PJJ is abelian. Hence PJJ "' C(I:) 
where I: is the maximal ideal space of PJJ. The uniqueness now follows from 
the uniqueness statement for C(I:) (Exercise 1 ). • 

The next result follows in a similar way. 

3.5. Proposition. If a Ed + and n � 1 ,  there is a unique element b in d + such 
that a =  bn. 

The decomposition a =  u - v of a hermitian element a is sometimes called 
the orthogonal decomposition of a. The elements u and v are called the 
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positive and negative parts of a and are denoted by u = a + and v = a_ .  Note 
that a _ � 0. 

If a Ed+ , then the unique b obtained in (3.5) is called the nth root of a 
and is denoted by b = a 1 1n. Note that if b is not assumed to be positive, it is 
not necessarily unique (see Exercise 5). 

If X is compact and fEC(X) + , then notice that l f(x) - t l � t for every 
real number t � I I  f 1 1 . Conversely, if l f(x) - t l � t for some t � I I  f I I , then 
f(x) � 0 for all x and so f � 0. These observations are behind some of the 
statements in the next result. 

3.6. Theorem. If d is a C*-algebra and a Ed, then the following statements 
are equivalent. 

(a) a �  0. 
(b) a =  b2 for some b in Re d. 
(c) a =  x*x for some x in d. 
(d) a =  a* and II t - a II � t for all t � II a I I . 
(e) a = a* and l i t - a l l � tfor some t �  l l a l l . 

PROOF. It is clear that (b) implies (c) and (d) implies (e). By (3. 5), (a) implies (b). 
(e) � (a): Since a =  a*, C*(a) is abelian. If X = a( a), X c R and f� f(a) is 

a •-isomorphism of C(X) onto C*(a). Using this isomorphism and (e), 
l t - x l � t for some t � l l a l l = sup { l s l : sEX} and all x in X. From the 
discussions preceding this theorem (with f(x) = x), x � 0 for all x in X. That 
is, X = a( a) c [0, oo ). Hence a �  0. 

(a) � (d): This proof follows the lines of the preceding paragraph and is 
left to the reader. 

(c) � (a): If a =  x*x for some x in d, then it is clear that a =  a*. Let 
a =  u - v, where u, v � 0 and uv = vu = 0. It must be shown that v = 0. 

If xv 1 12 = b + ic, where b, cERe d, then (xv 1 12)*(xv 1 12) = (b - ic) (b + ic) = 
b2 + c2 + i(bc - cb). But also (xv 1 12)*(xv 1 12) = v 1 12x*xv 1 12 = v 1 12(u - v)v 1 12 = 
- v2• Hence i(bc - cb) = - v2 - b2 - c2. By Proposition 3.7 below, i(bc - cb) � 
0. Also (xv 1 12)*(xv1 12) = - v2 � 0 because (a) and (b) are equivalent. By 
Exercise VII.3. 7, (xv 1 12) (xv1 12)* � 0. Put (xv 1 12) (xv 1 12)* = - y, where yEd + . 
So - y = (b + ic)(b - ic) = b2 + c2 - i(bc - cb). Hence i(bc - cb) = b2 + c2 + 
yEd + by (3 .7). Therefore i(bc - cb)E( - d + )nd + = (0). But this implies that 
- v2 = (xv1 12)*(xv1 12) = b2 + c2 E( - d+ ) n d+ , so that v2 = 0. But v � O so 
v = 0. That is, a = u � 0. • 

The next result will be proved only using the equivalence of (a), (d), and 
(e) from the preceding theorem. 

3.7. Proposition. If d is a C*-algebra, then d + is a closed cone. 

PROOF. Let {an } c d+ and suppose an -+ a. Clearly aERe d. By (3.6d), 
I I  an - I I  an I I  I I  � I I  an I I . Hence I I a - I I a I I  I I  � I I  a I I , so by (3.6e ), a � 0. 
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Clearly, Aa � 0 if a �  0 and A �  0. Let a, bed + ;  it must be shown that 
a + b � 0. It suffices to assume that I I a I I , I I b I I � 1 .  But I l l - � (a + b) I I = 
� I I ( 1  - a) + ( 1  - b) I I � 1 by (3.6d). So by (3.6e), �(a +  b) � o. 

lf aed+ n ( - .91 + ), then a = a* and a(a) = {O} . But l l a l l = r(a) ( l . l l e) . 
• 

Now to look at one more example-a very important one. 

3.8. Theorem. If Jf is a Hilbert space and A e�(Jf), then A �  0 if and only 
if (Ah, h) � 0 for all h in Jf. 

PROOF. if A �  0, then (3.6c) A =  T*T for some T in �(Jf). Hence (Ah, h) = 
I I Th 1 1 2 � 0. Conversely, suppose (Ah, h) � 0 for all h in Jf. By (11.2. 1 2), 
A =  A*. It remains to show that a(A) c [0, oo). If heJf and A <  0, then 

I I (A - A)h 1 1 2 = I I Ah 1 1 2 - 2A (Ah, h) +  A2 l l h 1 1 2 

� - 2A < Ah, h )  + A 2 I I h 1 1 2 � A 2 1 1  h 1 1 2 

since A <  0 and (Ah, h) � 0. By (VII.6.4), A�aap(A). But this implies that A - A 
is left invertible (Exercise VII.6.5). Since A - A is self-adjoint, A - A is also 
right invertible. Thus A�a(A) and A � 0. • 

3.9. Definition. If d is a C*-algebra and a, beRe d, then a � b if b - aed+ . 

This ordering makes a C*-algebra as well as Re a into ordered vector 
spaces. 

Note that if A and B are hermitian operators on the Hilbert space Jt, 
then A � B if and only if (Ah, h) � (Bh, h) for all h in eYe. 

This section closes with an application of positivity to obtain the polar 
decomposition of an operator. If AE<C, then A = I A I ei8 for some 0; this is the 
polar decomposition of A. Can an analogue be found for operators? To 
answer this question we might first ask what is the analogue of I A I and ei8 
ainong operators. If A e�(Jf), then the proper definition for I A I would seem 
to be I A I = (A* A) 1 12 [see (3.5)]. How about an analogue of ei8? Should it be 
a unitary operator? An isometry? For ah arbitrary operator neither of these 
is appropriate. The following new class of operators is needed. 

3.10. Definition. A partial isometry is an operator W such that for h in 
(ker W)l., I I  Wh I I = I I h 1 1 . The space (ker W)l. is called the initial space of W 
and tJ:te space ran W is called the final space of W. See Exercises 1 5-20 for 
more on partial isometries. 

3.1 1 . Polar Decomposition. If Ae�(Jt), then there is a partial isometry W 
with (ker A) l.  as its initial space and c1 (ratl A) as its final space such that 

./. A = WI A 1 . Moreover, if A = UP where P � 0 and U is a partial isometry with 
ker U = ker P, then P = I A I and U = W. 
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PROOF. If hE.Yf, then I I Ah i i 2 = (Ah, Ah) = (A*Ah, h) = ( I A i h, I A i h) . Thus 

3.12 I I  A h 1 1 2 = I l l A I h 1 1 2 • 

Since (ran A *) 1. = ker A, ran A* is dense in (ker A)l.. If f  Eran A*, f = A  *g 
for g in (ker A*)l. = cl ran A. Therefore, {A* Ak: kE.Yf} is dense in cl [ran A*] = 
(ker A)1.. But A* Ak = I A I 2k = I A i h, where h = I A i k. That is, { I A i h: hE .Yf} is 
dense in (ker A) 1.. If W: ran I A 1 -+ ran A is defined by 

3.13 W( I A i h) = Ah, 

then (3. 1 2) implies that W is a well-defined isometry. Thus W extends to an 
isometry W: (ker A)l. -+ cl (ran A). If Wh is defined to be 0 for h in ker A, W 
is a partial isometry. By (3. 1 3), W I A I = A. 

For the uniqueness, note that A* A = PU* UP. Now U* U = E = the 
projection onto the initial space of U (Exercise 1 6), (ker U)l. = (ker P) l. = 
cl (ran P). Thus A* A =  PEP = P2• By the uniqueness of the positive square 
root, P = I A I . Since A =  V I A l , U I A i h = Ah = WI A I h. That is, U and W agree 
on a dense subset of their common initial space. Hence U = W. • 

EXERCISES 
1 .  Prove the uniqueness statement in Proposition 3.4 for the case that .9// is abelian. 

2. Prove Proposition 3.5. 

3. Let Ae8l(L2(0, 1)) be defined by (Af)(t) = tf(t). Show that A �  0 and find A 1 1". 

4. Let (X, n, ,u) be a a-finite measure space, let ¢eL00(X,n, ,u), and define Mq, as in 
Theorem II. 1 .5. Show that M 4> � 0 if and only if l/J(x) � 0 a.e. [,u] . What is M !1"? 
If Mq,eRe &l(.Jf), find the positive and negative parts of Mq,. 

5. Find an example of a positive operator on a Hilbert space that has a nonhermitian 
square root. 

6. If a eRe .9//, show that I a  I =  (a2) 1 12 = a + + a _ .  

7. If aed + ,  show that x*axed + for every x in .9//. 

8. If a, bed, 0 � a �  b, and a is invertible, then b is invertible and b - 1 � a - 1 • 

9. If a, be Re .9//, a �  b, and ab = ba, then f(a) � f(b) for every increasing continuous 
function f on 1R. 

10. If a eRe .9// and II a II � 1 ,  show that a is the sum of two unitaries. (Hint: First 
solve this for .9// = <C.) 

t 

1 1 . If a > O, define frz: ( - a -
1 , oo) -+ 1R by frz(t) = t/( 1 + at) = a - 1 [ 1 - ( 1 + �t) - 1] .  

Show: 

(a) If 0 � a �  b in .9//, frz(a) � frz(b) for all a >  0; 
(b) frz(t) < min { t, a - 1 }  for t > 0; 
(c) limrz-ofrz(t) = t uniformly on bounded intervals in [0, oo); 
(d) if 0 � a �  {1, frz �/p on [0, oo ); 
(e) frz o /p = frz + p; 
(f) limrz_ ooafrz(t) = 1 uniformly on bounded intervals in [0, oo). 
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1 2. If a, bEd+ and a �  b, show that aP � bfJ for 0 � f3 � 1 .  (aP = f(a) where f(t) = tP.) 
(Hint: Let fa. be as in Exercise 1 1  and show that J �fa.( t)a - P da = ytP where y > 0. 
Use the definition of the improper integral and the functional calculus.) 

1 3. Give an example of a C*-algebra d and positive elements a, b in d such that 
a � b  but b2 - a2 �d + · 

14. Let d = 81(12), let a =  the unilateral shift on 12, and let b = a*. Show that 
a(ab) "# a(ba). 

1 5. Let W EBl(.Jf) and show that the following statements are equivalent: (a) W is a 
partial isometry; (b) W* is a partial isometry; (c) W* W is a projection; (d) WW* 
is a projection; (e) W W*W = W; (f) W* W W* = W*. 

1 6. If W is a partial isometry, show that W* W is the projection onto the initial space 
of W and W W* is the projection onto the final space of W. 

1 7. If W1 , W2 are partial isometries, define W1 � W2 to mean that Wi W1 � Wi W2, 
W1 Wi � W2 Wi , and W2h = W1 h whenever h is in the initial space of W1 . Show 
that � is a partial ordering on the set of partial isometries and that a partial 
isometry W is a maximal element in this ordering if and only if either W or W* 
is an isometry. 

1 8. Using the terminology of Exercise 1 7, show that the extreme points of ball &l(.Jf) 
are the maximal partial isometries. (See Exercise V.7. 10.) 

19. Find the polar decomposition of each of the following operators: (a) M q, as defined 
in (11. 1 . 5); (b) the unilateral shift; (c) the weighted unilateral shift [A(xb x2 , • . •  ) = 
(O, a 1 x 1 , �2x2 , . . .  ) for x in 12 and supn l an l < oo] with nonzero weights; (d) A E9 � 
(in terms of the polar decomposition of A). 

20. Let A EEl( .Jf) such that ker A = (0) and A � 0 and define S on f = � E9 .1f E9 · · · 

by S(h 1 , h 2 , . . .  ) = (0, Ah 1 , Ah2 , . . .  ). Find the polar decomposition of S, S =  WI S I , 
and show that S = l S I  W. 

2 1 .  Show that the parts of the polar decomposition of a normal operator commute. 

22. If AEBl(.Jf), show that there is a positive operator P and a partial isometry W 
such that A =  PW. Discuss the uniqueness of P and W. 

23. If A is normal and invertible, show that the parts of the polar decomposition of 
A belong to C*(A). 

24. Give an example of a normal operator A such that the partial isometry in the 
polar decomposition of A does not belong to C*(A). 

25. Show that for an arbitrary C*-algebra d it is not necessarily true that abEd + 
whenever a and bEd+ . If, however, a, bEd + and ab = ba, then abEd + .  
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§4*. Ideals and Quotients of C*-Algebras 

We begin with a basic result. 

4.1. Proposition. If I is a closed left or right ideal in the C*-algebra d, aEI 
with a =  a*, and iffEC(a(a) ) with f(O) = 0, then f(a)El. 

PROOF. Note that if I is proper, then 0Ea(a) since a cannot be invertible. 
Since a( a) c R, the Weierstrass Theorem implies there is a sequence {Pn } of 
polynomials such that Pn(t) -+ f(t) uniformly for t in a( a). Hence 
Pn(O) -+ f(O) = 0. Thus qn(t) = Pn(t) - Pn(O) -+ f(t) uniformly on a( a) and 
qn(O) = 0 for all n. Thus qn(a) El and by the functional calculus, 
I I  qn(a) - f(a) 1 1 -+ 0. Hence f(a) El. • 

4.2. Corollary. If I is a closed left or right ideal, a EI with a =  a*, then a + , a_ , 
I a I , and I a 1 1 12 E I. 

Note that if I is a left ideal of d, then {a*: a EI} is a right ideal. Therefore 
a left ideal I is an ideal if a* El whenever a El. 

4.3. Theorem. If I is a closed ideal in the C*-algebra d, then a* El whenever 
a EI. 

PROOF. Fix a in I. Thus a*a EI since I is an ideal. The idea is to construct 
a sequence { un } of continuous functions defined on [0, oo)  such that 

4.4 
(i) un(O) = 0 and un(t) � 0 for all t ; 
(ii) I I aun(a*a) - a I I -+ 0 as n -+  oo.  

Note that if such a sequence { un } can be constructed, then un(a*a) � 0 and 
un(a*a) El by Proposition 4. 1 .  Also, un(a*a)a* El since I is an ideal and 
I I un(a*a)a* - a* I I = I I  aun(a*a) - a 1 1 -+ 0  by (ii). Thus a* El whenever a EI. It 
remains to construct the sequence { un } · 

Note that 

I I aun(a*a) - a 1 1 2 

= I I [aun(a*a) - a]* [aun(a*a) - a] I I  
= I I un(a*a)a*aun(a*a) - a*aun(a*a) - un(a*a)a*a + a* a 1 1  . 

• 

If b = a*a, then the fact that bun(b) = un(b)b implies that I I  aun(a*a) - a 1 1 2 = 
I I  fn(b) I I  � sup { l fn(t) l : t � 0}, where fn(t) = tun(t)2 - 2tun(t) + t = t[un(t) - 1 ] 2 • 
If un(t) = nt for 0 � t � n- 1 and u(t) = 1 for t � n - 1 ,� then it is seen that 
sup { l fn(t) l : t � O} = 4/27n -+ O  as n -+ oo; so (4.4) is satisfied. • 

Notice that the construction of the sequence { un } satisfying (4.4) actually 
proves more. It shows that there is a "local" approximate identity. That is, 
the proof of the preceding theorem shows that the following holds. 
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4.5. Proposition. If d is a C*-algebra and I is an ideal of d, then for every 
a in I there is a sequence {en } of positive elements in I such that: 

(a) e1 � e2 � · · · and l i en I I � 1 for all n; 
(b) II aen - a I I -+ 0 as n ---+ oo.  

In the preceding proposition the sequence {en } depends on the element 
a. It is also true that there is a positive increasing net { ei } in I such that 
I I eia - a II ---+ 0 and I I aei - a I I -+ 0 for every a in I (see p. 36 of Arveson [ 1 976] ). 

We turn now to an important consequence of Theorem 4.3. 

4.6. Theorem. If d is a C*-algebra and I is a closed ideal of d, then for each 
a + I in d I I define (a + /)* = a* + I. Then d I I with its quotient norm is a 
C*-algebra. 

To prove (4.6), a lemma is needed. 

4.7. Lemma. If I is an ideal in a C*-algebra d and a ed, then 
I I  a + I I I  = inf { I I  a - ax I I : x E I, x � 0, and I I  x I I  � 1 } . 

PROOF. If (ball /) + = {x eball / :  x � 0} , then clearly I I  a + I I I  � inf{ I I  a - ax I I : 
x e(ball /) + }  since al c I. Let yel  and let {en } be a sequence in (ball /) + such 
that l l y - yen l l ---+ 0 as n --+ oo. Now 0 � 1 - en � 1 , so l l (a + y) ( l - en) l l � 
I I  a + y 1 1 . Hence 

I I  a + y I I  � lim inf l l (a + y) ( 1  - en) I I  
= lim inf l l (a - aen) + (y - yen) I I  
= lim inf l l a - aen I I  

since l l y - yen l l ---+ 0. Thus l l a + Y l l � infn l l a - aen l l � inf{ l l a - ax l l : x e(ball /) + } . 
Taking the infimum over all y in I gives the desired remaining inequality. • 

PROOF OF THEOREM 4.6. The only difficult part of this proof is to show that 
l l a + / 1 1 2 = l l a*a + l l l for every a in d. Since x* e/ whenever x e/ (4.3), 
I I  a* + I I I  = I I  a + I I I  for all a in d. Thus the submultiplicativity of the norm 
in d I I (VII.2.6) implies 

I I  a* a + I I I  = I I  (a* + I)(a + I) I I  
� I I  a* + I I I  I I  a + I I I  
= I I a +  I 1 1 2 -

On the other hand, the preceding lemma gives that 

I I  a +  I 1 1 2 = inf{ I I  a - ax 1 1 2 : x e(ball /) + } 
= inf{ I I a( l - x) 1 1 2 : x e(ball /) + } 
= inf{ I I  ( 1 - x)a*a( l - x) I I : x e(ball /) + } 
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� inf{ II a*a( l - x) I I : x E(ball l) + } 
= inf{ I I  a* a - a* ax I I : x E(ball /) + } 
= l l a*a + l ll . 
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• 

If d, 81 are C*-algebras with ideals I, J, respectively, and p: .91 -+  81 is a 
•-homomorphism such that p(J) c J, then p induces a •-homomorphism jj: 
.91/1 -+ 11/J defined by p(a + J) = p(a) + J. In particular, if I =  ker p and 
J = (0), then jj: .91 /ker p � 81 is a •-homomorphism and p o n = p, where n: 
.91 -+  .91 /ker p is the natural map. Keep these facts in mind when reading the 
proof of the next result. 

4.8. Theorem. If d, PJ are C*-algebras and p: .91 -+11 is a •-homomorphism, 
then I I p(a) I I  � I I  a I I  for all a and ran p is closed in 81. If p is a •-monomorphism, 
then p is an isometry. 

PROOF. The fact that I I  p(a) I I  � I I  a I I  is a restatement of ( l . l ld). Now assume 
that p is a •-monomorphism. As in the proof of ( l . l ld), it suffices to assume 
that .91 and 81 have identities and p( l )  = 1 .  (Why?) 

If a Ed and a =  a*, then it is easy to see that p(a) = p(a)* and a(p(a) ) c a( a). 
If a(p(a) ) # a( a), there is a continuous function f on a( a) such that f(t) = 0 
for all t in a(p(a) ) but f is not identically zero on a( a). Thus f(p(a) ) = 0, but 
f(a) # 0. Let {Pn } be polynomials such that Pn(t) -+ f(t) uniformly on a( a). 
Thus Pn(a) -+ f(a) and Pn(p(a)) -+ f(p(a) ) = 0. But Pn(p(a) ) = p(pn(a)) -+ p(f(a) ). 
Thus p(f(a) ) = f(p(a) ) = 0. Since p was assumed injective, f(a) = 0, a 
contradiction. Hence a( a) = a(p(a) ) if a =  a*. Thus by ( l . l l e), I I  a I I  = r(a) = 
r(p(a) ) = I I p(a) I I  if a =  a*. But then for arbitrary a, I I a 1 1 2 = I I a* a I I  = I I p(a*a) I I  = 
I I p(a)* p(a) I I  = I I  p(a) 1 1 2 and p is an isometry. 

To complete the proof 1et p: .91 -+  81 be a •-homomorphism and let jj: 
.91 /ker p -+ 11  be the induced •-monomorphism. So p is an isometry and hence 
ran p is closed. But ran p = ran p. • 

We turn now to some specific examples of C*-algebras and their ideals. 

4.9. Proposition. If X is compact and I is a closed ideal of C(X), then there 
is a closed subset F of X such that I =  {fEC(X): f(x) = 0 for all x in F}. 
Moreover, C(X)/ I is isometrically isomorphic to C(F). 

PROOF. Let F = {x EX: f(x) = 0 for all f in 1} , so F is a closed subset of X. 
If J.l EM(X) and J.t .l  I, then J l f l 2 dJ.t = 6 for every f in I since 1 / 1 2 = !lEI 
whenever f E J. Thus each f must vanish on the support of Jl,; hence 
I J.t i (X\F) = 0. Conversely, if J.tEM(X) and the suppor� of J.l is contained in 
F, JfdJ.t = 0 for every f in I. Thus J j_  = {J.tEM(X): I J.t i (X\F) = 0} . Since I is 
closed, I =  .L(J .L) = {! EC(X): f(x) = 0 for all x in F}. The remainder of the 
proof is left to the reader. • 

4.10. Proposition. If I is a closed ideal of 81(�), then I =>  810(�) or I =  (0). 
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PROOF. Suppose I # (0) and let T be a nonzero operator in I. Thus there 
are vectors fo , f1 in Je such that Tf0 = f1 # 0. Let g0, g 1 be arbitrary nonzero 
vectors Je. Define A :  Je --+ Je  by letting Ah = ll g0 l l - 2 ( h, g0 )f0• Then 
Ag0 = fo and Ah = 0 if h j_ g0 • Define B: Je --+  Je by letting Bh = 
I I !1 l l - 2 ( h, f1 ) g 1 . So Bf1 = g 1 and Bh = 0 if h l_f1 • Thus BT Ah = 0 if h j_ g0 
and BT Ag0 = g 1 . Hence for any pair of nonzero vectors g0 , g 1 in Je the 
rank-one operator that takes g0 to g 1 and is zero on [g0] l. belongs to I. 
From here it easily follows that I contains all finite-rank operators. Since I 
is closed, I ::") fJl 0( .Ye). • 

It will be shown in (IX.4.2), after we have spectral theorem, that if I is a 
closed ideal in fJl(Je) and Je is separable, then I = (0), fJl0(Je), or fJl(Je). 

EXERCISES 
1 .  Complete the proof of Proposition 4.9. 

2. Show that M "(<C) has no nontrivial ideals. Find all of the left ideals. 

3. If ex is an infinite cardinal number, let Irz = {A e31(�): dim cl (ran A) � ex} . Show that 
I rz is a closed ideal in 31( �). 

4. Let S be the unilateral shift on 12• Show that C*(S) => 310(12) and C*(S)/310(12) is 
abelian. Show that the maximal ideal space ofC*(S)/310(12) is homeomorphic to oD. 

5. If V is the Volterra operator on L2(0, 1 ), show that C*(V) = <C + 310(L2(0, 1 ) ). 

6. If sl is a C*-algebra, I is a closed ideal of sl, and 31 is a C*-subalgebra of sl, 
show that the C*-algebra generated by I u 31 is I + 31. 

7. If sl is a C*-algebra and I and J are closed ideals in sl, show that I + J is a 
closed ideal of sl. 

§5* .  Representations of C*-Algebras and the 
Gelfand-N aimark-Segal Construction 

5.1 .  Definition. A representation of a C* -algebera is a pair (n, Je), where Je is 
a Hilbert space and n: .91 --+ fJl(Je) is a •-homomorphism. If .91 has an identity, 
it is assumed that n( l )  = 1 .  (The algebras considered in this book are assumed 
to have an identity. The reader should be aware that not all authors make 
this assumption and so he should be cautious when consulting the literature.) 
Often mention of Je is suppressed and we say that n is a representation. 

5.2. Example. If Je is a Hilbert space and .91 is a C*-subalgebra of 8l(Je), 
then the inclusion map .91 � 8l(Je) is a representation. 

5.3. Example. If n is any cardinal number and Je is a Hilbert space, let _ye<n) 
denote the direct sum of Je with itself n times. If A e8l(Jt'), then A <n) is the 
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direct sum of A with itself n times; so A <n> E81(Jff<">) and I I  A <n> I I  = I I  A 1 1 . The 
operator A <n> is called the inflation of A. If n: d --+  81(J'f) is a representation, 
the inflation of n is the map n<n> : d --+  81(Jff<">) defined by n<n>(a) = n(a)<n> for 
all a in d. 

5.4. Example. If (X, n, ,u) is a a-finite measure space and J'f = L 2 (,u), then n: 
L 00 (,U) --+  81(.Yf) defined by n(4J) = Mq, is a representation. 

5.5. Example. If X is a compact space and ,u is a positive Borel measure on 
X, then n: C(X) --+ 81(L 2 (,u)) defined by n(f) = M 1 is a representation. 

5.6. Definition. A representation n of a C*-algebra d is cyclic if there is a 
vector e in J'f such that cl [n(d)e] = J'f; e is said to be a cyclic vector for 
the representation n. 

Note that the representations in Examples 5.4 and 5.5 are cyclic (Exercises 
2 and 3). Also, the identity representation i: 81(.Yf) --+ 81(.Yf) is cyclic and every 
nonzero vector is a cyclic vector for this representation. If d = <C + 810(.Yf), 
then the identity representation is cyclic. On the other hand, if n � 2, then 
the inflation n<n> of a representation of C(X) is never cyclic (Exercise 4). 

There is another way to obtain representations. 

5.7. Definition. If { (ni , .Yfi): i El} is a family of representations of d, then 
the direct sum of this family is the representation (n, .Yf), where .Yf = Et)i.Yfi and 
n(a) = { ni(a) } for every a in d. 

Note that since I I  ni(a) II � I I a I I  for every i (4.8), n(a) is a bounded operator 
on .Yf. It is easy to check that n is a representation. 

5.8. Example. Let X be a compact space and let {,un } be a sequence of 
measures on X. For each n let nn : C(X) --+ 81(L2(,un)) be defined by nn(f) = M 1 
on L2(,un). Then n = E9 nnn is a representation. If the measures {,un } are pairwise 
mutually singular, then n is equivalent (below) to the representation f--+ M 1 
of C(X) --+ 81(L2(,u) ), where ,u = "L: 1 ,Un/2" I I  ,un I I  (Exercise 5). 

The concept of equivalence for representations is that of unitary 
equivalence. That is, two representations of a C*-algebra d, (n 1 , .Yf 1 ) and 
(n2 , .Yf 2 ), are equivalent if there is an isomorphism U: .Yf 1 --+ .Yf 2 such that 

• 

Un 1 (a)U -

1 = n2 (a) for every a in d. The importance of cyclic representations 
arises from the fact, given in the next result, that every representation is 
equivalent to the direct sum of cyclic representations. � 

5.9. Theorem. If n is a representation of the C*-algebra d, then there is a 
family of cyclic representations { ni } of d such that n and Et) ini are equivalent. 

PROOF. let 8 = the collection of all subsets E of nonzero vectors in .Ye such 
that 1t(d)e l. 1t(d)f for e, f in E with e =F f. Order 8 by inclusion. An 
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application of Zorn's Lemma implies that tC has a maximal element E0 • Let 
Jf 0 = (f)  { cl [n(d)e] : e EEo } · If hEJf e Jf 0' then 0 = < n(a)e, h > for every a 
in d and e in E0 • So if a, bEd and e EE0, 0 = < n(b*a)e, h ) = < n(b)*n(a)e, h ) =  
( n(a)e, n(b)h ). That is, n(d)e l. n(d)h for all e in E0• Hence E0 u {h} E8; by 
the maximality of E0 it must be that h = 0. Therefore Jf = Jf 0 • 

For e in E0 let Jfe = cl [n(d)e] . If a Ed, clearly n(a)Jfe c Jfe. Since 
a* Ed and n(a)* = n(a*), Jf e reduces n(a). So if ne: d � f!J(Jf e) is defined 
by ne(a) = n(a) I Jf e' ne is a representation of a. Clearly n = (f)  { ne : e EE0 } • 

• 

In light of the preceding theorem, it becomes important to understand 
cyclic representations. To do this, let n: d � f!J(Jf) be fl cyclic representation 
with cyclic vector e. Define f: d � <C by f(a) = < n(a)�, e ). Note that f is a 
bounded linear functional on d with l l f l l � l l e l l 2 • Since f( 1) = l l e l l 2 , 
l l f l l = I I e 1 1 2 • Moreover, f(a*a) = (n(a*a)e, e) = (n(a)*n(a)e, e ) =  I I n(a)e 1 1 2 � 0. 

5.10. Definition. If d is a C*-algebra, a linear functional f: d � <C is positive 
if f(a) � 0 whenever a Ed+ . A state on d is a positive linear functional on 
d of norm 1 .  

5.1 1 .  Proposition. Iff is a positive linear functional on a C*-algebra d, then 

l f(y*x) l 2 � f(y*y)f(x*x) 
for every x, y in d. 

-

PROOF. If [x, y] = f(y*x) for x, y in d, then [ · , - ] is a semi-inner product on 
d. The proposition now follows by the CBS inequality (I. l .4). • 

5.12. Corollary. Iff is a non-zero positive linear functional on the C*-algebra 
d, then f is bounded and I I  f II = f( l ). 

5.13. Example. If X is a compact space, then the positive linear functionals 
on C(X) correspond to the positive measures on X. The states correspond 
to the probability measures on X. 

As was shown above, each cyclic representation gives rise to a positive 
linear functional. It turns out that each positive linear functional gives rise 
to a cyclic representation. 

5.14. Gelfand-N.aimark-Segal Construction. Let d be a C*-algebra with 
identity. 

(a) Iff is a positive linear fJ,tnctianal on d, then there is a cyclic representation 
( n 1, Jf 1) of d with cyclic vector e such that f(a) = < 1t 1(a)e, e ) for all a 
in d. 

(b) If (n, .Jf') is a cyclic representation of d with cyclic vector e and 
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f(a) = ( n(a)e, e ) and if (n1 , Jt1) is constructed as in (a), then n and n1 are 
equivalent. 

Before beginning the proof, it will be helpful if the theorem is examined 
when d is abelian. So let d = C(X) where X is compact. If f is a positive 
linear functional on d, then there is a positive measure J-l on X such that 
f(l/J) = J cpdJJ for all l/J in d. The representation (n 1, Jf 1) is the one obtained 
by letting Jf 1 = L2(JJ) and n1(cp) = Mq,, but let us look a little closer. One 
way to obtain L2(JJ) from C(X) and J-l is to let !£ =  {cp eC(X): J l l/J I 2 dJJ = 0} . 
Note that !£ is an ideal in C(X). Define an inner product on C(X)I !£ by 
< l/J + !£, 1/J + !£ )  = J cpi/JdJl. The completion of C(X)I !£ with respect to this 
inner product is L 2 (Jl ). 

To see part (b) in the abelian case, let n: C(X) --+ �(Jf) be a cyclic 
representation with cyclic vector e. Let Jl be the positive measure on X such 
that J cpdJJ = (n(l/J)e, e ) = f(l/J). Now define U 1 : C(X) --+ Jf by U 1 (l/J) = n(cp)e. 
Note that U 1 is linear and has dense range. If !£ is in the preceding 
paragraph and cp e .P, then I I U 1 (l/J) I I 2 = ( n(l/J)e, n(l/J)e ) = ( n(l/J*l/J)e, e ) = 
J l l/J I 2 dJl = 0. So U1 !£ = 0. Thus U1 induces a linear map U: C(X)I.P --+ Jf  
where U(l/J + .P) = n(cp)e. If ( l/J + .P, t/J + .P ) = Jl/Jt/JdJl, then ( U(l/J + .P), 
U(t/1 + !£) ) = (n(l/J)e, n(I/J)e ) = < n(l/JI/J*)e, e ) = J cpi/JdJl = < l/J + !£, 1/1 + !£ ). 
Thus U extends to an isomorphism U from the completion of di.P = L2(Jl) 
onto Jf. So U: L2(Jl) --+ Jf  and if cp e C(X) and we think of C(X) as a (dense) 
subset of L2(JJ), Ucp = n(cp)e. If l/J, t/J eC(X), then UMq,t/1 = U(l/Jt/1) = n(l/JI/J)e = 
n(l/J)n(t/J)e = n(l/J) U(t/1); that is, UMq, = n(cp)U on a dense subset of L2(Jl) and, 
hence, U Mq, = n(cp)U for every l/J in C(X). In other words, n is equivalent to 
the representation l/J 1--+ M cp · 
PROOF OF THEOREM 5. 1 4. Let f be a positive linear functional on d and put 
!£ = {x ed : f(x*x) = 0} . It is easy to see that !£ is closed in d. Also if a ed 
and x E !£, then ( 5. 1 1 ) implies that 

f( (ax)*(ax) )2 = f(x*(a*ax) )2 
� f(x*x)f(x*a*aa*ax) 
= 0. 

That is, !£ is a closed left ideal in d. Now consider d I!£ as a vector space. 
(Since !£ is only a left ideal, d I!£ is not an algebra.) For x, y in d, define 

< x + .P, y + '!£ )  = f(y*x). 

It is left as an exercise for the reader to show that < · , · ) is a well-defined 
inner product on d I!£. Let Jf 1 be the completion ot d I!£ with respect to 
the norm defined on d I!£ by this inner product. 

Because !£ is a left ideal of d, x + 2�---+ax + !£ is a well-defined linear 
transformation on d/.P. Also, I I  ax + 2 1 1 2 = (ax + .P, ax + !£) = f(x*a*ax). 
Now if II a a* I I  is considered as an element of d (it is a multiple of the identity), 
then an appeal to the functional calculus for a* a shows that I I a*a I I - a*a � 0. 
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Hence (Exercise 3 .7) 0 � x*( I I  a* a I I  - a*a)x = I I a l l 2x*x - x*a*ax; that is, 
x*a*ax � I I  a l l 2x*x. Therefore I I  ax + !£ 1 1 2 � I I  a 1 1 2 f(x*x) = II a 1 1 2 1 1  x + !£ 1 1 2 • 
Thus if n 1(a): .91 I!£ � .91 I!£ is defined by n 1(a) (x + !£) = ax + !£, rc 1(a) is a 
bounded linear operator with I I  n 1(a) I I  � I I  a 1 1 . Hence n 1(a) extends to an 
element of �(Jf1). It is left to the reader to verify that n1: s� ��(Jf1) is a 
representation. 

Put e = 1 + !£ in Jf 1. Then n1(.91)e = {a + !£: a Ed} = .911!£ which, by 
definition, is dense in Jf 1. Thus e is a cyclic vector for n 1. [Also note that 
( n 1(a)e, e ) = f(a).] This proves (a). 

Now let (n, Jf), e, and f be as in (b) and let (n 1, Jf 1) be the representation 
constructed. Let e 1 be the cyclic vector for n 1 so that f(a) = ( n 1(a)e 1, e 1 ) 
for all a in d. Hence ( n 1(a)e 1, e 1 ) = ( n(a)e, e ) for all a in d. Define U on 
the dense manifold n1(.91)e1 in Jt1 by Un1(a)e1 = n(a)e. Note that 
l l n(a)e l l 2 = ( n(a)e, n(a)e ) = ( n(a*a)e, e ) = ( n1(a*a)e1, e1 ) = ll n1(a)e1 1 1 2 • 
This implies that U is well defined and an isometry. Thus U extends to an 
isomorphism of Jf 1 onto Jf. If x, a Ed, then Un1(a)n1(x)e1 = Un1(ax)e1 = 
n(a)n(x)e = n(a) Un1(x)e1. Thus n(a) U = Un1(a) so that n and n1 are 
eq ui valent. • 

The Gelfand-Naimark-Segal construction is often called the GNS 
construction. 

It is not difficult to show that if f is a positive linear functional on .91 
and a > 0, then the representations n 1 and naf are equivalent (Exercise 8). 
So it is appropriate to only consider the cyclic representations corresponding 
to states. If d is a C*-algebra, let S s� = the collection of all srates on d. 
Note that S ,s� c ball s/*. S ,s� is called the state space of .91. 

5.15. Proposition. If .91 is a C*-algebra with identity, then S ,s� is a weak* 
compact convex subset of .91* and if a Ed + ,  then I I a I I = sup { f(a): f ES .w } and 
this supremum is attained. 

PROOF. Since S s� c ball s/*, to show that S s� is weak* compact, it suffices 
to show that S s� is weak* closed. The reader can supply this proof using 
nets. Clearly S s� is convex. 

If .91 = C(X) with X compact and jEC(X) + ,  then there is a point x in X 
such that f(x) = 1 1 1 1 1 . Thus 1 1 / 1 1  = Jfd�x = sup { Jfd,u : ,UE(ball M(X)) + } · If 
.91 is arbitrary and a Ed+ ' then I I a I I � sup { f(a): /ES,s� } .  Also, from the 
argument in the abelian case, there is a state /1 on C*(a) such that /1 (a) = I I  a 1 1 . 
If we can show that /1 extends to a state f on .91, the proof is complete. 
That this can be done is a consequence of the next result. • 

5.16. Proposition. Let .91, � be C* -algebras with � c .91. Iff 1 is a state on 
�' then there is a state f on .91 such that ! I� =  /1 • 

PROOF. Consider the real linear spaces Re .91 and Re �. If a Ed + ' then 
a � I I a II in d. Since 1 eRe 91, Re 91 has an order unit. By Corollary 111 .9 . 1 2, 
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if /1 ESdi there is a positive linear functional f on Re d such that ! I Re PA = /1 • 
Since 1 EPA, /( 1 )  = /1 ( 1 )  = 1 .  Now let f(a) = f((a + a*)/2) + if((a - a*)/2i) for 
an arbitrary a in d. It follows that f ES .r:� and f iPA = /1 • • 

The next result says that every C*-algebra is isomorphic to a C*-algebra 
contained in PA(Je) for some Je. Thus each C*-algebra "is" an algebra of 
operators. 

5.17. Theorem. If d is a C*-algebra, then there is a representation (n, Jf) of 
d such that n is an isometry. If d is separable, then Je can be chosen separable. 

PROOF. Let F be a weak* dense subset of S .r;� and let n = E9 {n1 : /EF}, 
Je = E9 { Je 1: f EF}. Thus I I a 1 1 2 � l i n( a) 1 1 2 = sup1 l l n1(a) 1 1 2 . If e 1 is the cyclic 
vector for n1, then I I e 1 1 1 2 = ( e 1, e 1 ) = ( n1( 1 )e 1, e 1 ) = /( 1 )  = 1 .  Hence 
l l n1 (a) l l 2 � l l n1(a)e1 1 1 2 = ( n1(a*a)e1 , e1 ) = f(a*a), and l l a l l 2 � l l n(a) l l 2 � 
sup {f(a*a): /EF}. Since F is weak* dense in S.r;�, Proposition 5. 1 5  implies 
sup {f(a*a): /EF} = l l a*a l l = l l a l l 2 • Hence n is an isometry. 

If d is separable, (ball d*, wk*) is a compact metric space (V.5. 1 ). Hence 
S .r:1 is weak* separable so that the set F of the preceding paragraph can be 
chosen to be countable. Now iff EF, n(d)e 1 is a separable dense submanifold 
in Je 1 since d is separable. Thus Jf 1 is separable. I t  follows that Je is 
separable. • 

Actually, more can be said if d is separable. In fact, every separable 
C*-algebra has a cyclic representation that is isometric (Exercise 1 1 ). 

EXERCISES 
1 .  Let d be a C*-algebra with identity and let n: d --+  gB(.Yf) be a •-homomorphism 

[but don't assume that n( l )  = 1] .  Let P 1 = n( l ). Show that P 1 is a projection and 
.Yf 1  = P1 .Yf  reduces n(d). If n 1 (a) = n(a) I .Yf 1 , show that n1 : d -+ gB(.Yf1 )  is a 
representation. 

2. Show that the representation in Example 5.4 is a cyclic representation and find 
all of the cyclic vectors. 

3. Show that the representation in Example 5.5 is a cyclic representation and find 
all the cyclic vectors. 

4. If X is compact and Jl is a positive measure on X, let nil: C(X) --+  g6(L2(Jl)) be the 
representation defined in Example 5. 5. If Jl, v are positive measures on X show 
that nil EB nv is cyclic if and only if Jl l_ v. If Jl l_ v, then nil EB nv is equivalent to 

AI <n> · 1 · " f 2 nll + v · so, nil IS not eye IC 1 n ;:: . 

5. Verify the statements in Example 5.8. 

6. If d = <C + g60(.Yf) and n: d --+  gB(�) is the identity representation, show that 
n<oo> is a cyclic representation. 

7. Fix a Banach limit LIM on /00(1N) and let � be a separable Hilbert space with 
an orthonormal basis {en } · Define f: gB(�) --+ <C by f(T) = LIM { (Ten, en ) } . Show 
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that f is a state on gB(.Yf). If n 1 is the corresponding cyclic representation, show 
that ker n 1 = g80(.Yf). Hence n 1 induces a cyclic representation of gB(.Yf)jg80(.Yf) 
that is isometric. Is .Yf 1 separable? 

8. If f is a positive linear functional on d and IX e(O, oo ), show that n 1 and na.f are 
equivalent representations. 

9. If a ed, then a �  0 if and only if f(a) � 0 for every state f. 

10. If a ed and a #  0, then there is a state f on d  such that f(a) # 0. 

1 1 . If d is a separable C*-algebra and {fn} is a countable weak* dense subset of 
S d '  let f = Ln2 - "fn· Show that n 1 is an isometry. 



CHAPTER IX 

Normal Operators on Hilbert Space 

In this chapter the Spectral Theorem for normal operators on a Hilbert 
space is proved. This theorem is then used to answer a number of questions 
concerning normal operators. In fact, the Spectral Theorem can be used to 
answer essentially every question about normal operators. 

§ 1 .  Spectral Measures and Representations of 
Abelian C*-Algebras 

Before beginning this section the reader should familiarize himself with the 
definitions and examples in (VIII. 5. 1 )  through (VIII.5 .8). 

In this secton we want to focus our attention on representations of abelian 
C*-algebras. The reason for this is that the Spectral Theorem and its 
generalizations can be obtained as a special case of such a theory. The idea 
is the following. Let N be a normal operator on Jf. Then C*(N) is an abelian 
C*-algebra and the functional calculus/�-+ f(N) is a *-isomorphism of C(a(N)) 
onto C*(N) (VIII.2.6). Thus ft-+ f(N) is a representation C(a(N)) � �(Jf) of 
the abelian C*-algebra C( a(N)). A diagnosis of such representations yields 

• 

the Spectral Theorem. 
A representation p: C(X) � �(Jf) is a *-homomorphism with p( l )  = 1 .  

Also, I I  p I I  = 1 (VIII. l . l l d). If f e C(X) + , then f = g2 where g E C(X) + ; hence 
p(f) = p(g)2 = p(g)*p(g) � 0. So p is a positive map. One might expect, by 
analogy with the Riesz Representation Theorem, that p(f) = J f dE for some 
type of measure E whose values are operators rather than scalars. This is 
indeed the case. We begin by introducing these measures and defining the 
integral of a scalar-valued function with respect to one of them. 
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1 .1 .  Definition. If X is a set, Q is a a-algebra of subsets of X, and Jf is a 
Hilbert space, a spectral measure for (X, Q, Jf) is a function E: Q --+  81(Jf) 
such that: 

(a) for each � in Q, E(�) is a projection; 
(b) E(D) = 0 and E(X) = 1 ;  
(c) E(� 1 n�2) = E(� 1)E(�2) for � 1 and �2 in Q; 
(d) if { �n} := 1 are pairwise disjoint sets from n, then 

£co
l 
An) = 

nfl 
£(An). 

A word or two concerning condition (d) in the preceding definition. If 
{En} is a sequence of pairwise orthogonal projections on Jf, then it was 
shown in Exercise 11 .3.5 that for each h in Jf, "L: 1 En( h) converges in Jf to 
E(h), where E is the orthogonal projection of Jf onto V {En( :?f): n � 1 } .  Thus 
it is legitimate to write E = "L: 1 En. Now if �1 n �2 = 0, then (b) and (c) 
above imply that 0 = E(� 1)E(�2) = E(�2)E(� 1); that is, E(� 1) and E(�2) have 
orthogonal ranges. So if { �n} � is a sequence of pairwise disjoint sets in n, 
the ranges of { E(�n) }  are pairwise orthogonal. Thus the equation 
E(Uf  ���) = �� E(�n) in (d) has the precise meaning just discussed. 

Another way to discuss this is by the introduction of two topologies that 
will also be of value later. 

1 .2. Definition. If Jf is a Hilbert space, the weak operator topology (WOT) 
on 81(Jf) is the locally convex topology defined by the seminorms { Ph,k: 
h, ke:Yf} where Ph,k(A) = I ( Ah, k ) 1 . The strong operator topology (SOT) is the 
topology defined on 81(Jf) by the family of seminorms { ph: he.Yf}, where 
Ph(A) = I I  Ah 1 1 . 

1 .3. Proposition. Let Jf be a Hilbert space and let { AJ be a net in 81(Jf). 

(a) Ai --+ A (WOT) if and only if (Aih, k) --+ (Ah, k) for all h, k in Jf. 
(b) If supi I I A i l l < oo and §' is a total subset of Jf, then Ai --+ A (WOT) if and 

only if (A ih, k) --+ (Ah, k) for all h, k in §'. 
(c) Ai --+ A (SOT) if and only if I I  A ih - Ah I I --+ 0 for all h in Jf. 
(d) If supi I I Ai I I  < oo and §' is a total subset of Jf, then Ai --+ A (SOT) if and 

only if II A ih - Ah I I  --+ 0 for all h in §'. 
(e) If Jf is separable, then the WOT and SOT are metrizable on bounded 
subsets of 81( Ye). 

PROOF. The proofs of (a) through (d) are left as exercises. For (e), let {hn } be 
any countable total subset of ball Jf. If A, Be81(Jf), let 

00 

ds(A, B) = L 2 - n i i (A -. B)hn l l , n = 1 
00 

dw(A, B) = L 2- n -m i ( (A - B)hm hm ) l . 
m,n = 1 
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Then ds and dw are metrics on �(�). It is left as an exercise to show that 
ds and dw define the SOT and WOT on bounded subsets of �(�). • 

1 .4. Example. Let (X, Q, ,u) be a a-finite measure space. If 4JEL 00(,U), let M q, 
be the multiplication operator on U(,u). Then a net { 4Ji } in L 00(,U) converges 
weak* to 4J if and only if M cPi -+ M q, (WOT). In fact, iff, gEL2(,u) and 4Ji -+ 4J 
weak* in L00(,U), then (Mt/Jif, g) = J f/Jifg d,u -+ J f/Jfg d,u = (Mt/Jf, g) since 
f gEL1 (,u). Conversely, if Mq,i -+ Mq, (WOT) and/ EL1(,u), then f = g 1g2, where 
g 1 , g2 EL2(,u). (Why?) So J4Jifd,u = (Mq,ig 1 , g2 ) -+ (Mq,g1 , g2 ) = J4Jfd,u. 

1 .5. Example. If {En} is a sequence of pairwise orthogonal projections on 
Jf, then L '? En converges (SOT) to the projection of � onto V { En(Jf): 
n � 1 } .  

In light of ( 1 .5), a spectral measure for (X, n, Jf) could be defined as a 
SOT -countably additive projection-valued measure. 

1 .6. Example. Let X be a compact set. n = the Borel subsets of X, ,u = a  
measure on 0, and Jf = U(,u). For � in Q, let E(�) = multiplication by XA, 
the characteristic function of �. E is a spectral measure for (X, Q, �). 

1.7. Example. If E is a spectral measure for (X, Q, �), the inflation, E<n>, of 
E, defined by E<n>(�) = E(�)<n>, is a spectral measure for (X, Q, �<n>). 

1 .8. Example. Let X be any set, Q = all the subsets of X, � =  any separable 
Hilbert space, and fix a sequence { xn} in X. If { e 1 , e 2, . • .  } is some orthonormal 
basis for �, define E(�) = the projection onto V {en :  xnE� } .  E is a spectral 
measure for (X, n, �). 

The next lemma is useful in studying spectral measures as it allows us to 
prove things about spectral measures from known facts about complex
valued measures. 

1.9. Lemma. If E is a spectral measure for (X, Q, Jf) and g, hEJf, then 

defines a count ably additive measure on Q with total variation � II g II I I h 11 . 
• 

PROOF. That ,u = Eg,h as defined above, is a countably additive measure is 
left for the reader to verify. If � 1 , . • . , �n are pairwise disjoint sets in Q, let 

" 

ctiE<C such that I ai l = 1 and I ( E(�i)g, h)  I = ai(E(�)g, h). So Li l  ,u(�i) l = 
�lxi(E(�i)g, h) = (LiE(�i)aig, h) � I ILiE(�i)aig l l l lh l l . Now { E(�i)aig: 1 �j � n} 
is a finite sequence of pairwise orthogonal vectors so that I I LiE(� i)a ig 1 1 2 = 
Lj l l E(�j)g 1 1 2 = I I  E(Ui= 1 �j)g 1 1 2 � I I  g 1 1 2 ; hence Lj l ,u(�j) l � I I g I I I I  h 1 1 . Thus 
I I ,u I I � I I  g I I I I h 1 1 . • 

It is possible to use spectral measures to define representations. The next 
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result is crucial for this purpose. It tells us how to integrate with respect to 
a spectral measure. 

1 . 10. Proposition. If E is a spectral measure for (X, 0, Jf) and 4J: X �  <C is a 
bounded 0-measurable function, then there is a unique operator A in �(Jf) 
such that if e > 0 and { � 1 , • • •  , �n} is an 0-partition of X with sup { 1 4J(x) - 4J(x') 1 : 
x, x' E�k } < e for 1 � k � n, then for any xk in �k, 

n 
A - L 4J(xk)E(�k) < e. 

k = 1 

PROOF. Define B(g, h) = J 4JdEg,h for g, h in Jr. By the preceding lemma it is 
easy to see that B is a sesquilinear form with I B(g, h) I � 1 1 4J I I oo I I  g I I I I  h 1 1 . 
Hence there is a unique operator A such that B(g, h) = < Ag, h ) for all g and 
h in Jr. 

Let { � 1 , • • •  , �n} be an 0-partition satisfying the condition in the statement 
of the proposition. If g and h are arbitrary vectors in Jf and xkE�k for 
1 � k � n, then 

( Ag, h ) -
ktt 

c/J(xk) ( E(Ak)g, h )  = 
ktt 

L
k 
[c/J(x) - 4J(xk) ]d(E(x)g, h ) 

�
kt tk

l c/J(x) - 4J(xk) l d i ( E�x)g, h ) l 

� e I d i (E(x)g, h ) l  � e l l g l l l l h l l - • 

The operator A obtained in the preceding proposition is the integral of 
4J with respect to E and is denoted by 

J 4JdE. 

Therefore if g, hEJf and 4J is a bounded 0-measurable function on X, the 
preceding proof implies that 

1 . 1 1 ( (I cfJdE )g. h) = I cfJdEg.h• 
Let B(X, 0) denote the set of bounded 0-measurable functions 4J: X �  <C 

and let 1 1 4J I I  = sup { I 4J(x) l : xEX} .  It is easy to see that B(X, O) is a Banach 
algebra with identity. In fact, if 4J*(x) = 4J(x), then B(X, 0) is an abelian 
C*-algebra. The properties of the integral J 4JdE are summarized by the 
following result. 

1 . 12. Proposition. If E is a spectral measure for (X, n, �) and p: 
B(X, Q) � &l(Je) is defined by p(4J) = J 4JdE, then p is representation of B(X, 0) 
and p(4J) is a normal operator for every 4J in B(X, Q). 
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PROOF. It will only be shown that p is multiplicative; the remainder is an 
exercise. Let 4J and t/JeB(X, Q). Let e > 0 and choose a Borel partition 
{ i\1 , . . .  , i\n} of X such that sup { I w(x) - w(x') 1 : x, x' ei\k} < e for w = (jJ, t/1 or 
4Jt/l and for 1 � k � n. Hence, if xkei\k ( 1  � k � n), 

I wdE - }� .. 1 w(xk)E(L\k) < e 
for w = (jJ, t/J, or {jJt/J. Thus, using the triangle inequality, 

� e + kft l/J(xk)I/J(xk)E(L\k) - [ 
J
1 l/J(x;)E(L\;) ][ ift 1/J(x)E(L\i) J 

+ Lt1 l/J(x;)E(L\;) ][ itt 1/J(x)E(L\i) J - ( I ljJdE )( I if! dE) . 

But E(L\i)E(L\ i) = E(L\i n L\ i) and { L\ 1 , . . .  , i\n} is a partition. So the middle term 
in this sum is zero. Hence 

� e + [ itt l/J(x;)E(L\;) ][ itt 1/J(xi)E(L\i) - I if! dE J 
+ [ 

J
1 l/J(x;)E(L\;) - I l/J dE J [ I  1/1 dE J � e[ 1 + l l l/J I I  + I I  if! I I ] .  

Since e was arbitrary, J {jJt/J dE = (J 4J dE)(J t/J dE). • 

1 .13. Corollary. If X is a compact H ausdro.ff space and E is a spectral measure 
defined on the Borel subsets of X, then p: C(X) --+ 81(�) defined by p(u) = J udE 
is a representation of C( X). 

The next result is the main result of this section and it states that the 
converse to the preceding corollary holds. 

1 .14. Theorem. If p: C(X) --+ 81(�) is a representation, there is a unique spectral 
measure E defined on the Borel subsets of X such that for all g and h in �' 
E9,h is a regular measure and 

p(u) = I udE 

for every u in C (X). 

PROOF. The idea of the proof is similar to the idea of the proof of the Riesz 
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Representation Theorem for linear functionals on C(X). We wish to extend 
p to a representation p: B(X) --+ 91(Jr), where B(X) is the C*-algebra of 
bounded Borel functions. The measure E of a Borel set L\ is then defined by 
letting E(i\) = p(xA). In fact, it is possible to give a proof of the theorem 
patterned on the proof of the Riesz Representation Theorem. Here, however, 
the proof will use the Riesz Representation Theorem to simplify the technical 
details. 

If g, heJr, then UH (p(u)g, h )  is a linear functional on C(X) with 
norm � I I  g I I  I I h 1 1 . Hence there is a unique measure, J.lg,h in M(X) such that 

1 .15 ( p(u)g, h )  = I udJL9,h 

for all u in C(X). It is easy to verify that the map (g, h)H J.lg,h is sesquilinear 
(use uniqueness) and I I J.lg,h II � I I g 1 1 1 1  h 1 1 . Now fix <P in B(X) and define 
[g, h] = J </JdJ.l9,h. Then [· , ·] is a sesquilinear form and I [g, h] I � I I <P 1 1 1 1  g 1 1 1 1  h 1 1 . 
Hence there is a unique bounded operator A such that [g, h] = (Ag, h )  and 
I I A I I � I I <P I I (11.2.2). Denote the operator A by p( <P ). So p: B(X) --+ 91( Jr) is a 
well-defined function, II p( <P) I I � II <P I I , and for all g, h in Jr, 

1 .16 < p( l/J)g. h > = I l/JdJLg.h· 

1 .17. Claim. p: B(X) --+ 91(Jr) is a representation and {J I C(X) = p. 

The fact that p(u) = p(u) whenever ueC(X) follows immediately from ( 1 . 1 5) 
and ( 1 . 1 6). If </JeB(X), consider <P as an element of M(X)* ( = C(X)**); that 
is, <P corresponds to the linear functional J.lH J </JdJ.l. By Proposition V.4. 1 ,  
{ ueC(X): I I u I I � I I  <P I I } is a(M(X)*, M(X)) dense in {LeM(X)*: I I  L I I � I I  <P I I } .  
Thus there is a net { ui} in C(X) such that I I  ui I I  � I I  <P I I for all ui and 
J uidJ.l --+ J </JdJ.l for every J.l in M(X). If t/JeB(X), then t/JJ.lEM(X) whenever 
J.lEM(X). Hence J uit/JdJ.l --+  J </Jt/JdJ.l for every t/1 in B(X) and J.l in M(X). By 
( 1 . 1 6), p(uit/J) --+ p(</Jt/1) (WOT) for all t/1 in B(X). In particular, if t/JeC(X), then 
p(</Jt/1) = WOT - lim p(uit/J) = WOT - lim p(ui)p(t/1) = p(</J)p(t/J). That is, 

p( <Pt/1) = p( <P )p( t/1) 

whenever </J eB(X) and t/JeC(X). Hence p(uit/J) = p(ui)p(t/1) for any t/1 in B(X) 
and for all ui. Since p(ui) --+  p(</J) (WOT) and jj(uit/1) --+ p(</Jt/1) (WOT), this 
implies that 

p( <Pt/1) = p( <P )p( t/1) 

whenever </J, t/J eB(X). 
_ 

The proof that p is linear is immediate by ( 1 . 1 6). To see that p( <P )* = p( <P ). 
Let { ui } be the net obtained in the preceding paragraph. If J.lEM(X), let fi 
be the measure defined by ji(L\) = J.l(A). Then p(ui) --+  jj(</J) (WOT) and so 
p(ui)* --+ p(</J)* (WOT). But J uidp, = J uidji --+  J </Jdji = J </JdJ.l for every measure 
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J.L. Hence p(ui) --+  p((jJ). But p(ui)* = p(ui) since p is a *-homomorphism. Thus 
p((jJ)* = p((jJ) and p is a representation. 

For any Borel subset L\ of X let E(i\) = p(xJ. We want to show that E is 
a spectral measure. Since XA is a hermitian idempotent in B(X), E(L\) is a 
projection by ( 1 . 1 7). Since Xo = 0 and Xx = 1 ,  E(D) = 0 and E(X) = 1 .  Also, 
E(L\1 n i\2) = P(XA1 nA2) = P(XA1XA2) = E(i\1 )E(i\2). Now let { i\n} be a pairwise 
disjoint sequence of Borel sets and put An = U � n + 1 L\k. It is easy to see that 
E is finitely additive so if he.Yt, then 

Ecu1 
L\k )h -

kt E(L\k)h 
2 

= (E(A")h, E(A")h ) 

= (E(A")h, h ) 

= ( P(XAn)h, h ) 

= I XAndf.l.h,h 

00 

L J.lh,h( L\k) --. o 
k = n + 1 

as n --+  oo.  Therefore E is a spectral measure. 
It remains to show that p(u) = JudE. It will be shown that p((jJ) = J (jJ dE 

for every 4J in B(X). Fix 4J in B(X) and e > 0. If { i\1 , . . .  , i\n} is any Borel 
partition of X such that sup { I 4J(x) - (jJ(x') l : x, x' ei\k} < e for 1 � k � n, then 
1 1 4J  - L� = 1 {jJ(xk)XAk I I oo < e for any choice of xk in L\k. Since I I  p I I  = 1 ,  
e > I I p((jJ) - L� =  1 (jJ(xk)E(L\k) 1 1 . This implies that p((jJ) = J (jJ dE for any 4J in 
B(X). 

The proof of the uniqueness of E is left to the reader. • 

EXERCISES 
1 .  Prove Proposition 1 .3. 

2. Show that ball &l(Je) is WOT compact. 

3. Show that Re &I( .?e) and &I( .?e), are WOT and SOT closed. 

4. If L: &I( .?e) --+ <C is a linear functional, show that the following statements are 
equivalent: (a) L is SOT-continuous; (b) L is WOT-continuous; (c) there are vectors 
h 1 , . . .  , hn, g 1 '  . . . , gn in Je such that L(A) = L;= 1 (A  hi, gi ) .  

5. Show that a convex subset of &I( .?e) is' WOT closed if and only if it is SOT closed. 

6. Verify the statement in Example 1 .5. 

7. Verify the statements made in Examples 1 .6, 1 .  7, and 1 .8 . 

8. For the spectral measures in ( 1 .6), ( 1 .7), and ( 1 .8), give the corresponding 
representations. 

9. If {E;} is a net of projections and E is a projection, show that E; --+ E (WOT) if 
and only if E; --+ E (SOT). 
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10. For the representation in (VIII.5.5), find the corresponding spectral measure. 

1 1 . In Example VIII .5 .4, the representation is not quite covered by Theorem 1 . 1 4 
since it is a representation of L 00(Jl) and not C(X). Nevertheless, this representation 
is given by a spectral measure defined on n. Find it. 

1 2. Let X be a compact Hausdorff space and let {xn} be a sequence in X. Let {en} 
be an orthonormal basis for .1f and for each u in C(X) define p(u) in �(.1f) by 
p(u)en = u(xn)en. Show that p is a representation and find the corresponding 
spectral measure. 

1 3. A representation p: d --+  �(.1f) is irreducible if the only projections in �(.1f) that 
commute with every p(a), a in d, are 0 and 1 .  Prove that if d is abelian and p 
is an irreducible representation of d, then dim .1f = 1 .  Find the corresponding 
spectral measure. 

14. Show that a representation p: C(X) --+ �(.1f) is injective if and only if E(G) # 0 
for every non-empty open set G, where E is the corresponding spectral measure. 

1 5. Let {A;} be a net of hermitian operators on .1f and suppose that there is a 
hermitian operator T such that A; � T for all i. If { ( A;h, h ) } is an increasing 
net in R for every h in .1f, then there is a hermitian operator A such that 
A; --+ A (W OT). 

16. Show that there is a contraction r: �(.1f)** --+ �(.1f) such that r(T) = T for T in 
�(.1f). If p: C(X) --+ �(.1f) is a representation, show that the map p in the proof 
of Theorem 1 . 14 is given by p(¢) = r o  p**(¢). 

§ 2. The Spectral Theorem 

The Spectral Theorem is a landmark in the theory of operators on a Hilbert 
space. It provides a complete statement about the nature and structure of 
normal operators. This accolade will be seen to be deserved when in Section 
10  the Spectral Theorem is used to give a complete set of unitary invariants. 
Two operators A and B are unitarily equivalent if there is a unitary operator 
U such that U AU* = B; in symbols, A "' B. Using the Spectral Theorem, a 
(countable) set of objects is attached to a normal operator N on a (separable) 
Hilbert space. It is then shown that two normal operators are unitarily 
equivalent if and only if these objects are equal. 

The Spectral Theorem for a normal operator N on a Hilbert space with 
dim Jf = d < oo says that N can be diagonalized. That is, if cx 1 , . • .  , cxd are the 
eigenvalues of N (repeated as often as their multiplicities), then the 
corresponding eigenvectors e1 , e2 , • • •  , ed from an orthonormal basis for Jf. 
In infinite dimensional spaces a normal operator need not have eigenvalues. 
For example, let N = multiplication by the independent variable on L2(0, 1 ). 
So an alternative formulation that can be generalized is desired. 

Let N be normal on Jf, dim Jf = d < oo. Let A.1 , . . •  , A.n be the distinct 
eige�values of N and let Ek be the orthogonal projection of Jf onto 
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ker(N - A.k), 1 � k � n. Then the Spectral Theorem says that 

2.1 

In this form a generalization is possible. Rather than discuss orthogonal 
projections on eigenspaces (which may not exist), the concept of a spectral 
measure is used; rather than the sum that appears in (2. 1 ), an integral is 
used. It is worth mentioning that the finite dimensional version is a 
corollary of the general theorem (see Exercise 4). 

2.2. The Spectral Theorem. If N is a normal operator, there is a unique spectral 
measure E on the Borel subsets of a(N) such that: 

(a) N = J z dE (z); 
(b) if G is a nonempty relatively open subset of a(N), E(G) "# 0; 
(c) if A e 8l(Jr), then AN = NA and AN* = N*A if and only if AE(L\) = 

E(L\)A for every L\. 

PROOF. Let .91 = C*(N), the C*-algebra generated by N. So .91 is the closure 
of all polynomials in N and N*. By Theorem VIII.2.6, there is an isometric 
isomorphism p: C(a(N) ) ---. .91 c 8l(Jr) given by p(u) = u(N) (the functional 
calculus). By Theorem 1 . 1 4 there is a unique spectral measure E defined on 
the Borel subsets of a(N) such that p(u) = Ju dE for all u in C(a(N)). In 
particular, (a) holds since N = p(z). 

If G is a nonempty relatively open subset of a(N), there is a nonzero 
continuous function u on a(N) such that 0 � u � XG · Using Claim 1 . 1 7, one 
obtains that E(G) = p(x6) � p(u) "# 0; so (b) holds. 

Now let Ae81(Jr) such that AN = N A and AN* = N* A. It is not hard 
to see that this implies, by the Stone-Weierstrass Theorem, that 
Ap(u) = p(u)A for every u in C(a(N) ); that is, Au(N) = u(N)A for all u in 
C(a(N)). Let Q = {L\: L\ is a Borel set and AE(L\) = E(L\)A } .  It is left to the 
reader to show that n is a a-algebra. If G is an open set in a(N), there is a 
sequence { un} of positive continuous functions on a(N) such that un(z) j x6(z) 
for all z. Thus 

( AE(G)g, h ) = ( E(G)g, A*h ) 

= Eg,A*h(G) 
• 

= lim fun dEg,A*h 

= lim ( un(N)g, A *h ) 

= lim ( Aun(N)g, h ) 

= lim ( un(N)Ag, h ) 

= ( E(G)Ag, h ). 
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So Q contains every open set and, hence, it must be the collection of Borel 
sets. The converse is left to the reader. • 

The unique spectral measure E obtained in the Spectral Theorem is called 
the spectral measure for N. An abbreviation for the Spectral Theorem is to 
say, "Let N = J A. dE(A.) be the spectral decomposition of N." If 4J is a bounded 
Borel function on a( N), define (jJ( N) by 

c/J(N) = f cfJ dE, 

where E is the spectral measure for N. 

2.3. Theorem. If N is a normal operator on Jf with spectral measure E and 
B(a(N) ) is the C*-algebra of bounded Borel functions on a(N), then the map 

{jJt--+{jJ(N) 

is a representation of the C*-algebra B(a(N) ). If { 4Ji } is a net in B(a(N)) such 
that J (jJi dJ.l -+ 0  for every J.l in M(a(N)), then (jJi(N) -+ 0  (WOT). This map is 
unique in the sense that if -r : B( a( N)) -+ �( Jf) is a representation such that 
-r(z) = N and -r( (jJJ -+ 0 (WOT) whenever { 4Ji } is a bounded net in B(a(N)) such 
that J (jJ i dJ.l -+ 0  for every J.l in M(a(N)), then -r((jJ) = (jJ(N)for all (jJ in B(a(N)). 

PROOF. The fact that (jJt--+(jJ(N) is a representation is a consequence of 
Proposition 1 . 1 2. If { 4Ji } is as in the statement, then the fact that Eg,hEM(a(N)) 
implies that (jJi(N) -+0  (WOT). 

· 

To prove uniqueness, let -r :  B(a(N)) -+�(Jf) be a representation with the 
appropriate properties. Then -r(u) = u(N) if ueC(a(N) ) by the uniqueness of 
the functional calculus for normal elements of a C*-algebra (VIII.2.6). If 
(jJeB(a(N)), then Proposition V.4. 1 implies that there is a net {ui} in C(a(N) ) 
such that I I ui I I  � 1 1 4J I I  for all ui and J ui dJ.l -+ J 4J dJ.l for every J.l in M(a(N) ). 
Thus ui(N) -+ {jJ(N) (WOT). But -r(4J) = WOT - lim -r(ui) = WOT - lim ui(N); 
therefore -r( 4J) = (jJ(N). • 

It is worthwhile to rewrite ( 1 . 1 1 )  as 

2.4 ( c/J(N)g, h ) = f cfJ dEg,h 

for 4J in B(a(N)) and g, h in Jf. If (jJeB(CL), then the restriction of 4J to a(N) 
belongs to B(a(N) ). Since the support of each measure Eg,h is contained in 
a(N), (2.4) holds for every bounded Borel function 4J on CL. This has 
certain technical advantages that will become apparent when we begin to 
apply (2.4). 

Proposition 2.3 thus extends the functional calculus for normal operators. 
This functional calculus or, equivalently, the Spectral Theorem, will be 
exploited in this chapter. But right now we look at some examples. 



§2. The Spectral Theorem 265 

2.5. Example. If Jl is a regular Borel measure on <C with compact support 
K, define N �' on L2(JJ) by N �'f = zf for each f in L2 (JJ). It is easy to check 
that N: f = zf, and, hence, N �' is normal. 

(a) a(N �' ) = K = support of Jl. (Exercise.) 
(b) If, for a bounded Borel function </>, we define Mtl> on L2 (Jl) by Mt�>f = (jJf, 

then (jJ(N �' ) = Mtl>. 

Indeed, this is an easy application of the uniqueness part of (2.3). 

(c) If E is the spectral measure for N �' '  then E(t1) = M x� · 

Just note that £(,1) = XA(N �'). 

2.6. Example. Let (X, n, JJ) be any a-finite measure space and put Jt = 
L2(X, n, JJ). For 4J in L 00 (Jl) = L 00 (X, n, JJ), define Mt�> on Jt by Mt�>f = (jJf. 

(a) Mtl> is normal and M: = M� (11.2.8). 
(b) (jJH Mtl> is a representation of L 00 (Jl) (VIII.5.4). 
(c) If 4J E L oo (JJ), 1 1 4J I I  oo = I I  M 4> I I  (11. 1 .5). 
(d) Define the essential range of 4J by 

ess-ran ((jJ) = n {cl ((jJ(t1) ) :  t1en and JJ(X\t1) = 0}. 

Then a(Mtl>) = ess-ran ((jJ). (This appears as Exercise VII.3 .3, but a proof 
is given here.) 

First assume that A.�ess-ran ((jJ). So there is a set ,1 in n with JJ(X\t1) = 0 
and A. not in cl ((jJ(t1) ); thus there is a £5 > 0 with 1 4J(x) - A. I � £5 for ·  all x in t1. 
If t/1 = ( 4J - A.) - 1 , t/1 E L oo (JJ) and M"' = ( M 4> - A.) - 1 . 

Conversely, assume A.eess-ran ((jJ). It follows that for every integer n there 
is a set ,1n in fl SUCh that 0 < JJ(t1n) < 00 and 1 4J(x) - A I < 1/n for all X in ,1n · 
Putfn = (JJ(t1n)) - 1 12XA" ; so fnEL2(JJ) and I I  fn l l 2 = 1 .  However, I I  (Mt/> - A.)fn I I � =  
(JJ(t1n) ) - 1 JA" I 4J - A. l 2 djJ � 1/n2 , showing that AEaap(Mtl>). 

(e) If E is the spectral measure for Mtl> [so E is defined on the Borel subsets 
of a(Mtl>) = ess-ran ((jJ) c <C], then for every Borel subset ,1 of a(Mtl>), 
£(,1) = Mx . 

q, - I (A) 

2.7. Proposition. If for k � 1 ,  Nk is a normal operator on Jtk with 
supk II Nk II < oo, Ek is the spectral meqsure for Nk, and if N = (f)�= 1 Nk on 
:K = (f)� 1 :Kk, then : 

(a) a(N) = cl [U� 1 a(Nk)] ;  
(b) if E is the spectral measure for N, E(t1) = (f)�_ 1 Ek(t1 n a(Nk)) for every 

Borel subset ,1 of a(N). 

PROOF. Exercise. 

A historical account of the spectral theorem is an enormous undertaking 
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by itself. One such account in Steen [ 1 973] . You might also consult the notes 
in Dunford and Schwartz [ 1963] and Halmos [ 195 1] .  

EXERCISES 
Throughout these exercises, N is a normal operator on :K with spectral measure E. 

1 .  Show that AEa p(N) if and only if E( {A} ) =f.: 0. Moreover, if AEa p(N), E( {A} )  is the 
orthogonal projection onto ker(N - A). 

2. If L\ is a clopen subset of a(N), show that E(L\) is the Riesz idempotent associated 
with L\. 

3. Prove Theorem II.5. 1 and its corollaries by using the Spectral Theorem. 

4. Prove Theorem II.7.6 and its corollaries by using the Spectral Theorem. 

5. Obtain Theorem II.7. 1 1  as a consequence of (2.3). 

6. Verify the statements in Example 2.5. 

7. Verify (2.6e). 

8. Show that if :K is separable, there are at most a countable number of points { zn } 
in a(N) such that E(zn) =f.: 0. By Exercise 1 ,  these are the eigenvalues of N. 

9. Show that a normal operator N is (a) hermitian if and only if a(N) c 1R; 
(b) positive if and only if a(N) c [0, oo ); (c) unitary if and only if a(N) c o[). 

10. Let A be a hermitian operator with spectral measure E on a separable space. 
For each real number t define a projection P(t) = E( - oo, t). Show: 

(a) P(s) � P(t) for s � t; 
(b) if tn � tn + 1 and tn --+ t, P(tn) --+ P(t) (SOT); 
(c) for all but a countable number of points t, P(tn) --+ P(t) (SOT) if tn --+ t; 
(d) for f in C(a(A)), f(A) = J� oof(t) dP(t), where this integral is to be defined (by 

the reader) in the Riemann-Stieltjes sense. 

1 1 . If a p(N) is a Borel set, show that E(a(N)\a p(N)) = 0 if and only if N is diagonaliz
able; that is, there is a basis for :K consisting of eigenvectors for N. If a p(N) is 
not assumed to be a Borel set, is it still possible to characterize diagonalizable 
normal operators in a similar way? Give an example of a normal operator N 
such that a p(N) is not a Borel set. 

1 2. Show that if N = U I N I  ( I N  I =  (N* N)
1
12) is the polar decomposition of N, 

U = ¢(N) for some Borel function ¢ on a(N). Hence U I N  I = I N  I U (see Exercise 
VIII.3.2 1 ). 

1 3. Show that N = WI N I for some unitary W that is a function of N. 

14. Prove that if A is hermitian, exp(iA) is unitary. Is the converse true? 

1 5 . Show that there is a normal operator M such that M2 = N and M = ¢(N) for 
some Borel function ¢. How many such normal operators M are there? 

1 6. Define N: L2(R) � L2(R) by (Nf)(t) = f(t + 1 ). Show that N is normal and find 
its spectral decomposition. ( (X.6. 1 7) is useful here.) 

1 7 . Suppose that N 1 ,  • • •  , N d are normal operators such that NiN: = N: Ni for 
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1 �j, k � d. Show that there is a subset X of <Cd and a spectral measure E defined 
on the Borel subsets of X such that N k = J zk dE(z) for 1 � k � d (zk = the kth 
coordinate function) (see Exercise VIII.2.2). 

1 8. If N t ,  . . .  , N d are as in Exercise 1 7  and each is compact, show that there is a basis 
for .1f consisting of eigenvectors for each N k · (This is the simultaneous diagonaliz
ation of N t , • • • , N d .) 

19. This exercise giv -;s the properties of Hilbert-Schmidt operators (defined below). 
(a) If { e; } and {fi } are two orthonormal bases for .1f and A e81(.1f), then 

L I I Aei l l
2 = L I I Afi l l 2 = L L I ( Aei , fi ) l 2 • i j i j 

(b) If A e81(.1f) and { e; } is a basis for .1f, define [ J t /2 
I I  A l i z = t I I  Ae; l l

2 • 

By (a) I I  A 1 1 2 is independent of the basis chosen and hence is well defined. If 
I I  A 1 1 2 < oo, A is called a Hilbert-Schmidt operator. 812 = Bl2(.1f) denotes the set 
of all Hilbert -Schmidt operators. (c) II A II � II A 1 1 2 for every A in 81( .1f) and 1 1 · 1 1 2 
is a norm on 812 • (d) If TeBI = Bl(.1f) and A e812 , then I I TA II 2 � I I T I I I I A I I 2 , 
I I  A*  l l 2 = II A l l 2 , and I I AT  l l 2 � I I A 1 1 2 1 1 T 1 1 . (e) 812 is an ideal of 81 that contains 
8100 ,  the finite-rank operators. (f) A e812 if and only if I A I  = (A*  A) t l2 e812 ; in this 
case I I  A 1 1 2 = I l l A 1 1 1 2 . (g) 812 c 810 ; moreover, if A is a compact operator and 
A t , A2 , • • •  are the eigenvalues of I A I, each repeated as often as its multiplicity, 
then Ae812(.1f) iff L:= t A; < oo. In this case, I I A 1 1 2 = (LA; ) t 12 . (h) If (X, Q, JL) is 
a measure space and keL2(JL x JL), let K :  L2(JL) � L2(JL) be the integral operator 
with kernel k. Then K e812(L2(JL)) and II K 1 1 2 = II k 1 1 2 (see Proposition II.4.7 and 
Lemma II.4. 8). (i) Interpret part (h) for a purely atomic measure space. More 
information on 812 is contained in the next exercise. 

20. This exercise discusses trace-class operators (defined below) and assumes a 
knowledge of Exercise 19. Bit (.1f) = { AB: A and Be812(.1f) } .  Operators belonging 
to Bit (.1f) are called trace-class operators and Bit (.1f) = Bit is called the trace class. 
(a) If AeBlt (.1f) and { ei } is a basis, then L l ( Aei, ei ) I <  oo. Moreover, the sum 
L ( Aei , ei ) is independent of the choice of basis. (Hint : If A =  C* B, B, C in 812 , 
show that I ( Aei, ei ) I = i< I I Bei 1 1 2 + II Cei 1 1 2 ).) (b) If { e; } is a basis for .1f, define 
tr: Bit � <C by 

tr(A) = L ( Aei, ei ) . 
i 

By (a) the definition of tr(A) does not depend on the choice of a basis; tr(A) is 
called the trace of A. If dim .1f < oo, then tr(A) is precisely the sum of the diagonal 
terms of any matrix representation of A. (c) If Ae81(.1f), then the following are 
equivalent: ( 1 )  A eBlt ; (2) I A I = (A*A) t 12 EBlt ;  (3) 1 A i t 12 e812 ; (4) tr( I A I ) < oo. (d) 
If A EBlt and TeBI, then AT and T A are in Bit and tr(A T) = tr(T A). Moreover, 
tr: Bit � <C is a positive linear functional such that if A EBlt ,  A � 0, and tr(A) = 0, 
then A =  0. (e) If AEBlt , define I I A l i t =  tr( I A I ). If AEBlt and TeBI, show that 
l tr(T A) I �  II T i l  I I A l i t · (f) II A l i t =  II A*  l i t if A EBlt · (g) If TeBI and AEBlt , then 
I I T A l i t � II T II II A l i t and II AT l i t � II T II II A l i t · (h) 1 1 · 1 1 1 is a norm on 811 • It is 
called the trace norm. (i) 811 is an ideal in �(�) that contains �00 •  (j) If A e� 1 
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and {e; }  and {/; }  are two bases for .1f, then Ld ( Ae; , /; ) 1  � I I A l i t · (d) elt c el0 .  
Also, if A eel0 and A t , A2 , • . •  are the eigenvalues of I A I , each repeated as often as 
its multiplicity, then Aeelt if and only if L:= t An < oo. In this case, II A l i t =  L:= t An . 
( 1 )  If A and Beel2 , define (A, B) = tr(B* A). Then (· , · ) is an inner product on el2 , 
1 1 · 1 1 2 is the norm defined by this inner product, and el2 is 1 1 · 1 1 2  complete. In other 
words, el2 is a Hilbert space. (m) (elt , l l · l l t )  is a Banach space. (n) el00 is dense 
in both elt and el2 • (For more on these matters, see Ringrose [ 1971] and Schatten 
[1960] .) 

2 1 .  This exercise assumes a knowledge of Exercise 20. If g, he.1f, let g ® h denote the 
rank-one operator defined by (g ® h) (f) = (/, h )g. (a) If g, he.1f and Aeel(.1f), 
tr(A(g ® h)) = (Ag, h ). (b) If Teelt ,  then II T l i t = sup { l tr(CT) I :  Ceel0, II C II � 1 } .  
(c) If Teelt ,  define Lr: el0 --+ <C by Lr(C) = tr(TC) ( = tr(CT)). Show that the map 
TH 4 is an isometric isomorphism of elt  onto e16 . (d) If B eel, define F B: el t --+ <C 
by F B(T) = tr(BT). Show that BH F B is an isometric isomorphism of el onto eli. 
(e) If Le&l* show that L = L0 + Lt where L0, Lt eel*, Lt (B) = tr(BT) for some 
T in &It ,  and L0(C) = 0 for every compact operator C. Show that 
I I  L I I = I I L0 I I + I I L t  I I and that L0 and Lt are unique. Give necessary and sufficient 
conditions on .1f for el(.1f) to be a reflexive Banach space. 

22. Prove that if U is any unitary operator on .1f, then there is a continuous function u: 
[0, 1] --+ 31(.1f) such that u(t) is unitary for all t, u(O) = U, and u( 1 )  = 1 .  

23. If N is normal, show that there is a sequence of invertible normal operators that 
converges to N. 

§3 .  Star-Cyclic Normal Operators 

Recall the definition of a reducing subspace and some of its equivalent 
formulations (Section 11.3). 

3.1.  Definition. A vector e0 in Yf is a star-cyclic vector for A if Yf is the smallest 
reducing subspace for A that contains e0• The operator A is star cyclic if it 
has a star-cyclic vector. A vector e0 is cyclic for A if Yf is the smallest 
invariant subspace for A that contains e0; A is cyclic if it has a cyclic vector. 

3.2. Proposition. (a) A vector e0 is a star-cyclic vector for A if and only if 
Yf = cl { Te0: TeC*(A) } , where C*(A) = the C*-algebra generated by A. (b) A 
vector e0 is a cyclic vector for A if and only if Yf = cl { p(A)e0: p = a  polynomial} . 

PROOF. Exercise. 

Note that if e0 is a star-cyclic vector for A, then it is a cyclic vector for the 
algebra C*(A). 

3.3. Proposition. If A has either a cyclic or a star-cyclic vector, then Yf is 
separable. 
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PROOF. It is easy to see that C*(A) and { p(A): p = a  polynomial } are separable 
subalgebras of �(Jr). Now use (3.2). • 

Let ll be a compactly supported measure on <C and let N Jl be defined on 
L2(J,l) as in Example 2.5. If K = support Jl, then C*(NJl) = {Mu: ueC(K) } .  
Since C(K) i s  dense in L2(J,l), i t  follows that 1 is a star-cyclic vector for N w 
The con verse of this is also true. 

3.4. Theorem. A normal operator N is star-cyclic if and only if N is unitarily 
equivalent to N Jl for some compactly supported measure Jl on <C. If e0 is a 
star-cyclic vector for N, then Jl can be chosen such that there is an isomorphism 
V: Jf --+  L2(Jl) with Ve0 = 1 and V NV- 1 = N w Under these conditions, V is . unzque. 

PROOF. If N � N Jl' then we have already seen that N is star-cyclic. So suppose 
that N has a star-cyclic vector e0• If E is the spectral measure for N, put 
Jl(L\) = II E(L\)e0 1 1 2 = (E(L\)e0, e0 ) for every Borel subset L\ of <C (see 
Lemma 1 .9). Let K = support ll· 

If 4JeB(K), then (2.4) implies 

1 1 4J (N)eo 1 1 2 = < 4J(N)eo, 4J(N)eo ) 
= < 1 4J I 2(N)eo, eo ) 

= f I cf>(zWd(E(z)e0, e0 ) 

= f l cf> l 2dJl. 

So if B(K) is considered as a submanifold of L2(Jl), U 4J = 4J(N)e0 defines an 
isometry from B(K) onto { 4J(N)e0: 4JeB(K) } .  But e0 is a star-cyclic vector, 
so the range of U is dense in Jf. Hence U extends to an isomorphism U: 
L2(/l) --+ Jf. 

If 4JeB(K), then UNJlU - 1 (4J(N)e0) = UNJl(4J) = U(z4J) = N4J(N)e0. Hence 
UN Jlu- 1 = N on { 4J(N)e0: 4JeB(K) } ,  which is dense in Jf. So UN Jlu - 1 = N. 
Let V = u- 1 . 

The proof of the uniqueness statement is an exercise. • 

Any theorem about the operators !'{ Jl is a theorem about star-cyclic normal 
operators. With this in mind, the next theorem gives a complete unitary 
invariant for star-cyclic normal operators. But first, a definition. 

3.5. Definition. Two measures, J11 and J12, are mutually absolutely continuous 
if they have the same sets of measure zero; that is, J11 (L\) = 0 if and ony if 
J,l2(L\) = 0. This will be denoted by [J,l 1] = [J,l2]. (The more standard notation 
in the literature is J,l1 = J,l2, but this seems insufficient.) If [J,l1] = [J,l2], then 
the Radon-Nikodym derivatives dJ,l1/dJ12 and dJ12/dJ11 are well defined. Say 
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that J-t1 and J-t2 are boundedly mutually absolutely continuous if [J-t1] = [J-t2] 
and the Radon-Nikodym derivatives are essentially bounded functions. 

3.6. Theorem. N Il l  "-� N Jll if and only if [J-t 1] = [J-t2] . 

PROOF. Suppose [J-t1 ] = [J-t2] and put 4J = dJ-t1/dJ-t2• So if geL1 (J-t 1 ), g4JeL1 (Jl2) 
and Jg4JdJl2 = JgdJl1 • Hence, iffeL2(J-t l ), flfeL2(J-t2) and l l flf l l 2 = l l f l l 2 ; 
that is, U: L2(Jl 1 ) --+  L2(J-t2) defined by U f = fl f is an isometry. If geL2(Jl2), 
then/ = 4J - 1 12geL2(J-t1 ) and U f = g; hence U is surjective and u - 1g = 4J - 1 12g 
for g in L 2(J-t2). If geL 2(J-t2), then UN Jl t u - 1g = UN Jl t 4J - 1 12g = Uz4J - l l2g = zg, 
and so UN Il l  U - 1 = N Jl2 •  

Now assume that V :  L2(Jl1 ) --+ L2(Jl2) is an isomorphism such that V N Ill V- 1 = 
N Jl2 •  Put t/1 = V( 1 ); so t/feL2(Jl2). For convenience, put Ni = N Jli 'j = 1 ,  2. It is easy 
to see that VN� V- 1 = N� and VNTkV- 1 = N!k · Hence Vp(N1 , N!)V- 1 = 
p(N 2, N!) for any polynomial p in z and z. Since N 1 "-� N 2, u(N 1 ) = u(N 2); 
hence support J-t1 = support J-t2 = K. By taking uniform limits of polynomials 
in z and z, Vu(N 1 )V- 1 = u(N 2) for u in C(K). Hence for u in C(K), 
V(u) = Vu(N 1 ) 1  = u(N 2)V 1  = ut/f. Because V is an isometry, this implies that 
J l u l 2dJ-t1 = J l u l 2 l t/l l 2dJ-t2 for every u in C(K). Hence J vdJ-t1 = Jv l t/f l 2dJ-t2 for v 
in C(K), v � 0. By the uniqueness part of the Riesz Representation Theorem, 
Ill = l t/I I 2Jl2, so Il l  << Jl2· 

By using V- 1 instead of V and reversing the roles of N 1 and N 2 in the 
preceding argument, it follows that J-t2 << J-t1 • Hence [J-t 1] = [Jl2]. • 

EXERCISES 
1 .  If J.l is a compactly supported measure on <C andf eL2(J.l), f is a star-cyclic vector for 

N IJ if and only if J.l( {x: f(x) = 0} ) = 0. 

2. Prove Proposition 3.2. 

3. If J.l t  and J.l2 are compactly supported measures on <C, show that the following 
statements are equivalent: (a) J.l t  and J.l2 are boundedly mutually absolutely 
continuous; (b) there is an isomorphism V: L2(J.l 1 ) -+  L2(J.l2) such that 
V N /J l  y - t = N /Jl and V L 00(J.l 1 ) = L 00(J.l2); (c) there is a bounded bijection R: 
L2(J.1d -+ L2( J.12) such that Rp(z, z) = p(z, z) for every polynomial in z and z. 

4. Show that if N is a star-cyclic normal operator and A.eu p(N), then 
dim ker(N - A.) = 1 .  

5. If N is diagonalizable and star-cyclic and if u p(N) = { A. 1 ,  A.2 , • • •  } ,  show that N is 
unitarily equivalent to N JJ' where J.l = L::= 1 2 - "b ;." (see Exercise 2. 1 1  ) . 

6. Let N be a diagonalizable normal operator. Show that N "-� M if and only if 
M is a diagonalizable normal operator, u p(N) = u p(M), and dim ker(N - A.) = 
dim ker(M - A.) for all A.. (Compare this with Theorem II.8.3.) 

7. Let U be the bilateral shift on /2(Z). If e0 is the vector in /2(Z) that has 1 in the zeroth 
place and zeros elsewhere, then e0 is a star-cyclic vector for U. If J.l is the compactly 
supported measure on <C and V: l2(Z) -+ L2(J.l) is the isomorphism such that Ve0 = 1 
and vu v - t = N IJ' then 
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(a) p, = m = normalized arc length on oD; 
(b) v- 1 = the Fourier transform on L2(m) = L2(oD). 

8. Suppose N 1 , • • •  , N d are normal operators such that NiN: = N: Ni for 1 � j, k � d 
and suppose there is a vector e0 in Jf such that Jf is the only subspace of Jf 
containing e0 that reduces each of the operators N 1 , . . •  ,Nd. Show that there is a 
compactly supported measure p, on <Cd and an isomorphism V: Jf -+  L2(p,) such 
that VN k v- 1 f = zkf for f in L2(p,) and 1 � k � d (zk = the kth coordinate function) 
(see Exercise 2. 1 7). 

§4. Some Applications of the Spectral Theorem 

In this section a few diverse applications of the Spectral Theorem are 
presented. These will show the power and finesse of the Spectral Theorem 
as well as demonstrate some of the methods used to apply it. One result in 
this section (Theorem 4.6) is more than an application. Indeed, many regard 
this as the optimal statement of the Spectral Theorem. 

If N is a normal operator and N = J zdE(z) is its spectral representation, 
then 4JH4J(N) = J 4JdE is a *-homomorphism of B(<C) into �(�). Thus, if 4J, 
t/feB(<C), ( J4JdE) ( Jt/JdE) = J4Jt/JdE and I I J4JdE II � sup { I 4J(z) l : zea(N) } . 

4.1 .  Proposition. If N is a normal operator and N = JzdE(z), then N is compact 
if and only if for every e > 0, E( { z: I z I > e} ) has finite rank. 

PROOF. If e > 0, let �e = { z: I z I > e} and Ee = E(�e)· Then 

N - N E, = f z dE(z) - f zx4,(z)dE(z) 

= f zx«:\4.(z)dE(z) = </J(N) 

where 4J(z) = zxcc\4Jz). Thus I I  N - NEe I I  � sup { I z I : ze<C\�e} � e. If Ee has 
finite rank for every e > 0, then so does NEe. Thus N e�0(�). 

Now assume that N is compact and let e > 0. Put 4J(z) = z - 1x4Jz); so 
4JeB(<C). Since N is compact, so is N4J(N). But N4J(N) = Jzz - 1 x4L(z)dE(z) = Ee. 
Since Ee is a compact projection, it must have finite rank. (Why?) • 

• 

The preceding result could have been proved by using the fact that compact 
normal operators are diagonalizable and the eigenvalues must converge to 0. 

4.2. Theorem. If � is separable and I is an ideal of �(�) that contains a 
noncompact operator, then I = �(�). 

PROOF. If A el and A ¢�0(�), consider A* A; let A*  A =  J t dE(t) 
(a( A* A) c [0, oo )). By the preceding proposition, there is an e > 0 such that 
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P = E(e, oo) has infinite rank. But P = (J t - 1 X<e, oo >(t)dE(t))A * A el. Since .Yf is 
separable, dim P Jf = dim Jf = �0. Let U: Jf --+  P Jf be a surjective isometry. 
It is easy to check that 1 = U* PU. But Pel, so 1 e/. Hence I = �(:?f). • 

In Proposition VIII.4. 10, it was shown that every nonzero ideal of �(Jf) 
contains the finite-rank operators. When combined with the preceding result, 
this yields the following. 

4.3. Corollary. If Jf is separable, then the only nontrivial closed ideal of �(Yf) 
is the ideal of compact operators. 

The next proposition is related to Theorem VIII. 5.9. Indeed, it is a 
consequence of it so that the proof will only be sketched. 

Let N be a normal operator on Jf and for every vector e in Jf let 
Jfe = V {N*kNie: k, j � 0} . So Jfe is the smallest subspace of Jf that contains 
e and reduces N. Also, N I .Yf e is a star-cyclic normal operator. 

4.4. Proposition. If N is a normal operator on Jf, then there are reducing 
subs paces { .Yfi: ie/} for N such that Jf = Ef)i:?fi and N I Jfi is star cyclic. 

PROOF. Using Zorn's Lemma find a maximal set of vectors � in Jf such 
that if e, f E� and e # f, then Jf e l_ Jf 1.  It  follows that Jf = E9e:?f e· • 

4.5. Corollary. Every normal operator is unitarily equivalent to the direct sum 
of star-cyclic normal operators. 

By combining the preceding proposition with Theorem 3.4 on the 
representation of star-cyclic normal operators we can obtain the following 
theorem. 

4.6. Theorem. If N is a normal operator on Jf, then there is a measure space 
(X, !l, ,u) and a function 4J in L 00(X, !l, ,u) such that N is unitarily equivalent to 
Mt/J on L 2(X, !l, ,u). 

PROOF. If Jlt is a reducing subspace for N, then N "'  N I Jit Ef) N I A.L; thus 
a(N I A) c a(N). So if { Ni } is a collection of star-cyclic normal operators such 
that N "'  Ef)iNi (4.5), then a(Ni) c a(N) for every Ni. By Theorem 3.4 there is 
a measure Jli supported on a(N) such that Ni "' N Jli"  Let Xi = the support of 
Jli and let Qi = the Borel subsets of Xi· Let X = the disjoint union of {X J. 
Define n to be the collection of all subsets L\ of X such that L\ n X ieni for 
all i. It is easy to check that n is a a-algebra. If L\e!l let ,u(L\) = LiJli(L\ n Xi); 
then (X, n, ,u) is a measure space. If f E L 2(X, n, ,u) then fi = f I Xie L2(,ui). 
Moreover, the map U: L2(,u) -+ Ef)iL2(,ui) defined by Uf = Ef)i(f i Xi) is easily 
seen to be an isomorphism. Define 4J: X --+  <C by letting 4J(z) = z if zeXi ( c <C); 
since Xi c a(N) for every i, 4J is a bounded function. If G is an open subset of <C, 



§4. Some Applications of the Spectral Theorem 273 

4J - 1 (G) n Xi = G n Xieni; hence 4J is !l-measurable. Therefore 4JeL00(X, O., J-t). 
It is left to the reader to check that U M t/J U- 1 = Ef) iN Jli "' N. • 

4.7. Proposition. If Jf is separable, then the measure space in Theorem 4.6 is 
a-finite. 

PROOF. First note that the measure space (X, n, J-t) constructed in the preceding 
theorem has no infinite atoms. Now let 8 be a collection of pairwise disjoint 
sets from n having non-zero finite measure. A computation shows that 
{ (J-t(L\)) - 1 ;2x4: L\e8} are pairwise orthogonal vectors in L2(J-t). If L2(J-t) is 
separable, then 8 must be countable. Therefore (X, n, J-t) is a-finite. • 

Of course if(X, n, J-t) is finite it is not necessarily true that L2(J-t) is separable. 
The next result will be useful later in this book and it also provides a 

different type of application of the Spectral Theorem. 

4.8. Proposition. If d is an SOT closed C*-subalgebra of f!I(Jf), then d is 
the norm closed linear span of the projections in d. 

PROOF. If A ed, A +  A* and A - A* ed; hence d is the linear span of Re d. 
Suppose Ae Re d  and A =  J tdE(t). If [a, b] c R, then there is a sequence 
{ un} in C(JR) such that 0 � un � 1 ,  un(t) = 1 for a � t � b - n- I ,  un(t) = 0 for 
t � a - n - 1 and t � b. Hence un(t) --+ X[a,b>

(t) as n --+  oo. If he:?f, then 

II { un(A) - E[a, b) }h 1 1 2 = f1 Un(t) - X[a,b)(t) l
2dEh,h(t) --+ 0 

by the Lebesgue Dominated Convergence Theorem. That is, un(A) --+ E[a, b) 
(SOT). Since d is SOT-closed, E[a, b)ed. Now let (e<, /3) be an open interval 
containing a( A). If e > 0, then there is a partition { e< = t0 < · · · < tn = /3} such 
that I t - L�= 1 tkX[tk - l . tk>

(t) l < e for t in a(A); hence I I  A - L�= 1 tkE[tk _ 1 , tk) I I < e. 
Thus every self-adjoint operator in d belongs to the closed linear span of 
the projections in d. • 

EXERCISES 
1 .  If N is a normal operator show that ran N is closed if and only if 0 is not a limit 

point of u(N). 

2. Give an example of a non-normal operator A such that 0 is an isolated point of 
u(A) and ran A is closed. Give an example of a non-normal operator B such that 
ran B is closed and 0 is not an isolated point of u(B). 

3. If .Yf is a nonsepatable Hilbert space find an example of a nontrivial closed ideal 
of &I(.Yf) that is different from 810(.Yf). 

4. Let (X, !l, JJ.) be the measure space obtained in the proof of Theorem 4.6 and show 
that L1(X, Q, JJ.)* is isometrically isomorphic to L 00(X, Q, JJ.). 

5. Show that .Yf is separable if and only if every collection of pairwise orthogonal 
projections in &I(.Yf) is countable. 
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6. lf (X, Q, Jl) is a measure space, then (X, Q, Jl) is a-finite or L2(Jl) is finite dimensional 
if and only if every collection of pairwise orthogonal projections in { M q,E L 00(Jl) }  
is countable. 

7. If N = J zdE(z) and e > 0, show that ran E( {z: l z l  > e} ) c ran N. 

8. (Calkin [ 1 939]) Let Jt be a linear manifold in Yf and show that Jt has the 
property that .A contains no closed infinite dimensional subspaces if and only 
if whenever A eEl(Yf) and ran A c cA, then A is compact. 

9. Show that the extreme points of { A eEl(Yf): 0 � A �  1 }  are the projections. 

10. (Halmos [ 1 972]) If N is a normal operator, show that there is a hermitian operator 
A and a continuous function f such that N = f(A). (Hint: Use Theorem 4.6.) 

§5 .  Topologies on &B(Yf) 

In this section some results on the SOT and WOT on 91(�) are presented. 
These results are necessary for understanding some of the results that are to 
follow in later sections and also for a proper comprehension of a number of 
other subjects in mathematics. 

The first result appeared as Exercise 1 .4. 

5.1 .  Proposition. If L: 91(�) --+ <C is a linear functional, then the following 
statements are equivalent. 

(a) L is SOT continuous. 
(b) L is WOT continuous. 
(c) There are vectors g1 , • • •  , 9m h1 , • . •  , hn in � such that L(A) = L:� =  1 (Agk, hk ) 

for every A in 91(�). 

PROOF. Clearly (c) implies (b) and (b) implies (a). So assume (a). By (IV.3 . 1 f) 
there are vectors g 1 , . • .  , g n in � such that 

I L(A) I .;;; }:.1 I I  Agk I I  .;;; Jn[ }:.1 I I  Agk 1 1 2 J'2 

for every A in 91(�). Replacing gk by Jngb it may be assumed that 

I L(A) I .;;; L il I I  Agk 1 1 2 J'2 = p(A ). 

Now p is a seminorm and p(A) = 0 implies L(A) = 0. Let :ft = cl { Ag 1 61 Ag2 
61 ·  · · 61 Agn : Ae91(�) } ;  so :ft c �  61 ·  · ·  61 � (n times). Note that if 
Ag1 61 ·  · · 61 Agn = 0, p(A) = 0, and hence, L(A) = 0. Thus F(Ag1 61 ·  · · 61 Agn) = 
L(A) is a well-defined linear functional on a dense manifold in :ft. 
But 
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So F can be extended to a bounded linear functional F t on yt<n>. Hence 
there are vectors h t , . . .  , hn in Jf such that 

F t (/ t � · · · � fn) = ( f t � · · · � fm h t � · · · � hn ) 

k = t 

• 

5.2. Corollary. /fCC is a convex subset of �(Jf), the WOT closure of<:C equals 
the SOT closure of <:C. 

PROOF. Combine the preceding proposition with Corollary V. 1 .4. • 

When discussing the closure (WOT or SOT) of a convex set it is usually 
better to discuss the SOT. Shortly an "algebraic" characterization of the 
SOT closure of a subalgebra of �(Jf) will be given. But first recall (VIII .5 .3) 
that if 1 � n � oo, yt<n> denotes the direct sum of Jf with itself n times (�0 
times if n = oo ). If A e�(Jt), A<n> is the operator on yt<n> defined by 
A<n>(h t , . . . , hn) = (Ah t , . . .  , Ahn). If g c �(Jf), g<n> = {A<n> : A eg} .  It is rather 
interesting that the SOT closure of an algebra can be characterized using its 
lattice of invariant subspaces. 

5.3. Proposition. If d is a subalgebra of �(Jf) containing 1 ,  then the SOT 
closure of d is 

5.4 {B e �( Jf): for every finite n, Lat .s;�<n> c Lat B<n> } . 

PROOF. It is left as an exercise for the reader to show that if BeSOT - cld, 
B belongs to the set (5.4). Now assume that B belongs to the set (5.4). Fix 
ft , /2, • • •  , fn in Jf and e > 0. It must be shown that there is an A in d such 
that I I (A - B)fk I I  < e for 1 � k � n. 

Let .A =  V { (Aft , . . .  , Afn): A ed}. Because d is an algebra, .A eLat .s;�<n>; 
hence .A eLat B<n>. Because 1 ed, (ft , . . . ,/n)e.A. Since { (Aft , . . .  , Afn); A ed} 
is a dense manifold and (B ft , . . .  , B fn)e.A, there is an A in d with 
e2 > :L� = t I I  (A - B)fk 1 1 2 ; hence BeSOT - cl d. • 

5.5. Proposition. The closed unit ball of �(Jf) is WOT compact. 

PROOF. The proof of this proposition follows along the lines of the proof of 
Alaoglu's Theorem. For each h in ball Jf let Xh = a  copy of ball Jf with 
the weak topology. Put X = ll{Xh: l l h l l � 1 } .  If A eball �(Jf) let r(A)eX 
defined by r(A)h = Ah. Give X the product topology. Then r: (ball �(Jf), 
WOT) --+ X is a continuous function and a homeomorphism onto its image 
(verify). Now show that r(ball �(Jf)) is closed in X. From here it follows 
that ball �(Jf) is WOT compact. • 

EXERCISES 
1 .  Show that if BeSOT - cl d, then B belongs to the set defined in (5.4). 
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2. Show that Bl 00 is SOT dense in 81. 

3. If { Ak} and { Bk} are sequences in Bl(Jf) such that Ak -+ A(WOT) and Bk -+ B(SOT), 
then AkBk -+ AB(WOT). 

4. With the notation of Exercise 3, show that if Ak --+ A( SOT), then AkBk -+ AB(SOT). 

5. Let S be the unilateral shift on /2(1N) (II.2. 10). Examine the sequences { Sk} and 
{ S*k} and their relation to Exercises 3 and 4. 

6. (Halmos.) Fix an orthonormal basis {en: n ;::: 1 }  for Jf. (a) Show that Oeweak 
closure of {Jnen: n ;::: 1 }  (Halmos [ 1982], Solution 28). (b) Let {ni} be a net of 
integers such that J nieni -+ 0 weakly. Define A if = J ni (f, eni>eni for f in Jf. Show 
that Ai -+0  (SOT) but {A; }  does not converge to 0 (SOT). 

§6. Commuting Operators 

If !/ c �(�), let !/' = {A e�(�): AS = SA for every S in !/} .  !/' is called 
the commutant of !/. It is not difficult to see that !/' is always an algebra. 
Similarly, !/" = ( !/')' is called the double commutant of !/. This process can 
continue, but (happily) !/"' = !/' (Exercise 1 ). In some circumstances, !/ = !/". 

The problem of determining the commutant or double commuta�� of a 
single operator or a collection of operators leads to some exciting and 
interesting mathematics. The commutant is an algebraic object and the idea 
is to bring the force of analysis to bear in the characterization of this algebra. 

We begin by examining the commutant of a direct sum of operators. 
Recall that if � = � 1 61 � 2 61 · ·  · and AnE�(�n) for n � 1 ,  then 
A = A  1 61 A2 61 · · · defines a bounded operator on � if and only if 
supn I I  An I I  < oo; in this case I I  A I I  = supn I I  An 1 1 .  Also, each operator B on � 
has a matrix representation [Bii] where BiiE�(�i' �i). 

6.1 .  Proposition. (a) If A =  A 1 61 A2 61 · · · is a bounded operator on � = 
� 1 61 �  2 61 · · ·  and B = [Bii] E�(�), then AB = BA if and only ifBiiAi = AiBii 
for all i, j. 

(b) If B = [Bii] e91(�<n>), BA<n> = A<n>B if and only if BiiA = ABii for all i,j. 

The proof of this proposition is an easy exercise in matrix manipulation 
and is left to the reader. 

6.2. Proposition. If A e91(�) and 1 � n � oo, then {A<n>}" = {B<n>: Be {  A}"} = 
{ {A }" } (n) . 

PROOF. The second equality in the statement is a tautology and it is the first 
equality that forms the substance of the proposition. If Be {A}", then the 
preceding proposition implies that B<n> e {A<n>} ". Now let Be {A<n>}" . To 
simplify the notation, assume n = 2. So Be {A � A}"; let B = [Bii] , Biie81(Je). 
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Since [ � � JE {A EB A} ', matrix multiplication shows that B 1 1  = B22 and 

B2 1 = 0. Similarly, the fact that [ � � J commutes with A EB A implies that 

B1 2 = 0. If C = B1 1  ( = B22), B = C � C. If Te{ A } ', then T � Te·{ A �  A}', so 
B(T �  T) = (T � T)B. This shows that Ce {A}". • 

The next result is a corollary of the preceding proof. 

6.3. Corollary. If f/  c �(�), {ff<n>} "  = {ff"} <n>. 

Say that a subspace .A of � reduces a collection f/ of operators if it 
reduces each operator in f/. By Proposition 11.3. 7, .A reduces f/ if and only 
if the projection of � onto .A belongs to f/'. This is important in the next 
theorem, due to von Neumann [ 1929] . 

6.4. The Double Commutant Theorem. If d is a C*-subalgebra of �(�) 
containing 1 ,  then SOT - cl d = WOT - cl d = d". 

PROOF. By Corollary 5.2, WOT - cl d = SOT - cl d. Also, since d" is SOT 
closed (Exercise 2) and d c d", SOT - cl d c d". 

It remains to show that d" c SOT - cl d. To do this Proposition 5.3 will 
be used. 

Let Bed", n � 1 ,  and let .A eLat d<n>. It must be shown that B<n> .A c .A. 
Because d is a C*-algebra, so is d<n>. So the fact that .A E Lat d<n> and 
A*<n>ed<n> whenever A<n>ed<n> implies that .A reduces A<n> for each A in d. 
Si if P is the projection of �<n> onto .A, Pe { d<n>} ' . But Bed"; so by Corollary 
6.3, B<n> e {d<n>}". Hence B<n>p = PB<n> and .AeLat B<n>. • 

6.5. Corollary. If d is a SOT closed C*-subalgebra of�(�) containing 1 and 
A E�(�) such that A(P �) c P �for every projection P in d', then A Ed. 

PROOF. This uses, in addition to the Double Commutant Theorem, 
Proposition 4.8 as applied to d'. Indeed, d' is a SOT closed C*-algebra 
and hence it is the norm-closed linear span of its projections. So if AE�(�) 
and AP � c P � for every projection P in d', then A( 1 - P)� c ( 1  - P)� 
for every projection P in d'. Thus P � reduces A and, hence, AP = P A. By 
(4.8), A ed" = d. • • 

6.6. Theorem. If (X, 0., J-t) is a a-finite measure space and 4JeL 00(J-t), define Mq, 
on L2(J-t) by Mq,f = 4Jf. If dll = {Mq,: 4JEL00(J-t) } , then d� = dll = d;. 

PROOF. It is easy to see that if d = d', then d = d". Since d Jl c d�, it 
suffices to show that d� �c dw So fix A in d�; it must be shown that A =  Mq, 
for some 4J in L 00(J-t). 

Case 1 :  J-t(X) < oo.  Here l eL2(J-t); put 4J = A( l). Thus 4JeL2(J-t). If t/JEL00(J-t), 
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then t/feL2(J.l) and A(t/1) = AMy, 1 = My,A 1 = My,</J = </Jt/1. Also, I I </Jt/1 1 1 2 = 
I I  At/l l l 2 � I I A I I  I I t/l l l 2 · 

. Let L\n = { x EX: I </J(x) I � n} . Putting t/1 = X4n in the preceding argument 
gtves 

I I A 1 1 2 J.l(L\n) = I I  A 1 1 2 1 1  t/1 1 1 2 � I I  </Jt/1 1 1 2 = I I <P l 2dJ.l � n2 Jl(L\n). 
4n 

So if J.l(L\n) # 0, I I  A I I  � n. Since A is bounded, J.l(L\n) = 0 for some n; equivalently, 
<jJEL00(J.l). But A = Mt/J on L00(J.l) and L00(J.l) is dense in L2(J.l), so A = Mt/J on 
L2(Jl). 

Case 2: J.l(X) = oo. If J.l(L\) < oo, let L2(J.1 I L\) = {feL2(Jl): f = 0 off L\}. For 
f in L2(J.l l L\), Af = Ax4f = x4Af E L2(J.l l  L\). Let A4 = the restriction of A to 
L2(J.1 1 L\). By Case 1 ,  there is a </J4 in L00(J.l i L\) such that A4 = Mt/Jfl· Now if 
J.l(L\ 1) < oo and J.l(L\2) < oo, <P 41 1  L\1 n L\2 = <P 42 1  L\1 n L\2 (Exercise). 

Write X =  U: 1L\m where L\nE!l and J.l(L\n) < oo. From the argument 
above, if </J(x) = </J4t1(x) when xeL\m <P is a well-defined measurable function 
on X. Now I I </JL1 1 1 oo = I I Mq,A I I (II. 1 . 5) = I I A4 I I  � I I A l l ; hence 1 1 </J I I  � A ll - It is 
easy to check that A = M t�J· • 

The next result will enable us to solve a number of problems concerning 
normal operators. It can be considered as a result that removes a technicality, 
but it is much more than that. 

6.7. The Fuglede-Putnam Theorem. If N and M are normal operators on Jf 
and .Yt, and B: .Yt --+  Jf is an operator such that N B = BM, then N* B = BM* .  

PROOF. Note that i t  follows from the hypothesis that NkB = BMk for all 
k � 0. So if p(z) is a polynomial, p(N)B = Bp(M). Since for a fixed z in <C, 
exp (izN) and exp(izM) are limits of polynomials in N and M, respectively, 
it follows that exp(izN)B = B exp( izM) for all z in <C. Equivalently, 
B = e- izNBeizM . Because exp(X + Y) = (exp X) (exp Y) when X and Y 
commute, the fact that N and M are normal implies that 

- izN* - izNB izM izM* = e  e e e 

= e - i(zN* + zN) Bei(zM + zM*>. 

But for every z in <C, zN* + zN and zM* + zM are hermitian operators. 
Hence exp[ - i(zN* + zN)] and exp [i(zM* + zM)] are unitary (Exercise 
2. 14). Therefore 1 1 /(z) l l � l i B I I . But /: <C -+ �(.Yt, Jf) is an entire function. By 
Liouville's Theorem, f is constant. 

Thus, 0 = / '(z) =  - iN*e- izN*BeizM* + ie - izN*BM*eizM* . Putting z = O 
gives 0 = - iN* B + iBM*, whence the theorem. • 

This theorem was originally proved in Fuglede [ 1 950] under the 
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assumption that N = M. As stated, the theorem was proved in Putnam 
[ 195 1] .  The proof given here is due to Rosenblum [ 1 958] . Another proof is 
in Radjavi and Rosenthal [ 1973]. Berberian [ 1 959] observed that Putnam's 
version can be derived from Fuglede's original theorem by the following 
matrix trick. If 

L = [� �] and A = [� �] 
then L is normal on Yf E9 Yf and LA = AL. Hence L* A = AL* ,  and this gives 
Putnam's version. 

6.8. Corollary. If N = J z dE(z) and BN = N B, then BE(i\) = E(i\)B for every 
Borel set i\. 

PRooF. If BN = N B, then BN* = N* B; the conclusion now follows by The 
Spectral Theorem. il 

The Fuglede-Putnam Theorem can be combined with some other results 
we have obtained to yield the following. 

6.9. Corollary. If J1 is a compactly supported measure on <C, then 

{ N Jl }  I = d Jl = { M cp :  4> E L 00 (Jl) } .  

PROOF. Clearly dll c {Nil } ' .  If A e {Nil }' ,  then Theorem 6.7 implies 
AN! = N! A. By an easy algebraic argument, AMc/J = Mc/JA whenever 4> is a 

. polynomial in z and z. By taking weak* limits of such polynomials, it follows 
that A ed� . By Theorem 6.6 Aedll. • 

Putnam applied his generalization of Fuglede's Theorem to show that 
similar normal operators must be unitarily equivalent. This has a formal 
generalization which is useful. 

6.10. Ptopbsition. Let N 1 and N 2 be normal operators on Yf1 and Yf2 • If 
X:  Yf1 --+ Yf2 is an operator such that XN1 = N2X, then : 

(a) cl (ran X) reduces N 2 ; 
(b) ker X reduces N 1 ; 
(c) If M1 = N1 l (ker X)j_ and M2 = N2 l cl (ran X), then M1 � M2 • 

PROOF. (a) Iff1 e.Yf1 ;  N2Xf1 = XN1 f1 eran X; so cl (ran X) is invariant for 
N 2 • By the Fuglede-Putnam Theorem, XNT = Nj_ X, so cl (ran X) is invariant 
for Nj_ .  

(b) Exercise. 
(c) Since X(ker X)j_ c cl (ran X), part (c) will be proved if it can be shown 

that N 1 � N 2 when ker X = (0) and ran X is dense. So make these assumptions 
and consider the polar decomposition of X, X =  U A (see Exercise 1 1 ). 
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Because ker X =  (0) and ran X is dense, A is a positive operator on Yf1 and 
U: Yf1 -+ Yf2 is an isomorphism. Now X* N! = N! X* ,  so X* N 2 = N 1 X* .  
A calculation shows that A2 = X*Xe{N1 } ' ,  so Ae {N1 } ' .  (Why?) Hence 
N2 UA = N2X = UAN1 = UN1 A; that is, N2 U = UN1 on the range of A. 
But ker A = (0), so ran A is dense in Yf1 • Therefore N 2 U = UN 1 , or N 2 = 
UN1 U - 1 • • 

6.1 1 . Corollary. Two similar normal operators are unitarily equivalent. 

The corollary appears in Putnam [ 1 95 11 while Proposition 6. 1 0  first 
appeared in Douglas [ 1 969] . 

EXERCISES 
1 .  If ff s; 31( Jf), show that f/'' = ff"' .  

2. If ff s; &l(Jf), show that f/'' is always a SOT closed subalgebra of &l(Jf). 

3. Prove Proposition 6. 1 .  

4. Let Jr be a Hilbert space of dimension � and define S: Jr<oo) --+ Jr<oo) by 
S(h 1 , h2 , • • •  ) = (0, h 1 , h2 , • • •  ). S is called the unilateral shift of multiplicity �. 
(a) Show that A =  [Aii] e {S} ' if and only if Aii = 0 for j > i and Aii = Ai + 1 ,i + 1 
for i � j. (b) Show that A =  [Aii] e {S}" if and only if Aii = 0 for j > i and 
Aii = Ai + t , i + 1 = a  multiple of the identity for i � j. 

5. What is { N Jl ffi N Jl } '? { N Jl ffi N Jl }"? 

6. If d is a subalgebra of &l(Jf), show that d is a maximal abelian subalgebra of 
&l(Jf) if and only if d = d'. 

7. Find a non-normal operator that is similar to a normal operator. (Hint : Try 
dim Jf = 2.) 

8. Let J1. be a compactly supported measure on <C and let f be a separable Hilbert 
space. A function f: <C --+  f is a Borel function iff -

1 (G) is a Borel set when G is 
weakly open in f. Define L2(JJ., f) to be the equivalence classes of Borel functions 
f: <C --+  f such that J II f(x) I I 2 dJJ.(x) < oo. Define (f, g ) = J (f(x), g(x) ) dJJ.(x) for 
f and g in L2(JJ., f). (a) Show that L2(JJ., f) is a Hilbert space. Define N on 
L2(JJ., f) by (Nf)(z) = zf(z). (b) Show that N is a normal operator and 
u(N) = support Jl.· Calculate N*.  (c) Show that N "' N <a) , where � = dim f. (d) Jl 
Find {N}' .  (Hint: Use 6. 1 .) (e) Find {N}" .  

9. Let Jr be separable with basis {en } · Let A be the diagonal operator on Jr given 
by Aen = A.nen , where supn i A.n l < oo. Determine {A}' and {A}" .  Give necessary and 
sufficient conditions on { A.n } such that {A}' = {A}" .  

10. Let d be a C*-subalgebra of &l(Jf) but do not assume that d contains the 
identity operator. Let .A = v {ran A: A e d} and let P = the projection of Jr 
onto .A. Show that SOT - cl d = d" P = P d". 

1 1 . Formulate and prove a polar decomposition for operators between different 
Hilbert spaces. 
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1 2. Let (X, O, J.L) be an arbitrary measure space and let LeL1 (J.L)* . (a) Show that for 
every f in L2(J.L), there is an h in L2(J.L) such that L(gf) = f gh dJl for all g in L2(J.L). 
(b) If feL2(J.L), let Tf be the function h in L2(J.l) obtained in part (a). Show that 
T: L2(J1) � L2(tt) defines a bounded linear operator and T commutes with M</J for 
every l/J in L 00(J.L). (c) In light of parts (a) and (b), compare Theorem 6.6 and 
Example 20. 1 7  in Hewitt and Stromberg [ 197 5] . 

§7. Abelian von Neumann Algebras 

7.1.  Definition. A von Neumann algebra d is a C*-subalgebra of 81(Jff) such 
that d = d". 

Note that if d is a von Neumann algebra, then 1 Ed and d is SOT 
closed. Conversely, if 1 Ed and d is a SOT closed C*-subalgebra of 81(Jff), 
then d is a von Neumann algebra by the Double Commutant Theorem. 

It is a result of S. Sakai that a C*-algebra is isomorphic to a von Neumann 
algebra if it is the dual of a Banach space. The converse to this is an easy 
consequence of the fact that 81(Jff) is a dual space (Exercise 2.2 1 ). For an 
account of the history of this result and its predecessors, as well as a number 
of proofs, see Kadison [ 1 985]. 

7.2. Examples. (a) 81(Jff) and <C are von Neumann algebras. 
(b) If (X, n, ,u) is a a-finite measure space, then d Jl = { Mc/J: QJEL 00 (,U) } c 

81(L2( ,u) ) is an abelian von Neumann algebra by Theorem 6.6. In fact, it is 
a maximal abelian von Neumann algebra. 

It will be shown in this section that d Jl is the only abelian von Neumann 
algebra up to a *-isomorphism. However, there are many others that are 
not unitarily equivalent to d w 

For di c 81(Jff), j  � 1 ,  d 1 E9 d 2 E9 · · · is used to denote the 100 direct sum 
of d 1 , d 2 ,  • • . •  That is, d 1 E9 d 2 E9 · · · = {A 1 E9 A2 E9 · · - : A iEd i for j � 1 and 
supi I I  A i I I  < oo } .  Note that d 1 E9 d 2 E9 · · · c 81(Jff 1 E9 Jff 2 E9 · · · ) and 
I I  A 1 E9 A2 E9 · · · I I  = supi I I  Ai 1 1 . 

7.3. Proposition. (a) If d 1 , d 2 ,  . . •  are von Neumann, algebras, then so is 
d 1 E9 d 2 E9 · · · .  (b) If d is a von Neumann algebra and 1 � n � oo, then d<n> 
is a von Neumann algebra. • 

PROOF. Exercise. 
The proof of the next result is also an exercise. 

7.4. Proposition. Let di be a von Neumann algebra on Jffi, j =  1 , 2. If U: 
Jff 1 � Jff 2 is an isomorphism such that u d 1 u - 1 = d 2'  then u d; u - 1 = d�. 

Now let (X, Q, ,u) be -a a-finite measure space and define p: d Jl � d�2> by 
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p(T) = T E9 T. Then p is a •-isomorphism. However, d 11 and d�2> are not 
spatially isomorphic. That is, there is no Hilbert space isomorphism U: 
L2(J.l)--+ L2(JJ) E9 L2(J.l) such that Ud11U- 1 = d�2> . Why? One W'lY to see that no 
such U exists is to note that d 11 has a cyclic vector (give an example). 
However, d�2> does not have a cyclic vector as shall be seen presently 
(Theorem 7 .8). 

7.5. Definition. If d c 8H(Jff) and e0eJff, then e0 is a separating vector for 
d if the only operator A in d such that Ae0 = 0 is the operator A = 0. 

If (X, !l, J.l) is a a-finite measure space and feL2(J.l) such that J.l({xeX: 
f(x) = 0} = 0 (Why does such an f exist?), then f is a separating vector for 
d �' as well as a cyclic vector. If d = 8H(Jff), then no vector in Jff is separating 
for d while every nonzero vector is a cyclic vector. If d = <C and dim Jff > 1 ,  
then d has no cyclic vectors but every nonzero vector i s  separating for d. 

7.6. Proposition. If e0 is a cyclic vector for d, then e0 is a separating vector 
for d'. 

PROOF. If Ted' and Te0 = 0, then for every A in d, T Ae0 = A Te0 = 0. Since 
V de0 = Jff, T = 0. • 

7.7. Corollary. If d is an abelian subalgebra of 8l(Jff), then every cyclic vector 
for d is a separating vector for d. 

PROOF. Because d is abelian, d c d'. • 

Since �(Jff)' = <C, Proposition 7.6 explains some of the duality exhibited 
prior to (7.6). Also note that if (X, n, J.l) is a finite measure space, 1 E9 0, 0 Ee l, 
and 1 Ee l  are all separating vectors for d�2>. Because d�2> ¥- (d�2>)', the next 
theorem says that d�2> has no cyclic vector. 

Although it is easy to see that conditions (a) and (b) in the next result are 
equivalent, irrespective of any assumption on Jt, the equivalence of the 
remaining parts to (a) and (b) is not true unless some additional assumption 
is made on Jff or d (see Exercise 5). We are content to assume that Jff is 
separable. 

7.8. Theorem. Assume that Jff is separable and d is an abelian C*-subalgebra 
of 8l(Jff). The following statements are equivalent. 

(a) d is a maximal abelian von Neumann algebra. 
(b) d = d'. 
(c) d has a cyclic vector, contains 1 ,  and is SOT closed. 
(d) There is a compact metric space X, a positive Borel measure Jl with support 

X, and an isomorphism U: L2(Jl) --+ .Ye  such that Ud11U - 1 = d. 

PROOF. The proof that (a) and (b) are equivalent is left as an exercise. 



§7. Abelian von Neumann Algebras 283 

(b) => (c): By Zorn's Lemma and the separability of .Yt, there is a maximal 
sequence of unit vectors {en} such that for n ¥= m, cl [denJ l. cl [demJ · It 
follows from the maximality of {en} that Yf = �:- 1 cl [denJ · 

Let e0 = 'L:= 1 enfft. Since en l. em for n # m, l l e0 I I 2 = 'L2- n = 1 . Let 
Pn = the projection of Yf onto .Yen = cl [denJ · Clearly d leaves .Yen invariant 
and so, since d is a •-algebra, .Yen reduces d. Thus Pned' = d and 
cl [de0] => cl [d Pne0] = cl [denJ = .Yen. Therefore cl [de0] = Yf and e0 is a 
cyclic vector for d. 

(c) => (d): Since Yf is separable, ball d is WOT metrizable and compact 
( 1 .3 and 5.5). By picking a countable WOT dense subset of ball d and letting 
d 1 be the C*-algebra generated by this countable dense subset, it follows 
that d 1 is a separable C*-algebra whose SOT closure is d. Let X be the 
maximal ideal space of d 1 and let p: C(X) � d 1 c d c  �(.Yt) be the inverse 
of the Gelfand map. By Theorem 1 . 14 there is a spectral measure E defined 
on the Borel subsets of X such that p(u) = Ju dE for u in C(X). If Q>eB(X) 
and {ui} is a net in C(X) such that Jui dv � JQ> dv for every v in M(X), then 
p(ui) = J uidE � J Q> dE (WOT). Thus { JQ> dE: Q>eB(X) } c d since d is SOT 
closed. 

Let e0 be a cyclic vector for d and put ,u(L\) = I I  E(L\)e0 II 2 = < E(L\)e0, e0 ). 
Thus < (J 4> dE)e0, e0 ) = J 4> d,u for every 4> in B(X). Consider B(X) as a linear 
manifold in L2(,u) by identifying functions that agree a.e. [,u] . If Q>eB(X), then 

= f ' c/> 1 2 djl. 

This says two things. First, if 4> = 0 a.e. [,u], then (J 4> dE)e0 = 0. Hence U: 
B(X) � .Yt  defined by UQ> = (J Q> dE)e0 is a well-defined map from the dense 
manifold B(X) in L2(,u) into .Yt. Second, U is an isometry. Since the 
domain and range of U are dense (Why?), U extends to an isomorphism 
U: L2(,u) � .Yt. 

If QJEB(X) and t/JEL00(,U), then UM.,Q> = U(t/Jl/J) = (J t/JQ> dE)e0 = 
(J t/J dE)(J Q> dE)e0 = (J t/J dE)UQ>. Hence UM.,u- 1 = Jt/JdE and Ud11U- 1 c d. 
On the other hand, Ud11U- 1 is a SOT closed C*-subalgebra of �(.Yf) that 
contains U C(X)U - 1 = d 1 • (Why?) So U d 11U - 1 = d. 

Because d 1 is separable, X is metrizable. 
(d) => (b): This is a consequence of Theorem 6.6 and Proposition 7.4. • 

Mercer ( 1986) shows that for a maximal abelian von Neumann algebra 
d, there is an orthonormal basis for the underlying Hilbert space consisting 
of vectors that are cyclic and separating for d. 

7.9. Corollary. If d is an abelian C*-subalgebra of &l(Yf) and .Ye is separable, 
then d has a separating vector. 
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PROOF. By Zorn's Lemma, d is contained in a maximal abelian C*-algbera, 
d m· It is easy to see that d m must be SOT closed, so d m is a maximal 
abelian von Neumann algebra. By the preceding theorem, there is a cyclic 
vector e0 for d m· But (7.7) e0 is separating for d m' and hence for any subset 
of dm. • 

The preceding corollary may seem innocent, but it is, in fact, the basis 
for the next section. 

EXERCISES 
1 .  Prove Proposition 7.3. 

2. Prove Proposition 7.4. 

3. Why are d ll and d� > not spatially isomorphic? 

4. Show that if X is any compact metric space, there is a separable Hilbert space 
Jf and a •-monomorphism t: C(X) ---. BI(Jf). Find the spectral measure for t. 

5. Let d be an abelian C*-subalgebra of BI(Jf) such that d' contains no uncountable 
collection of pairwise orthogonal projections. Show that the following statements 
are equivalent: (a) d is a maximal abelian von Neumann algebra; (b) d = d'; 
(c) d has a cyclic vector and is SOT closed; (d) there is a finite measure space 
(X, Q, Jl) and an isomorphism U: L2(J.L) -. Jf  such that UdllU- 1 = d. 

6. Let { P n} be a sequence of commuting projections in BI(Jf) and put A = 
I::'= 1 3 -

n (2Pn - 1). Show that C*(A) is the C*-algebra generated by {Pn} · (Do 
you see a connection between A and the Cantor-Lebesgue function?) 

7. If d is an abelian von Neumann algebra on a separable Hilbert space Jf, show 
that there is a hermitian operator A such that d equals the smallest von Neumann 
algebra containing A. (Hint: Let { P n} be a countable WOT dense subset of the 
set projections in d and use Exercise 6. This proof is due to Rickart [ 1960] , 
pp. 293-294. Also see Jenkins [ 1 972] .) 

8. If X is a compact space, show that C(X) is generated as a C*-algebra by it� 
characteristic functions if and only if X is totally disconnected. If A is as in 
Exercise 6, show that u(A) is totally disconnected. 

9. If X and Y are compact spaces and t: C(X) ---. C( Y) is a homomorphism with 
t( 1) = 1 ,  show that there is a continuous function l/J: Y ---. X such that t(u) = u o  l/J 
for every u in C(X). Show that t is injective if and only if l/J is surjective, and, in 
this case, t is an isometry. Show that t is surjective if and only if ¢ is injective. 

10. Let X and Z be compact spaces, Y = X x Z, and let ¢: Y ---. X be the projection 
onto the first coordinate. Define t: C(X) ---. C( Y) by t(u) = u o l/J. Describe the range 
of t. 

1 1 . Adopt the notation of Exercise 9. Define an equilvalence relation � on Y by 
saying y 1 � y2 if and only if l/J(yd = ¢(y2). Let q: Y ---. Yl � be the natural map 
and q*: C( Y 1 � ) ---. C( Y) the induced homomorphism. Show that there is a 
•-epimorphism p: C(X) ---. C( Y I � ) such that the diagram 
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t 
C(X) C( Y) 

� /' 
C( Y/-. ) 

commutes. Find the corresponding injection Y I-.  � X. 
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1 2. If X is any compact metric space, show that there is a totally disconnected 
compact metric space Y and a continuous surjection ljJ: Y � X. (Hint: Start by 
embedding C(X) into .11(�) and use Exercises 7 and 8.) 

1 3. Show that every totally disconnected compact metric space is the continuous 
image of the Cantor ternary set. (Do this directly; do not try to use C*-algebras.) 
Combine this with Exercise 1 2  to get that every compact metric space is the 
continuous image of the Cantor set. 

14. If d is an abelian von Neumann algebra and X is its maximal ideal space, then 
X is a Stonean space; that is, if U is open in X, then cl U is open in X. 

1 5. This exercise assumes Exercise 2.2 1 where it was proved that .1li = .11. When 
referring to the weak* topology on .11 = .11(�), we mean the topology .11 has as the 
Banach dual of .11 1 • (a) Show that on bounded subsets of .11 the weak* 
topology = WOT. (b) Show that a C*-subalgebra of .11(�) is von Neumann 
algebra if and only if d is weak* closed. (c) Show that WOT and the weak* 
topology agree on abelian von Neumann algebras (See Takeda [ 1 95 1 ] and Pallu 
de Ia Barriere [ 1 954] . )  (d) Give an example of a weak* closed subspace of .11 that 
is not WOT closed. (See von Neumann [ 1 936].) 

1 6. Prove the converse of Proposition 7.6. 

§8 .  The Functional Calculus for Normal Operators: 
The Conclusion of the Saga 

In this section it will always be assumed that 

all Hilbert spaces are separable. 

Indeed, this assumption will remain in force for the rest of the chapter. This 
assumption is necessary for the validity of some of the results and minimizes 
the technical details in others. 

If N is a normal operator on .Yt, let W*(N) be the von Neumann algebra 
generated by N. That is, W*(N) is the intersection of all of the von Neumann 
algebras containing N. Hence W*(N) is the WOT closure of {p(N, N*): p(z, Z) 
is a polynomial in z and z} . 

8.1 .  Proposition. If N is a normal operator, then W*(N) = { N}" � { Q>(N): 
Q>eB(u(N) ) } .  

PROOF. The equality results from combining the Double Commutant 
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Theorem and the Fuglede-Putnam Theorem. If l/JEB(u(N)), N = J z dE(z), 
and TE{N}', then TE{N, N*}' by the Fuglede-Putnam Theorem and 
T E(�) = £(�) T for every Borel set � by the Spectral Theorem. Hence 
TQ>(N) = Q>(N)T since l/J(N) = J Q>dE. • 

The purpose of this section is to prove that the containment in the 
preceding proposition is an equality. In fact, more will be proved. A measure 
J1 whose support is u(N) will be found such that Q>(N) is well defined if 
l/J EL 00(J1) and the map lf>�l/J(N) is a *-isomorphism of L 00(J1) onto W*(N). 
To find Jl, Corollary 7.9 (which requires the separability of .Jr) is used. 

By Corollary 7.9, W*(N), being an abelian von Neumann algebra, has a 
separating vector e0. Define a measure J1 on u(N) by 

8.2 

8.3. Proposition. Jl(�) = 0 if and only if E(�) = 0. 

PROOF. If Jl(�) = 0, then E(�)e0 = 0. But £(�) = XA(N)E W*(N). Since e0 is a 
separating vector, £(�) = 0. The reverse implication is clear. • 

8.4. Definition. A scalar-valued spectral measure for N is a positive Borel 
measure J1 on u(N) such that Jl(�) = 0 if and only if £(�) = 0; that is, J1 and 
E are mutually absolutely continuous. 

So Proposition 8.3 says that scalar-valued spectral measures exist. It will 
be shown (8.9) that every scalar-valued spectral measure is defined by (8.2) 
where e0 is a separating vector for W*(N). In the process additional 
information is obtained about a normal operator and its functional calculus. 

If hE.Jr, let Jlh = Eh,h and let .Jr h = cl [W*(N)h] . Note that .Jr h is the smallest 
reducing subspace for N that contains h. Let N h = N I .Jr h· Thus N h is a *-cyclic 
normal operator with *-cyclic vector h. The uniqueness of the spectral 
measure for a normal operator implies that the spectral measure for N h is 
E(�) I .Jrh: that is, XA(Nh) = XA(N) I .Jrh = E(�) I .Jrh. Thus Theorem 3.4 implies 
there is a unique isomorphism U h: .Jr h --+  L2 (J1h) such that U hh = 1 and 
U hN hU; 1 f = zf for all f in L2 (J1h). The notation of this paragraph is used 
repeatedly in this section. 

The way to understand what is going on is to consider each N h as a 
localization of N. Since Nh is unitarily equivalent to Mz on L2(J1h) we can 
agree that we thoroughly understand the local behavior of N. Can we put 
together this local behavior of N to understand the global behavior of N? 
This is precisely what is done in § 10. 

In the present section the objective is to show that if h is a separating 
vector for W*(N), then the functional calculus for N is completely determined 
by the functional calculus for N h· The sense in which this "determination" 
is made is the following. If A e W*(N), then the definition of :Ye h shows that 
A:Ye h c :Ye h· Since A* e W*(N), :Ye h reduces each operator in W*(N); thus 
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A I Yf h is meaningful. It will be shown that the map A --+ A  I Yf h is a 
•-isomorphism of W*(N) onto W*(Nh) if h is a separating vector for W*(N). 
Since N h is •-cyclic, Theorem 6.6 and Corollary 6.9 show how to determine 
W*(Nh). 

We begin with a modest lemrpa. 

8.5. Lemma. If he.Yt and ph: W*(N) --+ W*(Nh) is defined by Ph(A) = A l �h' 
then Ph is a •-epimorphism that is WOT-continuous. Moreover, If t/feB(u(N) ), 
then Ph(t/J(N) ) = t/J (Nh) and if A e  W*(N), then there is a l/J in B(u(Nh) ) such that 
Ph( A) = l/J(N h). 

PROOF. First let us see that Ph maps W*(N) into W*(N h). If p(z, z) is a 
• 

polynomial in z and z then Ph[p(N, N*)] = p(Nh, Nt) as an algebraic 
manipulation shows. If {Pi} is a net of such polynomials such that 
Pi(N, N*) --+ A (WOT), then for f, 9 in Yf h' (pi(N, N*)f, g ) --+ ( Af, g ); thus 
Pi(Nh, Nt) --+ Ph(A) (WOT) and so Ph(A)e W*(Nh). It is left as an exercise for 
the reader to show that Ph is a •-homomorphism. Also, the preceding 
argument can be used to show that Ph is WOT continuous. 

If t/f eB(u(N)), there is a net {pi(z, Z)}  of polynomials in z and z such that 
J pi dv --+ J t/1 dv for every v in M (u(N) ). (Why?) Since u(Nh) c a(N) (Why?), 
J pi d1'/ --+ J t/1 d11 for every 11 in M(a(Nh) ). Therefore Pi(N, N*) --+ t/J(N)(WOT) and 
Pi(Nh, Nt) --+  t/J(Nh) (WOT). But Ph(Pi(N, N*)) = Pi(Nh, Nt) and Ph(Pi(N, N* ) ) --+ 
Ph(t/J(N)); hence Ph(t/J(N)) = t/J(Nh). 

Let U h: Yf h --+  L2(J1h) be the isomorphism such that U hh = 1 and 
UhNhU-; 1 = NJlh " If A e W*(N) and Ah = Ph(A), then AhNh = NhAh; thus 
UhAhU; 1 e {NJlh}'. By Corollary 6.9, there is a l/J in B(a(Nh) ) such that 
U hAhU; 1 = M cp· It follows (How?) that Ah = l/J(N h). 

Finally, to show that Ph is surjective note that if Be W*(Nh), then (use the 
argument in the preceding paragraph) B = t/J(Nh) for some t/1 in B(u(Nh) ). 
Extend t/1 to a(N) by letting t/1 = 0 on u(N)\u(N h). Then t/J(N)e W*(N) and 
Ph(t/J(N)) = t/J(Nh) = B. • 

8.6. Lemma. If ee.Yt such that Jle is a scalar-valued spectral measure for N 
and if v is a positive measure on a(N) such that v << Jle, then there is an h in 
Yf e such that v = Jlh· 
PROOF. This proof is just an application of the Radon-Nikodym Theorem 
once certain identifications are mad.e; namely,/ = [dv/dJ1e] 1 12 eL2(J1e), so put 
h = U; 1 f. Hence he.Yt e· For any Borel set �' v(�) = J XA dv = J XA ff dJ1e = 
(M xAf,f > = < u; 1M ,_Af, u; 1 f > = < E(�)h, h > = Jlh(�). • 

8. 7. Lemma. W*( N) = { l/J( N): l/J e B( a( N)) } . 

PROOF. Let d = {l/J(N): l/JeB(a(N)) } .  Hence d is a •-algebra and d c W*(N) 
by Proposition 8. 1 .  Since Ned it suffices to prove that d is WOT closed. 
Let { l/Ji} be a net in B(u(N)) such that lPi(N) --+ A (WOT); so A e  W*(N). By 
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(8.5) l/Ji(N h) --+ A I Yf h(WOT) for any h in .Yt. Also, by Lemma 8.5. for every h 
in Yf there is a l/Jh in B(<C) such that A I Yf h = l/Jh(N h). Fix a separating vector 
e for W*(N); hence Jle is a scalar-valued spectral measure for N. 

If he.Yt, then the fact that l/Ji(N h) --+ l/Jh(N h) (WOT) implies lPi --+ l/Jh weak* 
in L 00(J1h). Also, lPi --+ lPe weak* in L 00(J1e). But Jlh << Jle so that dJ1h/dJ1eEL1 (J1e); 
hence for any Borel set � 

But also 

f lPi dJ1h = f </J; 
dJ1.h 

dJJ.e --+  f l/J e dJ1h· 
& & dJ1e & 

So 0 = J & (l/Je - l/Jh)dJ1h for every Borel set �- Therefore lPh = l/Je a.e. [Jlh]. But 
if ge.Yth, then ( l/Jh(N h)g, g )  = ( l/Jh(N)g, g )  = J l/JhdJ1g = J ljJ edJ1g since Jlg << Jlh· 
Thus ( l/Jh(N h)g, g )  = ( ljJ e(N h)g, g ) ; that is, l/Jh(N h) = ljJ e(N h). In particular, 
Ah = l/Jh(Nh)h = l/Je(Nh)h = l/Je(N)h. Since h was arbitrary, A =  l/Je(N). • 

8.8. Corollary. If ph: W*(N) --+ W*(N h) is the *-epimorphism of Lemma 8.5, 
then ker Ph = { l/J(N): l/J = 0 a.e. [Jlh] } .  

' 

8.9. Theorem. If N is a normal operator and ee.Yt, the following statements 
are equivalent. 

(a) e is a separating vector for W*(N). 
(b) Jle is a scalar-valued spectral measure for N. 
(c) The map Pe: W*(N) --+ W*(N e) defined in (8.5) is a *-isomorphism. 
(d) {l/JeB(u(N) ): l/J(N) = 0} = { ljJeB(a(N) ): ljJ = 0 a.e. [Jle] } .  

PROOF. (a) => (b): Proposition 8.3. 
(b) =>(c): By Lemma 8.5, Pe is a *-epimorphism. By Corollary 8.8, 

ker Pe = { l/J(N): ljJ = 0 a.e. [Jle] } . But if ljJ = 0 a.e. [Jle], (b) implies that ljJ = 0 
off a set � such that E(�) = 0. Thus l/J(N) = J & l/JdE = 0. 

(c) => (d): Combine (c) with Corollary 8.8. 
(d) => (a): Suppose Ae W*(N) and Ae = 0. By Lemma 8.7, there is a ljJ in 

B(u(N) ) such that l/J(N) = A. Thus, 0 =  I I Ae l l 2 = ( A*Ae, e ) = J l l/J I 2 d.Ue · So 
l/J = 0 a.e. [Jle]. By (d), A = 0. • 

These results can now be combined to yield the final statement of the 
functional calculus for normal operators. 

8.10. The Functional Calculus for a Normal Operator. If N is a normal 
operator on the separable Hilbert space Yf and J1 is a scalar-valued spectral 
measure for N, then there is a well-defined map p: L 00(J1) --+ W*(N) given by the 
formula p(l/J) = l/J(N) such that 
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(a) p is a *-isomorphism and an isometry; 
(b) p: (L00(Jl), weak*) � (W*(N), WOT) is a homeomorphism. 

PROOF. Let e be a separating vector such that Jl = Jle [by (8.6) and (8.9) ] .  If 
l/JEB(a(N)) and 4> = 0 a.e. [Jl], then </J(N) = 0 by (8.9d); so p(l/J) = l/J(N) is a 
well-defined map. It is left to the reader to show that p is a *-homomorphism. 
By Lemma 8.7, p is surjective. Also, if p(l/J) = l/J(N) = 0, then 4> = 0 a.e. [Jl] 
by (8.9d). Thus p is a *-isomorphism. By (VIII.4.8) p is an isometry. (A proof 
avoiding (VIII.4.8) is possible-it is left as an exercise.) This proves (a). 

Let { ¢i } be a net in L 00(Jl) and suppose that l/Ji(N) � O(WOT). If f EL1(Jl) 
and f ;;::: 0, f Jl << Jl = Jle· By Lemma 8.6 there is a vector h such that f Jl = Jlh· 
Thus J lPif dJl = J lPidJlh = ( lPi(N)h, h ) � 0. Thus lPi � 0 (weak*) in L 00(Jl). This 
proves half of (b); the other half is left as an exercise. • 

8.1 1 . The Spectral Mapping Theorem. If N is a normal operator on a separable 
space and Jl is a scalar-valued spectral measure for N and if l/JEL 00(Jl), then 
a( l/J(N)) = the Jl-essential range of lj>. 

PROOF. Use (8. 1 0) and the fact (2.6) that the Jl-essential range of ¢ is the 
spectrum of 4> as an element of L 00(Jl). • 

8.12. Proposition. Let N, Jl, 4> be as in (8. 1 1 ). If N = J zdE, then Jl 0 l/J - 1 is a 
scalar-valued spectral measure for l/J(N) and Eo 4> - 1 is its spectral measure. 

EXERCISES 
1 .  What is a scalar-valued spectral measure for a diagonalizable normal operator? 

2. Let N 1 and N 2 be normal operators with scalar-valued spectral measures 11 1  and 
JL2• What is a scalar spectral measure for N 1 tB N 2? 

3. Let {en } be an orthonormal basis for :K and put JL(L\) = "L:= 1 2 - n 
I I  E(L\)en I I  2. Show 

that Jl is a scalar-valued spectral measure for N. 

4. Give an example of a normal operator on a nonseparable space which has no 
scalar-valued spectral measure. 

5. Prove that the map p in (8. 10) is an isometry without using (VIII.4.8). 

6. Prove Proposition 8. 1 2. 

7. Show that if J1 and v are compactly supported measures on <C, the following 
statements are equivalent: (a) N 11 tB N \1 

'is •-cyclic; (b) W*(N 11 tB N \1) = W*(N 11) tB 
W*(N \1); (c) JL .l  v. 

8. If M and N are normal operators with scalar-valued spectral measures Jl and v, 
respectively, show that the following are equivalent: (a) W*(M tB N) = W*(M) tB 
W*(N); (b) { M tB N}' = { M} ' tB { N} '; (c) there is no operator A such that M A =  AN 
other than A =  0; (d) JL .l  v. 

9. If M and N are normal operators, show that C*(M tB N) = C*(M) tB C*(N) if and 
only if a(M) n a(N) = o .  
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10. Give an example of two normal operators M and N such that W*(M EE> N) = 

W*(M) EE> W*(N) but C*(M EE> N) =F C*(M) EE> C*(N). In fact, find M and N such 
that W*(M EE> N) splits, but a(M) = a(N). 

1 1 . If U is the bilateral shift and V is any unitary operator, show that 
W*( U EE> V) = W*( U)EE> W*( V) if and only if V has a spectral measure that is 
singular to arc length on oD. (See Exercise 3.7.) 

1 2. If .91 is an abelian von Neumann algebra on a separable space, show that there 
is a compactly supported measure Jl on R such that .91 is •-isomorphic to L 00(JL). 
(Hint: Use Exercise 7.7.) 

1 3. (This exercise assumes a knowledge of Exercise 2.2 1 .) Let N = J zdE(z) be a normal 
operator with scalar-valued spectral measure Jl and define �= f11

1 
(Jr) � L1(JL) by 

�(T)(t\) = tr (T E ( 1\) ). Show that � is a surjective contraction. What is �*? [L1(JL) is 
identified, via the Radon-Nikodym Theorem, with the set of complex-valued 
measures that are absolutely continuous with respect to JL.] 

14. Let n: fJI(Jr) � !1l(Jr)/f110(Jr) be the natural map and let A efJI(Jr). (a) If n(A) is 
hermitian, show that there is a hermitian operator B such that A - B is compact. 
(b) If n(A) is positive, show that there is a positive operator B such that A - B 
is compact. (See Exercise XI.3. 14.) 

1 5. (L.G. Brown) If n: fJI(Jr) � f1l(Jr)/f110(Jr) is the natural map and A and B are 
hermitian operators such that n(A) � 0 � n(B), then there is a hermitian compact 
operator K such that A � K � B. 

§9. Invariant Subspaces for Normal Operators 

Remember that we continue to assume that all Hilbert spaces are separable. 
Every/ normal operator on a Hilbert space of dimension at least 2 has a 

nontrivial invariant subspace. This is an easy consequence of the Spectral 
Theorem. Indeed, if N = J zdE(z), E(A)� is a reducing subspace for every 
Borel set A. 

If A E�(�), A is a linear subspace of�' and P is the orthogonal projection 
of � onto A, then A reduces A if and only if PE {A}' . Also, AELat A 
( = the lattice of invariant subspaces for A) if and only if AP = PAP. Since 
the spectral projections of a normal operator belong to W*(N), they are even 
more than reducing. 

9.1 .  Definition. An operator A is reductive if every invariant subspace for A 
reduces A. Equivalently, A is reductive if and only if Lat A c Lat A*. 

Thus, every self-adjoint operator is reductive. Every normal operator on 
a finite dimensional space is reductive. More generally, every normal compact 
operator is reductive (Ando [ 1963] ). However, the bilateral shift is not 
reductive. Indeed, if U is the bilateral shift on l2(Z), Je = {f el2(Z): f(n) = 0 
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if n < O} ELat U, but Je¢Lat U*. Wermer [1 952] first studied reductive 
normal operators and characterized the reductive unitary operators. A first 
step towards characterizing the reductive normal operators will be taken 
here. The final step has been taken but it will not be viewed in this book. 
The result is due to Sarason [ 1 972] . Also see Conway [ 1 98 1], §VII.5. 

9.2. Definition. If Jl is a compactly supported measure on ([, P(X)(Jl) denotes 
the weak* closure of the polynomials in L (X)(Jl). 

Because the support of Jl is compact, every polynomial, when restricted 
to that support, belongs to L (X)(Jl). 

For any operator A, let W(A) denote the WOT closed subalgebra of �(Je) 
generated by A; that is, W(A) is the WOT closure in �(Je) of the polynomials 
in A. The next result is an immediate consequence of The Functional Calculus 
for Normal Operators. 

9.3. Theorem. If N is a normal operator and Jl is a scalar-valued spectral 
measure for N, then the functional calculus, when restricted to P(X)(Jl), is an 
isometric isomorphism p: P(X)(Jl) --+ W(N) and a weak*-WOT homeomorphism. 
Also, p(z) = N. 

9.4. Definition. An operator A is reflexive if whenever BE�(Je) and 
Lat A c Lat B, then BE W(A). 

It is easy to see that if BE W(A), then Lat A c Lat B (Exercise). An operator 
is reflexive precisely when it has sufficiently many invariant subspaces to 
characterize W(A). For a survey of reflexive operators and some related 
topics, see Radjavi and Rosenthal [ 1 973] . 

9.5. Theorem. (Sarason [ 1 966] .). Every normal operator is reflexive. 

PROOF. Suppose N is normal and Lat N c Lat A. If P is a projection in { N}', 
then PJe and (PJe)j_ELat N c Lat A, so AP = PA. By Corollary 6.5, 
A E W*(N). Let Jl be a scalar-valued spectral measure for N. By Theorem 
8. 1 0, there is a cp in L (X)(Jl) such that A = c/J(N). By Theorem 9.3, it must be 
shown that cp E P(X)(JJ). 

Now let's focus our attention on a .special case. Assume that N is *-cyclic; 
thus N = Nw Suppose fEL1(JJ) and J ftfrdJl = 0 for every .P in P(X)(JJ). If it 
can be shown that J f cpdJl = 0, then the Hahn-Banach Theorem implies that 
cp EP(X)(Jt). This is the strategy we follow. Let f = gh for some g, h in L2(JJ). 
Put A =  V {zkg: k ;;:;: O}. Clearly AELat N, so AELat A = Lat cjJ(N) = 
Lat M 4> · Hence cpgEJI. But 0 = J zkf dJl = J zkghdJJ = ( Nkg, h )  for all k ;;::;: 0; 
hence h l. Jt. Thus 0 = ( cpg, h ) = J cpghdJl = J cp f dJJ, and c/JEP(X)(JJ). 

Now we return to the general case. By (7.9) and (8 .9) there is a separating 
vector e for W*(N) such that ,u(.d) = I I  E(.d)e 1 1 2, where N = J zdE(z). Let 
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% =  V {N*kNie: k, j � O} . 
Hence % reduces A and 
cp E P(X)(J.l ). 

IX. Normal Operators on Hilbert Space 

Clearly % reduces N and N I %  is •-cyclic. 
A I %  = cp(N I %). By the preceding paragraph 

• 

An immediate consequence of the preceding theorem is the first step in 
the characterization of reductive normal operators. 

9.6. Corollary. If N is a normal operator and J.l is a scalar-valued spectral 
measure for N, then N is reductive if and only if P(X)(J.l) = L (X)(J.l). 

PROOF. If vH e Lat N, then vH e Lat cp(N) for every cp in P(X)(J.l). So if 
P(X)(J.l) = L (X)(J.l), ze P(X)(J.l) and, hence, vH e Lat N* whenever vH e Lat N. 

Now suppose N is reductive. This means that Lat N c Lat N*. By the 
preceding theorem, this implies N*e W(N); equivalently, zeP(X)(J.l). Since P(X)(J.l) 
is an algebra, every polynomial in z and z belongs to P(X)(J.l). By taking weak* 
limits this implies that P(X)(J.l) = L (X)(J.l). • 

The preceding corollary fails to be a good characterization of reductive 
normal operators since it only says that one difficult problem is equivalent 
to another. A way is needed to determine when P(X)(J.l) = L (X)(J.l). This is what 
was done in Sarason [ 1 972] . 

Are there any reductive operators that are not normal? This natural and 
seemingly innocent question has much more to it than meets the eye. Dyer, 
Pedersen, and Porcelli [ 1 972] have shown that this question has an 
affirmative answer if and only if every operator on a Hilbert space has a 
nontrivial invariant subspace. 

EXERCISES 
1 .  (Ando [ 1963] .) Use Corollary 9.6 to show that every compact normal operator is 

/ 

reductive. 

2. Determine all of the invariant subspaces of a compact normal operator. 

3. (Ando [ 1963] . )  Show that every reductive compact operator is normal. (Also see 
Rosenthal [ 1968].) 

4. Show that an operator A is reductive if and only if Lat A = Lat A*. 

5. Let N be a normal operator on a Hilbert space Jf, let Bl be an invariant subspace 
for N, and let S = N l&l. Show that S is normal if and only if Bl is a reducing 
subspace for N. 

6. Let J.L be a compactly supported regular Borel measure on <C and let P2(J.L) denote 
the closure in L2(J.L) of the analytic polynomials; that is, P2(J.L) is the closed linear 
span of { zn: n � 0} . Show that P2(J.L) is invariant for N P. and that N P. l P2(J.L) is normal 
if and only if P2(J.L) = L2(J.L). 

7. With the notation of Exercise 6, show that if El is a reducing subspace for N P. and 
P2(JJ.) c PA, then Bl = L2(JJ.). 
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§ 10. Multiplicity Theory for Normal Operators: 
A Complete Set of Unitary Invariants 

Throughout this section only separable Hilbert spaces are considered. 
When are two normal operators unitarily equivalent? The answer to this 

question must be given in the following way: to each normal operator we 
must attach a collection of objects such that two normal operators are 
unitarily equivalent if and only if the two collections are equal (or equivalent). 
Furthermore, it should be easier to verify that these collections are equivalent 
than to verify that the normal operators are equivalent. This is contained 
in the following result due to Hellinger [1 907] . Note that it generalizes 
Theorem 3.6. 

10.1 .  Theorem. (a) If N is a normal operator, then there is a sequence (possibly 
finite) of measures { Jln } on <C such that Jln + 1 << Jln for all n and 

10.2 N � N 11 1 (f) N 112 (f) · · · . 

(b) If N and {Jtn } are as in (a) and M � N v 1 (f) N v2 (f) · · · , where vn + 1 << vn for 
all n, then N � M if and only if [Jtn] = [vnJ for all n. 

The proof of this theorem requires several lemmas. Before beginning, we 
will examine a couple of false starts for a proof. This will cause us to arrive 
at the correct strategy for a proof and show us the necessity for some of the 
lemmas. 

Let N = J zdE(z). If eE.Ye and Jee = cl [W*(N)e], then N I .Yee is a •-cyclic 
normal operator. An application of Zorn's Lemma and the separability of 
Je produces a maximal sequence {en } in Je such that Jee" j_ Jeem · By the 
maximality of {en }, Je = (f)n.Yeen · If Nn = N I .Yee" ' Nn = N11" , where 
Jln(L\) = I I  E(L\)en 1 1 2; thus N � (f)nN lln · The trouble here is that Jln+ 1 is not 
necessarily absolutely continuous with respect to Jln· Just using Zorn's Lemma 
to produce the sequence {JJn} eliminates any possibility of having {Jln } 
canonical and producing the unitary invariant desired for normal operators. 
Let's try again. 

Note that if Jln + 1 << Jln for all n in (1 0.2), then Jln << JJ1 for all n. This in 
turn implies that JJ 1 is a scalar-valued spectral measure for N. Using Lemma 
8.6 we are thus led to choose JJ 1 as follows. Let e 1 be a separating vector 
for W*(N); this exists by Corollary 7.9 and the separability of Je. Put 
Jl 1 (L\) = I I E(L\)e 1 l l 2 . If .Ye1 = cl [W*(N)e 1] .  then N I .Ye1 � N111 • Let N2 = 
N I Je f; so N 2 is normal. A pair of easy exercises shows that the spectral 
measure E2 for N2 is given by E2(L\) = E(L\) I .Yef and W*(N2) = W*(N) I .Yef 
( = {A E�(Jef): A =  T I .Yef for some T in W*(N) } ). Let e2 be a separating 
vector for W*(N 2) and put JJ2(A) = I I  E2(A)e2 l l 2 . By the easy exercises above, 
Jt2(L\) = I I  E(L\)e2 l l 2, so that JJ2 << 1'1 , and Je 2 = ci [W*(N)e2] = ci [W*(N 2)e2] � 
Jef. Also, N I .Ye2 � N112 •  
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Continuing in this way produces a sequence of vectors {en }  such that if 
Yfn = cl [W*(N)en] and Jln(L\) = II E(L\)en 1 1 2 ' then Yfn j_ Yf m for n =F m, Jln + 1 << Jln, 
and N l  Yfn � N 11" . The difficulty here is that Yf is not necessarily equal to 
<r>n.Ytn so that N and <r>nN 11" cannot be proved to be unitarily equivalent. 
(Actually, N and <r>nN 11" are unitarily equivalent, but to show this we need 
the force of Theorem 10. 1 .  See Exercise 2.) The following provides us with 
a look at an example to see what can go wrong. 

10.3. Example. For n ;;::: 1 let Jln = Lebesgue measure on [0, 1 + 2- n] and let 
Jl(X) = Lebesgue measure on [0, 1] .  Put N = <r>:= 1 N 11" 6;) N ll x . If the process 
of the preceding paragraph is followed, it might be that vectors {en }  that are 
chosen are the vectors with a 1 in the L2(J.tn) coordinate and zeros elsewhere. 
Thus the spaces { Yfn} are precisely the spaces { L2(J.tn) } and [ 6;) � Yfn] j_ = L2(J.t(X)). 

(Nevertheless, N � 6;) � N lln " Indeed, let vn = Jln I [ 1 ,  1 + 2 - n]; so Jln = 
Jl(X) + vn and Jl(X) j_ vn. Thus N lln � N Vn 6;) N ll oc .  Therefore 

N = 6;) � N lln 6;) N ll x 

� t;+? (X) N t;+? N <(X)> t;+? N W 1 Vn W /l oc  W ll x 

� t;+? (X) N t;+? N <(X) > W 1 Vn W /l oc  

� 6;) � N lln • ) 
After an examination of the statement of Theorem 10. 1 ,  it becomes clear 

that some procedure like the one outlined in the paragraph preceding 
Example 10.3 should be used. It only becomes necessary to modify this 
procedure so that the vectors {en }  can be chosen in such a way that 
Yf = 6;> �  Yfn. For example, let, as above, e 1 be a separating vector for W*(N) 
and let {fn }  be an orthonormal basis for Yf such that /1 = e 1 . We now want 
to choose the vec!ors {en }  such that {/1 , . . .  , fn} c Yf1 6;) · · · 6;) Yfn . In this way 
we will meet success. The vital link here is the next result. 

10.4. Proposition. If N is a normal operator on Yf and eEYf, then there is a 
separating vector e0 for W*(N) such that eEcl [W*(N)e0]. 

PROOF. Let fo be any separating vector for W*(N), let E be the spectral 
measure for N, let J.t(L\) = I I E(L\)/0 1 1 2 , and put � = cl [W*(N)/0] . Write 
e = g 1 + h 1 , where g 1 E� and h 1 E�j_. 

Let 17(L\) = I I E(L\)h 1 1 1 2 and let 2 = cl[W*(N)h 1]. Hence 11 << Jl, N is reduced 
by both 2 and �' and 2 1_ �. Moreover, N l � � N11 and N l 2 � N,. Now 
the fact that 11 << Jl implies that there is a Borel set L\ such that [17] = [J.t i L\]. 
(Why?) Hence N 1 2 � N v if v = J.t l L\ (Theorem 3.6). Let U: � 6;> 2 � L2(J.t) 6;> 
L2(v) be an isomorphism such that U( (O) e;> 2) c (0) e;> L2(v) and U(N I � 6;> 2) · 
u - 1 = N 11 6;> N v · Since e = g 1 + h 1 E� 6;> 2, let Ue = g 6;> h. Because h1 is a 
•-cyclic vector for N 1 2, h(z) =F 0 a.e. [ v ] .  

This reduces the proof of this proposition to proving the next lemma . 
• 
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10.5. Lemma. Let Jl be a compactly supported measure on <C, L\ a Borel subset 
of the support of Jl, and put V = Jt i L\. If N = N11 � Nv on L2(Jt) � L2(v) and 
g � hEL2(Jt) � L2(v) such that h(z) # 0 a.e. [v ], then there is an f in L2(Jt) such 
that f � h is a separating vector for W*(N) and g � hEcl [W*(N)(f � h)]. 

PROOF. Define f(z) = g(z) for z in L\ and f(z) = 1 for z not in L\. Put 
� = cl [W*(N)(f � h)] = cl {cf>f � cf>h: cf>ELCX)(Jt) } since Jl is a scalar-valued 
spectral measure for N. If L\' = the complement of L\, then note that 
cf>X4, � 0  = cf>x4�(f � h) E� for all cf> in LCX)(Jl). Hence L2(Jt i L\') � O  c �. This 
implies that ( 1 - g)X4, � OE�, so g � h  = f � h - ( 1 - g)x4� � 0E�. 

On the other hand, if cf> E L CX)(Jl) and 0 = cf> f � cf>h, then cf> f = cf>h = 0 a. e. 
[Jt]. Since h(z) # 0 a.e. [ v ], cf>(z) = 0 a.e. [Jt] on L\. But for z in L\', f(z) = 1 ;  
hence cf>(z) = 0 a.e. [Jt] on L\'. Thus, f � h is a separating vector for W*(N) . 

• 

PROOF OF THEOREM 10. 1  (a): Let e 1 be a separating vector for W*(N) and let 
{In} be an orthonormal basis for � such that /1 = e 1 • Put � 1 = cl [W*(N)e 1] , 
Jt1 (L\) = II E(L\)e 1 I I  2, and N 2 = N l �f. Let J; = the orthogonal projection of 
/2 onto �f. By Proposition 10.4 there is a separating vector e2 for W*(N 2) 
such that J; Ecl [W*(N2)e2] = �2• Note that �2 = cl [W*(N)e2] and 
{fb /2} c �1 � � 2. Put Jt2(L\) = II E(L\)e2 1 1

2 • Now continue by induction . 
• 

Now for part (b) of Theorem 10. 1 .  If [Jtn] = [vn] (the notation is that of 
Theorem 10. 1 ) for every n, then N lln � N vn by Theorem 3.6. Therefore N � M. 
Thus it is the converse that causes difficulties. So assume that N � M. If 
MEBI(%), U: � ---. % is an isomorphism such that UNU - 1 = M, and e 1 is 
a separating vector for W*(N), then U e1 = /1 is easily seen to be a separating 
vector for W*(M). Since Jl1 and v 1 are scalar-valued spectral measures for 
N and M, respectively, it follows that [Jt 1 ] = [v 1 ]; thus N11 1 � Nv. by Theorem 
3.6. However, here is the difficulty-the isomorphism that shows that 
N11 1 � Nv1 may not be related to U; that is, if � = �"�"' % =  �nfn, where 
N l �n � N11" and M l fn � Nvn ' then N l �1 � M l %1 , but we do not know 
that U � 1 = %1 . Thus we want to argue that because N � M and 
N l �1 � M I %1 , then N I �5 � M I %f. In this way we can prove ( 10. 1 .b) 
by induction. This step is justified by the following. 

10.6. Proposition. If N, A, and B are normal operators, N is *-cyclic, and 
N � A  � N � B, then A �  B. • 

PROOF. Let NEB�(%), A EBI(�A), BEBI(�B), and let U: % � �A ---. % � �B 
be an isomorphism such that U(N �A)U - 1 = N � B. Now U can be written 
as a 2 x 2 matrix, 
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Expressing N <t> A and N <t> B as 

[ � � J and [ � � J 
respectively, the equation U(N <t> A) = (N <t> B)U becomes 

10.7 [ U1 1N U 1 2A] = [NU1 1  NU1 2 J · 
U2 1N U22A BU2 1 BU22 

Similarly, U(N <t> A)* = (N <t> B)*U becomes 

10.7* 

Parts of the preceding equations will be referred to as ( 10.7)ii and ( 10.7);j, 
i, j = 1 ,  2. 

An examination of the equation U*U = 1 and UU* = 1 ,  written in matrix 
form, yields the equations 

(a) U1\ U1 2 + U!1 U22 = 0  (on �A) 
10.8 (b) U 1 1 Uj1 + U 1 2 Uj2 = 1 (on f) 

(c) U2 1 Uj1 + U22 Uj2 = 0  (on f). 

Now equation ( 10.7)2 2  and Proposition 6. 10  imply that (ker U 22)j_ reduces 
A, cl (ran U 2 2) = (ker U!2)j_ reduces B, and 

10.9 A l (ker U 22)j_ "' B l (ker U!2)j_. 

What about A I ker U 22 and B I ker U!2? If they are unitarily equivalent, then 
A "'  B and we are done. If hEker U 2 2  £ �A' then 

/ 

Since U is an isometry, it follows that U 1 2 maps ker U 22 isometrically onto 
a closed subspace of f. Put vU 1 = U 1 2(ker U 22). Equations ( 10.7) 1 2 and 
( 10.7)!2 and the fact that ker U 22 reduces A imply that vlt1 reduces N. Thus, 
the restriction of U 1 2 to ker U 2 2  is the required isomorphism to show that 

10.10 

Similarly, U!1 maps ker U!2 = (ran U 22)j_ isometrically into vlt2 = 
U!1(ker U!2), vlt2 reduces N, and 

10.1 1 B iker U!2 "' N I .A  2· 

Note that if vlt1 = .A2, then ( 10.9), ( 1 0. 10), and ( 10. 1 1 )  show that A �  B. 
Could it be that vlt1 and vlt2 are equal? 

If hEker U 2 2, then ( 10.8.a) implies that UT 1 U 1 2h = - U!1 U 22h = 0. Hence 
c-H1 = U 1 2 (ker U 22) c ker Ui 1 . On the other hand, if f Eker Uj 1 ,  then ( 10.8.b) 
implies f = (U 1 1  Uj 1 + U 1 2 Uj2)/ = U 1 2 Ui2f. But by ( 10.8.c), U 22 Ui2f = -
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U 2 t UT tf = 0, so UT2f Eker U 22 . Hence fE U t 2(ker U 22). Thus 

At = ker Uit ·  
Similarly, 

A2 = ker ut t · 

297 

Until this point we have not used the fact that N is •-cyclic. Equation 
( 10.7) t t  implies that U t t  E {  N'}' . By Theorem 3.4 and Corollary 6.9 this implies 
that U t t  is normal. Hence, ker UT t = ker U t t ' or At = A  2 . • 

If the hypothesis in the preceding proposition that N is •-cyclic is deleted, 
the conclusion is no longer valid. For example, let N and A be the identities 
on separable infinite dimensional spaces and let B be the identity on a 
finite dimensional space. Then N � A  � N � B, but A and B are not 
equivalent. However, the requirement that N be •-cyclic can be replaced by 
another, even when N, A, and B are not assumed to be normal. For the 
details see Kadison and Singer [ 1 957] .  

The proof of Theorem 10. 1 (b) i s  now a straightforward argument as 
outlined before the statement of Proposition 1 0.6. The details are left to the 
reader. 

If Jl and v are measures and v << Jl, then there is a Borel set L\ such that 
[ v] = [Jt l L\]. Using this fact, Theorem 10. 1  can be restated as follows. 

10.12. Corollary. (a) If N is a normal operator with scalar-valued spectral 
measure Jl, then there is a decreasing sequence { L\n} of Borel subsets of a(N) 
such that L\ t = a(N) and 

N � N ll � N Pl42 � N Pl43 � • • • • 
(b) If M is another normal operator with scalar-valued spectral measure v and 
if {I:n} is a decreasing sequence of Borel subsets of a(M) such that 
M � Nv � Nvii2 � Nvii3 � · · · , then N � M  if and only if (i) [Jt] = [v] and 
(ii) Jt(L\n \I:n) = 0 = Jt(I:n \L\n) for all n. 

10.13. Example. Let Jl be Lebesgue measure on [0, 1 ]  and let Jln be Lebesgue 
measure on [1/(n + 1 ), 1/n] for n �  1 .  (So Jl = LJln.) Let N = N111 (f) N��> (f)  
N<3> (f) · · · . The direct sum decomposition of N that appears in Corollary /l3 
10. 1 2  is obtained by letting L\n = [0, 1/n], n � 1 .  Then N � N 11 (f) N 11142 � 
N l (f) · · ·  ll 43 • 

What does Theorem 10. 1  say for normal operators on a finite dimensional 
space? If dim :K < oo, there is an orthonormal basis {en} for :K consisting 
of eigenvectors for N. Observe that N is •-cyclic if and only if each eigenvalue 
has multiplicity 1 .  So each summand that appears in ( 10.2) must operate on 
a subspace of Je that contains only one basis element en per eigenvalue. 
Moreover, since Jlt is a scalar-valued spectral measure for N, it must be that 
the first summand in ( 10.2) contains one basis element for each eigenvalue 
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for N. Thus, if a(N) = {A. 1 , A.2, • • .  , A.n} ,  where A.i #= A.i for i #= j, then ( 10.2) 
becomes 

10.14 N "' D  1 <t> D2 <t> · · · <t> Dm, 

where D 1 = diag(A. 1 , A.2, . • •  , A.n) and, for k ;;::: 2, Dk is a diagonalizable operator 
whose diagonal consists of one, and only one, of each of the eigenvalues of 
N having multiplicity at least k. 

There is another decomposition for normal operators that furnishes a 
complete set of unitary invariants and has a connection with the concept of 
multiplicity. For normal operators on a finite dimensional space, this 
decomposition takes on the following form. 

Let Ak = the eigenvalues of N having multiplicity k. So for A. in Ak, 
dim ker (N - A.) = k. If Ak = { A.�k>: 1 �j � mk}, let N k be the diagonalizable 
operator on a kmk dimensional space whose diagonal contains each A.�k> 
repeated k times. So N "'  N 1 <t> N 2 <t> · · · <t> N P' if a(N) = A1 u · · · u AP. Now 
a(N k) = Ak and each eigenvalue of N k has multiplicity k. Thus N k "' A�k>, 
where Ak is a diagonalizable operator on an mk dimensional space with 
a(Ak) = Ak. Thus 

10.15 N � A t;+? A <2> t;+? • • • t;+? A <P> - t W 2 W W p ,  

and a(A i) n a( A i) = D for i #: j. 
Now the big advantage of the decomposition ( 10. 1 5) is that it perrhits a 

discussion of { N}' . Because the spectra of the operators Ak are disjoint, 

{ N}' = { N 1 }' <t> { N 2 }' <t> · · · <t> { N p} ' . 

(Why?) If .Yf<.k> = ker (N - ;.<.k>), then dim .Yf<�> = k and (t) �k 1 .Yf<�> = the domain ) ) ) j = ) 
of N k· Since A.�k> #: A.�k> for i #: j, 

{ N k}' = �(.Yf�>) <t> · · · <t> �(.Yt�!), 

and each �( Jt�k> ) is isomorphic to the k x k matrices. 
The decomposition of an arbitrary normal operator that is analogous to 

decomposition ( 1 0. 1 5) for finite dimensional normal operators is contained 
in the next result. The corresponding discussion of the commutant will follow 
this theorem. 

10.16. Theorem. If N is a normal operator, then there are mutually singular 
measures Jl00 , Jlb Jl2 , . . .  (some of which may be zero) such that 

N � N<oo> <t> N (t) N<2> (t) . . .  - /J -x.  /J l /J2 • 

If M is another normal operator with corresponding measures V 00 ,  v 1 , v2 , • • •  , 
then N "' M  if and only if [Jln] = [vnJ for 1 � n � oo .  

PROOF. Let Jl be a scalar-valued spectral measure for N and let { L\n} be the 
sequence of Borel subsets of a(N) obtained in Corollary 10. 1 2. Put 
:E oo = n: 1 �n and :En = �n \�n + 1 for 1 � n < oo ;  let Jtn = Jl l l:"' 1 � n � oo .  Put 
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Vn = Il l  Am 1 � n < 00 . Now An = I:oo u (An \An + 1 ) u (An + 1 \An + 2) u . . .  = 
I:00 u I:n u I:n + 1 u · · · . Hence vn = Jl.oo + J-ln + J-ln + 1 + · · · and the measures Jl.00, 
J-lm J-ln + 1 , • • • are pairwise singular. Hence N v" � N ll x E9 N �"" E9 N �"" + 1 • • • • 

Combining this with Corollary 10. 1 2  gives 

N � N V l E9 N V2 E9 N VJ E9 . .  . 
� ( N Jl X 

E9 N Il l E9 N ll2 E9 . . .  ) E9 ( N Jl X 
E9 N ll2 E9 N ll 3 E9 . . .  ) 

E9 (N �.t x  E9 N �.t3 E9 N �.t4 E9 . . .  ) E9 . . .  
� N<oo> E9 N E9 N<2> E9 N<3> E9 · · · . - Jl X Jl l Jl 2 JlJ 

The proof of the uniqueness part of the theorem is left to the reader. • 

Note that the form of the normal operator presented in Example 10. 1 3  is 
the form of the operator given in the conclusion of the preceding theorem. 

Now to discuss { N}' . Fix a compactly supported positive Borel measure 
J-l on <C and let Yen be an n-dimensional Hilbert space, 1 � n � oo. Define a 
function!: <C -+  Yen to be a Borel function if Z l-+  < f(z), g > is a Borel function 
for each g in Yen· Iff: <C -+  Yen is a Borel function and { e i} is an orthonormal 
basis for Yen, then l l f(z) l l 2 = Li l ( f(z), ei ) l 2, so z -+  l l f(z) l l 2 is a Borel 
function. Let L 2 (J-l; Yen) be the space of all Borel functions f: <C -+  Yen such 
that I I f 11 2 = J I I f(z) 1 1 2 dJ-l(z) < oo, where two functions agreeing a.e. [Jl.] are 
identified. Iff and gEL2(J1,; Yen), ( f, g )  = J ( f(z), g(z) ) dJl.(z) defines an inner 
product on L2(J1,; Yen). It is not difficult to show that L2(J1.; Yen) is a Hilbert 
space. 

10.17. Proposition. If N is multiplication by z on L2(J1,; Yen), then N � N�
n>. 

PROOF. Let {ei : 1 �j � n} be an orthonormal basis for Yen and define U: 
L2(J1,; Yen) -+ L2(J1,)<n> by Uf = ( ( f( · ), e1 ), ( f( · ), e2 ), . . .  ) . Then U is an 
isomorphism and UNU- 1 = N�

n>. The details are left to the reader. • 

Combining the preceding proposition with Proposition 6. 1 (b), we can find 
{ N}'; namely, { N�

n> } '  = all matrices (Tii) on �(L2(J1,)<n>) such that TiiE {  N �"}' 
for all i, j. By Corollary 6.9, {N�

n> } '  = matrices (Mc/>ij) that belong to �(L2(J1,)<n>), 
such that ¢iiEL00(J-l). Now the idea is to use Proposition 10. 1 7 to bring this 
back to �(L2(J1,; Yen)) and describe {N}' . 

A function ¢: <C -+  �(.Yen) is defined to be a Borel function if for each f 
and g in Ye m z�---+ ( ¢(z)f, g )  is a Borel function. If { fi } is a countable dense 
subset of the unit ball of Ye m II ¢(z) If = sup { I ( ¢(z)fi, fi ) 1 : 1 � i, j < oo } ,  so 
Z l--+ I I  ¢(z) I I is a Borel function. Let L 00 (J1,; �(Yen)) be the equivalence classes 
of bounded Borel functions from <C into �(.Yen) furnished with the Jl.-essential 
supremum norm. 

If c/JEL00 (J1,; �(Yen)) and jEL2(J1,; Yen), let f(z) = Lfi (z)ei, where {ei} is an 
orthonormal basis for Yen andfi(z) = ( f(z), ei ) , so L l fi(z) l 2 = I I f(z) 1 1 2 . Thus 
¢(z)f(z) = Lifi(z)¢(z)ei. So for any e in .?em ( ¢(z)f(z), e ) = :Lfi(z) ( ¢(z)ei, e )  
is a Borel function. It is easy to check that ¢ f E L 2(J1.; Je n) and 
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I I ¢f I I � I I ¢  l l oo I I f 1 1 . Let Mc/J: L2(Jl; .Yen) -+ L2(Jl; Yen) be defined by Mc/J f = ¢f. 
Combined with the preceding remarks, the following result can be shown to 
hold. (The proof is left to the reader.) 

10.18. Proposition. If N is multiplication by z on L2(Jl; .Yen), then 

{ N} '  = { M c/J: c/JEL 00 (Jl; 8l(.Ye n) ) } . 

Also, I I  M cfJ I I  = I I ¢ I I  00 for every ¢ in L 00 (Jl; �(.Yen)). 

The next lemma is a consequence of Proposition 6. 10 and the fact that 
unitarily equivalent normal operators have mutually absolutely continuous 
scalar-valued spectral measures. 

10.19. Lemma. If N 1 and N 2 are normal operators with mutually singular scalar 
spectral measures and X N 1 = N 2X, then X = 0. 

Using the observation made prior to Corollary 6.8, the preceding lemma 
implies that { N 1 EB N 2 }' = { N 1 }' EB { N 2} '  whenever N 1 and N 2 are as in the 
lemma. 

The next theorem of this section can be proved by piecing together 
Theorem 10. 1 6 and the remaining results of this section. The details are left 
to the reader. 

10.20. Theorem. If N is a normal operator on .Ye, there are mutually singular 
measures Jl00, jl 1 , jl2 , • • •  and an isomorphism 

such that 
UNU- 1 = Noo EB N1 EB N2 EB · · ·  

where N n = multiplication by z on L2(Jln; .Yen). Also, 

{ N oo EB N 1 EB N 2 EB · · · }' = L 00 (Jloo ; �(.Ye 00)) EB L 00(Jl 1 ) 
EB L oo(Jl2; �(.Ye 2) )  EB · · · . 

Using the notation of the preceding theorem, if Jl is a scalar-valued spectral 
measure for N, then there are pairwise disjoint Borel sets A00, A 1 , . . .  such 
that [Jln] = [Jl l An]. Define a function mN: <C -+  { 0, 1 ,  . . . oo } by letting 
mN = oox&-x- + X& 1 + 2X&2 + · · · . As it stands the definition of mN depends on 
the choice of the sets {An} as well as N. However, any two choices of the 
sets {An} differ from one another by sets of Jl-measure zero. The function mN 
is called the multiplicity function for N. Note that mN is a Borel function. 

If m: <C -+  { oo, 0, 1 ,  2, . . .  } is a Borel function and Jl is a compactly supported 
measure such that Jl( { z: m(z) = 0} ) = 0, let An = { z: m(z) = n } ,  n = oo, 1 ,  2, . . . . 
If N n = N JI I&n ' then N = N<:> EB N 1 EB N�2> EB · · · is a normal operator whose 
spectral measure is Jl and whose multiplicity function agrees with m a.e. [Jl] . 
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10.21. Theorem. Two normal operators are unitarily equivalent if and only if 
they have the same scalar-valued spectral measure J-l and their multiplicity 
functions are equal aoeo [Jl.] o 

There is some notation that is used by many and we should mention its 
connection with what we have just finished. Suppose m: <C -+  { oo, 1 ,  2, . . .  } is 
a Borel function and J-l is a compactly supported measure on <C such that 
Jl.( {z: m(z) = O} ) = O. If zE<C let �(z) be a Hilbert space of dimension m(z). 
The direct integral of the spaces �(z), denoted by J �(z) dJ-l (z), is precisely 
the space 

L 2 (Jl. l A oo ; � oo) (f) L 2 (Jl. l A 1 ) (f) L 2 (Jl. l A 2; � 2) <f> · · · , 
where An = {z: m(z) = n} and dim �n = n. If ¢: <C-+84(� 00)u&I(<C)u&l(� 2)u · · · 
such that ¢(z) EBI(�n) when zEAm ¢: An -+�(�n) is a Borel function, and 
there is a constant M such that II ¢(z) I I � M a. e. [Jl.], then J ¢(z) dJ-l(z) denotes 
the operator M 4JI&x (f) · · · as in ( 1 0.20). Although the direct integral notation 
is quite suggestive, one must revert to the notation of ( 1 0.20) to produce 
proofs. 

Remarks. There are several sources for multiplicity theory. Most begin by 
proving Theorem 10. 1 6. This is done for nonseparable spaces in Halmos 
[ 195 1] and Brown [1 974]. Another source is Arveson [ 1 976], where the 
theory is set in the context of C*-algebras which is its proper milieu. Also, 
Arveson shows that the theory can be applied to some non-normal operators. 
The details of this more general multiplicity theory are carried out in Ernest 
[ 1 976] as part of a more general classification scheme. Another source for 
multiplicity theory is Dunford and Schwartz [ 1 963] . 

By Theorem 4.6, every normal operator is unitarily equivalent to a 
multiplication operator M4J on L2(X, n, Jl.) for some measure space (X, n, Jl.). 
The scalar-valued spectral measure for M4J is Jl. 0 ¢ - 1 • What is the 
multiplicity function for M 4J? One is tempted to say that mMtP (z) = the nutnber 
of points in ¢ - 1 (z). This is not quite correct. The answer can be found in 
Abrahamse and Kriete [ 1 973]. Also, Abrahamse [ 1 978] contains a survey 
of spectral multiplicity for normal operators treated from this point of view. 
An especially accessible and readable account of this can be found in Kriete 
[ 1 986]. 

EXERCISES 
1 .  Let A and B be operators on Jf and %, respectively. Let Jf 0 and % 0 be reducing 

subspaces for A and B and suppose that A ""'  B l% 0 and B ""'  A I Jf  0 0 Show that 
A ""' B. 

2. Let J1 1 ,  J12 , 0 .  0 be compactly supported measures on <C such that Jln + 1 << Jln for all 
no Show thaf if M is any normal operator whose spectral measure is absolutely 
continuous with respect to each Jlm then N , 1  E9 N ,2 E9 · · 0 ""' (N , 1  E9 N ,2 E9 · · 0 ) E9 Mo 
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3. If J1 = Lebesgue measure on [0, 1] , show that N ll
"" N: for 0 < p < oo. 

4. Let J1 = Lebesgue measure on [0, 1 ]  and characterize the functions ¢ in L 00(JL) 
such that N ll "" ¢(N ll). 

5. Let J1 = area measure on D and show that N ll and N� are not unitarily equivalent. 

6. Let J1 = Lebesgue measure on [0, 1] and let v = Lebesgue measure on [ - 1 ,  1 ]. 
Show that N; "" N  ll (£> N p ·  How about N;? 

7 .  Let J1 be Lebesgue measure on JR. and N = multiplication by sin x on L2 (JL). Find 
the decompositions of N obtained in Theorem 10. 1  and 1 0. 1 6. 

8. If J1 is Lebesgue measure on JR. and N = multiplication by eix on L2(JL), show that 
N ""  N�oo> where m = arc length measure on oD. 

9. Define U: L2(1R) --+ L2(1R) by (U f)(t) = f(t - 1 ). Show that U is unitary and find 
its scalar-valued spectral measure and multiplicity function. 

10. Represent N as in Theorem 10. 1  and find the corresponding representation for 
N (£> N = N<2>; for N<3>, for N<oo>. (Are you surprised by the result for N<oo>?) 

1 1 . Prove the results and solve the exercises from §11.8. 

1 2. Let N be a normal operator and show that N "" N<2> if and only if there is a 
•-cyclic normal operator M such that N ""  M<oo>. What does this say about the 
multiplicity function for N? 

1 3. Let (X, !l, JJ.) be a measure space such that L2(JL) is separable, let ¢eL00(JL), and 
let N = Mq, on L2(JL). Find the decompositions of N obtained in Theorems 10. 1  
and 10. 1 6. 

14. Let J1 be a compactly supported measure on <C, ¢ a bounded Borel function on 
<C, and suppose { �n} are pairwise disjoint Borel sets such that ¢ is one-to-one 
on each �n and JJ.(<C\ U := 1 �n) = 0. Let ¢n = ¢X4" and Jln = J1 o ¢; 1 for n � 1 .  Prove 
that Mq, on L2(JL) is unitarily equivalent to (£>:= 1 N lln ·  



CHAPTER X 

Unbounded Operators 

It is unfortunate for the world we live in that all of the operators that arise 
naturally are not bounded. But that is indeed the case. Thus it is important 
to study such operators. 

The idea here is not to study an arbitrary linear transformation on a 
Hilbert space. In fact, such a study is the province of linear algebra rather 
than analysis. The operators that are to be studied do possess certain 
properties that connect them to the underlying Hilbert space. The properties 
that will be isolated are inspired by natural examples. 

All Hilbert spaces in this chapter are assumed separable. 

§ 1 .  Basic Properties and Examples 

The first relaxation in the concept of operator is not to assume that the 
operators are defined everywhere on the Hilbert space. 

1 .1 .  Definition. If .Ye, :it are Hilbert spaces, a linear operator A:  Ye -+  :it is a 
function whose domain of definition is a linear manifold, dom A, in Ye and 
such that A(rxf + {3g) = rxAf + {3Ag for J, g in dom A and rx, {3 in <C. A is bounded 
if there is a constant c > 0 such that I I Af I I � c I I f I I for all f in dom A. 

Note that if A is bounded, then A can be extended to a bounded linear 
operator on cl [dom A] and then extended to Ye by letting A be 0 on 
(dom A) 1.. So unless it is specified to the contrary, a bounded operator will 
always be assumed to be defined on all of Je. 

If A is a linear operator from .Ye into :K, then A is also a linear operator 
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from cl [dom A] into :ft. So we will often only consider those A such that 
dom A is dense in Jf'; such an operator A is said to be densely defined. �(Jf') 
still denotes the bounded operators defined on Jr. 

If A, B are linear operators from Jf' into :it, then A + B is defined with 
dom(A + B) = dom A n  dom B. If B: Jf' -+  :it and A :  :it -+  !i', then AB is a 
linear operator from Jf' into !i' with dom(AB) = B- 1 (dom A). 

1.2. Definition. If A, B are operators from Jf' into :it, then A is an extension 
of B if dom B c dom A and Ah = Bh whenever hEdom B. In symbols this is 
denoted by B c A. 

Note that if A E�(Jf'), then the only extension of A is itself. So this concept 
is only of value for unbounded operators. 

If A :  Jf' -+ :it, the graph of A is the set 

gra A = {h <f> AhEJf' (f> :ft: h Edom A}. 

It is easy to see that B c A if and only if gra B c gra A. 

1 .3. Definition. An operator A: Jf' -+  :it is cJ!!_§e�/ if its graph is closed in 
Jf' (f) :ft. An operator is closable if it has � closed extension. Let �(Jf', :it) = the 
collection of all closed densely defined operators from Jf' into :it. Let �( Jf') = 
�(Jf', Jf'). (It should be emphasized that the operators in �(Jf', :it) are densely 
defined.) 

When is a subset of Jf' (f) :it a graph of an operator from Jf' into :it? If 
C§ = gra A for some A: Jf' -+  :it, then C§ is a submanifold of Jf' (f) :it such that 
if kE:ft and 0 (f) kEC§, then k = 0. The converse is also true. That is, suppose 
that C§ is a submanifold of Jf' (f) :it such that if kE:ft and 0 (f) kEC§, then 
k = 0. Let � = {hEJf': there exists a k in :it with h (f>  k in C§} . If hE� and 
k1 , k2 E:ft such that h (f) k1 , h (f) k2 EC§, then 0 (f) (k 1 - k2 ) = h (f) k1 - h (f) k2 EC§. 
Hence k1 = k2 • That is, for every h in � there is a unique k in :it such that 
h (f) kEC§; denote k by k = Ah. It is easy to check that A is a linear map and 
C§ = gra A. This gives an internal characterization of graphs that will be useful 
in the next proposition. 

1 .4. Proposition. An operator A: Jf' -+  :it is closable if and only if cl [gra A] 
is a graph. 

PROOF. Let cl [gra A] be a graph. That is, there is an operator B: Jf' -+  :it 
such that gra B = cl [gra A] . Clearly gra A c gra B, so A is closable. 

Now assume that A is closable; that is, there is a closed operator 
B: Jf' -+  :it with A c B. If 0 (f) kEcl [gra A], 0 (f) kEgra B and hence k = 0. By 
the remarks preceding this proposition, cl [gra A] is a graph. • 

If A is closable, call the operator whose graph is cl [gra A] the closure of A. 

1 .5. Definition. If A: rYe -+  :K is densely defined, let 
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dom A* = {keff: hH (Ah, k) is a bounded linear functional on dom A} .  

Because dom A is dense in .Ye, if kedom A*, then there is a unique vector f 
in Ye such that (Ah, k) = (h, f)  for all h in dom A. Denote this unique vector 
f by f = A*k. Thus 

(Ah, k) = (h, A*k) 

for h in dom A and k in dom A*. 

1 .6. Proposition. If A: Ye -+  ff is a densely defined operator, then: 

(a) A* is a closed operator; 
(b) A* is densely defined if and only if A is closable; 
(c) if A is closable, then its closure is (A*)* = A**. 

Before proving this, a lemma is needed which will also be useful later. 

1 .7. Lemma. If A: Ye -+  ff is densely defined and J: Ye EB ff -+  ff EB Ye is 
defined by J(h EB k) = (- k) EB h, then J is an isomorphism and 

gra A* = [J gra A] .l .  

PROOF. I t  is clear that J is an isomorphism. To prove the formula for gra A*, 
note that gra A* = {k EB A*keff Ef) .Ye: kedom A*} .  So if kedom A* and 
hedom A, 

(k Et> A*k, J(h Et> Ah) ) = (k Et> A*k, - Ah Et> h) 
= - (k, Ah) + (A*k, h) = 0. 

Thus gra A* c [J gra A] .l. Conversely, if k Ef)  fe[J gra A] 1., then for every h 
is dom A, O = (k Et> f, - Ah Et> h) = - (k, Ah) + (f, h), so (Ah, k) = (h, f) . 
By definition ked om A* and A *k = f. • 

PROOF OF PROPOSITION 1 .6. The proof of (a) is clear from Lemma 1 .7. For 
the remainder of the proof notice that because the map J in ( 1 .7) is an 
isomorphisin, J* = J - 1 and so J*( k EB h) = h EB ( - k ). 

(b) Assume A is closable and let k0 e(dom A*).l. We want to show that 
k0 = 0. Thus k0 EB Oe[gra A*] .l = [J gra A] .l .l  = cl [J gra A] = J[  cl (gra A)]. 
So 0 EB - k0 = J*(k0 EB O)eJ* J [(gra A)] = cl (gra A). But because A is closable, 
cl (gra A) is a graph; hence k0 = 0. For .the converse, assume dom A* is dense 
in ff. Thus A** = (A*)* is defined. By (a), A** is a closed operator. It is 
easy to see that A c A**, so A has a closed extension. 

(c) Note that by Lemma 1 .7 gra A** = [J* gra A*] .l = [J*[J gra A] .l] .l. 
But for any linear manifold � and any isomorphism J, (J�).L = J(�1.). 
Hence J*[(J�) J.] = �.l and, thus, [J*[J�] .l] J. = �.ll. = cl �. Putting 
� = gra A gives that gra A** = cl gra A. • 

1.8. Corollary. If A e<c(Je, f), then A* e<c(Jf', Je) and A** = A. 
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1 .9. Example. Let e0 , e 1 , . • .  be an orthonormal basis for :Yf and let a0 , a 1 , . • . 
be complex numbers. Define q) = {he:K: :L� I an(h, en ) l 2 < oo} and let 
Ah = 'L�an(h, en )en for h in q). Then AeCC(:K) with dom A = q). Also, 
dom A* = q) and A*h = 'L�an (h, en )en for all h in q)_ 

1 .10. Example. Let (X, n, Jl.) be a a-finite measure space and let ¢: X -+  <C be 
an !l-measurable function. Let q) = {f e L2(J1,): ¢ f e L2(J1,) } and define Af = ¢ f 
for all f in q)_ Then AeCC(L2(J1,)), dom A* = q), and A *f = cpf for f in q)_ 

1.1 1.  Example. Let q) = all functions f: [0, 1 ] -+ <C that are absolutely 
continuous with f' e L2(0, 1 )  and such that f(O) = f( 1 ) = 0. � includes all 
polynomials p with p(O) = p( 1 )  = 0. So the uniform closure of q) is 
{feC[O, 1 ] :  f(O) = f( 1 ) = 0}. Thus q) is dense in L2(0, 1 ). Define A: L2(0, 1 ) -+ 
L2(0, 1 )  by Af = if' for f in q)_ To see that A is closed, suppose {fn } c q) and 
fn � if� -+ f � g in L2 (f) L2• Let h(x) = - i Jx g(t)dt; so h is absolutely 
continuous. Now using the Cauchy-Schwa�z inequality we get that 
l fn(x) - h(x) l = I Jx [f�(t) + ig(t)] dt l � II f� + ig I I  2 = II if� - g I I  2 · Thus fn(x) -+ 
h(x) uniformly ori [0, 1] .  Since fn -+ f in L2(0, 1 ), f(x) = h(x) a.e. So we may 
assume that f(x) = - i Jx g(t)dt for all x. Therefore f is absolutely continuous 
and fn(x) -+ f(x) unifor�ly on [0, 1 ]; thus f(O) = f( 1 )  = 0 and f' = - ige 
L2(0, 1 ). So f e� and f � g = f � g = f � if' egra A; that is, AeCC(L2(0, 1 ) ). 

Note that {f': f eq)} = {heL2(0, 1 ): J�h(x)dx = 0} = [ 1]  j_. 

Claim. dom A* = {g: g is absolutely continuous on [0, 1 ] , g' e L2(0, 1 ) }  and 
for g in dom A*, A*g = ig' . 

In fact, suppose gedom A* and let h = A  *g. Put H(x) = J�h(t) dt. Using 
integration by parts, for every f in q), iJ�f'g = (Af, g) = (f, h) = J�fh = 
J�f(x)dH(x) = - J�f'(x)H(x)dx; that is, (f', - ig) = (f', - H) for all f in 
q). Thus H - ige {f': fe�} j_ = [ 1 ] j_ j_; hence H - ig = c, a constant function. 
Thus g = ic - iH so that g is absolutely continuous and g' = - iheL2• Also 
note that A*g = h = ig'. The proof of the other inclusion is left to the reader. 

1 .12. Example. Let 8 = {f eL2(0, 1 ): f is absolutely continuous, f' eL2, and 
f(O) = f( 1 ) } .  Define Bf = if' for f in 8. As in ( 1 . 1 1 ), BeCC(L2(0, 1 ) )  and 
ran B = [ 1]  j_. 

Claim. dom B* = 8 and B*g = ig' for g in 8. 

Let gedom B*. Put h = B*g and H(x) = Jx h(t)dt. As in ( 1 . 1 1 ), 
H(O) = H( l ) = O  and for every f in cf, iJ �f'g 

0 
- J�f'H. Hence 0 =  

J� (if'g + f'H) = J� if' (g + iH). Thus g + iH ..L ran B and so g + iH = c, a 
constant function. Thus g = c - iH is absolutely continuous, g' = - iheL2, 
and g(O) = g( l )  = c. Thus gel! and B*g = h = ig'. The proof of the other 
inclusion is left to the reader. 
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The preceding two examples illustrate the fact that the calculation of the 
adjoint depends on the domain of the operator, not just the formal definition 
of the operator. Note the fact that the next result generalizes (II.2. 1 9). 

1 .13. Proposition. If A: Ye -+  :it is densely defined, then 

(ran A).l = ker A*. 
If A is also closed, then 

(ran A *) .L = ker A. 

PROOF. If h l_ ran A, then for every f in dom A, 0 = (Af, h). Hence hEdom A* 
and A*h = 0. The other inclusion is clear. By Corollary 1 .8, if A E�(.Ye, :it), 
A** = A. So the second equality follows from the first. • 

1 .14. Definition. If A: Ye -+  :it is a linear operator, A is boundedly invertible 
if there is a bounded linear operator B: :it -+  Ye such that AB = 1 and BA c 1 .  

Note that if BA c 1 ,  then BA is bounded on its domain. Call B a (bounded) 
inverse of A. 

1 .15. Proposition. Let A: Ye -+  :it be a linear operator. 

(a) A is boundedly invertible if and only if ker A = (0), ran A =  :it, and the 
graph of A is closed. 

(b) If A is boundedly invertible, its inverse is unique and denoted by A - 1 . 

PROOF. (a) Let B be a bounded inverse of A. So dom B = :ft. Since BA c 1 ,  
ker A =  (0); since AB = 1 ,  ran A = :ft. Also, gra A = { h EB Ah: hEdom A}  = 
{ Bk Ef) k: kE:ft}. Since B is bounded, gra A is closed. Conversely, if A has the 
stated properties, Bk = A  - 1 k for k in :it is a well-defined operator on :ft. 
Because gra A is closed, gra B is closed. By the Closed Graph Theorem, 
BE�(:ft, Ye). 

(b) This is an exercise. • 

1 .16. Definition. If A: Ye -+  Ye is a linear operator, p(A), the resolvent set for 
A, is defined by p(A) = { AE<C: A - A is boundedly invertible}. The spectrum 
of A is the set a( A) = <C\p(A): 

It is easy to see that if A: Ye -+  :it is a linear operator and AE<C, gra A is 
closed if and only if gra(A - A) is closed. So if A does not have closed graph, 
a(A) = <C. Even if A has closed graph, it is possible that a( A) is empty (see 
Exercise 10). The spectrum of an unbounded operator, however, does enjoy 
some of the properties possessed by the spectrum of an element of a Banach 
algebra. The proof of the next result is left to the reader. 

1.17. Proposition. If A: .Ye -+  .Ye is a linear operator, then u(A) is closed and 
z�--+(z - A) - 1 is an analytic function on p(A). 
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Note that if A is defined as in Example 1 .9, then a(A) = cl {an } · Hence it 
is possible for a( A) to equal any closed subset of <C. 

1 .18. Proposition. Let Ae�(�). 

(a) A.ep(A) if and only if ker(A - A.) = (0) and ran (A - A.) = �. 
(b) a(A*) = {A.: A.ea(A) } and for A. in p(A), (A - A.)* - 1 = [(A - A.) - 1]* .  

PROOF. Exercise. 

EXERCISES 
1 .  If A, B, and AB are densely defined linear operators, show that (AB)* ::::::> B* A*. 

2. Verify the statements in Example 1 .9. 

3. Verify the statements in Example 1 . 10. " 

4. Define an unbounded weighted shift and determine its adjoint. 

5. Verify the statements in Example 1 . 1 1 .  

6. If Jf is infinite dimensional, show that there is a linear operator A: Jf -+  Jf such 
that gra A is dense in Jf E9 Jf. What does this say about dom A*? (See Lindsay 
[ 1984).) 

7. Let q} be the set of absolutely continuous functions f such that f' eL2(0, 1 ). Let 
D f = f' for f in q} and let (Af)(x) = xf(x) for f in L2(0, 1 ). Show that DA - AD c. 1 .  

8. If d is a Banach algebra with identity, show that there are no elements a, b in 
d such that ab - ba =  1. (Hint: compute anb - ban.) 

9. Prove Proposition 1 . 1 8. 

10. Define A: L2(R) -+ L2(1R) by (Af)(x) = exp( - x2)f(x - 1) for all f in L2(R). 
(a) Show that Ae8l(L2(R)). (b) Find I I An 

I I and show that r(A) = 0 so that 
a(A) = {0} . (c) Show that A is injective. (d) Find A* and show that ran A is dense. 
(e) Define B = A - 1 with dom B = ran A and show that Be<G(L2(1R) ) with a( B) = 0. 

1 1 . If  A e<G(Jf), show that A* A e<G(Jf). Show that - 1 ¢a(A *A) and that if 
B = (1 + A*A) - 1 , I I B I I � 1 .  

1 2. If B is the bounded operator obtained in Exercise 1 1 , show that C = AB is also 
bounded and I I C I I � 1 .  

1 3. If A is a self-adjoint operator, then A.ep(A) if and only if A - A. is surjective. 

§2. Symmetric and Self-Adjoint Operators 

An appropriate introduction to this section consists in a careful examination 
of Examples 1 . 1 1 and 1 . 1 2 in the preceding section. In ( 1 . 1 1 )  we saw that the 
operator A seemed to be inclined to be self-adjoint, but dom A* was different 
from dom A so we could not truly say that A =  A*. In ( 1 . 1 2), B = B* in any 
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sense of the concept of equality. This points out the distinction between 
symmetric and self-adjoint operators that it is necessary to make in the 
theory of unbounded operators. 

2.1 .  Definition. An operator A: Je � Je is symmetric if A is densely defined 
and (Af, g) = (f, Ag )  for all f, g in dom A. 

The proof of the next proposition is left to the reader. 

2.2. Proposition. If A is densely defined, the following statements are 
equivalent. 

(a) .. A is symmetric. 
(b) (Af, f) eR for all f in dom A. 
(c) A c A*. ' 

If A is symmetric, then the fact that A c A* implies dom A* is dense. 
Hence A is closable by Proposition 1 .6. Symmetric operators can behave 
cantankerously. For example, there is an example of a closed symmetric 
operator T such that dom (T2) = (0). See Chernoff [ 1 983] . 

It is easy to check that the operators in Examples 1 . 1 1 and 1 . 1 2 are 
symmetric. 

2.3. Definition. A densely defined operator A: Je � Je is self-adjoint if 
A = A*. 

Let us emphasize that the condition that A =  A* in the preceding definition 
carries with it the requirement that dom A =  dom A*. Now clearly every self
adjoint operator is symmetric, but the operator A in Example 1 . 1 1 shows 
that there are symmetric operators that are not self-adjoint. If, however, an 
operator is bounded, then it is self-adjoint if and only if it is symmetric. The 
operator B in Example 1 . 1 2  is an unbounded self-adjoint operator and 
Examples 1 .9 and 1 . 10 can be used to furnish additional examples of un
bounded self-adjoint operators. 

Note that Proposition 1 .6 implies that a self-adjoint operator is neces
sarily closed. 

t 

2.4. Proposition. Suppose A is a symmetric operator on Je. 

(a) If ran A is dense, then A is injective. 
(b) If A = A* and A is injective, then ran A is dense and A - 1 is self-adjoint. 
(c) If dom A =  Je, then A =  A* and A is bounded. 
(d) If ran A =  Je, then A =  A* and A - t e�(Je). 

PROOF. The proof of (a) is trivial and (b) is an easy consequence of ( 1 . 1 3) and 
some manipulation. 
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(c) We have A c A*. If dom A =  Je, then A =  A* and so A is closed. By 
the Closed Graph Theorem Ae�(.Ye). 

(d) If ran A =  Je, then A is injective by (a). Let B = A  - 1 with dom B = 
ran A =  Je. Iff = Ag and h = Ak, with g, k in dom A, then (Bf, h) = (g, Ak) = 
(Ag, k) = (f, k) = (f, Bh). Hence B is symmetric. By (c), B = B* e�(.Ye). By 
(b), A = B- 1 is self-adjoint. • 

We now will turn our attention to the spectral properties of symmetric 
and self-adjoint operators. In particular, it \will be seen that symmetric 
operators can have nonreal numbers in their spectra, though the nature of 
the spectrum can be completely diagnosed (2.8). Self-adjoint operators, 
however, must have real spectra. The next result begins this spectral 
discussion. 

2.5. Proposition. Let A be a symmetric operator and let A. =  (l + ip, (l and P 
real numbers. 

(a) For each f in dom A, I I (A - A.)f l l 2 = I I (A - (l)f l l 2 + P2 ll f l l 2 . 
(b) If P # 0, ker(A - A.) = (0). 
(c) If A is closed and P # 0, ran(A - A.) is closed. 

PROOF. Note that 

I I (A - A.)f 1 1 2 ::s:: I I (A - (l)f - iPf 1 1 2 

= II (A - (l)f l l 2 + 2 Re i( (A - (l)f, Pf> + P2 l l f l l 2 • 

But 

( (A - (l)f, Pf> = P<Af, f) - (lp I I f l l 2 eR, 
. 

so (a) follows. Part (b) is immediate from (a). To prove (c), note that 
II (A - A.)f 1 1 2 � P2 l l f 1 1 2 • Let {fn} c dom A such that (A - A.)fn --. g. The 
preceding inequality implies that {fn } is a Cauchy sequence in .Ye; let 
f = lim fn · But fn �(A - A.)fnegra(A - A.) and fn � (A - A.)fn --. f � g. Hence 
f � gegra(A - A.) and so g = (A - A.)f eran(A - A.). This proves (c). • 

2.6. Lemma. If .A, .K are closed subspaces of Je and .A n%1. = (0), then 
dim .A � dim %. 

PROOF. Let P be the orthogonal projection of Je onto .K and define 
T: .A --.  .K by Tf = Pf for f in .A. Since .A n .K l. = (0), T is injective. If fLl 
is a finite dimensional subspace of .A, dim !fl = dim T !fl � dim %. Since !fl 
was arbitrary, dim .A � dim %. • 

2.7. Theorem. If A is a closed symmetric operator, then dim ker(A * - A.) is 
constant for Im A. > 0 and constant for Im A. < 0. 

PRooF. Let A. = � + ip, � and p real numbers and p -:/= 0. 
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Claim. If l A - Jl l < I  P I , ker(A* - Jl) n [ker(A* - A)] .L = (0). 
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Suppose this is not so. then there is an f in ker(A * - Jl) n [ker(A * - A)] 1. 
with I I  f I I  = 1 .  By (2.5c), ran(A - A) is closed. Hence f e [ker(A * - A)] 1. = 

- -

ran(A - A). Let gedom A such that f = (A - A)g. Since f eker(A * - Jl), 

0 = ( (A* - Jl)f, g) = (f, (A - ji)g) 
- -

= (f, (A - A +  A - ji)g) 
= l l f l l 2 + (A - Jl) (f, g). 

Hence 1 = I I  f 1 1 2 = l A - Jl l l  (f, g) I �  I A - Jl l l l g 1 1 . But (2.5a) implies that 
1 = I I f II = II (A - A )g II � I P I l l g I I ; so I I g II � I P 1 - 1 • Hence 1 � I A - Jl l l l g II � 
I A ·- Jl l l  P 1 - 1 < 1 if I A - Jl l < I P 1 . This contradiction establishes the claim. 

Combining the claim with Lemma 2.6 gives that dim ker(A * - Jl) � 
dim ker(A* - A) if I A - Jl i < I P I = I Im A I . Note that if I A - Jl i < � I P I , then 
I A - Jl l < I Im Jl l , so that the other inequality also holds. This shows that the 
function ,{�dim ker(A * - A) is locally constant on <C\R. A simple topological 
argument demonstrates the theorem. • 

2.8. Theorem. If A is a closed symmetric operator, then one and only one of 
the following possibilities occurs: 

(a) a( A) = <C; 
(b) a( A) = { Ae<C: Im A �  0}; 
(c) a( A) = { Ae<C: Im A �  0}; 
(d) a( A) c R. 

PROOF. Let H ± = { Ae<C: + Im A >  0} . By (2.5) for A in H ± ,  A - A is injective 
and has closed range. So if A - A is surjective, Aep(A). But [ran(A - A)] 1. = 
ker(A* - A). So the preceding theorem implies that either H ± c a(A) or 
H ± n a( A) = o. Since a( A) is closed, if H ± c a( A), then either a( A) = <C or 
a(A) = cl H ± · If H ± n a(A) = 0, a(A) c R. • 

2.9. Corollary. If A is a closed symmetric operator, the following statements 
are equivalent. 

(a) A is self-adjoint. 
(b) a( A) c R. 
(c) ker(A * - i) = ker(A * + i) = (0). 

PROOF. If A is symmetric, every eigenvalue of A is real (Exercise 1 ). So if 
A = A* and Im A -:/= 0, ker(A * - A) =  ker(A - A) =  (0). Thus A - A is injective 
and has dense range. By (2.5), A - A has closed range and so A - A has a 
bounded inverse ( 1 . 1 5) whenever Im A -:/=  0. That is, a( A) c R and so (a) 
implies (b). 

If a( A) c JR., ker(A * + i) = [ran(A + i)] 1. = �1. = (0). Hence (b) implies (c). 
If (c) holds, then this, combined with (2.5c) and ( 1 . 1 3), implies A +  i is 
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surjective. Let hedom A*.  Then there is an f in dom A such that( A + i)f = 
(A* + i)h. But A* + i � A + i, so (A* + i)f = (A* + i)h. But A* + i is injective, 
so h = fedom A. Thus A = A*. • 

2.10. Corollary. If A is a closed symmetric operator and a�A) does not contain 
R, then A =  A*. .. 

It may have occurred to the reader that a symmetric operator A fails to 
be self-adjoint because its domain is too small and that this can be rectified 
by merely increasing the size of the domain. Indeed, if A is the symmetric 
operator in Example 1 . 1 1 ,  then the operator B of Example 1 . 1 2  is a self
adjoint extension of A. However, the general situation is not always so 
cooperative. 

Fix a symmetric operator A and suppose B is a symmetric extension of 
A: A c B. It is easy to verify that B* c A*. Since B c B*, we get 
A c B c B* c A*. Thus every symmetric extension of A is a restriction of A*. 

2.1 1 . Proposition. (a) A symmetric operator has a maximal symmetric extension. 
(b) Maximal symmetric extensions are closed. (c) A self-adjoint operator is a 
maximal symmetric operator. 

PROOF. Part (a) is an easy application of Zorn's Lemma. If A is -symmetric, 
I 

A c A* and so A is closable. The closure of a symmetric operator is symmetric 
(Exercise 3), so part (b) is immediate. Part (c) is a consequence of the comments 
preceding this proposition. • 

2.12. Definition. Let A be a closed symmetric operator. The deficiency 
subspaces of A are the spaces 

2 + = ker(A* - i) = [ran(A + i)] l., 
2 _ = ker(A* + i) = [ran(A - i)] 1. . 

The deficiency indices of A are the numbers n ± = dim 2 ± .  

It is possible for any pair of deficiency indices to occur (see Exercise 6). 
In order to study the closed symmetric extensions of a symmetric operator 

we also introduce the spaces 

.Yt + = {! � if: fe2 + } ,  
.Yt _ = {g � ( - ig): ge2 _ } .  

So .Yt ± � � � �- Notice that .Yt ± are contained in gra A* and are the 
portions of graph of A* that lie above 2 ± .  The next lemma will indicate 
why the deficiency subspaces are so named. 

2.13. Lemma. If A is a closed symmetric operator, 

gra A* = gra A ffi .Yt + ffi .Yt- . 
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PROOF. Let fe!l' + and hedom A. Then 

(h � Ah, f � if) = ( h, f) - i(Ah, f) 
= - i( (A + i)h, f) 
= 0  
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since !l' + = [ran (A + i)] l.. The remainder of the proof that gra A, :ft + ,  and 
:ft _ are pairwise orthogonal is left to the reader. Since it is clear that 
gra A �  :ft + � :ft _ c gra A*, it remains to show that this direct sum is dense 
in gra A*. 

Let hedom A* and assume h � A*h ..L gra A � :ft  + � :ft  _ .  Since h �  
A*h ..Lgra A, for every f in dom A, O = (h � A*h, f � Af) = (h, f) +  
(A*h, Af). So (A*h, Af) = - (h, f) for every f in dom A. This implies 
that A*hedom A* and A*A*h = - h. Therefore (A* - i) (A* + i)h = 
(A* A* + l )h = 0. Thus (A* + i)he!l' + .  Reversing the order of these factors 
also shows that (A* - i)he!l' _ . But if ge!l' + ,  0 = (h � A*h, g � ig) = (h, g) 
i(A*h, g) = - i( (A* + i)h, g). Since g can be taken equal to (A* + i)h, we get 
that (A* + i)h = 0, or he!l' _ . Similarly, he!l' + ·  So he!l' + n !l'  _ = (0). • 

2.14. Definition. If A is a closed symmetric operator and .A is a linear 
manifold in dom A*, then .A is A-symmetric if (A*f, g) = (f, A*g) for all 
f, g in .A. Call such a manifold A-closed if {f � A*f: fe.A} is closed in 
Je � Je. 

So .A is both A -symmetric and A -closed precisely when A* I .A, the 
restriction of A* to .A, is a closed symmetric operator; if .A ::::> dom A, then 
A* I .A is a closed symmetric extension of A. 

2.15. Lemma. If A is a closed symmetric operator on Je and B is a closed 
symmetric extension of A, then there is an A-closed, A-symmetric submanifold 
.A of !l' + + !l' _ such that 

2.16 gra B = gra A + gra(A * I .A). 
Conversely, if .A is an A-closed, A-symmetric manifold in !l' + + !l' _ ,  then 
there is a closed symmetric extension B of A such that (2. 1 6) holds. 

PROOF. If the A-symmetric manifold .A in !l' + + !l' _ is given, let 
� = dom A + .A. Since � c dom A*, B = A* I � is well defined. Let 

• 

f = fo + ft , g = g0 + g 1 , f0, g0 in dom A and f1 , g 1 in .A. Then 

( A*f, g ) = (A*fo + A*ft , go + g t ) 
= (Afo, go ) + ( Afo , g t ) + (A*ft , go ) + (A*ft , g t )· 

Using the A-symmetry of vii, the symmetry of A, and the definition of A* 
we get 

(A*f, g )  = (fo, Ago ) + (fo , A*g t ) + (ft , Ago ) +  (ft , A*g t ) 
= (f, A*g ). 
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So B = A* I q) is symmetric. Note that gra A .l gra (A * I .A) in Je (f) Je. Since 
both of these spaces are closed, gra B, given by (2. 1 6), is closed. ; 

Now let B be any closed symmetric extension of A. As discussed before, 
A c B c A*;  so gra A c gra B c gra A* = gra A (f) f + (f) f � . , · Let � = 
gra B n (f + (f) f _ ) and let .A = the set of first coordinates of elements in 
�- Clearly, .A is a manifold in !l' + + !l' _ and .A c dom B. Hence for f, g 
in .A, ( A*f, g )  = ( Bf, g )  = (f, Bg )  = (f, A*g ). So � is A-symmetric. 
Clearly, gra(A * I .A) = �' so .A is A-closed. If h (f) Bh egra B. let 
h <f) Bh = (f<±> Af) + k where fedom A and k e f +  (f) f _ .  Since A c B, k e  
gra B; so k et§. This shows that (2. 1 6) holds. • 

2.17. Theorem. Let A be a closed symmetric operator. lfW is a partial isometry 
with initial space in !l' + and final subspace in !l' _ , let 

2.18 q)w = {f + g + Wg: fedom A, ge initial W} 

and define Aw on q)w by 

2.19 Aw(f + g + Wg) = Af + ig - iWg. 

Then Aw is a closed symmetric extension of A. Conversely, if B is any closed 
symmetric extension of A, then there is a unique partial isometry W such that 
B = Aw as in (2. 1 9). 

If W is such a partial isometry and W has finite rank, then 

n ± (Aw) = n ± (A) - dim(ran W). 

PROOF. Let W be a partial isometry with initial space I +  in !l' + and final 
space I _  in !l' _ .  Pefine q)w and Aw as in (2. 1 8) and (2. 1 9). Let .A =  {g + W g: 
g el + } ; so .A is a manifold in !l' + + !l' - · If g, h e  I + '  then < Wg, Wh ) = ( g, h ). 
Hence ( A*(g + Wg), h + Wh ) = ( A*g, h )  + ( A*g, Wh) + ( A*Wg, h )  + 
( A*Wg, Wh ). Since geker (A* - i) and Wg eker(A* + i), 

( A*(g + Wg), h + Wh ) = i ( g, h ) + i( g, Wh ) - i( Wg, h ) - i( Wg, Wh ) 
= i(g, Wh ) - i( Wg, h ) . 

Similarly, ( g + Wg, A*(h + Wh) ) = i(g, Wh) - i ( Wg, h ), so that .A is 
A-symmetric. If {gn} c I +  and (gn + W gn) (f) (ign - iW gn) � f (f) h in � (f) �' 
then 2ign = i(gn + Wgn) + (ign - iWgn) � if + h and 2iWgn = i(gn + Wgn) 
(ign - iWgn) � if - h. If g = (2i) - 1 (if + h), then f = g + Wg and h = ig - iWg. 
flence Jt is A-closed. By Lemma 2. 1 5, Aw is a closed symmetric extension 
of A. 

To prove that n + (Aw) = n + (A) - dim l + ,  let fedom A, gel + . Then 

(Aw + i)(f + g + Wg) = (A + i)f + ig - iWg + ig + iWg 
= (A + i)f + 2ig. 

Thus ran (Aw + i) = ran(A + i)(f) I + ,  and so n + (Aw) = dim [ran (Aw + i)] 1. = 
dim (.!l' + 8 /  + ) = n + (A) - dim / + · Similarly, n_ (Aw) = n _ (A) - dim /_ = 
n _ (A) - dim I + · 



§2. Symmetric and Self-Adjoint Operators 3 1 5  

Now let B be a closed symmetric extension of A. By Lemma 2. 1 5  there 
is an A-symmetric, A-closed manifold .A in !l' + + !l' _ such that 
gra B = gra A + gra(A* I .A). If fe.A, let f = f + + f - , where f + e!l' ± ;  put 
I + = {f + : fe.A}. Since .A is A-symmetric, O = ( A*f,f ) - (f, A*f> = 
2i(f + , f + ) - 2i (f - , f - ); hence I I/ + II = II ! - I I for all f in .A. So if 
Wf + = f - whenever f = f + + f - e.A and if I + is closed, W is a partial 
isometry and (2. 1 8) and (2. 1 9) are easily seen to hold. It remains to show that 
I +  is closed. Suppose { in } c .A and f: -+ g+ in !l' + . Since I I f: - f; I I  = 
I I f; - f m I I , there is a g - in !l' _ such that f; -+ g- .  Clearly fn -+ g + + g - = g. 
Also, A*f: = + if: -+ + ig ± . It follows that g ffi A*gecl gra(A* I .A) = 
gra(A* I .A); thus g + ei + . • 

2.20. Theorem. Let A be a closed symmetric operator with deficiency indices n ± .  

(a) A is self-adjoint if and only if n + = n_  = 0. 
(b) A has a self-adjoint extension if and only if n+ = n_ . In this case the set 

of self-adjoint extensions is in natural correspondence with the set of isomor
phisms of !l' + onto !l' _ . 

(c) A is a maximal symmetric operator that is not self-adjoint if and only if 
either n + = 0  and n _  > 0  or n + > 0  and n _  = 0. 

PROOF. Part (a) is a rephrasing of Corollary 2.9. For (b), n+ = n_ if and only 
if !l' + and !l' _ are isomorphic. But this is equivalent to stating that there 
is a partial isometry on Jt with initial and final spaces !l' + and !l' _ ,  
respectively. Part (c) follows easily from the preceding theorem. • 

2.21 .  Example. Let A and !'!} be as in Example 1 . 1 1 ;  so A is symmetric. The 
operator B of Example 1 . 1 2  is a self-adjoint extension of A. Let us determine 
all self-adjoint extensions of A. To do this it is necessary to determine !l' + .  
Now f e !l'  ± if and only if f edom A* and + if =  A* f = if ', so !l' ± = { rxe ± x: 
rx e <C}. Hence n ± = 1 .  Also, the isomorphisms of !l' + onto !l' _ are all of the 
form W;.ex = A.e - x where l A. I =  e. If l A. I = e, let 

if f E q), rx E <C. 

!'!};. = { f + rxex + A.rxe - X: (l E <C, f E !'!}}. 
A;.(/ + rxex + A(le -x) = if' + rxiex - iA.rxe - x, 

According to Theorem 2. 1 7, { (A;., �;.): I A. I = e} are all of the self-adjoint 
extensions of A. The operator B of Example 1 . 1 2 is the extension Ae. 

For more information on symmetric operators and the relation of the 
problem of finding self-adjoint extensions to physical problems, see Reed 
and Simon [ 1 975] from which much of the present development is taken. 

EXERCISES 
1 .  If A is symmetric, show that all of the eigenvalues of A are real. 

2. If A is symmetric and .A., J1. are distinct eigenvalues, show that ker(A - A.) .l ker(A - JJ.). 
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3. Show that the closure of a symmetric operator is symmetric. 
r 

4. Let q) = {f  eL2(0, oo ): for every c > 0, f is absolutely continuous on [0,-c], f(O) = 0, 
and f' e L2(0, oo) } . Define Af = if' for f in q)_ Show that A is a den'sely defined 
closed operator and find dom A*. Show that A is symmetric with deficiency indices 
n + = 0 and n _ = 1 .  

5. Let 8 = {feL2( - oo, O): for every c < 0, f is absolutely continuous on [c, O], 
f(O) = 0, and f' e L2( - oo, 0) } .  Define Af = if' for f in 8. Show that A is a densely 
defined closed operator and find dom A*. Show that A is symmetric with deficiency 
indices n +  = 1 ,  n _  = 0. 

6. If k, l are any nonnegative integers or oo, show that there is a closed symmetric 
operator A with n +  = k and n _  = l. (Hint: Use Exercises 4 and 5.) 

7. Let c;(o, 1 )  be all twice continuously differentiable functions on (0, 1) with com
pact support and let Af = - f" for f in c;(o, 1 ). Show that the closure of A is 
a densely defined symmetric operator and determine all of its self-adjoint 
extensions. 

8. If A eCC(-*'), show that A* A is self-adjoint-(see Exercise 1 . 1 1 ). 

9. Say that an operator A is positive if ( Ah, h )  � 0 for all h in dom A. Prove that if 
A is positive and self-adjoint, then u(A) c: [0, oo ). If A is only assumed to be closed 
and positive, show that this conclusion may fail. (Hint: Look at the operator in 
Exercise 7.) 

10. (Lasser [ 1972] ) Let .A be a dense linear manifold in -*' and let d consist of 
all linear transformations A such that dom A =  .A, A.A £ .A, the adjoint of A 
exists, .A £  dom A*, and A* .A £  .A. Prove that A -+  A* I .A defines an involution 
on d. 

§3 .  The Cayley Transform 

Consider the Mobius transformation 
0 

M(z) = 
z - � -
z + l 

It is immediate that M(O) = - 1 ,  M(1) = - i, and M(oo) =  1 .  Thus M maps 
the upper half plane onto D and M(Ru oo) = oD. So if A is self-adjoint, 
M(A) should be unitary. Suppose A is symmetric; does M(A) make sense? 
What is M(A)? 

To answer these questions, we should first investigate the meaning of 
M(A) if A is symmetric. We want to define M(A) as (A - i) (A + i) - t . As was 
seen in the last section, however, ran(A + i) is not necessarily all of Jt if A 
is not self-adjoint. In fact, (ran (A + i) ).L  = !fl + and (ran(A - i)) .L = fil _ , the 
deficiency spaces for A. However (2.5), if A is closed and symmetric, ran(A + i) 
is closed. Also, realize that if w = M(z), then z = M- 1 (w) = i( 1 + w)/( 1 - w). 
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3.1 .  Theorem. (a) If A is a closed densely defined symmetric operator with 
deficiency sub spaces !l' ± ,  and if U: Je � Je is defined by letting U = 0 on !l' + 
and 

3.2 U = (A - i)(A + i) - 1 

on !l' � ,  then U is a partial isometry with initial space !l' � ,  final space !l' l. ,  
and such that ( 1 - U)(!l' � )  is dense in Je. 

(b) If U is a partial isometry with initial and final spaces .A and JV, 
respectively, and such that ( 1  - U).A is dense in Je, then 

3.3 A =  i( 1 + U)( 1 - U) - 1 

is a densely defined closed symmetric operator with deficiency subspaces 
!l' + = .A l. and !l' _ = JV l.. 

(c) If A is given as in (a) and U is defined by (3.2), then A and U satisfy 
(3.3). IfU is given as in (b) and A is defined by (3.3), then A and U satisfy (3.2). 

PROOF. (a) By (2.5c), ran(A + i) is closed and so !l' � = ran(A + i). By (2.5b), 
ker(A + i) = (0), so (A + i) - 1 is well defined on !l' � .  Moreover, (A + i) - 1 !l' � c 

dom A so that U defined by (3.2) makes sense and gives a well-defined 
operator. If h e  !l' � ,  then h = (A + i)f for a unique f in dom A. Hence 
II Uh 1 1 2 = I I  (A - i)f l l 2 = (2.5a) I I  Af 1 1 2 + II f l l 2 = I I (A + i)f 11 2 = I I h 1 1 2 - Hence U 
is a partial isometry, (ker U) l. = !l' � ,  and ran U = !l' l. . Once again, 
if fedom A and h = (A + i)f, then ( 1 - U)h = h - (A - i)f = (A + i)f 
(A - i)f = 2if. So ( 1 - U)!l'�  = dom A and is dense in Je. 

(b) Now assume that U is a partial isometry as in (b). It follows that 
ker ( 1 - U) = (0). In fact, if feker( 1 - U), then Uf = f; so l l f l l  = I I Uf l l and 
hence fe initial U. Since U*U is the projection onto initial U, 
f = U*Uf = U*f; so feker( 1 - U*) = ran( 1 - U) l. c [ ( 1 - U)Jt] l. = (0) by 
hypothesis. Thus f = 0 and 1 - U is injective. 

Let � =  ( 1  - U).A and define ( 1  - U) - 1 on �- Because 1 - U is bounded, 
gra ( 1  - U) - 1 is closed. If A is defined as in (3.3), it follows that A is a closed 
densely defined operator. Iff, ge�, let f = ( 1  - U)h and g = ( 1  - U)k, h, ke.A. 
Hence 

(Af, g ) = i( ( 1  + U)h, ( 1 - U)k ) 
= i[  ( h, k )  + ( Uh, k ) - ( h, Uk ) - ( Uh, Uk) ] .  

Since h, k e.A, ( Uh, Uk ) = ( h, k ); hence ( Af, g ) = i [  ( Uh, k ) - ( h, Uk ) ] .  
Similarly, (f, Ag ) = - i( ( 1 - U)h, ( 1  + U)k ) = - i[  ( h, Uk ) - ( Uh, k ) ] = 
( Af, g ). Hence A is symmetric. 

Finally, if he.A and f = ( 1  - U)h, then (A + i)f = Af + if = i( 1 + U)h + 
i( 1 - U)h = 2ih. Thus ran(A + i) = .A. Similarly, (A - i)f = i( 1 + U)h 
i( 1 - U)h = 2Uh, so that ran(A - i) = ran U = JV. 

(c) Suppose A is as in (a) and U is defined as in (3.2). If ge(1 - U)!l'� ,  
put g = ( 1 - U)h, where h e.!l':!:  = ran(A + i). Hence _ h  = (A +  i)f for some f 
in dom A. Thus g = h - Uh = (A + i)f - (A - i )f = 2if; so f = - � ig. 
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Also, 

i( 1 + U)( 1 - U) - 1 g = i( 1 + U)h 
= i[h + Uh] 
= i[(A + i)f + (A - i)f] 
= 2iAf 
= Ag. 

Therefore (3.3) holds. 
The proof of the remainder of (c) is left to the reader. 

I '  

• 

3.4. Definition. If A is a densely defined closed symmetric operator, the partial 
isometry U defined by (3.2) is called the Cayley transform of A. 

3.5. Corollary. If A is a self-adjoint operator and U is its Cayley transform, 
then U is a unitary operator with ker( 1  - U) = (0). Conversely, if U is a unitary 
with 1 �a p( U), then the operator A defined by (3.3) is self-adjoint. 

PROOF. If A is a densely defined ·symmetric operator, then A is self-adjoint 
if and only if !fl ± = (0). A partial isometry is a unitary operator if and only 
if its initial and final spaces are all of Je. This corollary is now seen to follow 
from Theorem 3. 1 .  • 

One use of the Cayley transform is to study self-adjoint operators by using 
the theory of unitary operators. Indeed, the preceding results say that there 
is a bijective correspondence between self-adjoint operators and the set of 
unitary operators without 1 as an eigenvalue. 

EXERCISES 
1 .  If U is a partial isometry, show that the following statements are equivalent: (a) 

ker ( 1 - U) = (0); (b) ker( 1 - U*) = (0); (c) ran( 1 - U) is dense; (d) ran( 1 - U*) is 
dense. 

2. Let U be a partial isometry with initial and final spaces .A and %, respectively. 
Show that the following statements are equivalent: (a) ( 1  - U).A is dense; (b) 
( 1 - U*)% is dense; (c) ker(U* - U* U) = (0); (d) ker(U - UU*) = (0). 

3. Find a partial isometry U such that ker ( 1  - U) = (0) but ( 1  - U) (ker U) j_ is not 
dense. 

4. If A is a densely defined closed symmetric operator and B and C are the operators 
defined in Exercises 1 . 1 1 and 1 . 1 2, then the Cayley transform of A is an extension 
of (C - iB)(C + iB) - 1 . 

5. Find the Cayley transform of the operator in Example 1 .9 when each tX" is real. 

6. Find the Cayley transform of the operator in Example 1 . 1 0  when l/J is real valued. 

7. Let S be the unilateral shift of multiplicity 1 (see Exercise IX.6.4) and find the 
symmetric operator A such that S is the Cayley transform of A. 
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8. Let U = S*, where S is the unilateral shift of multiplicity 1 .  Is U the Cayley 
transform of a symmetric op�rator A? If so, find it. 

§4. Unbounded Normal Operators and the 
Spectral Theorem 

If A is self-adjoint, the classical way to obtain the spectral decomposition of 
A is to let U be the Cayley transform of A, obtain the spectral decomposition 
of U, and then use the inverse Cayley transform to translate this back to a 
decomposition for A. There is a spectral theorem for unbounded normal 
operators, however, and the Cayley transform is not applicable here. 

In this section the approach is to prove the spectral theorem for normal 
operators by using that theorem for the bounded case. The spectral theorem 
for self-adjoint operators is then only a special case. 

4.1 .  Definition. A linear operator N on Jf is normal if N is closed, densely 
defined, and N* N = N N*. 

Note that the equation N*N = NN* that appears in Definition 4. 1 
implicitly carries the condition that dom N* N = dom N N*. The operators 
in Examples 1 .9 and 1 . 10 are normal and every self-adjoint operator is normal. 
Examining Example 1 .9 it is easy to see that for a normal operator it is not 
necessarily the case that dom N* N = dom N. 

Parts of the next result have appeared in various exercises in this chapter, 
but a complete proof is given here. 

4.2. Proposition. If A E�(Jf), then 

(a) 1 + A* A has a bounded inverse defined on all of Jf. 
(b) IfB = ( 1 + A*A) - \ then I I B I I � 1  and B � O. 
(c) The operator C = A(1  + A* A) - 1 is a contraction. 
(d) A* A is self-adjoint. 
(e) {h $ Ah: h edom A*A} is dense in gra A. 

PROOF. Define J: Jf (f) Jf -+  Jf (f) Jf by J(h (f) k) = ( - k) (f) h. By Lemma 1 .7, 
gra A* = [J gra A] .L. So if he.Yf, ther� are f in dom A and g in dom A* such 
that O$ h = J(f$ Af) + g$A*g = ( - A f)$ f + g<f)A*g. Hence 0 = - Af + g, 
or g = Af; also, h = f + A*g = f + A* Af = ( 1 + A* A)f Thus ran(1 + A* A) = Jf. 

Also, for f in dom A*A , Afedom A.* and l l f + A*Af l l 2 = l l f l l 2 + 
2 1 1 Af 1 1 2 + I I A* Af 1 1 2 � I I f 1 1 2 • Hence ker ( 1  + A* A) = (0). Thus ( 1  + A* A) - 1 
exists and is defined on all of Jf. In the next paragraph (the proof of (b) ) it 
will be shown that (1 + A* A) - 1 is a contraction, completing the proof of (a). 

It was shown that 1 1 ( 1 + A*A)f l l � ll f ll whenever fedom A*A. If 
h = ( 1  + A* A)f and B = ( 1  + A* A)- 1 , then this implies that I I Bh II � I I h 1 1 . 
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Hence I I  B I I  � 1 .  In addition, (Bh, h ) = (f, ( 1  + A*  A)f ) = I I  f I I  2 + I I  AY I I  2 � 0, 
so (b) holds. . 

' --

Put C = A( 1  + A*  A) - 1 = AB; if fedom A*  A and ( 1  + A*  A)f = h, then 
I I  Ch II 2 = II Af I I  2 � I I  ( 1  + A*  A)f I I  2 = I I  h I I  2 by the argument used to prove (a). 
Hence I I  C I I  � 1 ,  so (c) is proved. 

Now to prove (e). Since A is closed, it suffices to show that no nonzero 
vector in gra A is orthogonal to { h Ef) Ah: h E  dom A* A} .  So let g E dom A and 
suppose that for every h in dom A*  A, 

0 = ( g Ef) Ag, h Ef) Ah ) 
= ( g, h )  + ( Ag, Ah )  
= ( g, h ) + ( g, A *Ah ) 
= ( g, ( 1 + A*A)h ). 

So g l. ran ( 1  + A*  A) = .J'f; hence g = 0. 
To prove (d), note that (e) implies that dom A *  A is dense. Now let 

f, g edom A*A; so f, g edom A and Af, Ag edom A*. Hence ( A*Af, g )  = 
(Af, Ag )  = (f, A*Ag ). Thus A*A is symmetric. Also, 1 + A*A has a 
bounded inverse. This implies two things. First, 1 + A *  A is closed, and so 
A*  A is closed. Also, - 1 ¢a( A* A) so that by Corollary 2. 10, A*  A is self-adjoint. 

• 
4.3. Proposition. If N is a normal operator, then dom N = dom N* and 
II Nf I I = II N* f I I  for every f in dom N. 

PROOF. First observe that if hedom N*N = dom NN*, then Nhedom N* and 
N�hedom N. Hence 1 1 Nh i i 2 = ( N*Nh, h ) = ( NN*h, h ) = I I N*h l l 2 • Now if 
f edom N, (4.2e) implies that there is a sequence { hn } in dom N* N such that 
hn EB Nh,. --+ f EB N f; so II Nhn - N f I I --+ 0. But from the first part of this proof, 
I I  N*hn - N*hm I I  = I I  Nhn - Nhm 1 1 . So there is a g in .J'f such that N*hn --+ g. 
Thus hn Ef) N*hn --+ f Ef) g. But N* is closed; thus f edom N* and g = N* f. So 
dom N c dom N* and I l N/ II = lim i i Nhn l l = lim i i N*hn l l = I I N*f l l . 

On the other band, N* is normal (Why?), and so dom N* c dom N** = 
dom N. • 
4.4. Lemma. Let .J'f 1 , .J'f 2 , • . .  be Hilbert spaces and let An E �( .J'f n) for all n � 1 .  
If� =  { (hn) E ffin.J'fn: L::= 1 1 1 Anhn l l 2 < oo} and A is defined on .7f = EBn.J'fn by 
A(hn) = (Anhn) whenever (hn) E�, then A E�(.J'f). A is a normal operator if and 
only if each An is normal. 

PROOF. Since .Yfn c � for each n, � is dense in Jr. Clearly A is linear. If 
{ h<i> }  c dom A and h<i> Ef) Ah<i> --+ h Ef) g in .J'f Ef) .J'f, then for each n, 
h�> EB Anh�> --+ hn <fl On · Since An is bounded, Anhn = gn . Hence Ln I I  Ahn 1 1 2 = 
L: I I  gn I I  2 = I I  g I I  2 < oo; so h edom A.  Clearly Ah = g, so A E�(.Jr). 

It is left to the reader to show that dom A* = { (hn)E.J'f: :L:_ 1  I I  A: hn 1 1 2 < oo} 
and A *(hn) = (A:hn) when (hn) Edom A*. From this the rest of the lemma easily 
follows. • 
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lf (X, Q) is a measurable space and Jf is a Hilbert space, recall the definition 
of a spectral measure E for (X, n, Jf) (IX. l . l ). If h, k eJf, let Eh,k be the 
complex-valued measure given by Eh,k(L\) = < E(L\)h, k )  for each L\ in n. 

Let 4J: X -+ <C be an Q-measurable function and for each n let L\n = {x eX: 
n - 1 � 1 4J(x) l < n}. So XAn4J is a bounded n-measurable function. Put 
Jf n = E(L\n)Jf. Since U: 1 L\n = X and the sets { L\n } are pairwise disjoint, 
c:e:= 1 Jf n = Jf. If En(L\) = E(L\ n L\n), En is a spectral measure for (X, Q, Jf n). 
Also, J 4JdEn is a normal operator on Jfn. Define 

4.5 �q, = {h E-*': 
n�t 

(f cf>dEn )E(An)h 2 < oo} 
By Lemma 4.4, N c/J: Jf --+  Jf given by 

4.6 Nq,h = 
n�t 

(f cf>dEn )E(An)h 

for h in � c/J is a normal operator. The operator N c/J is also denoted by 

N q, = f cf>dE. 

4.7. Theorem. If E is a spectral measure for (X, Q, Jf), 4J: X -+ <C is an 
Q-measurable function, and � c/J and N c/J are defined as in ( 4.5) and ( 4.6), then: 

(a) �c/J = {h e.Yf: J I 4J I 2 dEh,h < oo}; 
(b) for h in � c/J and f in Jf, 4J EL 1 ( I Eh,f I ) with 

4.s fl c!> l d i Eh,J I � un (f1 4> 1 2 dEh.hY'2, 

4.9 

and 

( (J cf>dE )h, f) = f cf>dEh.J• 

( f cf>dE )h 2 = fi ef> 1 2 dEh.h · 

PRooF. Using the •-homomorphic properties associated with a spectral 
measure (IX. 1 . 1 2), one obtains 

From here, (a) is immediate. 
Now let h e�c/J' fe.Yt. By the Radon-Nikodym Theorem, there_ is an 

n-measurable function u such that l u i = 1 and IEh,f l = uEh ,f ' where 1 Eh,1 1 is 
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the variation for Eh,f · Let <Pn = L� = 1 XAk l/J; so <Pn is bounded, as is ul/Jn. Thus , . 
f I cPn l  d l Eh.J I  = f 1 cPn I udEh,J 

= \ (f l cPn l udE )h, f) 
� I I f I I ( f 1 cPn l udE )h . 

But 

(f l cPn l udE )h 
2 
= \ (f l cPn l udE )h, (f l �n l udE )h) 
= \ (f l c/Jn l 2 d£ )h, h) 
= f 1 c/Jn l 2 dEh,h 

� f I cP 1 2 dEh,h · 
' 

Combining this with the preceding inequality gives that J l l/Jn l d i Eh,f l � 
I I f I I (J 1 </J 1 2 dEh,h) 1 12 for all n. Letting n -+  oo gives (4.8). Since <Pn is bounded, 
( (J l/JndE)h, f ) = J l/JndEh,f· If he!!}q, and fe.Yt, then (4.8) and the Lebesgue 
Dominated Convergence Theorem imply that J l/JndEh,f -+ J l/JdEh,f as n -+  oo. 
But 

(f cPnaE )h = (f cfJdE )EC(J
l 
Aj )h 

= Ecu1 
t\i )(f c{JdE )h. 

Since E(U j= 1 L\ i) -+  E(X) = 1 (SOT) as n -+  oo, < (J l/JndE)h, f) -+ < (J l/JdE)h, f )  
as n -+  oo.  This proves (4.9). • 

Note that as a consequence of (4.7) dom N q, and the definition of N q, do 
not depend on the choice of the sets { L\n}, as would seem to be the case from 
(4.5) and (4.6). Also, by (4.7.a), E(L\)h e dom N t/J if h e dom N t/J ·  

4.10. Theorem. lf (X, O.) is a measurable space, Jt is a Hilbert space, and E is 
a spectral measure for (X, 0., Jt), let <I>( X, 0.) be the algebra of all 0.-measurable 
functions l/J: X -+  <C and define p: <I>( X, 0.) -+ �(.Yt) by p(l/J) = J l/JdE. Then for 
l/J, t/1 in <I>( X, 0.): 

(a) p( l/J )* = p( l/J ); 
(b) p( </Jt/1) => p( </J) p( t/1) and dom (p( </J) p( t/1))  = !!} "' n !!} t/>t/1 ; 
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(c) Ift/1 is bounded, p(4J)p(t/J) = p(t/J)p(4J) = p(4Jt/J); 
(d) p(4J)*p(4J) = p( I 4J I 2 ). 

The proof of this theorem is left as an exercise. 
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4.1 1 . The Spectral Theorem. If N is a normal operator on Jf, then there is a 
unique spectral measure E defined on the Borel subsets of ([ such that: 

(a) N = JzdE(z); 
(b) E(L\) = 0 if L\ f\ a(N) = D; 
(c) if U is an open subset of ([ and U f\ a(N) # 0, then E(U) # 0; 
(d) if A E�(Jf) such that AN c N A and AN* c N* A, then A(J 4JdE) c 

(J 4J dE) A for every Borel function 4J on CL. 

Before launching into the proof, a few words motivating the proof are 
appropriate. Suppose a spectral measure E defined on the Borel subsets 
of([ is given and let N = J zdE(z). It is not difficult to see that if O � a �  b < oo 
and L\ is the annulus {z: a � l z l � b}, then JfA = E(L\)Jf = {h edom N: 
hedom Nn for all n and an I I  h I I  � I I Nnh I I � bn I I  h I I } .  Jf A is a closed subspace 
of Jf that reduces N and N l Jf A is bounded. The idea behind the proof is 
to write ([ as the disjoint union of annuli { L\i} such that for each L\i there 
is a reducing subspace Jf Aj for N with Ni = N l Jf AJ bounded, and, moreover, 
such that Jf = Ef) iJf Aj · Once this is done the Spectral Theorem for bounded 
normal operators can be applied to each Ni and direct sums of these can be 
formed to obtain the spectral measure for N. 

So we would like to show that for the annulus {z: a �  l z l � b}, {h edom N: 
h edom Nn for all n and an I I  h I I � I I Nnh I I � bn I I  h I I } is a reducing subspace for 
N. To facilitate this, we will use the operator B = ( 1  + N* N) - 1 which is a 
positive contraction (4.2). To understand what is done below note that 
zr-+( 1 + 1 z l 2 ) - 1 maps ([ onto (0, 1] and a � l z l � b  if and only if 
( 1  + a2) - l � ( 1  + l z l 2 ) - 1 � ( 1  + b2) - t . 

4.12. Lemma. If N is a normal operator, B = ( 1  + N*N) - 1 , and C = 
N( 1 + N*N) - 1 , then BC = CB and ( 1  + N*N) - 1N c C. 

PROOF. From (4.2), B and C are contractions and B � 0. It will first be shown 
that ( 1  + N*N) - 1N c C; that is, BN c NB. If fedom BN, then fedom N. 
Let g edom N*N such that f = ( 1 + N*N)g. Then N*Ng edom N; hence 
Ng edom NN* = dom N*N. Thus Nf = Ng + NN*Ng = ( 1  + N*N)Ng. 
Therefore BNf = B( 1 + N*N)Ng = Ng. But NBf = Ng, so BN = NB on 
dom N. Thus BN c N B. 

If h eJf, let fedom N*N such that h = ( 1 + N*N)f. So BCh = BNBh = 
BNf = NBf = NBBh = CBh. Hence BC = CB. • 

4.13. Lemma. With the same notation as in Lemma 4. 1 2, if B = J tdP(t) is its 
spectral representation, 1 > � > 0, and A is a Borel subset of [�, 1], then 
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Jt A = P(�)Je c dom N, eYe A is invariant for both N and N*, and N I eYe A is a 
bounded normal operator with I I N I JI?A I I � [ ( 1 - £5)/£5] 1 12 • 

· 

PROOF. If h eeY'eA, then because P(�) = XA(B), I I Bh i i 2 = ( B2P(�)h, h ) = 
JAt2 dPh,h � £52 I I  h I I  2• So B l eYe A is invertible and there is a g in eYe A such that 
h = Bg. But ran B = dom( 1  + N*N) c dom N. Hence hedom N; that is, 
JtA c dom N. 

Let he  eYe A and again let g e eYe A such that h = Bg. Hence Nh = N Bg = Cg. 
By Lemma 4. 1 2, BC = CB; so by (IX.2.2), P(�)C = CP(�). Since g eeY'e A' 
Nh = CgeJe A· Note that if M = N* and B1 = ( 1  + M* M) - 1 , then B1 = B. 
From the preceding argument N* eYe A = M eYe A c eYe A· It easily follows that 
N I JI?A is normal. 

Finally, if h eeY'eA, then 

1 1 Nh l l 2 = ( N*Nh, h ) 

= ( [(N* N + 1 ) - 1]h, h )  

= r (t - 1 - l )dPh,h(t) � I I  h 1 1 2 ( 1  - t5)/t5. 

Hence I I  N I eYe A I I  � [ ( 1  - £5)/£5] 1 12 • • 

PROOF OF THE SPECTRAL THEOREM. Let B = ( 1 + N*N) - 1 and C = N( 1 + 
N*N) - 1 as in Lemma 4. 1 2. Let B = J� tdP(t) be the spectral decomposition 
of B and put Pn = P( 1/(n + 1 ), 1 /n] for n � 1 .  Since ker B = (0) = P( {0} )eYe, 
L: 1Pn = 1 .  Let Jl?n = PnJe. By Lemma 4. 1 3, Jen c dom N, Jen reduces N, 
and Nn = N l eYe n is bounded normal operator with I I Nn I I  � n1 12 • Also, if h e  eYe n' 
( 1  + N: N n)Bh = B(1 + N: N n)h = h; that is, 

B I JI?n = ( 1  + N: Nn) - 1 • 

Thus if A. ea(Nn), ( 1  + I A. I 2 ) - 1 ea(B I JI?n) c [1/(n + 1 ), 1/n] . Thus a(Nn) c 
{z e([: (n - 1) 1 12 � l z l � n 1 12 } = �n· Let Nn = JzdEn(z) be the spectral 
decomposition of Nn. For any Borel subset � of ([, let £(�) be defined by 

00 

4.14 £(�) = L En(�(\ �n). 
n = 1 

Note that En (� n�n) is a projection with range in Jen. Since Jen l. Jem for 
n #= m, (4. 14) defines a projection in �(eYe). (Technically £(�) should be defined 
by E(�) = L: 1 En(� n�n)Pn . But this technicality does not add anything to 
understanding.) 

Now to show that E is a spectral measure. Clearly £(([) = 1 and E(D) = 0. 
If A1 and A2 are Borel subsets of ([, then 

00 

E(A1 rl A2) = L En(A1 rl A2 rl �n) 
n = 1 

00 

= L En(Al rl �n)En(A2 rl �n). 
n = t 
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Again, the fact that the spaces { .Jrn } are pairwise orthogonal implies 

E(A 1 n A2 ) = (f
1 
En(A 1 n l\") )(f

1 
E"(A2 n l\")) 

= E(A1 )E(A2 ). 
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If he.Yt, then ( E(�)h, h ) = 'L: 1 ( En(�rl�n)h, h ) . So if {Ai }j 1 are 
pairwise disjoint Borel sets, 

00 00 

= L L ( En(Ajrl �n)h, h ). 
n = 1 j= 1 

Since each term in this double summation is non-negative, the order of 
summation can be reversed. Thus 

00 

= L ( E(Aj)h, h ) . 
j= 1 

So E(U j 1 Ai) = 'Lj 1 E(Ai); therefore E is a spectral measure. 
Let M = J z dE(z) be defined as in Theorem 4. 7. Thus Jtn c dom M and 

by the Spectral Theorem for bounded operators, Mh = Nnh = Nh if he.Jrn. 
If h is any vec�or in dom M, h = 'Lf hn , hnE.Yfn, and 'Lf I I  Nhn 1 1 2 < oo. Because 
N is closed, hedom N and Nh = Mh. Thus M c N. To prove the other 
inclusion, note that M is a closed operator by Lemma 4.4. Thus, by (4.2.e), 
it suffices to show that { h Ef) Nh: hedom N* N} c gra M. If hedom N* N, 
there is a vector g such that h = Bg. Then PnNh = PnNBg = PnCg = CPng 
(Why?) = NPnh. If hn = Pnh, then L I I  Nhn 1 1 2 = L I I  PnNh 1 1 2 = II Nh 1 1 2 < 00 . 
Therefore hedom M and so, by the preceding argument, Nh = Mh. That is, 
h Ef) Nhegra M. This proves (a). 

4.15. Claim. u(N) = c{ nq u(Nn) J . 
It is left to the reader to show that U: 1 a(N n) c a(N). Since a(N) is closed, 

this proves half of (4. 1 5). If A.¢cl [U: 1 a(Nn)J, then there is a � > 0 such that 
l A. - z l � � for all z in U: 1 a(Nn). Thus (Nn - A.) - 1 exists and 
II (Nn - A.) - 1 1 1  � � - 1 for all n. Thus A =  Ee:- 1  (Nn - A.) - 1 is a bounded 
operator. It follows that A =  (N - A.) - 1 , so A.¢a(N). 

By (4. 1 5) if � rl a(N) = 0, � rl a(Nn) = D for all n. Thus En(�) = 0 for all 
n. Hence E(�) = 0 and (b) holds. 

If U is open and U f\ a(N) :#= 0, then (4. 1 5) implies U f\ a(Nn) :¢= D for 
some n. Since En(U) :#= 0, E(U) :#= 0 and (c) is true. 
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Now let A e8l(.J'f) such that AN c N A and AN* c N* A. Thus 
A( 1  + N* N) c ( 1  + N* N)A. It follows that AB = BA. By the Spectral 
Theorem for bounded operators, A commutes with the spectral projections 
of B. In particular, each .J'fn reduces A and if An = A I .J'fn , then AnNn = NnAn. 
Hence AnEn(A) = En(A)An for every Borel set A contained in An . It follows 
that AE(A) = E(A)A for every Borel set A. The remaining details of the proof 
of (d) are left to the reader. • 

The Fuglede-Putnam Theorem holds for unbounded normal operators 
(Exercise 8), so that the hypothesis in part (d) of the Spectral Theorem can 
be weakened to AN c N A. 

4.16. Definition. If N is a normal operator on .J'f, then a vector e0 is a 
star-cyclic vector for N iff or all non-negative integers k and 1, e0edom(N*k N1) 
and .J'f = V { N*

k N1e0 : k, 1 � 0} . 

4.17. Example. Let It be a finite measure on cr such that every polynomial 
in z and z belongs to L2(J,t) and the collection of such polynomials is dense 
in L2(J,t). Let !!}11 = {f eL2(J,t) : zf eL2 (J,t) } and define N 11f = zf for f in !!}11• Then 
N,., is a normal operator and 1 is a star-cyclic vector for N,., . 

Note that d�t(z) = e - lz l d  Area(z) is a measure satisfying the conditions of 
(4. 1 7). 

4.18. Theorem. If N is a normal operator on .J'f with a star-cyclic vector e0 , 
then there is a finite measure It on cr such that every polynomial in z and z 
belongs to L2 (J,t) and there is an isomorphism W: .J'f --+  L2(J,t) such that We0 = 1 
and WNW- 1 = N 11• 

The proof of Theorem 4. 1 8  can be accomplished by using the Spectral 
Theorem to write N as the direct sum (in the sense of Lemma 4.4) of bounded 
normal operators Nn on .J'fn with spectral measures that are pairwise mutually 
singular and such that each N n has en , the projection of e0 onto .J'fn, as a 

*-cyclic vector. If Jln = Ee",e" ' then (IX.3 .4) implies that there is an isomorphism 
Wn: .J'fn -+ L2(1tn) such that WnNn W; 1 = N11" . If W = Ef) � Wn, then W is an 
isomorphism of .J'f onto Ef) � L2 (�tn). But the fact that the measures ltn 
are pairwise mutually singular implies that Ef) � L2(�tn) = L2(J,t), where 
It =  'L: 1 /tn = Eeo,eo · Clearly WNW- 1 = N11• 

4.19. Theorem. If N is a normal operator on the separable Hilbert space .J'f, 
then there is a a-finite measure space (X, Q, J,t) and an Q-measurable function 
l/J such that N is unitarily equivalent to M q, on L2 (J,t). 

The proof of Theorem 4. 19 is only sketched. Write N as the (unbounded) 
direct sum of bounded normal operators {Nn } · By Theorem IX.4.6, there is 
a u-finite measure space (X n ' On , Jln ) and a bounded On-measurable function 
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4Jn such that Nn ""-� Mq,"· Let X =  the disjoint union of {Xn } and let 
'1 =  {i\ c X: i\ f\ Xnenn for every n} . If i\en, let Jl(L\) = LfJln(L\ f\Xn)· Let 
4J: X --+  cc be defined by 4J(x) = 4Jn(x) if XEX n · Then 4J is n-measurable and 
N ""-� Mq, on L2(X, n, Jl). 

EXERCISES 
1 .  Prove Theorem 4. 1 0. 

2. Show that if A is a symmetric operator that is normal, then A is self-adjoint. 

3. Wi�h the notation of Theorem 4. 7, show that for h in !!} t/1' I I (J </J dE)h 1 1 2 = J I </J 1 2 dE,.,,.. 

4. Using the notation of Theorem 4. 1 0, what is u(J </J dE)? 

5. If An and En are as in the proof of the Spectral Theorem, show that En(An + 1 ) = 
En(An - 1 ) = 0. 

6. Use the Spectral Theorem to show that if 0 < a �  b < oo, A =  {ze<C: a �  l z l � b}, 
and N = J z dE(z) is the spectral decomposition of the normal operator N, then 
E(A)Jf = {hedom N: a" II h II � I I Nnh I I � b" I I h I I for all n � 1 } .  

7 .  State and prove a polar decomposition for operators in �(Jf, %). 

8. If A is self-adjoint, prove that exp(iA) is unitary. 

9. (Fuglede-Putnam Theorem.) If N, M are normal operators and A is a bounded 
operator such that AN c M A, then AN* £ M* A. 

10. Prove Theorem 4. 1 8. 

1 1 . If p1 , p2 are finite measures on <C and N 11 1 , N 112 are defined as in Example 4. 1 7, 
show that N 11 1  � N 112 iff [Jll ] = [Jl2 ]. 

1 2. Fill in the details of the proof of Theorem 4. 19. 

§5. Stone's Theorem 

If A is a self-adjoint operator on Jt, then exp(iA) is a unitary operator 
(Exercise 4.7). Hence U(t) = exp (itA) is unitary for all t in R. The purpose 
of this section is not to investigate the individual operators exp(itA), but 
rather the entire collection of operators { exp(itA): t eR} . In fact, as the first 
theorem spows, U: R --+  unitaries on · Jt is a group homomorphism with 
certain properties. Stone's Theorem provides a converse to this; every such 
homomorphism arises in this way. 

5.1.  Theorem. If A is self-adjoint and U(t) = exp(itA) for t in R, then 

(a) U(t) is unitary; 
(b) U(s + t) = U(s) U(t) for all s in R; 
(c) if he.Te, then lims .... , U(s)h = U(t)h; 
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(d) if hedom A, then 

5.2 lim � [U(t)h - h] = iAh; 
t-+0 t 

(e) if he.Yf and lim t-+o t- 1 [U(t)h - h] exists, then hedom A. Consequently, 
dom A is invariant under each U(t). 

PRooF. As was mentioned, part (a) is an exercise. Since exp (itx)exp (isx) = 
exp(i(s + t)x) for all x in JR, (b) is a consequence of the functional calculus 
for normal operators [(4. 10) and (4. 1 1 ) ] .  Also note that U(O)U(t) = U(t), so 
that U(O) = 1 .  

(c) If he.Yf, then I I  U(t)h - U(s)h I I  = I I  U(t - s + s)h - U(s)h I I  = [by (b)] 
II U(s) [U(t - s)h - h] I I = II U(t - s)h - h I I since U(s) is unitary. Thus (c) will 
be shown if it is proved that II U(t)h - h I I -+ 0 as t -+  0. If A =  J: oo x dE(x) is 
the spectral decomposition of A, then 

I I  U(t)h - h 1 1 2 = f: oo I eit.x - 1 1 2 dEh,h(x). 

Now Eh,h is a finite measure on JR; for each x in JR, I eirx - 1 1 2 -+ 0 as t -+  0; 
and l eitx - 1 1 2 � 4. So the Lebesgue Dominated Convergence Theorem 
implies that U(t)h -+ h  as t -+ 0. 

(d) Note that t - 1 [U(t) - 1] - iA = fr(A), where fr(x) = t- 1 [exp (itx) - 1] 
ix. So if hedom A, 

2 1 
- [U(t)h - h] - iAh = I I fr(A)h II 2 
t 

foo eitx - 1 2 
= 

_ 
oo t 

- ix dEh,h (x). 

As t -+0, t - 1 [eitx - 1] - ix -+ 0 for all x in JR. Also, l eis - 1 1 � l s i for all real 
numbers s (Why?), hence l ft(x) l � I  t l - 1 l eitx - 1 1 + l x l � 2 1 x l . But l x l eL2 (Eh,h) 
by Theorem 4.7(a). So again the Lebesgue Dominated Convergence Theorem 
implies that (5.2) is true. 

(e) Let !!} = { he.Yf : limt-+o  t - 1 [U(t)h - h] exists in .Yf}. For h in !!}, let Bh 
be defined by 

Bh = - i lim 
U(t)h - h

. 
t-+0 t 

It is easy to see that � is a linear manifold in Jf and B is linear on !!}. Also, 
by (d), B => A  so that B is densely defined. Moreover, if h, ge!!}, then 

. ( U(t)h - h ) 
< Bh, g )  = - i hm , g . 

t-+0 t 
By (b) and the fact that each U(t) is unitary, it follows that U(t)* = U(t) - 1 = 
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U( - t). Hence 

( Bh, g ) = - i lim I h, U( - t)g - g) 
t-+0 \ t 

= lim I h, - i [U( - t)g - g]) 
t-+0 \ - t 

= ( h, Bg ). 
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Hence B is a symmetric extension of A. Since self-adjoint operators are 
maximal symmetric operators (2. 1 1 ), B = A and � = dom A. • 

The following definition is inspired by the preceding theorem. 

5.3. Definition. A strongly continuous one parameter unitary group is a 
function U: JR -+ gfJ(Jf') such that for all s and t in JR.: (a) U(t) is a unitary 
operator; (b) U(s + t) = U(s)U(t); (c) if heJf' and t0e1R, then U(t)h -+ U(t0)h 
as t -+  t0 . 

Note that by Theorem 5. 1 ,  if A is self-adjoint, then U(t) = exp(itA) defines 
a strongly continuous one parameter unitary group. 

Also, U(O) = 1 and U( - t) = U(t) - 1 , so that { U(t): teJR} is indeed a group. 
Property (c) also implies that U: JR.-+ (gfJ(Jf'), SOT) is COQtinuous. By Exercise 
1 ,  if U is only assumed to be WOT-continuous, then u · is SOT-continuous. 
However, this condition can be relaxed even further as the following result 
of von Neumann [ 1932] shows. 

5.4. Theorem. If Jf' is separable, U: JR. -+gfJ(Jf') satisfies conditions (a) and (b) 
of Definition 5.3, and iffor all h, g in Jf' the function tt--+ (U(t)h, g )  is Lebesgue 
measurable, then U is a strongly continuous one-parameter unitary group. 
PROOF. IfO < a <  oo and h, geJf', then tt--+ (U(t)h, g )  is a bounded measurable 
function on [0, a] and hence 

J: I ( U(t)h, g ) i dt � a l l h l l l l u l l · 
Thus 

h� I: <,U(t)h, g )dt 

is a bounded linear function on Jf'. Therefore there is a ga in Jf' such that 

5.5 (h, g0 ) = J: (U(t)h, g )dt 

Claim. {ga: geJf', a >  0} is total in Je. 
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In fact, suppose heJt and h l_  {ga: geJt, a >  0} . Then by (5.5), for every 
a >  0 and every g in Jt, 

0 = I: (U(t)h, g)dt. 

Thus for every g in Jt, (U(t)h, g )  = 0 a.e. on R. Because Jt is separable 
there is a subset A of R having measure zero such that if t¢A, ( U(t)h, g )  = 0 
whenever g belongs to a preselected countable dense subset of Jt. Thus 
U(t)h = 0 if t¢A. But II h I I  = I I U(t)h I I , so h = 0 and the claim is established. 

Now if seR, 
(h, U(s)ga ) = ( U( - s)h, ga ) 

= J: (U(t - s)h, g )dt 

= r�· < U(t)h. g )dt. 

Thus (h, U(s)ga ) -+  (h, ga ) as s -+0. By the claim and the fact that the group 
is uniformly bounded, U: R -+(gfJ(Jt), WOT) is continuous at 0. By the group 
property, U: R -+(gfJ(Jt), WOT) is continuous. Hence U is SOT-continuous 
(Exercise 1 ). • 

We now turn our attention to the principal result of this section, Stone's 
Theorem, which states that the converse of Theorem 5. 1 is valid. Note that 
if U(t) = exp (itA) for a self-adjoint operator A, then part (d) of Theorem 
5. 1 instructs us how to recapture A. This is the route followed in the proof 
of Stone's Theorem, proved in Stone [ 1932]. 

5.6. Stone's Theorem. If U is a strongly continuous one parameter unitary 
group, then there is a self-adjoint operator A such that U(t) = exp (itA). 
PROOF. Begin by defining � to be the set of all vectors h in Jt such that 
limt .... o t - 1 [U(t)h - h] exists; since Oe�, � # 0. Clearly � is a linear manifold 
in Jt. 

5.7. Claim. � is dense in Jt. 

Let 2 = all continuous functions ljJ on R such that ljJeL1(0, oo). Hence 
for any h in Je, tt--+l/J(t)U(t)h is a continuous function of R into Jt. Because 
II U(t)h I I  = I I h II for all t, a Riemann integral, Joo l/J(t)U(t)hdt, can be defined 
and is a vector in Jt. Put 

0 

5.8 Tt/>h = {" f/J(t)U(t)hdt. 

I t  is easy to see that T<P: Je -+  Je is linear and bounded with II T<P II � J; I l/>(t) l dt. 
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Similarly, for each ljJ in 2 

5.9 Sq,h = Loo f/J(t)U(- t)hdt 

defines a bounded operator on Je. 
For any ljJ in 2 and t in R, 

Similarly, 

U(t)Tq,h = U(t) Loo f/J(s)U(s)hds 

= Loo f/J(s)U(t + s)hds 

= i oo f/J(s - t)U(s)hds. 

U(t)Sq,h = I: f/J(s + t)U( - s)hds. 
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Now let 2° > = all ljJ in 2 that are continuously differentiable with l/J' in 
2. For ljJ in 2° >, 

- �[U(t) - 1] Tq,h = - � Joo f/J(s - t)U(s)hds + � Joo f/J(s)U(s)hds t t t t 0 

= - i ioo [ f/J(s - t� - f/J(s) J U(s)hds + � L f/J(s)U(s)hds. 

Now 

{ [ f/J(s - t� - f/J(s)Ju(s)hds � l l h l l  sup { lf/J(s - t) - l/J(s)I : O � s � 1 }  � o  

as t � 0. Hence 

lim f oo [ l/J(s - t) - l/J(s)J U(s)hds = - f oo f/J'(s)U(s)hds 
t-+0 t t 0 

= - Tq,,h. 
Since s�---+ ljJ(s)U(s)h is continuous and U(O) = 1, the Fundamental Theorem 
of Calculus implies that 

1 i t 
lim - l/J(s)U(s)h ds = l/J(O)h. 
t-+ 0 t 0 

Hence for ljJ in 2< 1 > and h in £, 
. 

5.10 
l 

lim - - [U(t) - l] Tq,h = iTq,,h + il/J(O)h. 
t-+0 t 
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Similarly, for ljJ in 2'< 1 > and h in Je, 
. 

5.1 1  
l 

lim - - [U(t) - 1]Sq,h = - iSq,,h - il/J(O)h. 
t-+ 0 t 

So (5 . 10) implies that 

� � { Tq,h: l/Je2'0> and heJe}. 

But for every positive integer n there is a l/Jn in 2'< 1 > such that l/Jn � 0, l/Jn(t) = 0 
for t � 1/n, and J; l/Jn(t)dt = 1 (Exercise 2). Hence 

Tq,nh - h = tl /n 
1/>n(t)[U(t) - 1]hdt 

' 
and so I I  Tq,"h - h I I  � sup { I I  U(t)h - h I I : o � t � 1/n} . Therefore I I Tq,"h - h I I  --+ o 
as n --+  oo since U is strongly continuous. This says that � is dense. 

For h in �, define 

5.12 Ah = - i lim ! [U(t) - 1]h. 
t-+ 0 t 

5.13. Claim. A is symmetric. 

The proof of this is left to the reader. 
By (2.2c), A is closable; also denote the closure of A by A. According to 

Corollary 2.9, to prove that A is self-adjoint it suffices to prove that 
ker(A * + i) = (0). Equivalently, it suffices to show that ran(A + i) is dense. It 
will be shown that there are operators B±  such that (A + i)B ± = 1 ,  so that 
A + i is surjective. 

Notice that according to (5. 10), 

(A + i)Tq, = A  Tq, + iTq, = i(Tq,' + Tq,) + il/J(O). 

So taking l/J(t) = - ie- 1 , (A + i)Tq, = 1 .  According to (5. 1 1 ), 

(A - i)S"' = AS"' - iS"' = - i(St/1' + S"') - it/1(0). 

Taking t/J(t) = ie - 1 , (A - i)S"' = 1 .  Hence A is self-adjoint. 
Put V(t) = exp (iAt). It remains to show that V = U. Let he�. By Theorem 

5. 1 (d), 

s - 1 [V(t + s) - V(t)]h = s - 1 [V(s) - 1] V(t)h --+ iA V(t)h; 

that is, V'(t)h = iA V(t)h. Similarly, 

s - 1 [ U(t + s) - U(t)]h = s - 1 [ U(s) - 1] U(t)h --+ iA U(t)h. 

So if h(t) = U(t)h - V(t)h, then h: R --+  Je is differentiable and 

h'(t) = iA U(t)h - iA V(t)h = iAh(t). 
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But 

!!_ II h(t) 1 1 2 = < h'(t), h(t) ) + < h(t), h'(t) ) dt 
= ( iAh(t), h(t) ) + (h(t), iAh(t) ) . 
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Thus (d/dt) I I h(t) 1 1 2 = 0 and so I I h I I : R --+  R is a constant function. But h(O) = 0, 
so h(t) = 0. This says that U(t)h = V(t)h for all h in � and all t in R. Since 
� is dense, U = V. • 

5.14. Definition. If U is a strongly continuous one parameter unitary group, 
then the self-adjoint operator A such that U(t) = exp(itA) is called the 
infinitesimal generator of U. 

By virtue of Stone's Theorem and Theorem 5. 1 ,  there is a one-to-one 
correspondence between self-adjoint operators and strongly continuous 
one-parameter unitary groups. Thus, it should be possible to characterize 
certain properties of a group in terms of its infinitesimal generator and vice 
versa. For example, suppose the infinitesimal generator is bounded; what 
can be said about the group? (Also see Exercise 6.) 

5.15. Proposition. If U is a strongly continuous one parameter unitary group 
with infinitesimal generator A, then A is bounded if and only if 
limt .... o I I U(t) - 1 1 1 = 0. 

PROOF. First assume that A is bounded. Hence I I U(t) - 1 1 1 = I I exp(itA) - 1 1 1 = 

sup { l eitx - 1 1 : xeu(A) } --+ 0  as t --+0  since u(A) is compact. 
Now assume that II U(t) - 1 1 1 --+ 0 as t --+  0. Let 0 < e < n/4; then there is a 

t0 > 0 such that I I U(t) - 1 1 1 < e for I t l < t0• Since U(t) - 1 = fa<A>(eixt - 1 )dE(t), 
sup { I eixt - 1 1 : xeu(A) } = I I U(t) - 1 1 1 < e for I t l  < t0• Thus for a small �' 
txe U: _ 00 (2nn - �, 2nn + �) = G whenever xeu(A) and l t l < t0 •  In fact, if 
e is chosen sufficiently small, then � is small enough that the intervals 
{ (2nn - �' 2nn + �) } are the components of G. If xeu(A), { tx: 0 � t < t0} is 
the interval from 0 to t0x and is contained in G. Hence txe(- �' �) for x in 
a( A) and I t  I < t0• In particular, t0u(A) c [ - �' �] so a( A) is compact and A 
is bounded. • 

Let p, be a positive measure on R and let All! = xffor f in � ll = {! e L2(p,): 
xf eL2 (p,) } .  We have already seen that All is self-adjoint. Clearly 
exp(itAil) = Met on L2(R), where e1 is the function e1(x) = exp(itx). This can 
be generalized a bit. 

5.16. Proposition. Let (X, !l, p,) be a u-finite measure space and let ljJ be a 
real-valued !l-measurable function on X. If A =  Mq, on L2(p,) and 
U(t) = exp(itA), then U(t) = Met' where et(x) = exp (itlj>(x)). 
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Since each self-adjoint operator on a separable Hilbert space can be 
represented as a multiplication operator (Theorem 4. 19), the preceding 
proposition gives a representation of all strongly continuous one parameter 

. semtgroups. 

EXERCISES 
1 .  If U: :R -+ Bl(Jf) is such that U(t) is unitary for all t, U(s + t) = U(s)U(t) for all s, 

t, and U: 1R -+ (Bl(.tf), WOT) is continuous, then U is SOT-continuous. 

2. Show that for every integer n there is a continuously differentiable function 4>n 
such that both 4>n and 4>�eL1(0, oo ), 4>n(t) = 0 if t � 1/n, and J; 4>n(t)dt = 1 .  

3. Prove Claim 5. 1 3. 

4. Adopt the notation from the proof of Stone's Theorem. Let 4>, 1/Je.!l' and show: 
(a) r: = S ;p; (b) Tq, T"' = TcP.t/1 and S t�>St/1 = S cP·t/1; (c) TePA c A Tq,. 

5. Let U be a strongly continuous one parameter unitary group with infinitesimal 
generator A. Suppose e is a nonzero vector in Jf such that Ae = A.e. What is U(t)e? 
Conversely, suppose there is a nonzero t such that U(t) has an eigenvector. What 
can be said about A? U(s)? 

6. (This exercise is designed to give another proof of Proposition 5. 1 5  as well as give 
additional information. My thanks to R.B. Burckel for pointing this out to me.) 
Let U be a strongly continuous one- parameter unitary group with infinitesimal 
generator A. Show that if II U(t) - 1 1 1 -+ 0  as t -+ 0, then as t-+0, t - 1 J: + t  U(s)ds-+ U(a) 
in norm. From here show that as t -+0, t - 1 [U(t) - 1] has a norm limit, and hence 
A is a bounded operator since it is the norm limit of bounded operators. 

§6. The Fourier Transform and Differentiation 

Perhaps the best way to begin this section is by examining an example. 

6.1. Example. Let � = {feL2(R): f is absolutely continuous on every 
bounded interval in R and f'eL2(R)} .  For f in �' let Af = if'. Then A is 
self-adjoint. 

First let's show that A is symmetric. Iff e�, note that f(x) -+ 0 as x -+  + oo 
since f and f'eL2(R). So if f, ge�, 0 < a <  oo, 

ir
a 
f'(x)g(x)dx = i[f(a)g(a) - f( - a)g( - a)] - i r a 

f(x)g'(x)dx . 

Hence (Af, g )  = (f, Ag )  and A is symmetric. 
Now let gedom A* and for 0 < a <  oo let �a = {! e�: f(x) = 0 for l x l � a} . 

The proof that gedom A follows the lines of the argument used in 
Example 1 . 1 1 .  In fact, let h = A*g. So if jeP}, then J f(x)h(x)dx = 
i J f'(x)g(x)dx. Let H(x) = J� h(t) dt. Then using integration by parts we get that 
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for f in �a' 

f a 
fh = H(a)f(a) - H( - a)f( - a) - f a 

f'H 

= - fa 
j'H. 

- a 
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Therefore fa f'[H - (zg)] = 0 for every f in �a· As in ( 1 . 1 1 ), it follows that 
H - ig is co�stant on [ - a, a] and g is absolutely continuous. Moreover, 
0 = H' - ig' = h - ig'; hence A*g = h = ig'. Thus ge� and A is self-adjoint. 

If A is the differentiation operator in Example 6. 1 ,  what is the group 
U(t) = exp (itA)? Since A is not represented as a multiplication operator, 
Proposition 5. 1 6  cannot be applied. One could proceed to try and discover 
the spectral measure for A. Since A =  J xdE(x), U(t) = J eitxdE(x). Or one could 
be clever. 

Later in this section it will be shown that if !#': L2(R) � L2(R) is the 
Fourier-Plancherel transform, then !#' is a unitary operator (6. 1 7) and 
!#' - 1 A!F = the operator on L2(R) of multiplication by the independent 
variable (6. 1 8). Thus !#' - 1 U(t)!F is multiplication by eixt. But it is possible 
to find U( t) directly. 

Recall that if f edom A, 

So 

Af= - i lim 
U(t)f - f_ t-+0 t 

f'(x) = lim _ 
(U(t)f)(x) - f(x) . 

t-+0 t 
Being clever, one might guess that (U(t)f)(x) = f(x - t). 

6.2. Theorem. If A and � are as in Example 6. 1 and U(t) = exp(itA), then 
(U(t)f)(x) = f(x - t) for all f in L2(R) and x, t in R. 

PROOF. Let ( V(t)f)(x) = f(x - t). It is easy to see that V is a strongly continuous 
one parameter unitary group. Let B be the infinitesimal generator of V. It 
must be shown that B = A. 

Note that f edom B if and only if lim,-+0 t - 1(V(t)f - f) exists. Let 
f e C� l )(R); that is, f is continuously differentiable and has compact support. 
Thus for t > 0, · 

and 

[ V(t)f - f] (x) =f(x - t) - f(x) = _ ! fx f'(y)dy t t t x - t 

V(t)f(x) - f(x) + f'(x) � !fx lf'(x) - f'( y) ldy t t x - t 
� sup { lf'(x) - f'(y) l : l x - Y l � t} . 
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Because f' is continuous with compact support, f' is uniformly continuous. 
Let K = { x: dist (x, spt f') � 2} . So K is compact. For e > 0, let �(e) < 1 be 
such that if lx - Yl < �(e), then I f'(x) - f'( y)l < e. Hence ll t - 1 [Vf - f] + f' l l 2 � 
e2 I K I , where I K I = the Lebesgue measure of K. Thus C�0(R) c dom B and 
Bf = Affor f in C�0(lR). But if f edom A, there is a sequence {fn} c C�0(R) 
such thatfn�Afn--+ f�Afin gra A (Exercise 1 ). Butfn�Afn = fn�Bfnegra B, 
so f � Af egra B; that is, A c B. Since self-adjoint operators are maximal 
symmetric operators (2. 1 1 ), A = B. • 

To show that the Fourier transform demonstrates that Mx and idjdx are 
unitarily equivalent, we introduce the Schwartz space of rapidly decreasing 
functions. 

6.3. Definition. A function l/J: R --+  R is rapidly decreasing if ljJ is infinitely 
differentiable and for all integers m, n � 0, 

6.4 l l l/J l l m,n = sup { I xmljJ<n>(x)l : xeR} < 00 .  

Let f/ = f/(R) be the set of all rapidly decreasing functions on R. 
Note that if l/Jef/, then for all m, n � 0 there is a constant Cm n such that 

' 

l l!J<n>(x) I � cm,n I X 1 - m. 

Thus if p is any polynomial and n � 0, l p(x)ljJ<n>(x) l --+ 0  as l x l --+ oo. In fact, 
this is equivalent to l/J belonging to f/ (Exercise 3). Also note that if ljJef/, 
then xmljJ<n>ef/ for all m, n � 0. 

It is not difficult to see that l l · l l m,n is a seminorm on !/. Also, f/ with all 
of these semi norms is a Frechet space (Exercise 2). The space f/ is sometimes 
called the Schwartz space after Laurent Schwartz. 

6.5. Proposition. If 1 � p � oo ,  f/ c LP(R). If 1 � p < oo, f/ is dense in IJ'(R); 
f/ is weak-star dense in L 00{R). 
PROOF. We already have that f/ c L00{R). If 1 � p < oo and l/Jef/, then 

f�oo l <f> IPdx = f�oo 
( l  + x2) - P( l  + x2)P I <f> I Pdx 

� 1 1 ( 1  + x2)P I <f> IP I I oo J�oo ( l  + x2) - Pdx. 

l l l/J l i P � 1t 1 1P I I  ( 1  + X2)l/J I I oo 
� n 1 1P[ l l l/J I I  o ,o + l l l/J l l 2 ,oJ · 

Since c�oo>(R) c f/, the density statements are immediate. • 
...... 6.6. Definition. Iff e L 1 (IR), the Fourier transform off is the function f defined 
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by .... 1 i . f(x) = f(t)e - zxt dt. 
fo R 

Because f eL1 (R), this integral is well defined. 
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The interested reader may want to peruse §VII.9, where the Fourier 
transform is presented in the more general context of locally compact abelian 
groups. That section will not be assumed here. 

Recall that if f, geL\ then the convolution of f and g, 

f •g(x) = (211 r 1 12 JR 
f(x - t)g(t)dt, 

belongs to L1(R) and I I  f * g I I  1 � I I  f I I  1 I I  g I I  1 if the norm of a function f in 
L1(R) is defined as I I f I I 1 = (2n) - 1 12 J lf(x) ldx. It is also true that if f eLP(R), 1 � p � oo, then f *gELP(R) and I I / * g l i P � I I ! l i P I I  g I I  1 (see Exercise 4). 

6.7. Theorem. (a) Iff eL1(R), then ]is a continuous function on R that vanishes 
at + oo. Also, 1 1 / l l oo � l l f l l 1 ·  .... 

(b) If ljJe!/, ljJe!/. Also for m, n � 0, 

6.8 (ixt(:x)4) = [ (:xr(( - txttP) J. 
(c) Iff, geL1 (R), then (f *g) A = jg. Iff and ge!/, then f * gE!/. 
(Note: [ ] 

.... = the Fourier transform of the function defined in the brackets.) .... 
PROOF. (a) The fact that f is continuous is an easy consequence of Lebesgue's .... 
Dominated Convergence Theorem; it is clear that I I ! I I  oo � I I I I I  1 . For the 
other part of (a), let f = the characteristic function of the interval (a, b). Then 
/(x) = i(2n) -

1 12x -
1 [e - ixb - e - ixa] --+ 0 as l x l --+ oo. So /(x) vanishes at + oo if 

f is a linear combination of such characteristic functions. The result for a 
general f follows by approximation. 

(b) It is convenient to introduce the notation Dl/J = l/J'. Thus Dnl/J = ljJ<n>. 
Also in this proof, as in many others of this section, x will be used to denote 
the function whose value at t is t and it will also be used occasionally to 
denote the independent variable. 

If ljJe!/, then differentiation under the integral sign (Why is this justified?) 
• . gtves .... 1 

J
oo . 

(Dl/J )(  y) = ( - it)e - zytl/J(t)dt 
fo - oo 

= [( - ix)l/J ]A( y). 

By induction we get that for n � 0, 

6.9 
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Using integration by parts, 

( D 4>) A( y) = e - iyt 4>' ( t )dt 
1 foo 

Jfit - oo 

"' 

- 1 foo d . 
= 4>(t)- [e - 'Y']dt 

Jfit - oo dt 

= 
iy foo e - iyl<f>(t)dt. 

Jfit - oo 
That is, (D4>) A = (ix)4>. By induction, 

6.10 

for all n � 0. Combining (6.9) and (6. 10) gives (6.8). 
By (6.8) if m, n � 0, then for 4> in f/, 

l l � l l m,n = sup { l xm(D"�)(x) l : xeR} 

= sup{ 1 foo e - ixr(!!_)m 
[( - it)"4>(t)]dt : xeR} 

Jfit - oo dt 

1 foo ( d )m � - [t"4>(t)] dt Jfit - oo dt 

< oo  
since Dm(x"4>)eL1 (R) (6.5). 

(c) This is an easy exercise in integration theory and is left to the reader . 
• 

The fact that ](x) --+0  as l x l --+ oo  is called the Riemann-Lebesgue 
Lemma. 

The process now begins whereby it will be shown that the Fourier 
transform on L1 n L2 extends to a unitary operator on L2(1R). Moreover, 
the adjoint of this unitary will be calculated and it will be shown that if 
id/dx is conjugated by this unitary, then the resulting self-adjoint operator 
is Mx . 

Changing notation a little, let U Y [instead of U( y)] denote the translation 
operator. Moreover, think of U Y as operating on all of the U' spaces, not 
just L2, so (Uyf)(x) = f(x - y) for f in LP(JR). Also, let ey be the function 
ey(x) = exp(ixy). 

6.1 1 . Proposition. If feL1 (1R) and yeR, then 
{ U yf]A = e - yj, 
[eyf]A = U YJ. 
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PROOF. If f E L1 (R), 

[Uy/r(x) = (2n) - 1 12 J[Uyf](t)e - ixrdt 
-

= (21t) - 1 /2 f f(t - y)e - ixtdt 

= (21t) - 1 /2 f f(s)e - ix(s + ylds 

= e -y(x)J(x). 
The proof of the other equation is left as an exercise. 
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• 

In the proof of the next lemma the fact that Joo 
oo e - t2 dt = Jn, is needed. 

Those who have never seen this can verify it by putting I =  J; e -x2 dx, noting 
that I2 = J; J; e - <x2 + y2>dxdy, and using polar coordinates. 

6.12. Lemma. If e > 0 and Pe(t) = e - e2t2 , then 
" ( ) 1 - x2f4e2 Pe X = e . 

eJi 
PROOF. Note that Pee!/. By (6.8), Dpe = ( - ixpe) ". Using integration by parts, 

. J oo - z (Dpe)(x) = -- e-e2t2 te - ixt dt 
J2ic - oo 

= - i ( - : ) f"" e- ixt d(e - •2'2 ) 
J2ic 2e - oo 

. J oo - l - e2t2( · ) - ixt dt = --- e - zx e 
2e2J2ic - oo 

- X  
= 2 Pe(x). 2e 

Let 1/Je(x) = e - x2f4e2 . Then both Pe and 1/Je satisfy the differential equation 
u'(x) = - (xj2e2)u(x). Hence Pe = ci/J e for some constant c. But 1/1 e(O) = 1 ,  and 

Pe(O) = e - e2t2 dt 1 Joo 

J2ic - oo 

1 J oo 
- s2 d = 

efo - ao 
e s 

1 .fit = 
1 . 

eftic eJi • 
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6.13. Proposition. If t/feL1 (R) such that (2n) - 1 12 JRtfJ(x)dx = 1 and if for 
e > 0, t/Je(x) = e - 1 t/J(xje), then for every f in C0(R), t/le * f(x) --+ f(x) uniformly 
on R. 

PRooF. Note that (2n) - 1 '2 J t/J e(x) dx = 1 for all e > 0. Hence for any x in R, 

t/J e * f(x) - f(x) = (27t) - 1 12 I [f(x - t) - f(x)] � if! (D dt 

= (27t) - 1 12 I [f(x - se) - f(x)]t/J(s) ds. 

Put ro(y) = sup { lf(x - y) - f(x) l :  yeR} . Now f is uniformly continuous 
(Why?), so if e > 0, then there is a � > 0 such that ro(y) < e if I Y I < �. Thus 
ro(y) --+ 0 as I y I -+ 0. Moreover, the inequality above implies 

I I t/1 e * f - ! II 00 � (27t)- 1 12 I w(se) i  YJ(s) l ds. . 

Since t/feL1 (R), the Lebesgue Dominated Convergence Theorem implies that 
I I I/I £k * f - f I I oo --+ 0 whenever ek --+ 0. This proves the proposition. • 

The next result is often called the Multiplication Formula. Remember that 
iff eL1 (R), J eC0(R). Hence JgeL1 (R) when both f and geL1 (R). 

6.14. Theorem. Iff, geL1 (R), then 

I R 
J(x)g(x) dx = I R 

f(x)O(x) dx. 

PROOF. The proof is an easy consequence of Fubini's Theorem. In fact, if 
f, geL1 (R), then 

I f(x)g(x) dx = I[� I f(t)e - ixt dt ] u(x) dx 

= If(t{�Ig(x)e- ixt dx ] dt 

= I f(t)b(t) dt. 

6.15. Inversion Formula. If cp ef/, then 
1 I

oo .- . cp(x) = cp(t)e'xt dt. 
fo - oo 

• 

PROOF. Let p2(x) = e - 22x2 and put t/J(x) = p 1 (x). Then by Lemma 6. 1 2  
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1/1 e(x) = e - 1 1/J(xje) = Pe(x). Also, 

(2n) - l f2 f 1/f(x) dx = (2n) - l f2 J:oo 2 - l f2e - x2f4 dx = 1 .  
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So 1/Je• h(x) --+ h(x) uniformly for any h in C0(R). If cpe!/, put f = cp and 
g = exPe in (6. 14). By Proposition 6. 1 1  and Lemma 6. 12, g =  UxPe = Ux.Pe· 
Thus 

1 Joo � . 2 2 1 Joo M- cp(t)e"xe- e t dt = M- cp(t)I/Je(t - x) dt 
v �'� - oo y 2n - oo 

= cp * 1/1 e(x) 
--+ cp(x) 

as e --+  0. The Lebesgue Dominated Convergence Theorem implies the 
left-hand side converges to (2n) - 1 12 J �(t)eixt dt and the theorem is proved . 

• 

In many ways the next result is a rephrasing of the preceding theorem. 
� 

6.16. Theorem. If :F: !/ --+  !/ is defined by :F cp = cp, :F is a bijection with 

(:F- 1 c/J)(x) = cp(t)eixt dt. 1 Joo 
fo - oo 

Moreover, if!/ is given the topology induced by the seminorms { l l · l l m,n : m, n � 0} 
that were defined in (6.4), :F is a homeomorphism. 
PROOF. By (6 .7b), :F !/ c !/. The preceding theorem says that :F is bijective 
and gives the formula for /F- 1 • The proof of the topological statement is 
left to the reader. • 

6.17. Plancherel's Theorem. If cpe!/, then l l c/J I I 2 = 1 1 � 1 1 2 and the Fourier 
transform :F extends to a unitary operator on L2(R). 

PROOF. Let cpe!/ and put 1/J(x) = c/J( - x). So p = c/J • t/JeL1 (R) and p = �.V. 
� A' � 

An easy calculation shows that 1/J = cp; hence p = I cp 1 2 • Also, the Inversion 
Formula shows that p(O) = (2n) - 1 '2 J p(x) dx = (2n) - 1 12 J l  �(x) l 2 dx. Thus 

J 1 �(xW dx =·(2n)1 12 p(O) 

= (2n)1 '2 cp * 1/1(0) 

= f c/J(x)l/1(0 - x) dx 

= J I cP<xW dx. 
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So if f/ is considered as a subspace of L2(R), :F, the Fourier transform, is 
an isometry on f/. By Proposition 6.5 and the preceding theorem, :F extends 
to a unitary operator on L2(R). • 

Warning! The content of the Plancherel Theorem is that the Fourier 
transform extends to an isometry. The formula for this isometry is not given 
by the formula for the Fourier transform. Indeed, this formula does not make 
sense when f is not an L1 function. However, the same symbol, /?, will be 
used to denote this unitary operator on L2(R). For emphasis it is called the 
Plancherel transform. 

6.18. Theorem. Let A be the operator on L2(R) given by Af = if' and let M 
be the operator defined by Mf = xf. If :F: L2(R) � L2(R) is the Plancherel 
Transform, then :F dom M = dom A and 

/F- 1 A:F = M. 
PROOF. The fact that A:F = :F M on f/ is an immediate consequence of 
Theorem 6.7(b). Since f/ is dense in both dom A and dom M, the rest of the 
result follows (with some work-give the details). • 

Fourier analysis is a subject unto itself. One source is Stein and Weiss 
[ 197 1] ; another is Reed and Simon [ 1 975] . 

EXERCISES 
1 .  If p) is as in Example 6. 1 ,  show that for every f in p) there is a sequence {fn} in 

C�1 )(1R) such that fn -+ f and f�-+ f' in L2(R). 

2. Show that the Schwartz space f/ with the seminorms { l l · l l m,n : m, n � 0} is a Frechet 
space. 

3. If </J is infinitely differentiable on R, show that </Jeff/ if and only if for every integer 
n � 0 and every polynomial p, <JJ<n)(x)p(x) -+ 0  as l x l -+ oo .  

4. Iff ei!'(1R), 1 � p � oo, and geL1(1R), show thatf •gei!'(1R) and II f •g l i P � II f l i P  II g 1 1 1 · 
('Hint: See Dunford and Schwartz [ 1958], p. 530, Exercise 1 3  for a generalization 
of Minkowski's Inequality.) 

5. If t/1 and t/1 e are as Proposition 6. 1 3  and f ei!'(1R), 1 � p < oo, show that 
I I  f * "'e - f I I p -+ 0 as B -+ 0. Iff E L 00(R), show that f * "'e -+  f (weak*). 

6. If f e L1 (JR.) and J e L1 (JR.), show that f(x) = (2n) - 1 12 J R](t)eixt dt a.e. 

7. If §': L2(R) -+ L2(1R) is the Plancherel Transform and feL2(1R), show that 
(§' - 1 f)(x) = (§'f)( - x). 

8. Show that §'4 = 1 but §'2 -1=- 1 .  What does this say about u(§')? 

9. Find the Fourier transform of the Hermite polynomials. What do you think? (This 
exercise is broken up into a series of easier steps on pages 98-99 of Dym and 
McKean [1972] .) 
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§7. Moments 

To understand this section, the preceding two sections are unnecessary. 
Let Jl be a positive Borel measure on 1R such that J I t  In dp(t) = mn < oo for 

every n � 0. The numbers {mn } are called the moments of Jl in analogy with 
the corresponding concept from mechanics. The central problem here, called 
the Hamburger moment problem, is to characterize those sequences of numbers 
that are moment sequences. Just as self-adjoint operators are connected to 
measures, the theory of self-adjoint operators is connected to the solution 
of this moment problem. 

7.1. Theorem. If {mn : n � 0} is a sequence of real numbers, the following 
statements are equivalent. 
(a) There is a positive regular Borel measure Jl on R such that J l  t i n dp(t) < oo 

for all n � 0 and mn = J tn djl(t). 
(b) If a0 , . . .  , ane<C, then 'Lj,k = Omi+ kaiak � 0. 
(c) There is a self-adjoint operator A and a vector e such that eedom An for 

all n and mn = (Ane, e )  for all n � 0. 

Before proving this theorem, a preliminary result is needed. This result is 
useful in many other situations and is one of the standard ways to show that 
a symmetric operator has a self-adjoint extension. 

7.2. Proposition. Let T be a symmetric operator on .Yf and suppose there is a 
function J : .Yf � .Yf having the following properties: 
(a) J is conjugate linear (that is, J(h + g) =  Jh + Jg and J(ah) = aJh); 
(b) J2 = 1 ;  
(c) J is continuous; 
(d) J dom T c dom T and T J c JT. 
Then T has a self-adjoint extension. 
PROOF. First note that if hedom T, then Jhedom T and h = J(Jh). Hence 
J dom T = dom T and JT = TJ. 

Let he.Yf and define L: .Yf � cc by L(f) = ( h, Jf). Since J is conjugate 
linear, L is a linear functional. By (c), L is continuous. Thus there is a unique 
vector h* in .Yf such that L(f) = < f, h* ) . Let J* h = h* . Thus J* : .Yf � .Yf and 

• 

7.3 (f, J*h ) = ( h, Jf ). 
It is clear that J* is additive. If ae<C, then (f, J* (ah) ) = ( ah, Jf) = 
a (f, J* h )  = (f, aJ*h ) . Thus J* is conjugate linear. Since J2 = 1 ,  it follows 
that J*2 = 1 .  

Let hedom T* and f edom T. Then < T Jf, h ) = (Jf, T*h ) = (J* T*h, f)  
by (7.3). But also by (d), ( T J f, h ) = ( JTf, h ) =  (J*h, Tf). So (J* T*h, f) = 
(J*h, Tf) for all h in dom T* and f in dom T. But this says that J*hedom T* 
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whenever hedom T* and, furthermore, T* J* h = J* T* h. Since J*2 = 1 ,  it 
follows that J* dom T* = dom T* and J* T* = T* J* . 

Now let heker(T* + i). Then T*J*h = J* T*h = J*( + ih) = + iJ*h. Thus 
J* ker(T* + i) c ker(T* + i). Since J*2 = 1 ,  J* ker (T* + i) = ker(T* + i). But 
J* is injective. Indeed, if J*h = 0, then h = J*(J*h) = 0. Thus the deficiency 
indices of T are equal. By Theorem 2.20, T has a self-adjoint extension. • 

PROOF OF THEOREM 7. 1 .  (a) implies (b). If cx0, . . .  , CXnE<C, then 

= f }:..0 a.k tk 
2 
dJ.L(t) ?: 0. 

(b) implies (c). Let .Ye0 = the collection of all finitely nonzero sequences of 
complex numbers { cxn : n � 0}. That is, { cx0 , cx1 , • • .  } e.Ye0 if cxne<C for all n � 0 
and cxn = 0 for all but a finite number of values of n. If x = { cxn } , y = {Pn } e.Ye0 
define [ x, y] by 

7.4 
00 

[x, y] = L mi+ kcxipk . 
j,k = O 

It is easy to see that .Ye0 is a vector space and (7.4) defines a semi-inner 
product on .Ye0• In fact, it is routine that [· , ·] is sesquilinear and condition 
(b) implies that [x, x] � 0 for all x in .Ye0• 

Let %0 = {xe.Ye0: [x, x] = 0} and let .Ye1 be the quotient vector space 
.Ye0/%0• If h = x + %0 and f = y + %0e.Ye1 , then 

7.5 ( h, f ) = [x, y] 
can be verified to be a well-defined inner product on Jf1 . Let .Ye be the 
Hilbert space obtained by completing .Ye1 with respect to the norm defined 
by the inner product (7.5). 

Now to define some operators. If x = { cxn } e.Ye0, let T0x = {0, cx0, cx 1 , • . .  } .  
I t  is easy to check that T0 is a linear trans(ormation on .Ye0• Also, if x = { cxn} ,  
Y = {Pn } e.Ye0,  let T0x = {Yn } · So Yo =  0 and Yn = cxn - 1 i f  n � 1 .  Hence 

00 

[Tox, y] = L mi+ kYiPk 
j,k = O 

00 

= L mi+ kcxi _ 1 pk 
j= 1 k = O  

00 

= L mi+ k +  1 cxif3k 
j,k = O 
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00 

L mi+ krxif3k - 1  j = O  k = 1 
= [x, T0y]. 
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In particular, if xeg0, then the preceding equation and the CBS inequality 
imply that 

I [T0x, T0x] I = I [T�x, x] I � [T�x, T�x] [x, x] 
= 0  

Hence T0g0 c go· Thus T0 induces a linear transformation T on .Ye1 defined 
by T(x + go) =  T0x + go· It follows that ( Th, f)  = ( h, Tf) for all h, f in 
.Ye1 . Since .Ye1 is, by definition, dense in .Ye, T is a densely defined symmetric 
operator on .Ye. Now to show that T has a self-adjoint extension. 

Define J 0 :  .Ye0 --+ .Ye0 by J 0 (  {an } ) = {an } · It is easy to see that J 0 is conjugate 
linear and J � = 1 .  Also, J 0 T0 = T0 J 0 .  An easy calculation shows that 
[J0x, J0y] = [x, y] for all x, y in .Ye0 • So J0g0 c go and J0 induces a 
conjugate linear function J 1 : .Ye1 --+ .Ye1 defined by J 1 (x + go) =  J 0x + go · 
It follows that J 1 T = T J 1 , J i = 1 ,  and I I  J 1 h I I  = I I  h I I for all h in .Ye1 •  Thus 
J 1 extends to a conjugate linear J: .Ye --+  .Ye such that J2 = 1 and I I Jh I I = I I h I I 
for all h in .Ye. Hence J is continuous. Also, J dom T = J 1.Ye1 c .Ye1 = dom T 
and T J c JT. By Proposition 7.2, T has a self-adjoint extension A. 

Let e0 = { 1, 0, 0, . . .  } e.Ye0 • Hence T�e0 has a 1 in the nth place and zeros 
elsewhere. If e = e0 + g 0, then eedom Tn c dom An for all n � 0. Also, 

(Ane, e ) = [T�e0 ,  eo] = mn 
for n � 0. 

(c) implies (a). By the Spectral Theorem there is a spectral measure E for 
A. Let Jl = Ee,e;  by (4. 1 1 ) Jl is supported on R and, since eedom A, Jl is finite. 
Moreover, since eedom An for every n � 0 it follows (supply the details) that 
J tn djl(t) < oo for every n � 0. Finally, by (4.9), mn = ( Ane, e ) = J tn djl(t) for 
every n � 0. • 

The measure obtained in Theorem 7. 1 need not be unique since, in the 
proof that (b) implies (c) above, the self-adjoint extension of T may not be 
unique. See pages 201-202 of Berg, Christensen, and Ressel [ 1 984] for an 
example as well as further discussions. of moment problems. 

EXERCISES 
1 .  (Stieltjes.) Let {mn :  n � 0} be a sequence of real numbers and show that the following 

statements are equivalent. (a) There is a positive regular Borel measure Jl on [0, oo) 
such that mn = J tn dJL(t) for all n � 0. (b) If cx0 , • • •  , cxne<C, then 'L�,k = Omi+kcxi�k � 0 
and 'L�,k = omi+ k +  1 cxi�k � 0. (c) There is a self-adjoint operator A with u(A) c [0, oo) 
and a vector e in dom An for all n � 0 such that mn = ( Ane, e )  for n � 0. 

2. (Bochner.) Let m: R � CC be a function and show that the following statements are 
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equivalent. (a) There is a finite positive measure Jl on R such that m(t) = J eixt dJL(x) 
for all t in R. (b) m is continuous and if �0, . . . , �nE<C and t0 , • • •  , tneR, then 
'k�.k = om(ti - t1)�ia." � 0. (c) There is a strongly continuous one-parameter unitary 
group U(t) and a vector e such that m(t) = < U(t)e, e )  for all t. (Hint : Let Jt'0 = all 
functions f: R -+  <C that vanish off a finite set.) 

3. Let { mn: neZ} c <C and show that the following statements are equivalent. (a) 
There is a positive measure Jl on oD such that mn = J zn dJL(z) for all n in Z. 
(b) If � - n' . . .  , � - b �0, �b . . .  , �nE<C, then L�.k = - nmi- k�ia." � 0. (c) There is a unitary 
operator U and a vector e such that mn = < un e, e )  for all n. 

4. Show that the operator A that appears in the proof that (7. lb) implies (7. lc) is cyclic. 



CHAPTER XI 

Fredholm Theory 

This chapter is entirely independent of the preceding one and only 
tangentially dependent on Chapters VIII and IX. 

The purpose of this chapter is to study certain properties of operators on 
a Hilbert space that are invariant under compact perturbations. That is, we 
want to study properties of an operator A in �(Jr) that are also possessed 
by A + K for every K in �0(Jr). The correct view here is to consider this 
undertaking as a study of the quotient algebra �(Jff)/�0(Jr) = �/�0-the 
Calkin algebra. Any property associated with an element of the Calkin algebra 
is a property associated with a coset of operators and vice versa. It is 
useful-indeed essential-to relate these properties to the way in which the 
operators act on the underlying Hilbert space. 

§ 1 .  The Spectrum Revisited 

In Section VII.6 we saw several properties of the spectrum of an operator 
on a Banach space. In particular, the concepts of point spectrum, u p(A), and 
approximate point spectrum, uap(A), were explored. It was also shown 
(VII. 6.7) that ou(A) c uap(A). Recall that u1(A) is the left spectrum of A and 
ur(A) is the right spectrum of A. 

1 .1. Proposition. If A e�(Jff), the following statements are equivalent. 
(a) A.¢uap(A); that is, inf{ I I (A - A.)h I I : I I  h II = 1 }  > o. 
(b) ran(A - A.) is closed and dim ker(A - A.) = 0. 
(c) A.¢u1 (A). 
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(d) A.¢ur(A *). 
(e) ran(A* - A.) = �-

PROOF. By Proposition VII .6.4, (a) and (b) are equivalent. Also, if Be�(�), 
then B(A - A.) = 1 if and only if (A* - A.)B* = 1 so that (c) and (d) are easily 
seen to be equivalent. 

(b) implies (c). Let .A =  ran(A - A.) and define T: � � .A by Th = (A - A.)h; 
then T is bijective. By the Open Mapping Theorem, T- 1 : .A � � is 
continuous. Define B: � � � by letting B = T- 1 on .A and B = 0 on .Aj_. 
Then Be�(�) and B(A - A.) = 1 .  (Note that we used a property of Hilbert 
spaces here; see Exercise VII.6.5.) 

(d) implies (e). Since A.¢ur(A*), there is an operator C in �(�) such that 
(A* - A.)C = 1 .  Hence � =  (A* - A.)C� c ran(A* - A.). 

(e) implies (a). Let % = ker(A* - A.)j_ and define T: % � �  by 
Th = (A* - A.)h. Then T is bijective and hence invertible. Let C: � � � be 
defined by Ch = T- 1h. Then C� = % and (A* - A.)C = 1 .  Thus C*(A - A.) = 1 
so that if he�, I I  h I I  = I I  C*(A - A.)h I I  � I I C* I I  I I (A - A.)h 1 1 . Hence 
inf{ II (A - A.) h  I I : II h I I  = 1 }  � II C* 1 1 - 1 • • 

If � c <C, �* = {A.: A.e�} .  

1 .2. Corollary. If A e�(�), then ou(A) c u,(A)n ur(A) = Uap(A)n uap(A*)*. 

PROOF. The equality is immediate from the preceding theorem. In fact, 
u1(A) = uap(A) �nd ur(A) = u1(A*)* = uap(A*)*. If A.eou(A), then (VII.6.7) 
A.euap(A). But A.eou(A*) so that A.euap(A*). • 

For normal elements there is less variety. The pertinent result is proved 
here in a more general setting than that of operators. 

1 .3. Proposition. Let d be a C*-algebra with identity. If a is a normal element 
of d, then the following statements are equivalent. 

(a) a is invertible. 
(b) a is left invertible. 
(c) a is right invertible. 

PROOF. Assume that a is left invertible, so there is a b in d such that ba = 1 .  
Thus for any x in d, I I  x I I = I I  bax I I � I I  b 1 1 1 1 ax I I , and hence I I ax I I � I I  b 1 1 - 1 1 1 x 1 1 . 
In particular, this is true whenever xeC*(a). Because a is normal, C*(a) is 
isomorphic to C(K) where K = u(a) and where the isomorphism takes a into 
the function z (z( w) = w). The inequality above thus becomes: I I zf I I  � II b 1 1 - 1 I I! I I 
for every f in C(K). It must be shown that Of�K ( = u(a)). If OeK, then for 
every integer n there is a function fn in C(K) such that 0 � fn � 1 ,  fn(O) = 1 
and fn(z) = 0 for z in K and l z l � n - 1 . Since OeK, I I  fn I I = 1 .  But I I  zfn I I  � 1/n. 
This contradicts the inequality and so Oflu(a); that is, a is invertible. 

The argument above shows that (b) implies (a). If a is right invertible, then 
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a* is left invertible. By the preceding argument a* is invertible, and hence 
. 

SO IS a. • 

1.4. Proposition. If N is a normal operator, then u(N) = ur(N) = u1 (N). If A. is 
an isolated point of u( N), then A. E up( N). 

PROOF. The first part of the proposition is immediate from the preceding 
result. If A. is an isolated point of u(N) and N = J z dE(z), then 
0 =I= E( {A.} )Jf' = ker(N - A.) (Exercise IX.2. 1 ). • 

EXERCISES 
1 .  Let S be the unilateral shift of multiplicity 1 on l2(N) and find u1(S) and u,(S). 

2. The compression spectrum of A, uc(A), is defined by uc(A) = { A.e<C: ran(A - A.) is 
not dense in Jr}. Show: (a) A.euc(A) if and only if A.eup(A*). (b) uc(A) c u,(A), 
but this inclusion may be proper. (c) uc(A) is not necessarily closed. 
(d) u(A) = Uap(A) u uc(A). 

3. If AeBI(Jr) and feHol(A), then f(up(A)) c up(f(A)). If f is not constant on any 
component of its domain, then f(u p(A)) = u p(f(A)). 

4. If AeBI(Jr) and feHol(A), then f(uap(A)) = uap(f(A)). 

§2. Fredholm Operators 

We begin with a definition. 

2.1 .  Definition. If Jf' and Jf'' are Hilbert spaces and A: Jf' -+  Jf'' is a bounded 
operator, then A is said to be left semi-Fredholm if there is a bounded operator 
B: Jf'' -+ Jf' and a compact operator K on Jf' such that BA = 1 + K. 
Analogously, A is right semi-Fredholm if there is a such a bounded operator 
B and a compact operator K' on Jf'' such that AB = 1 + K'. A is a 
semi-Fredholm operator if it is either left or right semi-Fredholm and A is a 
Fredholm operator if it is both left and right semi-Fredholm. 

Observe that A is left semi-Fredholm if and only if A* is right 
semi-Fredholm. Thus results about semi-Fredholm operators will usually 
only be phrased in terms of left semi-Fredholm operators and the reader will 
be allowed to make the appropriate statement for right semi-Fredholm 
operators. 

Note that a left invertible operator is left semi-Fredholm. However it is 
easy to get left semi-Fredholm operators that are not left invertible. 

2.2. Example. Let Jf' = Jf'0 ffi Jf'1 ffi · · · , where dim Jf'i = ex  for all j � 0, and 
let S be the unilateral shift of multiplicity ex with respect to this decomposition. 
(So S maps Jf'i isometrically onto �i+ 1 .) Recall that S*S = 1 so S is left 
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invertible and hence left semi-Fredholm. Also SS* = 1 - P 0 ,  where P 0 is the 
projection of :Yt onto :Yt0• So S is Fredholm if ex < oo .  

In the next result, the equivalence of the first three conditions is referred 
to as Atkinson's Theorem. The rest of this theorem is from Wolf [ 1 959], 
Schechter [ 1 968], and Fillmore, Stampfli and Williams [ 1972] . 

2.3. Theorem. If A: :Yt ____. :Yt' is a bounded operator, the following statements 
are equivalent. 

(a) A is left semi-Fredholm. 
(b) ran A is closed and dim ker A <  oo.  

(c) There is a bounded operator B: :Yt' ____. :Yt and a finite rank operator F 
on :Yt such that BA = 1 + F. 

(d) There is no sequence { hn } of unit vectors in :Yt such that hn __. o  weakly 
and lim I I  Ahn I I  = 0. 

(e) There is no orthonormal sequences {en } in :Yt such that lim I I Aen I I  = 0. 
(f) There is a c5 > 0 such that { he.'Yt: I I Ah I I  � £5 1 1 h l l } contains no infinite 

dimensional manifold. 
(g) If the positive operator (A* A)1 12 = J; tdE(t), then there is a c5 > 0 such that 

E[O, c5]:Yt is finite dimensional. 
(h) If K e&I0(:Yt), then dim ker(A + K) < oo.  

PROOF. (a) implies (b). According to (a) there is a bounded operator B such 
that n(B)n(A) = 1 ; that is, n(BA - 1)  = 0. Hence BA = 1 + K for some compact 
operator K. But ker A c ker BA = ker ( 1  + K). Since the eigenspace 
corresponding to nonzero eigenvalues of compact operators are finite 
dimensional, dim ker A <  oo .  Also, the Fredholm Alternative (VII.7.9) implies 
ran BA = ran (K + 1 )  is closed. Hence there is a constant c > 0 such that for 
h l_ ker(BA), I I BAh l l � c l l h l l - Thus if he[ker BA] j_, c l l h l l � I I B I I I I Ah l l , or 
I I Ah II � (c/ II B I I ) II h 1 1 . This implies that A( [ker BA] j_) is closed. But 
ran A =  A( [ker BA] j_) + A(ker BA). Since A(ker BA) is finite dimensional, 
ran A is closed. 

(b) implies (c). First define A 1 : (ker A) j_ ____. ran A by A 1 = A  l (ker A)j_ and note 
that A 1 is invertible by The Open Mapping Theorem. Let P be the projection 
of :Yt' onto ran A and define B: :Yt' ____. :Yt by B = A 1 - l P. It is left to the reader 
to check that BA = 1 - F, where F is the orthogonal projection of :Yt onto 
ker A. Since ker A is finite dimensional, this establishes (c). 

(c) implies (a). This is clear. 
(a) implies (d). Suppose {hn} is a sequence of unit vectors in :Yt that 

converges weakly to 0 and let B: :Yt' ____. :Yt and K be as in the definition of 
a left semi-Fredholm operator. Since BA = 1 + K, 1 1 - I I BAhn II I = I I I hn II -
I I BAhn I l l � I I Khn I I  and I I  Khn I I  ____. 0 since K is compact. Thus I I BAhn I I  ____. 1 and 
so it is impossible for { Ahn} to converge to 0 in norm. 

(d) implies (e). Orthonormal sequences converge weakly to 0. 
(e) implies (f). If (f) is false, then for every positive integer n there is an 

infinite dimensional manifold Jtn such that I I  Ah I I  � ( 1/n) I I  h I I  for all h in Jtn. 
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Let e1 be a unit vector in .A1. Suppose e1 , • • •  , en are orthonormal vectors 
such that ekE .Ak, 1 � k � n. Let E be the projection of :Yt onto V { e 1 , • . .  , en} .  
If .An+ 1 n [e 1 , • • •  , en] .L = (0), then E is injective on .An+ 1 • Since dim .An+ 1 = oo 
and dim ran E < oo, this is impossible. Thus there is a unit vector en + 1 in 
.An+ 1 such that en + 1 _l { e1 , • • •  , en} · The orthonormal sequence {en} shows 
that (e) does not hold. 

(f) implies (g). Let I A I = J tdE(t) and let b > 0. If heE[O, b]:Yt, then 

I I Ah 11 2 = ( A* Ah, h )  
= < I A I 2h, h )  

= I: t2dEh,h(t) � fJ2 Eh,h [O, fJ] 

= b2 l l h l l 2 • 
So E [O, b]:Yt c { h: II Ah I I � b I I h I I } .  By (f) there is a b > 0 such that E[O, b).'Yt 
is finite dimensional. 

(g) implies (c). Let .A, = { E[O, c5]:Yt} 1.. Now I A I maps .A, bijectively onto 
.A,. In fact, the inverse of I A I :  .A, � .A, is (J; t - 1 dE(t)) I.A,. Let A =  U I A I  
be the polar decomposition of A. Since .A, c ran I A 1 c initial U, U maps .A, 
isometrically onto some closed subspace !l' of ran A. Let V = the inverse of 
U on !l' and V = 0 on !l'.L; that is, V I  !l'.L = 0 and V I  !l' = (U I.A,) - 1 • Hence 
V is a partial isometry. Let B1 = J; t - 1 dE(t) and put B = B1 V. If he .A,, then 
BAh = B1 VU I A i h = h. If he.Af = E[O, b]h, I A ihe.Af and so U I A i h l_ !l'; 
thus BAh = 0. Hence BA = E(b, oo) = 1 - E[O, b], and E[O, b] has finite rank. 

(a) implies (h). Let B: :Yt' � :Yt be a bounded operator such that BA = 1 + L, 
where L is a compact operator on :Yt. If K: :Yt � :Yt' is any compact 
operator, then B(A + K) = 1 + (L + BK) and L + BK is compact. By 
definition A + K is left semi-Fredholm. Since we have already shown that 
(a) implies (b), dim ker(A + K) < oo .  

(h) implies (e). Suppose (e) does not hold. So there is an orthonormal 
sequence, {en } usch that I I Aen I I -+ 0. By passing to a subsequence if necessary, 
it may be assumed that 'L: 1 11 Aen 1 1 2 < oo.  Thus for any h in .'Yt, 

L I ( h, en ) I l l A en I I � [ L I ( h, en )  1 2 ] 1 12 [ L II A en 1 1 2 ] 1 12 
� C I I h l l , 

where C = [ 'L II Aen l l 2 ] 1 12 • Thus Kh = 'LCX)_ 1 ( h, en )Aen defines a bounded 
operator. Moreover, if Knh = 'Lj= 1 (h, �i )Aei, it is easy to see that 
I I Kn - K 11 -+ 0. Thus K is compact. But (A - K)en = 0 for every n, so 
dim ker(A - K) = oo.  • 

As mentioned previously, the result for right semi-Fredholm operators 
that is analogous to the preceding theorem is left for the reader to state. We 
will, however, make explicit part of this result for Fredholm operators. 
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2.4. Corollary. A bounded operator A: Jf -+  Jf' is Fredholm if and only if 
ran A is closed and both ker A and ker A* are finite dimensional. 

In the case of a bounded operator A from a Hilbert space :Yt into itself, 
the concept of a semi-Fredholm operator can be rephrased in terms of the 
corresponding concept in the Calkin algebra, f!J I f!J0 • In fact, this will be the 
primary situation in which the ideas of Fredholm theory are applied. The 
next result is immediate from the definition. 

2.5. Proposition. For a Hilbert space Jf, let n: f!J -+ f!Jif!J0 be the natural map 
and let Aef!J = f!J(Jf). The operator A is left (respectively, right) 
semi-Fredholm if and only if n(A) is left (respectively, right) invertible in the 
Calkin algebra. 

For notation, let �t = �t(Jf) and � r = �r(Jf) be the set of left and right 
semi-Fredholm operators on the Hilbert space Jf. So � = !Ftn !F  r and 
ff � = � t u !F r are the sets of Fredholm and semi-Fredholm operators on 
Jf. Since !Ft = the inverse image under n of the left invertible elements of 
the Banach algebra f!J I f!J0, the next proposition is immediate. 

2.6. Proposition. Each of the sets �t' �r' �, and ff � are open subjects of&�. 

EXERCISES 
1 .  If A e�(Jr) and ran A is closed, prove than ran A*  is closed without using Theorem 

VI. l . lO. [Hint: Show that there is a bounded operator B on Jr such that BA = the 
projection of Jr onto (ker A)j_ .] 

2. Give a direct proof that (b) implies (a) in Theorem 2.3. 

3. Let A, B, Ce�(Jf') and define X: Jf'<2l -+ Jf'<2l by the matrix X = [� � J (a) Show 

that if Ae�, then Xe� if and only if Ce�. (b) If Ae�, show that Xe/7� 
if and only if Ce/7�. (c) Suppose A, Ce/7� with dim ker A =  oo and 
dim kerC* = oo .  Show that X¢/7�. 

4. If Ae�(Jr), show that A.A is closed for every closed subspace .A of Jr if and only 
if A has finite rank or A is left Fredholm. 

5. If PI and OJ/ are Banach spaces and T e�(P£, OJ/)  such that the Hamel basis dimension 
(that is, the algebraic dimension) of OJ/ /(ran T) is finite, then ran T is closed. 

6. Show that a normal operator is Fredholm if and only if 0 is not a limit point of 
u(N) and dim ker N < oo .  (See Proposition 4.5 below.) 

§3 . The Fredholm Index 

I wish to acknowledge that the basis of this section is a development of the 
Fredholm index which I learned from my colleague Hari Bercovici. 
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3.1 

If A is a semi-Fredholm operator, define the (Fredholm) index of A, ind A, by 

ind A =  dim ker A - dim(ran A) j_ 
= dim ker A - dim ker A*. 

Note that ind A elL u { + oo }  and it is necessary for either ker A or ker A* 
to be finite dimensional in order for (3. 1 )  to make sense. For ind A to be well 
defined, it is not necessary that ran A be closed (the other part of the definition 
of semi-Fredholm operators), but this property will be used in a critical way 
when the properties of the index are established. 

See Dieudonne [ 1985] for some historical notes on the Fredholm index. 
The main properties of the Fredholm index are contained in Theorems 3.7, 

3. 1 1 , and 3. 1 2  below. But we will begin with some elementary results. 

3.2. Proposition. If A: Jt -+  Jt' and Jt and Jt' are finite dimensional, then 
A is Fredholm and ind A =  dim Jt - dim Jt'. 

PROOF. Clearly A is Fredholm. From linear algebra we know that 
dim Jt = dim (ran A) + dim (ker A) = [dim Jt' - dim (ran A) j_]  + dim (ker A). 
Thus ind A =  dim (ker A) - dim (ran A)j_ = dim Jt - dim Jt'. • 

The next result is actually just a restatement of the Fredholm Alternative 
(VII. 7.9). 

3.3. Proposition. If K: Jt -+  Jt is a compact operator and A # 0, then A +  K 
is Fredholm and ind (A + K) = 0. 

We already observed that the adjoint of a semi-Fredholm operator is also 
a semi-Fredholm operator. This same reasoning produces the calculation of 
the index. 

3.4. Proposition. (a) If A is a semi-Fredholm operator, then A* is also 
semi-Fredholm and ind A* = - ind A. 
(b) If N is a normal operator on a Hilbert space Jt, then N is semi-Fredholm 
if and only if N is Fredholm, in which case ind N = 0. 
(c) If A and B are Fredholm operators, then A E9 B is Fredholm and 
ind (A E9 B) = ind A + ind B. 

• 

PROOF. As stated, the proof of (a) is easy. For part (b), recall that for a normal 
operator N, II Nh I I = I I N*h II for every vector h in Jt. Thus ker N = ker N*. 
The result is now immediate. The proof of (c) is left to the reader. • 

Also see Exercise 2.6 and Proposition 4.5 below. 
The next theorem is one of the main properties of the Fredholm index. 

But first two lemmas are required. 
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3.5. Lemma. Let A: Jt ____. Jt', Jt = .A  E9 %, Jt' = .A' E9 %', and suppose A 
has the matrix 

relative to these two decompositions of Jt and Jt'. If A 1 is invertible and 
.AI and .AI' are finite dimensional, then A is Fredholm and ind A = dim .AI -
dim %'. 

PROOF. It is easy to see that ran A is closed since ran A 1 = .A' and dim .AI < oo. 
Let's show that ker A* = ker A! and dim(ker A) = dim(ker A2). If this is 
done, then ind A =  dim(ker A) - dim(ker A*) = dim(ker A2) - dim(ker A!) = 
dim .AI - dim %' by Proposition 3.2. 

For the first of the two desired equalities, let f' e.A' and g' e%'. Then 
A*(f ' E9 g') = A  if' E9 (X* f' + A!g'). So f' E9 g' eker A*  if and only if A if ' =  0 
and A!g' = - X* f'. But A 1 is invertible, so this happens exactly when f' = 0, 
and hence A!g' = 0. From here it is clear that ker A* = ker A!. For the second 
equality, note that g ____. - A �  1 X g E9 g is a bijection between ker A 2 and ker A . 

The second lemma is elementary and its proof is left to the reader. 

3.6. Lemma. Let .A and .AI be two closed subs paces of the Hilbert space Jt. 

(a) If .A n % = (0) and dim % = oo, then dim .AJ. = oo. 
(b) Ifdim .Al. = oo and dim % < oo, then dim(.A + %)1. < oo. 

• 

3.7. Theorem. If A: Jt ____. Jt' and B: Jt' ____. Jt" are left semi-Fredholm operators, 
then BA is a left semi-Fredholm operator and ind BA = ind A + ind B. 

PROOF. By definition, there are operators X and Y such that X A = 1 + K 
and YB = 1 + K', where K and K' are compact operators on the appropriate 
spaces. Hence (XY)(BA) = X( 1 + K')A = 1 + (K + XK'A), and K + XK'A is 
compact. Therefore BA is left semi-Fredholm. 

To prove the formula for the index, we consider 4 cases. 

Case 1 .  Both A and B are Fredholm. 

Let .A' = (ran A)n (ker B)l. and put %' = .A' 1.. 

Claim 1 :  %' is finite dimensional. 

To see this note that %' = .A' 1. = (ran A) l. v (ker B). Since both of these 
spaces are finite dimensional, so is %'. Let .A =  A - 1 (.A') n (ker A) l.; 
.AI =  .A 1.; .A" = B.A'; %" = .A" 1.. Note the following: A( .A) = .A'; A l A is 
invertible (because ker(A I .A) = ker A n .A = (0) ); B I .A' is invertible. 



§3. The Fredholm Index 355 

Claim 2: % is finite dimensional. 

Indeed, let A t = A I (ker A)l.; so A t : (ker A)l. -+ ran A is invertible. But 
A ; t (.A') = Jt, so dim [(ker A)l. n Jtl.] = dim [(ran A) n Jt'l.], and this last 
dimension is finite since %' is finite dimensional. 

Claim 3: %" is finite dimensional. 

In fact, dim [(ker B).L n Jt.L] < oo and so dim [(ran B) n Jt"l.] < oo.  This 
implies that dim %" < oo .  Now represent the operators as 2 x 2 matrices: 

A = [ �1 X ] Jt J(' 
: Ee -+ Ee , 

A2 % %' 

B = [�t YJ Jt' J(" 
: Ee -+ Ee , 

B2 %' %" 

BA = [B�A1 Z J .R J('' 
: Ee -+ Ee . 

B2A2 % %" 

It follows that Bt and A t are invertible. Since %, %', and %" are finite 
dimensional, the preceding lemma implies that ind A =  dim % - dim %', 
ind B = dim %' - dim %", and ind BA = dim % - dim %" = ind A + ind B. 

Case 2. Assume ind B = - oo .  

This is equivalent to the assumption that dim(ran B)l. = oo.  But 
ran B => ran BA and so dim(ran BA)l. = oo. Hence ind BA = - oo = ind A + 
ind B. 

Case 3. Assume B is invertible. 

Without loss of generality we may assume that ind A = - oo since the 
alternative situation is covered in Case 1 .  If Jt = B(ran A) = ran BA and 
% = B( [ran A)1.), then the fact that .B is invertible implies that Jt n %  = (0) 
and % is infinite dimensional. Thus Lemma 3.6(a) implies that 
oo = dim Jt l. = dim(ran BA)l. and so ind BA = - oo = ind A + ind B. 

Case 4. B is a Fredholm operator. 

Again, without loss of generality we may assume that ind A =  - oo .  It 
must be shown that ind BA = - oo .  

Put JF; = (ker B) l. and Jf'� = ran B; define B 1 : Jf''1 -+ Jf'� as the restriction 
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of B to ;r;. Clearly B 1 is invertible. If P is the orthogonal projecton of Jr' 
onto ;r;, let A 1 : Jf' -+ Jf''1 be defined by A 1 = PA. Now both P and A are 
left semi-Fredholm, so A 1 is left semi-Fredholm as was established at the 
opening of the proof. 

Note that Lemma 3.6(b) implies that dim(ran A + ker B).l = oo.  But 
(ran A 1 ).l  = ker A! = ker A*P = ker B + (ker A*)n (ker B).l = kerB + (ran A + 
ker B) .l and so ind A 1 = - oo. According to Case 3, ind B 1 A 1 = - oo.  

This is equivalent to the condition that oo = dim(ran B1A 1 ).l  = dim(Jr� n 
[B(ran A1 )] .1). But B(ran A 1 ) = BP(ran A) = B(ran A) = ran BA and so Jr� n 
[B(ran A 1)] .l c (ran BA).1. Thus ind BA = - oo.  • 

3.8. Corollary. If A E§"t and R is an invertible operator, then RAR - 1 E§"t 
and ind RAR- 1 = ind A. 

Before going further, let's look at some examples. 

3.9. Example. Let S be the unilateral shift of multiplicity (l. We saw in 
Example 2.2 that S is left semi-Fredholm. It is easy to calculate that 
ind S = - (X. According to the preceding theorem, ind S2 = - 2(%. But, of 
course, S2 is the unilateral shift of multiplicity 2(%. 

3.10. Example. Let S be the unilateral shift of multiplicity (X on the Hilbert 
space Jr and put A = S � S*. Note that ker A = (0) � ker S* and 
ran A = (ran S) � Jr. Thus A has closed range. The operator A, however, is 
semi-Fredholm if and only if (X <  oo, in which case A is a Fredholm operator. 
Also when (X <  oo, ind A =  0. 

3.1 1 . Theorem. If A: Jr -+  Jr' is a left (respectively, right) semi-Fredholm 
operator and K: Jr -+  Jr' is a compact operator, then A + K is left (respectively, 
right) semi-Fredholm and ind A =  ind(A + K). 

PROOF. Assume that A is a left semi-Fredholm operator. By definition there 
is an operator X: Jr' -+ Jr and a compact operator K0: Jr -+  Jr such that 
XA = 1 + K0• Thus X(A + K) = 1 + (K0 + XK) and so A + K is left 
semi-Fredholm. 

To verify that ind A =  ind(A + K), first assume that A is Fredholm. So 
there is a Fredholm operator X and a compact operator L such that 
XA = 1 + L. But Theorem 3.7 implies that XA is Fredholm and, using 
Proposition 3.3, 0 = ind( 1  + L) = ind A +  ind X; so ind A =  - ind X. But 
X(A + K) = 1 + (L + X K) and so the same type of reasoning implies that 
ind(A + K) = - ind X = ind A. 

Now assume that A is left semi-Fredholm; so A + K is also left 
semi-Fredholm. If ind A is finite, then A is Fredholm and we are done by 
the preceding paragraph. If ind A is - oo, then ind (A + K) must also be - oo 
for otherwise A + K is Fredholm and it follows that A = (A + K) - K is also 
Fredholm, a contradiction. • 
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The preceding theorem says that the value of the index is impervious to 
compact perturbations. The next result, the third in the list of important 
properties of the Fredholm index, says that the value of the index is unchanged 
for all perturbations of the operator, provided that the size of the perturbation 
is sufficiently small. 

3.12. Theorem. If A: :Yt ____. :Yt' is a Fredholm operator, then there is an e > 0 
such that if Y e81(:Yt, :Yt') and I I  Y I I  < e, then A + Y is Fredholm and 
ind A =  ind(A + Y). 

PROOF. With respect to the decompositions :Yt = (ker A)l. � ker A and 
:Yt' = ran A �  ker A*, the operator A has the matrix 

and A1 :  (ker A)l. _. ran A is invertible since A is Fredholm. Thus there is an 
e > 0 such that if I I  Y1 I I  < e, then A 1 + Y1 is invertible. If Y: :Yt ____. :Yt' and 
I I  Y I I  < e, then, with respect to the same decomposition of :Yt, 

Y =
[ Yt Yz] 
y3 y4 

and so 

where the first matrix represents a Fredholm operator and the second 
represents a finite rank operator. Therefore ind(A + Y) is the index of the 
first matrix. But since A 1  + Y1 is invertible, Lemma 3.5 implies that this index 
is equal to dim(ker A) - dim(ker A*) = ind A. • 

3.13. Corollary. If !/ !F is given the norm topology and 7l u { + oo } is given 
the discrete topology, then the Fredholm index is a continuous function from 
!/IF into 'll u {  + oo } . 

This continuity statement has an equivalent formulation. Because !/ !F is 
an open subset of 81(:Yt), its components are open sets. Thus the continuity 
of the index is equivalent to the statement that it is constant on the 
components of !/!F. 

For a treatment of the Fredholm index applicable to unbounded operators 
on a Banach space, see Kato [ 1966], pp. 229-244. For other approaches to 
Fredholm theory, with variations and generalizations of the material in this 
book, see Caradus, Pfaffenberger, and Yood [ 1974] and Harte [ 1 982] .  

EXERCISES 
1 .  Prove Lemma 3.6. 

2. If Aeat(�) and ran A is closed, show that ran A<oo> is closed. If A ef/!F and 
ker A =  (0), show that A<oo>ef/� and ind A<oo> = - oo or 0. 
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3. Does the unilateral shift of multiplicity 1 have a square root? 

4. Show that for every n in Z u { + oo}  there is an operator A in /7 § such that 
ind A = n. 

5. If Ae/7§, then for every n � 1 ,  A"e/7§ and ind A" = n(ind A). 

6. If A: Jf -+  Jf' is a left semi-Fredholm operator, then there is a finite rank operator 
F: Jf -+  Jf' such that ker(A + F) = (0) and ind(A + F) = ind A. 

7. If A is a Fredholm operator in �(Jf), prove that the following statements 
are equivalent. (a) ind A =  0. (b) There is a compact operator K such that 
A + K is invertible. (c) There is a finite rank operator F such that A + F is 
invertible. 

8. If U is the unilateral shift of multiplicity 1 and n: �(Jf) -+ �(Jf)/�0(Jf) is the 
natural map, show that n(U) is normal in �(Jf)/�0(Jf) but there is no normal 
operator N such that U - N  is compact. (See Exercise IX.8. 14.) 

§4. The Essential Spectrum 

Now concentrate on operators acting on a single Hilbert space .Yf and let 
n: 11 --+ &1/140 be the natural map from &I(.Yf) into the Calkin algebra. Since 
the Calkin algebra is a Banach algebra with identity, the next definition 
makes sense. 

4.1 .  Definition. If A e&I(.Yf), the essential spectrum of A, a e(A), is the spectrum 
of n(A) in &1/&10; that is, ae(A) = a(n(A) ). Similarly the left and right essential 
spectrum of A are defined by Gte(A) = a1(n(A)) and Gre(A) = ar(n(A) ), 
respectively. 

The proof of the next proposition is a straightforward application of 
the general properties of the various spectra in an arbitrary Banach 
algebra. 

4.2. Proposition. Let A e8l(.Yf). 

(a) (J e(A) = CT te(A) U CT re(A). 
(b) O"te(A) = (Jre(A*)*. 
(c) CTte(A) c cr,(A), Gre(A) c Gr(A), and Ge(A) c cr(A). 
(d) Gte(A), Gre(A), and ae(A) are compact sets. 
(e) If K is a compact operator, G te(A + K) = G te(A), are( A + K) = are( A), and 

Ge(A + K) = Ge(A). 

Our understanding of semi-Fredholm operators gained in the preceding 
sections can now be applied to better understand the essential spectrum. 
Indeed, u1e(A) = { .A.e<C: A - A.¢:F1 } .  Thus an application of Theorem 2.3 gives 
us the following. 
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4.3. Proposition. Let Ae81(£). 

(a) A.ea1e(A) if and only if dim ker(A - A.) =  oo or ran(A - A.) is not closed. 
(b) A.eare(A) if and only if dim [ran(A - A.)] l.  = oo or ran (A - A.) is not closed. 

The reader should compare Proposition 4.3 and Proposition 1 . 1 .  

4.4. Proposition. If Ae81(£), then aap (A) = a1e (A) u {A.eap (A): dim ker(A - A.) 
< 00 } .  

PROOF. If A.eaap(A), then ( 1 . 1 ) either ran (A - A.) is not closed or ker(A - A.) # 0. 
If ran(A - A.) is not closed or if dim ker(A - A.) = oo, then A.ea1e(A) by (4.3). 
The proof of other inclusion is left to the reader. • 

4.5. Proposition. If N is a normal operator and A.ea(N), then ran (N - A.) is 
closed if and only if A. is not a limit point of a( N). 

PROOF. Assume A. is an isolated point of a(N); thus X =  a(N)\{A.} is a closed 
subset of a(N). If N = J z dE(z) and £1 = E(X)£, then £1 reduces N 
and a(N I£1 ) = X. Hence (N - A.)£1 is closed. Since £f = ker(N - A.), 
ran(N - A.) = (N - A.)£1 ; hence N - A. has closed range. 

Now assume that A.ea(N) but A. is not an isolated point. Then there is a 
strictly decreasing sequence {rn }  of positive real numbers such that rn --+ 0  
and such that each open annulus An = {z: rn + 1 < l z - A. I <  rn } has non-empty 
intersection with a(N). Thus E(An)£ =I= (0); let en be a unit vector in E(An)£. 
Then en l_ ker(N - A.) ( = E( {A.} )£) and 

II (N - A.)en 1 1 2 = f l z - A- 1 2 dEen,en(z) � r; --+ 0. 
An 

That is, inf { I I (N - A.)h II : II h I I = 1 ,  h _i ker(N - A.) } = 0 and so, by the Open 
Mapping Theorem, N - A. does not have closed range. • 

4.6. Proposition. If N is a normal operator, then ae(N) = a1e(N) = are(N) and 
a(N)\a e(N) = { A.ea(N) : A. is an isolated point of a(N) that is an eigenvalue of 
finite multiplicity} . 

PROOF. The first part follows by applying Proposition 1 .3 to the Calkin 
algebra. If A. is an isolated point of a(N), then ran(N - A.) is closed by the 
preceding proposition. So if dim ker (N - A.) < oo, A.¢a1e(N) = a  e(N) by 
Proposition 4.3. Conversely, if A.ea(N)\ae(N), then ran(N - A.) is closed and 
dim ker(N - A.) < oo. By the preceding proposition, A. is an isolated point of 
a(N). • 

4.7. Example. Let G be a bounded region in <C and, to avoid pathologies, 
assume oG = o[cl G]. Let £ = L; (G) (1. 1 . 10) and define S: .Ye --+ JI?  by 
(Sf)(z) = zf(z). Then u(S) = cl G, ue(S) = a,e(S) = are (S) = oG = Uap(S), 
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a p(S) = 0, and for A. in G, ran(S - A.) is closed and dim [ran(S - A.)] j_ = 1 .  
Thus ind (S - A.) = - 1 for A. in G. 

To show that these statements are true, begin by proving: 

4.8 If A.eG, ran(S - A.) = {f eL;(G) : f(A.) = 0} . 

In fact, if heL;(G), then [(S - A.)h] (z) = (z - A.)h(z) so that f = (z - A.)h 
vanishes at A.. Conversely, suppose! eL;(G) andf(A.) = 0; thenf(z) = (z - A.)h(z) 
for some analytic function h on G. It must be-shown that heL;(G). Let r > 0 
such that D = {z : l z - A. I � r} c G. Then 

Now JJD i h l 2 < oo since h is bounded on D. For z in G\D, l h(z) l = lf(z) l/ l z - A.l � 
r- 1 l f(z) l . Hence 

JJ
G,D

i h l 2 � r- 2 JL I! I 2 < oo. 

Thus heL;(G) and f = (S - A.)h. This proves (4.8). 
Using Corollary 1. 1 . 1 2, fH f(A.) is a bounded linear functional on L;(G) 

whenever A.eG. By (4.8), ran (S - A.) is the kernel of this linear functional and 
hence is closed. 

Because G is bounded, the constant functions belong to L;(G). So if 
f eL;(G), f = [f - f(A.)] + f(A.) and f - f(A.)eran(S - A.). Thus L;(G) = 
ran (S - A.) + <C. Therefore dim [ran(S - A.)] j_ = dim [L; (G)/ran(S - A.)] = 1 
when A.eG. 

If A.eG, then S - A.  is not surjective; hence G c a(S). If A.jcl G, then (z - A.) - 1 
is a bounded analytic function on G. If Af = (z - A.) - 1/, then A is a bounded 
operator on L;(G) and it is easy to check that A(S - A.) = (S - A.)A = 1 .  Thus 
a(S) c cl G. Combining these two containments, we get a(S) = cl G. 

From Corollary 2.4 we have that S - A. is a Fredholm operator whenever 
A.eG; thus G n ae(S) = D. So ae(S) c oG =  o[cl G]. If A.eoG, then A.eoa(S); 
thus A.eaap(S) ( 1 .2). Since ker(S - A.) = (0), ran(S - A.) is not closed. Thus 
oG c a1e(S) n are(S). This proves that ae(S) = a1e(S) = are(S) = oG = aap(S). 

One of the primary uses of Fredholm theory is the examination of the 
values of ind (A - A.) for all A. for which this makes sense. Such an examination 
often leads to structural information about the operator A. Note that 
ind (A - A.) is defined when A.¢a1e(A) n are(A). 

4.9. Proposition. If A e81(£), then ind(A - A.) is constant on the components 
of <C\a1e (A) n are( A). If A. is a boundary point of a( A) and A.¢a1e(A) n are( A), 
then ind(A - A.) =  0. 

PROOF. The map A.HA - A. is a continuous map of <C\a1e(A) n are(A) into 
f/ §'. So the first part of the proposition follows from Corollary 3. 1 3. If A. is a 
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boundary point of a( A) and A.�a1e(A) n are( A), then there is a sequence { A.n } in 
<C\a(A) such that An --+ A.. Thus ind(A - A.n) --+ ind(A - A.). Since ind(A - A.n ) = 0 
for all n, the result follows. • 

Here is the remaining spectral information about an old friend. 

4.10. Example. Let S be the unilateral shift on 1 2 •  Then a,e(S) = are(S) = 8D 
and ind(S - A.) = - 1 for l A. I < 1 .  

In Proposition VII.6.5 it was shown that a(S) = cl D, a p(S) = D ,  and 
aap(S) = 8D. Thus for I A. I = 1 ,  ran(S - A.) is not closed and hence 8D c 

a1e(S) n are(S). Also, if I A. I < 1 ,  it was shown that ran(S - A.) is closed 
and dim [ran(S - A.)] j_ = 1 .  This implies that 8D = a1e(S) = are(S) and 
ind(S - A.) = - 1 for A. in D. 

Using this information about the shift and Proposition 3.4(c) we can get 
complete information about another operator. (Also see Example 3. 10.) 

4.1 1 .  Example. Let S be the unilateral shift of multiplicity 1 and put A =  SEeS*.  
I t  follows that a1e(A) = are( A) = 8D, a( A) = cl D, and ind(A - A.) =  0 for 
l A. I < t .  
EXERCISES 
1 .  Show that the material of this section is only significant for infinite dimensional 

Hilbert spaces by showing that the essential spectrum of every operator on Je is 
non-empty if and only if Je is infinite dimensional. 

2. Let G be a bounded region in CC such that oG = o[cl G] and let </> be a function 
that is analytic in a neighborhood of cl G. Define A: L;(G) -+ L;(G) by Af = </Jf. 
Find all of the parts of the spectrum of A. 

3. (Fillmore, Stampfli, and Williams [ 1972].) If A.ea1e(A), then there is a projection 
P, having infinite rank, such that n(A - A.)n(P) = 0. 

4. (Fillmore, Stampfli, and Williams [ 1 972].) Let Ae�(Je). (a) If A has a cyclic vector 
e, show that dim { Ae, A 2e, . . .  } .l � 1 .  (b) Let A.ea1e(A *). If e > 0, let /1 , /2 be 
orthonormal vectors such that II (A* - A.)fi I I  < e for j = 1 ,  2 and let P = the 
projection onto v {/1 , /2 } .  Put B = A.P + ( 1 - P)A. Show that I I  B - A I I  < 2e. (c) 
Show that the noncyclic operators are dense in �(Je) if dim Je > 1 .  

5. Let Ae§ and suppose f is analytic in a neighborhood of a( A) and does not vanish 
on a e(A). Show that f(A)e§ and fit\d ind f(A). 

6. Let S be the unilateral shift and let f be an analytic function in a neighborhood 
of cl D such that f(z) =1= 0 if l z l = 1 .  Let y(t) = f(exp(2nit)), 0 � t � 1 .  Show that 
ae(f(S)) = f(oD) = {y(t): 0 � t � 1 }  and that if A.¢f(oD), ind(f(S) - A.) = - n(y; A.), 
where n(y; A.) = the winding number of y about A.. Moreover, show that if 
ind(f(S) - A.) = 0, then A.¢a(f(S)). 

7. Let S be the operator defined in Example 2. 1 1  where G = D. Show that there is 
a compact operator K such that S + K is unitarily equivalent to the unilateral shift. 
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8. If S is the unilateral shift, show that for every e > 0 there is a rank one operator 
F with II F I I < e such that a(S* EB S + F) = oD. 

9. Let G be an open connected subset of a(A)\a1e(A) u a,.e(A) and suppose A.0e G  
such that ind(A - A.0) = 0. Show that there is a finite rank operator F such that 
A + F - A.0 is invertible. Show that A + F - A. is invertible for every A. in G. 

§5 .  The Components of f/F 
Since the index is continuous on f/!? and assumes every possible value 
(Exercise 3.4), f/!? cannot be connected. What are its components? 

Note that because f/!? is an open subset of a Banach space, its components 
are arcwise connected (Exercise IV. 1 .24). 

5.1 .  Theorem. If A, Bef/!F, then A and B belong to the same component of 
f/!? if and only if ind A = ind B. 

Half of this theorem is easy. For the other half we first prove a lemma. 

5.2. Lemma. If A e!F and ind A = 0, then there is a path y: [0, 1] --+ !?  such 
that y(O) = 1 and y( 1) = A. 

PROOF. By Exercise 3.7 there is a finite-rank operator F such that A +  F is 
invertible. If y(t) = A + tF, y(O) = A, y(1) = A +  F, and y(t)e!F for all t. Thus 
we may assume that A is invertible. 

Let A = U I A I be the polar decomposition of A. Because A is invertible, 
U is a unitary operator and I A I is invertible. Using the Spectral Theorem, 
U = exp(iB) where B is hermitian. Also, since Oja( l A 1 ), I A I = J£d,r]x dE(x), 
where 0 < £5 < r = II A 1 1 . Define y: [0, 1 ]  --+ �(£) by 

y(t) = eitB f x' dE(x) = eitB I A I ' .  
[d,r] 

It is easy to check that y is continuous, y(O) = 1 ,  and y(1 )  = A. Also, each y(t) 
is invertible so y(t)e�. 

, 

• 

PROOF OF THEOREM 5. 1 .  First assume that A, Be� and ind A = ind B. So 
there is an operator C such that CB = 1 + K for some compact operator K. 
Thus Ce�r and ind C = - ind B = - ind A. Hence ACe!? and ind AC = 0. 
By the preceding lemma there is a path y: [0, 1] -+ !F  such that y(O) = 1 and 
y( 1 )  = AC. Put p(t) = y(t)B - tAK. Because AKef!A0, p(t)e!F for all t in [0, 1] . 
Also, p(O) = B and p(1) = ACB - AK = A(1 + K) - AK = A. 

Now assume that ind A = - oo; so dim(ran A) J. = oo and dim ker A <  oo. 
Let F be a finite-rank operator such that ker(A + tF) = 0 for t =I= 0. (Why 
does F exist?) This path shows that we may assume that ker A = (0). Let V 
be any isometry such that dim(ran V) l. = oo and consider the polar decom-



§6. A Finer Analysis of the Spectrum 363 

position A = U I A I of A. Since A ef/ � and ker A = (0), I A I is invertible and 
U is an isometry. Also, ran U = ran A, so (Exercise 4) there is a path 
p :  [0, 1 ] --+ �(e1t') such that p(t) is an isometry for every t and p(O) = U and 
p( 1 )  = V. Let y :  [0, 1]  --+ � be a path such that y(O) = I A I and y( 1 )  = 1 .  Then 
u(t) = p(t)y(t) for 0 � t � 1 defines a path u: [0, 1] --+ f/ � (Why?) such that 
u(O) = A and u( 1 )  = V. Similarly, if ind B = - oo, there is a path connecting 
B to V; so A and B belong to the same component of f/�. 

If ind A = ind B = + oo, apply the preceding paragraph to A* and B* . 
• 

5.3. Corollary. The component of the identity in �' �0 , is a normal sub-group 
of � and �/�0 is an infinite cyclic group. 

PROOF. By Theorem 3.7, ind � -+'ll is a group homomorphism and it is 
surjective (Exercise 3.4). By Theorem 5. 1 ,  ker(ind) = � 0 . • 

EXERCISES 
1 .  Let G be any topological group and let G0 be the component of the identity. Show 

that G0 is a normal subgroup of G. 

2. What are the components of the set of invertible elements in C(oD)? 

3. If S = the unilateral shift, what are the components of the set of invertible elements 
of C*(S)? 

4. If U and V are isometries, show that there is a path consisting entirely of isometries 
connecting U to V if and only if dim(ran U) .L = dim(ran V) .i . 

5. Find the components of the set of partial isometries. 

§6. A Finer Analysis of the Spectrum 

In this section we will examine the spectrum and index more closely. For 
example, one question that arises : If A is semi-Fredholm and b > 0 is chosen 
so that B is semi-Fredholm and ind B = ind A whenever I I  B - A I I < b 
(Corollary 3. 1 3), how does dim ker B differ from dim ker A? 

Begin this investigation by associating with every bounded operator A 
the following number: 

t 

y( A) = inf { I I  Ah I I  : I I  h I I  = 1 and h 1_ ker A} .  

The first proposition contains some elementary properties of y and its 
proof is left to the reader. (Actually part (a) has appeared several times in this 
book under different guises.) 

6.1.  Proposition. Let A be a bounded operator on e1f. 

(a) y(A) > 0 if and only if A has closed range. 
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(b) y (A) = sup {y :  II Ah I I � y I I h I I for all h in (ker A) .l } = inf { I I  Ah 1 1 / 1 1 h I I : 
he (ker A)j_ \ {0} } .  

6.2. Proposition. If Ae�(e1f), then y(A) = y(A *). 

PROOF. Let h l_ ker A. Then I I A*Ah i i = I I I A I A i h i i = I I A I A i h l l . But I A i he  
cl ran A* (Why?) = ker A j_ .  Hence the definition of y(A) implies that 
I I A* Ah I I � y(A) I l l  A I h I I = y(A) I I Ah II ; that is, I I A *f I I � y(A) I I f I I for every f in 
ran A. Since ran A is dense in (ker A* ) j_ , y(A*) � y(A). But A =  A** ,  so 
y(A) � y(A*). • 

Note that the preceding two propositions give a proof of the fact that an 
operator on a Hilbert space has closed range if and only if its adjoint does. 
See Theorem Vl . 1 . 1 0 and Exercise 2. 1 .  

6.3. Lemma. If .A, .% �  e1f, .% is finite dimensional, and dim .A >  dim .%, 
then there is a non-zero vector m in .A such that I I m I I = dist (m, .%). 

PROOF. Let P be the projection of e1f onto .A, so dim P(.%) � dim .% <  dim .A. 
Thus P(.%) is a proper subspace of .A; let me.A n P(.%) j_ . If ne.%, then 
0 = (Pn, m )  = ( n, Pm) = ( n, m ), so m l_ .%. Hence II m I I = dist (m, .%). • 

6.4. Lemma. If hee1f, then y(A)dist (h, ker A) � I I Ah 1 1 . 

PROOF. Let P be the projection of e1f onto ker A j_ ; then I I Ph I I = dist (h, ker A). 
Hence I I Ah I I = II APh I I � y(A) I I Ph I I  = y(A)dist (h, ker A). • 

If the role of y(A) in the next and subsequent propositions impresses 
the reader as somewhat mysterious, reflect that if A is invertible, then 
y(A) = II A - t 1 1 - 1 (Exercise 1 ). Now in Corollary VII.�.3, it was shown that 
if d is a Banach algebra, a0ed, and b0a0 = 1 ,  then a +  b is  left invertible 
whenever I I b I I < I I b0 I I  - 1 .  Of course, a similar result holds for right invertible 
elements. The number y(A) is trying to play the role of the reciprocal of the 
norm of a one-sided inverse. 

For example, if A is left invertible, then ran A is closed and ker A =  (0); 
hence Aeff !F. The next result implies that if II B II < y(A), then A + B is left 
invertible. 

6.5. Proposition. If Aeff!F and Be�(e1f) such that I I B I I < y(A), then 
A + Beff!F and: 

(a) dim ker(A + B) �  dim ker A; 
(b) dim ran (A + B) j_ � dim ran A j_ . 

PROOF. First note that because Aeff!F, y(A) > 0. 
If heker(A + B) and h =1= 0, then Ah = - Bh. By Lemma 6.4, 

y(A)dist (h, ker A) � II Bh II � I I  B II I I  h II < y(A) I I h 1 1 . Thus dist (h, ker A) < I I h I I  
for every nonzero vector h in ker(A + B). By Lemma 6.3, (a) holds. 
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Since I I  B II = I I  B* I I  and y(A) = y(A *), (a) implies that dim ker(A * + B*) � 
dim ker A* .  But this inequality is equivalent to (b). 

It remains to prove that ran(A + B) is closed. Since A ef/!F, either 
dim ker A < oo or dim ker A*  < oo. Suppose dim ker A < oo. It will be shown 
that A + Be§' 1 by using Theorem 2.3 (f) and showing that if � < y( A)  - I I  B I I , 
then { h: I I (A + B)h I I  � � I I h I I } contains no infinite dimensional manifold. 
Indeed, if it did, it would contain a finite dimensional subspace .A with 
dim .A > dim ker A. By Lemma 6.3 there is a non-zero vector h in .A with 
II h II = dist (h, ker A). Now II (A + B)h I I  � � I I  h I I , so Lemma 6.4 implies that 
y(A) I I h I I = y(A)dist(h, ker A) � I I  Ah I I � I I  (A + B)h I I + I I  Bh I I � (� + I I B I I ) I I  h I I < 
y(A) I I  h I I , a contradiction. Thus A +  Be§'1 and so ran(A + B) is closed. 

If dim ker A =  oo, then dim ker A* < oo. The argument of the preceding 
paragraph gives that ran(A * + B*) is closed. By (VI. 1 . 10), ran(A + B) is 
clo�d. • 

6.6. Proposition. If A ef/ §' and either ker A = (0) or ran A = £, then 
there is a � > 0 such that if I I B - A I I  < �, then dim ker B = dim ker A and 
dim ran B = dim ran A. 

PROOF. By Proposition 6.5 and Theorem 3. 1 2  there is a � > 0 such that if 
II B - A II < �' then ind A = ind B, dim ker B � dim ker A, and dim ran B l. � 
dim ran A l. . Since one of these dimensions for A is 0, the proposition is 
proved. • 

If both ker A and ran A are nonzero, then there are semi-Fredholm 
operators B that are arbitrarily close to A such that dim ker B < dim ker A 
(see Exercise 2). In fact, just about anything that can go wrong here does go 
wrong. However, dim ker(A - A.) does behave rather nicely as a function of A.. 

6.7. Theorem. If A.�u1e(A) n ure(A), then there is a � > 0 such that 
dim ker(A - Jl) and dim ran( A - Jl) l. are constant for 0 < I ll - A. I < �-

PROOF. We may assume that A. =  0. We may also assume that ker A is finite 
dimensional. Indeed, if this is not the case, then ker A*  must be finite 
dimensional and the proof that follows applies to A* .  But observe that if 
the conclusion of the theorem is demonstrated for A* ,  then it also holds for 
A. It follows that for each n � 1 ,  Anef/§' (Theorem 3.7). Thus .An = ran An 

is closed. Note that .An + 1 c .A, and A.An = .An + 1 • Let .A =  n: 1 .An and 
put B = A  I .A. 

Claim. B.A = .A. 

Since ker A is finite dimensional and the spaces .An are decreasing, there 
is an integer m such that .An n ker A = .Am n ker A for all n � m. If h e  .A and 
n � m, there is an fn in .An such that h = Afn · But fm - fn e(ker A) n .Am = 
(ker A) n .An. Therefore fme.An for every n � m. That is, fm e.A and so 
h = Afm = BfmeBJt. 
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Thus B eY� and ind B = dim ker B. By (3. 1 2) and (6.5) there is a £5 > 0  
such that if l ,u l < £5, then dim ker(B - Jl) � dim ker B, dim ran(B - Jl) J. = O, 
and ind(B - Jl) = ind B. Thus dim ker(B - Jl) = dim ker B for I 11 1 < £5. Also, 
choose £5 such that ind(A - Jl) = ind A for I 11 1 < £5. 

On the other hand, if Jl "# 0, then ker(A - Jl) c .A. In fact, if heker(A - Jl), 
then Anh = Jlnh, so that h = An(Jl - nh)e.An for every n. Thus for 0 < 1 11 1 < £5, 
dim ker(A - Jl) = dim ker(B - Jl) = dim ker B; that is, dim ker(A - Jl) is 
constant for 0 < I  11 1 < £5. Since ind(A - Jl) is constant for these values of Jl, 
dim ran(A - Jl) l. is also constant. • 

The next result is from Putnam [ 1 968] . 

6.8. Theorem. If A.eou(A), then either A. is an isolated point of u(A) or 
AEUze(A) n Ure(A). 

PROOF. Suppose A.eou(A) but A is not a point of u1e(A) n ure(A). Thus 
A - A. ef/ �- By the preceding theorem, there is a £5 > 0 such that A - JlEff � 
and dim ker(A - Jl) and dim ran(A - Jl) J. are constant for O < I Jl - A. I < £5. 
Since A.eou(A), there is a v with 0 < I  A - v i < £5 such that A - v is invertible. 
Therefore ker(A - Jl) = (0) = ran(A - Jl) l. for 0 < I A. - Jl l  < £5. But A - JlEf/ � 
for these values of Jl and hence has closed range. I t  follows that A - Jl is 
invertible whenever 0 < I A. - 11 1 < £5. This says that A. is an isolated point of 
u(A). • 

What happens if A. is an isolated point of u(A)? 

6.9. Proposition. If A. is an isolated point of u(A), the following statements are 
equivalent. 

(a) A.¢u1e(A) n ure(A). 
(b) The Riesz idempotent E(A.) has finite rank. 
(c) A - A.e§' and ind(A - A.) = 0. 

PROOF. Exercise 4. 
' 

If ne'llu { + oo }  and A e�(Jt), define 

P n(A) = { A. eu(A): A - A. ef/ � and ind(A - A.) =  n } .  

So for n :;t: 0, Pn(A) i s  an open subset of the plane; the set P0(A) consists of 
an open set together with some isolated points of u(A). In fact, Proposition 6.9 
can be used to show that P0(A) contains precisely the isolated points of u(A) 
for which the Riesz idempotent has finite rank. The proof of the next result 
. 
IS easy. 

6.10. Proposition. If A e�(Yf), then ue(A) = [u1e(A) n ure(A)] u P  + oo (A) u 
P- 00(A). 
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6.1 1 .  Definition. If A e81(£), then the Weyl spectrum of A, aw(A), i s  defined by 

aw(A) = n {a( A + K): K e810 } . 

Note that since ae(A + K) = ae(A) for every compact operator, aw(A) is 
nonempty and ae(A) c aw(A). The way to think of the Weyl spectrum is that 
it is the largest part of the spectrum of A that remains unchanged under 
compact perturbations. It is clear that aw(A) = aw(A + K) for every K in 810 
and aw(A) c a(A). The following is a result of Schechter [ 1 965] . 

6.12. Theorem. If A e81(£), then O'w(A) = ae(A) u Un ;e oPn(A). 

PROOF. Clearly X =  ae(A) u Un;e o Pn(A) c aw(A). Now suppose A.¢X. Then 
A - A.e§' and ind(A - A.) = 0. By Exercise 3.7 there is a finite rank operator 
F such that A + F - A.  is invertible. Hence A.fla(A + F) so that A.flaw(A). • 

So for every operator A in 81(£) there is a spectral picture for A (a term 
coined in Pearcy [ 1 978] ). There are the open sets {Pn(A): 0 < I n I � oo } ,  
the set P 0(A) = G0 u D where D consists of isolated points A. for which 
dim E(A.) = n;. < oo, and there is the remainder of a( A), which is the set 
a1e(A) n are(A). The next result is due to Conway [ 1 985] .  

6.13. Proposition. Let K be a compact subset of <C, let { Gn : - oo � n � oo } be 
disjoint open subsets of K (some possibly empty), let D be a subset of the set 
of isolated points of K, and for each A. in D let n;. E { 1 ,  2, . . .  } . Then there 
is an operator A on £ such that a(A) = K, Pn(A) = Gn for 0 < I n I � oo, 
P0(A) = G0 u D, and dim E(A.) = n;. for every A. in D. 

We prove only a special case of this result; the general case is left to the 
reader. Let K be any compact subset of <C and let G be an open subset of 
K. Put H = int [cl G]; so G c H, but it may be that H =1= G. However, 
oH = o [cl H] . Let Tf = zf for f in L;(H), so H = P_ 1 ( T), a( T) = cl H, and 
a1e(T) n are(T) = oH = 8[cl G]. Let {A.k } be a countable dense subset of K\G 
and let N be the diagonalizable normal operator with a p(N) = { A.k } and such 
that dim ker(N - A.k) = oo for each A.k . If 0 < n � oo and A =  N E9 r<n> , then 
a(A) = K, P - n(A) = G, and K\G = a1e(A) n are(A). 

EXERCISES 
• 

1 .  If A is an invertible operator, show that y(A) = II A - 1 I I - 1 • 
2. Let A e§ and suppose that ker A =1= (0) and ran A j_ =1= (0). Show that for every b > 0 

there is an operator B in !F such that I I  B - A I I  < b, dim ker B < dim ker A, and 
dim ran B j_ < dim ran A j_ . 

3. If A ef/ !F, show that there is a � > 0 such that dim ker(A - JL) = dim ker A and 
dim ran(A - JL) j_ = dim ran A j_ for I Jl l  < � if ker A £ ran A" for every n � 1 .  

4. Prove Proposition 6.9. 
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5. Prove Proposition 6. 10 

6. If A.eoPn(A) and n # 0, show that ran(A - A.) is not closed. What happens if n = 0? 

7. (Stampfli [ 1974] .) If Aeg.J(Jf), then there is a K in g.J0(Jf) such that a( A +  K) = aw(A). 

8. Prove Proposition 6. 1 3 . 

9. (Conway [ 1985] .) If L and R are nonempty compact subsets of <C, then there is a 
bounded operator A on Jf such that a1(A) = L and a,(A) = R if and only if oL c R 
and oR c L. 



APPENDIX A 
Preliminaries 

As was stated in the Preface, the prerequisites for understanding this book 
are a good course in measure and integration theory and, as a corequisite, 
analytic function theory. In this and the succeeding appendices an attempt 
is made to fill in some of the gaps and standardize some notation. These 
sections are not meant to be a substitute for serious study of these topics. 

In Section 1 of this appendix some results from infinite dimensional linear 
algebra are set forth. Most of this is meant as review. Proposition 1 .4, however, 
seems to be a fact that is not stressed or covered in courses but that is used 
often in functional analysis. Section 2 on topology is presented mainly to 
discuss nets. This topic is often not covered in the basic courses and it is 
especially useful in discussing various ideas and proving results in functional 
analysis. 

§ 1 .  Linear Algebra 

Let f£ be a vector space over F' = R or <C. A subset E of f£ is linearly 
independent if for any finite subset { e 1 , • • •  , en } of E and for any finite set of 
scalars { � 1 , • • •  , �n} , if L�= 1 �kek = 0, then �1 = · · · = �n = 0. A Hamel basis is 
a maximal linearly independent subset of f£. 

1 .1 .  Proposition. If E is a linearly independent subset off£, then E is a Hamel 
basis if and only if every vector x in f£ can be written as x = L� = 1 �kek for 
scalars � 1 , • • •  , �n and { e 1 , • • •  , en } c E. 

PROOF. Suppose E is a  basis and xef£, x¢E. Then E u {x} is not linearly 
independent. Thus there are �0, � 1 , • • •  , �n in F' and e 1 , • • •  , en in E such that 
0 = �0x + �1e 1 + · · · + �nen , with �0 =I= 0. (Why?) Thus x = L:= 1 ( - �k/�0)ek . 
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Conversely, if f£ is the linear span of E, then for every x in fi\E, E u { x} 
is not linearly independent. Thus E is a basis. • 

1 .2. Proposition. If E0 is a linearly independent subset of f£, then there is a 
basis E that contains E0 . 

PRooF. Use Zorn's Lemma. 

A linear functional on f£ is a function f :  f£ --+  F' such that 
f(a,x + {3y) = a,f(x) + {3f(y) for x, y in f£ and a,, {3 in F'. If f£ and O.!J are vector 
spaces over F', a linear transformation from f£ into O.!J is a function T: f£ --+  OJ/ 
such that T(a, 1 x 1 + a,2x2) = a,1 T(x 1) + a,2 T(x2) for x 1 , x2 in f£ and a,1 , a,2 in F'. 

If A, B c f£, then A +  B = {a +  b: aeA, beB}; A - B = {a - b: aeA, beB} . 
For a, in F' and A c f£, a,A = { a,a: aeA } .  If Jt is a linear manifold in f£ (that 
is, Jt c f£ and Jt is also a vector space with the same operations defined 
on f£), then define f£ I Jt to be the collection of all the subsets of f£ of the 
form x + Jt. A set of the form x + Jt is called a coset of Jt. Note that 
(x + Jt) + (y + Jt) = (x + y) + Jt and a,(x + Jt) = a,x + Jt since Jt is a linear 
manifold. Hence fiiJ! becomes a vector space over F'. It is called the quotient 
space of f£ mod Jt. 

Define Q: f£ --+ fiiJt by Q(x) = x + Jt. It is easy to see that Q is a linear 
transformation. It is called the quotient map. 

If T: f£ --+  OJ/ is a linear transformation, 

ker T = {xef£: Tx = 0} , 
ran T =  { Tx: xef£}; 

ker T is the kernel of T and ran T is the range of T. If ran T =  O.!J, T is 
surjective; if ker T = (0), T is injective. If T is both injective and surjective, 
then T is bijective. It is easy to see that the natural map Q: f£ --+  f£ 1 Jt is 
surjective and ker Q = Jt. 

Suppose now that T: f£ --+  OJ/ is a linear transformation and Jt is a linear 
A A 

manifold in f£. We want to define a map T: fiiJ! --+ O.!J by T(x + Jt) = Tx. 
A 

But T may not be well defined. To ensure that it is we must have Tx1 = Tx2 
if x1 + Jt = x2 + Jt. But x 1 + Jt = x2 + Jt if and only if x 1 - x2 eJI, and 

A 

Tx1 = Tx2 if and only if x1 - x2 eker T. So T is well defined if Jt c ker T. 
A A 

It is easy to check that if T is well defined, T is linear. 

1.3. Proposition. If T: f£ --+  O.!J is a linear transformation and Jt is a linear 
A 

manifold in f£ contained in ker T, then there is a linear transformation T: 
f£ I Jt --+ O.!J such that the diagram 

T 

commutes. 
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The preceding proposition is especially useful if ..,It = ker T. In that case 
...... 

T is injective. 
The last proposition of this section will be quite helpful in the book. 

1.4. Proposition. Let f, f1 , • • •  , fn be linear functionals in f£. If ker f => 

n�= 1 ker fk, then there are scalars � 1 , . . •  , �n such that f = L�= 1 �kfk (that is, 
f(x) = L�= 1 �Jk(x) for every x in f£). 

PROOF. It may be assumed without loss of generality that for 1 � k � n, 
n 

n ker fj # n ker jj. 
j ;l; k j =  1 

(Why?). So for 1 � k � n, there is a Yk in ni * k ker fi such that Yk ¢ n j = 1 ker fi· 
So fi(Yk) = 0 for j # k, but fk(Yk) # 0. Let xk = [fk(Yk)] - 1 Yk· Hence fk(xk) = 1 
and jj(xk) = 0 for j # k. 

Now let f be as in the statement of the proposition and put �k = f(xk). 
If xef£, let y = x - L� = 1 fk(x)xk. Then fi(y) = fi(x) - L� = 1 fk(x)jj(xk) = 0. By 
hypothesis, f(y) = 0. Thus 

n 
0 = f(x) - L fk(x) f(xk) 

k = 1 
n 

= f(x) - L �kfk(x); 
k = 1 

equivalently, f = L�= 1 �kfk· 

§2. Topology 

In this book all topological spaces are assumed to be Hausdorff. 

• 

This section will review some of the concepts and results using nets, as 
this idea is frequently used in the text. 

A directed set is a partially ordered set (I, � ) such that if i 1 , i2 ei, then 
there is an i3 in I such that i3 � i 1 and i3 � i2. A good example of a directed 
set is to let (X, Y) be a topological space and for a fixed x0 in X let 01J = 
{Uin Y: XoE U}. If U, VeOIJ, define u.� v if u c v (so bigger is smaller). OIJ is 
said to be ordered by reverse inclusion. Another example is found if S is any 
set and §' is the collection of all finite subsets of S. Define F 1 � F 2 in §' if 
F 1 => F 2 (bigger means bigger). Here §' is said to be ordered by inclusion. 
Both of these examples are used frequently in the text. 

A net in X is a pair ( (I, � ), x) where (I, � )  is a directed set and x is a 
function from I into X. Usually we will write xi instead of x(i) and will use 
the phrase "let {xi } be a net in X." 

Note that N, the natural numbers, is a directed set, so every sequence is 
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a net. If (X, .r) is a topological space, x0eX, and C'IJ = { U in ff: x0e U} , then 
let XuE U for every U in C'IJ. So {xu: U ed/1} is a net in X. 

2.1. Definition. If { x; } is a net in a topological space X, then {xi} converges 
to x0 (in symbols, X; --+ x0 or x0 = lim x;) if for every open subset U of X such 
that x0e U, there is an i0 = i0(U) such that X;E U for i � i0• The net clusters 
at x0 (in symbols, X; ci • x0) if for every i0 and for every open neighborhood 

U of x0, there exists an i � i0 such that xie U. 
These notions generalize the corresponding concepts for sequences. Also, 

if xi --+ Xo, then X; cl • Xo . Note that the net {xu : u ed/1} defined just prior to 

the definition converges to x0• This is a very important example of a 
convergent net. 

2.2. Proposition. If X is a topological space and A c X, then xecl A (closure 
of A) if and only if there is a net { a i } in A such that a; --+ x. 

PROOF. Let diJ = {U: U is open and xe U}. If xecl A,  then for each U in C'IJ 
there is a point au in A n  U. If U 0ed/J, then aue U 0 for every U � U 0; therefore 
x = lim au. Conversely, if {a;} is a net in A and a; --+ x, then each U in C'IJ 
contains a point a; and a;eA n U . Thus xecl A . • 

2.3. Proposition. If A c X, {a;} is a net in A, and a; cl • x, then xecl A. 

PROOF. Exercise. 

There is a concept of a subnet of a net and with this concept it is possible 
to prove that if a net clusters at a point x, then there is a subnet that converges 
to x. The concept of a subnet is, however, somewhat technical and is not 
what you might at first think it should be. Since this concept is not used in 
this book, the interested reader is referred to Kelley [ 1955].  It might also 
be appropriate to mention that a topological space is Hausdorff if and only 
if each convergent net has a unique limit point. 

2.4. Proposition. If X and Y are topological spaces and f: X --+ Y, then f is 
continuous at x0 if and only if f(x;) --+ f(x0) whenever X; --+ x0• 

PROOF. First assume that f is continuous at x0 and let { x;} be a net in X 
such that X; --+ x0 in X. If V is open in Y and f(x0)e V, then there is an open 
set U in X such that x0e U and f(U) c V. Let i0 be such that X;E U for i � i0• 
Hence f(x;)E V for i � i0• This says that f(xi) --+ f(x0). 

Let C'IJ = { U: U is open in X and x0e U} . Suppose f is not continuous at 
x0• Then there is an open subset V of Y such that f(x0)e V and f(U)\ V :#= D 
for every U in C'IJ. Thus for each U in C'IJ there is a point xu in U with f(xu)¢ V. 
But {xu} is a net in X with xu --+ x0 and clearly {/(xu) } cannot converge to 
f(xo). • 
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2.5. Proposition. Iff: X -+ Y, f is continuous at x0, and { xJ is a net in X that 
clusters at x0, then {f(xi) }  clusters at f(x0). 

PROOF. Exercise. 

2.6. Proposition. Let K c X. Then K is compact if and only if each net in K 
has a cluster point in K. 

PPROOF. Suppose that K is compact and let {xi: iei} be a net in K. For each 
i let Fi = cl {xi: j � i } , so each Fi is a closed subset of K. It will be shown 
that { Fi: iei} has the finite intersection property. In fact, since I is directed, 
if i 1 ,  • • •  , in e I, then there is an i � i 1 ,  . . •  , in. Thus F i c n � = 1 F ik and { F i } has 
the finite intersection property. Because K is compact, there is an Xo in n iFi. 
But if U is open with x0 in U and i0 ei, the fact that x0 ecl { xi: i � i0} , implies 
there is an i � i0 with xi in U. Thus xi cl • x0• 

Now assume that each net in K has a cluster point in K. Let {Kcx: oceA } 
be a collection of relatively closed subsets of K having the finite intersection 
property. If !F = the collection of all finite subsets of A, order §' by inclusion. 
By hypothesis, if Fe§', there is a point Xp in n {Kcx: oceF} . Thus {xp} is a 
net in K. By hypothesis, { xp} has a cluster point x0 in K. Let oceA, so { oc} e!F. 
Thus if U is any open set containing x0 there is an F in §'  such that oceF and 
XpE U. Thus Xp E U n Kcx; that is, for each oc in A and for every open set U 
containing x0, U n Kcx '# D. Since Kcx is relatively closed, x0 e Kcx for each oc 
in A. Thus x0 e ncxKcx and K must be compact. • 

The next result is used repeatedly in this book. 

2.7. Proposition. If X is compact, {xi} is a net in X, and x0 is the only cluster 
point of { xJ , then the net { xJ converges to x0 • 

PROOF. Let U be an open neighborhood of x0 and let J = {jei: xi¢ U } . If 
{xJ does not converge to x0 , then for every i in I there is a j in J such that 
j � i. In particular, J is also a directed set. Hence {xi: jeJ} is a net in the 
compact set X\ U. Thus it has a cluster point y0 • But the property of J 
mentioned before implies that y0 is also a cluster point of {xi: jei} , 
contradicting the assumption. Thus xi -+ x0 • • 

The next result is rather easy, but it will be used so often that it should 
be explicitly stated and proved. 

2.8. Proposition. If f: X -+ Y is bijective and continuous and X is compact, 
then f is a homeomorphism. 

PROOF. If F is a closed subset of X, then F is compact. Thus f(F) is compact 
in Y and hence closed. Since f maps closed sets to closed sets, f- 1 

is 
continuous. • 
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Note that the Hausdorff property was used in the preceding proof when 
we said that a compact subset of Y is closed. 

In the study of functional analysis it is often the case that the 
mathematician is presented with a set that has two topologies. It is useful 
to know how properties of one topology relate to the other and when the 
two topologies are, in fact, one. 

If X is a set and f/1, f/2 are two topologies on X, say that f/2 is larger 
or stronger than f/1 if f7 2 => f/1 ; in this case you may also say that f/1 is 
smaller or weaker. In the literature there is also an unfortunate nomenclature 
for these concepts; the words "finer" and "coarser" are used. 

The following result is easy to prove (it is an exercise) but it is enormously 
useful in discussing a set with two topologies. 

2.9. Lemma. If f/1, f/2 are topologies on X, then f/2 is larger than f/1 if and 
only if the identity map i: (X, f/2) --+  (X, f/1 ) is continuous. 

2.10. Proposition. Let f/1, f/2 be topologies on X and assume that f/2 is larger 
than f/1 • 

(a) If F is f/1-closed, F is f/2-closed. 
(b) If f: Y --+ (X, f/2) is continuous, then f: Y --+ (X, f/1 ) is continuous. 
(c) If f(X, f/1 ) --+  Y is continuous, then f: (X, f/2) --+  Y is continuous. 
(d) If K is f/2-compact, then K is f/1-compact. 
(e) If X is f/2-compact, then f/1 = f/2• 

PROOF. (b) Note that f: Y --+ (X, f/1 ) is the composition of f: Y --+ (X, f/2) 
and i: (X, f/2) --+ (X, f/1) and use Lemma 2.9. 
(d) Use Lemma 2.9. 
(e) Use Lemma 2.9 and Proposition 2.8. 

The remainder of the proof is an exercise. • 



APPENDIX B 
The Dual of I!(�t) 

In this section we will prove the following which appears as 111.5 .5 and 111.5.6 
in the text. 

Theorem. Let (X, Q, Jl) be a measure space, let 1 � p < oo ,  and let 1 /p + 1/q = 1 .  
If geLq(Jl), define F9: If(Jl) --+ JF by 

F9(f) = f f gdJl. 

If 1 < p <  oo ,  the map gr-+F9 defines an isometric isomorphism of Lq(Jl) onto 
LP(Jl)*. Ifp =  1 and (X, Q, Jl) is a-finite, gr-+F9 is an isometric isomorphism of 
L00 (J.l) onto L1 (J,l)* . 

PROOF. If geLq(Jl), then Holder's Inequality implies that I F9(f) l � I I f l i P l l g l l q 
for all f in If(J.l). Hence F9elf(Jl)* and I I F9 I I � l l g l l q · Therefore gr-+F9 is a 
linear contraction. It must be shown that this map is surjective and an 
isometry. Assume Felf(J.l)*. 

Case 1 :  J.l(X) < 00 .  Here XAEif(J,l) for every A in n. Define v(A) = F(xA>· 
It is easy to see that v is finitely additive. If {An } c Q with A1 => A2 => • • • and 
n: 1 An = 0,  then 

= Jl(An) l fp --+ 0. 

Hence v(An) --+  0 since F is bounded. It follows by standard measure theory 
that v is a countably additive measure. Moreover, if J.l(A) = 0, x4 = 0 in If(J,l); 
hence v(A) = 0. that is, v << Jl. By the Radon-Nikodym Theorem there is an 
Q-measurable function g such v(A) = J4gdJ.l for every A in 0; that is, F(xJ = 
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fxAgdJ,t for every A in n. It follows that 

B.l F(f) = f f gdp. 

for every simple function f. 

B.2. Claim. geLq(Jt) and l l g l l q � I I F I I . 

Note that once this claim is proven, the proof of Case 1 is complete. Indeed, 
(B.2) says that F 9el!(Jt)* and since F and F9 agree on a dense subset of 
l!(Jt) (B. 1 ), F = F9• Also, I I  g l l q � I I  F I I  = I I F9 I I  � I I  g l l q · 

To prove (B.2), let t > O  and put E, = {xeX: I g(x) l � t} . If fel!(Jt) such 
that f = 0 off E,, then there is a sequence {fn} of simple functions such that 
for every n, f n = 0 off E,, I fn i � I f I , and fn (x) --+ f(x) a.e. [Jt] .  (Why?) Thus 
l (fn - f)g l � 2t l f l and J l f l dJt = J i f l · 1 dJt � l l f i i PJt(X) 1 1q < oo. By the 
Lebesgue Dominated Convergence Theorem, F(fn) = J fngdJt --+  J f gdJt. Also, 
l fn - f i P � 2P if i P, so 1 1 /n - / I I P --+ 0; thus F(fn) --+ F(f). Combining these 
results we get that for any t > 0 and any f in I!(Jt) that vanishes off E,, (B. 1 )  
holds. 

Case l a: 1 < p < oo. So 1 < q < oo.  Let f = XEt l g l q/g, where g(x) i= 0, and 
put f(x) = 0 when g(x) = 0. If A =  {x: g(x) i= 0}, then 

f f l g l pq I l f i PdJ,t = p dJ,t = l g l qdJl 
Et nA l g l Et 

since pq - p = q. Therefore 

t. l g i qdp. = f f gdp. = F(f) � I I  F I I I I  f I I  p = I I  F l{t, l g l qdp. T 'p
. 

Thus 

II F II � [t, l g l qdp. T - l /p 
� [ t. l g i qdp. T 'q

. 

Letting t --+  oo gives that t1 g I I  q � I I F 1 1 . 
Case l b: p = 1 .  So q = oo.  For e >  O let A =  {x: l g(x) l > I I F I I + e} . For t >  0 

let f = XEt nA9/ I g l . Then I I / 1 1 1 = Jt(A n E,), and so 

I I F l l  Jt(A n E,) � ffgdJt = f l g l dJt � ( I I  F I I + e)Jt(A nE,). 
A nEt 

Letting t --+  oo we get that I I F I I Jt(A) � ( I I F I I + e)Jt(A), which can only be if 
Jt(A) = o. Thus I I g I I  oo � I I F 1 1 . 

Case 2: (X, n, Jt) is arbitrary. Let 8 = all of the sets E in n such that 
Jt(E) < oo.  For E in Q let QE = {Ae!l: A c E} and define (JL I E)(A) = Jt(A) for 
A in QE. Put l!(Jt l E) = I!(E, QE, Jt iE) and notice that l!(Jt l E) can be identified 
in a natural way with the functions in I!( X, n, Jt) that vanish off E. Make 
this identification and consider the restriction of F: l!(Jt) --+ F to l!(Jt l E); 
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denote the restriction by FE: I!(p, l E) -+ F. Clearly FE is bounded and 
I I  FE I I  � I I  F I I for every E in 8. 

By Case 1 ,  for every E in 8 there is a gE in Lq(J.l i E) such that for f in 
LP(p, l E), 

8.3 F(f) = f 
E 
f gEdJl. and I I  gE I I  4 ::::; I I  F I I . 

If D, E e8, then I!(p, l D n E) is contained in both I!(p, l D) and I!(p, I E). 
Moreover, Fn iLP(p, I D n E) = FE I LP(p, I D n E) = FnnE · Hence gn = gE = gnnE 
a.e. [p,] on D n E. Thus, a function g can be defined on U { E: Ee8} by letting 
g = gE on E; put g = O  off U {E: Ee8}. A difficulty arises here in trying to 
show that g is measurable. 

Case 2a: 1 < p <  oo . Put a = sup { l l gE I I q : Ee8}; so a � I I F I I < oo . Since 
I I  gD I I  q � I I  gE I I  q if D c E, there is a sequence {En } in 8 such that En c En +  1 
for all n and l l gE" I I q -+ a. Let G =  U:' 1 En. If Ee8 and En G =  0, then 
I I  gEuE" 1 1 : = I I  gE 1 1 : + I I  gE" 1 1 : -+ I I  gE 1 1 : + aq; thus gE = 0. Therefore g = 0 off G 
and clearly g is measurable. Moreover, geLq(p,) with I I  g l l q = a. 

If fei!(p,), then {x: f(x) :;C O} = U:' 1 Dn where Dne8 and Dn c Dn + t  for 
all n. Thus Xn"f -+  f in I!(p,) and so F(f) = lim F(xn"f) = (B.3) lim Jn"gf dp, = 
J g f d p,. Thus F = F, and I I  F I I  = I I F, I I  � I I  g I I  q � a � I I  F I I  . 

Case 2b: p = oo and (X, Q, p,) is a-finite. This is left to the reader. • 

EXERCISE 
Look at the proof of the theorem and see if you can represent L1(X, 0, p)* for an 
arbitrary measure space. 



APPENDIX C 
The Dual of C0(X) 

The purpose of this section is to show that the dual of C0(X) is the space of 
regular Borel measures on X and to put this result, and the accompanying 
definitions, in the context of complex-valued measures and functions. 

Let X be any set and let Q be a a-algebra of subsets of X; so (X, Q) is a 
measurable space. If Jl is a countably additive function defined on Q such 
that p,( D )  = 0 and 0 � p,(A) � oo for all A in Q, call Jl a positive measure on 
(X ,Q); (X, n, p,) is called a measure space. 

If (X, Q) is a measurable space, a signed measure is a countably additive 
function Jl defined on Q such that p,(D) = 0 and Jl takes its values in 
R u { + oo } .  (Note: Jl can assume only one of the values + oo.) It is assumed 
that the reader is familiar with the following result. 

C.l.  Hahn-Jordan Decomposition. If Jl is a signed measure on (X, Q), then 
Jl = p,1 - p,2, where p,1 and, p,2 are positive measures, and X =  E1 u E2, where 
E1, E2 eQ, E1 n E2 = 0, p,1(E2) = 0 = p,2(E1). The measures p,1 and p,2 are 
unique and the sets E1 and E2 are unique up to sets of p,1 + p,2 measure zero. 

A measure (or complex-valued measure) is a complex-valued function Jl 
defined on Q that is countably additive and such that p,(D) = 0. Note that 
Jl does not assume any infinite values. If Jl is a measure, then 
(Re p,)(A) = Re(p,(A) ) is a signed measure, as is (Im p,)(A) = lm(p,(A)); hence 
Jl = Re Jl + i Im p,. Applying (C. l) to Re Jl and Im Jl we get 

C.2 Jl = (Jl l - Jl2) + i(p,3 - Jl4) 

where Jli ( 1  � j � - 4) are positive measures, p,1 .i p,2 (p,1 and p,2 are mutually 
singular) and p,3 .i p,4• (C.2) will also be called the Hahn-Jordan 
decomposition of J.l· 
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C.3. Definition. If J.l is a measure on (X, Q) and �en, define the variation of 
J.l, I J.l l , by 

l ,u i (A) = supLf
1
l ,u(Ei) l : {Ei}7 is a measurable partition of A} · 

C.4. Proposition. If J.l is a measure on (X, Q), then I J.l l is a positive finite measure 
on (X, Q). If J.l is a signed measure, I J.l l is a positive measure. If(C.2) is satisfied, 
then I J.l l (�) � :Lt= 1 J.lk (�); if J.l is a signed measure, then I J.l l = J.l1 + J.l2 • 

PROOF. Clearly I J.l l (�) � 0. Let { �n} be pairwise disjoint measurable sets and 
let � =  U: 1�n· If e > 0, then there is a measurable partition {Ei}j 1 of � 
such that I J.l l (�) - e < :Lj 1 I J.l(Ei) l . Hence 

m oo 

I J.l l(�) - B � L L J.I,(Ein�n) 
j= 1 n = 1 

oo m 

� L L I J.l(Ein �n) l . n = 1 j=  1 

But {Ein �n}j 1 is a partition of �m so I J.l l(�) - e � :L: 1 I J.l l(�n). Therefore 
I J.l l(�) � :L: 1 I J.l l(�n). For the reverse inequality we may assume that 
I J.l l (�) < oo.  It follows that I J.l l (�n) < oo for every n. (Why?) Let e > 0 and for 
each n � 1 let {E�n> , . . .  , E�! } be a partition of �n such that Li i J.l(Ej

n>) l > 
I J.l l( �n) - e/2n. Then 

N 
� B + L L I J.l(Ej

n>) l n = 1 j 

� G + I J.l l (�). 

Letting N --4 oo and e --4 0  gives that L� I J.l l(�n) � I J.l l(�). 
Clearly I J.l(�) I � :Lt = 1J.lk(�), so I J.l l � :Lt = 1J.lk· It is left to the reader to show 

that I J.l l = J.l1 + J.l2 if J.l is a signed measure. Since J.l1 , J.l2, J.1,3, J.l4 are all finite, 
I J.l l is finite if J.l is complex-valued. • 

C.5. Definition. If J.l is a measure on (X, Q) and v is a positive measure on 
(X, Q), say that J.l is absolutely continutJus with respect to v (J.l << v) if J.l(�) = 0 
whenever v(�) = 0. If v is complex-valued, J.l << v means J.l << I v 1 . 

C.6. Proposition. Let J.l be a measure and v a positive measure on (X, Q). The 
following statements are equivalent. 

(a) J.l << v. 
(b) I J.l l << v. 
(c) If (C.2) holds, J.lk << v for 1 � k � 4. 
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PROOF. Exercise. 

The Radon-Nikodym Theorem can now be proved for complex-valued 
measures J.l by using (C.6) and applying the usual theorem to the real and 
imaginary parts of J.l. The details are left to the reader. 

C.7. Radon-Nikodym Theorem. If (X, 0., v) is a u-finite measure space and J.l 
is a complex-valued measure on (X, 0.) such that J.l << v, then there is a unique 
complex-valuedfunctionfin L1(X, 0., v) such that J.l(�) = J4f dv for every � in 0.. 

The function f obtained in (C.7) is called the Radon-Nikodym derivative 
of J.l with respect to v and is denoted by f = dJ.I,/dv. 

C.8. Theorem. Let (X, 0., v) be a u-finite measure space and let J.l be a 
complex-valued measure on (X, 0.) such that J.l << v and let f = dJ.I,jdv. 

(a) If geL(X, n, I J.l l), then gf eL1(X, n, v) and J gdj.l = J gf dv. 
(b) For � in 0., I J.l l(�) = JA i f ldv. 

PROOF. Part (a) follows from the corresponding result for signed measures 
by using (C.2) and a similar decomposition for f. 

To prove (b), let {Ei} be a measurable partition of �- Then 

� I J.l(Ei) l � � f l f l dv = f l f ldv. 1 
J J Ei 4 

For the reverse inequality, let g(x) = f(x)/l f(x) l if xe� and f(x) ::/= 0; let 
g(x) = 0 otherwise. Let {gn } be a sequence of 0.-measurable simple functions 
such that gn(x) = O  ofT �' l gn l � l g l � 1 ,  and gn(X) -4 g(x) a.e. [v] . Thus 
fgn -4 1 f iXA a.e. [v]. Also, l fgn l  � l f lx4 and fX4EL1 (v) [see (C.2)] .  By 
the Lebesgue Dominated Convergence Theorem, J fgndv --4 J4 l f ldv. If 
gn = "L1.a.iXEi' where { Ei} is a partition of � and I ai l � 1 ,  then 
I J fgndv l = I J gndJ.l l = I""LiaiJ.l(Ei) l � I J.l l(�). Thus JA i f ldv � I J.l l(�). • 

One way of phrasing (C.8b) is that l dJ.l/dv l = di J.l l/dv. The next result is 
left to the reader. 

C.9. Corollary. If J.l is a complex-valued measure on (X, 0.), then there is an 
0.-measurable function f on X such that I f I = 1 a.e. [ I J.l l ] and J.l( �) = J 4f d I J.l l  
for each � in 0.. 

C.lO. Definition. Let X be a locally compact space and let 0. be the smallest 
a-algebra of subsets of X that contains the open sets. Sets in 0. are called 
Borel sets. A positive measure J.l on (X, 0.) is a regular Borel measure if (a) 
J.l(K) < oo for every compact subset K of X; (b) for any E in 0., J.l(E) = sup {J.l(K): 
K c E and K is compact} ;  (c) for any E in 0., J.l(E) = inf{ J.l(U): U => E and U 
is open} .  If J.l is a complex-valued mea�ure on (X, 0.), J.l is a regular Borel 
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measure if 1 J.l l is. Let M(X) = all of the complex-valued regular Borel measures 
on X. Note that M(X) is a vector space over <C. For J.l in M(X), let 

C.l l  I I J.l l l = I J.l i(X). 

C.l2. Proposition. (C. 1 1 ) defines a norm on M(X). 

PROOF. Exercise. 

C.l3. Lemma. If J.lE M(X), define F ll: C0(X) --4 CC by F ll(f) = J f dJ.l. Then 
F lleC0(X)* and I I F ll II = I I J.l I I . 

PROOF. If f e C0(X), then I F ll(f) I � J If ld I J.l l � I I f I I I I  J.l l l . Hence F ll e C0(X)* 
and II F ll I I � I I J.l l l . 

To show equality, let fo be a Borel function such that l fo l = 1 a.e. [ I J.l l ] 
and J.l(�) = J4f0d i J.l l . By Lusin's Theorem, if e > 0, there is a continuous 
function 4> on X with compact support such that J I <P -f0 l d 1 J.l l  < e and 
1 1 4> 1 1 � sup lfo(x) l = 1 .  Thus I I J.l l l = Jfofod i J.l l (C.8a) = JfodJ.l = I JfodJ.l l � 
I J(fo - l/>)dJ.l l + I J l/>dJ.l l � e + I F p(l/>) 1 � e + I I Fll 1 1 - Hence I I J.l I I  � I I Fp l l · • 

C.l4. Corollary. (a) If U is an open subset of X and J.lEM(X), then 
I J.l i(U) = sup { I J l/>dJ.l l : l/>ECc(X), spt </> c U, and I l l/>  II � 1 }. (b) If J.l � 0, 
J.l(K) = inf{ J l/>dJ.l: l/>eC0(X) and 4> � XK} · 
PROOF. (a) If U is given the relative topology from X, U is locally compact. 
Let v be the restriction of J.l to U. Then (a) becomes a restatement of (C. l 3) 
for the space U together with the fact that Cc(U) is norm dense in C0(U). 

(b) If 4> � XK, then because J.l is positive, J l/>dJ.l � J.l(K). Thus 
J.l(K) � a = inf{ J l/>dJ.l: l/>eC0(X) and 4> � XK}· Using the regularity of J.l, for 
every integer n there is an open set U n such that K c U n and J.l(U n \K) < n - 1 • 

Let t/lnECc(X) such that 0 � t/ln � 1 ,  t/ln = 1 on K, and t/ln = 0 off U n· Thus 
t/1 n � XK and SO a � J t/1 ndJ.l � J.l(U n) < J.l(K) + n- 1 • • 

The next step in the process of representing bounded linear functionals 
on C0(X) by measures is to associate with each such functional a positive 
functional. If J.lEM(X), then the next lemma would associate with the 
functional F"' the positive functional I = F11l1 • 

C.l5. Lemma. If F: C0(X) --4 ([ is a l}ounded linear functional, then there is 
a unique linear functional I : C0(X) --4 CC such that iff e C0(X) and f � 0, then 

C.l6 

More over II I II = l lfl l . 

I(f) = sup { I F(g) l : geC0(X) and l g l � f }. 

PROOF. Let C0(X) + be the positive functions in C0(X) and for f in C0(X) + 
define I(f) as in (C. 1 6). If a >  0, then clearly I(af) = ai(f) iff eC0(X) + . Also, 
if geCo(X) and l g l � f, then I F(g) l � II F II II g II � II F 1 1 1 1 f 1 1 - Hence I(f) � 
II F II II f II < oo . 
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Now we will show that J(f1 + f2) = J(f1 ) + J(f2) whenever f1 , f2 eC(X) + .  
If e > 0, let g 1 , g2 eC0(X) such that I gi l  � fi and I F(gi) l > l(fi) - �e for j = 1 , 2. 
There are complex numbers pi, j = 1 , 2, with I Pi l  = 1 and F(gi) = Pi i F(gi) l . 
Thus 

- -

- -

= e + PtF(g t ) + P2F(g2) 

= e + I F(P tg t + P2g2) l . 

But I Ptg t + P2g2) l � l g t l + l g2 l � ft + f2· Hence J(ft ) + I(f2) � e + l(ft + f2). 
Since e was arbitrary, we have half of the desired equality. 

For the other half of the equality, let geC0(X) such that l g l � f1 + f2 and 
I(ft + f2) < 1 F(g) l + e. Let h t = min( l g l , f1 ) and h2 = l g l - h1 • Clearly 
h1 , h2 eC0(X) + , h 1 � f1 , h2 � f2, and h1 + h2 = l g l . Define gi: X --4 ([  by 

0 ifg(x) = O, 

gi(x) = hi(x)g(x) if g(x) # 0. 
l g(x) l 

It is left to the reader to verify that gieC0(X) and g 1 + g2 = g. Hence 

Now let e --4 0. 

I(ft + f2) < I F(g t ) + F(g2) l  + e 
� I F(g t ) l  + I F(g2) 1 + e , 
� J(ft) + I(f2) + e. 

Iff is a real-valued function in C0(X), thenf = f1 - f2 where f1 f2 eC0(X) + . 
If also f = g 1 - g2 for some g 1 , g2 in C0(X) + , then g 1 + f2 = f1 + g2 . By the 
preceding argument J(g 1 ) + J(f2) = J(f1 ) + J(g2). Hence if we define /: 
Re C0(X) -4 R by /(f) = J(f1 ) - J(f2) where f = f1 - f2 with f1 , f2 in C0(X) + , 
I is well defined. It is left to the reader to verify that I is R-linear. 

If f E C0(X), then f = f1 + if2, where f1 , f2 ERe C0(X). Let /(f) =  J(f1 ) + 
il(f2). It is left to the reader to show that /: C0(X) --4 ([ is a linear functional. 

To prove that II I II = II F I I , first let f eC0(X) and put J(f) = O! j /(f) l where 
I O! I  = 1 .  Hence af = ft + if2, where f1 , f2 eRe C0(X). Thus I J(f) l = &.J(f) = 
J(f1 ) + il(f2). Since I I(f) l is a positive real number, J(f2) = 0 and 
J(ft ) = I I(f) l . But ft = Re(af) � I f l . Hence 

I I(f) l � /( I f  I ). 

From here we get, as in the beginning of this proof, that I I I I I � II F 1 1 . For the 
other half, if e > 0, let f E C0(X) such that I I  f I I � 1 and II F I I  < I F(f) I + e. Thus 
I I F I I < l ( lf l ) + e �  I I l i i + e. • 

C.17. Theorem. If I: C0(X)-4<C is a bounded linear functional such that l(f) � 0 
whenever f eC0(X) + , then there is a positive measure v in M(X) such that 
I(f) = J f dv for every f in C0(X) and I I  I II = v(X). 



C. The Dual of C0(X) 383 

The proof of this is an involved construction. Inspired by Corollary C. 14, 
one defines v( U) for an open set U by 

v(U) = sup {l(c/J): c/J E Cc(X) + ,  cP � 1 ,  spt cP c U}. 

Then for any Borel set E, let 

v(E) = inf{v(U): E c U and U is open}. 

It must now be shown that v is a positive measure and J(f) = J f dv. For 
the details see ( 12.36) in Hewitt and Stromberg [ 1 975] or §56 in Halmos 
[ 1 974]. Indeed, Theorem C. 1 7  is often called the Riesz Representation 
Theorem. 

C.18. Riesz Representatioh theorem. If X is a locally compact space and 
J.lEM(X), define FJl: C0(X) -4 CC  by 

F Jl(f) = J f dJ.l. 

Then FJle C0(X)* and the map J.lHFJl is an isometric isomorphism of M(X) 
onto C0(X)*. 

PROOF. The fact that J.lH F Jl is an isometry is the content of Lemma C. 1 3. 
It remains to show that J.lHFJl is surjective. Let Fe C0(x)* and define J: 
C0(X) -4 CC  as in Lemma C. 1 5. By Theorem C. 1 7, there is a positive measure 
v in M(X) such that /(f) = J f dv for all f in C0(X). If f eC0(X), then the 
definition of I implies that I F(f) l � 1( 1 f l) = J l f ldv. Thus, Jr-. F(f) defines a 
bounded linear functional on C0(X) considered as a linear manifold in L1(v). 
Now C0(X) is dense in L1(v) (Why?), so F has a unique extension to a bounded 
linear functional on L1(v). By Theorem B. 1 there is a function c/J in L 00(v) such 
that F(f) = J f c/Jdv for every f in C0(X) and II cP II oo � 1 .  Let J.l(E) = JEc/Jdv for 
every Borel set E. Then J.lEM(X) and by Theorem C.8(a), F(f) = J f dJ,l; that 
is, F = Fw • 
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This book is an introductory text in functional analysts, a1med at the 
graduate student with a ftrm background in integration and measure 
theory. Unlike many modern treatments, this book begtns wtth the 
particular and works its way to the more general, helping the tu· 
dent to develop an intu1t1ve feel for the subject For example the 
author introduces th concept of a Banach space only after hav1ng 
antroduced Hilbert spaces, and discusstng their properttes The stu
dent will also apprec1at the large number of examples and exerctses 
wh1ch have been tncluded 
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